Efficiency arcjet thruster with controlled arc startup and steady state attachment
NASA Technical Reports Server (NTRS)
Smith, William W. (Inventor); Knowles, Steven C. (Inventor)
1989-01-01
An improved efficiency arcjet thruster has a constrictor and electrically-conductive nozzle anode defining an arc chamber, and an electrically-conductive rod having a tip spaced upstream from the constrictor and defining a cathode spaced from the anode by a gap generally coextensive with the arc chamber. An electrical potential is applied to the anode and cathode to generate an electrical arc in the arc chamber from the cathode to anode. Catalytically decomposed hydrazine is supplied to the arc chamber with generation of the arc so as to produce thermal heating and expansion thereof through the nozzle. The constrictor can have a electrically insulative portion disposed between the cathode tip and the nozzle anode, and an electrically-conductive anode extension disposed along the insulative portion so as to define an auxiliary gap with the cathode tip substantially smaller than the gap defined between the cathode and nozzle anode for facilitating startup of arc generation. The constrictor can also include an electrically-conductive electrode with a variable electrical potential to vary the shape of the arc generated in the arc chamber. Also, the cathode is mounted for axial movement such that the gap between its tip and the nozzle anode can be varied to facilitate a generally nonerosive generation of the electrical arc at startup and reliable steady state operation. Further, the arc chamber can have a nonparallel subsonic-to-supersonic transition configuration, or alternatively solely a nonparallel supersonic configuration, for improved arc attachment.
Thermoacoustic energy effects in electrical arcs.
Capelli-Schellpfeffer, M; Miller, G H; Humilier, M
1999-10-30
Electrical arcs commonly occur in electrical injury incidents. Historically, safe work distances from an energized surface along with personal barrier protection have been employee safety strategies used to minimize electrical arc hazard exposures. Here, the two-dimensional computational simulation of an electrical arc explosion is reported using color graphics to depict the temperature and acoustic force propagation across the geometry of a hypothetical workroom during a time from 0 to 50 ms after the arc initiation. The theoretical results are compared to the experimental findings of staged tests involving a mannequin worker monitored for electrical current flow, temperature, and pressure, and reported data regarding neurologic injury thresholds. This report demonstrates a credible link between electrical explosions and the risk for pressure (acoustic) wave trauma. Our ultimate goal is to protect workers through the design and implementation of preventive strategies that properly account for all electrical arc-induced hazards, including electrical, thermal, and acoustic effects.
Elements of EAF automation processes
NASA Astrophysics Data System (ADS)
Ioana, A.; Constantin, N.; Dragna, E. C.
2017-01-01
Our article presents elements of Electric Arc Furnace (EAF) automation. So, we present and analyze detailed two automation schemes: the scheme of electrical EAF automation system; the scheme of thermic EAF automation system. The application results of these scheme of automation consists in: the sensitive reduction of specific consummation of electrical energy of Electric Arc Furnace, increasing the productivity of Electric Arc Furnace, increase the quality of the developed steel, increasing the durability of the building elements of Electric Arc Furnace.
Deichelbohrer, Paul R [Richland, WA
1986-01-01
A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.
NASA Technical Reports Server (NTRS)
Petru, S.
1974-01-01
During the treatment of an electric welding arc with ultrasonic oscillations, an improvement was found in overall source-arc stability. Theoretical explanations are provided for this phenomenon and formulas of equivalence between the classical arc and the treated arc are derived, taking stability as their criterion. A knowledge of this phenomenon can be useful in extending the applications of ultrasounds to different forms of electric arcs.
Electrical characteristics of TIG arcs in argon from non-equilibrium modelling and experiment
NASA Astrophysics Data System (ADS)
Baeva, Margarita; Uhrlandt, Dirk; Siewert, Erwan
2016-09-01
Electric arcs are widely used in industrial processes so that a thorough understanding of the arc characteristics is highly important to industrial research and development. TIG welding arcs operated with pointed electrodes made of tungsten, doped with cerium oxide, have been studied in order to analyze in detail the electric field and the arc voltage. Newly developed non-equilibrium model of the arc is based on a complete diffusion treatment of particle fluxes, a generalized form of Ohm's law, and boundary conditions accounting for the space-charge sheaths within the magneto-hydrodynamic approach. Experiments have been carried out for electric currents in the range 5-200 A. The electric arc has been initiated between a WC20 cathode and a water-cooled copper plate placed 0.8 mm from each other. The arc length has been continuously increased by 0.1 mm up to 15 mm and the arc voltage has been simultaneously recorded. Modelling and experimental results will be presented and discussed.
A Novel Arc Fault Detector for Early Detection of Electrical Fires
Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang
2016-01-01
Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618
Evolution of space open electric arc burning in the external axial magnetic field
NASA Astrophysics Data System (ADS)
Urusova, I. R.; Urusova, T. E.
2018-06-01
The calculation was made for open DC electric arc burning in an external uniform axial magnetic field. It was performed within the framework of a nonstationary three-dimensional mathematical model in approximation of partial local thermodynamic equilibrium of plasma. A "schematic" analog of electron temperature fluctuations was proposed for numerical realization of the open electric arc column of a helical shape. According to calculations, it was established that the column of the open electric arc takes a helical space shape. Plasma rotates around a longitudinal axis of the arc, at that the directions of plasma rotation near the cathode and the anode are opposite. In the arc cross-sections, the velocity of plasma rotation is unequal and the deviation value of the same part of the arc from the central axis varies in time. A helical shape of the open arc is not stable and varies in time. Apparently, the open arc cannot remain stable and invariable in the time helical shape in the external axial magnetic field.
Parameter estimation of extended free-burning electric arc within 1 kA
NASA Astrophysics Data System (ADS)
Sun, Qiuqin; Liu, Hao; Wang, Feng; Chen, She; Zhai, Yujia
2018-05-01
A long electric arc, as a common phenomenon in the power system, not only damages the electrical equipment but also threatens the safety of the system. In this work, a series of tests on a long electric arc in free air have been conducted. The arc voltage and current data were obtained, and the arc trajectories were captured using a high speed camera. The arc images were digitally processed by means of edge detection, and the length is formulated and achieved. Based on the experimental data, the characteristics of the long arc are discussed. It shows that the arc voltage waveform is close to the square wave with high-frequency components, whereas the current is almost sinusoidal. As the arc length elongates, the arc voltage and the resistance increase sharply. The arc takes a spiral shape with the effect of magnetic forces. The arc length will shorten briefly with the occurrence of the short-circuit phenomenon. Based on the classical Mayr model, the parameters of the long electric arc, including voltage gradient and time constant, with different lengths and current amplitudes are estimated using the linear least-square method. To reduce the computational error, segmentation interpolation is also employed. The results show that the voltage gradient of the long arc is mainly determined by the current amplitude but almost independent of the arc length. However, the time constant is jointly governed by these two variables. The voltage gradient of the arc with the current amplitude at 200-800 A is in the range of 3.9 V/cm-20 V/cm, and the voltage gradient decreases with the increase in current.
Dry and wet arc track propagation resistance testing
NASA Technical Reports Server (NTRS)
Beach, Rex
1995-01-01
The wet arc-propagation resistance test for wire insulation provides an assessment of the ability of an insulation to prevent damage in an electrical environment. Results of an arc-propagation test may vary slightly due to the method of arc initiation; therefore a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc by dripping salt water over pre-damaged wires which creates a conductive path between the wires. The power supply, test current, circuit resistances, and other variables are optimized for testing 20 guage wires. The use of other wire sizes may require modifications to the test variables. The dry arc-propagation resistance test for wire insulation also provides an assessment of the ability of an insulation to prevent damage in an electrical arc environment. In service, electrical arcs may originate form a variety of factors including insulation deterioration, faulty installation, and chafing. Here too, a standard test method must be selected to evaluate the general arc-propagation resistance characteristics of an insulation. This test method initiates an arc with a vibrating blade. The test also evaluates the ability of the insulation to prevent further arc-propagation when the electrical arc is re-energized.
NASA Astrophysics Data System (ADS)
Steenkamp, Joalet Dalene; Hockaday, Christopher James; Gous, Johan Petrus; Nzima, Thabo Witness
2017-09-01
Submerged-arc furnace technology is applied in the primary production of ferroalloys. Electrical energy is dissipated to the process via a combination of arcing and resistive heating. In processes where a crater forms between the charge zone and the reaction zone, electrical energy is dissipated mainly through arcing, e.g., in coke-bed based processes, through resistive heating. Plant-based measurements from a device called "Arcmon" indicated that in silicomanganese (SiMn) production, at times up to 15% of the electrical energy used is transferred by arcing, 30% in high-carbon ferromanganese (HCFeMn) production, compared with 5% in ferrochromium and 60% in ferrosilicon production. On average, the arcing is much less at 3% in SiMn and 5% in HCFeMn production.
Deichelbohrer, P.R.
1983-08-08
A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.
Electrical Arc Ignition Testing for Constellation Program
NASA Technical Reports Server (NTRS)
Sparks, Kyle; Gallus, Timothy; Smith, Sarah
2009-01-01
NASA Johnson Space Center (JSC) Materials and Processes Branch requested that NASA JSC White Sands Test Facility (WSTF) perform testing for the Constellation Program to evaluate the hazard of electrical arc ignition of materials that could be in close proximity to batteries. Specifically, WSTF was requested to perform wire-break electrical arc tests to determine the current threshold for ignition of generic cotton woven fabric samples with a fixed voltage of 3.7 V, a common voltage for hand-held electrical devices. The wire-break test was developed during a previous test program to evaluate the hazard of electrical arc ignition inside the Extravehicular Mobility Unit [1].
Power quality analysis of DC arc furnace operation using the Bowman model for electric arc
NASA Astrophysics Data System (ADS)
Gherman, P. L.
2018-01-01
This work is about a relatively new domain. The DC electric arc is superior to the AC electric arc and it’s not used in Romania. This is why we analyzed the work functions of these furnaces by simulation and model checking of the simulation results.The conclusions are favorable, to be carried is to develop a real-time control system of steel elaboration process.
NASA Astrophysics Data System (ADS)
Baikov, V. I.; Gishkelyuk, I. A.; Rus', A. M.; Sidorovich, T. V.; Tonkonogov, B. A.
2010-11-01
A numerical simulation of the action of the current experienced by an electric arc and the rate of gas flow in a pipe of a cross-country gas pipeline on the depth of penetration of the electric arc into the wall of this pipe and on the current and residual stresses arising in the pipe material in the process of electric-arc welding of nonthrough cavity-like defects in it has been carried out for gas pipes with walls of different thickness.
Kowalski-Trakofler, Kathleen; Barrett, Edward
2007-01-01
It is estimated that 5 to 10 arc flash explosions occur in electric equipment every day in the United States. In the mining industry the largest single injury category of electrical injuries are caused by non-contact electrical arcs. This investigation progressed in two phases: (a) 836 Mine Safety and Health Administration (MSHA) reports of electric arcing incidents that occurred over a period of 11 years were reviewed, and (b) personal interviews were conducted with 32 individuals. A theoretical Safe Job Performance Model guided the study. Behavioral dimensions were identified and included the effect of worker experience, judgment and decision-making ability, behavioral and organizational controls, and safety culture. The National Institute for Occupational Safety and Health (NIOSH) conducted an investigation of behavioral components associated with arc flash incidents and developed recommendations for interventions based on findings. This study fills a vacuum in electrical training with a focus on the organizational and behavioral aspects of arc flash incidents. The research is cross-cutting in its scope, in that the results apply not only to mining and construction, but many other industries employing electricians. Although the majority of mine electrical injuries are the results of burns from electrical arcs, few miners are aware that such a hazard exists. A safety training program, which includes a video and an instructor's discussion guide, was developed for electricians based on this study's findings. "Arc Flash Awareness" was released in 2007 (DHHS NIOSH Publication No.2007-116D) and is available through 1-800 CDC INFO. Phone: 1-800 232-4636 or email cdcinfo@cdc.gov. It is also available from MSHA at MSHADistribution@dol.gov or 304-256-3257 (DVD-576). Private industry is producing Portuguese and Spanish language translations.
Du, Jian-Hua; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng
2017-01-01
The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc. PMID:28797055
Du, Jian-Hua; Tu, Ran; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng
2017-01-01
The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.
Swarm observation of field-aligned current and electric field in multiple arc systems
NASA Astrophysics Data System (ADS)
Wu, J.; Knudsen, D. J.; Gillies, M.; Donovan, E.; Burchill, J. K.
2017-12-01
It is often thought that auroral arcs are a direct consequence of upward field-aligned currents. In fact, the relation between currents and brightness is more complicated. Multiple auroral arc systems provide and opportunity to study this relation in detail. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground-based optical data from the THEMIS all-sky imagers (ASIs), magnetometers and electric field instruments onboard the Swarm satellites during the period from December 2013 to March 2015. In type 1 events, each arc is an intensification within a broad, unipolar current sheet and downward currents only exist outside the upward current sheet. These types of events are termed "unipolar FAC" events. In type 2 events, multiple arc systems represent a collection of multiple up/down current pairs, which are termed as "multipolar FAC" events. Comparisons of these two types of FAC events are presented with 17 "unipolar FAC" events and 12 "multipolar FAC" events. The results show that "unipolar FAC" and "multipolar FAC" events have systematic differences in terms of MLT, arc width and separation, and dependence on substorm onset time. For "unipolar FAC" events, significant electric field enhancements are shown on the edges of the broad upward current sheet. Electric field fluctuations inside the multiple arc system can be large or small. For "multipolar FAC" events, a strong correlation between magnetic and electric field indicate uniform conductance within each upward current sheet. The electrodynamical structures of multiple arc systems presented in this paper represents a step toward understanding arc generation.
40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Electric Arc Furnace (EAF) CH4 Emission Factors K Table K-1 to Subpart K of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission...
40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Electric Arc Furnace (EAF) CH4 Emission Factors K Table K-1 to Subpart K of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission...
40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Electric Arc Furnace (EAF) CH4 Emission Factors K Table K-1 to Subpart K of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission...
40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Electric Arc Furnace (EAF) CH4 Emission Factors K Table K-1 to Subpart K of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission...
Thermal investigation of an electrical high-current arc with porous gas-cooled anode
NASA Technical Reports Server (NTRS)
Eckert, E. R. G.; Schoeck, P. A.; Winter, E. R. F.
1984-01-01
The following guantities were measured on a high-intensity electric arc with tungsten cathode and transpiration-cooled graphite anode burning in argon: electric current and voltage, cooling gas flow rate (argon), surface temperature of the anode and of the anode holder, and temperature profile in three cross-sections of the arc are column. The last mentioned values were obtained from spectroscopic photographs. From the measured quantities, the following values were calculated: the heat flux into the anode surface, the heat loss of the anode by radiation and conduction, and the heat which was regeneratively transported by the cooling gas back into the arc space. Heat balances for the anode were also obtained. The anode losses (which are approximately 80% of the total arc power for free burning arcs) were reduced by transpiration cooling to 20%. The physical processes of the energy transfer from the arc to the anode are discussed qualitatively.
Optical emission from a small scale model electric arc furnace in 250-600 nm region.
Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H
2013-04-01
Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.
Relationship between large horizontal electric fields and auroral arc elements
NASA Astrophysics Data System (ADS)
Lanchester, B. S.; Kailá, K.; McCrea, I. W.
1996-03-01
High time resolution optical measurements in the magnetic zenith are compared with European Incoherent Scatter (EISCAT) field-aligned measurements of electron density at 0.2-s resolution and with horizontal electric field measurements made at 278 km with resolution of 9 s. In one event, 20 min after a spectacular auroral breakup, a system of narrow and active arc elements moved southward into the magnetic zenith, where it remained for several minutes. During a 30-s interval of activity in a narrow arc element very close to the radar beam, the electric field vectors at 3-s resolution were found to be extremely large (up to 400 mVm-1) and to point toward the bright optical features in the arc, which moved along its length. It is proposed that the large electric fields are short-lived and are directly associated with the particle precipitation that causes the bright features in auroral arc elements.
Numerical assessment of bureau of mines electric arc melter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paik, S.; Hawkes, G.; Nguyen, H.D.
1994-12-31
An electric arc melter used for the waste treatment process at Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM) has been numerically studied. The arc melter is being used for vitrification of thermally oxidized, buried, transuranic (TRU) contaminated wastes by INEL in conjunction with the USBM as a part of the Buried Waste Integrated Demonstration project. The purpose of this study is to numerically investigate the performance of the laboratory-scale arc melter simulating the USBM arc melter. Initial results of modeling the full-scale USBM arc melter are also reported in this paper.
Structure of propagating arc in a magneto-hydrodynamic rail plasma actuator
NASA Astrophysics Data System (ADS)
Gray, Miles D.; Choi, Young-Joon; Sirohi, Jayant; Raja, Laxminarayan L.
2016-01-01
The spatio-temporal evolution of a magnetically driven arc in a rail plasma flow actuator has been characterized with high-speed imaging, electrical measurements, and spectroscopy. The arc draws a peak current of ~1 kA. High-speed framing cameras were used to observe the complex arc propagation phenomenon. In particular, the anode and cathode roots were observed to have different modes of transit, which resulted in distinct types of electrode degradation on the anode and cathode surfaces. Observations of the arc electrical properties and induced magnetic fields are used to explain the transit mechanism of the arc. Emission spectroscopy revealed the arc temperature and species composition as a function of transit distance of the arc. The results obtained offer significant insights into the electromagnetic properties of the arc-rail system as well as arc-surface interaction phenomena in a propagating arc.
Heat-electrical regeneration way to intensive energy saving in an electric arc furnaces
NASA Astrophysics Data System (ADS)
Kartavtcev, S.; Matveev, S.; Neshporenko, E.
2018-03-01
Energy saving in steel production is of great significance for its large economical scale of 1500 mil t/year and high-energy consumption. Steady trend of last years is an increase of steel production in electric arc furnaces (EAF) with a very high consumption of electricity up to 750 kWh/ton. The intention to reduce so much energy consumption they can reach by many ways. One of such way is a transforming heat energy of liquid steel to electricity and destine it to steel electric arc process. Under certain conditions, it may lead to “zero” consumption of electric power in the process. The development of these conditions leads to the formation of energy-efficient heat schemes, with a minimum electricity consumption from the external network.
Code of Federal Regulations, 2011 CFR
2011-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2012 CFR
2012-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2013 CFR
2013-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2010 CFR
2010-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2014 CFR
2014-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Novel non-equilibrium modelling of a DC electric arc in argon
NASA Astrophysics Data System (ADS)
Baeva, M.; Benilov, M. S.; Almeida, N. A.; Uhrlandt, D.
2016-06-01
A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current-voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7-2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A.
Magnetically Diffused Radial Electric-Arc Air Heater Employing Water-Cooled Copper Electrodes
NASA Technical Reports Server (NTRS)
Mayo, R. F.; Davis, D. D., Jr.
1962-01-01
A magnetically rotated electric-arc air heater has been developed that is novel in that an intense magnetic field of the order of 10,000 to 25,000 gauss is employed. This field is supplied by a coil that is connected in series with the arc. Experimentation with this heater has shown that the presence of an intense magnetic field transverse to the arc results in diffusion of the arc and that the arc has a positive effective resistance. With the field coil in series with the arc, highly stable arc operation is obtained from a battery power supply. External ballast is not required to stabilize the arc when it is operating at maximum power level. The electrode erosion rate is so low that the airstream contamination is no more than 0.07 percent and may be substantially less.
NASA Astrophysics Data System (ADS)
Bachche, Shivaji; Oka, Koichi
2013-03-01
This paper proposes design of end-effector and prototype of thermal cutting system for harvesting sweet peppers. The design consists of two parallel gripper bars mounted on a frame connected by specially designed notch plate and operated by servo motor. Based on voltage and current, two different types of thermal cutting system prototypes; electric arc and temperature arc respectively were developed and tested for performance. In electric arc, a special electric device was developed to obtain high voltage to perform cutting operation. At higher voltage, electrodes generate thermal arc which helps to cut stem of sweet pepper. In temperature arc, nichrome wire was mounted between two electrodes and current was provided directly to electrodes which results in generation of high temperature arc between two electrodes that help to perform cutting operation. In both prototypes, diameters of basic elements were varied and the effect of this variation on cutting operation was investigated. The temperature arc thermal system was found significantly suitable for cutting operation than electric arc thermal system. In temperature arc thermal cutting system, 0.5 mm nichrome wire shows significant results by accomplishing harvesting operation in 1.5 seconds. Also, thermal cutting system found suitable to increase shelf life of fruits by avoiding virus and fungal transformation during cutting process and sealing the fruit stem. The harvested sweet peppers by thermal cutting system can be preserved at normal room temperature for more than 15 days without any contamination.
NASA Technical Reports Server (NTRS)
Robotti, A. C.; Oggero, M.
1984-01-01
Experiments which use a new type of arc-jet, characterized by composite electromagnetic and vortex stabilization and propelled by hydrogen and nitrogen in turn are described. The electrical characteristics of the arc and the loss of heat through the electrodes is emphasized.
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
Electric Arc and Electrochemical Surface Texturing Technologies
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Snyder, Scott A.
1997-01-01
Surface texturing of conductive materials can readily be accomplished by means of a moving electric arc which produces a plasma from the environmental gases as well as from the vaporized substrate and arc electrode materials. As the arc is forced to move across the substrate surface, a condensate from the plasma re-deposits an extremely rough surface which is intimately mixed and attached to the substrate material. The arc textured surfaces produce greatly enhanced thermal emittance and hold potential for use as high temperature radiator surfaces in space, as well as in systems which use radiative heat dissipation such as computer assisted tomography (CAT) scan systems. Electrochemical texturing of titanium alloys can be accomplished by using sodium chloride solutions along with ultrasonic agitation to produce a random distribution of craters on the surface. The crater size and density can be controlled to produce surface craters appropriately sized for direct bone in-growth of orthopaedic implants. Electric arc texturing and electrochemical texturing techniques, surface properties and potential applications will be presented.
76 FR 41659 - Airworthiness Directives; The Boeing Company Model 747 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
...), which could result in electrical arcing between the wires and aluminum conduit and consequent fire or... pumps (if installed), which could result in electrical arcing between the wires and aluminum conduit and...
Ion source based on the cathodic arc
Sanders, David M.; Falabella, Steven
1994-01-01
A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.
Time series prediction in the case of nonlinear loads by using ADALINE and NAR neural networks
NASA Astrophysics Data System (ADS)
Ghiormez, L.; Panoiu, M.; Panoiu, C.; Tirian, O.
2018-01-01
This paper presents a study regarding the time series prediction in the case of an electric arc furnace. The considered furnace is a three phase load and it is used to melt scrap in order to obtain liquid steel. The furnace is powered by a three-phase electrical supply and therefore has three graphite electrodes. The furnace is a nonlinear load that can influence the equipment connected to the same electrical power supply network. The nonlinearity is given by the electric arc that appears at the furnace between the graphite electrode and the scrap. Because of the disturbances caused by the electric arc furnace during the elaboration process of steel it is very useful to predict the current of the electric arc and the voltage from the measuring point in the secondary side of the furnace transformer. In order to make the predictions were used ADALINE and NAR neural networks. To train the networks and to make the predictions were used data acquired from the real technological plant.
NASA Technical Reports Server (NTRS)
Robotti, A. C.; Oggero, M.
1984-01-01
The possibility of using an electric arc under the influence of a magnetic field in ambient air to transform the heat energy of the working fluid arc into the kinetic energy of the jet was investigated. A convergent-divergent type nozzle was used. Variation of specific thrust and chamber pressure are discussed. Nitrogen was the propellant used.
Stability of Alfvén eigenmodes in the vicinity of auroral arc
NASA Astrophysics Data System (ADS)
Hiraki, Yasutaka
2013-08-01
The purpose of this study is to give a theoretical suggestion to the essential question why east-west elongated auroral arc can keep its anisotropic structure for a long time. It could be related to the stability of east-westward traveling modes in the vicinity of arc, which may develop into wavy or spiral structures, whereas north-southward modes are related to splitting of arcs. Taking into account the arc-inducing field-aligned current and magnetic shears, we examine changes in the stability of Alfvén eigenmodes that are coupled to perpendicular modes in the presence of convection electric field. It is demonstrated that the poleward current shear suppresses growth of the westward mode in case of the westward convection electric field. Only the poleward mode is still unstable because of the properties of feedback shear waves. It is suggested that this tends to promote (poleward) arc splitting as often observed during quiet times. We further draw a diagram of the westward mode growth rate as a function of convection electric field and current shear, evaluating critical fields for instabilities of lower Alfvén harmonics. It is discovered that a switching phenomenon of fast-growing mode from fundamental to the first harmonic occurs for a high electric field regime. Our stability criterion is applied to some observed situations of auroral arc current system during pre-breakup active times.
Arc driver operation for either efficient energy transfer or high-current generator
NASA Technical Reports Server (NTRS)
Dannenberg, R. E.; Silva, A. F.
1972-01-01
An investigation is made to establish predictable electric arcs along triggered paths for research purposes, the intended application being the heating of the driver gas of a 1 MJ electrically driven shock tube. Trigger conductors consisting of wires, open tubes, and tubes pressurized with different gases were investigated either on the axis of the arc chamber or spiraled along the chamber walls. Design criteria are presented for successful arc initiation with reproducible voltage-current characteristics. Results are compared with other facilities and several application areas are discussed.
Technique eliminates high voltage arcing at electrode-insulator contact area
NASA Technical Reports Server (NTRS)
Mealy, G.
1967-01-01
Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.
Magnetically operated limit switch has improved reliability, minimizes arcing
NASA Technical Reports Server (NTRS)
Steiner, R.
1966-01-01
Limit switch for reliable, low-travel, snap action with negligible arcing uses an electrically nonconductive permanent magnet consisting of a ferrimagnetic ceramic and ferromagnetic pole shoes which form a magnetic and electrically conductive circuit with a ferrous-metal armature.
Ion source based on the cathodic arc
Sanders, D.M.; Falabella, S.
1994-02-01
A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated, is described. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles. 3 figures.
Series and parallel arc-fault circuit interrupter tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Dean; Fresquez, Armando J.; Gudgel, Bob
2013-07-01
While the 2011 National Electrical Codeª (NEC) only requires series arc-fault protection, some arc-fault circuit interrupter (AFCI) manufacturers are designing products to detect and mitigate both series and parallel arc-faults. Sandia National Laboratories (SNL) has extensively investigated the electrical differences of series and parallel arc-faults and has offered possible classification and mitigation solutions. As part of this effort, Sandia National Laboratories has collaborated with MidNite Solar to create and test a 24-string combiner box with an AFCI which detects, differentiates, and de-energizes series and parallel arc-faults. In the case of the MidNite AFCI prototype, series arc-faults are mitigated by openingmore » the PV strings, whereas parallel arc-faults are mitigated by shorting the array. A range of different experimental series and parallel arc-fault tests with the MidNite combiner box were performed at the Distributed Energy Technologies Laboratory (DETL) at SNL in Albuquerque, NM. In all the tests, the prototype de-energized the arc-faults in the time period required by the arc-fault circuit interrupt testing standard, UL 1699B. The experimental tests confirm series and parallel arc-faults can be successfully mitigated with a combiner box-integrated solution.« less
Primary Multi-frequency Data Analyze in Electrical Impedance Scanning.
Liu, Ruigang; Dong, Xiuzhen; Fu, Feng; Shi, Xuetao; You, Fusheng; Ji, Zhenyu
2005-01-01
This paper deduced the Cole-Cole arc equation in form of admittance by the traditional Cole-Cole equation in form of impedance. Comparing to the latter, the former is more adaptive to the electrical impedance scanning which using lower frequency region. When using our own electrical impedance scanning device at 50-5000Hz, the measurement data separated on the arc of the former, while collected near the direct current resistor on the arc of the latter. The four parameters of the former can be evaluated by the least square method. The frequency of the imaginary part of admittance reaching maximum can be calculated by the Cole-Cole parameters. In conclusion, the Cole-Cole arc in form of admittance is more effective to multi-frequency data analyze at lower frequency region, like EIS.
Method for cracking hydrocarbon compositions using a submerged reactive plasma system
Kong, P.C.
1997-05-06
A method is described for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap there between. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition. 6 figs.
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.
1991-01-01
Recent studies involving the use of polyimide Kapton coated wires indicate that if a momentary electrical short circuit occurs between two wires, sufficient heating of the Kapton can occur to thermally char (pyrolyze) the Kapton. Such charred Kapton has sufficient electrical conductivity to create an arc which tracks down the wires and possibly propagates to adjoining wires. These studies prompted an investigation to ascertain the likelihood of the Kapton pyrolysis, arc tracking and propagation phenomena, and the magnitude of destruction conceivably inflicted on Space Station Freedom's (SSF) Flexible Current Carrier (FCC) for the photovoltaic array. The geometric layout of the FCC, having a planar-type orientation as opposed to bundles, may reduce the probability of sustaining an arc. An experimental investigation was conducted to simulate conditions under which an arc can occur on the FCC of SSF, and the consequences of arc initiation.
Method for cracking hydrocarbon compositions using a submerged reactive plasma system
Kong, Peter C.
1997-01-01
A method for cracking a liquid hydrocarbon composition (e.g. crude oil) to produce a cracked hydrocarbon product. A liquid hydrocarbon composition is initially provided. An electrical arc is generated directly within the hydrocarbon composition so that the arc is entirely submerged in the composition. Arc generation is preferably accomplished using a primary and secondary electrode each having a first end submerged in the composition. The first ends of the electrodes are separated from each other to form a gap therebetween. An electrical potential is then applied to the electrodes to generate the arc within the gap. A reactive gas is thereafter delivered to the arc which forms a bubble around the arc. Gas delivery may be accomplished by providing a passageway through each electrode and delivering the gas through the passageways. The arc and gas cooperate to produce a plasma which efficiently cracks the hydrocarbon composition.
Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca
2012-01-01
The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.
Remote electrical arc suppression by laser filamentation.
Schubert, Elise; Mongin, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre
2015-11-02
We investigate the interaction of narrow plasma channels formed in the filamentation of ultrashort laser pulses, with a DC high voltage. The laser filaments prevent electrical arcs by triggering corona that neutralize the high-voltage electrodes. This phenomenon, that relies on the electric field modulation and free electron release around the filament, opens new prospects to lightning and over-voltage mitigation.
Auto Body Welding 2 (Course Outline), Automotive Body Repair and Refinishing 1: 9033.04.
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
The 90-hour course is a foundation quinmester course in welding for the auto body repairman. The outline consists of seven blocks of instruction (orientation, 6 hours; auto body oxyacetylene welding, 10 hours; electric arc welding equipment, 6 hours; auto body electric arc welding, 8 hours; position welding, 40 hours; electric spot welders, 16…
1. INTERIOR VIEW LOOKING NORTHWEST; ELECTRIC/INFRARED/CARBON ARC CUBICLES ON LEFT, ...
1. INTERIOR VIEW LOOKING NORTHWEST; ELECTRIC/INFRARED/CARBON ARC CUBICLES ON LEFT, DOORS TO MUSCLE TRAINING GYMNASIUM ON RIGHT - Fort McCoy, Building No. T-1054, South side of South Tenth Avenue, Block 10, Sparta, Monroe County, WI
Direct comparison between satellite electric field measurements and the visual aurora
NASA Technical Reports Server (NTRS)
Swift, D. W.; Gurnett, D. A.
1973-01-01
Electric field data from two passes of the Injun 5 satellite, one corresponding to magnetically quiet conditions and one corresponding to substorm conditions, are compared with simultaneous all-sky-camera data from College, Alaska. In each case, a significant deviation of the electric field from the expected V x B field (where V is the satellite velocity) was evident and a distinct electric field reversal could be identified. In the region of substantial electric field equatorward of the electric field reversal a diffuse auroral arc was observed during the magnetically quiet pass and auroral patches were observed during the substorm pass. The motion of the auroral patches was consistent with the general direction and magnitude of the E x B drift computed from the satellite electric field measurements. In the substorm case the electric field reversal occurred very near a discrete auroral arc at the poleward side of the diffuse arcs and patches. Comparison of the quiet time and substorm cases suggests that the convection electric field penetrates deeper into the magnetosphere during a substorm.
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 420.46 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...
40 CFR 420.46 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...
40 CFR 420.46 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...
40 CFR 420.46 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... new source subject to this subpart which introduces pollutants into a publicly owned treatment works...) Basic oxygen furnace steelmaking—semi-wet; and electric arc furnace steelmaking—semi-wet. No discharge... combustion; electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
40 CFR 52.1173 - Control strategy: Particulates.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Electric Arc Furnaces, Sintering Plants, Blast Furnaces, Heating and Reheating Furnaces. (2) Rules 336.1371... Basic Oxygen Furnaces, Electric Arc Furnaces, Sintering Plants, Blast Furnaces and Heating and Reheating... the receiving car itself during the pushing operation; (b) in the phrase “eight consecutive trips...
High-tension electrical-arc-induced thermal burns caused by railway overhead cables.
Koller, J
1991-10-01
Eleven patients with high-tension electrical-arc-induced thermal burns due to railway overhead cables were treated at the Bratislava Burn Department during a relatively short period of 18 months. All the injuries occurred by the same mechanism, that is persons climbing on top of railway carriages and approaching the 25,000 V a.c. overhead cables. All the burns were the result of an electrical arc passing externally to the body, with subsequent ignition of the victim's clothes. The cutaneous burns, ranging from 24 to 79 per cent of the BSA, were mostly deep partial to full skin thickness injuries. One patient died on day 5 postburn, the other survived. In spite of high-tension aetiology, no true electrical injuries appear to have occurred and no amputations were necessary. The pathophysiology and possible preventive measures are discussed. It must be stressed that arcing can be induced by an earthed object approaching, but not touching, a cable carrying a high voltage.
Arc-textured high emittance radiator surfaces
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
1991-01-01
High emittance radiator surfaces are produced by arc-texturing. This process produces such a surface on a metal by scanning it with a low voltage electric arc from a carbon electrode in an inert environment.
New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields
NASA Astrophysics Data System (ADS)
Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent
2017-02-01
Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘self-induced’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power.
The electric field structure of auroral arcs as determined from barium plasma injection experiments
NASA Technical Reports Server (NTRS)
Wescott, E. M.
1981-01-01
Barium plasma injection experiments have revealed a number of features of electric fields in and near auroral forms extending from a few hundred to many thousands of km in altitude. There is evidence for V-type potential structures over some auroras, but not in others. For some auroral arcs, large E fields are found at ionospheric altitudes outside the arc but the E field inside the arc is near zero. In a few other auroras, most recently one investigated in an experiment conducted from Poker Flat on March 22, 1980, large, rapidly fluctuating E fields were detected by barium plasma near 600 km altitude. These E fields suggest that the motion of auroral rays can be an effect of low-altitude electric fields, or that V-type potential structures may be found at low altitudes.
NASA Astrophysics Data System (ADS)
Huang, Yong; Wang, Kehong; Zhou, Zhilan; Zhou, Xiaoxiao; Fang, Jimi
2017-03-01
The arc of gas metal arc welding (GMAW) contains abundant information about its stability and droplet transition, which can be effectively characterized by extracting the arc electrical signals. In this study, ensemble empirical mode decomposition (EEMD) was used to evaluate the stability of electrical current signals. The welding electrical signals were first decomposed by EEMD, and then transformed to a Hilbert-Huang spectrum and a marginal spectrum. The marginal spectrum is an approximate distribution of amplitude with frequency of signals, and can be described by a marginal index. Analysis of various welding process parameters showed that the marginal index of current signals increased when the welding process was more stable, and vice versa. Thus EEMD combined with the marginal index can effectively uncover the stability and droplet transition of GMAW.
40 CFR 420.45 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2011 CFR
2011-07-01
... owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment standards for existing sources. (a) Electric arc furnace steelmaking—semi-wet. No discharge of process... electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment standards for...
