Sample records for electric contacts

  1. Improved Electrical Contact For Dowhhole Drilling Networks

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron

    2005-08-16

    An electrical contact system for transmitting information across tool joints while minimizing signal reflections that occur at the tool joints includes a first electrical contact comprising an annular resilient material. An annular conductor is embedded within the annular resilient material and has a surface exposed from the annular resilient material. A second electrical contact is provided that is substantially equal to the first electrical contact. Likewise, the second electrical contact has an annular resilient material and an annular conductor. The two electrical contacts configured to contact one another such that the annular conductors of each come into physical contact. The annular resilient materials of each electrical contact each have dielectric characteristics and dimensions that are adjusted to provide desired impedance to the electrical contacts.

  2. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

    DOEpatents

    Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

    2014-01-28

    Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

  3. Dual contact pogo pin assembly

    DOEpatents

    Hatch, Stephen McGarry

    2015-01-20

    A contact assembly includes a base and a pair of electrical contacts supported by the base. A first end of the first electrical contact corresponds to a first end of the base and is configured to engage a first external conductive circuit element. A first end of the second electrical contact also corresponds to the first end of the base and is configured to engage a second external conductive circuit element. The first contact and the second contact are electrically isolated from one another and configured to compress when engaging an external connector element. The base includes an aperture positioned on a second end of the base outboard of a second end of the first and second electrical contacts. The aperture presents a narrowing shape with a wide mouth distal the electrical contacts and a narrow internal through-hole proximate the electrical contacts.

  4. Dual contact pogo pin assembly

    DOEpatents

    Hatch, Stephen McGarry

    2016-06-21

    A contact assembly includes a base and a pair of electrical contacts supported by the base. A first end of the first electrical contact corresponds to a first end of the base and is configured to engage a first external conductive circuit element. A first end of the second electrical contact also corresponds to the first end of the base and is configured to engage a second external conductive circuit element. The first contact and the second contact are electrically isolated from one another and configured to compress when engaging an external connector element. The base includes an aperture positioned on a second end of the base outboard of a second end of the first and second electrical contacts. The aperture presents a narrowing shape with a wide mouth distal the electrical contacts and a narrow internal through-hole proximate the electrical contacts.

  5. Experimental investigation on the electrical contact behavior of rolling contact connector.

    PubMed

    Chen, Junxing; Yang, Fei; Luo, Kaiyu; Zhu, Mingliang; Wu, Yi; Rong, Mingzhe

    2015-12-01

    Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigate the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.

  6. Evaluation of the electrical contact area in contact-mode scanning probe microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celano, Umberto, E-mail: celano@imec.be, E-mail: u.celano@gmail.com; Chintala, Ravi Chandra; Vandervorst, Wilfried

    The tunneling current through an atomic force microscopy (AFM) tip is used to evaluate the effective electrical contact area, which exists between tip and sample in contact-AFM electrical measurements. A simple procedure for the evaluation of the effective electrical contact area is described using conductive atomic force microscopy (C-AFM) in combination with a thin dielectric. We characterize the electrical contact area for coated metal and doped-diamond tips operated at low force (<200 nN) in contact mode. In both cases, we observe that only a small fraction (<10 nm{sup 2}) of the physical contact (∼100 nm{sup 2}) is effectively contributing to the transportmore » phenomena. Assuming this reduced area is confined to the central area of the physical contact, these results explain the sub-10 nm electrical resolution observed in C-AFM measurements.« less

  7. Thermal and electrical contact conductance studies

    NASA Technical Reports Server (NTRS)

    Vansciver, S. W.; Nilles, M.

    1985-01-01

    Prediction of electrical and thermal contact resistance for pressed, nominally flat contacts is complicated by the large number of variables which influence contact formation. This is reflected in experimental results as a wide variation in contact resistances, spanning up to six orders of magnitude. A series of experiments were performed to observe the effects of oxidation and surface roughness on contact resistance. Electrical contact resistance and thermal contact conductance from 4 to 290 K on OFHC Cu contacts are reported. Electrical contact resistance was measured with a 4-wire DC technique. Thermal contact conductance was determined by steady-state longitudinal heat flow. Corrections for the bulk contribution ot the overall measured resistance were made, with the remaining resistance due solely to the presence of the contact.

  8. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  9. Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)

    2017-01-01

    An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.

  10. Effect of different atmospheres on the electrical contact performance of electronic components under fretting wear

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Long; Cai, Zhen-Bing; Cui, Ye; Liu, Shan-Bang; Xu, Xiao-Jun; Zhu, Min-Hao

    2018-04-01

    The effects of oxide etch on the surface morphology of metals for industrial application is a common cause of electrical contacts failure, and it has becomes a more severe problem with the miniaturization of modern electronic devices. This study investigated the effects of electrical contact resistance on the contactor under three different atmospheres (oxygen, air, and nitrogen) based on 99.9% copper/pogo pins contacts through fretting experiments. The results showed the minimum and stable electrical contact resistance value when shrouded in the nitrogen environment and with high friction coefficient. The rich oxygen environment promotes the formation of cuprous oxide, thereby the electrical contact resistance increases. Scanning electron microscope microscopy and electron probe microanalysis were used to analyze the morphology and distribution of elements of the wear area, respectively. The surface product between contacts was investigated by x-ray photoelectron spectroscopy analysis to explain the different electrical contact properties of the three tested samples during fretting.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Junxing; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Luo, Kaiyu

    Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigatemore » the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.« less

  12. Improvement and evaluation of thermal, electrical, sealing and mechanical contacts, and their interface materials

    NASA Astrophysics Data System (ADS)

    Luo, Xiangcheng

    Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic/plastic deformation, oxidation, strain hardening, passive layer damage, fracture, etc.) with the electrical contact resistance, which was measured in real time for contacts under dynamic compression, thus allowing both reversible and irreversible changes to be observed. The materials studied included metals (carbon steel, stainless steel, aluminum and copper), carbon fiber reinforced polymer-matrix composite (nylon-6), ceramic (mortar) and graphite, due to their relevance to fastening, concrete structures, electric brushes and electrical pressure contacts.

  13. Geared Electromechanical Rotary Joint

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1994-01-01

    Geared rotary joint provides low-noise ac or dc electrical contact between electrical subsystems rotating relative to each other. Designed to overcome some disadvantages of older electromechanical interfaces, especially intermittency of sliding-contact and rolling-contact electromechanical joints. Hollow, springy planetary gears provide continuous, redundant, low-noise electrical contact between inner and outer gears.

  14. Causes of electrical deaths and injuries among construction workers.

    PubMed

    McCann, Michael; Hunting, Katherine L; Murawski, Judith; Chowdhury, Risana; Welch, Laura

    2003-04-01

    Contact with electrical current is the fourth leading cause of deaths of construction workers. This study evaluates electrical deaths and injuries to construction workers. Two sources of data were analyzed in detail: (1) 1,019 electrical deaths identified by the Bureau of Labor Statistics, Census of Fatal Occupational Injuries (CFOI) for the years 1992-1998; and (2) 61 electrical injuries identified between November 1, 1990 and December 31, 1998 from a George Washington University Emergency Department injury surveillance database. Contact with "live" electrical wiring, equipment, and light fixtures was the main cause of electrical deaths and injuries among electrical workers, followed by contact with overhead power lines. Among non-electrical workers, contact with overhead power lines was the major cause of death. Other causes included contact with energized metal objects, machinery, power tools, and portable lights. Arc flash or blast caused 31% of electrical injuries among construction workers, but less than 2% of electrical deaths. Adoption of a lockout/tagout standard for construction, and training for non-electrical workers in basic electrical safety would reduce the risk of electrical deaths and injuries in construction. Further research is needed on ways to prevent electrical deaths and injuries while working "live". Copyright 2003 Wiley-Liss, Inc.

  15. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  16. Effectiveness of a worker-worn electric-field sensor to detect power-line proximity and electrical-contact.

    PubMed

    Zeng, Shengke; Powers, John R; Newbraugh, Bradley H

    2010-06-01

    Construction workers suffer the most electrocutions among all industries. Currently, there are no electrical contact warning devices on the market to protect workers. This paper proposes a worker-worn electric-field sensor. As the worker is in proximity to, or in contact with, a live power-circuit, the sensor sets off an audible/visual warning alarm. The sensor also has the potential to wirelessly trip a wireless-capable circuit breaker, and to trigger a wireless transmitter to notify emergency response of an electrical contact. An experiment was conducted to measure electric-field variation on simulated human-wrists (10 defrosted hog-legs) in various proximities and in electrical-contact to a simulated power-circuit. The purpose of these tests was to determine the feasibility of developing a worker-worn electric-field detection sensor for use in protecting workers from contact with energized electrical conductors. This study observed a significant electric-field-magnitude increase as a hog-leg approaches the live-circuit, and the distinct electric-field-magnitude jump as the leg contacts with the live-circuit. The observation indicates that this sensor can be an effective device to warn the workers of electrical hazards. Additionally, the sensor has the potential to wirelessly trip a wireless-capable circuit-breaker and trigger a wireless transmitter (such as a cell phone) to notify an emergency response. The prompt notification prevents the worker from further injury caused by postponed medical-care. Widespread use of this sensor could lower electrocution and electrically related injury rates in the construction industry. (c) 2010 Elsevier Ltd. All rights reserved.

  17. Single electrode triboelectric generator

    DOEpatents

    Wang, Zhong Lin; Yang, Ya; Zhang, Hulin; Zhu, Guang

    2017-11-07

    A triboelectric generator includes a first contact charging member, a second contact charging member and an electrical load. The first contact charging member has a contact side and an opposite back side. The first contact charging member includes a material that has a first rating on a triboelectric series and also has a conductive aspect. The second contact charging member has a second rating on the triboelectric series, different from the first rating, and is configured to come into contact with the first contact layer and go out of contact with the first contact layer. The electrical load electrically is coupled to the first contact charging member and to a common voltage so that current will flow through the load after the second contact charging member comes into contact with the first contact charging member and then goes out of contact with the first contact charging member.

  18. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  19. Front contact solar cell with formed electrically conducting layers on the front side and backside

    DOEpatents

    Cousins, Peter John

    2012-06-26

    A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.

  20. Solar cell with back side contacts

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  1. Low inductance connector assembly

    DOEpatents

    Holbrook, Meghan Ann; Carlson, Douglas S

    2013-07-09

    A busbar connector assembly for coupling first and second terminals on a two-terminal device to first and second contacts on a power module is provided. The first terminal resides proximate the first contact and the second terminal resides proximate the second contact. The assembly comprises a first bridge having a first end configured to be electrically coupled to the first terminal, and a second end configured to be electrically coupled to the second contact, and a second bridge substantially overlapping the first bridge and having a first end electrically coupled to the first contact, and a second end electrically coupled to the second terminal.

  2. Electrical contacts to individual SWCNTs: A review

    PubMed Central

    Hierold, Christofer; Haluska, Miroslav

    2014-01-01

    Summary Owing to their superior electrical characteristics, nanometer dimensions and definable lengths, single-walled carbon nanotubes (SWCNTs) are considered as one of the most promising materials for various types of nanodevices. Additionally, they can be used as either passive or active elements. To be integrated into circuitry or devices, they are typically connected with metal leads to provide electrical contacts. The properties and quality of these electrical contacts are important for the function and performance of SWCNT-based devices. Since carbon nanotubes are quasi-one-dimensional structures, contacts to them are different from those for bulk semiconductors. Additionally, some techniques used in Si-based technology are not compatible with SWCNT-based device fabrication, such as the contact area cleaning technique. In this review, an overview of the investigations of metal–SWCNT contacts is presented, including the principle of charge carrier injection through the metal–SWCNT contacts and experimental achievements. The methods for characterizing the electrical contacts are discussed as well. The parameters which influence the contact properties are summarized, mainly focusing on the contact geometry, metal type and the cleanliness of the SWCNT surface affected by the fabrication processes. Moreover, the challenges for widespread application of CNFETs are additionally discussed. PMID:25551048

  3. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  4. Construction fatality due to electrical contact in Ontario, Canada, 1997-2007.