40 CFR 420.45 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2013 CFR
2013-07-01
... owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment standards for existing sources. (a) Electric arc furnace steelmaking—semi-wet. No discharge of process... electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment standards for...
40 CFR 420.45 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2014 CFR
2014-07-01
... owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment standards for existing sources. (a) Electric arc furnace steelmaking—semi-wet. No discharge of process... electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment standards for...
40 CFR 420.45 - Pretreatment standards for existing sources (PSES).
Code of Federal Regulations, 2012 CFR
2012-07-01
... owned treatment works must comply with 40 CFR part 403 and achieve the following pretreatment standards for existing sources. (a) Electric arc furnace steelmaking—semi-wet. No discharge of process... electric arc furnace steelmaking—wet. Subpart D Pollutant or pollutant property Pretreatment standards for...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... Furnaces and Argon Oxygen Decarburization Vessels (Renewal) AGENCY: Environmental Protection Agency (EPA... www.regulations.gov . Title: NSPS for Steel Plants: Electric Arc Furnaces and Argon Oxygen.... Respondents/Affected Entities: Owners or operator of electric arc furnaces and argon oxygen decarburization...
NASA Astrophysics Data System (ADS)
Opitz, Florian; Treffinger, Peter
2016-04-01
Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.
NASA Astrophysics Data System (ADS)
Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.
2016-12-01
The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.
NASA requirements and applications environments for electrical power wiring
NASA Technical Reports Server (NTRS)
Stavnes, Mark W.; Hammoud, Ahmad N.
1992-01-01
Serious problems can occur from insulation failures in the wiring harnesses of aerospace vehicles. In most recorded incidents, the failures have been identified to be the result of arc tracking, the propagation of an arc along wiring bundles through degradation of insulation. Propagation of the arc can lead to the loss of the entire wiring harness and the functions which it supports. While an extensive database of testing for arc track resistant wire insulations has been developed for aircraft applications, the counterpart requirements for spacecraft are very limited. The electrical, thermal, mechanical, chemical, and operational requirements for specification and testing of candidate wiring systems for spacecraft applications is presented.
Code of Federal Regulations, 2010 CFR
2010-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
NASA Technical Reports Server (NTRS)
Robotti, A. C.; Oggero, M.
1985-01-01
Results of experimental electric propulsion research are presented. A plasma generator, with an arc stabilized by an air vortex is examined. The heat transfer efficiency between arc and fluid environment at a varying current and flow rate is discussed.
GENERATION AND SIMULATION OF METALLIC PARTICULATE AIR POLLUTANTS BY ELECTRIC ARC SPRAYING
The report gives results of efforts to provide a generated output with an appropriate mass and concentration of fresh, dry, fine metal oxide particles for bench or pilot scale fine particulate collection research and development work. The work involved two electric arc aerosol ge...
Code of Federal Regulations, 2013 CFR
2013-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Code of Federal Regulations, 2011 CFR
2011-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Code of Federal Regulations, 2014 CFR
2014-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Code of Federal Regulations, 2012 CFR
2012-07-01
... by the application of the best conventional pollutant control technology (BCT). (a) Electric arc... control technology (BCT). 420.47 Section 420.47 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—open combustion; electric arc furnace steelmaking—wet. [Reserved] (d) Basic oxygen furnace steelmaking...
Analysis of the flow in a 1-MJ electric-arc shock tunnel
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.; Reddy, N. M.
1972-01-01
In the electric-arc-heated shock tunnel, the facility performance over a range of shock Mach numbers from 7 to 19 was evaluated. The efficiency of the arc-heated driver is deduced using an improved form of the shock tube equation. A theoretical and experimental analysis is made of the tailored-interface condition. The free stream properties in the test section, with nitrogen as the test gas, are evaluated using a method based on stagnation point, heat transfer measurements.
Surface to bulk Fermi arcs via Weyl nodes as topological defects
Kim, Kun Woo; Lee, Woo-Ram; Kim, Yong Baek; Park, Kwon
2016-01-01
A hallmark of Weyl semimetal is the existence of surface Fermi arcs. An intriguing question is what determines the connectivity of surface Fermi arcs, when multiple pairs of Weyl nodes are present. To answer this question, we show that the locations of surface Fermi arcs are predominantly determined by the condition that the Zak phase integrated along the normal-to-surface direction is . The Zak phase can reveal the peculiar topological structure of Weyl semimetal directly in the bulk. Here, we show that the winding of the Zak phase around each projected Weyl node manifests itself as a topological defect of the Wannier–Stark ladder, energy eigenstates under an electric field. Remarkably, this leads to bulk Fermi arcs, open-line segments in the bulk spectra. Bulk Fermi arcs should exist in conjunction with surface counterparts to conserve the Weyl fermion number under an electric field, which is supported by explicit numerical evidence. PMID:27845342
Kang, Ki-Noh; Jeong, Hyejeong; Lee, Jaehyeong; Park, Yong Seob
2018-09-01
A good medical guidewires are used to introduce stents, catheters, and other medical devices inside the human body. In this study, diamond-like carbon (DLC) film was proposed to solve the poor adhesion problem of guidewire and to improve the tribological performance of guidewire. DLC films were fabricated on Si substrate by using FVA (Filtered Vacuum Arc) method. In this work, the tribological, structural, and electrical properties of the fabricated DLC films with various arc currents were experimentally investigated. All DLC films showed smooth and uniform surface with increasing applied arc current. The rms surface roughness was increased and the value of contact angle on the film surface was decreased with increasing arc current. The hardness and elastic modulus of DLC films were improved, and the resistivity value of DLC films were decreased with increasing arc current. These results are associated with ion bombardment effects by the applied arc current and bias voltage.
Method for gas-metal arc deposition
Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.
1990-11-13
Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.
Method for gas-metal arc deposition
Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.
1990-01-01
Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.
Apparatus for gas-metal arc deposition
Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.
1991-01-01
Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.
Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca
2012-01-01
The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms. PMID:22969330
Electrical Breakdown of Anodized Structures in a Low Earth Orbital Environmental
NASA Technical Reports Server (NTRS)
Galofaro, J. T.; Doreswamy, C. V.; Vayner, B. V.; Snyder, D. B.; Ferguson, D. C.
1999-01-01
A comprehensive set of investigations involving arcing on a negatively biased anodized aluminum plate immersed in a low density argon plasma at low pressures (P(sub O), 7.5 x 10(exp -5) Torr) have been performed. These arcing experiments were designed to simulate electrical breakdown of anodized coatings in a Low Earth Orbital (LEO) environment. When electrical breakdown of an anodized layer occurs, an arc strikes, and there is a sudden flux of electrons accelerated into the ambient plasma. This event is directly followed by ejection of a quasi-neutral plasma cloud consisting of ejected material blown out of the anodized layer. Statistical analysis of plasma cloud expansion velocities have yielded a mean propagation velocity, v = (19.4 +/- 3.5) km/s. As the plasma cloud expands into the ambient plasma, energy in the form of electrical noise is generated. The radiated electromagnetic noise is detected by means of an insulated antenna immersed in the ambient plasma. The purpose of the investigations is (1) to observe and record the electromagnetic radiation spectrum resulting from the arcing process. (2) Make estimates of the travel time of the quasi-neutral plasma cloud based on fluctuations to several Langmuir probes mounted in the ambient plasma. (3) To study induced arcing between two anodized aluminum structures in close proximity.
Pan, Shu-Yuan; Chung, Tai-Chun; Ho, Chang-Ching; Hou, Chin-Jen; Chen, Yi-Hung; Chiang, Pen-Chi
2017-12-08
Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO 2 ) emission and alkaline solid waste generation. In fact, most CO 2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO 2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO 2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO 2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.
Pulsed metallic-plasma generators.
NASA Technical Reports Server (NTRS)
Gilmour, A. S., Jr.; Lockwood, D. L.
1972-01-01
A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.
NASA Astrophysics Data System (ADS)
Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.
2015-12-01
The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.
The manufacture of steel by electric arc furnaces (EAF) is continuing to increase in usage in the United States with current production estimated to be over 63 million tons per year. The reduction of emissions from steel producers has been slow for two main reasons: the nee...
Study of SF6 gas decomposition products based on spectroscopy technology
NASA Astrophysics Data System (ADS)
Cai, Ji-xing; Na, Yan-xiang; Ni, Wei-yuan; Li, Guo-wei; Feng, Ke-cheng; Song, Gui-cai
2011-08-01
With the rapid development of power industry, the number of SF6 electrical equipment are increasing, it has gradually replaced the traditional insulating oil material as insulation and arc media in the high-voltage electrical equipment. Pure SF6 gas has excellent insulating properties and arc characteristics; however, under the effect of the strong arc, SF6 gas will decompose and generate toxic substances, then corroding electrical equipment, thereby affecting the insulation and arc ability of electrical equipment. If excessive levels of impurities in the gas that will seriously affect the mechanical properties, breaking performance and electrical performance of electrical equipment, it will cause many serious consequences, even threaten the safe operation of the grid. This paper main analyzes the basic properties of SF6 gas and the basic situation of decomposition in the discharge conditions, in order to simulate the actual high-voltage electrical equipment, designed and produced a simulation device that can simulate the decomposition of SF6 gas under a high voltage discharge, and using fourier transform infrared spectroscopy to analyze the sample that produced by the simulation device. The result show that the main discharge decomposition product is SO2F2 (sulfuryl fluoride), the substance can react with water and generate corrosive H2SO4(sulfuric acid) and HF (hydrogen fluoride), also found that the increase in the number with the discharge, SO2F2concentration levels are on the rise. Therefore, the material can be used as one of the main characteristic gases to determine the SF6 electrical equipment failure, and to monitor their concentration levels.
Electrical and hydrodynamic characterization of a high current pulsed arc
NASA Astrophysics Data System (ADS)
Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.
2016-05-01
High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.
Field-aligned particle currents near an auroral arc.
NASA Technical Reports Server (NTRS)
Choy, L. W.; Arnoldy, R. L.; Potter, W.; Kintner, P.; Cahill, L. J., Jr.
1971-01-01
A Nike-Tomahawk rocket equipped to measure electric and magnetic fields and charged particles from a few eV to several hundred keV energy was flown into an auroral band on April 11, 1970. The purpose of this flight was to obtain evidence of the low-energy electrons and protons that constitute a field-aligned sheet current, and also to obtain the magnetic signature of such a current and the electric field in and near the auroral-arc electric current system. Particular attention was given to a sudden increase in the field-aligned current associated with a prior sudden increase in the electric field and a sudden change in the magnetic field, all occurring near the edge of a visual auroral arc. Data obtained are discussed and analyzed; they present an important contribution to the problem of mapping of atmospheric auroral phenomena to the magnetospheric equatorial plane.
Numerical simulation of a helical shape electric arc in the external axial magnetic field
NASA Astrophysics Data System (ADS)
Urusov, R. M.; Urusova, I. R.
2016-10-01
Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.
Modular hybrid plasma reactor and related systems and methods
Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.
2010-06-22
A device, method and system for generating a plasma is disclosed wherein an electrical arc is established and the movement of the electrical arc is selectively controlled. In one example, modular units are coupled to one another to collectively define a chamber. Each modular unit may include an electrode and a cathode spaced apart and configured to generate an arc therebetween. A device, such as a magnetic or electromagnetic device, may be used to selectively control the movement of the arc about a longitudinal axis of the chamber. The arcs of individual modules may be individually controlled so as to exhibit similar or dissimilar motions about the longitudinal axis of the chamber. In another embodiment, an inlet structure may be used to selectively define the flow path of matter introduced into the chamber such that it travels in a substantially circular or helical path within the chamber.
Variable-Polarity Plasma Arc Welding Of Alloy 2219
NASA Technical Reports Server (NTRS)
Walsh, Daniel W.; Nunes, Arthur C., Jr.
1989-01-01
Report presents results of study of variable-polarity plasma arc (VPPA) welding of aluminum alloy 2219. Consists of two parts: Examination of effects of microsegregation and transient weld stress on macrosegregation in weld pool and, electrical characterization of straight- and reverse-polarity portions of arc cycle.
NASA Astrophysics Data System (ADS)
Liu, Shuangyu; Liu, Fengde; Zhang, Hong; Shi, Yan
2012-06-01
In this paper, CO 2 laser-metal active gas (MAG) hybrid welding technique is used to weld high strength steel and the optimized process parameters are obtained. Using LD Pumped laser with an emission wavelength of 532 nm to overcome the strong interference from the welding arc, a computer-based system is developed to collect and visualize the waveforms of the electrical welding parameters and metal transfer processes in laser-MAG. The welding electric signals of hybrid welding processes are quantitatively described and analyzed using the ANALYSATOR HANNOVER. The effect of distance between laser and arc ( DLA) on weld bead geometry, forming process of weld shape, electric signals, arc characteristic and droplet transfer behavior is investigated. It is found that arc characteristic, droplet transfer mode and final weld bead geometry are strongly affected by the distance between laser and arc. The weld bead geometry is changed from "cocktail cup" to "cone-shaped" with the increasing DLA. The droplet transfer mode is changed from globular transfer to projected transfer with the increasing DLA. Projected transfer mode is an advantage for the stability of hybrid welding processes.
Modeling and control parameters for GMAW, short-circuiting transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, G.E.; DeLapp, D.R.; Barnett, R.J.
1996-12-31
Digital signal processing was used to analyze the electrical arc signals of the gas metal arc welding process with short-circuiting transfer. Among the features extracted were arc voltage and current (both average and peak values), short-circuiting frequency, arc period, shorting period, and the ratio of the arcing to shorting period. Additionally , a Joule heating model was derived which accurately predicted the melt-back distance during each short. The short-circuiting frequency, the ratio of the arc period to short periods, and the melt-back distance were found to be good indicators for monitoring and control of stable arc conditions.
Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.
Suetens, T; Guo, M; Van Acker, K; Blanpain, B
2015-04-28
To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
Overvoltage protector using varistor initiated arc
Brainard, John P.
1982-01-01
Coaxial conductors are protected against electrical overvoltage by at least one element of non-electroded varistor material that adjoins each other varistor element and conductor with which it contacts. With this construction, overvoltage current initiated through the varistor material arcs at the point contacts between varistor elements and, as the current increases, the arcs increase until they become a continuous arc between conductors, bypassing the varistor material.
NASA Astrophysics Data System (ADS)
Semenyshyn, R. V.; Veklich, A. N.; Babich, I. L.; Boretskij, V. F.
2014-10-01
Plasma of the free burning electric arc between Ag-SnO2-ZnO composite electrodes as well as brass electrodes were investigated. The plasma temperature distributions were obtained by Boltzmann plot method involving Cu I, Ag I or Zn I spectral line emissions. The electron density distributions were obtained from the width and from absolute intensity of spectral lines. The laser absorption spectroscopy was used for measurement of copper atom concentration in plasma. Plasma equilibrium composition was calculated using two independent groups of experimental values (temperature and copper atom concentration, temperature and electron density). It was found that plasma of the free burning electric arc between brass electrodes is in local thermodynamical equilibrium. The experimental verification of the spectroscopic data of Zn I spectral lines was carried out.
Elements of the electric arc furnace's environmental management
NASA Astrophysics Data System (ADS)
Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş
2017-12-01
The paper presents a theoretical and experimental analysis of the polluting generating mechanisms for steel making in the Electric Arc Furnaces (EAF). The scheme for the environment's polluting system through the EAF is designed and presented in this paper. The ecological experimenting consisted of determining by specialized measures of the dust percentage in the evacuated gases from the EAF and of thereof gas pollutants. From the point of view of reducing the impact on the environment, the main problem of the electric arc furnace (EAF) is the optimization of the powder collecting from the process gases, both from the furnace and from the work-area. The paper deals with the best dependence between the aggregate's constructive, functional and technological factors, which are necessary for the furnace's ecologization and for its energetically-technologically performances increasing.
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2010 CFR
2010-04-01
... vapor lamp, incorporating a high-pressure arc discharge tube that has a fill consisting primarily of... use. (4) Outer envelope means the lamp element, usually glass, surrounding a high-pressure arc... operating time means the sum of the times during which electric current passes through the high-pressure arc...
Dynamic Discharge Arc Driver. [computerized simulation
NASA Technical Reports Server (NTRS)
Dannenberg, R. E.; Slapnicar, P. I.
1975-01-01
A computer program using nonlinear RLC circuit analysis was developed to accurately model the electrical discharge performance of the Ames 1-MJ energy storage and arc-driver system. Solutions of circuit parameters are compared with experimental circuit data and related to shock speed measurements. Computer analysis led to the concept of a Dynamic Discharge Arc Driver (DDAD) capable of increasing the range of operation of shock-driven facilities. Utilization of mass addition of the driver gas offers a unique means of improving driver performance. Mass addition acts to increase the arc resistance, which results in better electrical circuit damping with more efficient Joule heating, producing stronger shock waves. Preliminary tests resulted in an increase in shock Mach number from 34 to 39 in air at an initial pressure of 2.5 torr.
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a water... a maximum wall stress of 24,000 p.s.i. in the formula described in paragraph (f)(4) of this section... any case the minimum wall thickness must be such that the wall stress calculated by the formula listed...
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2010 CFR
2010-10-01
... DOT 4BW cylinder is a welded type steel cylinder with a longitudinal electric-arc welded seam, a water... a maximum wall stress of 24,000 p.s.i. in the formula described in paragraph (f)(4) of this section... any case the minimum wall thickness must be such that the wall stress calculated by the formula listed...
Measurement of Velocity Induced by a Propagating Arc Magnetohydrodynamic Plasma Actuator
NASA Astrophysics Data System (ADS)
Choi, Young Joon; Gray, Miles; Sirohi, Jayant; Raja, Laxminarayan
2016-09-01
Plasma actuators can substantially improve the maneuverability and efficiency of aerial vehicles. These solid state devices have low mass, small volume, and high bandwidth that make them excellent alternatives to conventional mechanical actuators. In particular, a Rail Plasma Actuator (RailPAc) has the potential to delay flow separation on an aerodynamic surface by generating a large body force. A RailPAc consists of parallel rails and an electrical arc that propagates along the rails with a self-induced Lorentz force. The motion of the arc transfers momentum to the surrounding neutral air. A study was conducted to understand how the motion and shape of a propagating arc couples with the fluid momentum. In particular, we used Particle Imaging Velocimetry (PIV) and seedless PIV based on Background Oriented Schlieren (BOS) technique to measure the induced velocity of a propagating arc in one atmosphere. Results obtained provide insight into how the flow field responds to the passage of a RailPAc electrical arc. A complete description of the RailPAc actuation mechanism can be obtained if the fluid momentum measurements from PIV and seedless PIV are compared to the transit characteristics of an arc. US ARL Grant W911NF1410226.
Generator and Setup for Emulating Exposures of Biological Samples to Lightning Strokes.
Rebersek, Matej; Marjanovic, Igor; Begus, Samo; Pillet, Flavien; Rols, Marie-Pierre; Miklavcic, Damijan; Kotnik, Tadej
2015-10-01
We aimed to develop a system for controlled exposure of biological samples to conditions they experience when lightning strikes their habitats. We based the generator on a capacitor charged via a bridge rectifier and a dc-dc converter, and discharged via a relay, delivering arcs similar to natural lightning strokes in electric current waveform and similarly accompanied by acoustic shock waves. We coupled the generator to our exposure chamber described previously, measured electrical and acoustic properties of arc discharges delivered, and assessed their ability to inactivate bacterial spores. Submicrosecond discharges descended vertically from the conical emitting electrode across the air gap, entering the sample centrally and dissipating radially toward the ring-shaped receiving electrode. In contrast, longer discharges tended to short-circuit the electrodes. Recording at 341 000 FPS with Vision Research Phantom v2010 camera revealed that initial arc descent was still vertical, but became accompanied by arcs leaning increasingly sideways; after 8-12 μs, as the first of these arcs formed direct contact with the receiving electrode, it evolved into a channel of plasmified air and short-circuited the electrodes. We eliminated this artefact by incorporating an insulating cylinder concentrically between the electrodes, precluding short-circuiting between them. While bacterial spores are highly resistant to electric pulses delivered through direct contact, we showed that with arc discharges accompanied by an acoustic shock wave, spore inactivation is readily obtained. The presented system allows scientific investigation of effects of arc discharges on biological samples. This system will allow realistic experimental studies of lightning-triggered horizontal gene transfer and assessment of its role in evolution.
Low temperature formation of electrode having electrically conductive metal oxide surface
Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping
1998-01-01
A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.
Combined Experimental and Numerical Investigation of Electric-Arc Airspikes For Blunt Body at Mach 3
NASA Astrophysics Data System (ADS)
Misiewicz, C.; Myrabo, L. N.; Shneider, M. N.; Raizer, Y. P.
2005-04-01
Electric-arc airspike experiments were performed with a 1.25-inch diameter blunt body in the vacuum-driven Mach 3 wind tunnel at Rensselaer Polytechnic Institute. Schlieren movies at 30-Hz frame rate were recorded of the airspike flowfields, revealing substantial evolution over the 6-second run durations. Arc powers up to 2-kW were delivered into the airspike by an arc-welding power supply, using zirconiated tungsten electrodes. Aerodynamic drag was measured with a piezo-electric load cell, revealing reductions up to 70% when the airspike was energized. The test article was a small-scale model of the Mercury lightcraft, a laser-propelled transatmospheric vehicle designed to transport one-person into orbit. Numerical modeling of this airspike is based on the Euler gasdynamic equations for conditions identical to those tested in the RPI supersonic tunnel. Excellent agreement between the shock wave shapes given by first-order asymptotic theory, numerical modeling, and experiment is demonstrated. Results of the numerical modeling confirm both the significant drag reduction potential and the energy efficiency of the airspike concept.
NASA Astrophysics Data System (ADS)
Gubin, V.; Firsov, A.
2018-03-01
As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.
NASA Astrophysics Data System (ADS)
Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru
2016-10-01
TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.
Carbon Coating Of Copper By Arc-Discharge Pyrolysis
NASA Technical Reports Server (NTRS)
Ebihara, Ben T.; Jopek, Stanley
1988-01-01
Adherent, abrasion-resistant coat deposited with existing equipment. Carbon formed and deposited as coating on copper substrate by pyrolysis of hydrocarbon oil in electrical-arc discharges. Technique for producing carbon deposits on copper accomplished with electrical-discharge-machining equipment used for cutting metals. Applications for new coating technique include the following: solar-energy-collecting devices, coating of metals other than copper with carbon, and carburization of metal surfaces.
Metal halide arc discharge lamp having short arc length
NASA Technical Reports Server (NTRS)
Muzeroll, Martin E. (Inventor)
1994-01-01
A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.
Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil.
Song, Geum-Ju; Seo, Yong-Chil; Pudasainee, Deepak; Kim, In-Tae
2010-07-01
An attempt has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35-40%), acetylene (13-20%), ethylene (3-4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg(-1) and the concentrations of toxic gases, such as NO(x), HCl and HF, were below the regulatory emissions limit. Gas chromatography-mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 microm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy
NASA Technical Reports Server (NTRS)
Schlagen, Kenneth J.
1992-01-01
Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.
Rocket observations at the northern edge of the eastward electrojet
NASA Technical Reports Server (NTRS)
Cahill, L. J., Jr.; Arnoldy, R. L.; Taylor, W. W. L.
1980-01-01
The paper discusses a Nike-Tomahawk rocket launched north over quiet, late evening auroral arcs in March 1975. A northward magnetic disturbance was observed on the ground under the rocket trajectory; south of the arcs the northward electric field was 60 mV/m, indicating strong westward plasma flow. An eastward electrojet current layer was penetrated in the upward flight, and precipitating electrons were observed over each arc. Using the observed electron flux and a model of the ionosphere, the Hall and Pedersen conductivities were calculated which were used to compute the eastward and northward components of the horizontal ionospheric currents. The joule power decreased abruptly in the auroral arcs, as the precipitating electron power increased; the total dissipated power was the same inside the arcs, between them and southward. North of the aurora the electric field and dissipated power remained low; field-aligned currents carried by the observed electrons were about a factor of 3 lower than those inferred from the magnetic field measurements.
Swarm Observation of Field-Aligned Currents Associated With Multiple Auroral Arc Systems
NASA Astrophysics Data System (ADS)
Wu, J.; Knudsen, D. J.; Gillies, D. M.; Donovan, E. F.; Burchill, J. K.
2017-10-01
Auroral arcs occur in regions of upward field-aligned currents (FACs); however, the relation is not one to one, since kinetic energy of the current-carrying electrons is also important in the production of auroral luminosity. Multiple auroral arc systems provide an opportunity to study the relation between FACs and auroral brightness in detail. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground-based optical data from the Time History of Events and Macroscale Interactions during Substorms all-sky imagers, magnetometers and electric field instruments on board the Swarm satellites. In "unipolar FAC" events, each arc is an intensification within a broad, unipolar current sheet and downward return currents occur outside of this broad sheet. In "multipolar FAC" events, multiple arc systems represent a collection of multiple up/down current pairs. By collecting 17 events with unipolar FAC and 12 events with multipolar FACs, we find that (1) unipolar FAC events occur most frequently between 20 and 21 magnetic local time and multipolar FAC events tend to occur around local midnight and within 1 h after substorm onset. (2) Arcs in unipolar FAC systems have a typical width of 10-20 km and a spacing of 25-50 km. Arcs in multipolar FAC systems are wider and more separated. (3) Upward currents with more arcs embedded have larger intensities and widths. (4) Electric fields are strong and highly structured on the edges of multiple arc system with unipolar FAC. The fact that arcs with unipolar FAC are much more highly structured than the associated currents suggests that arc multiplicity is indicative not of a structured generator deep in the magnetosphere, but rather of the magnetosphere-ionosphere coupling process.
ARC DISCHARGE AND METHOD OF PRODUCING THE SAME
Neidigh, R.V.
1960-03-15
A device for producing an energetic gas arc discharge between spaced electrodes in an evacuated chamber and within a magnetic field is described. Gas is fed into the arc in a direction normal to a refluxing stream of electrons and at a pressure higher than the pressure within the chamber to establish a pressure gradient along the arc discharge formed between the electrodes. This pressure gradient establishes rotating, time varying, radial electrical fields in the volume surroundimg the discharge, causing the discharge to rotate about the arc center line.
Magnetic-cusp, cathodic-arc source
Falabella, S.
1995-11-21
A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission. 3 figs.
NASA Astrophysics Data System (ADS)
Skoblo, T. S.; Vlasovets, V. M.; Moroz, V. V.
2001-11-01
Reliable data on the structure of the deposited layer are very important due to the considerable instability of the process of deposition of coatings by the method of electric-arc metallization and the strict requirements for reconditioned crankshafts. The present paper is devoted to the structure of coatings obtained from powder wire based on ferrochrome-aluminum with additional alloying elements introduced into the charge.
Synthesis and characterization of Cu nanotubes and nanothreads by electrical arc evaporation.
Yadav, Ram Manohar; Singh, A K; Srivastava, O N
2003-06-01
We report the formation and characterization of copper nanostructures, nanotubules and nanothreads, which were obtained by electrical arc evaporation of Cu electrodes under varied conditions of He ambience. Electrical arc evaporation was done with approximately 10 V and (approximately 50-100 A) DC current. The current was used in a pulse mode. The evaporated material was condensed on a formvar-coated Cu grid mounted on a liquid N2-cooled specimen holder. Transmission electron microscopy was employed to characterize the condensed materials. These investigations revealed that the condensed materials consisted of the mentioned nanostructures. Nanotubes and nanothreads are formed for a He pressure in the chamber corresponding to approximately 140 and approximately 500 torr, respectively. Extensive electron microscopic investigations showed that the diameter of the nanotubes varied from approximately 5 nm to approximately 50 nm and their length from 2 microns to 3 microns.
Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.
Kehagia, Fotini
2009-05-01
Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.
Application of Waste Heat Recovery Energy Saving Technology in Reform of UHP-EAF
NASA Astrophysics Data System (ADS)
Zhao, J. H.; Zhang, S. X.; Yang, W.; Yu, T.
2017-08-01
The furnace waste heat of a company’s existing 4 × 100t ultra-high-power electric arc furnaces is not used and discharged directly of the situation has been unable to meet the national energy-saving emission reduction requirements, and also affected their own competitiveness and sustainable development. In order to make full use of the waste heat of the electric arc furnace, this paper presents an the energy-saving transformation program of using the new heat pipe boiler on the existing ultra-high-power electric arc furnaces for recovering the waste heat of flue gas. The results show that after the implementation of the project can save energy equivalent to 42,349 tons of standard coal. The flue gas waste heat is fully utilized and dust emission concentration is accorded with the standard of Chinese invironmental protection, which have achieved good results.
NASA Astrophysics Data System (ADS)
Rochette, D.; Clain, S.; André, P.; Bussière, W.; Gentils, F.
2007-05-01
Medium voltage (MV) cells have to respect standards (for example IEC ones (IEC TC 17C 2003 IEC 62271-200 High Voltage Switchgear and Controlgear—Part 200 1st edn)) that define security levels against internal arc faults such as an accidental electrical arc occurring in the apparatus. New protection filters based on porous materials are developed to provide better energy absorption properties and a higher protection level for people. To study the filter behaviour during a major electrical accident, a two-dimensional model is proposed. The main point is the use of a dedicated numerical scheme for a non-conservative hyperbolic problem. We present a numerical simulation of the process during the first 0.2 s when the safety valve bursts and we compare the numerical results with tests carried out in a high power test laboratory on real electrical apparatus.
NASA Astrophysics Data System (ADS)
Costoiu, M.; Ioana, A.; Semenescu, A.; Marcu, D.
2016-11-01
The article presents the main advantages of electric arc furnace (EAF): it has a great contribution to reintroduce significant quantities of reusable metallic materials in the economic circuit, it constitutes itself as an important part in the Primary Materials and Energy Recovery (PMER), good productivity, good quality / price ratio, the possibility of developing a wide variety of classes and types of steels, including special steels and high alloy. In this paper it is presented some important developments of electric arc furnace: vacuum electric arc furnace, artificial intelligence expert systems for pollution control Steelworks. Another important aspect presented in the article is an original block diagram for optimization the EAF management system. This scheme is based on the original objective function (criterion function) represented by the price / quality ratio. The article presents an original block diagram for optimization the control system of the EAF. For designing this concept of EAF management system, many principles were used.
Electrical Resistivity of Wire Arc Sprayed Zn and Cu Coatings for In-Mold-Metal-Spraying
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch; Ochotta, P.
2018-06-01
Electrical functionalities can be integrated into plastic parts by integrating thermally sprayed metal coatings into the non-conductive base material. Thermally sprayed conducting tracks for power and signal transmission are one example. In this case, the electrical resistance or resistivity of the coatings should be investigated. Therefore, the electrical resistivity of wire arc sprayed Zn and Cu coatings has been investigated. In case of Zn coatings, spray distance, gas pressure and wire diameter could be identified as significant influencing parameters on the electrical resistivity. In contrast, process gas, gas pressure and voltage do have a significant influence on the electrical resistivity of Cu coatings. Through the use of the In-Mold-Metal-Spraying method (IMMS), thermal degradation can be avoided by transferring thermally sprayed coating from a mold insert onto the plastic part. Therefore, the influence of the transfer process on the electrical resistance of the coatings has also been investigated.
Rankin, R.A.; Kotter, D.K.
1997-05-13
The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored. 2 figs.
Rankin, Richard A.; Kotter, Dale K.
1997-01-01
The Hall-Effect Arc Protector is used to protect sensitive electronics from high energy arcs. The apparatus detects arcs by monitoring an electrical conductor, of the instrument, for changes in the electromagnetic field surrounding the conductor which would be indicative of a possible arcing condition. When the magnitude of the monitored electromagnetic field exceeds a predetermined threshold, the potential for an instrument damaging are exists and the control system logic activates a high speed circuit breaker. The activation of the breaker shunts the energy imparted to the input signal through a dummy load to the ground. After the arc condition is terminated, the normal signal path is restored.
Shapes of Spectral Lines of Nonuniform Plasma of Electric Arc Discharge Between Copper Electrodes
NASA Astrophysics Data System (ADS)
Babich, Ida L.; Boretskij, Viacheslav F.; Veklich, Anatoly N.
2007-09-01
The radial profiles of the temperature and electron density in the plasma of the free burning electric arc between copper electrodes are studied by optical spectroscopy techniques. The electron density and the temperature in plasma as initial parameters were used in the calculation of the plasma composition in local thermodynamic equilibrium (LTE) assumption. We used the Saha's equation for copper, nitrogen and oxygen, dissociation equation for nitrogen and oxygen, the equation of plasma electrical neutrality and Dalton's law as well. So, it would be possible to determine the amounts of metal vapours in plasma.
Apparatus for coating a surface with a metal utilizing a plasma source
Brown, I.G.; MacGill, R.A.; Galvin, J.E.
1991-05-07
An apparatus and method are disclosed for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time. 10 figures.
Apparatus for coating a surface with a metal utilizing a plasma source
Brown, Ian G.; MacGill, Robert A.; Galvin, James E.
1991-01-01
An apparatus and method for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time.
Analytical instruments, ionization sources, and ionization methods
Atkinson, David A.; Mottishaw, Paul
2006-04-11
Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.
NASA Technical Reports Server (NTRS)
Linley, Larry
1994-01-01
The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.
Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Zhang, Guogang; Dong, Jinlong; Liu, Wanying; Geng, Yingsan
2014-07-01
In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non-intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc.
29 CFR 1926.351 - Arc welding and cutting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...
29 CFR 1926.351 - Arc welding and cutting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...
29 CFR 1926.351 - Arc welding and cutting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...
29 CFR 1926.351 - Arc welding and cutting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...
29 CFR 1926.351 - Arc welding and cutting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... equivalent insulation. (c) Ground returns and machine grounding. (1) A ground return cable shall have a safe... electrical contact exists at all joints. The generation of an arc, sparks, or heat at any point shall cause...
Arc ignition at heating of graphite by fixed current
NASA Astrophysics Data System (ADS)
Polistchook, V. P.; Samoylov, I. S.; Amirov, R. Kh; Kiselev, V. I.
2017-11-01
Arc ignition after the destruction of graphite samples under prolonged heating by electric current was described. Evidences of liquid film formation on the graphite surface at a temperature of 3.3 kK were presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevenell, Lisa; Coolbaugh, Mark; Hinz, Nick
This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production.more » To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.« less
NASA Astrophysics Data System (ADS)
Gueye, P.; Cressault, Y.; Rohani, V.; Fulcheri, L.
2017-02-01
This paper focuses on the modeling of a hydrogen arc column at very high pressure (20 bar). The problem is solved from Elenbaas-Heller equation where the radiation is carefully considered with the net emission coefficient. The absorption spectrum requires the integration of background continuum, molecular bands, and line spectra. This work directly aims to predict the electric current-voltage characteristics which is key for the design of new processes. We propose also a new analytic solution which generalizes the channel model of electric arc to the case when the volume radiation makes a significant contribution to the energy balance. The presented formalism allows a better determination of the plasma thickness parameter Rp for net emission coefficient method in cylindrical arcs and gives satisfactory results in comparison to earlier experimental works on high pressure hydrogen plasma.
Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers
NASA Astrophysics Data System (ADS)
Iordanidis, A. A.; Franck, C. M.
2008-07-01
An accurate and robust method for radiative heat transfer simulation for arc applications was presented in the previous paper (part I). In this paper a self-consistent mathematical model based on computational fluid dynamics and a rigorous radiative heat transfer model is described. The model is applied to simulate switching arcs in high voltage gas circuit breakers. The accuracy of the model is proven by comparison with experimental data for all arc modes. The ablation-controlled arc model is used to simulate high current PTFE arcs burning in cylindrical tubes. Model accuracy for the lower current arcs is evaluated using experimental data on the axially blown SF6 arc in steady state and arc resistance measurements close to current zero. The complete switching process with the arc going through all three phases is also simulated and compared with the experimental data from an industrial circuit breaker switching test.