    PubMed

    Kim, Hwan; Lewko, John; Garritano, Enzo; Sharma, Bhanu; Moody, Joel; Colantonio, Angela

    2016-06-27

    Electrical contact is a leading cause of occupational fatality in the construction industry. However, research on the factors that contribute to electricity-related fatality in construction is limited. To characterize, using an adapted Haddon's Matrix, the factors that contribute to electricity-related occupational fatalities in the construction industry in Ontario, Canada. Coroner's data on occupational electricity-related fatalities between 1997-2007 in the construction industry were acquired from the Ontario Ministry of Labour. Using an adapted Haddon's Matrix, we characterized worker, agent, and environmental characteristics of electricity-related occupational fatalities in the province through a narrative text analysis. Electrical contact was responsible for 15% of all occupational fatalities among construction workers in Ontario. Factors associated with said occupational fatalities included direct contact with electrical sources, lower voltage sources, and working outdoors. This study provides a profile of electricity-related occupational fatalities among construction workers in Ontario, and can be used to inform safety regulations.

  5. Semiconductor bridge (SCB) igniter

    DOEpatents

    Bickes, Jr., Robert W.; Schwarz, Alfred C.

    1987-01-01

    In an explosive device comprising an explosive material which can be made to explode upon activation by activation means in contact therewith; electrical activation means adaptable for activating said explosive material such that it explodes; and electrical circuitry in operation association with said activation means; there is an improvement wherein said activation means is an electrical material which, at an elevated temperature, has a negative temperature coefficient of electrical resistivity and which has a shape and size and an area of contact with said explosive material sufficient that it has an electrical resistance which will match the resistance requirements of said associated electrical circuitry when said electrical material is operationally associated with said circuitry, and wherein said electrical material is polycrystalline; or said electrical material is crystalline and (a) is mounted on a lattice matched substrate or (b) is partially covered with an intimately contacting metallization area which defines its area of contact with said explosive material.

  6. High current capacity electrical connector

    DOEpatents

    Bettis, Edward S.; Watts, Harry L.

    1976-01-13

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

  7. All diamond self-aligned thin film transistor

    DOEpatents

    Gerbi, Jennifer [Champaign, IL

    2008-07-01

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  8. Substantially oxygen-free contact tube

    NASA Technical Reports Server (NTRS)

    Pike, James F. (Inventor)

    1993-01-01

    A device for arc welding is provided in which a continuously-fed electrode wire is in electrical contact with a contact tube. The contact tube is improved by using a substantially oxygen-free conductive alloy in order to reduce the amount of electrical erosion.

  9. Substantially Oxygen-Free Contact Tube

    NASA Technical Reports Server (NTRS)

    Pike, James F. (Inventor)

    1991-01-01

    A device for arc welding is provided in which a continuously-fed electrode wire is in electrical contact with a contact tube. The contact tube is improved by using a substantially oxygen-free conductive alloy in order to reduce the amount of electrical erosion.

  10. Improved contact resistance stability in a MEMS separable electrical connector

    NASA Astrophysics Data System (ADS)

    Larsson, M. P.

    2005-12-01

    A MEMS in-line separable electrical connector with improved contact resistance stability to thermal fluctuations and mating cycles is described. The design allows sliding, in-line connection between separate halves, inducing vertical deflections on a set of flexible conductors to establish stable electrical contacts. Features are present on both halves to ensure precise lateral and vertical self-alignment; preventing shorts and maintaining consistent conductor deflections. Characterisation on early prototypes revealed significant variability in contact resistance with thermal fluctuations and mating cycle history. As flexible conductors are multi-layered structures of Au supported by a thick structural layer of Ni, they undergo differential thermal expansion, introducing variability in contact resistance with temperature. Sliding contact wear during repeated mating leads to removal of portions of the Au surface coating, and electrical contact between underlying (non-noble) Ni layers. By using a harder Co-Au alloy as the contact surface layer and modifying the arrangement of constituent conductor layers to balance thermal stresses, improvements to both wear and thermal tolerance of contact resistance can be obtained. Devices implementing the above design modifications show stable contact resistance over 100 mating cycles and an increase in contact resistance of between 3.5 and 7% over a temperature rise of 60°C. The electrical performance improvements increase the attractiveness of the MEMS in-line separable connector concept for applications in portable electronics and MEMS integration.

  11. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  12. A 3D contact analysis approach for the visualization of the electrical contact asperities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roussos, Constantinos C.; Swingler, Jonathan

    The electrical contact is an important phenomenon that should be given into consideration to achieve better performance and long term reliability for the design of devices. Based upon this importance, the electrical contact interface has been visualized as a “3D Contact Map” and used in order to investigate the contact asperities. The contact asperities describe the structures above and below the contact spots (the contact spots define the 3D contact map) to the two conductors which make the contact system. The contact asperities require the discretization of the 3D microstructures of the contact system into voxels. A contact analysis approachmore » has been developed and introduced in this paper which shows the way to the 3D visualization of the contact asperities of a given contact system. For the discretization of 3D microstructure of contact system into voxels, X-ray Computed Tomography (CT) method is used in order to collect the data of a 250 V, 16 A rated AC single pole rocker switch which is used as a contact system for investigation.« less

  13. A 3D contact analysis approach for the visualization of the electrical contact asperities

    PubMed Central

    Swingler, Jonathan

    2017-01-01

    The electrical contact is an important phenomenon that should be given into consideration to achieve better performance and long term reliability for the design of devices. Based upon this importance, the electrical contact interface has been visualized as a ‘‘3D Contact Map’’ and used in order to investigate the contact asperities. The contact asperities describe the structures above and below the contact spots (the contact spots define the 3D contact map) to the two conductors which make the contact system. The contact asperities require the discretization of the 3D microstructures of the contact system into voxels. A contact analysis approach has been developed and introduced in this paper which shows the way to the 3D visualization of the contact asperities of a given contact system. For the discretization of 3D microstructure of contact system into voxels, X-ray Computed Tomography (CT) method is used in order to collect the data of a 250 V, 16 A rated AC single pole rocker switch which is used as a contact system for investigation. PMID:28105383

  14. A 3D contact analysis approach for the visualization of the electrical contact asperities

    DOE PAGES

    Roussos, Constantinos C.; Swingler, Jonathan

    2017-01-11

    The electrical contact is an important phenomenon that should be given into consideration to achieve better performance and long term reliability for the design of devices. Based upon this importance, the electrical contact interface has been visualized as a “3D Contact Map” and used in order to investigate the contact asperities. The contact asperities describe the structures above and below the contact spots (the contact spots define the 3D contact map) to the two conductors which make the contact system. The contact asperities require the discretization of the 3D microstructures of the contact system into voxels. A contact analysis approachmore » has been developed and introduced in this paper which shows the way to the 3D visualization of the contact asperities of a given contact system. For the discretization of 3D microstructure of contact system into voxels, X-ray Computed Tomography (CT) method is used in order to collect the data of a 250 V, 16 A rated AC single pole rocker switch which is used as a contact system for investigation.« less

  15. Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning.

    PubMed

    Suyatin, Dmitry B; Jain, Vishal; Nebol'sin, Valery A; Trägårdh, Johanna; Messing, Maria E; Wagner, Jakob B; Persson, Olof; Timm, Rainer; Mikkelsen, Anders; Maximov, Ivan; Samuelson, Lars; Pettersson, Håkan

    2014-01-01

    Nanoscale contacts between metals and semiconductors are critical for further downscaling of electronic and optoelectronic devices. However, realizing nanocontacts poses significant challenges since conventional approaches to achieve ohmic contacts through Schottky barrier suppression are often inadequate. Here we report the realization and characterization of low n-type Schottky barriers (~0.35 eV) formed at epitaxial contacts between Au-In alloy catalytic particles and GaAs-nanowires. In comparison to previous studies, our detailed characterization, employing selective electrical contacts defined by high-precision electron beam lithography, reveals the barrier to occur directly and solely at the abrupt interface between the catalyst and nanowire. We attribute this lowest-to-date-reported Schottky barrier to a reduced density of pinning states (~10(17) m(-2)) and the formation of an electric dipole layer at the epitaxial contacts. The insight into the physical mechanisms behind the observed low-energy Schottky barrier may guide future efforts to engineer abrupt nanoscale electrical contacts with tailored electrical properties.

  16. Electrical Burns: First Aid

    MedlinePlus

    ... be caused by a number of sources of electricity, such as lightning, stun guns and contact with ... person who has been injured by contact with electricity should be seen by a doctor. Sometimes an ...

  17. Concentrating Solar Power Projects - Dahan Power Plant | Concentrating

    Science.gov Websites

    Plant Country: China Location: Beijing Owner(s): Institute of Electrical Engineering of Chinese Academy Electricity Generation: 1,950 MWh/yr Contact(s): Fengli Du Company: Institute of Electrical Engineering of Electrical Engineering of Chinese Academy of Sciences Owner(s) (%): Institute of Electrical Engineering of

  18. Data Transmission System For A Downhole Component

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Fox, Joe; Briscoe, Michael

    2005-01-18

    The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

  19. Data transmission system for a downhole component

    DOEpatents

    Hall, David R.; Hall, Jr., Tracy H.; Pixton, David S.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron; Briscoe, Michael A.

    2006-05-09

    The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

  20. Monolithic laser diode array with one metalized sidewall

    DOEpatents

    Freitas, Barry L.; Skidmore, Jay A.; Wooldridge, John P.; Emanuel, Mark A.; Payne, Stephen A.

    2001-01-01

    A monolithic, electrically-insulating substrate that contains a series of notched grooves is fabricated. The substrate is then metalized so that only the top surface and one wall adjacent to the notch are metalized. Within the grooves is located a laser bar, an electrically-conductive ribbon or contact bar and an elastomer which secures/registers the laser bar and ribbon (or contact bar) firmly along the wall of the groove that is adjacent to the notch. The invention includes several embodiments for providing electrical contact to the corresponding top surface of the adjacent wall. In one embodiment, after the bar is located in the proper position, the electrically conductive ribbon is bent so that it makes electrical contact with the adjoining metalized top side of the heatsink.

  1. Low frequency electrical noise across contacts between a normal conductor and superconducting bulk YBa2Cu3O7

    NASA Technical Reports Server (NTRS)

    Hall, J.; Chen, T. M.

    1991-01-01

    Virtually every device that makes use of the new ceramic superconductors will need normal conductor to superconductor contacts. The current-voltage and electrical noise characteristics of these contacts could become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quantity often used to characterize electrical noise, very closely followed an empirical relationship given by S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density.

  2. Low frequency electrical noise across contacts between a normal conductor and superconducting bulk YBa2Cu3O7

    NASA Technical Reports Server (NTRS)

    Hall, J.; Chen, T. M.

    1990-01-01

    Virtually every device that makes use of the new ceramic superconductors will need normal conductor to supercondutor contacts. The current-voltage and electrical noise characteristics of these contacts could be become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quanity often used to characterize electrical noise, very closely followed an empirical relationship given by, S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density.