Complex structure of the carbon arc discharge for synthesis of nanotubes
Vekselman, V.; Feurer, M.; Huang, T.; ...
2017-06-06
Comprehensive non-invasive spectroscopic techniques and electrical measurements of the carbon arc revealed two distinguishable plasma synthesis regions in the radial direction normal to the arc axis. These regions, which are defined as the arc core and the arc periphery, are shown to have very different compositions of carbon species with different densities and temperatures. The colder arc periphery is dominated by carbon diatomic molecules (C 2), which are in the minority in the composition of the hot arc core. These differences are due to a highly non-uniform distribution of the arc current, which is mainly conducted through the arc coremore » populated with carbon atoms and ions. Therefore, the ablation of the graphite anode is governed by the arc core, while the formation of carbon molecules occurs in the colder arc periphery. Furthermore, this result is consistent with previous predictions that the plasma environment in the arc periphery is suitable for synthesis of carbon nanotubes.« less
Complex structure of the carbon arc discharge for synthesis of nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vekselman, V.; Feurer, M.; Huang, T.
Comprehensive non-invasive spectroscopic techniques and electrical measurements of the carbon arc revealed two distinguishable plasma synthesis regions in the radial direction normal to the arc axis. These regions, which are defined as the arc core and the arc periphery, are shown to have very different compositions of carbon species with different densities and temperatures. The colder arc periphery is dominated by carbon diatomic molecules (C 2), which are in the minority in the composition of the hot arc core. These differences are due to a highly non-uniform distribution of the arc current, which is mainly conducted through the arc coremore » populated with carbon atoms and ions. Therefore, the ablation of the graphite anode is governed by the arc core, while the formation of carbon molecules occurs in the colder arc periphery. Furthermore, this result is consistent with previous predictions that the plasma environment in the arc periphery is suitable for synthesis of carbon nanotubes.« less
Materials Research of Novel Organic Piezoelectric/Ferroelectric Compounds at a H.S.I
2015-07-06
analysis 4. http://wavefun.com 5. MOPAC2012, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC. net ... petri dish of mineral oil (to prevent electrical arcing) ripples in the mineral oil are clearly visible when a voltage is applied to the sample. We...acid. It does not appear to be ferroelectric. However, it is piezoelectric. When placed in a petri dish of mineral oil (to prevent electrical arcing
Preliminary photovoltaic arc-fault prognostic tests using sacrificial fiber optic cabling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Dean; Blemel, Kenneth D.; Peter, Francis
2013-02-01
Through the New Mexico Small Business Assistance Program, Sandia National Laboratories worked with Sentient Business Systems, Inc. to develop and test a novel photovoltaic (PV) arc-fault detection system. The system operates by pairing translucent polymeric fiber optic sensors with electrical circuitry so that any external abrasion to the system or internal heating causes the fiber optic connection to fail or detectably degrade. A periodic pulse of light is sent through the optical path using a transmitter-receiver pair. If the receiver does not detect the pulse, an alarm is sounded and the PV system can be de-energized. This technology has themore » unique ability to prognostically determine impending failures to the electrical system in two ways: (a) the optical connection is severed prior to physical abrasion or cutting of PV DC electrical conductors, and (b) the polymeric fiber optic cable melts via Joule heating before an arc-fault is established through corrosion. Three arc-faults were created in different configurations found in PV systems with the integrated fiber optic system to determine the feasibility of the technology. In each case, the fiber optic cable was broken and the system annunciated the fault.« less
Pragmatic analysis of the electric submerged arc furnace continuum
NASA Astrophysics Data System (ADS)
Karalis, K.; Karkalos, N.; Antipas, G. S. E.; Xenidis, A.
2017-09-01
A transient mathematical model was developed for the description of fluid flow, heat transfer and electromagnetic phenomena involved in the production of ferronickel in electric arc furnaces. The key operating variables considered were the thermal and electrical conductivity of the slag and the shape, immersion depth and applied electric potential of the electrodes. It was established that the principal stimuli of the velocities in the slag bath were the electric potential and immersion depth of the electrodes and the thermal and electrical conductivities of the slag. Additionally, it was determined that, under the set of operating conditions examined, the maximum slag temperature ranged between 1756 and 1825 K, which is in accordance with industrial measurements. Moreover, it was affirmed that contributions to slag stirring due to Lorentz forces and momentum forces due to the release of carbon monoxide bubbles from the electrode surface were negligible.
Pragmatic analysis of the electric submerged arc furnace continuum
Karkalos, N.; Xenidis, A.
2017-01-01
A transient mathematical model was developed for the description of fluid flow, heat transfer and electromagnetic phenomena involved in the production of ferronickel in electric arc furnaces. The key operating variables considered were the thermal and electrical conductivity of the slag and the shape, immersion depth and applied electric potential of the electrodes. It was established that the principal stimuli of the velocities in the slag bath were the electric potential and immersion depth of the electrodes and the thermal and electrical conductivities of the slag. Additionally, it was determined that, under the set of operating conditions examined, the maximum slag temperature ranged between 1756 and 1825 K, which is in accordance with industrial measurements. Moreover, it was affirmed that contributions to slag stirring due to Lorentz forces and momentum forces due to the release of carbon monoxide bubbles from the electrode surface were negligible. PMID:28989738
Spatial structure of the arc in a pulsed GMAW process
NASA Astrophysics Data System (ADS)
Kozakov, R.; Gött, G.; Schöpp, H.; Uhrlandt, D.; Schnick, M.; Häßler, M.; Füssel, U.; Rose, S.
2013-06-01
A pulsed gas metal arc welding (GMAW) process of steel under argon shielding gas in the globular mode is investigated by measurements and simulation. The analysis is focussed on the spatial structure of the arc during the current pulse. Therefore, the radial profiles of the temperature, the metal vapour species and the electric conductivity are determined at different heights above the workpiece by optical emission spectroscopy (OES). It is shown that under the presence of metal vapour the temperature minimum occurs at the centre of the arc. This minimum is preserved at different axial positions up to 1 mm above the workpiece. In addition, estimations of the electric field in the arc from the measurements are given. All these results are compared with magneto-hydrodynamic simulations which include the evaporation of the wire material and the change of the plasma properties due to the metal vapour admixture in particular. The experimental method and the simulation model are validated by means of the satisfactory correspondence between the results. Possible reasons for the remaining deviations and improvements of the methods which should be aspired are discussed.
The anode mechanism of a thermal argon arc
NASA Technical Reports Server (NTRS)
Busz-Peuckert, G.; Finkelnburg, W.
1984-01-01
In order to clarify the anode mechanism in freely burning argon arcs, the anode drop was determined by probe measurements in the current intensity range of 10 to 200 A and arc lengths between 2 and 10 mm. Simultaneously, the power input at the anode was determined by measuring the temperature increase in the cooling water, using a thermoelement, and compared to the electrical output at the arc and in the anodic drop area. An anodic contraction was observed in the arc, at low current intensities. The results can be explained in terms of the effects of a cathodic plasma current, and in the contracted arc, in terms of an additional anodic plasma current.
Conductivity tensor for anisotropic plasma in gyrokinetic theory
Porazik, Peter; Johnson, Jay R.
2017-05-18
Comprehensive non-invasive spectroscopic techniques and electrical measurements of the carbon arc revealed two distinguishable plasma synthesis regions in the radial direction normal to the arc axis. These regions, which are defined as the arc core and the arc periphery, are shown to have very different compositions of carbon species with different densities and temperatures. The colder arc periphery is dominated by carbon diatomic molecules (C-2), which are in the minority in the composition of the hot arc core. These differences are due to a highly non-uniform distribution of the arc current, which is mainly conducted through the arc core populatedmore » with carbon atoms and ions. Therefore, the ablation of the graphite anode is governed by the arc core, while the formation of carbon molecules occurs in the colder arc periphery. This result is consistent with previous predictions that the plasma environment in the arc periphery is suitable for synthesis of carbon nanotubes.« less
Conductivity tensor for anisotropic plasma in gyrokinetic theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porazik, Peter; Johnson, Jay R.
Comprehensive non-invasive spectroscopic techniques and electrical measurements of the carbon arc revealed two distinguishable plasma synthesis regions in the radial direction normal to the arc axis. These regions, which are defined as the arc core and the arc periphery, are shown to have very different compositions of carbon species with different densities and temperatures. The colder arc periphery is dominated by carbon diatomic molecules (C-2), which are in the minority in the composition of the hot arc core. These differences are due to a highly non-uniform distribution of the arc current, which is mainly conducted through the arc core populatedmore » with carbon atoms and ions. Therefore, the ablation of the graphite anode is governed by the arc core, while the formation of carbon molecules occurs in the colder arc periphery. This result is consistent with previous predictions that the plasma environment in the arc periphery is suitable for synthesis of carbon nanotubes.« less
Electric arc discharge damage to ion thruster grids
NASA Technical Reports Server (NTRS)
Beebe, D. D.; Nakanishi, S.; Finke, R. C.
1974-01-01
Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.
Murray, J.J.
1963-04-23
S>This patent relates to electrode structure for creating an intense direct current electric field which may have a field strength of the order of two to three times that heretofore obtained, with automatic suppression of arcing. The positive electrode is a conventional conductive material such as copper while the negative electrode is made from a special material having a resistivity greater than that of good conductors and less than that of good insulators. When an incipient arc occurs, the moderate resistivity of the negative electrode causes a momentary, localized decrease in the electric field intensity, thus suppressing the flow of electrons and avoiding arcing. Heated glass may be utilized for the negative electrode, since it provides the desired combination of resistivity, capacity, dielectric strength, mechani-cal strength, and thermal stability. (AEC)
Electrocution by arcing: a nonfatal case study.
Solarino, Biagio; Di Vella, Giancarlo
2011-12-01
Accidental electrocution during working activities account for a considerable amount of morbidity and mortality. Workers often misjudge the danger of electric wires or high-tension power cables, thereby exposing themselves to electrocution hazard. This article describes a nonfatal case of injuries by arcing from high-tension power-line cables involving a young farmer who was thrashing an olive tree by means of aluminum ladder. The circumstances surrounding the manner of electrocution and the features of electric injuries are presented and discussed.
Improvement of the control of a gas metal arc welding process
NASA Astrophysics Data System (ADS)
Gött, Gregor; Schöpp, Heinz; Hofmann, Frank; Heinz, Gerd
2010-02-01
Up to now, the use of the electrical characteristics for process control is state of the art in gas metal arc welding (GMAW). The aim of the work is the improvement of GMAW processes by using additional information from the arc. Therefore, the emitted light of the arc is analysed spectroscopically and compared with high-speed camera images. With this information, a conclusion about the plasma arc and the droplet formation is reasonable. With the correlation of the spectral and local information of the plasma, a specific control of the power supply can be applied. A corresponding spectral control unit (SCU) is introduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Tommy Robert; Romero, Philbert Roland; Garcia, Samuel Anthony
During low voltage electrical equipment maintenance, a bad breaker was identified. The breaker was racked out from the substation cubicle without following the hazardous energy control process identified in the Integrated Work Document (IWD). The IWD required the substation to be in an electrically safe work condition prior to racking the breaker. Per NFPA 70E requirements, electrical equipment shall be put into an electrically safe work condition before an employee performs work on or interacts with equipment in a manner that increases the likelihood of creating an arc flash. Racking in or out a breaker on an energized bus maymore » increase the likelihood of creating an arc flash dependent on equipment conditions. A thorough risk assessment must be performed prior to performing such a task. The risk assessment determines the risk control measures to be put in place prior to performing the work. Electrical Safety Officers (ESO) can assist in performing risk assessments and incorporating risk control measures.« less
New Voltage and Current Thresholds Determined for Sustained Space Plasma Arcing
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Galofaro, Joel T.; Vayner, Boris V.
2003-01-01
It has been known for many years, based partly on NASA Glenn Research Center testing, that high-voltage solar arrays arc into the space plasma environment. Solar arrays are composed of solar cells in series with each other (a string), and the strings may be connected in parallel to produce the entire solar array power. Arcs on solar arrays can damage or destroy solar cells, and in the extreme case of sustained arcing, entire solar array strings, in a flash. In the case of sustained arcing (discovered at Glenn and applied to the design and construction of solar arrays on Space Systems/Loral (SS/Loral, Palo Alto, CA) satellites, Deep-Space 1, and Terra), an arc on one solar array string can couple to an adjacent string and continue to be powered by the solar array output until a permanent electrical short is produced. In other words, sustained arcs produced by arcs into the plasma (so-called trigger arcs) may turn into disastrous sustained arcs by involving other array strings.
Properties of thermal air plasma with admixing of copper and carbon
NASA Astrophysics Data System (ADS)
Fesenko, S.; Veklich, A.; Boretskij, V.; Cressault, Y.; Gleizes, A.; Teulet, Ph
2014-11-01
This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors.
Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters
NASA Technical Reports Server (NTRS)
Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.
1989-01-01
Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.
Development of a process for high capacity arc heater production of silicon for solar arrays
NASA Technical Reports Server (NTRS)
Meyer, T. N.
1980-01-01
A high temperature silicon production process using existing electric arc heater technology is discussed. Silicon tetrachloride and a reductant, liquid sodium, were injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction occurred, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon were developed. The desired degree of separation was not achieved. The electrical, control and instrumentation, cooling water, gas, SiCl4, and sodium systems are discussed. The plasma reactor, silicon collection, effluent disposal, the gas burnoff stack, and decontamination and safety are also discussed. Procedure manuals, shakedown testing, data acquisition and analysis, product characterization, disassembly and decontamination, and component evaluation are reviewed.
Compact, maintainable 80-KeV neutral beam module
Fink, Joel H.; Molvik, Arthur W.
1980-01-01
A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.
40 CFR 420.41 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) [Reserved] (c) The term electric arc furnace steelmaking means the production of steel principally from steel scrap and fluxes in refractory lined furnaces by passing an electric current through the scrap or...
40 CFR 420.41 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... adding oxygen. (b) [Reserved] (c) The term electric arc furnace steelmaking means the production of steel principally from steel scrap and fluxes in refractory lined furnaces by passing an electric current through...
40 CFR 420.41 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) [Reserved] (c) The term electric arc furnace steelmaking means the production of steel principally from steel scrap and fluxes in refractory lined furnaces by passing an electric current through the scrap or...
40 CFR 420.41 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) [Reserved] (c) The term electric arc furnace steelmaking means the production of steel principally from steel scrap and fluxes in refractory lined furnaces by passing an electric current through the scrap or...
29 CFR 1910.254 - Arc welding and cutting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 80 volts. (c) Installation of arc welding equipment—(1) General. Installation including power supply... mechanically strong and electrically adequate for the required current. (3) Supply connections and conductors...-carrying capacity of the supply conductors shall be not less than the rated primary current of the welding...
An Overlooked Source of Auroral Arc Field-Aligned Current
NASA Astrophysics Data System (ADS)
Knudsen, D. J.
2017-12-01
The search for the elusive generator of quiet auroral arcs often focuses on magnetospheric pressure gradients, based on the static terms in the so-called Vaslyiunas equation [Vasyliunas, in "Magneospheric Currents", Geophysical Monograph 28, 1984]. However, magnetospheric pressure gradient scale sizes are much larger than the width of individual auroral arcs. This discrepancy was noted by Atkinson [JGR, 27, p4746, 1970], who proposed that the auroral arcs are fed instead by steady-state polarization currents, in which large-scale convection across quasi-static electric field structures leads to an apparent time dependence in the frame co-moving with the plasma, and therefore to the generation of ion polarization currents. This mechanism has been adopted by a series of authors over several decades, relating to studies of the ionospheric feedback instability, or IFI. However, the steady-state polarization current mechanism does not require the IFI, nor even the ionsophere. Specifically, any quasi-static electric field structure that is stationary relative to large-scale plasma convection is subject to the generation this current. This talk demonstrates that assumed convection speeds of the order of a 100 m/s across typical arc fields structures can lead to the generation FAC magintudes of several μA/m2, typical of values observed at the ionospheric footpoint of auoral arcs. This current can be viewed as originating within the M-I coupling medium, along the entire field line connecting an auroral arc to its root in the magnetosphere.
1961-01-01
As presented by Gerhard Heller of Marshall Space Flight Center's Research Projects Division in 1961, this chart illustrates three basic types of electric propulsion systems then under consideration by NASA. The ion engine (top) utilized cesium atoms ionized by hot tungsten and accelerated by an electrostatic field to produce thrust. The arc engine (middle) achieved propulsion by heating a propellant with an electric arc and then producing an expansion of the hot gas or plasma in a convergent-divergent duct. The electromagnetic, or MFD engine (bottom) manipulated strong magnetic fields to interact with a plasma and produce acceleration.
NASA Technical Reports Server (NTRS)
Curtis, H. B.; Decker, A. J.
1975-01-01
The electrical characteristics of a high-power, long-lived, free-burning dc argon arc are presented. Empirical formulas relating voltage to current, electrode separation, and operating pressure are given for two types of cathodes: a typical point tip cathode and a cathode with a 1.27-cm-(0.5-in.-) diameter crater in the tip. Power was varied from 90 to 563 kW. A discussion of the cathode with the crater tip is given.
Golightly, D.W.; Dorrzapf, A.F.; Thomas, C.P.
1977-01-01
Sets of 5 Fe(I) lines and 3 Ti(I)Ti(II) line pairs have been characterized for precise spectrographic thermometry and manometry, respectively, in d.c. arcs of geologic materials. The recommended lines are free of spectral interferences, exhibit minimal self absorption within defined concentration intervals, and are useful for chemically-unaltered silicate rocks, arced in an argon-oxygen stream. The functional character of these lines in thermometry and manometry of d.c. arcs for evaluations of electrical parameter effects, for temporal studies, and for matrix-effect investigations on real samples is illustrated. ?? 1977.
A mathematical model of the structure and evolution of small-scale discrete auroral arcs
NASA Technical Reports Server (NTRS)
Seyler, Charles E.
1990-01-01
A three-dimensional fluid model for the structure and evolution of small-scale discrete auroral arcs originating from Alfven waves is developed and used to study the nonlinear macroscopic plasma dynamics of these auroral arcs. The results of simulations show that stationary auroral arcs can be unstable to a collisionless tearing mode which may be responsible for the observed transverse structuring in the form of folds and curls. At late times, the plasma becomes turbulent having transverse electric field power spectra that tend toward a universal k exp -5/3 spectral form.
Feedback between neutral winds and auroral arc electrodynamics
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Walterscheid, R. L.
1986-01-01
The feedback between neutral atmospheric winds and the electrodynamics of a stable, discrete auroral arc is analyzed. The ionospheric current continuity equation and the equation for neutral gas acceleration by ion drag are solved simultaneously, as a function of time. The results show that, in general, the electric field in the ionosphere adjusts to neutral wind acceleration so as to keep auroral field-aligned currents and electron acceleration approximately independent of time. It is thus concluded that the neutral winds that develop as a result of the electrodynamical forcing associated with an arc do not significantly affect the intensity of the arc.
Effect of high-latitude ionospheric convection on Sun-aligned polar caps
NASA Technical Reports Server (NTRS)
Sojka, J. J.; Zhu, L.; Crain, D. J.; Schunk, R. W.
1994-01-01
A coupled magnetospheric-ionospheric (M-I) magnetohydrodynamic (MHD) model has been used to simulate the formation of Sun-aligned polar cap arcs for a variety of interplanetary magnetic field (IMF) dependent polar cap convection fields. The formation process involves launching an Alfven shear wave from the magnetosphere to the ionosphere where the ionospheric conductance can react self-consistently to changes in the upward currents. We assume that the initial Alfven shear wave is the result of solar wind-magnetosphere interactions. The simulations show how the E region density is affected by the changes in the electron precipitation that are associated with the upward currents. These changes in conductance lead to both a modified Alfven wave reflection at the ionosphere and the generation of secondary Alfven waves in the ionosphere. The ensuing bouncing of the Alfven waves between the ionosphere and magnetosphere is followed until an asymptotic solution is obtained. At the magnetosphere the Alfven waves reflect at a fixed boundary. The coupled M-I Sun-aligned polar cap arc model of Zhu et al.(1993a) is used to carry out the simulations. This study focuses on the dependence of the polar cap arc formation on the background (global) convection pattern. Since the polar cap arcs occur for northward and strong B(sub y) IMF conditions, a variety of background convection patterns can exist when the arcs are present. The study shows that polar cap arcs can be formed for all these convection patterns; however, the arc features are dramatically different for the different patterns. For weak sunward convection a relatively confined single pair of current sheets is associated with the imposed Alfven shear wave structure. However, when the electric field exceeds a threshold, the arc structure intensifies, and the conductance increases as does the local Joule heating rate. These increases are faster than a linear dependence on the background electric field strength. Furthermore, above the threshold, the single current sheet pair splits into multiple current sheet pairs. For the fixed initial ionospheric and magnetospheric conditions used in this study, the separation distance between the current pairs was found to be almost independent of the background electric field strength. For either three-cell or distorted two-cell background convection patterns the arc formation favored the positive B(sub y) case in the northern hemisphere.
1978-11-24
4' and 24' Shock Tubes - Electric Arc Shock Tube Facililty N-229 (East) The facility is used to investigate the effects of radiation and ionization during outer planetary entries as well as for air-blast simualtion which requires the strongest possible shock generation in air at loadings of 1 atm or greater.
DUAL HEATED ION SOURCE STRUCTURE HAVING ARC SHIFTING MEANS
Lawrence, E.O.
1959-04-14
An ion source is presented for calutrons, particularly an electrode arrangement for the ion generator of a calutron ion source. The ion source arc chamber is heated and an exit opening with thermally conductive plates defines the margins of the opening. These plates are electrically insulated from the body of the ion source and are connected to a suitable source of voltage to serve as electrodes for shaping the ion beam egressing from the arc chamber.
Arc discharge convection studies: A Space Shuttle experiment
NASA Technical Reports Server (NTRS)
Bellows, A. H.; Feuersanger, A. E.
1984-01-01
Three mercury vapor arc lamps were tested in the microgravity environment of one of NASA's small, self-contained payloads during STS-41B. A description of the payload structural design, photographic and optical systems, and electrical system is provided. Thermal control within the payload is discussed. Examination of digital film data indicates that the 175 watt arc lamp has a significant increase in light output when convection is removed in the gravity-free environment of space.
40 CFR 63.11532 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Electric arc furnace means any furnace wherein electrical energy is converted to heat energy by..., slag, carbonaceous material, and/or limestone. Control device means the air pollution control equipment... operations means the use of electric and electrolytic processes to purify metals or reduce metallic compounds...
40 CFR 63.11532 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Electric arc furnace means any furnace wherein electrical energy is converted to heat energy by..., slag, carbonaceous material, and/or limestone. Control device means the air pollution control equipment... operations means the use of electric and electrolytic processes to purify metals or reduce metallic compounds...
Computational Modeling of Arc-Slag Interaction in DC Furnaces
NASA Astrophysics Data System (ADS)
Reynolds, Quinn G.
2017-02-01
The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.
1991-01-01
Recent studies involving the use of polyimide Kapton coated wires indicate that if a momentary electrical short circuit occurs between two wires, sufficient heating of the Kapton can occur to themally chlar (pyrolyze) the Kapton. Such charred Kapton has sufficient electricxl conductivity to create an arc which tracks down the wires and possibly propagates to adjoining wires. These studies prompted an invetigation to ascertain the likelihood of Kapton pyrolysis, arc tracking and propagation phenomena, and the magnitude of destruction conceivably inflicted on Space Station Freedom's (SSF's) Flexible Current Carrier (FCC) for the photovoltaic array. The geometric layout of the FCC, having a planar-type orientation as opposed to bundles, may reduce the probability of sustaining an arc. An experimental investigation was conducted to simulate conditions under which an arc can occur on the FCC of the SSF, and the consequences of arc initiation.
Optical arc sensor using energy harvesting power source
NASA Astrophysics Data System (ADS)
Choi, Kyoo Nam; Rho, Hee Hyuk
2016-06-01
Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.
NASA Astrophysics Data System (ADS)
Rutberg, Ph G.; Popov, S. D.; Surov, A. V.; Serba, E. O.; Nakonechny, Gh V.; Spodobin, V. A.; Pavlov, A. V.; Surov, A. V.
2012-12-01
The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current -30 A, voltage drop -5 kV, air flow rate 35 g/s; for three-phase mode: current (40-85) A, voltage drop (2.5-3.2) kV, air flow rate (60-100) g/s. Arc length in the installations exceeded 2 m.
Matzke, Antonius J M; Matzke, Marjori
2015-10-12
It is increasingly appreciated that electrical controls acting at the cellular and supra-cellular levels influence development and initiate rapid responses to environmental cues. An emerging method for non-invasive optical imaging of electrical activity at cell membranes uses genetically-encoded voltage indicators (GEVIs). Developed by neuroscientists to chart neuronal circuits in animals, GEVIs comprise a fluorescent protein that is fused to a voltage-sensing domain. One well-known GEVI, ArcLight, undergoes strong shifts in fluorescence intensity in response to voltage changes in mammalian cells. ArcLight consists of super-ecliptic (SE) pHluorin (pH-sensitive fluorescent protein) with an A227D substitution, which confers voltage sensitivity in neurons, fused to the voltage-sensing domain of the voltage-sensing phosphatase of C iona i ntestinalis (Ci-VSD). In an ongoing effort to adapt tools of optical electrophysiology for plants, we describe here the expression and testing of ArcLight and various derivatives in different membranes of root cells in Arabidopsis thaliana. Transgenic constructs were designed to express ArcLight and various derivatives targeted to the plasma membrane and nuclear membranes of Arabidopsis root cells. In transgenic seedlings, changes in fluorescence intensity of these reporter proteins following extracellular ATP (eATP) application were monitored using a fluorescence microscope equipped with a high speed camera. Coordinate reductions in fluorescence intensity of ArcLight and Ci-VSD-containing derivatives were observed at both the plasma membrane and nuclear membranes following eATP treatments. However, similar responses were observed for derivatives lacking the Ci-VSD. The dispensability of the Ci-VSD suggests that in plants, where H(+) ions contribute substantially to electrical activities, the voltage-sensing ability of ArcLight is subordinate to the pH sensitivity of its SEpHluorin base. The transient reduction of ArcLight fluorescence triggered by eATP most likely reflects changes in pH and not membrane voltage. The pH sensitivity of ArcLight precludes its use as a direct sensor of membrane voltage in plants. Nevertheless, ArcLight and derivatives situated in the plasma membrane and nuclear membranes may offer robust, fluorescence intensity-based pH indicators for monitoring concurrent changes in pH at these discrete membrane systems. Such tools will assist analyses of pH as a signal and/or messenger at the cell surface and the nuclear periphery in living plants.
High voltage AC plasma torches with long electric arcs for plasma-chemical applications
NASA Astrophysics Data System (ADS)
Surov, A. V.; Popov, S. D.; Serba, E. O.; Pavlov, A. V.; Nakonechny, Gh V.; Spodobin, V. A.; Nikonov, A. V.; Subbotin, D. I.; Borovskoy, A. M.
2017-04-01
Powerful AC plasma torches are in demand for a number of advanced plasma chemical applications, they can provide high enthalpy of the working gas. IEE RAS specialists have developed a number of models of stationary thermal plasma torches for continuous operation on air with the power from 5 to 500 kW, and on mixture of H2O, CO2 and CH4 up to 150 kW. AC plasma torches were tested on the pilot plasmachemical installations. Powerful AC plasma torch with hollow electrodes and the gas vortex stabilization of arc in cylindrical channels and its operation characteristics are presented. Lifetime of its continuous operation on air is 2000 hours and thermal efficiency is about 92%, the electric arc length between two electrodes of the plasma torch exceeds 2 m.
Numerical modeling of high-voltage circuit breaker arcs and their interraction with the power system
NASA Astrophysics Data System (ADS)
Orama, Lionel R.
In this work the interaction between series connected gas and vacuum circuit breaker arcs has been studied. The breakdown phenomena in vacuum interrupters during the post arc current period have been of special interest. Numerical models of gas and vacuum arcs were developed in the form of black box models. Especially, the vacuum post arc model was implemented by combining the existing transition model with an ion density function and expressions for the breakdown mechanisms. The test series studied reflect that for electric fields on the order of 10sp7V/m over the anode, the breakdown of the vacuum gap can result from a combination of both thermal and electrical stresses. For a particular vacuum device, the vacuum model helps to find the interruption limits of the electric field and power density over the anode. The series connection of gas and vacuum interrupters always performs better than the single gas device. Moreover, to take advantage of the good characteristics of both devices, the time between the current zero crossing in each interrupter can be changed. This current zero synchronization is controlled by changing the capacitance in parallel to the gas device. This gas/vacuum interrupter is suitable for interruption of very stressful short circuits in which the product of the dI/dt before current zero and the dV/dt after current zero is very high. Also, a single SF6 interrupter can be replaced by an air circuit breaker of the same voltage rating in series with a vacuum device without compromising the good performance of the SF6 device. Conceptually, a series connected vacuum device can be used for high voltage applications with equal distribution of electrical stresses between the individual interrupters. The equalization can be made by a sequential opening of the individual contact pairs, beginning with the interruptors that are closer to ground potential. This could eliminate the use of grading capacitors.
Characterization of Sintering Dust, Blast Furnace Dust and Carbon Steel Electric Arc Furnace Dust
NASA Astrophysics Data System (ADS)
Chang, Feng; Wu, Shengli; Zhang, Fengjie; Lu, Hua; Du, Kaiping
In order to make a complete understanding of steel plant metallurgical dusts and to realize the goal of zero-waste, a study of their properties was undertaken. For these purposes, samples of two sintering dusts (SD), two blast furnace dusts (BFD), and one electric arc furnace dust (EAFD) taken from the regular production process were subjected to a series of tests. The tests were carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), and Fourier transform infrared spectroscopy (FTIR). The dominant elements having an advantage of reuse are Fe, K, Cl, Zn, C. The dominant mineralogical phases identified in sintering dust are KCl, Fe2O3, CaCO3, CaMg(CO3)2, NaCl, SiO2. Mineralogical phases exist in blast furnace dust are Fe2O3, Fe3O4, with small amount of KCl and kaolinite coexist. While in electric arc furnace dust, Fe3O4, ZnFe2O4, CaCO3, CaO, Ca(OH)2 are detected.
An Alternative Cu-Based Bond Layer for Electric Arc Coating Process
NASA Astrophysics Data System (ADS)
Fadragas, Carlos R.; Morales, E. V.; Muñoz, J. A.; Bott, I. S.; Lariot Sánchez, C. A.
2011-12-01
A Cu-Al alloy has been used as bond coat between a carbon steel substrate and a final coating deposit obtained by applying the twin wire electric arc spraying coating technique. The presence of a copper-based material in the composite system can change the overall temperature profile during deposition because copper exhibits a thermal conductivity several times higher than that of the normally recommended bond coat materials (such as nickel-aluminum alloys or nickel-chromium alloys). The microstructures of 420 and 304 stainless steels deposited by the electric arc spray process have been investigated, focusing attention on the deposit homogeneity, porosity, lamellar structure, and microhardness. The nature of the local temperature gradient during deposition can strongly influence the formation of the final coating deposit. This study presents a preliminary study, undertaken to investigate the changes in the temperature profile which occur when a Cu-Al alloy is used as bond coat, and the possible consequences of these changes on the microstructure and adhesion of the final coating deposit. The influence of the thickness of the bond layer on the top coating temperature has also been also evaluated.
Multi-cathode metal vapor arc ion source
Brown, Ian G.; MacGill, Robert A.
1988-01-01
An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.
Electromagnetic characteristic of twin-wire indirect arc welding
NASA Astrophysics Data System (ADS)
Shi, Chuanwei; Zou, Yong; Zou, Zengda; Wu, Dongting
2015-01-01
Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires: one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 μN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, JunMin, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Lu, ChunRong; Guan, YongGang, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn
2015-10-15
Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around themore » number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc.« less
Simulation of a manual electric-arc welding in a working gas pipeline. 1. Formulation of the problem
NASA Astrophysics Data System (ADS)
Baikov, V. I.; Gishkelyuk, I. A.; Rus', A. M.; Sidorovich, T. V.; Tonkonogov, B. A.
2010-11-01
Problems of mathematical simulation of the temperature stresses arising in the wall of a pipe of a cross-country gas pipeline in the process of electric-arc welding of defects in it have been considered. Mathematical models of formation of temperatures, deformations, and stresses in a gas pipe subjected to phase transformations have been developed. These models were numerically realized in the form of algorithms representing a part of an application-program package. Results of verification of the computational complex and calculation results obtained with it are presented.
2008-11-02
Airship Ventures Zeppelin Dedication during the Moffett Field Diamond Jubilee. The Thruxar electric race car at the Nov. 21 Diamond Jubilee exhibits. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation
Serial and parallel power equipment with high-temperature superconducting elements
NASA Technical Reports Server (NTRS)
Bencze, Laszlo; Goebl, Nandor; Palotas, Bela; Vajda, Istvan
1995-01-01
One of the prospective, practical applications of high-temperature superconductors is the fault-current limitation in electrical energy networks. The development and testing of experimental HTSC serial current limiters have been reported in the literature. A Hungarian electric power company has proposed the development of a parallel equipment for arc suppressing both in the industrial and customers' networks. On the basis of the company's proposal the authors have outlined the scheme of a compound circuit that can be applied both for current limitation and arc suppressing. In this paper the design principles and methods of the shunt equipment are presented. These principles involve the electrical, mechanical and cryogenic aspects with the special view on the electrical and mechanical connection between the HTSC material and the current lead. Preliminary experiments and tests have been carried out to demonstrate the validity of the design principles developed. The results of the experiments and of the technological investigations are presented.
Arc Fault Detection & Localization by Electromagnetic-Acoustic Remote Sensing
NASA Astrophysics Data System (ADS)
Vasile, C.; Ioana, C.
2017-05-01
Electrical arc faults that occur in photovoltaic systems represent a danger due to their economic impact on production and distribution. In this paper we propose a complete system, with focus on the methodology, that enables the detection and localization of the arc fault, by the use of an electromagnetic-acoustic sensing system. By exploiting the multiple emissions of the arc fault, in conjunction with a real-time detection signal processing method, we ensure accurate detection and localization. In its final form, this present work will present in greater detail the complete system, the methods employed, results and performance, alongside further works that will be carried on.
Field-aligned currents observed in the vicinity of a moving auroral arc
NASA Technical Reports Server (NTRS)
Goertz, C. K.; Bruening, K.
1984-01-01
The sounding rocket Porcupine F4 was launched into an auroral arc and the field aligned currents were independently deduced from magnetic field measurements; the horizontal current deduced from the electric field measurements and height integrated conductivity calculations; and measurements of electron fluxes. Above the arc the different methods agree. The magnetosphere acts as generator and the ionosphere as load. North of the arc, the first two methods disagree, possibly due to an Alfven wave carrying the observed magnetic field perturbation. The energy flow is out of the ionosphere. Here the ionosphere acts as generator and the magnetosphere as load.
Computational study of arc discharges: Spark plug and railplug ignitors
NASA Astrophysics Data System (ADS)
Ekici, Ozgur
A theoretical study of electrical arc discharges that focuses on the discharge processes in spark plug and railplug ignitors is presented. The aim of the study is to gain a better understanding of the dynamics of electrical discharges, more specifically the transfer of electrical energy into the gas and the effect of this energy transfer on the flow physics. Different levels of computational models are presented to investigate the types of arc discharges seen in spark plugs and railplugs (i.e., stationary and moving arc discharges). Better understanding of discharge physics is important for a number of applications. For example, improved fuel economy under the constraint of stricter emissions standards and improved plug durability are important objectives of current internal combustion engine designs. These goals can be achieved by improving the existing systems (spark plug) and introducing more sophisticated ignition systems (railplug). In spite of the fact spark plug and railplug ignitors are the focus of this work, the methods presented in this work can be extended to study the discharges found in other applications such as plasma torches, laser sparks, and circuit breakers. The system of equations describing the physical processes in an air plasma is solved using computational fluid dynamics codes to simulate thermal and flow fields. The evolution of the shock front, temperature, pressure, density, and flow of a plasma kernel were investigated for both stationary and moving arcs. Arc propagation between the electrodes under the effects of gas dynamics and electromagnetic processes was studied for moving arcs. The air plasma is regarded as a continuum, single substance material in local thermal equilibrium. Thermophysical properties of high temperature air are used to take into consideration the important processes such as dissociation and ionization. The different mechanisms and the relative importance of several assumptions in gas discharges and thermal plasma modeling were investigated. Considering the complex nature of the studied problem, the computational models aid in analyzing the analytical theory and serve as relatively inexpensive tools when compared to experiments in design process.
Korpinen, Leena; Pirkkalainen, Herkko; Heiskanen, Timo; Pääkkönen, Rauno
2016-09-23
Various guidelines for the protection of human beings against possible adverse effects resulting from exposure to electromagnetic fields (EMFs) have been published with a view towards continual improvement; therefore, decreasing exposure is an important research area. The aim of this study was to investigate the possibility of decreasing electric field exposure with arc flash rated personal protective equipment (PPE), which in this case was a set of coveralls, and to compare the measurement results to calculations using the helmet-mask measuring system. We collected the data under a 400-kV power line. The test person stood on isolated aluminum paper, and the current between the ground and the aluminum paper was measured. When the test subject wore the arc flash PPE, the current to the ground was only 9.5% of the current measured when wearing normal clothes, which represents a clear decrease in exposure.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... hydraulic pump electrical motor connector internal arcing, resulting in: --Either false hydraulic system... uncontrolled fire. In order to protect the hydraulic pump electrical motor connectors against fluid ingress... hydraulic pump electrical motor malfunction, this AD requires modification of the three hydraulic pump...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... hydraulic pump electrical motor connector internal arcing, resulting in: --Either false hydraulic system... uncontrolled fire. In order to protect the hydraulic pump electrical motor connectors against fluid ingress... hydraulic pump electrical motor malfunction, this AD requires modification of the three hydraulic pump...
Preliminary Development of Electrodes for an Electric-Arc Wind Tunnel
NASA Technical Reports Server (NTRS)
Shepard, Charles E.; Boldman, Donald R.
1959-01-01
Two electrode configurations were tested in an electric-arc wind tunnel at the NASA Lewis Research Center. The results indicated approximately the same heat-loss rate per unit of arc power input for each of the configurations. Measured heat-loss rates were on the order of 40 percent of the arc power input. Nearly all this loss occurred at the anode. The power input and arc current limitations of the electrodes appear to be the critical design factors. Up to now, the maximum power to the stream has been 115 kilowatts with a cooled tungsten cathode and a cooled cylindrical anode incorporating a magnetic field. The maximum power input to this anode could not be established with the cooled tungsten cathode because cathode failures occurred at a gross power level of approximately 175 kilowatts. It was necessary to use a graphite cathode to seek the limitation of the anode. The results indicated that the anode limitation was primarily a function of arc current rather than power input. The anode was successfully operated at a power of 340 kilowatts at 1730 amperes; however, the anode failed with a power input of 324 kilowatts and a current of 2140 amperes. The magnetic flux density at the time of failure was 0.32 weber per square meter, or 3200 gauss. The graphite cathode was used only to establish the anode limitation; further investigation of graphite cathodes was discontinued because of the large amount of stream contamination associated with this type of electrode.
NASA Astrophysics Data System (ADS)
Serbetci, Ilter; Nagamatsu, H. T.
1990-02-01
Steady-state low-current air arcs in a dual-flow nozzle system are studied experimentally. The cold flow field with no arc is investigated using a 12.7-mm diameter dual-flow nozzle in a steady-flow facility. Mach number and mass flux distributions are determined for various nozzle-pressure ratios and nozzle-gap spacing. It is found that the shock waves in the converging-diverging nozzles result in a decrease in overal resistance by about 15 percent. Also, Schlieren and differential interferometry techniques are used to visualize the density gradients within the arc plasma and thermal mantle. Both optical techniques reveal a laminar arc structure for a reservoir pressure of 1 atm at various current levels. Experimentally determined axial static pressure and cold-flow mass flux rate distributions and a channel-flow model with constant arc temperatre are used to solve the energy integral for the arc radius as a function of axial distance. The arc electric field strength, voltage, resistance, and power are determined with Ohm's law and the total heat transfer is related to arc power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Camp
Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we willmore » review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.« less
NASA Astrophysics Data System (ADS)
Schnick, M.; Füssel, U.; Hertel, M.; Spille-Kohoff, A.; Murphy, A. B.
2010-01-01
A computational model of the argon arc plasma in gas-metal arc welding (GMAW) that includes the influence of metal vapour from the electrode is presented. The occurrence of a central minimum in the radial distributions of temperature and current density is demonstrated. This is in agreement with some recent measurements of arc temperatures in GMAW, but contradicts other measurements and also the predictions of previous models, which do not take metal vapour into account. It is shown that the central minimum is a consequence of the strong radiative emission from the metal vapour. Other effects of the metal vapour, such as the flux of relatively cold vapour from the electrode and the increased electrical conductivity, are found to be less significant. The different effects of metal vapour in gas-tungsten arc welding and GMAW are explained.
Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, X.; Yu, L.; Yan, J. H.
In this study, an atmospheric alternating-current gliding arc device in gas-liquid two-phase flow has been developed for the purpose of waste water degradation. The dynamic behavior of the gas-liquid gliding arc is investigated through the oscillations of electrical signals, while the spatial evolution of the arc column is analyzed by high speed photography. Different arc breakdown regimes are reported, and the restrike mode is identified as the typical fluctuation characteristic of the hybrid gliding arc in air-water mixture. Optical emission spectroscopy is employed to investigate the active species generated in the gas-liquid plasma. The axial evolution of the OH (309more » nm) intensity is determined, while the rotational and vibrational temperatures of the OH are obtained by a comparison between the experimental and simulated spectra. The significant discrepancy between the rotational and translational temperatures has also been discussed.« less
Optical arc sensor using energy harvesting power source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr
Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arcmore » energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.« less
NASA Astrophysics Data System (ADS)
Sahai, A.; Mansour, N. N.; Lopez, B.; Panesi, M.
2017-05-01
This work addresses the modeling of high pressure electric discharge in an arc-heated wind tunnel. The combined numerical solution of Poisson’s equation, radiative transfer equations, and the set of Favre-averaged thermochemical nonequilibrium Navier-Stokes equations allows for the determination of the electric, radiation, and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles with the Chapman-Enskog method. A multi-temperature formulation is used to account for thermal non-equilibrium. Finally, the turbulence closure of the flow equations is obtained by means of the Spalart-Allmaras model, which requires the solution of an additional scalar transport equation. A Streamline upwind Petrov-Galerkin stabilized finite element formulation is employed to solve the Navier-Stokes equation. The electric field equation is solved using the standard Galerkin formulation. A stable formulation for the radiative transfer equations is obtained using the least-squares finite element method. The developed simulation framework has been applied to investigate turbulent plasma flows in the 20 MW Aerodynamic Heating Facility at NASA Ames Research Center. The current model is able to predict the process of energy addition and re-distribution due to Joule heating and thermal radiation, resulting in a hot central core surrounded by colder flow. The use of an unsteady three-dimensional treatment also allows the asymmetry due to a dynamic electric arc attachment point in the cathode chamber to be captured accurately. The current work paves the way for detailed estimation of operating characteristics for arc-heated wind tunnels which are critical in testing thermal protection systems.
AN INSTRUMENT TO MEASURE THE ELECTRICAL CONDUCTIVITY OF ARC PLASMA JETS
The instrument was calibrated by moving aluminum or graphite rods through the transducer. By using thin-wall, stainless steel tubing, the influence ... function for the transducer was also obtained. Tests were run on two different arc plasma jet facilities. Values of s, u ranged from 0.02 to 9 megamhos per second. (Author)
Substantially oxygen-free contact tube
NASA Technical Reports Server (NTRS)
Pike, James F. (Inventor)
1993-01-01
A device for arc welding is provided in which a continuously-fed electrode wire is in electrical contact with a contact tube. The contact tube is improved by using a substantially oxygen-free conductive alloy in order to reduce the amount of electrical erosion.
Substantially Oxygen-Free Contact Tube
NASA Technical Reports Server (NTRS)
Pike, James F. (Inventor)
1991-01-01
A device for arc welding is provided in which a continuously-fed electrode wire is in electrical contact with a contact tube. The contact tube is improved by using a substantially oxygen-free conductive alloy in order to reduce the amount of electrical erosion.
Grinevich, Valery; Kolleker, Alexander; Eliava, Marina; Takada, Naoki; Takuma, Hiroshi; Fukazawa, Yugo; Shigemoto, Ryuichi; Kuhl, Dietmar; Waters, Jack; Seeburg, Peter H.; Osten, Pavel
2014-01-01
The brain-specific immediate early gene Arc/Arg3.1 is induced in response to a variety of stimuli, including sensory and behavior-linked neural activity. Here we report the generation of transgenic mice, termed TgArc/Arg3.1-d4EGFP, expressing a 4-hour half-life form of enhanced green fluorescent protein (d4EGFP) under the control of the Arc/Arg3.1 promoter. We show that d4EGFP-mediated fluorescence faithfully reports Arc/Arg3.1 induction in response to physiological, pathological and pharmacological stimuli, and that this fluorescence permits electrical recording from activated neurons in the live mouse. Moreover, the fluorescent Arc/Arg3.1 indicator revealed activity changes in circumscribed brain areas in distinct modes of stress and in a mouse model of Alzheimer’s disease. These findings identify the TgArc/Arg3.1-d4EGFP mouse as a versatile tool to monitor Arc/Arg3.1 induction in neural circuits, both in vitro and in vivo. PMID:19628007
Analysis of plasma characteristics and conductive mechanism of laser assisted pulsed arc welding
NASA Astrophysics Data System (ADS)
Liu, Shuangyu; Chen, Shixian; Wang, Qinghua; Li, Yanqing; Zhang, Hong; Ding, Hongtao
2017-05-01
This study aims to investigate the arc plasma shape and the spectral characteristics during the laser assisted pulsed arc welding process. The arc plasma shape was synchronously observed using a high speed camera, and the emission spectrum of plasma was obtained by spectrometer. The well-known Boltzmann plot method and Stark broadening were used to calculate the electron temperature and density respectively. The conductive mechanism of arc ignition in laser assisted arc hybrid welding was investigated, and it was found that the plasma current moved to the arc anode under the action of electric field. Thus, a significant parabolic channel was formed between the keyhole and the wire tip. This channel became the main method of energy transformation between the arc and the molten pool. The calculation results of plasma resistivity show that the laser plasma has low resistivity as the starting point of conductive channel formation. When the laser pulse duration increases, the intensity of the plasma radiation spectrum and the plasma electron density will increase, and the electron temperature will decrease.
Zhang, Xiaobing
2015-01-01
We employ transgenic mice with selective expression of tdTomato or cre recombinase together with optogenetics to investigate whether hypothalamic arcuate (ARC) dopamine/tyrosine hydroxylase (TH) neurons interact with other ARC neurons, how they respond to hypothalamic neuropeptides, and to test whether these cells constitute a single homogeneous population. Immunostaining with dopamine and TH antisera was used to corroborate targeted transgene expression. Using whole-cell recording on a large number of neurons (n = 483), two types of neurons with different electrophysiological properties were identified in the dorsomedial ARC where 94% of TH neurons contained immunoreactive dopamine: bursting and nonbursting neurons. In contrast to rat, the regular oscillations of mouse bursting neurons depend on a mechanism involving both T-type calcium and A-type potassium channel activation, but are independent of gap junction coupling. Optogenetic stimulation using cre recombinase-dependent ChIEF-AAV-DJ expressed in ARC TH neurons evoked postsynaptic GABA currents in the majority of neighboring dopamine and nondopamine neurons, suggesting for the first time substantial synaptic projections from ARC TH cells to other ARC neurons. Numerous met-enkephalin (mENK) and dynorphin-immunoreactive boutons appeared to contact ARC TH neurons. mENK inhibited both types of TH neuron through G-protein coupled inwardly rectifying potassium currents mediated by δ and μ opioid receptors. Dynorphin-A inhibited both bursting and nonbursting TH neurons by activating κ receptors. Oxytocin excited both bursting and nonbursting neurons. These results reveal a complexity of TH neurons that communicate extensively with neurons within the ARC. SIGNIFICANCE STATEMENT Here, we show that the great majority of mouse hypothalamic arcuate nucleus (ARC) neurons that synthesize TH in the dorsomedial ARC also contain immunoreactive dopamine, and show either bursting or nonbursting electrical activity. Unlike rats, the mechanism underlying bursting was not dependent on gap junctions but required T-type calcium and A-type potassium channel activation. Neuropeptides dynorphin and met-enkephalin inhibited dopamine neurons, whereas oxytocin excited them. Most ventrolateral ARC TH cells did not contain dopamine and did not show bursting electrical activity. TH-containing neurons appeared to release synaptic GABA within the ARC onto dopamine neurons and unidentified neurons, suggesting that the cells not only control pituitary hormones but also may modulate nearby neurons. PMID:26558770
Development of a Process for a High Capacity Arc Heater Production of Silicon for Solar Arrays
NASA Technical Reports Server (NTRS)
Reed, W. H.
1979-01-01
A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant (sodium) are injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection were developed. Included in this report are: test system preparation; testing; injection techniques; kinetics; reaction demonstration; conclusions; and the project status.
1959-08-20
A hot jet research facility, used extensively in the design and development of the reentry heat shield on the Project Mercury spacecraft. The electrically-heated arc jet simulates the friction heating encountered by a space vehicle as it returns to the earth's atmosphere at high velocities. The arc jet was located in Langley's Structures Research Laboratory. It was capable of heating the air stream to about 9,000 degrees F. -- Published in Taken from an October 5, 1961 press release entitled: Hot Jet Research Facility used in Reentry Studies will be demonstrated at NASA Open House, October 7.
Design and performance of the Ames electric-arc shock tunnel
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.
1973-01-01
A high enthalpy shock tunnel using arc-heated helium as the driver gas was designed for gas dynamic research at total stream energies from 7,000 to 35,000 j/g. The arc driver was found to be a relatively efficient energy converter. Tailored shock Mach numbers from 11.5 to 14.6 in air were demonstrated. A nozzle calibration with a total stream enthalpy of 18,600 j/g of air gave test times of 1.5 to 2.0 m sec at flow Mach numbers from 16 to 24.
Development of arcjet and ion propulsion for spacecraft stationkeeping
NASA Technical Reports Server (NTRS)
Sovey, James S.; Curran, Francis M.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Rawlin, Vincent K.; Sankovic, John M.
1992-01-01
Near term flight applications of arc jet and ion thruster satellite station-keeping systems as well as development activities in Europe, Japan, and the United States are reviewed. At least two arc jet and three ion propulsion flights are scheduled during the 1992-1995 period. Ground demonstration technology programs are focusing on the development of kW-class hydrazine and ammonia arc jets and xenon ion thrusters. Recent work at NASA LeRC on electric thruster and system integration technologies relating to satellite station keeping and repositioning will also be summarized.
NASA Technical Reports Server (NTRS)
Weiss, L. A.; Weber, E. J.; Reiff, P. H.; Sharber, J. R.; Winningham, J. D.; Primdahl, F.; Mikkelsen, I. S.; Seifring, C.; Wescott, Eugene M.
1994-01-01
An experimental campaign designed to study high-latitude auroral arcs was conducted in Sondre Stromfjord, Greenland, on February 26, 1987. The Polar Acceleration Regions and Convection Study (Polar ARCS) consisted of a coordinated set of ground-based, airborne, and sounding rocket measurements of a weak, sun-aligned arc system within the duskside polar cap. A rocket-borne barium release experiment, two DMSP satellite overflights, all-sky photography, and incoherent scatter radar measurements provided information on the large-scale plasma convection over the polar cap region while a second rocket instrumented with a DC magnetometer, Langmuir and electric field probes, and an electron spectrometer provided measurements of small-scale electrodynamics. The large-scale data indicate that small, sun-aligned precipitation events formed within a region of antisunward convection between the duskside auroral oval and a large sun-aligned arc further poleward. This convection signature, used to assess the relationship of the sun-aligned arc to the large-scale magnetospheric configuration, is found to be consistent with either a model in which the arc formed on open field lines on the dusk side of a bifurcated polar cap or on closed field lines threading an expanded low-latitude boundary layer, but not a model in which the polar cap arc field lines map to an expanded plasma sheet. The antisunward convection signature may also be explained by a model in which the polar cap arc formed on long field lines recently reconnected through a highly skewed plasma sheet. The small-scale measurements indicate the rocket passed through three narrow (less than 20 km) regions of low-energy (less than 100 eV) electron precipitation in which the electric and magnetic field perturbations were well correlated. These precipitation events are shown to be associated with regions of downward Poynting flux and small-scale upward and downward field-aligned currents of 1-2 micro-A/sq m. The paired field-aligned currents are associated with velocity shears (higher and lower speed streams) embedded in the region of antisunward flow.
Murdoch, R.O.; Record, F.A.
1963-01-29
This invention relates to a fast-acting spring-loaded electrical switch which can break a 1500-volt circuit in one millisecond without arcing. In particular, a springloaded shorting bar is held in tension by a fusible wire. Passage of an electrical current pulse through the fusible wire breaks the fuse thereby releasing the shorting bar to open one and close another electrical circuit. (AEC)
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to demonstrate compliance. (1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, (i) The average PM... not exceed 0.0002 gr/dscf. (4) For each electric induction metal melting furnace or scrap preheater at...
Code of Federal Regulations, 2010 CFR
2010-07-01
... used to demonstrate compliance. (1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, (i) The average PM... not exceed 0.0002 gr/dscf. (4) For each electric induction metal melting furnace or scrap preheater at...
Code of Federal Regulations, 2012 CFR
2012-07-01
... used to demonstrate compliance. (1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, (i) The average PM... not exceed 0.0002 gr/dscf. (4) For each electric induction metal melting furnace or scrap preheater at...
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to demonstrate compliance. (1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, (i) The average PM... not exceed 0.0002 gr/dscf. (4) For each electric induction metal melting furnace or scrap preheater at...
Code of Federal Regulations, 2011 CFR
2011-07-01
... used to demonstrate compliance. (1) For each electric arc metal melting furnace, electric induction metal melting furnace, or scrap preheater at an existing iron and steel foundry, (i) The average PM... not exceed 0.0002 gr/dscf. (4) For each electric induction metal melting furnace or scrap preheater at...
Blue, C.W.; Luce, J.S.
1960-07-19
An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.
Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility
NASA Technical Reports Server (NTRS)
Cruden, Brett A.
2012-01-01
The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.
Electrical Arc Ignition Testing of Spacesuit Materials
NASA Technical Reports Server (NTRS)
Smith, Sarah; Gallus, Tim; Tapia, Susana; Ball, Elizabeth; Beeson, Harold
2006-01-01
A viewgraph presentation on electrical arc ignition testing of spacesuit materials is shown. The topics include: 1) Background; 2) Test Objectives; 3) Test Sample Materials; 4) Test Methods; 5) Scratch Test Objectives; 6) Cotton Scratch Test Video; 7) Scratch Test Results; 8) Entire Date Plot; 9) Closeup Data Plot; 10) Scratch Test Problems; 11) Poke Test Objectives; 12) Poke Test Results; 13) Poke Test Problems; 14) Wire-break Test Objectives; 15) Cotton Wire-Break Test Video; 16) High Speed Cotton Wire-break Test Video; 17) Typical Data Plot; 18) Closeup Data Plot; 19) Wire-break Test Results; 20) Wire-break Tests vs. Scratch Tests; 21) Urethane-coated Nylon; and 22) Moleskin.
Garaj-Vrhovac, Vera; Orescanin, Visnja; Ruk, Damir; Gajski, Goran
2009-02-15
In vitro genotoxic effects of leachates of electric arc furnace dust (EAFD) on human peripheral lymphocytes, assessed prior and following the treatment with a strong alkaline solution were investigated using the alkaline comet assay. Prior and following the treatment, lymphocytes were incubated with leachate of EAFD for 6 and 24 hours at 37 degrees C. Negative controls were also included. Mean values of the tail lengths established in the samples treated with the leachate stemming from the original dust for 6 and 24 hours, were 15.70 microm and 16.78 microm, respectively, as compared to 12.33 microm found in the control sample. Slight, but significant increase in the tail length was also found with the dust treated with a strong alkaline solution (13.37 microm and 13.60 microm). In case of high heavy metal concentrations (the extract of the original furnace dust), the incubation period was revealed to be of significance as well. The obtained results lead to the conclusion that alkaline comet assay could be used as a rapid, sensitive and low-cost tool when assessing genotoxicity of various waste materials, such as leachates of the electric arc furnace dust.
Imaging and EISCAT radar measurements of an auroral prebreakup event
NASA Astrophysics Data System (ADS)
Safargaleev, V.; Turunen, T.; Lyatsky, W.; Manninen, J.; Kozlovsky, A.
1996-11-01
The results of coordinated EISCAT and TV-camera observations of a prebreakup event on 15 November 1993 have been considered. The variations of the luminosity of two parallel auroral arcs, plasma depletion on the poleward edge of one of these arcs as well as electron and ion temperatures in front of a westward travelling surge were studied. It was found that a short-lived brightening of a weak zenith arc before an auroral breakup was accompanied by fading of an equatorial arc and, vice versa. A plasma depletion in the E region was detected by the EISCAT radar on the poleward edge of the zenith arc just before the auroral breakup. The plasma depletion was associated with an enhancement of ion (at the altitudes of 150-200 km) and electron (in E region) temperatures. During its occurrence, the electric field in the E-region was extremely large (sim150 mV/m). A significant increase in ion temperature was also observed 1 min before the arrival of a westward travelling surge (WTS) at the radar zenith. This was interpreted as the existence of an extended area of enhanced electric field ahead of the WTS. Acknowledgements. The work done by P. Henelius and E. Vilenius in programme development is gratefully acknowledged. Topical Editor D. Alcayde thanks I. Pryse and A. Vallance-Jones for their help in evaluating this paper.-> Correspondence to: T. Nygrén->
Proton Radiography Imager:Generates Synthetic Proton Radiographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilks, Scott C.; Black, Mason R.
ProRad is a computer program that is used to generate synthetic images of proton (or other charged particles) radiographs. The proton radiographs arc images that arc obtained by sending energetic protons (or electrons or positrons, for example) through 11 plasma where electric and/or magnetic fields alter the particles trajectory, Dnd the variations me imaged on RC film, image plate, or equivalent
ERIC Educational Resources Information Center
Sergeant, Harold A.
The population of the study consisted of 15 high school industrial arts students, 10 freshman and sophomore college students, and 10 adults. A polysensory, self-pacing instructional system was developed which included (1) pretests and post tests, (2) a general instruction book, (3) equipment to practice arc welding, (4) programed instruction…
Mathematical Model Of Variable-Polarity Plasma Arc Welding
NASA Technical Reports Server (NTRS)
Hung, R. J.
1996-01-01
Mathematical model of variable-polarity plasma arc (VPPA) welding process developed for use in predicting characteristics of welds and thus serves as guide for selection of process parameters. Parameters include welding electric currents in, and durations of, straight and reverse polarities; rates of flow of plasma and shielding gases; and sizes and relative positions of welding electrode, welding orifice, and workpiece.
NASA Astrophysics Data System (ADS)
Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming
2018-02-01
Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.
APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS
Wright, B.T.
1958-01-28
a uniform and copious supply of ions. The source comprises a hollow arc- block and means for establishing a magnetic field through the arc-block. Vaporization of the material to be ionized is produced by an electric heated filament. The arc producing structure within the arc-block consists of a cathode disposed between a pair of collimating electrodes along with an anode adjacent each collimating electrode on the side opposite the cathode. A positive potential applied to the anodes and collimating electrodes, with respect to the cathode, and the magnetic field act to accelerate the electrons from the cathode through a slit in each collimating clectrode towards the respective anode. In this manner a pair of collinear arc discharges are produced in the gas region which can be tapped for an abundant supply of ions of the material being analyzed.
Double-ended metal halide arc discharge lamp with electrically isolated containment shroud
NASA Technical Reports Server (NTRS)
Muzeroll, Martin M. (Inventor)
1994-01-01
A double-ended arc discharge lamp includes a sealed, light-transmissive outer jacket, a light-transmissive shroud mounted within the outer jacket and directly supported by the outer jacket, and an arc discharge tube mounted within the shroud. The arc tube is typically a metal halide arc discharge tube. In a preferred embodiment, the shroud includes an outwardly flared portion at each end. The outwardly flared portions space the shroud from the outer jacket and support the shroud within the outer jacket. The outwardly flared portions of the shroud can be affixed to the outer jacket by fusing. The outer jacket can be provided with inwardly extending dimples for locating the shroud with respect to the outer jacket. In another embodiment, the outer jacket includes reduced diameter portions near each end which are attached to the shroud.
Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W
2012-06-01
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.
Electromagnetic radiation generated by arcing in low density plasma
NASA Technical Reports Server (NTRS)
Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.
1996-01-01
An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.
[Epidemiological investigation on 2 133 hospitalized patients with electrical burns].
Jiang, M J; Li, Z; Xie, W G
2017-12-20
Objective: To analyze the epidemiological characteristics of the hospitalized patients with electrical burns in Institute of Burns of Tongren Hospital of Wuhan University & Wuhan Third Hospital (hereinafter referred to as Institute of Burns of Wuhan Third Hospital), so as to provide reference for the prevention and treatment of electrical burns. Methods: Medical records of all hospitalized burn patients in Institute of Burns of Wuhan Third Hospital from January 2004 to December 2016 were collected. Genders, ages, social categories, seasons of injury, total burn areas, depths of wounds, electrical voltages of injury, sites of wound, treatment methods, amputation rates, lengths of hospital stay, operation costs, hospitalization costs, and treatment outcomes of the electrical burn patients were collected. Treatment methods, lengths of hospital stay, operation costs, and hospitalization costs of the thermal burn patients were collected and compared with those of the electrical burn patients. Electrical voltages of injury, amputation rates, operation costs, hospitalization costs, and treatment outcomes were compared and analyzed between the electrical contact burn patients and the electrical arc burn patients. Data were processed with Chi-square test and Wilcoxon rank-sum test. Results: During the 13 years, 23 534 burn patients were admitted to Institute of Burns of Wuhan Third Hospital, among whom 2 133 (9.1%) were with electrical burns, without obvious variation in admission number of electrical burn patients every year. There were 1 418 patients (66.5%) with electrical contact burns and 715 patients (33.5%) with electrical arc burns. The ratio of male to female was 11.2∶1.0 among the electrical burn patients with known genders. The proportions of three age groups of more than 20 years old and less than or equal to 30 years old, more than 30 years old and less than or equal to 40 years old, and more than 40 years old and less than or equal to 50 years old were relatively higher, which were 18.3% (391/2 133), 22.1% (471/2 133), and 24.6% (525/2 133), respectively. The first three social category groups in proportions were workers, peasants, and preschool children, which were 57.9% (1 235/2 133), 14.6% (311/2 133), and 6.0% (128/2 133), respectively. Among the electrical burn patients with known seasons of injury, most cases were injured in summer (659 cases, accounting for 34.1%), obviously more than the proportions in autumn (537 cases, accounting for 27.8%), spring (455 cases, accounting for 23.5%), and winter (283 cases, accounting for 14.6%), with χ (2) values from 8.414 to 149.573, P values below 0.01. The group of patients with total burn areas less than 10% total body surface area (TBSA) occupied the highest proportion (1 603 cases, accounting for 75.15%), among whom 229 (10.74%) were with scattered small wounds which were less than 1% TBSA. The percentage of electrical contact burn patients with deep wounds was 79.1% (1 122/1 418), which was obviously higher than 2.5% (18/715) of the electrical arc burn patients ( χ (2)=381.741, P <0.001). Among the patients with known electrical voltages of injury, patients injured by high voltage among the electrical contact burn patients accounted for 78.4% (469/598), which was obviously higher than 8.7% (11/127) of the electrical arc burn patients ( χ (2)=227.893, P <0.001). The most common wound site of the electrical burn patients was upper limbs (1 650 cases, accounting for 63.2%), followed by lower limbs (382 cases, accounting for 14.6%), head and neck (292 cases, accounting for 11.2%), trunk (247 cases, accounting for 9.5%), and hip and perineum (40 cases, accounting for 1.5%). The operation rate of electrical burn patients was 32.4% (691/2 133), obviously higher than 19.1% (3 860/20 209)of the thermal burn patients during the same period ( χ (2)=210.255, P <0.001). Wounds of 116 electrical contact burn patients were repaired with free flap by vascular anastomosis, of which 9 (7.8%) failed. The length of hospital stay, the operation cost, and the hospitalization cost of electrical burn patients were (28±29) d, (9 534±16 935) and (44 258±93 012) Yuan, respectively, obviously longer or higher than those of the thermal burn patients during the same period [(17±19) d, (2 990±8 916) and (23 291±88 340) Yuan, respectively, with Z values from -21.323 to -10.996, P values below 0.001]. The amputation rate and the death rate of electrical burn patients were 3.8% (82/2 133) and 0.8% (16/2 133) respectively. Compared with those of electrical arc burn patients, the amputation rate and the operation cost of electrical contact burn patients were obviously higher ( χ (2)=36.970, Z =-11.351, P values below 0.001), and the length of hospital stay of electrical contact burn patients was obviously longer ( Z =-5.181, P <0.001). There were no significant differences in hospitalization cost and treatment outcome between the electrical contact burn patients and the electrical arc burn patients ( Z =-1.461, χ (2)=1.673, P values above 0.05). Conclusions: The number and the proportion of hospitalized electrical burn patients in Institute of Burns of Wuhan Third Hospital were relatively high, indicating a hard task of prevention for electrical burns in Wuhan area. Working-age workers and farmers, and preschool children were the key groups in prevention from electrical burns. The length of hospital stay, the operation cost, and the hospitalization cost of electrical burn patients were obviously higher than those of thermal burn patients. The amputation rate and the operation cost of electrical contact burn patients were obviously higher than those of electrical arc burn patients, but there were no obvious differences in hospitalization cost or treatment outcome between them. Actively using tissue flaps including free flap to repair of wounds may be helpful to reduce the amputation rate, improve the results, and shorten the time of treatment.
2008-11-02
Airship Ventures Zeppelin Dedication during the Moffett Field Diamond Jubilee. New NRP Partner KleenSpeed Chairman Timothy Collins (l) with THRUXAR electric race car at the Nov. 21 Diamond Jubilee exhibits. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation
NASA Astrophysics Data System (ADS)
Lee, Kwan Chul
2017-11-01
Three examples of electric field formation in the plasma are analyzed based on a new mechanism driven by ion-neutral collisions. The Gyro-Center Shift analysis uses the iteration of three equations including perpendicular current induced by the momentum exchange between ions and neutrals when there is asymmetry over the gyro-motion. This method includes non-zero divergence of current that leads the solution of time dependent state. The first example is radial electric field formation at the boundary of the nuclear fusion device, which is a key factor in the high-confinement mode operation of future fusion reactors. The second example is the reversed rotation of the arc discharge cathode spot, which has been a mysterious subject for more than one hundred years. The third example is electric field formations in the earth's ionosphere, which are important components of the equatorial electrojet and black aurora. The use of one method that explains various examples from different plasmas is reported, along with a discussion of the applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, Jeff; Wei, Max; Leventis, Greg
The report offers several use cases and case studies of electrification in buildings and industry: air source heat pumps for space heating, zero net energy buildings, electric water heaters and demand response, electric arc furnaces, and electric boilers. Finally, the report suggests several areas for further research to better understand and advance beneficial electrification.
Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.
2018-01-01
By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.
Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.
2017-12-01
By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.
NASA Astrophysics Data System (ADS)
Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.; Kozakov, R.; Uhrlandt, D.
As an energy-preserving variant of laser hybrid welding, laser-assisted arc welding uses laser powers of less than 1 kW. Recent studies have shown that the electrical conductivity of a TIG welding arc changes within the arc in case of a resonant interaction between laser radiation and argon atoms. This paper presents investigations on how to control the position of the arc root on the workpiece by means of the resonant interaction. Furthermore, the influence on the welding result is demonstrated. The welding tests were carried out on a cooled copper plate and steel samples with resonant and non-resonant laser radiation. Moreover, an analysis of the weld seam is presented.
Note: Triggering behavior of a vacuum arc plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, C. H., E-mail: lanchaohui@163.com; Long, J. D.; Zheng, L.
2016-08-15
Axial symmetry of discharge is very important for application of vacuum arc plasma. It is discovered that the triggering method is a significant factor that would influence the symmetry of arc discharge at the final stable stage. Using high-speed multiframe photography, the transition processes from cathode-trigger discharge to cathode-anode discharge were observed. It is shown that the performances of the two triggering methods investigated are quite different. Arc discharge triggered by independent electric source can be stabilized at the center of anode grid, but it is difficult to achieve such good symmetry through resistance triggering. It is also found thatmore » the triggering process is highly correlated to the behavior of emitted electrons.« less
Hybrid Laser-Arc Welding of the High-Strength Shipbuilding Steels: Equipment and Technology
NASA Astrophysics Data System (ADS)
Turichin, G.; Kuznetsov, M.; Tsibulskiy, I.; Firsova, A.
Hybrid laser-arc welding (HLAW) allows getting weld joints with thickness up to 35 mm for one pass, provide good quality formation of joints, minimal thermal deformations, the productivity in 10 times more in comparison with arc welding. In addition, replacement arc welding to the HLAW allows economizing filler materials, shielding gas and consumable electricity more than 4 times. Therefore, HLAW is actually technology for basic engineering branches and especially for shipbuilding. The Institute of Laser and Welding Technologies (ILWT) developed laser and hybrid laser-arc welding technologies for different type of steels and alloys including high-strength shipbuilding steels. Also ILWT produced portal and robotic systems for HLAW process realization. Portal system for hybrid laser-arc welding of panels with dimensions 6x6 m using at the manufacturing of flat curvilinear sections in the shipbuilding is depicted in the article. Results of experimental researches of the hybrid laser-arc welding parameters influence on the formation and mechanical properties of weld joint are described at the publication also. Experimental part was made with using of the portal system.
Structure of an energetic narrow discrete arc
NASA Technical Reports Server (NTRS)
Mcfadden, J. P.; Carlson, C. W.; Boehm, M. H.
1990-01-01
Particle distributions, waves, dc electric fields, and magnetic fields were measured by two sounding rockets at altitudes of 950 and 430 km through an energetic (greater than 5 keV) narrow (about 10 km) stable discrete arc. Although the payloads' magnetic footprints were separated by only 50 km, differences in the arc's structure were observed including the spatial width, peak energy, and characteristic spectra. The energetic electron precipitation included both slowly varying isotropic fluxes that formed an inverted-V energy-time signature and rapidly varying field-aligned fluxes at or below the isotropic spectral peak. The isotropic precipitation had a flux discontinuity inside the arc indicating the arc was present on a boundary between two different magnetospheric plasmas. Dispersive and nondispersive bursts of field-aligned electrons were measured throughout the arc, appearing over broad energy ranges or as monoenergetic beams. Dispersive bursts gave variable source distances less than 8000 km. Plateauing of some of the most intense bursts suggests that waves stabilized these electrons. During the lower altitude arc crossing, the field-aligned component formed a separate inverted-V energy-time signature whose peak energy was half the isotropic peak energy.
Ion source with improved primary arc collimation
Dagenhart, William K.
1985-01-01
An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.