  3. Non- contacting capacitive diagnostic device

    DOEpatents

    Ellison, Timothy

    2005-07-12

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  4. Study of Electrical Contacts and Devices in Advanced Semiconductors

    NASA Technical Reports Server (NTRS)

    Hall, H. P.; Das, K.; Alterovitz, Samuel (Technical Monitor)

    2001-01-01

    Research conducted at Tuskegee University concentrates on electrical contacts to GaN films and their characterization with the objective of understanding contact formation and realizing low-resistance metal contacts. Contact properties are known to be strongly related to surface preparation. It appears that the as-received material had a thin oxide film on the surface of the GaN film. Various cleaning treatments were employed in order to render the surface contamination free and removal of the oxide film. Metal films were then deposited by e-beam evaporation. Electrical characteristics of these contacts indicated that the optimal treatment was an organic solvent cleaning followed by etching in buffered oxide solution. Contacts established with Al were observed to be ohmic in nature, whereas Au, Cr, Ti, and Pt exhibit rectifying contacts. Platinum contacts were almost ideal as shown by an ideality factor of 1.02.

  5. Investigation of transient temperature's influence on damage of high-speed sliding electrical contact rail surface

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Sun, Shasha; Guo, Quanli; Yang, Degong; Sun, Dongtao

    2016-11-01

    In the high speed sliding electrical contact with large current, the temperature of contact area rises quickly under the coupling action of the friction heating, the Joule heating and electric arc heating. The rising temperature seriously affects the conductivity of the components and the yield strength of materials, as well affects the contact state and lead to damage, so as to shorten the service life of the contact elements. Therefore, there is vital significance to measure the temperature accurately and investigate the temperature effect on damage of rail surface. Aiming at the problem of components damage in high speed sliding electrical contact, the transient heat effect on the contact surface was explored and its influence and regularity on the sliding components damage was obtained. A kind of real-time temperature measurement method on rail surface of high speed sliding electrical contact is proposed. Under the condition of 2.5 kA current load, based on the principle of infrared radiation non-contact temperature sensor was used to measure the rail temperature. The dynamic distribution of temperature field was obtained through the simulation analysis, further, the connection between temperature changes and the rail surface damage morphology, the damage volume was analyzed and established. Finally, the method to reduce rail damage and improve the life of components by changing the temperature field was discussed.

  6. Perforation patterned electrical interconnects

    DOEpatents

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  7. Evaluation of Contact Separation Force Testing as a Screening Methodology for Electrical Socket Contacts

    NASA Technical Reports Server (NTRS)

    Green, Chris; Greenwell, Chris; Brusse, jay; Krus, Dennis; Leidecker, Henning

    2009-01-01

    During system level testing intermittent and permanent open circuit failures of mated, crimp removable, electrical contact pairs were experienced. The root cause of the failures was determined to be low (but not zero) contact forces applied by the socket contact tines against the engaging pin. The low contact force reduces the effectiveness of the wiping action of the socket tines against the pin. The observed failure mode may be produced when insufficient wiping during mate, demate and small relative movement in use allows for the accumulation of debris or insulating films that electrically separate the contact pair. The investigation identified at least three manufacturing process control problems associated with the socket contacts that enabled shipment of contacts susceptible to developing low contact forces: (1) Improper heat treatment of the socket tines resulting in plastic rather than elastic behavior; (2) Overly thinned socket tines at their base resulting in reduced pin retention forces; (3) insufficient screening tests to identify parts susceptible to the aforementioned failure mechanisms. The results from an extensive screening program of socket contacts utilizing the industry standard contact separation force test procedures are described herein. The investigation shows this method to be capable of identifying initially weak sockets. However, sockets whose contact retention forces may degrade during use may not be screened out by pin retention testing alone. Further investigations are required to correlate low contact retention forces with increased electrical contact resistance in the presence of insulating films that may accumulate in the use environment.

  8. The Dynamics of Oblate Drop Between Heterogeneous Plates Under Alternating Electric Field. Non-uniform Field

    NASA Astrophysics Data System (ADS)

    Kashina, M. A.; Alabuzhev, A. A.

    2018-02-01

    The dynamics of the incompressible fluid drop under the non-uniform electric field are considered. The drop is bounded axially by two parallel solid planes and the case of heterogeneous plates is investigated. The external electric field acts as an external force that causes motion of the contact line. We assume that the electric current is alternative current and the AC filed amplitude is a spatially non-uniform function. In equilibrium, the drop has the form of a circular cylinder. The equilibrium contact angle is 0.5 π. In order to describe this contact line motion the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, which frequency is proportional to twice the frequency of the electric field. The Hocking parameter depends on the polar angle, i.e. the coefficient of the interaction between the plate and the fluid (the contact line) is a function of the plane coordinates. This function is expanded in a series of the Laplace operator eigenfunctions.

  9. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS2 Transistors with Reduction of Metal-Induced Gap States.

    PubMed

    Kim, Gwang-Sik; Kim, Seung-Hwan; Park, June; Han, Kyu Hyun; Kim, Jiyoung; Yu, Hyun-Yong

    2018-06-06

    The difficulty in Schottky barrier height (SBH) control arising from Fermi-level pinning (FLP) at electrical contacts is a bottleneck in designing high-performance nanoscale electronics and optoelectronics based on molybdenum disulfide (MoS 2 ). For electrical contacts of multilayered MoS 2 , the Fermi level on the metal side is strongly pinned near the conduction-band edge of MoS 2 , which makes most MoS 2 -channel field-effect transistors (MoS 2 FETs) exhibit n-type transfer characteristics regardless of their source/drain (S/D) contact metals. In this work, SBH engineering is conducted to control the SBH of electrical top contacts of multilayered MoS 2 by introducing a metal-interlayer-semiconductor (MIS) structure which induces the Fermi-level unpinning by a reduction of metal-induced gap states (MIGS). An ultrathin titanium dioxide (TiO 2 ) interlayer is inserted between the metal contact and the multilayered MoS 2 to alleviate FLP and tune the SBH at the S/D contacts of multilayered MoS 2 FETs. A significant alleviation of FLP is demonstrated as MIS structures with 1 nm thick TiO 2 interlayers are introduced into the S/D contacts. Consequently, the pinning factor ( S) increases from 0.02 for metal-semiconductor (MS) contacts to 0.24 for MIS contacts, and the controllable SBH range is widened from 37 meV (50-87 meV) to 344 meV (107-451 meV). Furthermore, the Fermi-level unpinning effect is reinforced as the interlayer becomes thicker. This work widens the scope for modifying electrical characteristics of contacts by providing a platform to control the SBH through a simple process as well as understanding of the FLP at the electrical top contacts of multilayered MoS 2 .

  10. Induction heaters used to heat subsurface formations

    DOEpatents

    Nguyen, Scott Vinh [Houston, TX; Bass, Ronald M [Houston, TX

    2012-04-24

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  11. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  12. Electrical contact tool set station

    DOEpatents

    Byers, M.E.

    1988-02-22

    An apparatus is provided for the precise setting to zero of electrically conductive cutting tools used in the machining of work pieces. An electrically conductive cylindrical pin, tapered at one end to a small flat, rests in a vee-shaped channel in a base so that its longitudinal axis is parallel to the longitudinal axis of the machine's spindle. Electronic apparatus is connected between the cylindrical pin and the electrically conductive cutting tool to produce a detectable signal when contact between tool and pin is made. The axes of the machine are set to zero by contact between the cutting tool and the sides, end or top of the cylindrical pin. Upon contact, an electrical circuit is completed, and the detectable signal is produced. The tool can then be set to zero for that axis. Should the tool contact the cylindrical pin with too much force, the cylindrical pin would be harmlessly dislodged from the vee-shaped channel, preventing damage either to the cutting tool or the cylindrical pin. 5 figs.

  13. Zinc-chlorine battery plant system and method

    DOEpatents

    Whittlesey, Curtis C.; Mashikian, Matthew S.

    1981-01-01

    A zinc-chlorine battery plant system and method of redirecting the electrical current around a failed battery module. The battery plant includes a power conditioning unit, a plurality of battery modules connected electrically in series to form battery strings, a plurality of battery strings electrically connected in parallel to the power conditioning unit, and a bypass switch for each battery module in the battery plant. The bypass switch includes a normally open main contact across the power terminals of the battery module, and a set of normally closed auxiliary contacts for controlling the supply of reactants electrochemically transformed in the cells of the battery module. Upon the determination of a failure condition, the bypass switch for the failed battery module is energized to close the main contact and open the auxiliary contacts. Within a short time, the electrical current through the battery module will substantially decrease due to the cutoff of the supply of reactants, and the electrical current flow through the battery string will be redirected through the main contact of the bypass switch.

  14. Fabricating and using a micromachined magnetostatic relay or switch

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Wright, John A. (Inventor)

    2001-01-01

    A micromachined magnetostatic relay or switch includes a springing beam on which a magnetic actuation plate is formed. The springing beam also includes an electrically conductive contact. In the presence of a magnetic field, the magnetic material causes the springing beam to bend, moving the electrically conductive contact either toward or away from another contact, and thus creating either an electrical short-circuit or an electrical open-circuit. The switch is fabricated from silicon substrates and is particularly useful in forming a MEMs commutation and control circuit for a miniaturized DC motor.

  15. Particle trap to sheath contact for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.; Cookson, Alan H.; Yoon, Kue H.

    1984-04-10

    A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.

  16. Tuning the electronic properties and Schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.

    2018-04-01

    In this paper, the electronic properties and Schottky contact in graphene/MoS2 (G/MoS2) heterostructure under an applied electric field are investigated by means of the density functional theory. It can be seen that the electronic properties of the G/MoS2 heterostructure are preserved upon contacting owing to the weak van der Waals interaction. We found that the n-type Schottky contact is formed in the G/MoS2 heterostructure with the Schottky barrier height of 0.49 eV. Furthermore, both Schottky contact and Schottky barrier height in the G/MoS2 heterostructure could be controlled by the applied electric field. If a positive electric field of 4 V/nm is applied to the system, a transformation from the n-type Schottky contact to the p-type one was observed, whereas the system keeps an n-type Schottky contact when a negative electric field is applied. Our results may provide helpful information to design, fabricate, and understand the physics mechanism in the graphene-based two-dimensional van der Waals heterostructures like as G/MoS2 heterostructure.

  17. A decade of occupational accidents due to direct or indirect electrical contact in the primary, secondary and tertiary sectors in Spain (2003-2012).

    PubMed

    Castillo-Rosa, Juan; Suárez-Cebador, Manuel; Rubio-Romero, Juan Carlos; Aguado, Jose Antonio

    2017-03-01

    Occupational accidents caused by electrical contact are a major concern worldwide due to their severe consequences. The study conducted is based on an analysis of the evolution of incidence rates and dependence between variables for 14,022 electrical accidents occurring in Spain between 2003 and 2012. The results show that electrical accidents as a whole are 3.6 times more likely to have severe consequences than the rest of the accidents in the country. This proportion is even nine times greater in the case of fatal accidents. They also confirm a significant relationship between the severity of this type of accidents and the economic sector in which they occur. On the other hand, there is a positive trend in the reduction of the incidence rate, especially in relation to direct contact, although unexpectedly the rate of accidents due to indirect contact is on the rise. Thus, preventing electrical occupational accidents requires efforts to guarantee adequate training adapted to the needs of workers in the various economic sectors. Furthermore, those responsible for safety should work to implement mechanisms to monitor and control compliance with efficient protective measures against electrical contact.

  18. Bus bar electrical feedthrough for electrorefiner system

    DOEpatents

    Williamson, Mark; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2013-12-03

    A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.

  19. Compact fuel cell

    DOEpatents

    Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun

    2010-10-19

    A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

  20. Method for forming metal contacts

    DOEpatents

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  1. Laboratory studies of aerosol electrification and experimental evidence for electrical breakdown at different scales.

    NASA Astrophysics Data System (ADS)

    Alois, Stefano; Merrison, Jonathan; Iversen, Jens Jacob; Sesterhenn, Joern

    2017-04-01

    Contact electrification between different particles size/material can lead to electric field generation high enough to produce electrical breakdown. Experimental studies of solid aerosol contact electrification (Alois et al., 2016) has shown various electrical breakdown phenomena; these range from field emission at the contact site (nm-scale) limiting particle surface charge concentration, to visible electrical discharges (cm-scale) observed both with the use of an electrometer and high-speed camera. In these experiments micron-size particles are injected into a low-pressure chamber, where they are deviated by an applied electric field. A laser Doppler velocimeter allows the simultaneous determination of particle size and charge of single grains. Results have shown an almost constant surface charge concentration, which is likely to be due to charge limitation by field emission at the contact site between particle and injector. In a second measurement technique, the electrically isolated injector tube (i.e. a Faraday cage) is connected to an oscilloscope and synchronised to a high speed camera filming the injection. Here the electrification of a large cloud of particles can be quantified and discharging effects studied. This study advances our understanding on the physical processes leading to electrification and electrical breakdown mechanisms.

  2. Tuneable photonic device including an array of metamaterial resonators

    DOEpatents

    Brener, Igal; Wanke, Michael; Benz, Alexander

    2017-03-14

    A photonic apparatus includes a metamaterial resonator array overlying and electromagnetically coupled to a vertically stacked plurality of quantum wells defined in a semiconductor body. An arrangement of electrical contact layers is provided for facilitating the application of a bias voltage across the quantum well stack. Those portions of the semiconductor body that lie between the electrical contact layers are conformed to provide an electrically conductive path between the contact layers and through the quantum well stack.

  3. Field-effect P-N junction

    DOEpatents

    Regan, William; Zettl, Alexander

    2015-05-05

    This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.

  4. The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Henry, Matthew R.; Kim, Song-Kil; Fedorov, Andrei G.; Kulkarni, Dhaval; Singamaneni, Srikanth; Tsukruk, Vladimir V.

    2010-01-01

    Multiwall carbon nanotubes (MWNTs) are promising candidates for yielding next generation electrical and electronic devices such as interconnects and tips for conductive force microscopy. One of the main challenges in MWNT implementation in such devices is the high contact resistance of the MWNT-metal electrode interface. Electron beam induced deposition (EBID) of an amorphous carbon interface has previously been demonstrated to simultaneously lower the electrical contact resistance and improve the mechanical characteristics of the MWNT-electrode connection. In this work, we investigate the influence of process parameters, such as the electron beam energy, current, geometry, and deposition time, on the EBID-made carbon joint geometry and electrical contact resistance. The influence of the composition of the deposited material on its resistivity is also investigated. The relative importance of each component of the contact resistance and the limiting factor of the overall electrical resistance of a MWNT-based interconnect is determined through a combination of a model analysis and comprehensive experiments.

  5. [Finite element analysis of temperature field of retina by electrical stimulation with microelectrode array].

    PubMed

    Wang, Wei; Qiao, Qingli; Gao, Weiping; Wu, Jun

    2014-12-01

    We studied the influence of electrode array parameters on temperature distribution to the retina during the use of retinal prosthesis in order to avoid thermal damage to retina caused by long-term electrical stimulation. Based on real epiretinal prosthesis, a three-dimensional model of electrical stimulation for retina with 4 X 4 microelectrode array had been established using the finite element software (COMSOL Multiphysics). The steady-state temperature field of electrical stimulation of the retina was calculated, and the effects of the electrode parameters such as the distance between the electrode contacts, the materials and area of the electrode contact on temperature field were considered. The maximum increase in the retina steady temperature was about 0. 004 degrees C with practical stimulation current. When the distance between the electrode contacts was changed from 130 microm to 520 microm, the temperature was reduced by about 0.006 microC. When the contact radius was doubled from 130 microm to 260 microm, the temperature decrease was about 0.005 degrees C. It was shown that there were little temperature changes in the retina with a 4 x 4 epiretinal microelectrode array, reflecting the safety of electrical stimulation. It was also shown that the maximum temperature in the retina decreased with increasing the distance between the electrode contacts, as well as increasing the area of electrode contact. However, the change of the maximum temperature was very small when the distance became larger than the diameter of electrode contact. There was no significant difference in the effects of temperature increase among the different electrode materials. Rational selection of the distance between the electrode contacts and their area in electrode design can reduce the temperature rise induced by electrical stimulation.

  6. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  7. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John [Menlo Park, CA

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  8. Laminated photovoltaic modules using back-contact solar cells

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  9. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars

    NASA Astrophysics Data System (ADS)

    Iatcheva, Ilona; Darzhanova, Denitsa; Manilova, Marina

    2018-03-01

    The aim of this work is the modeling of coupled electric and heat processes in a system for spot resistance welding of cross-wire reinforced steel bars. The real system geometry, dependences of material properties on the temperature, and changes of contact resistance and released power during the welding process have been taken into account in the study. The 3D analysis of the coupled AC electric and transient thermal field distributions is carried out using the finite element method. The novel feature is that the processes are modeled for several successive time stages, corresponding to the change of contact area, related contact resistance, and reduction of the released power, occurring simultaneously with the creation of contact between the workpieces. The values of contact resistance and power changes have been determined on the basis of preliminary experimental and theoretical investigations. The obtained results present the electric and temperature field distributions in the system. Special attention has been paid to the temperature evolution at specified observation points and lines in the contact area. The obtained information could be useful for clarification of the complicated nature of interrelated electric, thermal, mechanical, and physicochemical welding processes. Adequate modeling is also an opportunity for proper control and improvement of the system.

  10. Method and apparatus for remote tube crevice detection by current and voltage probe resistance measurement

    DOEpatents

    Kikta, Thomas J.; Mitchell, Ronald D.

    1992-01-01

    A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet.

  11. Method and apparatus for remote tube crevice detection by current and voltage probe resistance measurement

    DOEpatents

    Kikta, T.J.; Mitchell, R.D.

    1992-11-24

    A method and apparatus for determining the extent of contact between an electrically conducting tube and an electrically conductive tubesheet surrounding the tube, based upon the electrical resistance of the tube and tubesheet. A constant current source is applied to the interior of the electrically conducting tube by probes and a voltmeter is connected between other probes to measure the voltage at the point of current injection, which is inversely proportional to the amount of contact between the tube and tubesheet. Namely, the higher the voltage measured by the voltmeter, the less contact between the tube and tubesheet. 4 figs.

  12. Triboelectric nanogenerator for powering portable electronics

    DOEpatents

    Wang, Zhong Lin; Wang, Sihong; Lin, Long; Zhu, Guang; Lin, Zong-Hong

    2017-03-14

    A triboelectric generator includes a first contact charging member and a second contact charging member. The first contact charging member includes a first contact layer and a conductive electrode layer. The first contact layer includes a material that has a triboelectric series rating indicating a propensity to gain electrons due to a contacting event. The conductive electrode layer is disposed along the back side of the contact layer. The second contact charging member is spaced apart from and disposed oppositely from the first contact charging member. It includes an electrically conductive material layer that has a triboelectric series rating indicating a propensity to lose electrons when contacted by the first contact layer during the contacting event. The electrically conductive material acts as an electrode. A mechanism maintains a space between the first contact charging member and the second contact charging member except when a force is applied thereto.

  13. Coaxial test fixture

    DOEpatents

    Praeg, W.F.

    1984-03-30

    This invention pertains to arrangements for performing electrical tests on contact material samples, and in particular for testing contact material test samples in an evacuated environment under high current loads. Frequently, it is desirable in developing high-current separable contact material, to have at least a preliminary analysis of selected candidate conductor materials. Testing of material samples will hopefully identify materials unsuitable for high current electrical contact without requiring incorporation of the materials into a completed and oftentimes complex structure.

  14. Self-powered, ultra-sensitive, flexible tactile sensors based on contact electrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhong Lin; Zhu, Guang

    A tactile sensor for sensing touch from a human finger includes a triboelectric layer and includes a material that becomes electrically charged after being in contact with the finger. The first side of a first conductive layer is in contact with the second side of triboelectric layer. The first side of a dielectric layer is in contact with the first conductive layer and the second side of the dielectric layer is in contact with a second conductive layer. When the triboelectric layer becomes electrically charged after being in contact with the finger, the first conductive layer and the second conductivemore » layer are subjected to an electric field, which has a first field strength at the first conductive layer and a second field strength, different from the first field strength, at the second conductive layer. A plurality of tactile sensors can be arranged as a keyboard.« less

  15. Mechatronical systems and experimental methods for investigations on tribology of electrical contacts

    NASA Astrophysics Data System (ADS)

    Franek, Friedrich; Neuhaus, Alexander; Reichart, Martin; Schrank, Clemens

    2008-08-01

    The investigation of electrical low power switching contacts, including dry-circuit, is characterized as a highly interdisciplinary research field. The knowledge of plasma physics, the influence of kinetics on contact phenomena, material science and metallurgy, as well as thermal aspects and tribology, is demanded. The methods usually used at the Austrian Center of Competence for Tribology are e.g. defined contact make and break along two-independent axis using model switches, high-resolution measurement of displacement and electrical values, including the detection of arcs, contact force measurement in the kHz and cN range (one-axis and two-axis systems), on-line optical investigations (especially time lapse movie systems), state of the art 3D surface topography measurement of eroded contact surfaces, and (electron-) microscopical evaluation of metallographic cross sections. Some aspects of this methodology are presented in this paper.

  16. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, Charles E.; Benson, Ralph A.

    1994-01-01

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor.

  17. Electric vehicle drive train with contactor protection

    DOEpatents

    Konrad, C.E.; Benson, R.A.

    1994-11-29

    A drive train for an electric vehicle includes a traction battery, a power drive circuit, a main contactor for connecting and disconnecting the traction battery and the power drive circuit, a voltage detector across contacts of the main contactor, and a controller for controlling the main contactor to prevent movement of its contacts to the closed position when the voltage across the contacts exceeds a predetermined threshold, to thereby protect the contacts of the contactor. The power drive circuit includes an electric traction motor and a DC-to-AC inverter with a capacitive input filter. The controller also inhibits the power drive circuit from driving the motor and thereby discharging the input capacitor if the contacts are inadvertently opened during motoring. A precharging contactor is controlled to charge the input filter capacitor prior to closing the main contactor to further protect the contacts of the main contactor. 3 figures.

  18. Simulation and Analysis of Electric Field for the Disconnector Switch Incomplete Opening Position Based on 220kV GIS

    NASA Astrophysics Data System (ADS)

    Wang, Feifeng; Huang, Huimin; Su, Yi; Yan, Dandan; Lu, Yufeng; Xia, Xiaofei; Yang, Jian

    2018-05-01

    It has accounted for a large proportion of GIS equipment defects, which cause the disconnector switches to incomplete open-close position. Once opening operation is not in place, it will arouse continuous arcing between contacts to reduce insulation strength. Otherwise, the intense heat give rise to burn the contact, which has a severe effect on the safe operation of power grid. This paper analyzes some typical defection cases about the opening operation incomplete for disconnector switches of GIS. The COMSOL Multiphysics is applied to verify the influence on electric field distribution. The results show that moving contact out shield is 20 mm, the electric field distribution of the moving contact surface is uneven, and the maximum electric field value can reach 9.74 kV/mm.