Korpinen, Leena; Pirkkalainen, Herkko; Heiskanen, Timo; Pääkkönen, Rauno
2016-01-01
Various guidelines for the protection of human beings against possible adverse effects resulting from exposure to electromagnetic fields (EMFs) have been published with a view towards continual improvement; therefore, decreasing exposure is an important research area. The aim of this study was to investigate the possibility of decreasing electric field exposure with arc flash rated personal protective equipment (PPE), which in this case was a set of coveralls, and to compare the measurement results to calculations using the helmet-mask measuring system. We collected the data under a 400-kV power line. The test person stood on isolated aluminum paper, and the current between the ground and the aluminum paper was measured. When the test subject wore the arc flash PPE, the current to the ground was only 9.5% of the current measured when wearing normal clothes, which represents a clear decrease in exposure. PMID:27669278
Brown, I.G.; Galvin, J.
1987-12-22
An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.
Surface breakdown igniter for mercury arc devices
Bayless, John R.
1977-01-01
Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.
Optical Analysis Of The Vacuum Arc Plasma Generated In Cup-Shape Contacts
NASA Astrophysics Data System (ADS)
Pavelescu, G.; Pavelescu, D.; Dumitrescu, G.; Anghelita, P.; Gherendi, F.
2007-04-01
In this paper are presented the results of the optical analysis on the rotating arc plasma, generated in the vacuum low voltage circuit breaker with cup-shaped contacts. An adequate experimental setup was used for single shot time and spatial resolved spectroscopy in order to analyze the evolution of the vacuum arc plasma. Different current interruption situations are correlated with plasma spectral diagnosis. The study is aimed to contribute to a better understanding of the complex phenomena that take place in the interruption process of high currents that appears in the short-circuit regime of electrical networks.
The Ames Power Monitoring System
NASA Technical Reports Server (NTRS)
Osetinsky, Leonid; Wang, David
2003-01-01
The Ames Power Monitoring System (APMS) is a centralized system of power meters, computer hardware, and specialpurpose software that collects and stores electrical power data by various facilities at Ames Research Center (ARC). This system is needed because of the large and varying nature of the overall ARC power demand, which has been observed to range from 20 to 200 MW. Large portions of peak demand can be attributed to only three wind tunnels (60, 180, and 100 MW, respectively). The APMS helps ARC avoid or minimize costly demand charges by enabling wind-tunnel operators, test engineers, and the power manager to monitor total demand for center in real time. These persons receive the information they need to manage and schedule energy-intensive research in advance and to adjust loads in real time to ensure that the overall maximum allowable demand is not exceeded. The APMS (see figure) includes a server computer running the Windows NT operating system and can, in principle, include an unlimited number of power meters and client computers. As configured at the time of reporting the information for this article, the APMS includes more than 40 power meters monitoring all the major research facilities, plus 15 Windows-based client personal computers that display real-time and historical data to users via graphical user interfaces (GUIs). The power meters and client computers communicate with the server using Transmission Control Protocol/Internet Protocol (TCP/IP) on Ethernet networks, variously, through dedicated fiber-optic cables or through the pre-existing ARC local-area network (ARCLAN). The APMS has enabled ARC to achieve significant savings ($1.2 million in 2001) in the cost of power and electric energy by helping personnel to maintain total demand below monthly allowable levels, to manage the overall power factor to avoid low power factor penalties, and to use historical system data to identify opportunities for additional energy savings. The APMS also provides power engineers and electricians with the information they need to plan modifications in advance and perform day-to-day maintenance of the ARC electric-power distribution system.
NASA Astrophysics Data System (ADS)
Zhao, Tingkai; Ji, Xianglin; Jin, Wenbo; Yang, Wenbo; Zhao, Xing; Dang, Alei; Li, Hao; Li, Tiehu
2017-02-01
Semiconducting single-walled carbon nanotubes (s-SWCNTs) were in situ synthesized by a temperature-controlled arc discharging furnace with DC electric field using Co-Ni alloy powder as catalyst in helium gas. The microstructures of s-SWCNTs were characterized using high-resolution transmission electron microscopy, electron diffraction, and Raman spectrometry apparatus. The experimental results indicated that the best voltage value in DC electric field is 54 V, and the environmental temperature of the reaction chamber is 600 °C. The mean diameter of s-SWCNTs was estimated about 1.3 nm. The chiral vector ( n, m) of s-SWCNTs was calculated to be (10, 10) type according to the electron diffraction patterns.
The Optical Harness: a light-weight EMI-immune replacement for legacy electrical wiring harnesses
NASA Astrophysics Data System (ADS)
Stark, Jason B.; Jackson, B. Scott; Trethewey, William
2006-05-01
Electrical wiring harnesses have been used to interconnect control and communication equipment in mobile platforms for over a century. Although they have served this function successfully, they have three problems that are inherent in their design: they are mechanically heavy and stiff, and they are prone to electrical faults, including arcing and Electro-Magnetic Interference (EMI), and they are difficult to maintain when faults occur. These properties are all aspects of the metallic conductors used to build the harnesses. The Optical Harness TM is a photonic replacement for the legacy electrical wiring harness. The Optical Harness TM uses light-weight optical fiber to replace signal wires in an electrical harness. The original electrical connections to the equipment remain, making the Optical Harness TM a direct replacement for the legacy wiring harness. In the backshell of each connector, the electrical signals are converted to optical, and transported on optical fiber, by a deterministic, redundant and fault-tolerant optical network. The Optical Harness TM: * Provides weight savings of 40-50% and unsurpassed flexibility, relative to legacy signal wiring harnesses; * Carries its signals on optical fiber that is free from arcing, EMI, RFI and susceptibility to HPM weapons; * Is self-monitoring during operation, providing non-intrusive predictive and diagnostic capabilities.
Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber
NASA Astrophysics Data System (ADS)
Ding, Can; Yuan, Zhao; He, Junjia
2017-10-01
A DC circuit breaker performs a key function in breaking an intermediate-frequency (IF) current since breaking a pure IF current is equivalent to breaking a very small DC with a reverse IF current. In this study, it is found that cathode spots show a ring-shaped distribution at 2000 Hz. An arc with an uneven distribution of cathode spots has been simulated. The simulation results show that the distribution of cathode spots significantly affect the microparameter distribution of arc plasma. The current distribution on the anode side differs from that on the cathode side under the total radial electric field. Specifically, the anode current distribution is both uneven and concentrated. The applied axial magnetic field, which cannot reduce the concentrated anode current distribution effectively, might increase the concentration of the anode current. Finally, the uneven distribution of cathode spots reduces the breaking capacity of the arc-extinguishing chamber.
NASA Astrophysics Data System (ADS)
Nair, B. G.; Winter, N.; Daniel, B.; Ward, R. M.
2016-07-01
Direct measurement of the flow of electric current during VAR is extremely difficult due to the aggressive environment as the arc process itself controls the distribution of current. In previous studies the technique of “magnetic source tomography” was presented; this was shown to be effective but it used a computationally intensive iterative method to analyse the distribution of arc centre position. In this paper we present faster computational methods requiring less numerical optimisation to determine the centre position of a single distributed arc both numerically and experimentally. Numerical validation of the algorithms were done on models and experimental validation on measurements based on titanium and nickel alloys (Ti6Al4V and INCONEL 718). The results are used to comment on the effects of process parameters on arc behaviour during VAR.
Anode sheath transition in an anodic arc for synthesis of nanomaterials
NASA Astrophysics Data System (ADS)
Nemchinsky, V. A.; Raitses, Y.
2016-06-01
The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.
The influence of the structure of the metal load removal from liquid steel in electric arc furnaces
NASA Astrophysics Data System (ADS)
Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen
2016-06-01
One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.
The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...
49 CFR 192.113 - Longitudinal joint factor (E) for steel pipe.
Code of Federal Regulations, 2010 CFR
2010-10-01
... class Longitudinal joint factor (E) ASTM A 53/A53M Seamless 1.00 Electric resistance welded 1.00 Furnace butt welded .60 ASTM A 106 Seamless 1.00 ASTM A 333/A 333M Seamless 1.00 Electric resistance welded 1.00 ASTM A 381 Double submerged arc welded 1.00 ASTM A 671 Electric-fusion-welded 1.00 ASTM A 672...
49 CFR 195.106 - Internal design pressure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... temperature higher than 900 °F (482 °C) for any period of time or over 600 °F (316 °C) for more than 1 hour... 1.00 Electric resistance welded 1.00 Furnace lap welded 0.80 Furnace butt welded 0.60 ASTM A106... 1.00 API 5L Seamless 1.00 Electric resistance welded 1.00 Electric flash welded 1.00 Submerged arc...
Turner, Michael J; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru
2014-06-13
This study aims to identify the contribution of myelinated (A-fiber) and unmyelinated (C-fiber) baroreceptor central pathways to the baroreflex control of sympathetic nerve activity and arterial pressure. Two binary white noise stimulation protocols were used to electrically stimulate the aortic depressor nerve and activate reflex responses from either A-fiber (3 V, 20-100 Hz) or C-fiber (20 V, 0-10 Hz) baroreceptor in anesthetized Sprague-Dawley rats (n=10). Transfer function analysis was performed between stimulation and sympathetic nerve activity (central arc), sympathetic nerve activity and arterial pressure (peripheral arc), and stimulation and arterial pressure (Stim-AP arc). The central arc transfer function from nerve stimulation to splanchnic sympathetic nerve activity displayed derivative characteristics for both stimulation protocols. However, the modeled steady-state gain (0.28 ± 0.04 vs. 4.01 ± 0.2%·Hz(-1), P<0.001) and coherence at 0.01 Hz (0.44 ± 0.05 vs. 0.81 ± 0.03, P<0.05) were significantly lower for A-fiber stimulation compared with C-fiber stimulation. The slope of the dynamic gain was higher for A-fiber stimulation (14.82 ± 1.02 vs. 7.21 ± 0.79 dB·decade(-1), P<0.001). The steady-state gain of the Stim-AP arc was also significantly lower for A-fiber stimulation compared with C-fiber stimulation (0.23 ± 0.05 vs. 3.05 ± 0.31 mmHg·Hz(-1), P<0.001). These data indicate that the A-fiber central pathway contributes to high frequency arterial pressure regulation and the C-fiber central pathway provides more sustained changes in sympathetic nerve activity and arterial pressure. A sustained reduction in arterial pressure from electrical stimulation of arterial baroreceptor afferents is likely mediated through the C-fiber central pathway. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Reisgen, Uwe; Schleser, Markus; Mokrov, Oleg; Zabirov, Alexander
2011-06-01
A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.
NASA Astrophysics Data System (ADS)
Buyantuev, S. L.; Kondratenko, A. S.; Shishulkin, S. Y.; Stebenkova, Y. Y.; Khmelev, A. B.
2017-05-01
The paper presents the results of the studies of the structure and porosity of the coal cake processed by electric arc plasma. The main limiting factor in processing of coal cakes sorbents is their high water content. As a result of coal washing, the main share of water introduced into the cake falls on hard-hydrate and colloidal components. This makes impossible application of traditional processes of manufacturing from a cake of coal sorbents. Using the electric arc intensifies the processes of thermal activation of coal cakes associated with thermal shock, destruction and vapor-gas reactions occurring at the surfaces of the particles at an exposure temperature of up to 3000 °C, which increases the title product outlet (sorbent) and thereby reduces manufacturing costs and improves environmental performance. The investigation of the thermal activation zone is carried out in the plasma reactor chamber by thermal imaging method followed by mapping-and 3D-modeling of temperature fields. the most important physical and chemical properties of the sorbents from coal cake activated by plasma was studied. The obtained results showed the possibility of coal cake thermal activation by electric arc plasma to change its material composition, the appearance of porosity and associated sorption capacity applied for wastewater treatment.
An experimental system for controlled exposure of biological samples to electrostatic discharges.
Marjanovič, Igor; Kotnik, Tadej
2013-12-01
Electrostatic discharges occur naturally as lightning strokes, and artificially in light sources and in materials processing. When an electrostatic discharge interacts with living matter, the basic physical effects can be accompanied by biophysical and biochemical phenomena, including cell excitation, electroporation, and electrofusion. To study these phenomena, we developed an experimental system that provides easy sample insertion and removal, protection from airborne particles, observability during the experiment, accurate discharge origin positioning, discharge delivery into the sample either through an electric arc with adjustable air gap width or through direct contact, and reliable electrical insulation where required. We tested the system by assessing irreversible electroporation of Escherichia coli bacteria (15 mm discharge arc, 100 A peak current, 0.1 μs zero-to-peak time, 0.2 μs peak-to-halving time), and gene electrotransfer into CHO cells (7 mm discharge arc, 14 A peak current, 0.5 μs zero-to-peak time, 1.0 μs peak-to-halving time). Exposures to natural lightning stroke can also be studied with this system, as due to radial current dissipation, the conditions achieved by a stroke at a particular distance from its entry are also achieved by an artificial discharge with electric current downscaled in magnitude, but similar in time course, correspondingly closer to its entry. © 2013.
Methods of steel manufacturing - The electric arc furnace
NASA Astrophysics Data System (ADS)
Dragna, E. C.; Ioana, A.; Constantin, N.
2018-01-01
Initially, the carbon content was reduced by mixing “the iron” with metallic ingots in ceramic crucibles/melting pots, with external heat input. As time went by the puddling procedure was developed, a procedure which also assumes a mixture with oxidized iron ore. In 1856 Bessemer invented the convertor, thus demonstrating that steel can be obtained following the transition of an air stream through the liquid pig iron. The invention of Thomas, a slightly modified basic-lined converter, fostered the desulphurization of the steel and the removal of the phosphate from it. During the same period, in 1865, in Sireuil, the Frenchman Martin applies Siemens’ heat regeneration invention and brings into service the furnace with a charge composed of iron pig, scrap iron and iron ore, that produces a high quality steel [1]. An act worthy of being highlighted within the scope of steelmaking is the start-up of the converter with oxygen injection at the upper side, as there are converters that can produce 400 tons of steel in approximately 50 minutes. Currently, the share of the steel produced in electric arc furnaces with a charge composed of scrap iron has increased. Due to this aspect, the electric arc furnace was able to impose itself on the market.
Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge
NASA Astrophysics Data System (ADS)
Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.
2018-01-01
This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.
Effects of anchoring and arc structure on the control authority of a rail plasma actuator
NASA Astrophysics Data System (ADS)
Choi, Young-Joon; Gray, Miles; Sirohi, Jayant; Raja, Laxminarayan L.
2017-09-01
Experiments were conducted on a rail plasma actuator (RailPAc) with different electrode cross sections (rails or rods) to assess methods to improve the actuation authority, defined as the impulse generated for a given electrical input. The arc was characterized with electrical measurements and high-speed images, while impulse measurements quantified the actuation authority. A RailPAc power supply capable of delivering ∼1 kA of current at ∼100 V was connected to rod electrodes (free-floating with circular cross-section) and rail electrodes (flush-mounted in a flat plate with rectangular cross-section). High-speed images show that the rail electrodes cause the arc to anchor itself to the anode electrode and transit in discrete jumps, while rod electrodes permit the arc to transit smoothly without anchoring. The impulse measurements reveal that the anchoring reduces the actuation authority by ∼21% compared to a smooth transit, and the effect of anchoring can be suppressed by reducing the gap between the rails to 2 mm. The study further demonstrates that if a smooth transit is achieved, the control authority can be increased with a larger gap and larger arc current. In conclusion, the actuation authority of a RailPAc can be maximized by carefully choosing a gap width that prevents anchoring. Further study is warranted to increase the RailPAc actuation authority by introducing multiple turns of wires beneath the RailPAc to augment the induced magnetic field.
The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc
NASA Astrophysics Data System (ADS)
Zhang, Q.; Liu, J.; Yan, J. D.; Fang, M. T. C.
2016-08-01
The present work (part II) forms the second part of an investigation into the behaviour of SF6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (di/dt) before current zero and a voltage ramp (dV/dt) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures (P 0) and two values of di/dt for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0, rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed.
Field-aligned currents associated with multiple arc systems
NASA Astrophysics Data System (ADS)
Wu, J.; Knudsen, D. J.; Gillies, D. M.; Donovan, E.; Burchill, J. K.
2016-12-01
It is often thought that auroral arcs are a direct consequence of upward field-aligned currents. In fact, the relation between currents and brightness is more complicated. Multiple auroral arc systems provide and opportunity to study this relation in detail; this information can be used as a test of models for quasi-static arc formation. In this study, we have identified two types of FAC configurations in multiple parallel arc systems using ground-based optical data from the THEMIS all-sky imagers (ASIs), magnetometers and electric field instruments onboard the Swarm satellites during the period from December 2013 to March 2015. In type 1 events, each arc is an intensification within a broad, unipolar current sheet and downward currents only exist outside the upward current sheet. In type 2 events, multiple arc systems represent a collection of multiple up/down current pairs. By collecting 12 events for type 1 and 17 events for type 2, we find that (1) Type 1 events are mainly located between 22-23MLT. Type 2 events are mainly located around midnight. (2) The typical size of upward and downward FAC in type 2 events are comparable, while upward FAC in type 1 events are larger than downward FAC. (3) Upward currents with more arcs embedded have larger intensities and widths. (4) There is no significant difference between the characteristic widths of multiple arcs and single arcs.
NASA Astrophysics Data System (ADS)
Du, Chao; Wang, Qi
2017-10-01
As one of the key parameters in biological and chemical reactions, glucose concentration objectively reflects the characteristics of reactions, so the real-time monitoring of glucose concentration is important in the field of biochemical. Meanwhile, the influence from temperature should be considered. The fiber sensors have been studied extensively for decades due to the advantages of small size, immunity to electromagnetic interference and high sensitivity, which are suitable for the application of biochemical sensing. A long period fiber grating (LPFG) sensor induced by electric-arc discharge has been fabricated and demonstrated for simultaneous measurement of glucose concentration and temperature. The proposed sensor was fabricated by inscribing a sing mode fiber (SMF) with periodic electric-arc discharge technology. During the fabrication process, the electric-arc discharge technology was produced by a commercial fusion splicer, and the period of inscribed LPFG was determined by the movement of translation stages. A serials of periodic geometrical deformations would be formed in SMF after the fabrication, and the discharge intensity and discharge time can be adjusted though the fusion splicer settings screen. The core mode can be coupled into the cladding modes at certain wavelength when they satisfy the phase-matching conditions, and there will be several resonance dips in the transmission spectrum in LPFG. The resonance dips formed by the coupling between cladding modes and core mode have different sensitivity responses, so the simultaneous measurement for multi-parameter can be realized by monitoring the wavelength shifts of the resonance dips. Compared with the LPFG based on conventional SMF, the glucose concentration sensitivity has been obviously enhanced by etching the cladding with hydrofluoric acid solution. Based on the independent measured results, a dual-parameter measurement matrix has been built for signal demodulation. Because of the easy fabrication, low cost, small size and high sensitivity, the sensor is promising to be used for the biochemical sensing field where simultaneous measurement of glucose concentration and temperature is required.
NASA Astrophysics Data System (ADS)
Laumonier, Mickael; Gaillard, Fabrice; Muir, Duncan; Blundy, Jon; Unsworth, Martyn
2017-01-01
The formation of the continental crust at subduction zones involves the differentiation of hydrous mantle-derived magmas through a combination of crystallization and crustal melting. However, understanding the mechanisms by which differentiation occurs at depth is hampered by the inaccessibility of the deep crust in active continental arcs. Here we report new high-pressure electrical conductivity and petrological experiments on hydrated andesitic melt from Uturuncu volcano on the Bolivian Altiplano. By applying our results to regional magnetotelluric data, we show that giant conductive anomalies at mid-crustal levels in several arcs are characterized by relatively low amounts of intergranular andesitic partial melts with unusually high dissolved water contents (≥8 wt.% H2O). Below Uturuncu, the Altiplano-Puna Magma Body (APMB) displays an electrical conductivity that requires high water content (up to 10 wt.%) dissolved in the melt based on crystal-liquid equilibria and melt H2O solubility experiments. Such a super-hydrous andesitic melt must constitute about 10% of the APMB, the remaining 90% being a combination of magmatic cumulates and older crustal rocks. The crustal ponding level of these andesites at around 6 kbar pressure implies that on ascent through the crust hydrous magmas reach their water saturation pressure in the mid-crust, resulting in decompression-induced crystallization that increases magma viscosity and in turn leads to preferential stalling and differentiation. Similar high conductivity features are observed beneath the Cascades volcanic arc and Taupo Volcanic Zone. This suggests that large amounts of water in super-hydrous andesitic magmas could be a common feature of active continental arcs and may illustrate a key step in the structure and growth of the continental crust. One Sentence Summary: Geophysical, laboratory conductivity and petrological experiments reveal that deep electrical conductivity anomalies beneath the Central Andes, Cascades and Taupo Volcanic Zone image the ponding of super-hydrous andesitic melts which contributes to the growth of continental crust.
Development and Hover Testing of the Active Elevon Rotor
2012-05-01
typically aimed at reducing vibration, improving rotor performance, and/or reducing blade -vortex interaction (BVI) or in-plane noise . These efforts...will become unstable, either through a 1-DOF (degree of freedom) flutter or some kind of aeroservoelastic coupling with the rotor blade and/or wake ... blade CAEAs did exhibit electrical arcing (audible noise ), even at oscillatory voltages below ±200 V. This arcing/ noise suggests a latent deficiency
Brown, Ian G.; MacGill, Robert A.; Galvin, James E.
1990-01-01
An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.
NASA Technical Reports Server (NTRS)
Miller, W. N.; Gray, O. E.
1982-01-01
Hybrid switch allows high-power direct current to be turned on and off without arcing or erosion. Switch consists of bank of transistors in parallel with mechanical contacts. Transistor bank makes and breaks switched circuit; contacts carry current only during steady-state "on" condition. Designed for Space Shuttle orbiter, hybrid switch can be used also in high-power control circuits in aircraft, electric autos, industrial furnaces, and solar-cell arrays.
Shaheen, Naim; Shiti, Assad; Huber, Irit; Shinnawi, Rami; Arbel, Gil; Gepstein, Amira; Setter, Noga; Goldfracht, Idit; Gruber, Amit; Chorna, Snizhanna V; Gepstein, Lior
2018-06-05
Fulfilling the potential of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes for studying conduction and arrhythmogenesis requires development of multicellular models and methods for long-term repeated tissue phenotyping. We generated confluent hiPSC-derived cardiac cell sheets (hiPSC-CCSs), expressing the genetically encoded voltage indicator ArcLight. ArcLight-based optical mapping allowed generation of activation and action-potential duration (APD) maps, which were validated by mapping the same hiPSC-CCSs with the voltage-sensitive dye, Di-4-ANBDQBS. ArcLight mapping allowed long-term assessment of electrical remodeling in the hiPSC-CCSs and evaluation of drug-induced conduction slowing (carbenoxolone, lidocaine, and quinidine) and APD prolongation (quinidine and dofetilide). The latter studies also enabled step-by-step depiction of drug-induced arrhythmogenesis ("torsades de pointes in the culture dish") and its prevention by MgSO 4 and rapid pacing. Phase-mapping analysis allowed biophysical characterization of spiral waves induced in the hiPSC-CCSs and their termination by electrical cardioversion and overdrive pacing. In conclusion, ArcLight mapping of hiPSC-CCSs provides a powerful tool for drug testing and arrhythmia investigation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas
NASA Astrophysics Data System (ADS)
Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong
2016-05-01
In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)
Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX
NASA Astrophysics Data System (ADS)
Schnick, M.; Fuessel, U.; Hertel, M.; Spille-Kohoff, A.; Murphy, A. B.
2011-06-01
Current numerical models of gas metal arc welding (GMAW) are trying to combine magnetohydrodynamics (MHD) models of the arc and volume of fluid (VoF) models of metal transfer. They neglect vaporization and assume an argon atmosphere for the arc region, as it is common practice for models of gas tungsten arc welding. These models predict temperatures above 20 000 K and a temperature distribution similar to tungsten inert gas (TIG) arcs. However, current spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to TIG arcs they found a central local minimum of the radial temperature distribution. The paper presents a GMAW arc model that considers metal vapour and which is in a very good agreement with experimentally observed temperatures. Furthermore, the model is able to predict the local central minimum in the radial temperature and the radial electric current density distributions for the first time. The axially symmetric model of the welding torch, the work piece, the wire and the arc (fluid domain) implements MHD as well as turbulent mixing and thermal demixing of metal vapour in argon. The mass fraction of iron vapour obtained from the simulation shows an accumulation in the arc core and another accumulation on the fringes of the arc at 2000 to 5000 K. The demixing effects lead to very low concentrations of iron between these two regions. Sensitive analyses demonstrate the influence of the transport and radiation properties of metal vapour, and the evaporation rate relative to the wire feed. Finally the model predictions are compared with the measuring results of Zielińska et al.
NASA Astrophysics Data System (ADS)
Smolanov, N. A.
2016-01-01
The structure of the particles deposited from the plasma arc discharge were studied. The flow of plasma spreading from the cathode spot to the walls of the vacuum chamber. Electric and magnetic fields to influence the plasma flow. The fractal nature of the particles from the plasma identified by small-angle X-ray scattering. Possible cause of their formation is due to the instability of the growth front and nonequilibrium conditions for their production - a high speed transition of the vapor-liquid-solid or vapor - crystal. The hypothesis of a plasma arc containing dust particles current sheets was proposed.
Plasma arc welding torch having means for vortexing plasma gas exiting the welding torch
NASA Technical Reports Server (NTRS)
Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)
1994-01-01
A plasma arc welding torch is described wherein a plasma gas is directed through the body of the welding torch and out of the body across the tip of the welding electrode disposed at the forward end of the body. The plasma gas is provided with a vortexing motion prior to exiting the body by a vortex motion imparting member which is mounted in an orifice housing member and carried in the forward portion of the torch body. The orifice housing member is provided with an orifice of an predetermined diameter through which the electric arc and the plasma gas exits.
Report of the Seasat Failure Review Board
NASA Technical Reports Server (NTRS)
1993-01-01
The Seasat spacecraft failed on October 9, 1978, after satisfactory operation in orbit for 105 days, as a result of a loss of electrical power in the Agena bus that was used as a part of the spacecraft. The loss of power was caused by a massive and progressive short in one of the slip ring assemblies that was used to connect the rotating solar arrays into the power subsystem. The most likely cause of this short was the initiation of an arc between adjacent slip ring brush assemblies. The triggering mechanism of this arc could have been either a wire-to-brush assembly contact, a brush-to-brush contact, or a momentary short caused by a contaminant that bridged internal components of opposite electrical polarity.
NASA Technical Reports Server (NTRS)
Moore, J. A.
1976-01-01
A parallel-rail arc-discharge system to heat and pressurize the initial helium driver gas of the Langley 6-inch expansion tube is described. This system was designed for a 2.44-m-long driver vessel rated at 138 MPa, with a distance between rails of 20.3 cm. Electric energy was obtained from a capacitor storage system rated at 12,000 V with a maximum energy of 5 MJ. Tests were performed over a range of energy from 1.74 MJ to the maximum value. The operating experience and system performance are discussed, along with results from a limited number of expansion-tube tests with air and carbon dioxide as test gases.
High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC
NASA Technical Reports Server (NTRS)
Lizcano, M.
2017-01-01
High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.
Plasma Entry from Tail into the Dipolar Magnetosphere During Substorms
NASA Astrophysics Data System (ADS)
Haerendel, Gerhard
Plasma entering the dipolar magnetosphere from the tail has to overcome the obstacle presented by the conductivity enhancements caused by the poleward arc(s). While the arcs move poleward, the plasma proceeds equatorward as testified by the existence of a westward electric field. The arcs break into smaller-scale structures and loops with a tendency of eastward growth and expansion, although the basic driving force is directed earthward/equatorward. The likely reason is that the arc-related conductivity enhancements act as flow barriers and convert normal into shear stresses. The energy derived from the release of the shear stresses and dissipated in the arcs lowers the entropy content of the flux tubes and enables their earthward progression. In addition, poleward jumps of the breakup arcs are quite common. They result from refreshments of the generator plasma by the sequential arrival of flow bursts from the near-Earth neutral line. Once inside the oval, the plasma continues to move equatorward as manifested through north-south aligned auroral forms. Owing to the existence of an inner border of the oval, marked by the Region 2 currents, all flows are eventually diverted sunward.
Recovery of titanium values from titanium grinding swarf by electric furnace smelting
Gerdemann, Stephen J.; White, Jack C.
1999-01-01
A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.
Recovery of titanium values from titanium grinding swarf by electric furnace smelting
Gerdemann, Stephen J.; White, Jack C.
1998-01-01
A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.
Recovery of titanium values from titanium grinding swarf by electric furnace smelting
Gerdemann, S.J.; White, J.C.
1998-08-04
A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.
30 CFR 56.4600 - Extinguishing equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., soldering, thawing, or bending— (1) With an electric arc or with an open flame where an electrically... extinguisher or other extinguisher with at least a 2-A:10-B:C rating shall be at the worksite. (2) With an open... equivalent fire extinguishing equipment for the class of fire hazard present shall be at the worksite. (b...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do, Woori; Jin, Won-Beom; Choi, Jungwan
2014-10-15
Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in themore » electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.« less
More About Arc-Welding Process for Making Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Benavides, Jeanette M.; Leidecker, Henning
2005-01-01
High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.
Ion source with improved primary arc collimation
Dagenhart, W.K.
1983-12-16
An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.
NASA Astrophysics Data System (ADS)
Wilhelm, G.; Kozakov, R.; Gött, G.; Schöpp, H.; Uhrlandt, D.
2012-02-01
The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower.
[Arc spectrum diagnostic and heat coupling mechanism analysis of double wire pulsed MIG welding].
Liu, Yong-qiang; Li, Huan; Yang, Li-jun; Zheng, Kai; Gao, Ying
2015-01-01
A double wire pulsed MIG welding test system was built in the present paper, in order to analyze the heat-coupling mechanism of double wire pulsed MIG welding, and study are temperature field. Spectroscopic technique was used in diagnostic analysis of the are, plasma radiation was collected by using hollow probe method to obtain the arc plasma optical signal The electron temperature of double wire pulsed MIG welding arc plasma was calculated by using Boltzmann diagram method, the electron temperature distribution was obtained, a comprehensive analysis of the arc was conducted combined with the high speed camera technology and acquisition means of electricity signal. The innovation of this paper is the combination of high-speed camera image information of are and optical signal of arc plasma to analyze the coupling mechanism for dual arc, and a more intuitive analysis for are temperature field was conducted. The test results showed that a push-pull output was achieved and droplet transfer mode was a drop in a pulse in the welding process; Two arcs attracted each other under the action of a magnetic field, and shifted to the center of the arc in welding process, so a new heat center was formed at the geometric center of the double arc, and flowing up phenomenon occurred on the arc; Dual arc electronic temperature showed an inverted V-shaped distribution overall, and at the geometric center of the double arc, the arc electron temperature at 3 mm off the workpiece surface was the highest, which was 16,887.66 K, about 4,900 K higher than the lowest temperature 11,963.63 K.
Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.
1998-01-01
The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.
Portable spark-gap arc generator
NASA Technical Reports Server (NTRS)
Ignaczak, L. R.
1978-01-01
Self-contained spark generator that simulates electrical noise caused by discharge of static charge is useful tool when checking sensitive component and equipment. In test set-up, device introduces repeatable noise pulses as behavior of components is monitored. Generator uses only standard commercial parts and weighs only 4 pounds; portable dc power supply is used. Two configurations of generator have been developed: one is free-running arc source, and one delivers spark in response to triggering pulse.
NASA Astrophysics Data System (ADS)
Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.
2015-12-01
Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical conductivity variations within the arc, providing unique constraints on temperature, mineralogy and fluid content. This abstract covers preliminary MT constraints on the mantle and deep crust as inferred from the 300 km long amphibious profile. A companion abstract (Bennington et al.) considers the crustal magma chamber imaged by the 3D array.
NASA Astrophysics Data System (ADS)
Riaby, V. A.; Masherov, P. E.; Savinov, V. P.; Yakunin, V. G.
2018-02-01
The new DC arc T-plasmatron of long service life [1] is studied. The well known method of the electric field strength measurements in a stabilized arc channel [2] was applied in a modified form as a consequence of the specific form of the presumably diffuse anode spot attached to a gas vortex on the external surface of the anode unit. The electrical field strength was determined assuming that the potential drop across the diffuse anode spot in the new plasmatron was small. This gave the mean argon plasma conductivity: σ≤118 Ohm-1cm-1 for arc currents I ≤ 180 A which agreed with the independent experiment [2] affirming the correctness of the above assumption. Analysis of the known experimental and theoretic data on atmospheric argon plasma conductivity resulted in the selection of R.S.Devoto’s theoretic dependence σ(T) [3] as the most reliable one for T=8000…20000 K at P = 1 atm that allowed the evaluation of the mean argon plasma temperature at the exit of the plasmatron: T ≤ 19500 K.
The arcing rate for a High Voltage Solar Array - Theory, experiment and predictions
NASA Technical Reports Server (NTRS)
Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi
1992-01-01
All solar arrays have biased surfaces which can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays which ascribes the arcing to electric field runaway at the interface of the plasma, conductor and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array (HVSA) experiment which will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail to the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.
Arcing rates for High Voltage Solar Arrays - Theory, experiment, and predictions
NASA Technical Reports Server (NTRS)
Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi
1992-01-01
All solar arrays have biased surfaces that can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative, then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays that ascribes the arcing to electric field runaway at the interface of the plasma, conductor, and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array experiment that will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail with the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.
Electrode assemblies, plasma generating apparatuses, and methods for generating plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating membermore » to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.« less
Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D
2013-09-17
Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.
Modeling of plasma and thermo-fluid transport in hybrid welding
NASA Astrophysics Data System (ADS)
Ribic, Brandon D.
Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of processes parameters on heat transfer, fluid flow, and plasma characteristics for arc and laser welding. However, numerical modeling of laser/GTA hybrid welding is just beginning. Arc and laser welding plasmas have been previously analyzed successfully using optical emission spectroscopy in order to better understand arc and laser plasma properties as a function of plasma radius. Variation of hybrid welding plasma properties with radial distance is not known. Since plasma properties can affect arc and laser energy absorption and weld integrity, a better understanding of the change in hybrid welding plasma properties as a function of plasma radius is important and necessary. Material composition influences welding plasma properties, arc and laser energy absorption, heat transfer, and fluid flow. The presence of surface active elements such as oxygen and sulfur can affect weld pool fluid flow and bead geometry depending upon the significance of heat transfer by convection. Easily vaporized and ionized alloying elements can influence arc plasma characteristics and arc energy absorption. The effects of surface active elements on heat transfer and fluid flow are well understood in the case of arc and conduction mode laser welding. However, the influence of surface active elements on heat transfer and fluid flow during keyhole mode laser welding and laser/arc hybrid welding are not well known. Modeling has been used to successfully analyze the influence of surface active elements during arc and conduction mode laser welding in the past and offers promise in the case of laser/arc hybrid welding. A critical review of the literature revealed several important areas for further research and unanswered questions. (1) The understanding of heat transfer and fluid flow during hybrid welding is still beginning and further research is necessary. (2) Why hybrid welding weld bead width is greater than that of laser or arc welding is not well understood. (3) The influence of arc power and heat source separation distance on cooling rates during hybrid welding are not known. (4) Convection during hybrid welding is not well understood despite its importance to weld integrity. (5) The influence of surface active elements on weld geometry, weld pool temperatures, and fluid flow during high power density laser and laser/arc hybrid welding are not known. (6) Although the arc power and heat source separation distance have been experimentally shown to influence arc stability and plasma light emission during hybrid welding, the influence of these parameters on plasma properties is unknown. (7) The electrical conductivity of hybrid welding plasmas is not known, despite its importance to arc stability and weld integrity. In this study, heat transfer and fluid flow are analyzed for laser, gas tungsten arc (GTA), and laser/GTA hybrid welding using an experimentally validated three dimensional phenomenological model. By evaluating arc and laser welding using similar process parameters, a better understanding of the hybrid welding process is expected. The role of arc power and heat source separation distance on weld depth, weld pool centerline cooling rates, and fluid flow profiles during CO2 laser/GTA hybrid welding of 321 stainless steel are analyzed. Laser power is varied for a constant heat source separation distance to evaluate its influence on weld temperatures, weld geometry, and fluid flow during Nd:YAG laser/GTA hybrid welding of A131 structural steel. The influence of oxygen and sulfur on keyhole and weld bead geometry, weld temperatures, and fluid flow are analyzed for high power density Yb doped fiber laser welding of (0.16 %C, 1.46 %Mn) mild steel. Optical emission spectroscopy was performed on GTA, Nd:YAG laser, and Nd:YAG laser/GTA hybrid welding plasmas for welding of 304L stainless steel. Emission spectroscopy provides a means of determining plasma temperatures and species densities using deconvoluted measured spectral intensities, which can then be used to calculate plasma electrical conductivity. In this study, hybrid welding plasma temperatures, species densities, and electrical conductivities were determined using various heat source separation distances and arc currents using an analytical method coupled calculated plasma compositions. As a result of these studies heat transfer by convection was determined to be dominant during hybrid welding of steels. The primary driving forces affecting hybrid welding fluid flow are the surface tension gradient and electromagnetic force. Fiber laser weld depth showed a negligible change when increasing the (0.16 %C, 1.46 %Mn) mild steel sulfur concentration from 0.006 wt% to 0.15 wt%. Increasing the dissolved oxygen content in weld pool from 0.0038 wt% to 0.0257 wt% increased the experimental weld depth from 9.3 mm to 10.8 mm. Calculated partial pressure of carbon monoxide increased from 0.1 atm to 0.75 atm with the 0.0219 wt% increase in dissolved oxygen in the weld metal and may explain the increase in weld depth. Nd:YAG laser/GTA hybrid welding plasma temperatures were calculated to be approximately between 7927 K and 9357 K. Increasing the Nd:YAG laser/GTA hybrid welding heat source separation distance from 4 mm to 6 mm reduced plasma temperatures between 500 K and 900 K. Hybrid welding plasma total electron densities and electrical conductivities were on the order of 1 x 1022 m-3 and 3000 S m-1, respectively.