  19. Making a Back-Illuminated Imager with Back-Side Contact and Alignment Markers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2008-01-01

    A design modification and a fabrication process that implements the modification have been conceived to solve two problems encountered in the development of back-illuminated, back-sidethinned complementary metal oxide/ semiconductor (CMOS) image-detector integrated circuits. The two problems are (1) how to form metal electrical-contact pads on the back side that are electrically connected through the thickness in proper alignment with electrical contact points on the front side and (2) how to provide alignment keys on the back side to ensure proper registration of backside optical components (e.g., microlenses and/or color filters) with the front-side pixel pattern. The essence of the design modification is to add metal plugs that extend from the desired front-side locations through the thickness and protrude from the back side of the substrate. The plugs afford the required front-to-back electrical conduction, and the protrusions of the plugs serve as both the alignment keys and the bases upon which the back-side electrical-contact pads can be formed.

  20. On Ni/Au Alloyed Contacts to Mg-Doped GaN

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplab; Reddy, Pramod; Klump, Andrew; Kaess, Felix; Rounds, Robert; Kirste, Ronny; Mita, Seiji; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko

    2018-01-01

    Ni/Au contacts to p-GaN were studied as a function of free hole concentration in GaN using planar transmission line measurement structures. All contacts showed a nonlinear behavior, which became stronger for lower doping concentrations. Electrical and structural analysis indicated that the current conduction between the contact and the p-GaN was through localized nano-sized clusters. Thus, the non-linear contact behavior can be well explained using the alloyed contact model. Two contributions to the contact resistance were identified: the spreading resistance in the semiconductor developed by the current crowding around the electrically active clusters, and diode-type behavior at the interface of the electrically active clusters with the semiconductor. Hence, the equivalent Ni/Au contact model consists of a diode and a resistor in series for each active cluster. The reduced barrier height observed in the measurements is thought to be generated by the extraction of Ga from the crystalline surface and localized formation of the Au:Ga phase. The alloyed contact analyses presented in this work are in good agreement with some of the commonly observed behavior of similar contacts described in the literature.

  1. Formation of Ohmic contact to semipolar (11-22) p-GaN by electrical breakdown method

    NASA Astrophysics Data System (ADS)

    Jeong, Seonghoon; Lee, Sung-Nam; Kim, Hyunsoo

    2018-01-01

    The electrical breakdown (EBD) method was used to obtain Ohmic contact to semipolar (11-20) p-GaN surfaces using the Ti/SiO2/ p-GaN structure. The EBD method by which the electrical stress voltage was increased up to 70 V with a compliance current of 30 mA resulted in an Ohmic contact with a specific contact resistance of 3.1×10-3 Ωcm2. The transmission electron microscope (TEM) analysis revealed that the oxygen was slightly out-diffused from SiO2 layer toward Ti surface and the oxidation occurred at the Ti surface, while the GaN remained unchanged.

  2. Harvesting dissipated energy with a mesoscopic ratchet

    NASA Astrophysics Data System (ADS)

    Roche, B.; Roulleau, P.; Jullien, T.; Jompol, Y.; Farrer, I.; Ritchie, D. A.; Glattli, D. C.

    2015-04-01

    The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.

  3. Electrical contact arrangement for a coating process

    DOEpatents

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  4. Low inductance busbar assembly

    DOEpatents

    Holbrook, Meghan Ann

    2010-09-21

    A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.

  5. Modelling of a Double-Track Railway Contact System Electric Field Intensity

    NASA Astrophysics Data System (ADS)

    Belinsky, Stanislav; Khanzhina, Olga; Sidorov, Alexander

    2017-12-01

    Working conditions of personnel that serves contact system (CS) are affected by factors including health and safety, security and working hours (danger of rolling stock accidents, danger of electric shock strokes, work at height, severity and tension of work, increased noise level, etc.) Low frequency electromagnetic fields as part of both electric and magnetic fields are among of the most dangerous and harmful factors. These factors can affect not only the working personnel, but also a lot of people, who do not work with the contact system itself, but could be influenced by electromagnetic field as the result of their professional activity. People, who use public transport or live not far from the electrified lines, are endangered by these factors as well. There are results of the theoretical researches in which low frequency electric fields of railway contact system were designed with the use of mathematical and computer modelling. Significant features of electric field distribution near double-track railway in presence or absence of human body were established. The studies showed the dependence of low frequency electric field parameters on the distance to the track axis, height, and presence or absence of human body. The obtained data were compared with permissible standards established in the Russian Federation and other countries with advanced electrified railway system. Evaluation of low frequency electric fields harmful effect on personnel is the main result of this work. It is also established, that location of personnel, voltage and current level, amount of tracks and other factors influence electric fields of contact systems.

  6. Graphene as a protective coating and superior lubricant for electrical contacts

    NASA Astrophysics Data System (ADS)

    Berman, Diana; Erdemir, Ali; Sumant, Anirudha V.

    2014-12-01

    Potential for graphene to be used as a lubricant for sliding electrical contacts has been evaluated. Graphene, being deposited as a sporadic flakes on the gold substrate sliding against titanium nitride ball shows not only significant improvement in tribological behavior by reducing both friction (by factor of 2-3) and wear (by 2 orders) but also, even more importantly, demonstrates stable and low electrical resistance at the sliding contacts undergoing thousands of sliding passes regardless of the test environment (i.e., both in humid and dry conditions).

  7. Graphene as a lubricant for electrical contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Diana; Erdemir, Ali; Sumant, Anirudha V.

    2014-12-08

    Potential for graphene to be used as a lubricant for sliding electrical contacts has been evaluated. Graphene, being deposited as a sporadic flakes on the gold substrate sliding against titanium nitride ball shows not only significant improvement in tribological behavior by reducing both friction (by factor of 2-3) and wear (by 2 orders) but also, even more importantly, demonstrates stable and low electrical resistance at the sliding contacts undergoing thousands of sliding passes regardless of the test environment (i.e., both in humid and dry conditions). (C) 2014 AIP Publishing LLC.

  8. Inductive High Power Transfer Technologies for Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Madzharov, Nikolay D.; Tonchev, Anton T.

    2014-03-01

    Problems associated with "how to charge the battery pack of the electric vehicle" become more important every passing day. Most logical solution currently is the non-contact method of charge, possessing a number of advantages over standard contact methods for charging. This article focuses on methods for Inductive high power contact-less transfer of energy at relatively small distances, their advantages and disadvantages. Described is a developed Inductive Power Transfer (IPT) system for fast charging of electric vehicles with nominal power of 30 kW over 7 to 9 cm air gap.

  9. An experimental method to determine the resistance of a vertically aligned carbon nanotube forest in contact with a conductive layer

    NASA Astrophysics Data System (ADS)

    Vo, T. T.; Poulain, C.; Dijon, J.; Fournier, A.; Chevalier, N.; Mariolle, D.

    2012-08-01

    High density vertically aligned carbon nanotube (VACNT) forests are considered as a promising conductive material for many applications (interconnects in microelectronics or contact material layer in sliding contact applications). It is thus crucial to characterize the electrical resistance of these forests, especially in contact with the inherent top/bottom conductive substrates. This paper aims to develop an original method to determine the contribution of the different terms in this electrical resistance, which is measured with a tipless atomic force microscope used in high accuracy "force mode." VACNT stacks with different heights on AlCu substrate with or without Au/Pd top coating are studied. The electrical contact area between the probe tip and the forest is considered to be equivalent to the classical electrical contact area between a tip and a rough surface. With this assumption, the scattering resistance of a mono-wall CNT is 14.6 kΩ μm-1, the top/bottom contact resistance is, respectively, 265 kΩ/385 kΩ. The bottom resistance divided in half is obtained by an interface substrate/CNT catalyst treatment. The same assumption leads to an effective compressive modulus of 175 MPa. These results are consistent with the values published by other authors. The proposed method is effective to optimise the CNT interface contact resistance before integration in a more complex functional structure.

  10. Organic magnetic field sensor

    DOEpatents

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  11. A Thermally Stable NiZn/Ta/Ni Scheme to Replace AuBe/Au Contacts in High-Efficiency AlGaInP-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyun; Park, Jae-Seong; Kang, Daesung; Seong, Tae-Yeon

    2017-08-01

    We developed NiZn/(Ta/)Ni ohmic contacts to replace expensive AuBe/Au contacts commonly used in high-efficiency AlGaInP-based light-emitting diodes (LEDs), and compared the electrical properties of the two contact types. Unlike the AuBe/Au (130 nm/100 nm) contact, the NiZn/Ta/Ni (130 nm/20 nm/100 nm) contact shows improved electrical properties after being annealed at 500°C, with a contact resistivity of 5.2 × 10-6 Ω cm2. LEDs with the NiZn/Ta/Ni contact exhibited a 4.4% higher output power (at 250 mW) than LEDs with the AuBe/Au contact. In contrast to the trend for the AuBe/Au contact, the Ga 2 p core level for the NiZn/Ta/Ni contact shifted toward lower binding energies after being annealed at 500°C. Auger electron spectroscopy (AES) depth profiles showed that annealing the AuBe/Au samples caused the outdiffusion of both Be and P atoms into the metal contact, whereas in the NiZn/Ta/Ni samples, Zn atoms indiffused into the GaP layer. The annealing-induced electrical degradation and ohmic contact formation mechanisms are described and discussed on the basis of the results of x-ray photoemission spectroscopy and AES.

  12. Atomistic study of the electronic contact resistivity between the half-Heusler alloys (HfCoSb, HfZrCoSb, HfZrNiSn) and the metal Ag

    NASA Astrophysics Data System (ADS)

    He, Yuping; Léonard, François; Spataru, Catalin D.

    2018-06-01

    Half-Heusler (HH) alloys have shown promising thermoelectric properties in the medium- and high-temperature range. To harness these material properties for thermoelectric applications, it is important to realize electrical contacts with low electrical contact resistivity. However, little is known about the detailed structural and electronic properties of such contacts and the expected values of contact resistivity. Here, we employ atomistic ab initio calculations to study electrical contacts in a subclass of HH alloys consisting of the compounds HfCoSb, HfZrCoSb, and HfZrNiSn. By using Ag as a prototypical metal, we show that the termination of the HH material critically determines the presence or absence of strong deformations at the interface. Our study includes contacts to doped materials, and the results indicate that the p -type materials generally form ohmic contacts while the n -type materials have a small Schottky barrier. We calculate the temperature dependence of the contact resistivity in the low- to medium-temperature range and provide quantitative values that set lower limits for these systems.

  13. Contact-independent electrical conductance measurement

    DOEpatents

    Mentzel, Tamar S.; MacLean, Kenneth; Kastner, Marc A.; Ray, Nirat

    2017-01-24

    Electrical conductance measurement system including a one-dimensional semiconducting channel, with electrical conductance sensitive to electrostatic fluctuations, in a circuit for measuring channel electrical current. An electrically-conductive element is disposed at a location at which the element is capacitively coupled to the channel; a midpoint of the element aligned with about a midpoint of the channel, and connected to first and second electrically-conductive contact pads that are together in a circuit connected to apply a changing voltage across the element. The electrically-conductive contact pads are laterally spaced from the midpoint of the element by a distance of at least about three times a screening length of the element, given in SI units as (K.di-elect cons..sub.0/e.sup.2D(E.sub.F)).sup.1/2, where K is the static dielectric constant, .di-elect cons..sub.0 is the permittivity of free space, e is electron charge, and D(E.sub.F) is the density of states at the Fermi energy for the element.