NASA Astrophysics Data System (ADS)
Webb, Bryan T.
The electrodes are the attachment points for an electric arc where electrons and positive ions enter and leave the gas, creating a flow of current. Electrons enter the gas at the cathode and are removed at the anode. Electrons then flow out through the leads on the anode and are replenished from the power supply through the leads on the cathode. Electric arc attachment to the electrode surface causes intensive heating and subsequent melting and vaporization. At that point a multitude of factors can contribute to mass loss, to include vaporization (boiling), material removal via shear forces, chemical reactions, evaporation, and ejection of material in jets due to pressure effects. If these factors were more thoroughly understood and could be modeled, this knowledge would guide the development of an electrode design with minimal erosion. An analytic model was developed by a previous researcher that models mass loss by melting, evaporation and boiling with a moving arc attachment point. This pseudo one-dimensional model includes surface heat flux in periodic cycles of heating and cooling to model motion of a spinning arc in an annular electrode where the arc periodically returns to the same spot. This model, however, does not account for removal of material due to shear or pressure induced effects, or the effects of chemical reactions. As a result of this, the model under-predicts material removal by about 50%. High velocity air flowing over an electrode will result in a shear force which has the potential to remove molten material as the arc melts the surface on its path around the electrode. In order to study the effects of shear on mass loss rate, the model from this previous investigator has been altered to include this mass loss mechanism. The results of this study have shown that shear is a viable mechanism for mass loss in electrodes and can account for the mismatch between theoretical and experimental rates determined by previous investigators. The results of a parametric study of arc attachment factors - including spot size, fall voltage, arc spot rotation rate, ambient bore heat rate, and air mass flow rate - are presented. The parametric study resulted in improving estimates of both the arc spot size and electrode fall voltage, two critical factors affecting electrode heating. Little sensitivity of electrode erosion rate to ambient bore heat rate and rotation rate was found. The erosion rate is found to be sensitive to the mass flow rate of air injected in the arc heater and validation of the model by comparison with more run condition data should be carried out as the data become available.
NASA Technical Reports Server (NTRS)
Koenig, Dieter
1994-01-01
Development of a new test method suitable for the assessment of the resistance of aerospace cables to arc tracking for different specific environmental and network conditions of spacecraft is given in view-graph format. The equipment can be easily adapted for tests at different realistic electrical network conditions incorporating circuit protection and the test system works equally well whatever the test atmosphere. Test results confirm that pure Kapton insulated wire has bad arcing characteristics and ETFE insulated wire is considerably better in air. For certain wires, arc tracking effects are increased at higher oxygen concentrations and significantly increased under vacuum. All tests on different cable insulation materials and in different environments, including enriched oxygen atmospheres, resulted in a more or less rapid extinguishing of all high temperature effects at the beginning of the post-test phase. In no case was a self-maintained fire initiated by the arc.
Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis
Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew
2017-01-01
One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884
Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.
Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew
2017-02-23
One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.
NASA GRC and MSFC Space-Plasma Arc Testing Procedures
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd
2007-01-01
Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. Discussed herein are neutral gas conditions, plasma densities and uniformity, vacuum chamber sizes, sample sizes and Debye lengths, biasing samples versus self-generated voltages, floating samples versus grounded samples, test electrical conditions, arc detection, preventing sustained discharges during testing, real samples versus idealized samples, validity of LEO tests for GEO samples, extracting arc threshold information from arc rate versus voltage tests, snapover, current collection, and glows at positive sample bias, Kapton pyrolysis, thresholds for trigger arcs, sustained arcs, dielectric breakdown and Paschen discharge, tether arcing and testing in very dense plasmas (i.e. thruster plumes), arc mitigation strategies, charging mitigation strategies, models, and analysis of test results. Finally, the necessity of testing will be emphasized, not to the exclusion of modeling, but as part of a complete strategy for determining when and if arcs will occur, and preventing them from occurring in space.
The Effectiveness of Acupuncture for Chronic Daily Headache: An Outcomes Study
2009-12-01
1107 -t- 3 chan- nel transcutaneous electrical nerve stimulator ( TENS ) units. The negative or black lead was clipped onto the needle in.serted at...arc easily accessible for electrical tonification, especially for acupuncture naive subjects. They can also be used during an acute headache episode...ache, warmth, tingling, pressure, or radiation). Mild electrical tonification was applied to the 2 acu- puncture needles in tbe foot, using an ITO-IC
Pickles, C A
2010-07-15
Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel. 2010 Elsevier B.V. All rights reserved.
Integrated arc suppression unit for defect reduction in PVD applications
NASA Astrophysics Data System (ADS)
Li, Jason; Narasimhan, Murali K.; Pavate, Vikram; Loo, David; Rosenblum, Steve; Trubell, Larry; Scholl, Richard; Seamons, Scott; Hagerty, Chris; Ramaswami, Sesh
1997-09-01
Arcing between the target and plasma during PVD deposition causes substantial damage to the target and splats and other contamination on the deposited films. Arc-related damages and defects are frequently encountered in microelectronics manufacturing and contributes largely to reduced wafer yields. Arcing is caused largely by the charge buildup at the contaminated sites on the target surface that contains either nonconducting inclusions or nodules. Arc suppression is a key issue for defect reduction, yield improvement and for reliable high quality metallization. An Integrated Arc Suppression Unit (IASU) has been designed for Endura HP PVDTM sputtering sources. The integrated design reduces cable length from unit to source and reduces electrical energy stored in the cable. Active arc handling mode, proactive arc prevention mode, and passive by-pass arc counting mode are incorporated into the same unit. The active mode is designed to quickly respond to chamber conditions, like a large chamber voltage drop, that signals a arc. The self run mode is designed to proactively prevent arc formation by pulsing and reversing target voltage at 50 kHz. The design of the IASU, also called mini small package arc repression circuit--low energy unit (mini Sparc-le), has been optimized for various DC magnetron sources, plasma stability, chamber impedance, power matching, CE MARK test, and power dissipation. Process characterization with Ti, TiN and Al sputtering indicates that the unit has little adverse impact on film properties. Mini Sparc-le unit has been shown here to significantly reduce splats occurrence in Al sputtering. Marathon test of the unit with Ti/TiN test demonstrated the unit's reliability and its ability to reduce sensitivity of defects to target characteristics.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... of the electrical terminal at the left and right flightdeck window 1, and corrective actions if necessary. This AD also allows for replacing the flightdeck window 1 with a new improved flightdeck window... flightdeck window 1. This AD results from several reports of electrical arcs at the terminal blocks of the...
2009-07-22
NASA Research Park (NRP) Moffett Field, California: Timothy Collins, President and Chairman, KleenSpeed Technologies, Inc. and Captain Andrew Butte, rescue helicopter pilot and former Army Aviator, with Butte's 1999 SWIFT. ChampCar Butte has given his racecar to KleenSpeed for conversion to electric. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation.
A droplet in the inter-electrode gap during gas metal arc welding
NASA Astrophysics Data System (ADS)
Nemchinsky, Valerian
2011-11-01
Electrical current flowing through a metallic droplet after its detachment from the wire anode during gas metal arc welding (GMAW) is considered. Although the droplet has much higher electrical conductivity compared with the conductivity of the surrounding plasma, current cannot enter the droplet freely since doing so demands igniting of the cathode spot responsible for electron emission. A new mechanism of current flow through a metallic droplet is suggested: one part of the droplet has a potential, which is slightly below the floating potential; this part of the droplet collects ions from the plasma. The remaining portion of the droplet has a potential difference, which is slightly above the floating one. The latter section collects electrons which recombine with the ions collected by the rest of the droplet's surface. The maximum electric current that can flow through the droplet is estimated. It is shown that this current is on the order of a few tens of amperes.
Preparation and characterization of carbon nanofluid by a plasma arc nanoparticles synthesis system
2011-01-01
Heat dissipation from electrical appliances is a significant issue with contemporary electrical devices. One factor in the improvement of heat dissipation is the heat transfer performance of the working fluid. In this study, we used plasma arc technology to produce a nanofluid of carbon nanoparticles dispersed in distilled water. In a one-step synthesis, carbon was simultaneously heated and vaporized in the chamber, the carbon vapor and particles were then carried to a collector, where cooling furnished the desired carbon/water nanofluid. The particle size and shape were determined using the light-scattering size analyzer, SEM, and TEM. Crystal morphology was examined by XRD. Finally, the characterization include thermal conductivity, viscosity, density and electric conductivity were evaluated by suitable instruments under different temperatures. The thermal conductivity of carbon/water nanofluid increased by about 25% at 50°C compared to distilled water. The experimental results demonstrated excellent thermal conductivity and feasibility for manufacturing of carbon/water nanofluids. PMID:21711828
Thermal runaway of metal nano-tips during intense electron emission
NASA Astrophysics Data System (ADS)
Kyritsakis, A.; Veske, M.; Eimre, K.; Zadin, V.; Djurabekova, F.
2018-06-01
When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finite-size and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.
Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding
NASA Astrophysics Data System (ADS)
Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.
2016-04-01
The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.
Method for making nanotubes and nanoparticles
Zettl, Alexander Karlwalter; Cohen, Marvin Lou
2000-01-01
The present invention is an apparatus and method for producing nano-scale tubes and particles. The apparatus comprises novel electrodes for use in arc discharge techniques. The electrodes have interior conduits for delivery and withdrawal of material from the arc region where product is formed. In one embodiment, the anode is optionally made from more than one material and is termed a compound anode. The materials used in the compound anode assist in the reaction that forms product in the arc region of the apparatus. The materials assist either by providing reaction ingredients, catalyst, or affecting the reaction kinetics. Among other uses, the inventive apparatus is used to produce nanotubes and nanoparticles having a variety of electrical and mechanical properties.
NASA Astrophysics Data System (ADS)
Barroi, A.; Hermsdorf, J.; Prank, U.; Kaierle, S.
First results of the process development of a novel approach for a high deposition rate cladding process with minimal dilution are presented. The approach will combine the enormous melting potential of an electrical arc that burns between two consumable wire electrodes with the precision of a laser process. Separate test for the plasma melting and for the laser based surface heating have been performed. A steadily burning arc between the electrodes could be established and a deposition rate of 10 kg/h could be achieved. The laser was able to apply the desired heat profile, needed for the combination of the processes. Process problems were analyzed and solutions proposed.
Apparatus for producing diamond-like carbon flakes
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
1986-01-01
A vacuum arc from a spot at the face of a graphite cathode to a graphite anode produces a beam of carbon ions and atoms. A carbon coating from this beam is deposited on an ion beam sputtered target to produce diamond-like carbon flakes. A graphite tube encloses the cathode, and electrical isolation is provided by an insulating sleeve. The tube forces the vacuum arc spot to be confined to the surface on the outermost end of the cathode. Without the tube the arc spot will wander to the side of the cathode. This spot movement results in low rates of carbon deposition, and the properties of the deposited flakes are more graphite-like than diamond-like.
Some difficulties in the assessment of electric arc welding fume.
Hewitt, P J; Gray, C N
1983-10-01
During electric arc welding of metals, particulate fume in a variety of chemical compositions and physical forms is produced with consequent complex solution chemistry. Mechanisms of fume formation include condensation of vaporized metals to produce submicron diameter chains, and spatter of larger particles with subsequent oxidation to yield mixed metal oxide fumes in the respirable range. Complete dissolution of certain constituent metals such as chromium, can be achieved by fusion with potassium hydrogen sulphate. Extraction of hexavalent chromium by sodium carbonate/hydroxide solution is efficient and rapid, while some other extractants give erroneous results. Investigations show that constituent metals are released from the fume at different rates both in vitro and in vivo. The implications arising from the complex nature of welding fume for industrial hygiene assessment are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T.; Yang, Z.; Dong, P.
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H{sup -}) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H{sup -} beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H{sup -} beam current of aboutmore » 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.« less
An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy
NASA Astrophysics Data System (ADS)
Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine
2017-09-01
This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.
Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel
NASA Astrophysics Data System (ADS)
Park, Hunkwan; Trautmann, Marcus; Tanaka, Keigo; Tanaka, Manabu; Murphy, Anthony B.
2017-11-01
A computational model of the mixing of multiple metal vapours, formed by vaporization of the surface of an alloy workpiece, into the thermal arc plasma in gas tungsten arc welding (GTAW) is presented. The model incorporates the combined diffusion coefficient method extended to allow treatment of three gases, and is applied to treat the transport of both chromium and iron vapour in the helium arc plasma. In contrast to previous models of GTAW, which predict that metal vapours are swept away to the edge of the arc by the plasma flow, it is found that the metal vapours penetrate strongly into the arc plasma, reaching the cathode region. The predicted results are consistent with published measurements of the intensity of atomic line radiation from the metal vapours. The concentration of chromium vapour is predicted to be higher than that of iron vapour due to its larger vaporization rate. An accumulation of chromium vapour is predicted to occur on the cathode at about 1.5 mm from the cathode tip, in agreement with published measurements. The arc temperature is predicted to be strongly reduced due to the strong radiative emission from the metal vapours. The driving forces causing the diffusion of metal vapours into the helium arc are examined, and it is found that diffusion due to the applied electric field (cataphoresis) is dominant. This is explained in terms of large ionization energies and the small mass of helium compared to those of the metal vapours.
Electrical properties of materials for high temperature strain gage applications
NASA Technical Reports Server (NTRS)
Brittain, John O.
1989-01-01
A study was done on the electrical resistance of materials that are potentially useful as resistance strain gages at high temperatures under static strain conditions. Initially a number of binary alloys were investigated. Later, third elements were added to these alloys, all of which were prepared by arc melting. Several transition metals were selected for experimentation, most prepared as thin films. Difficulties with electrical contacts thwarted efforts to extend measurements to the targeted 1000 C, but results obtained did suggest ways of improving the electrical resistance characteristics of certain materials.
The Exact Art and Subtle Science of DC Smelting: Practical Perspectives on the Hot Zone
NASA Astrophysics Data System (ADS)
Geldenhuys, Isabel J.
2017-02-01
Increasingly, sustainable smelting requires technology that can process metallurgically complex, low-grade, ultra-fine and waste materials. It is likely that more applications for direct current (DC) technology will inevitably follow in the future as DC open-arc furnaces have some wonderful features that facilitate processing of a variety of materials in an open-arc open-bath configuration. A DC open-arc furnace allows for optimization and choice of chemistry to benefit the process, rather than being constrained by the electrical or physical properties of the material. In a DC configuration, the power is typically supplied by an open arc, providing relative independence and thus an extra degree of freedom. However, if the inherent features of the technology are misunderstood, much of the potential may never be realised. It is thus important to take cognisance of the freedom an operator will have as a result of the open arc and ensure that operating strategies are implemented. This extra degree of freedom hands an operator a very flexible tool, namely virtually unlimited power. Successful open-arc smelting is about properly managing the balance between power and feed, and practical perspectives on the importance of power and feed balance are presented to highlight this aspect as the foundation of proper open-arc furnace control.
Speckle measurements of density and temperature profiles in a model gas circuit breaker
NASA Astrophysics Data System (ADS)
Stoller, P. C.; Panousis, E.; Carstensen, J.; Doiron, C. B.; Färber, R.
2015-01-01
Speckle imaging was used to measure the density and temperature distribution in the arc zone of a model high voltage circuit breaker during the high current phase and under conditions simulating those present during current-zero crossings (current-zero-like arc); the arc was stabilized by a transonic, axial flow of synthetic air. A single probe beam was used; thus, accurate reconstruction was only possible for axially symmetric gas flows and arc channels. The displacement of speckles with respect to a reference image was converted to a line-of-sight integrated deflection angle, which was in turn converted into an axially symmetric refractive index distribution using a multistep process that made use of the inverse Radon transform. The Gladstone-Dale relation, which gives the index of refraction as a function of density, was extended to high temperatures by taking into account dissociation and ionization processes. The temperature and density were determined uniquely by assuming that the pressure distribution in the case of cold gas flow (in the absence of an arc) is not modified significantly by the arc. The electric conductivity distribution was calculated from the temperature profile and compared to measurements of the arc voltage and to previous results published in the literature for similar experimental conditions.
Auroral magnetosphere-ionosphere coupling: A brief topical review
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Schulz, M.; Cornwall, J. M.
1979-01-01
Auroral arcs result from the acceleration and precipitation of magnetospheric plasma in narrow regions characterized by strong electric fields both perpendicular and parallel to the earth's magnetic field. The various mechanisms that were proposed for the origin of such strong electric fields are often complementary Such mechanisms include: (1) electrostatic double layers; (2) double reverse shock; (3) anomalous resistivity; (4) magnetic mirroring of hot plasma; and (5) mapping of the magnetospheric-convection electric field through an auroral discontinuity.
Glow-to-arc transition in plasma-assisted combustion at 100 MPa
NASA Astrophysics Data System (ADS)
Larsson, A.; Andreasson, S.
2015-04-01
Electric energy can be added to the combustion of solid propellants in a gun in order to augment and to control parts of the internal ballistic cycle of the launch of a projectile. The pressure in the chamber and bore during launch is typically several hundred megapascal and the electric energy must be delivered to the flame at such a pressure level. To increase the understanding of the interaction between a flame and an electrical discharge at elevated pressure, experiments have been performed at 100 MPa in a combustion chamber where electric current has been conducted through the flame of a solid propellant. Pressure, voltage and current have been measured. The measured signals have been analysed and interpreted. The sequence of events has been interpreted as an initial formation of a glow-like discharge in the flame followed by a discharge mode transition to a filamentary arc discharge. The transition is shown to be dependent on the flame conductivity. For the test propellant used (Nzk5230 doped with 5% potassium nitrate), the flame conductivity is calculated to be 0.84 S m-1 and the discharge mode transition is found to occur after a dissipation of 0.2-0.4 kJ, or 11-22 kJ m-1 of electric energy, at an electric power of 0.1-0.5 MW.
NASA Astrophysics Data System (ADS)
Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.
2001-06-01
The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.
NASA Astrophysics Data System (ADS)
Fremlin, Carl; Beckers, Jasper; Crowley, Brendan; Rauch, Joseph; Scoville, Jim
2017-10-01
The Neutral Beam system on the DIII-D tokamak consists of eight ion sources using the Common Long Pulse Source (CLPS) design. During helium operation, desired for research regarding the ITER pre-nuclear phase, it has been observed that the ion source arc chamber performance steadily deteriorates, eventually failing due to electrical breakdown of the insulation. A significant investment of manpower and time is required for repairs. To study the cause of failure a small analogue of the DIII-D neutral beam arc chamber has been constructed. This poster presents the design and analysis of the arc chamber including the PLC based operational control system for the experiment, analysis of the magnetic confinement and details of the diagnostic suite. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.
STS-31 preflight press conference with SSIP participant Gregory S. Peterson
NASA Technical Reports Server (NTRS)
1990-01-01
During STS-31 thirty days before launch (T-30) press conference, Shuttle Student Involvement Project (SSIP) participant Gregory S. Peter (right), a senior at Utah State University in Logan, fields questions about his student experiment (SE) to be flown on STS-31. Others pictured are Ed Mason (left) of Morton-Thiokol and Jeff Blakely of Utah State Space Dynamics Laboratory. A model of the experiment titled 'Ion Arc Behavior in Microgravity' SE 82-16 was used during the briefing (pictured). SE 82-16 will be located on Discovery, Orbiter Vehicle (OV) 103, middeck to observe the effects of microgravity on an electric arc. The absence of convection currents in a weightless environment will keep the arc from rising. SE 82-16 will also study the effect of a magnetic field on an arc without correction. An Arriflex 16mm camera will be used to photograph the experiment.
Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy
NASA Astrophysics Data System (ADS)
Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.
2007-03-01
Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.
NASA Astrophysics Data System (ADS)
Hart, Robert James
2011-12-01
The use of composite materials in aerospace, electronics, and wind industries has become increasingly common, and these composite components are required to carry mechanical, electrical, and thermal loads simultaneously. A unique property of carbon fiber composites is that when an electric current is applied to the specimen, the mechanical strength of the specimen increases. Previous studies have shown that the higher the electric current, the greater the increase in impact strength. However, as current passes through the composite, heat is generated through Joule heating. This Joule heating can cause degradation of the composite and thus a loss in strength. In order to minimize the negative effects of heating, it is desired to apply a very high current for a very short duration of time. This thesis investigated the material responses of carbon fiber composite plates subjected to electrical current pulse loads of up to 1700 Amps. For 32 ply unidirectional IM7/977-3 specimens, the peak impact load and absorbed energy increased slightly with the addition of a current pulse at the time of an impact event. In 16 ply cross-ply IM7/977-2 specimens, the addition of the current pulse caused detrimental effects due to electrical arcing at the interface between the composite and electrodes. Further refinement of the experimental setup should minimize the risk of electrical arcing and should better elucidate the effects of a current pulse on the impact strength of the specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.
Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less
Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.; ...
2017-09-09
Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less
Sze, Robert C.; Bigio, Irving J.
2003-07-15
A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.
NASA Astrophysics Data System (ADS)
Zhong, Linlin; Cressault, Yann; Teulet, Philippe
2018-03-01
C4F8-CO2 mixtures are one of the potential substitutes to SF6 in high-voltage circuit breakers. However, the arc quenching ability of C4F8-CO2 mixtures is still unknown. In order to provide the necessary basic data for the further investigation of arc quenching performance, the compositions, thermodynamic properties, transport coefficients, and net emission coefficients (NEC) of various C4F8-CO2 mixtures are calculated at temperatures of 300-30 000 K in this work. The thermodynamic properties are presented as the product of mass density and specific heat, i.e., ρCp. The transport coefficients include electrical conductivity, viscosity, and thermal conductivity. The atomic and molecular radiation are both taken into account in the calculation of NEC. The comparison of the properties between SF6 and C4F8-CO2 mixtures is also discussed to find their differences. The results of compositions show that C4F8-CO2 mixtures have a distinctive advantage over other alternative gases e.g., CF3I and C3F8, because the dissociative product (i.e., C4F6) of C4F8 at low temperatures has a very high dielectric strength. This is good for an arc quenching medium to endure the arc recovery phase. Compared with SF6, C4F8-CO2 mixtures present lower ρCp at temperatures below 2800 K and larger thermal conductivity above 2800 K. Based on the position of peaks in thermal conductivity, we predict that the cooling of C4F8-CO2 arc will be slowed down at higher temperatures than that of SF6 arc. It is also found that the mixing of CO2 shows slight effects on the electrical conductivity and NEC of C4F8-CO2 mixtures.
Contribution to the study of the electric arc: Erosion of metallic electrodes. Thesis
NASA Technical Reports Server (NTRS)
Castro, A.
1986-01-01
A procedure is described for determining the extent of arc electrode erosion (excluding erosion due to transfer of material) from measurements of emitted spectral beam intensity. The relation between emission intensity and plasma temperature is ascertained. Experimental study of several combinations of monometallic electrodes shows that the method is suitable for determining cathode erosion, although the anode metal affects the extent of erosion. Combinations of electrodes which lead to low erosion of silver are reported.
Plasma Heating and Flow in an Auroral Arc
NASA Technical Reports Server (NTRS)
Moore, T. E.; Chandler, M. O.; Pollock, C. J.; Reasoner, D. L.; Arnoldy, R. L.; Austin, B.; Kintner, P. M.; Bonnell, J.
1996-01-01
We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of 0(+), He(+), and H(+), as well as tail heating events that occur independently of the core heating. The 0(+) velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that arc not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H(+) and He(+), and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.
Sub-micrometer particles produced by a low-powered AC electric arc in liquids.
Jaworski, Jacek A; Fleury, Eric
2012-01-01
The article presents the report of the production of composites of sub-micrometer metal particles in matrix consisted of the metal compounds by means of an AC electric arc in water and paraffin solutions using electrodes carbon-metal and metal-metal (metal: Ni, Fe, Co, Cu). The advantage of this method is the low electric power (from 5 to 10 W) needed in comparison to standard DC arc-discharge methods (0.8 to 3 kW). This method enables the production of particles from conductive material also in wide range of temperature and in solvent which could be either transparent to light or opaque. Moreover the solvent can be electrolyte or insulating liquid. The microstructure of the composite layer was investigated by scanning electron microscopy (SEM), Electron Probe Microanalysis (EPMA) and X-ray. During particles production in water metal oxides were created. Additionally using cobalt-copper, nickel-copper as couple electrodes, insoluble in water copper (II) hydroxide crystal grains were created additionally which crystals shape was depended on transition metal. For iron-copper couple electrodes system the copper (II) hydroxide was not formed. Experiments with sequence production of Ni and Fe particles with C electrode assisting in molten paraffin let to obtain both Ni and Fe particles surrounded by paraffin. After solidification the material was insulator but if locally magnetic field influenced on the liquid solution in that place after solidification a new composite was created which was electric current conductor with resistivity around 0.1 omega x m, was attracted by magnetic field and presented magneto resistance around 0.4% in changing magnetic field in a range 150 mT. After mixing the concentrated paraffin with normal paraffin resistivity of the mixture increased and it became photosensitive and created small voltage under light influence.
Experimental research on electrical propulsion
NASA Technical Reports Server (NTRS)
Robotti, A. C.; Oggero, M.
1985-01-01
This paper describes work on arcs rotating in a magnetic field. Particular care was taken about the design of the electrodes in order to achieve long-time operation. Successful performance tests were carried out.
Evaluation of Noncontact Power Collection Techniques
DOT National Transportation Integrated Search
1972-07-01
An evaluation is made of four basic noncontacting techniques of power collection which have possible applicability in future high speed ground transportation systems. The techniques considered include the electric arc, magnetic induction, electrostat...
Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R
2014-01-01
This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electricmore » arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.« less
Vacuum arc plasma thrusters with inductive energy storage driver
NASA Technical Reports Server (NTRS)
Schein, Jochen (Inventor); Gerhan, Andrew N. (Inventor); Woo, Robyn L. (Inventor); Au, Michael Y. (Inventor); Krishnan, Mahadevan (Inventor)
2004-01-01
An apparatus for producing a vacuum arc plasma source device using a low mass, compact inductive energy storage circuit powered by a low voltage DC supply acts as a vacuum arc plasma thruster. An inductor is charged through a switch, subsequently the switch is opened and a voltage spike of Ldi/dt is produced initiating plasma across a resistive path separating anode and cathode. The plasma is subsequently maintained by energy stored in the inductor. Plasma is produced from cathode material, which allows for any electrically conductive material to be used. A planar structure, a tubular structure, and a coaxial structure allow for consumption of cathode material feed and thereby long lifetime of the thruster for long durations of time.
Design of an arc-free thermal blanket
NASA Technical Reports Server (NTRS)
Fellas, C. N.
1981-01-01
The success of a multilayer thermal blanket in eliminating arcing is discussed. Arcing is eliminated by limiting the surface potential to well below the threshold level for discharge. This is achieved by enhancing the leakage current which results in conduction of the excess charge to the spacecraft structure. The thermal blanket consists of several layers of thermal control (space approved) materials, bonded together, with Kapton on the outside, arranged in such a way that when the outer surface is charged by electron irradiation, a strong electric field is set up on the Kapton layer resulting in a greatly improved conductivity. The basic properties of matter utilized in designing this blanket method of charge removal, and optimum thermo-optical properties are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemt, M.
Relative oscillator strengths of 139 Til lines were determined from emission measurements of a three chamber electric arc burning in an argon atmosphere. Introducing a small admixture of titanium chloride into the center of the arc, spectra of titanium could be observed end-on with no self-absorption and no selfreversal of the measured lines. The relative oscillator strengths were obtained from the Til line intensities and the measured arc temperature. Using absolute oscillator strengths of three resonance lines which had been measured by Reinke (1967), and several life time measurements from Hese (1970), Witt et al. (1971) and Andersen and Sorensenmore » (1972), the relative oscillator strengths were converted to an absolute scale. The accuracy of these absolute values is in the range of 20% to 40%. (auth)« less
NASA Astrophysics Data System (ADS)
Schneider, A. V.; Popov, S. A.; Batrakov, A. V.; Dubrovskaya, E. L.; Lavrinovich, V. A.
2017-12-01
Vacuum-gap breakdown has been studied after high-current arc interruption with a subsequent increase in the transient recovery voltage across a gap. The effects of factors, such as the rate of the rise in the transient voltage, the potential of the shield that surrounds a discharge gap, and the arc burning time, have been determined. It has been revealed that opening the contacts earlier leads to the formation of an anode spot, which is the source of electrode material vapors into the discharge gap after current zero moment. Under the conditions of increasing voltage, this fact results in the breakdown. Too late opening leads to the breakdown of a short gap due to the high electric fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvain, D.C.
1996-10-01
In response to a request from the Health and Safety Supervisor at the Yankee Nuclear Power Station (SIC-4911), Rowe, Massachusetts, an investigation was begun into ozone (10028156) exposure during plasma arc cutting and welding. Welders had reported chest tightness, dry cough, and throat and bronchial irritation. The nuclear power station was in the process of being decommissioned, and workers were dismantling components using welding and cutting methods. Of the operations observed during the site visit, the highest ozone concentrations were generated during plasma arc cutting, followed by metal inert gas (MIG) welding and arc welding. During plasma arc cutting themore » average and peak concentrations exceeded the NIOSH ceiling recommended exposure limit of 0.1 part per million. The author concludes that ozone exposure during plasma arc cutting and MIG welding presented a health hazard to welders. The author recommends that improvements be made in the local exhaust ventilation, that nitrogen-dioxide levels be monitored during hot work, and that many exposed workers wear protective clothing, use ultraviolet blocking lotion, and continue the use appropriate shade of eye protection.« less
A mathematical model of the structure and evolution of small scale discrete auroral arcs
NASA Technical Reports Server (NTRS)
Seyler, C. E.
1990-01-01
A three dimensional fluid model which includes the dispersive effect of electron inertia is used to study the nonlinear macroscopic plasma dynamics of small scale discrete auroral arcs within the auroral acceleration zone and ionosphere. The motion of the Alfven wave source relative to the magnetospheric and ionospheric plasma forms an oblique Alfven wave which is reflected from the topside ionosphere by the negative density gradient. The superposition of the incident and reflected wave can be described by a steady state analytical solution of the model equations with the appropriate boundary conditions. This two dimensional discrete auroral arc equilibrium provides a simple explanation of auroral acceleration associated with the parallel electric field. Three dimensional fully nonlinear numerical simulations indicate that the equilibrium arc configuration evolves three dimensionally through collisionless tearing and reconnection of the current layer. The interaction of the perturbed flow and the transverse magnetic field produces complex transverse structure that may be the origin of the folds and curls observed to be associated with small scale discrete arcs.
Evolution simulation of lightning discharge based on a magnetohydrodynamics method
NASA Astrophysics Data System (ADS)
Fusheng, WANG; Xiangteng, MA; Han, CHEN; Yao, ZHANG
2018-07-01
In order to solve the load problem for aircraft lightning strikes, lightning channel evolution is simulated under the key physical parameters for aircraft lightning current component C. A numerical model of the discharge channel is established, based on magnetohydrodynamics (MHD) and performed by FLUENT software. With the aid of user-defined functions and a user-defined scalar, the Lorentz force, Joule heating and material parameters of an air thermal plasma are added. A three-dimensional lightning arc channel is simulated and the arc evolution in space is obtained. The results show that the temperature distribution of the lightning channel is symmetrical and that the hottest region occurs at the center of the lightning channel. The distributions of potential and current density are obtained, showing that the difference in electric potential or energy between two points tends to make the arc channel develop downwards. The arc channel comes into expansion on the anode surface due to stagnation of the thermal plasma and there exists impingement on the copper plate when the arc channel comes into contact with the anode plate.
14 CFR 23.1163 - Powerplant accessories.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Electrical equipment subject to arcing or sparking must be installed to minimize the probability of contact... or more than 6 kilowatts must be designed and installed to minimize the probability of a fire hazard...
1960-01-01
This 1960 artist's concept shows a 24-hour communication satellite design incorporating an arc engine with a nuclear power source. The concept was one of many missions proposed by the Marshall Space Flight Center for electrically-propelled spacecraft.
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
40 CFR 420.40 - Applicability; description of the steelmaking subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... are applicable to discharges and to the introduction of pollutants into publicly owned treatment works resulting from steelmaking operations conducted in basic oxygen and electric arc furnaces. [67 FR 64267, Oct...
NASA Astrophysics Data System (ADS)
Astuti, W.; Andika, R.; Nurjaman, F.
2018-01-01
The effect of basicity and reductant amount on the nickel and iron recovery of the nickel pig iron (NPI) production from Indonesian limonite ore was investigated in the experimental study using submerged electric arc furnace (SAF). Indonesian limonite ore used in this study originated from Sulawesi Island with the composition of Ni (1.26%) and Fe (43%). Metallurgical coke was applied as the reductant. This study showed that the the highest nickel and iron recovery as well as metal yield can be resulted from the basicity of 0.8 and reductant amount of 0.23 kg coke/kg limonite ore. Nickel content in the NPI produced was around 3 - 4%. It was concluded that this experiment can produce medium grade NPI.
Modeling of Radiative Heat Transfer in an Electric Arc Furnace
NASA Astrophysics Data System (ADS)
Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen
2017-12-01
Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.
NASA Astrophysics Data System (ADS)
Sari, Amir Hossein; Khazali, Arezoo; Parhizgar, Sara Sadat
2018-02-01
In this study, electrical arc discharge method is used for the synthesis of multi wall carbon nanotubes (CNTs). The advantages of applied setup for producing CNTs are simplicity, low-cost procedures and avoiding the multistep purification. The experiments were optimized by submerging graphite electrodes inside deionized water and various concentrations of sodium chloride solution. The purpose of this research is to investigate the effect of liquid medium on growth, size and quality of the CNTs structures. The results show that CNTs of 150 Â µm length or larger with high purity and quality without using catalyst are produced on the cathode surface. Furthermore, the quantity of CNTs is influenced by NaCl concentration. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction technique were used to characterize the results.