  14. Electrical Resistivity Measurement of Petroleum Coke Powder by Means of Four-Probe Method

    NASA Astrophysics Data System (ADS)

    Rouget, G.; Majidi, B.; Picard, D.; Gauvin, G.; Ziegler, D.; Mashreghi, J.; Alamdari, H.

    2017-10-01

    Carbon anodes used in Hall-Héroult electrolysis cells are involved in both electrical and chemical processes of the cell. Electrical resistivity of anodes depends on electrical properties of its constituents, of which carbon coke aggregates are the most prevalent. Electrical resistivity of coke aggregates is usually characterized according to the ISO 10143 standardized test method, which consists of measuring the voltage drop in the bed of particles between two electrically conducing plungers through which the current is also applied. Estimation of the electrical resistivity of coke particles from the resistivity of particle bed is a challenging task and needs consideration of the contribution of the interparticle void fraction and the particle/particle contact resistances. In this work, the bed resistivity was normalized by subtracting the interparticle void fraction. Then, the contact size was obtained from discrete element method simulation and the contact resistance was calculated using Holm's theory. Finally, the resistivity of the coke particles was obtained from the bed resistivity.

  15. Highly reproducible and reliable metal/graphene contact by ultraviolet-ozone treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899; Hacker, Christina A.

    2014-03-21

    Resist residue from the device fabrication process is a significant source of contamination at the metal/graphene contact interface. Ultraviolet Ozone (UVO) treatment is proven here, by X-ray photoelectron spectroscopy and Raman measurement, to be an effective way of cleaning the metal/graphene interface. Electrical measurements of devices that were fabricated by using UVO treatment of the metal/graphene contact region show that stable and reproducible low resistance metal/graphene contacts are obtained and the electrical properties of the graphene channel remain unaffected.

  16. Effects of oxidation and roughness on Cu contact resistance from 4 to 290 K

    NASA Technical Reports Server (NTRS)

    Nilles, M. J.; Van Sciver, S. W.

    1988-01-01

    Knowledge of the factors influencing contact resistance is important for optimizing system design in cryogenic applications. In space cryogenics, indirect cooling of infrared components is the primary concern. The presence of bolted joints results in contact resistances which can dominate all other contributions to the overall heat transfer rate. Here, thermal and electrical contact resistances measured between 4 K and 290 K for a series of bolted OFHC Cu contacts are reported. Surface roughness is found to have little effect on the overall contact resistance within the experimental limits, while oxidation can increase the contact resistance by as much as a factor of 100. Thermal and electrical contact resistances measured on the same contact show that the contact resistance temperature dependence does not follow the bulk dependence. For example, the residual resistance ratio (RRR) of the OFHC Cu is 110, but for contacts made from this material, the RRR is about two.

  17. Technique eliminates high voltage arcing at electrode-insulator contact area

    NASA Technical Reports Server (NTRS)

    Mealy, G.

    1967-01-01

    Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.

  18. Ball-joint grounding ring

    NASA Technical Reports Server (NTRS)

    Aperlo, P. J. A.; Buck, P. A.; Weldon, V. A.

    1981-01-01

    In ball and socket joint where electrical insulator such as polytetrafluoroethylene is used as line to minimize friction, good electrical contact across joint may be needed for lightning protection or to prevent static-charge build-up. Electrical contact is maintained by ring of spring-loaded fingers mounted in socket. It may be useful in industry for cranes, trailers, and other applications requiring ball and socket joint.

  19. Electrical properties of 0.4 cm long single walled nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Zhen

    2005-03-01

    Centimeter scale aligned carbon nanotube arrays are grown from nanoparticle/metal catalyst pads[1]. We find the nanotubes grow both with and ``against the wind.'' A metal underlayer provides in-situ electrical contact to these long nanotubes with no post growth processing needed. Using the electrically contacted nanotubes, we study electrical transport of 0.4 cm long nanotubes[2]. Using this data, we are able to determine the resistance of a nanotube as a function of length quantitatively, since the contact resistance is negligible in these long nanotubes. The source drain I-V curves are quantitatively described by a classical, diffusive model. Our measurements show that the outstanding transport properties of nanotubes can be extended to the cm scale and open the door to large scale integrated nanotube circuits with macroscopic dimensions. These are the longest electrically contacted single walled nanotubes measured to date. [1] Zhen Yu, Shengdong Li, Peter J. Burke, ``Synthesis of Aligned Arrays of Millimeter Long, Straight Single-Walled Carbon Nanotubes,'' Chemistry of Materials, 16(18), 3414-3416 (2004). [2] Shengdong Li, Zhen Yu, Christopher Rutherglen, Peter J. Burke, ``Electrical properties of 0.4 cm long single-walled carbon nanotubes'' Nano Letters, 4(10), 2003-2007 (2004).

  20. Electrical transmission between mammalian neurons is supported by a small fraction of gap junction channels.

    PubMed

    Curti, Sebastian; Hoge, Gregory; Nagy, James I; Pereda, Alberto E

    2012-06-01

    Electrical synapses formed by gap junctions between neurons create networks of electrically coupled neurons in the mammalian brain, where these networks have been found to play important functional roles. In most cases, interneuronal gap junctions occur at remote dendro-dendritic contacts, making difficult accurate characterization of their physiological properties and correlation of these properties with their anatomical and morphological features of the gap junctions. In the mesencephalic trigeminal (MesV) nucleus where neurons are readily accessible for paired electrophysiological recordings in brain stem slices, our recent data indicate that electrical transmission between MesV neurons is mediated by connexin36 (Cx36)-containing gap junctions located at somato-somatic contacts. We here review evidence indicating that electrical transmission between these neurons is supported by a very small fraction of the gap junction channels present at cell-cell contacts. Acquisition of this evidence was enabled by the unprecedented experimental access of electrical synapses between MesV neurons, which allowed estimation of the average number of open channels mediating electrical coupling in relation to the average number of gap junction channels present at these contacts. Our results indicate that only a small proportion of channels (~0.1 %) appear to be conductive. On the basis of similarities with other preparations, we postulate that this phenomenon might constitute a general property of vertebrate electrical synapses, reflecting essential aspects of gap junction function and maintenance.

  1. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, James L.

    1996-01-01

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

  2. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, J.L.

    1996-07-23

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

  3. On the behavior and stability of a liquid metal in quasi-planar electric contacts

    NASA Astrophysics Data System (ADS)

    Samuilov, S. D.

    2016-06-01

    The contacts between conductors formed under relatively low pressures can be treated as quasi-planar. Melting of the material of such contacts upon the passage of electric current is used in some technological processes, but the behavior of liquid in these conditions has not been analyzed. In this study, such an estimate was obtained for specific conditions appearing under electric-pulse compacting (briquetting) of metal shavings. Analysis of derived relations shows that this estimate is valid for any quasi-2D contacts upon passage of a pulsed current of duration from microseconds to milliseconds. It is shown that the spacing between contact surfaces decreases, the liquid metal is extruded in the lateral directions, and the area of the contact and its conductivity increase. Sausage-type magnetohydrodynamic (MHD) instability and overheating instability do not evolve in these conditions because the instability wavelength is larger than the rated thickness of the molten layer; screw MHD instability can appear in slower processes.

  4. Fully Electrical Modeling of Thermoelectric Generators with Contact Thermal Resistance Under Different Operating Conditions

    NASA Astrophysics Data System (ADS)

    Siouane, Saima; Jovanović, Slaviša; Poure, Philippe

    2017-01-01

    The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.

  5. Modeling pore corrosion in normally open gold- plated copper connectors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaile, Corbett Chandler; Moffat, Harry K.; Sun, Amy Cha-Tien

    2008-09-01

    The goal of this study is to model the electrical response of gold plated copper electrical contacts exposed to a mixed flowing gas stream consisting of air containing 10 ppb H{sub 2}S at 30 C and a relative humidity of 70%. This environment accelerates the attack normally observed in a light industrial environment (essentially a simplified version of the Battelle Class 2 environment). Corrosion rates were quantified by measuring the corrosion site density, size distribution, and the macroscopic electrical resistance of the aged surface as a function of exposure time. A pore corrosion numerical model was used to predict bothmore » the growth of copper sulfide corrosion product which blooms through defects in the gold layer and the resulting electrical contact resistance of the aged surface. Assumptions about the distribution of defects in the noble metal plating and the mechanism for how corrosion blooms affect electrical contact resistance were needed to complete the numerical model. Comparisons are made to the experimentally observed number density of corrosion sites, the size distribution of corrosion product blooms, and the cumulative probability distribution of the electrical contact resistance. Experimentally, the bloom site density increases as a function of time, whereas the bloom size distribution remains relatively independent of time. These two effects are included in the numerical model by adding a corrosion initiation probability proportional to the surface area along with a probability for bloom-growth extinction proportional to the corrosion product bloom volume. The cumulative probability distribution of electrical resistance becomes skewed as exposure time increases. While the electrical contact resistance increases as a function of time for a fraction of the bloom population, the median value remains relatively unchanged. In order to model this behavior, the resistance calculated for large blooms has been weighted more heavily.« less

  6. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  7. Production technology optimization of biscuit baked by electric-contact way

    NASA Astrophysics Data System (ADS)

    Sidorenko, G. A.; Popov, V. P.; Khanina, T. V.; Maneeva, E. Sh; Krasnova, M. S.

    2018-03-01

    Electric-contact way of baking allows one to maintain more nutrients used in biscuit making. As a result of the biscuit production technology optimization, it is established that 30-62,5% is an optimal amount of starch brought instead of flour; 184-200% is optimal amount of egg melange; at this a complex indicator of organoleptic properties will be more than 340 degrees, a complex indicator of physical and chemical properties will be more than 3,3 degrees, and specific costs of energy spent on the biscuit electric-contact baking process will be less than 100 W/kg.

  8. Note on heat conduction in liquid metals. A comparison of laminar and turbulent flow effects

    NASA Astrophysics Data System (ADS)

    Talmage, G.

    1994-05-01

    The difference between heat transfer in liquid metals with electric currents and magnetic fields on the one hand and heat transfer in electrically insulating fluids and in conducting solids on the other is pointed out. Laminar and turbulent flow effects in liquid metal sliding electric contacts for homopolar machines are considered. Large temperature gradients can develop within a small region of liquid metal. A model of a liquid-metal sliding electrical contact is developed and analyzed.

  9. Electric-field control of conductance in metal quantum point contacts by electric-double-layer gating

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Yoshida, K.; Daiguji, K.; Sato, H.; , T., Ii; Hirakawa, K.

    2017-10-01

    An electric-field control of quantized conductance in metal (gold) quantum point contacts (QPCs) is demonstrated by adopting a liquid-gated electric-double-layer (EDL) transistor geometry. Atomic-scale gold QPCs were fabricated by applying the feedback-controlled electrical break junction method to the gold nanojunction. The electric conductance in gold QPCs shows quantized conductance plateaus and step-wise increase/decrease by the conductance quantum, G0 = 2e2/h, as EDL-gate voltage is swept, demonstrating a modulation of the conductance of gold QPCs by EDL gating. The electric-field control of conductance in metal QPCs may open a way for their application to local charge sensing at room temperature.