NASA Astrophysics Data System (ADS)
Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.
2018-03-01
Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.
Numerical simulation of hydrodynamic flows in the jet electric
NASA Astrophysics Data System (ADS)
Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.
2016-02-01
On the basis of concepts from magnetic hydrodynamics the mathematical model of hydrodynamic flows in the stream of electric arc plasma, obtained between the rod electrode and the target located perpendicular to the flat conductive, was developed. The same phenomenon occurs in the welding arc, arc plasma and other injection sources of charged particles. The model is based on the equations of magnetic hydrodynamics with special boundary conditions. The obtained system of equations was solved by the numerical method of finite elements with an automatic selection of the time step. Calculations were carried out with regard to the normal plasma inleakage on the solid conducting surface and the surface with the orifice. It was found that the solid surface facilitates three swirling zones. Interaction of these zones leads to the formation of two stable swirling zones, one of which is located at a distance of two radii from the axis and midway between the electrodes, another is located in the immediate vicinity of the continuous electrode. In this zone plasma backflow scattering fine particles is created. Swirling zones are not formed by using the plane electrode with an orifice. Thus, the fine particles can pass through it and consolidate.
Modelling of gas-metal arc welding taking into account metal vapour
NASA Astrophysics Data System (ADS)
Schnick, M.; Fuessel, U.; Hertel, M.; Haessler, M.; Spille-Kohoff, A.; Murphy, A. B.
2010-11-01
The most advanced numerical models of gas-metal arc welding (GMAW) neglect vaporization of metal, and assume an argon atmosphere for the arc region, as is also common practice for models of gas-tungsten arc welding (GTAW). These models predict temperatures above 20 000 K and a temperature distribution similar to GTAW arcs. However, spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to measurements of GTAW arcs, they have shown the presence of a central local minimum of the radial temperature distribution. This paper presents a GMAW model that takes into account metal vapour and that is able to predict the local central minimum in the radial distributions of temperature and electric current density. The influence of different values for the net radiative emission coefficient of iron vapour, which vary by up to a factor of hundred, is examined. It is shown that these net emission coefficients cause differences in the magnitudes, but not in the overall trends, of the radial distribution of temperature and current density. Further, the influence of the metal vaporization rate is investigated. We present evidence that, for higher vaporization rates, the central flow velocity inside the arc is decreased and can even change direction so that it is directed from the workpiece towards the wire, although the outer plasma flow is still directed towards the workpiece. In support of this thesis, we have attempted to reproduce the measurements of Zielińska et al for spray-transfer mode GMAW numerically, and have obtained reasonable agreement.
Clark, A.F.
1959-06-16
A means of eliminating oscillating electrons from the arc slit region of calutron ion sources is offered. Free electrons and ions generated by the beam bombarding atoms of ambient atmosphere are discharged by a fin arrangement which sets up an electric field. The discharged ions travel toward a recess in which a fin and blister'' effect limits oscillations to one region from which they are removed by reversed electric fields. (T.R.H.)
Code of Federal Regulations, 2014 CFR
2014-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... . . According to the followingrequirements. . . 1. Each metal melting furnace subject to a PM or total metal HAP... metal HAP performance test. iv. For cupola metal melting furnaces, sample PM or total metal HAP only during times when the cupola is on blast. v. For electric arc and electric induction metal melting...
Simulation of switching overvoltages in the mine electric power supply system
NASA Astrophysics Data System (ADS)
Ivanchenko, D. I.; Novozhilov, N. G.
2017-02-01
Overvoltages occur in mine power supply systems during switching off consumers with high inductive load, such as transformers, reactors and electrical machines. Overvoltages lead to an increase of insulation degradation rate and may cause electric faults, power outage, fire and explosion of methane and coal dust. This paper is dedicated to simulation of vacuum circuit breaker switching overvoltages in a mine power supply system by means of Simulink MATLAB. The model of the vacuum circuit breaker implements simulation of transient recovery voltage, current chopping and an electric arc. Obtained results were compared to available experimental data.
TSS-1R Failure Mode Evaluation
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; McCollum, Matthew B.; Kamenetzky, Rachel R.
1997-01-01
Soon after the break of the tether during the Tethered Satellite System (TSS-1R) mission in February, 1996, a Tiger Team was assembled at the George C. Marshall Space Flight Center to determine the tether failure mode. One possible failure scenario was the Kevlar' strength member of the tether failed because of degradation due to electrical discharge or electrical arcing. During the next several weeks, extensive electrical discharge testing in low vacuum and plasma environments was conducted in an attempt to reproduce the electrical activity recorded by on-board science instruments during the mission. The results of these tests are presented in this paper.
PREFACE: 1st International Symposium on Electrical Arc and Thermal Plasmas in Africa (ISAPA)
NASA Astrophysics Data System (ADS)
Andre, Pascal; Koalaga, Zacharie
2012-02-01
Logos of the University of Ouagadougou, ISAPA and Universite Blaise Pascal Africa (especially Sub-Saharan Africa) is a continent where electrification is at a low level. However, the development of the electrical power sector is a prerequisite for the growth of other industrial activities, that is to say for the social and economic development of African countries. Consequently, a large number of electrification projects (rural electrification, interconnection of different country's grids) takes place in many countries. These projects need expertise and make Africa a continent of opportunity for companies in different domains for business and research: energy; energetic production, transmission, distribution and protection of electricity; the supply of cable; the construction, engineering and expertise in the field of solar and wind power. The first International Symposium on electrical Arc and thermal Plasma in Africa (ISAPA) was held for the first time in Ouagadougou, Burkina Faso to progress and develop the research of new physical developments, technical breakthroughs, and ideas in the fields of electrical production and electrical applications. The ISAPA aims to encourage the advancement of the science and applications of electrical power transformation in Africa by bringing together specialists from many areas in Africa and the rest of the world. Such considerations have led us to define a Scientific Committee including representatives from many countries. This first meeting was an innovative opportunity for researchers and engineers from academic and industrial sectors to exchange views and knowledge. Both fundamental aspects such as thermal plasma, electrical arc, diagnostics and applied aspects as circuit breakers, ICP analyses, photovoltaic energy conversion and alternative energies, as well as space applications were covered. The Laboratory of Material and Environment (LAME) from Ouagadougou University and the Laboratory of Electric Arc and Thermal Plasmas (LAEPT) from Blaise Pascal University have worked in close collaboration within the framework of the Organizing Committee of this new and first ISAPA symposium in Africa. We registered 40 participants from France, Portugal, Belgium, Mali, Niger, Togo, Tchad and, of course, Burkina Faso, and also through collaborative works from Russia, Poland and Ukraine. 20 papers, one poster and 3 oral contributions were presented for this first ISAPA. The ISAPA Symposium has been held with the material and financial support of the following organizations: EDULINK Program of EU-ACP; SCAC Service of the French Embassy in Burkina Faso; IRD (Institute of Development Research) Burkina Faso; ASDI/SAREC project in Burkina Faso; University of Ouagadougou, Burkina Faso; Blaise Pascal University of Clermont Ferrand, France. The opening ceremony of ISAPA Symposium was presided over by two ministers: the minister in charge of secondary and higher education (MESS) and the minister in charge of scientific research and innovation (MRSI). Thus, they have marked the interest given by the government of Burkina Faso for RAMSES Scientific Meetings such as ISAPA. Zacharie Koalaga (LAME, University of Ouagadougou, Burkina Faso) Pascal André (LAEPT, Blaise Pascal University, France) ISAPA 2011 Co-Chairmen of the ISAPA International Organizing Committee and editors Logos
2007-05-24
Dr Condoleezza Rice, United States Secretary of State visits Ames. Takes a demonstration ride in the Tesla Motors Electric Car. Australian Foreign Minister Alexander Downer traveling with Dr Rice addresses the assembled media and Ames staffers
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2013 CFR
2013-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2012 CFR
2012-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2011 CFR
2011-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.
Code of Federal Regulations, 2014 CFR
2014-04-01
... operating time means the sum of the times during which electric current passes through the high-pressure arc... applicable: (1) Lamp voltage, current, and orientation shall be those indicated or recommended by the...
NASA Astrophysics Data System (ADS)
Iijima, Yushi; Harigai, Toru; Isono, Ryo; Imai, Takahiro; Suda, Yoshiyuki; Takikawa, Hirofumi; Kamiya, Masao; Taki, Makoto; Hasegawa, Yushi; Tsuji, Nobuhiro; Kaneko, Satoru; Kunitsugu, Shinsuke; Habuchi, Hitoe; Kiyohara, Shuji; Ito, Mikio; Yick, Sam; Bendavid, Avi; Martin, Phil
2018-01-01
Diamond-like carbon (DLC) films, which are amorphous carbon films, have been used as hard-coating films for protecting the surface of mechanical parts. Nitrogen-containing DLC (N-DLC) films are expected as conductive hard-coating materials. N-DLC films are expected in applications such as protective films for contact pins, which are used in the electrical check process of integrated circuit chips. In this study, N-DLC films are prepared using the T-shaped filtered arc deposition (T-FAD) method, and film properties are investigated. Film hardness and film density decreased when the N content increased in the films because the number of graphite structures in the DLC film increased as the N content increased. These trends are similar to the results of a previous study. The electrical resistivity of N-DLC films changed from 0.26 to 8.8 Ω cm with a change in the nanoindentation hardness from 17 to 27 GPa. The N-DLC films fabricated by the T-FAD method showed high mechanical hardness and low electrical resistivity.
NASA Astrophysics Data System (ADS)
Shimoi, Norihiro
2015-12-01
Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, the blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.
Welding torch gas cup extension
NASA Technical Reports Server (NTRS)
Gordon, Stephen S. (Inventor)
1988-01-01
The invention relates to a gas shielded electric arc welding torch having a detachable gas cup extension which may be of any desired configuration or length. The gas cup extension assembly is mounted on a standard electric welding torch gas cup to enable welding in areas with limited access. The gas cup assembly has an upper tubular insert that fits within the gas cup such that its lower portion protrudes thereform and has a lower tubular extension that is screwed into the lower portion. The extension has a rim to define the outer perimeter of the seat edge about its entrance opening so a gasket may be placed to effect an airtight seal between the gas cup and extension. The tubular extension may be made of metal or cermaic material that can be machined. The novelty lies in the use of an extension assembly for a standard gas cup of an electric arc welding torch which extension assembly is detachable permitting the use of a number of extensions which may be of different configurations and materials and yet fit the standard gas cup.
Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization
NASA Astrophysics Data System (ADS)
Hong, Won-Eui; Ro, Jae-Sang
2015-01-01
Joule-heating-induced crystallization (JIC) of amorphous silicon (a-Si) films is carried out by applying an electric pulse to a conductive layer located beneath or above the films. Crystallization occurs across the whole substrate surface within few tens of microseconds. Arc instability, however, is observed during crystallization, and is attributed to dielectric breakdown in the conductor/insulator/transformed polycrystalline silicon (poly-Si) sandwich structures at high temperatures during electrical pulsing for crystallization. In this study, we devised a method for the crystallization of a-Si films while preventing arc generation; this method consisted of pre-patterning an a-Si active layer into islands and then depositing a gate oxide and gate electrode. Electric pulsing was then applied to the gate electrode formed using a Mo layer. The Mo layer was used as a Joule-heat source for the crystallization of pre-patterned active islands of a-Si films. JIC-processed poly-Si thin-film transistors (TFTs) were fabricated successfully, and the proposed method was found to be compatible with the standard processing of coplanar top-gate poly-Si TFTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimoi, Norihiro, E-mail: shimoi@mail.kankyo.tohoku.ac.jp
2015-12-07
Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, themore » blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.« less
Method of forming ultra thin film devices by vacuum arc vapor deposition
NASA Technical Reports Server (NTRS)
Schramm, Harry F. (Inventor)
2005-01-01
A method for providing an ultra thin electrical circuit integral with a portion of a surface of an object, including using a focal Vacuum Arc Vapor Deposition device having a chamber, a nozzle and a nozzle seal, depressing the nozzle seal against the portion of the object surface to create an airtight compartment in the chamber and depositing one or more ultra thin film layer(s) only on the portion of the surface of the object, the layers being of distinct patterns such that they form the circuit.
Application field and ways to control alternating-current plasma torch with rail electrodes
NASA Astrophysics Data System (ADS)
Kuznetsov, V. E.; Safronov, A. A.; Vasilieva, O. B.; Shiryaev, V. N.; Dudnik, Yu D.; Pavlov, A. V.; Kuchina, Yu A.
2018-01-01
The paper deals with the investigation of parameters of the high voltage alternating-current plasma torch with rail electrodes. Usage of the injector and its variation allows controlling of operation of the ac plasma torch with rail electrodes. Also the possibility to protect the electric arc chamber without protective gas has been studied. It was found that increasing in the injector power causes the repeated breakdown at lower voltage and hence the arc dimensions decreases. The results of experiments are presented in the paper.
Carbon Dioxide Reduction Systems
NASA Technical Reports Server (NTRS)
Burghardt, Stanley I.; Chandler, Horace W.; Taylor, T. I.; Walden, George
1961-01-01
The Methoxy system for regenerating oxygen from carbon dioxide was studied. Experiments indicate that the reaction between carbon dioxide and hydrogen can be carried out with ease in an efficient manner and with excellent heat conservation. A small reactor capable of handling the C02 expired by three men has been built and operated. The decomposition of methane by therma1,arc and catalytic processes was studied. Both the arc and catalytic processes gave encouraging results with over 90 percent of the methane being decomposed to carbon and hydrogen in some of the catalytic processes. Control of the carbon deposition in both the catalytic and arc processes is of great importance to prevent catalyst deactivation and short circuiting of electrical equipment. Sensitive analytical techniques have been developed for all of the components present in the reactor effluent streams.
The cathode material for a plasma-arc heater
NASA Astrophysics Data System (ADS)
Yelyutin, A. V.; Berlin, I. K.; Averyanov, V. V.; Kadyshevskii, V. S.; Savchenko, A. A.; Putintseva, R. G.
1983-11-01
The cathode of a plasma arc heater experiences a large thermal load. The temperature of its working surface, which is in contact with the plasma, reaches high values, as a result of which the electrode material is subject to erosion. Refractory metals are usually employed for the cathode material, but because of the severe erosion do not usually have a long working life. The most important electrophysical characteristic of the electrode is the electron work function. The use of materials with a low electron work function allows a decrease in the heat flow to the cathode, and this leads to an increase in its erosion resistance and working life. The electroerosion of certain materials employed for the cathode in an electric arc plasma generator in the process of reduction smelting of refractory metals was studied.
Experimental breakdown of selected anodized aluminum samples in dilute plasmas
NASA Technical Reports Server (NTRS)
Grier, Norman T.; Domitz, Stanley
1992-01-01
Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.
Arc plasma generator of atomic driver for steady-state negative ion source.
Ivanov, A A; Belchenko, Yu I; Davydenko, V I; Ivanov, I A; Kolmogorov, V V; Listopad, A A; Mishagin, V V; Putvinsky, S V; Shulzhenko, G I; Smirnov, A
2014-02-01
The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.
Dandl, R.A.
1961-10-24
An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)
Development of a process for high capacity-arc heater production of silicon
NASA Technical Reports Server (NTRS)
Reed, W. H.; Meyer, T. N.; Fey, M. G.; Harvey, F. J.; Arcella, F. G.
1978-01-01
The realization of low cost, electric power from large-area silicon, photovoltaic arrays will depend on the development of new methods for large capacity production of solar grade (SG) silicon with a cost of less than $10 per kilogram by 1986 (established Department of Energy goal). The objective of the program is to develop a method to produce SG silicon in large quantities based on the high temperature-sodium reduction of silicon tetrachloride (SiCl4) to yield molten silicon and the coproduct salt vapor (NaCl). Commercial ac electric arc heaters will be utilized to provide a hyper-heated mixture of argon and hydrogen which will furnish the required process energy. The reactor is designed for a nominal silicon flow rate of 45 kg/hr. Analyses and designs have been conducted to evaluate the process and complete the initial design of the experimental verification unit.
Pasetto, Marco; Baldo, Nicola
2010-09-15
The paper presents the results of a laboratory study aimed at verifying the use of two types of electric arc furnace (EAF) steel slags as substitutes for natural aggregates, in the composition of base course and road base asphalt concrete (BBAC) for flexible pavements. The trial was composed of a preliminary study of the chemical, physical, mechanical and leaching properties of the EAF steel slags, followed by the mix design and performance characterization of the bituminous mixes, through gyratory compaction tests, permanent deformation tests, stiffness modulus tests at various temperatures, fatigue tests and indirect tensile strength tests. All the mixtures with EAF slags presented better mechanical characteristics than those of the corresponding asphalts with natural aggregate and satisfied the requisites for acceptance in the Italian road sector technical standards, thus resulting as suitable for use in road construction. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Altenberend, Jochen; Chichignoud, Guy; Delannoy, Yves
2012-08-01
Inductively coupled plasma torches need high ignition voltages for the E-H mode transition and are therefore difficult to operate. In order to reduce the ignition voltage of an RF plasma torch with a metallic confinement tube the E-H mode transition was studied. A Tesla coil was used to create a spark discharge and the E-H mode transition of the plasma was then filmed using a high-speed camera. The electrical potential of the metallic confinement tube was measured using a high-voltage probe. It was found that an arc between the grounded injector and the metallic confinement tube is maintained by the electric field (E-mode). The transition to H-mode occurred at high magnetic fields when the arc formed a loop. The ignition voltage could be reduced by connecting the metallic confinement tube with a capacitor to the RF generator.
Sulphated Electric Arc Furnace Slag Asfenton-Like Catalyst for Degradation of Reactive Black 5
NASA Astrophysics Data System (ADS)
Zubir, N. A.; Nasuha, N.; Alrozi, R.
2018-06-01
Sulphated electric arc furnace slag (S-EAFS) was obtained through a facile chemical and thermal treatment method. The S-EAFS was evaluated as a Fenton-like catalyst for the oxidative degradation of reactive black 5 (RB5). The S-EAFS was characterized by XRD, SEM-EDX and nitrogen adsorption analysis. The highest RB5 degradation efficiency obtained in this study was above 90% which was maintained across seven successive cycles with minimum iron leaching. This was achieved at a RB5 concentration of 0.15 gL-1 (50 ppm) with 8 mM of H2O2 and a pH of 4.5. Characterization revealed that the presence of sulphated groups (SO4 2-) within the EAFS improved the surface acidity of the material and corresponded to an increase in the catalytic activity for the degradation of RB5 at mild pH.
Effects of thermal and electrical stressing on the breakdown behavior of space wiring
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad; Stavnes, Mark; Suthar, Jayant; Laghari, Javaid
1995-01-01
Several failures in the electrical wiring systems of many aircraft and space vehicles have been attributed to arc tracking and damaged insulation. In some instances, these failures proved to be very costly as they have led to the loss of many aircraft and imperilment of space missions. Efforts are currently underway to develop lightweight, reliable, and arc track resistant wiring for aerospace applications. In this work, six wiring constructions were evaluated in terms of their breakdown behavior as a function of temperature. These hybrid constructions employed insulation consisting of Kapton, Teflon, and cross-linked Tefzel. The properties investigated included the 400 Hz AC dielectric strength at ambient and 200 C, and the lifetime at high temperature with an applied bias of 40, 60, and 80% of breakdown voltage level. The results obtained are discussed, and conclusions are made concerning the suitability of the wiring constructions investigated for aerospace applications.
Effects of thermal and electrical stressing on the breakdown behavior of space wiring
NASA Astrophysics Data System (ADS)
Hammoud, Ahmad; Stavnes, Mark; Suthar, Jayant; Laghari, Javaid
1995-06-01
Several failures in the electrical wiring systems of many aircraft and space vehicles have been attributed to arc tracking and damaged insulation. In some instances, these failures proved to be very costly as they have led to the loss of many aircraft and imperilment of space missions. Efforts are currently underway to develop lightweight, reliable, and arc track resistant wiring for aerospace applications. In this work, six wiring constructions were evaluated in terms of their breakdown behavior as a function of temperature. These hybrid constructions employed insulation consisting of Kapton, Teflon, and cross-linked Tefzel. The properties investigated included the 400 Hz AC dielectric strength at ambient and 200 C, and the lifetime at high temperature with an applied bias of 40, 60, and 80% of breakdown voltage level. The results obtained are discussed, and conclusions are made concerning the suitability of the wiring constructions investigated for aerospace applications.
Processing precious metals in a top-blown rotary converter
NASA Astrophysics Data System (ADS)
Whellock, John G.; Matousek, Jan W.
1990-09-01
Copper-nickel/platinum-palladium flotation concentrates produced by the Stillwater Mining Company were smelted and refined in an integrated pilot plant consisting of a submerged-arc electric furnace and top-blown rotary converter. The conversion of high-iron electric furnace mattes was achieved with apparent oxygen efficiencies in excess of 100 percent. Platinum and palladium recoveries averaged 99 percent, and copper and nickel recoveries were 94 percent.
2009-07-22
Timothy Collins, President and Chairman, KleenSpeed Technologies, Inc. and Captain Andrew Butte, rescue helicopter pilot and former Army Aviator, with Butte's 1999 SWIFT. ChampCar Butte has given his racecar to KleenSpeed for conversion to electric. KleenSpeed is an advanced R&D firm focusing on scalable electric propulsion systems for transportation. The company is based at the NASA Research Park (NRP) Moffett Field, California as a lease holder.
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
NASA Astrophysics Data System (ADS)
Teulet, Philippe; Billoux, Tommy; Cressault, Yann; Masquère, Mathieu; Gleizes, Alain; Revel, Ivan; Lepetit, Bruno; Peres, Gilles
2017-03-01
This work is devoted to the calculation of the energy balance associated with the formation of an electric arc between the bolt shank and an inner structural part of the fuselage during a lightning strike. Assessment of the pressure build-up in the confined volume around the bolt fastener has also been performed. This pressure rise comes from the temperature increase and from the mass density increase (melting and vaporisation of materials). Previous electrical measurements performed by Airbus Group during a lightning test campaign have been used to calculate the total available electrical energy. The energies necessary for melting and vaporisation of bolt and rib are derived from thermodynamic properties of aluminium and titanium. A numerical code has been developed to determine the chemical composition (under the local thermodynamic equilibrium [LTE] assumption) and the internal energy of the plasma for air-Al/Ti mixtures. Plasma and material radiation losses and heat conduction losses have also been evaluated. Finally, an analytical model has been implemented to determine the overpressure as a function of the deposited electrical energy, the energy involved in the arc formation, the energy necessary for melting and the plasma composition and mass density. With this approach, maximum pressure values are in the range 200-330 bars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through themore » graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.« less
NASA Astrophysics Data System (ADS)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
Pulsed arc plasma jet synchronized with drop-on-demand dispenser
NASA Astrophysics Data System (ADS)
Mavier, F.; Lemesre, L.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F.
2017-04-01
This work concerns with the liquid injection in arc plasma spraying for the development of finely structured ceramics coatings. Nanostructured coatings can be now achieved with nanopowders dispersed in a liquid (SPS: Suspension Plasma Spraying) or with a salt dissolved into a liquid (SPPS: Solution Precursor Plasma Spraying) injected into the plasma jet. Controlling electric arc instabilities confined in non-transferred arc plasma torch is therefore a key issue to get reproducible coating properties. Adjustment of parameters with a mono-cathode arc plasma allows a new resonance mode called “Mosquito”. A pulsed arc plasma producing a periodic regular voltage signal with modulation of enthalpy is obtained. The basic idea is to synchronize the injection system with the arc to introduce the liquid material in each plasma oscillation in the same conditions, in order to control the plasma treatment of the material in-fly. A custom-developed pulsed arc plasma torch is used with a drop-on-demand dispenser triggered by the arc voltage. A delay is added to adjust the droplets emission time and their penetration into the plasma gusts. Indeed, the treatment of droplets is also shown to be dependent on this injection delay. A TiO2 suspension and an aqueous solution of aluminium nitrate were optimized to get ejectable inks forming individual droplets. The feasibility of the process was demonstrated for SPS and SPPS techniques. Coatings from the suspension and the solution were achieved. First synchronized sprayings show a good penetration of the droplets into the plasma. Coatings show a fine structure of cauliflowers shapes. The synchronization of the ejection allows a control of morphology and a better deposition efficiency. Further investigations will find the optimal operating parameters to show the full potential of this original liquid injection technique.
Laser-assisted guiding of electric discharges around objects
Clerici, Matteo; Hu, Yi; Lassonde, Philippe; Milián, Carles; Couairon, Arnaud; Christodoulides, Demetrios N.; Chen, Zhigang; Razzari, Luca; Vidal, François; Légaré, François; Faccio, Daniele; Morandotti, Roberto
2015-01-01
Electric breakdown in air occurs for electric fields exceeding 34 kV/cm and results in a large current surge that propagates along unpredictable trajectories. Guiding such currents across specific paths in a controllable manner could allow protection against lightning strikes and high-voltage capacitor discharges. Such capabilities can be used for delivering charge to specific targets, for electronic jamming, or for applications associated with electric welding and machining. We show that judiciously shaped laser radiation can be effectively used to manipulate the discharge along a complex path and to produce electric discharges that unfold along a predefined trajectory. Remarkably, such laser-induced arcing can even circumvent an object that completely occludes the line of sight. PMID:26601188
Electrical termination techniques
NASA Technical Reports Server (NTRS)
Oakey, W. E.; Schleicher, R. R.
1976-01-01
A technical review of high reliability electrical terminations for electronic equipment was made. Seven techniques were selected from this review for further investigation, experimental work, and preliminary testing. From the preliminary test results, four techniques were selected for final testing and evaluation. These four were: (1) induction soldering, (2) wire wrap, (3) percussive arc welding, and (4) resistance welding. Of these four, induction soldering was selected as the best technique in terms of minimizing operator errors, controlling temperature and time, minimizing joint contamination, and ultimately producing a reliable, uniform, and reusable electrical termination.
Wannamaker, Philip E.; Evans, Rob L.; Bedrosian, Paul A.; Unsworth, Martyn J.; Maris, Virginie; McGary, R. Shane
2014-01-01
Five magnetotelluric (MT) profiles have been acquired across the Cascadia subduction system and transformed using 2-D and 3-D nonlinear inversion to yield electrical resistivity cross sections to depths of ∼200 km. Distinct changes in plate coupling, subduction fluid evolution, and modes of arc magmatism along the length of Cascadia are clearly expressed in the resistivity structure. Relatively high resistivities under the coasts of northern and southern Cascadia correlate with elevated degrees of inferred plate locking, and suggest fluid- and sediment-deficient conditions. In contrast, the north-central Oregon coastal structure is quite conductive from the plate interface to shallow depths offshore, correlating with poor plate locking and the possible presence of subducted sediments. Low-resistivity fluidized zones develop at slab depths of 35–40 km starting ∼100 km west of the arc on all profiles, and are interpreted to represent prograde metamorphic fluid release from the subducting slab. The fluids rise to forearc Moho levels, and sometimes shallower, as the arc is approached. The zones begin close to clusters of low-frequency earthquakes, suggesting fluid controls on the transition to steady sliding. Under the northern and southern Cascadia arc segments, low upper mantle resistivities are consistent with flux melting above the slab plus possible deep convective backarc upwelling toward the arc. In central Cascadia, extensional deformation is interpreted to segregate upper mantle melts leading to underplating and low resistivities at Moho to lower crustal levels below the arc and nearby backarc. The low- to high-temperature mantle wedge transition lies slightly trenchward of the arc.
NASA Astrophysics Data System (ADS)
Maggiolo, R.; Echim, M.; Wedlund, C. Simon; Zhang, Y.; Fontaine, D.; Lointier, G.; Trotignon, J.-G.
2012-02-01
On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI) coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi-static acceleration of electrons that generate a polar cap arc as they precipitate in the ionosphere. The detailed observations of the acceleration region by Cluster and the large scale image of the polar cap arc provided by TIMED are two different features of the same phenomenon. Combined together, they bring new light on the configuration of the high-latitude magnetosphere during prolonged periods of Northward IMF. Possible implications of the modelling results for optical observations of polar cap arcs are also discussed.
2016-01-01
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p-type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination. PMID:28066690
Hölz, K; Lietard, J; Somoza, M M
2017-01-03
Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.
NASA Astrophysics Data System (ADS)
Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis
2014-10-01
The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.
1941-12-23
NACA Ames Aeronautical Laboratory aerial; 16ft, 7X10ft#1, 7x10ft#2 wind tunnels, Technical Services Bldg N-220, Utilities later Electrical Services Bldg N-219 and construction on the Science Laboratory, later Engineering Services Bldg N-203
NASA Astrophysics Data System (ADS)
de Keyser, J. M.; Maggiolo, R.; Echim, M.; Simon, C.; Zhang, Y.; Trotignon, J.
2010-12-01
On April 1st, 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. Simultaneously, the Cluster spacecraft detects an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 600 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 300eV. The footprint of the magnetic field line on which the Cluster spacecraft are situated, is located just outside the GUVI field of view in the prolongation of the polar cap arc. This suggests that the upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI) coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at ionospheric altitudes corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The energy spectrum of the precipitating electrons provided by the model is introduced as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes like photoionisation and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are then compared to the optical observations by TIMED. Data and modeling results are consistent with quasi-static acceleration of precipitating magnetospheric electrons. We also discuss possible implications of our modeling results for optical observations of polar cap arcs.
NASA Astrophysics Data System (ADS)
Wilhelm, G.; Gött, G.; Schöpp, H.; Uhrlandt, D.
2010-11-01
The controlled short-arc processes, variants of the gas metal arc welding (GMAW) process, which have recently been developed, are used to reduce the heat input into the workpiece. Such a process with a wire feeding speed which varies periodically, using a steel wire and a steel workpiece to produce bead-on-plate welds has been investigated. As welding gases CO2 and a mixture of Ar and O2 have been used. Depending on the gas, the properties of the plasma change, and as a consequence the weldseams themselves also differ distinctly. Optical emission spectroscopy has been applied to analyse the plasma. The radial profiles of the emission coefficients of an iron line and an argon line or an atomic oxygen line, respectively, have been determined. These profiles indicate the establishment of a metal vapour arc core which has a broader profile under CO2 but is more focused in the centre for argon. The measured iron line emission was near to its norm maximum in the case of CO2. From this fact, temperatures around 8000 K and a metal vapour molar fraction above 75% in the arc centre could be roughly estimated for this case. Estimations of the electrical conductivity and the arc field indicate that the current path must include not only the metal vapour arc core but also outer hot regions dominated by welding gas properties in the case of argon.
Upper mantle electrical resistivity structure beneath back-arc spreading centers
NASA Astrophysics Data System (ADS)
Seama, N.; Shibata, Y.; Kimura, M.; Shindo, H.; Matsuno, T.; Nogi, Y.; Okino, K.
2011-12-01
We compare four electrical resistivity structure images of the upper mantle across back-arc spreading centers (Mariana Trough at 18 N and 13 N, and the Eastern Lau at 19.7 S and 21.3 S) to provide geophysical constraints on issues of mantle dynamics beneath the back-arc spreading system related to the subducting slab. The central Mariana Trough at 18 N has the full spreading rate of 25 km/Myr, and shows characteristic slow-spreading features; existence of median valley neovolcanic zone and "Bull's eyes" mantle Bouguer anomaly (MBA) along the axes. On the other hand, the southern Mariana Trough at 13 N shows an EPR type axial relief in morphology and lower MBA than that in the central Mariana Trough (Kitada et al., 2006), suggesting abundance of magma supply, even though the full spreading rate is 35 km/Myr that is categorized as a slow spreading ridge. At the Eastern Lau spreading center, crustal thickness and morphology vary systematically with arc proximity and shows the opposed trends against spreading rate: The full spreading rate increases from 65 km/Myr at 21.3 S to 85 km/Myr at 19.7 S, while the crustal thicknesses decrease together with morphology transitions from shallow peaked volcanic highs to a deeper flat axis (Martinez et al., 2006). Matsuno et al. (2010) provides a resistivity structure image of the upper mantle across the central Mariana subduction system, which contains several key features: There is an uppermost resistive layer with a thickness of 80-100 km beneath the central Mariana Trough, suggesting dry residual from the plate accretion process. But there is no evidence for a conductive feature beneath the back-arc spreading center at 18 N, and this feature is clearly independent from the conductive region beneath the volcanic arc below 60 km depth that reflects melting and hydration driven by water release from the subducting slab. The resultant upper mantle resistivity structure well support that the melt supply is not abundant, resulting in characteristic slow-spreading features at the surface. We have conducted marine magnetotelluric (MT) surveys at the southern Mariana in 2010 and at the Eastern Lau in 2009-2010. We obtained 10 ocean bottom electro-magnetometer (OBEM) data from a 130 km length MT transect across the southern Mariana spreading axis at 13 N, while we obtained 2 OBEM data and 11 ocean bottom magnetometer data from two 160 km length MT transects across the Eastern Lau spreading axes at 19.7 S and 21.3 S. After calculation of MT response functions and their correction for topographic distortion, two-dimensional electrical resistivity structures will be derived using an inversion algorithm. At this meeting, first we will show the resistivity structure images of the upper mantle beneath these spreading axes. Then, these structure images will be compared to identify differences in the mantle dynamics and the melt supply beneath the back-arc spreading system related to the subducting slab.
DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys
NASA Astrophysics Data System (ADS)
Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp
2017-09-01
In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, H.C.
This bibliography covers the field of electrical discharges in vacuum, comprising both electrical breakdown in vacuum and vacuum arcs. A brief review section lists some review papers which would be helpful to the novice in this field. The bulk of the paper consists of bibliographic listings, arranged by year of publication and within each year, alphabetically by first author. An author index refers one to all papers authored or coauthored by a particular person. There are 2450 papers listed through December 1980.
Exploring high temperature phenomena related to post-detonation using an electric arc
NASA Astrophysics Data System (ADS)
Dai, Z. R.; Crowhurst, J. C.; Grant, C. D.; Knight, K. B.; Tang, V.; Chernov, A. A.; Cook, E. G.; Lotscher, J. P.; Hutcheon, I. D.
2013-11-01
We report a study of materials recovered from a uranium-containing plasma generated by an electric arc. The device used to generate the arc is capable of sustaining temperatures of an eV or higher for up to 100 μs. Samples took the form of a 4 μm-thick U238 film deposited onto 8 pairs of 17 μm-thick Cu electrodes supported on a 25 μm-thick Kapton backing and sandwiched between glass plates. Materials recovered from the glass plates and around the electrode tips after passage of an arc were characterized using scanning and transmission electron microscopy. Recovered materials included a variety of crystalline compounds (e.g., UO2, UC2, UCu5,) as well as mixtures of uranium and amorphous glass. Most of the materials collected on the glass plates took the form of spherules having a wide range of diameters from tens of nanometers to tens of micrometers. The composition and size of the spherules depended on location, indicating different chemical and physical environments. A theoretical analysis we have carried out suggests that the submicron spherules presumably formed by deposition during the arc discharge, while at the same time the glass plates were strongly heated due to absorption of plasma radiation mainly by islands of deposited metals (Cu, U). The surface temperature of the glass plates is expected to have risen to ˜2300 K thus producing a liquefied glass layer, likely diffusions of the deposited metals on the hot glass surface and into this layer were accompanied by chemical reactions that gave rise to the observed materials. These results, together with the compact scale and relatively low cost, suggest that the experimental technique provides a practical approach to investigate the complex physical and chemical processes that occur when actinide-containing material interacts with the environment at high temperature, for example, during fallout formation following a nuclear detonation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... due to wind or mechanical inducement such as vehicle traffic. Fugitive dust sources include plant roadways, yard areas, and outdoor material storage and transfer operations. Furnace power input means the resistive electrical power consumption of a submerged arc furnace, expressed as megawatts (MW). Malfunction...
Code of Federal Regulations, 2010 CFR
2010-07-01
... due to wind or mechanical inducement such as vehicle traffic. Fugitive dust sources include plant roadways, yard areas, and outdoor material storage and transfer operations. Furnace power input means the resistive electrical power consumption of a submerged arc furnace, expressed as megawatts (MW). Malfunction...
2009-07-22
NASA Research Park (NRP) Timothy Collins, President and Chairman, KleenSpeed Technologies, Inc. and Captain Andrew Butte, rescue helicopter pilot and former Army Aviator, with Butte's 1999 SWIFT. ChampCar Butte has given his racecar to KleenSpeed for conversion to electric.
1995-07-19
New renovated NASA Ames Research Center 12 foot Pressure Wind Tunnel, seen here is the single stage, 20 blade axial-flow fan powered by a 15,000 horsepower variable speed, synchronous electric motor that provides airflow in the closed-return, variable-density tunnel.
1995-07-19
New renovated NASA Ames Research Center 12 foot Pressure Wind Tunnel, seen here is the single stage, 20 blade axial-flow fan powered by a 15,000 horsepower variable speed, synchronous electric motor that provides airflow in the closed-return, variable-density tunnel.
Code of Federal Regulations, 2010 CFR
2010-07-01
... electric submerged arc furnace to become subject to a different mass standard applicable under this subpart... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ferroalloy Production Facilities § 60.261...
Code of Federal Regulations, 2011 CFR
2011-07-01
... electric submerged arc furnace to become subject to a different mass standard applicable under this subpart... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ferroalloy Production Facilities § 60.261...
Code of Federal Regulations, 2013 CFR
2013-07-01
... electric submerged arc furnace to become subject to a different mass standard applicable under this subpart... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ferroalloy Production Facilities § 60.261...
Code of Federal Regulations, 2012 CFR
2012-07-01
... electric submerged arc furnace to become subject to a different mass standard applicable under this subpart... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ferroalloy Production Facilities § 60.261...
Code of Federal Regulations, 2014 CFR
2014-07-01
... electric submerged arc furnace to become subject to a different mass standard applicable under this subpart... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ferroalloy Production Facilities § 60.261...
Simulation of double layers in a model auroral circuit with nonlinear impedance
NASA Technical Reports Server (NTRS)
Smith, R. A.
1986-01-01
A reduced circuit description of the U-shaped potential structure of a discrete auroral arc, consisting of the flank transmission line plus parallel-electric-field region, is used to provide the boundary condition for one-dimensional simulations of the double-layer evolution. The model yields asymptotic scalings of the double-layer potential, as a function of an anomalous transport coefficient alpha and of the perpendicular length scale l(a) of the arc. The arc potential phi(DL) scales approximately linearly with alpha, and for alpha fixed phi (DL) about l(a) to the z power. Using parameters appropriate to the auroral zone acceleration region, potentials of phi (DPL) 10 kV scale to projected ionospheric dimensions of about 1 km, with power flows of the order of magnitude of substorm dissipation rates.
Analysis of thermomechanical states in single-pass GMAW surfaced steel element
NASA Astrophysics Data System (ADS)
Winczek, Jerzy; Gawronska, Elzbieta; Murcinkova, Zuzana; Hatala, Michal; Pavlenko, Slavko; Makles, Krzysztof
2017-03-01
In the paper the model of temperature field, phase changes and stress states calculation during single-pass arc weld surfacing have been presented. In temperature field solution the temperature changes caused by the heat of weld and by electric arc have been taken into consideration. Kinetics of phase changes during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while progress of phase transformations during cooling has been determined on the basis of time-temperature-transformation (TTT) - welding diagram. The analysis of stress state has been presented for S235 steel flat assuming planar section hypothesis and using integral equations of stress equilibrium. It has enabled a clear interpretation of influence of temperature field and phase transformation on stresses caused by surfacing using Gas Metal Arc Welding (GMAW) method.
Coupling between fluid dynamics and energy addition in arcjet and microwave thrusters
NASA Technical Reports Server (NTRS)
Micci, M. M.
1986-01-01
A new approach to numerically solving the problem of the constricted electric arcjet is presented. An Euler Implicit finite difference scheme is used to solve the full compressible Navier Stokes equations in two dimensions. The boundary and initial conditions represent the constrictor section of the arcjet, and hydrogen is used as a propellant. The arc is modeled as a Gaussian distribution across the centerline of the constrictor. Temperature, pressure and velocity profiles for steady state converged solutions show both axial and radial changes in distributions resulting from their interaction with the arc energy source for specific input conditions. The temperature rise is largest at the centerline where there is a the greatest concentration arc energy. The solution does not converge for all initial inputs and the limitations in the range of obtainable solutions are discussed.
Investigation on the properties of nano copper matrix composite via vacuum arc melting method
NASA Astrophysics Data System (ADS)
Liu, Yi; Leng, Jinfeng; Wu, Qirui; Zhang, Shaochen; Teng, Xinying
2017-10-01
Copper and copper matrix composites (CMCs) are widely used as electrical contact materials in electrical switch systems due to their excellent electrical properties. Graphene has great mechanical, physical and electrical properties, which is competent as an attractive reinforcing material for fabricating CMCs. Therefore, graphene was added to CMCs to improve the mechanical properties. In this study, graphene-reinforced copper matrix composites (Gr/Cu composites) were obtained. The xGr/Cu (x = 0, 0.1, 0.3 and 0.5 wt.%) composites were fabricated via the vacuum arc melting method and compared the performance of them. The mechanical properties and electrical properties were obtained by measuring the hardness and conductivity. The microstructure of Gr/Cu composites was observed by optical microscopy (OM) and scanning electron microscopy (SEM). With the addition of graphene from 0 wt.% to 0.5 wt.%, the densities of materials decreased from 97.0% to 95.7%. With the increasing of graphene content, the hardness of composites increased at beginning and then decreased. In this range of adding amount, the hardness of 0.3Gr/Cu composite was up to 66.8 HB and increased by 15.4% compared to Al2O3/Cu composites without graphene. With the addition of graphene powder, the international annealing copper standard IACS% of Gr/Cu composites decreased from 86.16 to 69.86. The range of decline and the percentage of decline range are middle and 18.9%, respectively.
Tunable molten oxide pool assisted plasma-melter vitrification systems
Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.
1998-01-01
The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.
NASA Technical Reports Server (NTRS)
Narita, Yasuhito; Maezawa, Kiyoshi; Toshinori, Mukai; Kullen, A.; Ivchenko, N.; Marklund, G.; Frederick, R.; Carlson, C. W.; Spann, J. F.; Parks, G. K.;
2002-01-01
Aurorae which appear in the polar cap are called transpolar arcs, polar cap arcs, sun-aligned arcs, or occasionally Theta-aurora because of its spatial distribution resembling Greek character 'Theta.' Morphology, IMF (Interplanetary Magnetic Field) relationship, and ionospheric convection patterns were studied in quest of mechanisms of transpolar arcs. Four events were analyzed: 1999/Jan/22/19:00 - 23/01:30 (1 event: a) 1999/Jan/24/06:00 - 10:00 (1 event: b) 1999/Feb/1 1/20:00 - 12/02:00 (2 events: c, d), with data set of ExB drift velocity data obtained by electric field measurements of ASTRID-2 and FAST, DMSP ion driftmeter data, and line-of-sight velocity data of SuperDARN. POLAR-UVI image data were used for spatial and temporal variations of transpolar arcs and ACE data set were used for investigation of IMF relationship. IMF-Bz was strongly positive (Bz from +8nT to +20 nT) during periods of all four transpolar arcs. In events (a),(b),(c), transpolar arcs appeared immediately after the direction of IMF turned northward, though IMF was fluctuating in event (b). A sudden increase of IMF-By, from +3nT to +18nT, was observed in event (d). Two different types of transpolar arc development were observed in POLAR-UVI: one which begins as a split from dawn or dusk sector of auroral oval and shifts poleward in event (a),(c),(d), and another which is initially a patch of auroral oval disturbed by substorm but develops as a transpolar arc, forming a growing finger-like shape from midnight sector (event b). Sunward flow, associated with positive IMF-Bz, were observed within newly-created polar caps in event (a),(c),(d). Not clear ionospheric convection pattern was seen across the polar cap arc in event (b) die to limitation of data set. In event (c), O+ with energy more than 1 keV were observed by FAST within a transpolar arc, suggesting that their origin be from plasma sheet. Transpolar arcs are thought to be projection of plasma sheet bifurcation into lobe regime. There can be several ways of development of transpolar arcs and two different patterns were observed through this work.
Evidence that dirty electricity is causing the worldwide epidemics of obesity and diabetes.
Milham, Samuel
2014-01-01
The epidemics of obesity and diabetes most apparent in recent years had their origins with Thomas Edison's development of distributed electricity in New York City in 1882. His original direct current (DC) generators suffered serious commutator brush arcing which is a major source of high-frequency voltage transients (dirty electricity). From the onset of the electrical grid, electrified populations have been exposed to dirty electricity. Diesel generator sets are a major source of dirty electricity today and are used almost universally to electrify small islands and places unreachable by the conventional electric grid. This accounts for the fact that diabetes prevalence, fasting plasma glucose and obesity are highest on small islands and other places electrified by generator sets and lowest in places with low levels of electrification like sub-Saharan Africa and east and Southeast Asia.
Schmidt, F.H.
1958-08-12
An improved ion source is described for accurately presetting the size amd location of the gas and ion efflux opening. for determining the contour of the electrical field in the vicinity of the arc, and for generally improving the operation of the calutron source. The above features are accomplished by the use of a pair of electrically conductive coplanar plates mounted on opposite sides of the ion exit passage of the source ionization chamber and electrically connected to the source block. The plates are mounted on thc block for individual movement tramsversely of the exit slit and can be secured in place by clannping means.
1994-01-01
These enhancements have allowed us to use GEMACS to model very small ( electrical ) features such as 0.1V pins on printed circuit boards without the...34Enhancements and Limitations of the Code NEC for Modeling Electrically Small Antennas," Lawrence Livermore National Laboratory, Report UCID-20970, January... electrical lengths of the coupling paths arc also shown in Figure 6. The "LB" indicates the large box dimensions (1/4.4 scale model ) and "SB" Indicates the
Electric propulsion technology
NASA Technical Reports Server (NTRS)
Finke, R. C.
1980-01-01
The advanced electric propulsion program is directed towards lowering the specific impulse and increasing the thrust per unit of ion thruster systems. In addition, electrothermal and electromagnetic propulsion technologies are being developed to attempt to fill the gap between the conventional ion thruster and chemical rocket systems. Most of these new concepts are exagenous and are represented by rail accelerators, ablative Teflon thrusters, MPD arcs, Free Radicals, etc. Endogenous systems such as metallic hydrogen offer great promise and are also being pursued.
2014-05-01
vulnerable to failure is air. This could be a discharge through an air medium or along an air/surface interface. Achieving robustness in dc power...sputtering” arcs) are discharges that are most commonly located in series with the intended load; the electrical impedance of the load limits the...particularly those used at voltages > 1000 V, is detection and measurement of partial- discharge (PD) activity. The presence of PD in a component typically
Ignitability of Diesel Fuel with an Inclusion of Ultrafine Carbon Particles
NASA Astrophysics Data System (ADS)
Krivosheev, P. N.; Leshchevich, V. V.; Shimchenko, S. Yu.; Shushkov, S. V.; Penyazkov, O. G.
2017-11-01
Nanosize carbon fuel additions were synthesized by the action of an electric discharge on a diesel fuel. Depending on the discharge regime, variously shaped carbon particles, including planar graphitized ones, were formed in the fuel. Ignitability of the produced samples was assessed by the method of initiation of a foamed fuel sample by a lowcurrent electric arc. The modified fuel showed the improvement of the ignition characteristics in the presence of a nanodispersed solid phase.
Progress Towards Microwave Ignition of Explosives
NASA Astrophysics Data System (ADS)
Curling, Mark; Collins, Adam; Dima, Gabriel; Proud, William
2009-06-01
Microwaves could provide a method of propellant ignition that does away with a traditional primer, making ammunition safer and suitable for Insensitive Munitions (IM) applications. By embedding a suitable material inside a propellant, it is postulated that microwaves could be used to stimulate hotspots, through direct heating or electrostatic discharge (arcing) across the energetic material. This paper reports on progress in finding these suitable materials. Graphite rod, magnetite cubes and powders of graphite, aluminium, copper oxide, and iron were irradiated in a conventional microwave oven. Temperature measurements were made using a shielded thermocouple and thermal paints. Only graphite rod and magnetite showed significant heating upon microwave exposure. The light output from arcing of iron, steel, iron pyrite, magnetite and graphite was measured in the same microwave oven as above. Sample mass and shape were correlated with arcing intensity. A strategy is proposed to create a homogeneous igniter material by embedding arcing materials within an insulator, Polymethylpentene (TPX). External discharges were transmitted through TPX, however no embedded samples were successful in generating an electrical breakdown suitable for propellant ignition.
Circuit transients due to negative bias arcs-II. [on solar cell power systems in low earth orbit
NASA Technical Reports Server (NTRS)
Metz, R. N.
1986-01-01
Two new models of negative-bias arcing on a solar cell power system in Low Earth Orbit are presented. One is an extended, analytical model and the other is a non-linear, numerical model. The models are based on an earlier analytical model in which the interactions between solar cell interconnects and the space plasma as well as the parameters of the power circuit are approximated linearly. Transient voltages due to arcs struck at the negative thermal of the solar panel are calculated in the time domain. The new models treat, respectively, further linear effects within the solar panel load circuit and non-linear effects associated with the plasma interactions. Results of computer calculations with the models show common-mode voltage transients of the electrically floating solar panel struck by an arc comparable to the early model but load transients that differ substantially from the early model. In particular, load transients of the non-linear model can be more than twice as great as those of the early model and more than twenty times as great as the extended, linear model.
NASA Astrophysics Data System (ADS)
Mancinelli, B.; Prevosto, L.; Chamorro, J. C.; Minotti, F. O.; Kelly, H.
2018-05-01
A numerical investigation of the kinetic processes in the initial (nanosecond range) stage of the double-arcing instability was developed. The plasma-sheath boundary region of an oxygen-operated cutting torch was considered. The energy balance and chemistry processes in the discharge were described. It is shown that the double-arcing instability is a sudden transition from a diffuse (glow-like) discharge to a constricted (arc-like) discharge in the plasma-sheath boundary region arising from a field-emission instability. A critical electric field value of ˜107 V/m was found at the cathodic part of the nozzle wall under the conditions considered. The field-emission instability drives in turn a fast electronic-to-translational energy relaxation mechanism, giving rise to a very fast gas heating rate of at least ˜109 K/s, mainly due to reactions of preliminary dissociation of oxygen molecules via the highly excited electronic state O2(B3Σu-) populated by electron impact. It is expected that this fast oxygen heating rate further stimulates the discharge contraction through the thermal instability mechanism.
Direct numerical simulations of an arc-powered heater for used in a hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
Kim, Pilbum; Panesi, Marco; Freund, Jonathan
2017-11-01
We study a model arc-heater using direct numerical simulations, in a configuration motivated by its used to generated inflow of a high-speed wind tunnel for hypersonics research. The flow is assumed to be in local thermal equilibrium (LTE) and is modeled with with 11 species (N2, O2, NO, N, O, N2+,O2+,NO+, N+, O+, e-). The flow equations are solved in conjunction with an electrostatic field solver and the gas electric conductivity in LTE. The flow rate and the mean arc power are set to be 50.42 g/s and 84.7 kW with 214.0 V of the mean arc voltage , respectively. We study the flow details, the heading and thrust mechanisms, and make general comparisons with a corresponding, though geometrically more complex, experimental configuration. We particularly interested in the radical species it produces and will potentially be present in the wind-tunnel test section. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.
Direct localization of poles of a meromorphic function from measurements on an incomplete boundary
NASA Astrophysics Data System (ADS)
Nara, Takaaki; Ando, Shigeru
2010-01-01
This paper proposes an algebraic method to reconstruct the positions of multiple poles in a meromorphic function field from measurements on an arbitrary simple arc in it. A novel issue is the exactness of the algorithm depending on whether the arc is open or closed, and whether it encloses or does not enclose the poles. We first obtain a differential equation that can equivalently determine the meromorphic function field. From it, we derive linear equations that relate the elementary symmetric polynomials of the pole positions to weighted integrals of the field along the simple arc and end-point terms of the arc when it is an open one. Eliminating the end-point terms based on an appropriate choice of weighting functions and a combination of the linear equations, we obtain a simple system of linear equations for solving the elementary symmetric polynomials. We also show that our algorithm can be applied to a 2D electric impedance tomography problem. The effects of the proximity of the poles, the number of measurements and noise on the localization accuracy are numerically examined.
Eternal triangle: the interaction of light source, electrical control gear, and optics
NASA Astrophysics Data System (ADS)
S'heeren, Griet
1998-04-01
In this particular 'affair' the participants are less than human but have individual personalities they bring to their relationship with each other. High pressure metal halide lamps such as BriteArc lamps have the highest luminance and radiance of all continuously operating practical light source. Since these lamps have short arcs and are available in power ratings from about 30W to 30kW they have found applications with various optical systems. Besides the lamps, such systems include an electrical control device and an optical system. To fulfil the user's requirements for a specific application, it is not only important to choose the right lamp, but crucial to achieve a harmonious marriage between the light source, electrical control device and the optics. To run a high pressure discharge lamp an ignitor/ballast system is essential This stabilizes the lamp parameters. The chemical components inside the lamp determine the lamp voltage and the gear determines, via the current, the lamp power. These are directly related in the luminance and color temperature of the emitted light. Therefore lamp performance and effective life are dependent on the ignitor, control gear and lamp combination. Since the lamp emits radiation in all directions, collection of the light from a lamp can be improved by using reflectors to deliver the light into a lens system. Since lamps with short arc gaps approach a point source they appear ideal for optical system applications. The shape of the reflector and the focusing of the lamp determine which part of the light is collected out of the light-arc. In the case of an LCD projector, the final light output also depends on the transmission characteristics of the LCD panels. Their nonlinearity causes the color of the emitted light to be different from the lamp color. All these parameters have to be optimized to obtain the highest performance. This leads to the conclusion that a carefully matched combination of lamp, ignitor/ballast and optics should guarantee the best system performance. This paper sets out to provide some guidelines on attempting to achieve a harmonious relationship between the three partners in this particular eternal triangle.
NASA Astrophysics Data System (ADS)
Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.
2012-12-01
The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer. Further analysis of the particle data will yield the ion temperature, whose validity we will quantify by comparison to sheath models.
Particulate and gaseous emissions when welding aluminum alloys.
Cole, Homer; Epstein, Seymour; Peace, Jon
2007-09-01
Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.
30 CFR 75.1323 - Blasting circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made by...) Each wire connection in a blasting circuit shall be— (1) Properly spliced; and (2) Separated from other connections in the circuit to prevent accidental contact and arcing. (h) Uninsulated connections in each...
30 CFR 75.1323 - Blasting circuits.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made by...) Each wire connection in a blasting circuit shall be— (1) Properly spliced; and (2) Separated from other connections in the circuit to prevent accidental contact and arcing. (h) Uninsulated connections in each...
29 CFR 1910.254 - Arc welding and cutting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... adequate current collecting devices. (v) All ground connections shall be checked to determine that they are mechanically strong and electrically adequate for the required current. (3) Supply connections and conductors... for connection to a portable welding machine. (ii) For individual welding machines, the rated current...
14 CFR 25.1163 - Powerplant accessories.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...
14 CFR 25.1163 - Powerplant accessories.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...
14 CFR 25.1163 - Powerplant accessories.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...
14 CFR 25.1163 - Powerplant accessories.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or sparking... to prevent rotation without interfering with the continued operation of the engine. [Doc. No. 5066... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine...
ARC Researchers at IEEE 2015 Vehicle Power and Propulsion Conference
Sustainability of the Energy Storage Systems Thursday, October 22, 2015 14:00 PM - 16:00 PM Des Pins Room SS5-1 Influence of Battery Downsizing and SOC Operating Window on Battery Pack Performance in a Hybrid Electric
49 CFR 176.148 - Artificial lighting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Artificial lighting. 176.148 Section 176.148... Requirements for Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.148 Artificial lighting. Electric lights, except arc lights, are the only form of artificial lighting permitted when...
49 CFR 176.148 - Artificial lighting.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Artificial lighting. 176.148 Section 176.148... Requirements for Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.148 Artificial lighting. Electric lights, except arc lights, are the only form of artificial lighting permitted when...
Code of Federal Regulations, 2011 CFR
2011-07-01
... glass is accidentally broken, and ignition by electric sparks or arcs from the battery or connections... other than flashlights, all parts, such as bulb housing and battery container, through which access may... made for sealing the battery container. (4) Battery current restricted. Unless all current-carrying...
Code of Federal Regulations, 2013 CFR
2013-07-01
... glass is accidentally broken, and ignition by electric sparks or arcs from the battery or connections... other than flashlights, all parts, such as bulb housing and battery container, through which access may... made for sealing the battery container. (4) Battery current restricted. Unless all current-carrying...
Code of Federal Regulations, 2012 CFR
2012-07-01
... glass is accidentally broken, and ignition by electric sparks or arcs from the battery or connections... other than flashlights, all parts, such as bulb housing and battery container, through which access may... made for sealing the battery container. (4) Battery current restricted. Unless all current-carrying...
Code of Federal Regulations, 2014 CFR
2014-07-01
... glass is accidentally broken, and ignition by electric sparks or arcs from the battery or connections... other than flashlights, all parts, such as bulb housing and battery container, through which access may... made for sealing the battery container. (4) Battery current restricted. Unless all current-carrying...
Visualization and mechanisms of splashing erosion of electrodes in a DC air arc
NASA Astrophysics Data System (ADS)
Wu, Yi; Cui, Yufei; Rong, Mingzhe; Murphy, Anthony B.; Yang, Fei; Sun, Hao; Niu, Chunping; Fan, Shaodi
2017-11-01
The splashing erosion of electrodes in a DC atmospheric-pressure air arc has been investigated by visualization of the electrode surface and the sputtered droplets, and tracking of the droplet trajectories, using image processing techniques. A particle tracking velocimetry algorithm has been introduced to measure the sputtering velocity distribution. Erosion of both tungsten-copper and tungsten-ceria electrodes is studied; in both cases electrode erosion is found to be dominated by droplet splashing rather than metal evaporation. Erosion is directly influenced by both melting and the formation of plasma jets, and can be reduced by the tuning of the plasma jet and electrode material. The results provide an understanding of the mechanisms that lead to the long lifetime of tungsten-copper electrodes, and may provide a path for the design of the electrode system subjected to electric arc to minimize erosion.
Some experience with arc-heater simulation of outer planet entry radiation
NASA Technical Reports Server (NTRS)
Wells, W. L.; Snow, W. L.
1980-01-01
An electric arc heater was operated at 800 amperes and 100,000 pa (1 atm) with hydrogen, helium, and two mixtures of hydrogen and helium. A VUV-scanning monochromator was used to record the spectra from an end view while a second spectrometer was used to determine the plasma temperature using hydrogen continuum radiation at 562 nm. Except for pure helium, the plasma temperature was found to be too low to produce significant helium radiation, and the measured spectra were primarily the hydrogen spectra with the highest intensity in the pure hydrogen case. A radiation computer code was used to compute the spectra for comparison to the measurements and to extend the study to simulation of outer planet entry radiation. Conductive cooling prevented ablation of phenolic carbon material samples mounted inside the arc heater during a cursory attempt to produce radiation absorption by ablation gases.
Influence of Sample Size of Polymer Materials on Aging Characteristics in the Salt Fog Test
NASA Astrophysics Data System (ADS)
Otsubo, Masahisa; Anami, Naoya; Yamashita, Seiji; Honda, Chikahisa; Takenouchi, Osamu; Hashimoto, Yousuke
Polymer insulators have been used in worldwide because of some superior properties; light weight, high mechanical strength, good hydrophobicity etc., as compared with porcelain insulators. In this paper, effect of sample size on the aging characteristics in the salt fog test is examined. Leakage current was measured by using 100 MHz AD board or 100 MHz digital oscilloscope and separated three components as conductive current, corona discharge current and dry band arc discharge current by using FFT and the current differential method newly proposed. Each component cumulative charge was estimated automatically by a personal computer. As the results, when the sample size increased under the same average applied electric field, the peak values of leakage current and each component current increased. Especially, the cumulative charges and the arc discharge length of dry band arc discharge increased remarkably with the increase of gap length.
High intensity discharge device containing oxytrihalides
Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob
1987-01-01
A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.
High intensity discharge device containing oxytrihalides
Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.
1987-06-09
A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.
Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust
Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.
2017-01-01
This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand. PMID:28452346
Elez, Loris; Orescanin, Visnja; Sofilic, Tahir; Mikulic, Nenad; Ruk, Damir
2008-10-01
The purpose of this work was development of an appropriate procedure for the neutralization/purification of electroplating wastewater (EWW) with alkaline solid residue (ASR) by-product of the alkaline extraction of zinc and lead from electric arc furnace dust (EAFD). Removal efficiency of ASR at optimum purification conditions (pH 8 and mixing time; 20 minutes) for the elements Pb, Cr (VI), Cr (III), Fe, Ni, Cu and Zn were 94.92%, 97.58%, 99.59%, 99.48%, 97.25% and 99.97%, respectively. The concentrations of all elements in the purified wastewater were significantly lower in relation to the upper permissible limit for wastewaters suitable for discharge into the environment. The remaining waste mud was regenerated in the strong alkaline medium and successfully applied once again for the neutralization/purification of EWW. Removal efficiencies of heavy metals accomplished with regenerated waste mud were comparable to these achieved by original ASR. Elemental concentrations in the leachates of the waste mud were in accordance with regulated values.
Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching
NASA Astrophysics Data System (ADS)
Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza
2018-03-01
Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.
Sikalidis, Constantine; Mitrakas, Manassis
2006-01-01
The up to 20 wt% addition of the Electric Arc Furnace Dust (EAFD) hazardous waste on the properties of extruded clay-based ceramic building products fired at various temperatures (850 to 1050 degrees C), as well as of dolomite-concrete products was investigated. Chemical, mineralogical and particle size distribution analyses were performed in order to characterize the used EAFD. The results showed that the ceramic specimens prepared had water absorption, firing shrinkage, apparent density, mechanical strength, colour and leaching behaviour within accepted limits. Addition of 7.5 to 15 wt% EAFD presented improved properties, while 20 wt% seems to be the upper limit. Dolomite-concrete specimens were prepared by vibration and press-forming of mixtures containing cement, sand, dolomite, EAFD and water. Modulus of rupture values were significantly increased by the addition of EAFD. The leaching tests showed stabilization of all toxic metals within the sintered ceramic structure, while the leaching behaviour of lead in dolomite-concrete products needs further detailed study.
Deep electrical resistivity structure of northwestern Costa Rica
NASA Astrophysics Data System (ADS)
Brasse, H.; Kapinos, G.; Mütschard, L.; Alvarado, G. E.; Worzewski, T.; Jegen, M.
2009-01-01
First long-period magnetotelluric investigations were conducted in early 2008 in northwestern Costa Rica, along a profile that extends from the coast of the Pacific Ocean, traverses the volcanic arc and ends currently at the Nicaraguan border. The aim of this study is to gain insight into the electrical resistivity structure and thus fluid distribution at the continental margin where the Cocos plate subducts beneath the Caribbean plate. Preliminary two-dimensional models map the only moderately resistive mafic/ultramafic complexes of the Nicoya Peninsula (resistivity of a few hundred Ωm), the conductive forearc and the backarc basins (several Ωm). Beneath the backarc basin the data image a poor conductor in the basement with a clear termination in the south, which may tentatively be interpreted as the Santa Elena Suture. The volcanic arc shows no pronounced anomaly at depth, but a moderate conductor underlies the backarc with a possible connection to the upper mantle. A conductor at deep-crustal levels in the forearc may reflect fluid release from the downgoing slab.
Effects of copper vapour on thermophysical properties of CO2-N2 plasma
NASA Astrophysics Data System (ADS)
Zhong, Linlin; Wang, Xiaohua; Rong, Mingzhe; Cressault, Yann
2016-10-01
CO2-N2 mixtures are often used as arc quenching medium (to replace SF6) in circuit breakers and shielding gas in arc welding. In such applications, copper vapour resulting from electrode surfaces can modify characteristics of plasmas. This paper therefore presents an investigation of the effects of copper on thermophysical properties of CO2-N2 plasma. The equilibrium compositions, thermodynamic properties (including mass density, specific enthalpy, and specific heat), transport coefficients (including electrical conductivity, viscosity, and thermal conductivity), and four kinds of combined diffusion coefficients due to composition gradients, applied electric fields, temperature gradients, and pressure gradients respectively, were calculated and discussed for CO2-N2 (mixing ratio 7:3) plasma contaminated by different proportions of copper vapour. The significant influences of copper were observed on all the properties of CO2-N2-Cu mixtures. The better ionization ability and larger molar mass of copper and larger collision integrals related to copper, should be responsible for such influences.
Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust
NASA Astrophysics Data System (ADS)
Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.
2017-04-01
This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand.
NASA Astrophysics Data System (ADS)
Wegscheider, S.; Steinlechner, S.; Leuchtenmüller, M.
2017-02-01
Industrial wastes such as slags, dust, or precipitation residues contain significant amounts of valuable metals like zinc, lead, and copper as well as precious metals like silver and indium. Nevertheless, a lot of these waste materials are not recycled, and therefore, many valuable metals end up being sent to landfills. Because of harmful components in the waste, it is often necessary to send it to specialized landfills for hazardous wastes, which leads to environmental problems as well as additional costs. Consequently, the recovery of the valuable metals from the residues represents a sensible task to decrease the negative impact on the environment and to reduce costs for maintaining a landfill. In addition, recycling helps to decrease the dependency from primary resources. The present study deals with the behavior of different metals in a pyro-metallurgical treatment for a mixture of jarosite and electric arc furnace dust with a special focus on indium and silver.
NASA Astrophysics Data System (ADS)
Winczek, J.; Makles, K.; Gucwa, M.; Gnatowska, R.; Hatala, M.
2017-08-01
In the paper, the model of the thermal and structural strain calculation in a steel element during single-pass SAW surfacing is presented. The temperature field is described analytically assuming a bimodal volumetric model of heat source and a semi-infinite body model of the surfaced (rebuilt) workpiece. The electric arc is treated physically as one heat source. Part of the heat is transferred by the direct impact of the electric arc, while another part of the heat is transferred to the weld by the melted material of the electrode. Kinetics of phase transformations during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while the progress of phase transformations during cooling is determined on the basis of TTT-welding diagramand JMA-K law for diffusive transformations, and K-M law for martensitic transformation. Totalstrains equal to the sum ofthermaland structuralstrainsinduced by phasetransformationsin weldingcycle.
The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability.
Mombelli, D; Mapelli, C; Barella, S; Gruttadauria, A; Le Saout, G; Garcia-Diaz, E
2014-08-30
Electric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e. Ba, V, Cr. Chemical treatment appears to be the only way to guarantee a completely stable structure, especially for long-term applications. This study presents the efficiency of silica addition during the deslagging period. Microstructural characterization of modified slag was performed by SEM and XRD analysis. Elution tests were performed according to the EN 12457-2 standard, with the addition of silica and without, and the obtained results were compared. These results demonstrate the efficiency of the inertization process: the added silica induces the formation of gehlenite, which, even in caustic environments, does not exhibit hydraulic behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Izrael'yants, K. R.; Orlov, A. P.; Ormont, A. B.; Chirkova, E. G.
2017-04-01
The effect of cesium and potassium atoms deposited onto multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics was studied. The current-voltage characteristics of the field electron emission of specimens with cesium or potassium doped multiwalled carbon nanotubes of this type were revealed to retain their linear character in the Fowler-Nordheim coordinates within several orders of magnitude of change in the emission current. The deposition of cesium and potassium atoms was shown to lead to a considerable increase in the emission current and a decrease in the work function φ of studied emitters with multiwalled nanotubes. The work function was established to decrease to φ 3.1 eV at an optimal thickness of coating with cesium atoms and to φ 2.9 eV in the case of doping with potassium atoms. Cesium and potassium deposition conditions optimal for the attainment of a maximum emission current were found.
Oxygen-Free Welding Contact Tips
NASA Technical Reports Server (NTRS)
Pike, James F.
1993-01-01
Contact tips for gas/metal arc welding (GMAW) fabricated from oxygen-free copper. Prototype tips tested in robotic welding, for which application intended. Reduces electrical erosion, increases electrical conductivity, and reduces mechanical wear. Productivity of robotic welding increases while time during welding interrupted for removal and replacement of contact tips minimal. Improves alignment of joints and filler metal, reducing rate of rejection and repair of unacceptable weldments. Utility extends beyond aerospace industry to mass production of various types of hardware, including heavy off-highway construction equipment.
Status report on nuclear electric propulsion systems
NASA Technical Reports Server (NTRS)
Stearns, J. W.
1975-01-01
Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.
Expanded operational capabilities of the Langley Mach 7 Scramjet test facility
NASA Technical Reports Server (NTRS)
Thomas, S. R.; Guy, R. W.
1983-01-01
An experimental research program conducted to expand the operational capabilities of the NASA Langley Mach 7 Scramjet Test Facility is described. Previous scramjet testing in this facility was limited to a single simulated flight condition of Mach 6.9 at an altitude of 115,300 ft. The arc heater research demonstrates the potential of the facility for scramjet testing at simulated flight conditions from Mach 4 (at altitudes from 77,000 to 114,000 ft) to Mach 7 (at latitudes from 108,000 to 149,000 ft). Arc heater electrical characteristics, operational problems, measurements of nitrogen oxide contaminants, and total-temperature profiles are discussed.
Ternary gas plasma welding torch
NASA Technical Reports Server (NTRS)
Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor); Waldron, Douglas J. (Inventor)
1995-01-01
A plasma arc welding torch is discussed. A first plasma gas is directed through the body of the welding torch and out of the body across the tip of a welding electrode disposed at the forward end of the body. A second plasma gas is disposed for flow through a longitudinal bore in the electrode. The second plasma gas enters one end of the electrode and exits the electrode at the tip thereof for co-acting with the electric welding arc to produce the desired weld. A shield gas is directed through the torch body and circulates around the head of the torch adjacent to the electrode tip.
ARC-1969-AAL-5993. Six, 40-Foot-Diameter Fans in the Ames 40x80 Foot Wind Tunnel.
1944-06-09
Motor and propeller blades in 40x80ft wind tunnel. Six 40-foot-diameter fans, each powered by a 6000-horsepower electric motor maintained airflow at 230 mph or less (these are still tornado velocities).
UNIVERSITY OF WASHINGTON ELECTROSTATIC SCRUBBER TESTS AT A STEEL PLANT
The report gives results of a demonstration of the effectiveness of a 1700 cu m/hr (1000 acfm) University of Washington (UW) Electrostatic Spray Scrubber in controlling fine particle emissions from an electric-arc steel furnace. The two-stage portable pilot plant operates by comb...
NASA Technical Reports Server (NTRS)
Goss, W. C.; Mann, W. A.; Goldstein, R.
1985-01-01
Technique yields joints with average transmissivity of 91.6 percent. Electric arc passed over butted fiber ends to melt them together. Maximum optical transmissivity of joint achieved with optimum choice of discharge current, translation speed, and axial compression of fibers. Practical welding machine enables delicate and tedious joining operation performed routinely.
40 CFR 63.10692 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... blown into molten steel for further refining. Capture system means the equipment (including ducts, hoods... furnace that produces molten steel and heats the charge materials with electric arcs from carbon... furnace (EAF) steelmaking facility means a steel plant that produces carbon, alloy, or specialty steels...
40 CFR 63.10692 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... blown into molten steel for further refining. Capture system means the equipment (including ducts, hoods... furnace that produces molten steel and heats the charge materials with electric arcs from carbon... furnace (EAF) steelmaking facility means a steel plant that produces carbon, alloy, or specialty steels...