  10. NIOSH testimony to DOL on the Occupational Safety and Health Administration's proposed rule on electric power generation, transmission, and distribution; electrical protective equipment by J. D. Millar, November 28, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-11-28

    The testimony concerns the support of NIOSH for the OSHA proposed rule on Electric Power Generation, Transmission and Distribution. NIOSH in particular comments on control of hazardous energy, cardiopulmonary resuscitation, line mechanics, and enclosed spaces. NIOSH estimates that 80 to 90% of the fatalities occurring in the industry occur among line mechanics. NIOSH strongly supports OSHA in applying the standard both electric utility companies and to power generation, transmission and distribution installations not under control of electric utilities. In addition to evaluating electrocutions to find effective ways for workers to avoid electrical injury or fatality, NIOSH has published recommendations formore » providing emergency medical care when workers do inadvertently contact electrical energy. NIOSH is not aware of any epidemiologic study which collected sufficient data to directly address the issue of successful resuscitation following contact with electrical energy. A review of pertinent epidemiologic studies and standard medical practice supports the NIOSH recommendation that workers who may contact energized electrical circuit work in pairs and that both members of the team be trained in cardiopulmonary resuscitation.« less

  11. Continuity tester screens out faulty socket connections

    NASA Technical Reports Server (NTRS)

    Golding, G.

    1964-01-01

    A device, used before and after assembly, tests the continuity of an electrical circuit through each pin and socket of multiple connector sockets. Electrically insulated except at the contact area, a test probe is dimensioned to make contact only in properly formed sockets.

  12. Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Nguyen, Chuong V.

    2017-12-01

    In this paper, the electronic properties of graphene/monolayer antimonene (G/m-Sb) heterostructure have been studied using the density functional theory (DFT). The effects of out-of-plane strain (interlayer coupling) and electric field on the electronic properties and Schottky contact of the G/m-Sb heterostructure are also investigated. The results show that graphene is bound to m-Sb layer by a weak van-der-Waals interaction with the interlayer distance of 3.50 Å and the binding energy per carbon atom of -39.62 meV. We find that the n-type Schottky contact is formed at the G/m-Sb heterostructure with the Schottky barrier height (SBH) of 0.60 eV. By varying the interlayer distance between graphene and the m-Sb layer we can change the n-type and p-type SBH at the G/m-Sb heterostructure. Especially, we find the transformation from n-type to p-type Schottky contact with decreasing the interlayer distance. Furthermore, the SBH and the Schottky contact could be controlled by applying the perpendicular electric field. With the positive electric field, electrons can easily transfer from m-Sb to graphene layer, leading to the transition from n-type to p-type Schottky contact.

  13. Low-drag electrical-contact arrangement for maintaining continuity between horizontally movable members

    DOEpatents

    Brown, R.J.; Gerth, H.L.; Robinson, S.C.

    1981-01-23

    This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.

  14. Low-drag electrical contact arrangement for maintaining continuity between horizontally movable members

    DOEpatents

    Brown, R. Jack; Gerth, Howard L.; Robinson, Samuel C.

    1982-01-01

    This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.

  15. Three-dimensional direct laser written graphitic electrical contacts to randomly distributed components

    NASA Astrophysics Data System (ADS)

    Dorin, Bryce; Parkinson, Patrick; Scully, Patricia

    2018-04-01

    The development of cost-effective electrical packaging for randomly distributed micro/nano-scale devices is a widely recognized challenge for fabrication technologies. Three-dimensional direct laser writing (DLW) has been proposed as a solution to this challenge, and has enabled the creation of rapid and low resistance graphitic wires within commercial polyimide substrates. In this work, we utilize the DLW technique to electrically contact three fully encapsulated and randomly positioned light-emitting diodes (LEDs) in a one-step process. The resolution of the contacts is in the order of 20 μ m, with an average circuit resistance of 29 ± 18 kΩ per LED contacted. The speed and simplicity of this technique is promising to meet the needs of future microelectronics and device packaging.

  16. Optical interferometry study of film formation in lubrication of sliding and/or rolling contacts

    NASA Technical Reports Server (NTRS)

    Stejskal, E. O.; Cameron, A.

    1972-01-01

    Seventeen fluids of widely varying physical properties and molecular structure were chosen for study. Film thickness and traction were measured simultaneously in point contacts by interferometry, from which a new theory of traction was proposed. Film thickness was measured in line contacts by interferometry and electrical capacitance to establish correlation between these two methods. An interferometric method for the absolute determination of refractive index in the contact zone was developed and applied to point contact fluid entrapments. Electrical capacitance was used to study the thickness and properties of the soft surface film which sometimes forms near a metal-fluid interface.

  17. Computational dosimetry for grounded and ungrounded human models due to contact current

    NASA Astrophysics Data System (ADS)

    Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao

    2013-08-01

    This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm2.

  18. Aging behavior of Au-based ohmic contacts to GaAs

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.

    1989-01-01

    Gold based alloys, commonly used as ohmic contacts for solar cells, are known to react readily with GaAs. It is shown that the contact interaction with the underlying GaAs can continue even at room temperature upon aging, altering both the electrical characteristics of the contacts and the nearby pn junction. Au-Ge-Ni as-deposited (no heat-treatment) contacts made to thin emitter (0.15 microns) GaAs diodes have shown severe shunting of the pn junction upon aging for several months at room temperature. The heat-treated contacts, despite showing degradation in contact resistance, did not affect the underlying pn junction. Au-Zn-Au contacts to p-GaAs emitter (0.2 microns) diodes, however, showed slight improvement in contact resistance upon 200 C isothermal annealing for several months, without degrading the pn junction. The effect of aging on electrical characteristics of the as-deposited and heat-treated contacts and the nearby pn junction, as well as on the surface morphology of the contacts are presented.

  19. Aging behavior of Au-based ohmic contacts to GaAs

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.

    1988-01-01

    Gold based alloys, commonly used as ohmic contacts for solar cells, are known to react readily with GaAs. It is shown that the contact interaction with the underlying GaAs can continue even at room temperature upon aging, altering both the electrical characteristics of the contacts and the nearby pn junction. Au-Ge-Ni as-deposited (no heat treatment) contacts made to thin emitter (0.15 micrometer) GaAs diodes have shown severe shunting of the pn junction upon aging for several months at room temperature. The heat-treated contacts, despite showing degradation in contact resistance did not affect the underlying pn junction. Au-Zn-Au contacts to p-GaAs emitter (0.2 micrometer) diodes, however, showed slight improvement in contact resistance upon 200 C isothermal annealing for several months, without degrading the pn junction. The effect of aging on electrical characteristics of the as-deposited and heat-treated contacts and the nearby pn junction, as well as on the surface morphology of the contacts are presented.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Ines; Schillig, Cora

    A double-sided adhesive metal-based tape for use as contacting aid for SOFC fuel cells is provided. The double-sided metal-based adhesive tape is suitable for simplifying the construction of cell bundles. The double-sided metal-based adhesive tape is used for electrical contacting of the cell connector with the anode and for electrical contacting of the interconnector of the fuel cells with the cell connector. A method for producing the double-sided adhesive metal-base tape is also provided.

  1. Procedure for contact electrical resistance measurements as developed for use at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, J.L.

    1994-06-01

    Military Specifications call out general procedures and guidelines for conducting contact resistance measurements on chemical conversion coated panels. This paper deals with a test procedure developed at Sandia National Laboratories used to conduct contact electrical resistance on non-chromated conversion coated test panels. MIL-C-81706 {open_quotes}Chemical Conversion Materials For Coating Aluminum and Aluminum Alloys{close_quotes} was the reference specification used for guidance.

  2. Interface and transport properties of metallization contacts to flat and wet-etching roughed N-polar n-type GaN.

    PubMed

    Wang, Liancheng; Liu, Zhiqiang; Guo, Enqing; Yang, Hua; Yi, Xiaoyan; Wang, Guohong

    2013-06-26

    The electrical characteristics of metallization contacts to flat (F-sample, without wet-etching roughed) and wet-etching roughed (R-sample) N-polar (Nitrogen-polar) n-GaN have been investigated. R-sample shows higher contact resistance (Rc) to Al/Ti/Au (~2.5 × 10(-5) Ω·cm(2)) and higher Schottky barriers height (SBH, ~0.386 eV) to Ni/Au, compared with that of F-sample (~1.3 × 10(-6) Ω·cm(2), ~0.154 eV). Reasons accounting for this discrepancy has been detail investigated and discussed: for R-sample, wet-etching process caused surface state and spontaneous polarization variation will degraded its electrical characteristics. Metal on R-sample shows smoother morphology, however, the effect of metal deposition state on electrical characteristics is negligible. Metallization contact area for both samples has also been further considered. Electrical characteristics of metallization contact to both samples show degradation upon annealing. The VLED chip (1 mm × 1 mm), which was fabricated on the basis of a hybrid scheme, coupling the advantage of F- and R-sample, shows the lowest forward voltage (2.75 V@350 mA) and the highest light output power.

  3. Spreading Resistance on Thin Film Contacts

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lau, Y. Y.; Hung, D.; Gilgenbach, R. M.

    2012-10-01

    Electrical contact [1] is important to wire-array z-pinches, metal-insulator-vacuum junctions, and high power microwave sources, etc. Contact problems account for 40 percent of all electrical failures, from small scale consumer electronics to large scale defense and aerospace systems. The crowding of the current lines at contacts leads to enhanced localized heating, a measure of which is the spreading resistance (Rs). For a microscopic area of contact (the ``a-spot'' [1]) on a thin film, we calculate Rs in both Cartesian and cylindrical geometries [2]. In the limit of small film thickness, h, the normalized thin film spreading resistance converges to the finite values, 2.77 for the Cartesian case and 0.28 for the cylindrical case. These same finite limits are found to be applicable to the a-spot between bulk solids in the high frequency limit if the skin depth is identified with h. Extension to a general a-spot geometry is proposed [2]. [4pt] [1] R. Holm, Electric Contacts, 4th ed., Springer (1967). [0pt] [2] P. Zhang et al., IEEE Trans. Electron Devices 59, 1936 (2012).

  4. Electrical, Chemical, And Microstructural Analysis of the Thermal Stability of Nickel-based Ohmic Contacts to Silicon Carbide for High-Temperature Electronics

    NASA Astrophysics Data System (ADS)

    Virshup, Ariel R.

    With increasing attention on curbing the emission of pollutants into the atmosphere, chemical sensors that can be used to monitor and control these unwanted emissions are in great demand. Examples include monitoring of hydrocarbons from automobile engines and monitoring of flue gases such as CO emitted from power plants. One of the critical limitations in high-temperature SiC gas sensors, however, is the degradation of the metal-SiC contacts over time. In this dissertation, we investigated the high-temperature stability of Pt/TaSix/Ni/SiC ohmic contacts, which have been implemented in SiC-based gas sensors developed for applications in diesel engines and power plants. The high-temperature stability of a Pt/TaSi2/Ni/SiC ohmic contact metallization scheme was characterized using a combination of current-voltage measurements, Auger electron spectroscopy, secondary ion mass spectrometry, and transmission electron microscope imaging and associated analytical techniques. Increasing the thicknesses of the Pt and TaSi2 layers promoted electrical stability of the contacts, which remained ohmic at 600°C in air for over 300 h; the specific contact resistance showed only a gradual increase from an initial value of 5.2 x 10-5 O-cm 2. We observed a continuous silicon-oxide layer in the thinner contact structures, which failed after 36 h of heating. It was found that the interface between TaSix and NiySi was weakened by the accumulation of free carbon (produced by the reaction of Ni and SiC), which in turn facilitated oxygen diffusion from the contact edges. Additional oxygen diffusion occurred along grain boundaries in the Pt overlayer. Meanwhile, thicker contacts, with less interfacial free carbon and enhanced electrical stability contained a much lower oxygen concentration that was distributed across the contact layers, precluding the formation of an electrically insulating contact structure.

  5. The modular approach enables a fully ab initio simulation of the contacts between 3D and 2D materials.

    PubMed

    Fediai, Artem; Ryndyk, Dmitry A; Cuniberti, Gianaurelio

    2016-10-05

    Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces-for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts-metal/graphene contacts-and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties.

  6. 78 FR 28207 - Electricity Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... DEPARTMENT OF ENERGY Electricity Advisory Committee AGENCY: Office of Electricity Delivery and... a meeting of the Electricity Advisory Committee (EAC). The Federal Advisory Committee Act (Pub. L..., Arlington, Virginia 22203. FOR FURTHER INFORMATION CONTACT: Matthew Rosenbaum, Office of Electricity...

  7. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  8. Resistance probe for energetic particle dosimetry

    DOEpatents

    Wampler, W.R.

    A probe for determining the energy and flux of particles in a plasma comprises a carbon film adapted to be exposed to the plasma, the film having an electrical resistance which is related to the number of particles impacting the film, contacts for passing an electrical current throught the film, and contacts for determining the electrical resistance of the film. An improved method for determining the energy or flux of particles in a plasma is also disclosed.

  9. Resistance probe for energetic particle dosimetry

    DOEpatents

    Wampler, William R.

    1988-01-01

    A probe for determining the energy and flux of particles in a plasma comprises a carbon film adapted to be exposed to the plasma, the film havinmg an electrical resistance which is related to the number of particles impacting the film, contacts for passing an electrical current through the film, and contacts for determining the electrical resistance of the film. An improved method for determining the energy or flux of particles in a plasma is also disclosed.

  10. A rotating electrical transfer device

    NASA Technical Reports Server (NTRS)

    Porter, R. S.

    1985-01-01

    The design, development, and performance characteristics of two roll ring configurations - a roll ring being a device used in transferring electrical energy across a continuously rotating or oscillating interface through one or more flexible rolling contacts, or flexures are described. Emphasis is placed on the design problems and solutions encountered during development in the areas of flexure fatigue, contact electroplating, electrical noise, and control of interface geometry. Also, the present status of each configuration is summarized.

  11. High duty cycle far-infrared germanium lasers

    NASA Astrophysics Data System (ADS)

    Chamberlin, Danielle Russell

    The effects of crystal geometry, heat transport, and optics on high duty cycle germanium hole population inversion lasers are investigated. Currently the laser's low duty cycle limits its utility for many applications. This low duty cycle is a result of the combination of the large electrical input power necessary and insufficient heat extraction. In order to achieve a continuous-wave device, the input power must be decreased and the cooling power increased. In order to improve laser efficiency and lower the input power, the effect of laser crystal geometry on the electric field uniformity is considered. Geometries with d/L>>1 or <<1 are shown to have improved electric field uniformity, where d is the distance between electrical contacts and L is the length in the direction of the Hall electric field. A geometry with d/L>>1 is shown to decrease the threshold voltage for lasing. Laser crystals with the traditional contact geometry have been compared to a new, planar contact design with both electrical contacts on the same side of the laser crystal. This new geometry provides a large d/L ratio while also allowing effective heat sinking. A pure, single-crystal silicon heat sink is developed for planar contact design lasers, which improves the duty cycle tenfold. For the traditional contact design, copper heat sinks are developed that demonstrate cooling powers up to 10 Watts. The effects of thermal conductivity, surface area, and interfacial thermal resistance on the heat transport are compared. To improve the cavity quality, thereby allowing for smaller crystal volumes, new optical designs are investigated. A vertical cavity structure is demonstrated for the planar contact structure using strontium titanate single crystals as mirrors. A mode-selecting cavity is implemented for the traditional contact design. The spectra of small-volume, near-threshold lasers are measured. In contrast to the emission of larger lasers, these lasers emit within narrow frequency peaks that do not shift smoothly with magnetic field. The details of the emission are shown to strongly depend on the optical cavity. A record duty cycle of 5% is achieved using a laser of dimensions 0.80 x 3 x 11 mm3 with the traditional contact geometry, improved copper heat sinks, and carefully etched crystal surfaces.

  12. Ultra Thin Poly-Si Nanosheet Junctionless Field-Effect Transistor with Nickel Silicide Contact

    PubMed Central

    Lin, Yu-Ru; Tsai, Wan-Ting; Wu, Yung-Chun; Lin, Yu-Hsien

    2017-01-01

    This study demonstrated an ultra thin poly-Si junctionless nanosheet field-effect transistor (JL NS-FET) with nickel silicide contact. For the nickel silicide film, two-step annealing and a Ti capping layer were adopted to form an ultra thin uniform nickel silicide film with low sheet resistance (Rs). The JL NS-FET with nickel silicide contact exhibited favorable electrical properties, including a high driving current (>107A), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this study compared the electrical characteristics of JL NS-FETs with and without nickel silicide contact. PMID:29112139

  13. Ultra Thin Poly-Si Nanosheet Junctionless Field-Effect Transistor with Nickel Silicide Contact.

    PubMed

    Lin, Yu-Ru; Tsai, Wan-Ting; Wu, Yung-Chun; Lin, Yu-Hsien

    2017-11-07

    This study demonstrated an ultra thin poly-Si junctionless nanosheet field-effect transistor (JL NS-FET) with nickel silicide contact. For the nickel silicide film, two-step annealing and a Ti capping layer were adopted to form an ultra thin uniform nickel silicide film with low sheet resistance (Rs). The JL NS-FET with nickel silicide contact exhibited favorable electrical properties, including a high driving current (>10⁷A), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this study compared the electrical characteristics of JL NS-FETs with and without nickel silicide contact.

  14. ELECTRIC CONTACT MEANS

    DOEpatents

    Grear, J.W. Jr.

    1959-03-10

    A switch adapted to maintain electrical connections under conditions of vibration or acceleration is described. According to the invention, thc switch includes a rotatable arm carrying a conductive bar arranged to close against two contacts spaced in the same plane. The firm and continuous engagement of the conductive bar with the contacts is acheived by utilizeing a spring located betwenn the vbar and athe a rem frzme and slidable mounting the bar in channel between two arms suspendef from the arm frame.

  15. Crane-Load Contact Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Mata, Carlos; Cox, Robert

    2005-01-01

    An electronic instrument has been developed as a prototype of a portable crane-load contact sensor. Such a sensor could be helpful in an application in which the load rests on a base in a horizontal position determined by vertical alignment pins (see Figure 1). If the crane is not positioned to lift the load precisely vertically, then the load can be expected to swing once it has been lifted clear of the pins. If the load is especially heavy, large, and/or fragile, it could hurt workers and/or damage itself and nearby objects. By indicating whether the load remains in contact with the pins when it has been lifted a fraction of the length of the pins, the crane-load contact sensor helps the crane operator determine whether it is safe to lift the load clear of the pins: If there is contact, then the load is resting against the sides of the pins and, hence, it may not be safe to lift; if contact is occasionally broken, then the load is probably not resting against the pins, so it should be safe to lift. It is assumed that the load and base, or at least the pins and the surfaces of the alignment holes in the load, are electrically conductive, so the instrument can use electrical contact to indicate mechanical contact. However, DC resistance cannot be used as an indicator of contact for the following reasons: The load and the base are both electrically grounded through cables (the load is grounded through the lifting cable of the crane) to prevent discharge of static electricity. In other words, the DC resistance between the load and the pins is always low, as though they were always in direct contact. Therefore, instead of DC resistance, the instrument utilizes the AC electrical impedance between the pins and the load. The signal frequency used in the measurement is high enough (.1 MHz) that the impedance contributed by the cables and the electrical ground network of the building in which the crane and the base are situated is significantly greater than the contact impedance between the pins and the load. The instrument includes a signal generator and voltage-measuring circuitry, and is connected to the load and the base as shown in Figure 2. The output of the signal generator (typically having amplitude of the order of a volt) is applied to the load via a 50-resistor, and the voltage between the load and the pins is measured. When the load and the pins are not in contact, the impedance between them is relatively high, causing the measured voltage to exceed a threshold value. When the load and the pins are in contact, the impedance between them falls to a much lower value, causing the voltage to fall below the threshold value. The voltage-measuring circuitry turns on a red light-emitting diode (LED) to indicate the lower-voltage/ contact condition. Whenever the contact has been broken and the non-contact/higher-voltage condition has lasted for more than 2 ms, the voltage-measuring circuitry indicates this condition by blinking a green LED.

  16. An electric contact method to measure contact state between stator and rotor in a traveling wave ultrasonic motor.

    PubMed

    Qu, Jianjun; Zhou, Tieying

    2003-09-01

    Performances of ultrasonic motor (USM) depend considerably on contact state between stator and rotor. To measure the contact state in a traveling wave ultrasonic motor (TWUSM), a special test method is necessary. This paper develops a new method named electric contact method to measure contact state of stator and rotor in traveling wave type USM. The effects of pre-load and exciting voltage (amplitude) of stator on contact state between stator and rotor are studied with this method. By a simulating tester of friction properties of TWUSM, the variations of stalling torque and no-load speed against the pre-load and the exciting voltage have been measured. The relative contact length that describes the contact characteristic of stator and rotor is proposed. The relation between the properties of TWUSM and the contact state of stator and rotor are presented. Additionally, according to a theoretical contact model of stator and rotor in TWUSM, the contact lengths at given conditions are calculated and compared with the experimental results.

  17. Complementary Barrier Infrared Detector (CBIRD) Contact Methods

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory J.; Gunapala, Sarath D.

    2013-01-01

    The performance of the CBIRD detector is enhanced by using new device contacting methods that have been developed. The detector structure features a narrow gap adsorber sandwiched between a pair of complementary, unipolar barriers that are, in turn, surrounded by contact layers. In this innovation, the contact adjacent to the hole barrier is doped n-type, while the contact adjacent to the electron barrier is doped p-type. The contact layers can have wider bandgaps than the adsorber layer, so long as good electrical contacts are made to them. If good electrical contacts are made to either (or both) of the barriers, then one could contact the barrier(s) directly, obviating the need for additional contact layers. Both the left and right contacts can be doped either n-type or ptype. Having an n-type contact layer next to the electron barrier creates a second p-n junction (the first being the one between the hole barrier and the adsorber) over which applied bias could drop. This reduces the voltage drop over the adsorber, thereby reducing dark current generation in the adsorber region.

  18. Microfabricated Electrical Connector for Atomic Force Microscopy Probes with Integrated Sensor/Actuator

    NASA Astrophysics Data System (ADS)

    Akiyama, Terunobu; Staufer, Urs; Rooij, Nico F. de

    2002-06-01

    A microfabricated, electrical connector is proposed for facilitating the mounting of atomic force microscopy (AFM) probes, which have an integrated sensor and/or actuator. Only a base chip, which acts as a socket, is permanently fixed onto a printed circuit board and electronically connected by standard wire bonding. The AFM chip, the “plug”, is flipped onto the base chip and pressed from the backside by a spring. Electrical contact with the eventual stress sensors, capacitive or piezoelectric sensor/actuators, is provided by contact bumps. These bumps of about 8 μm height are placed onto the base chip. They touch the pads on the AFM chip that were originally foreseen to be for wire bonding and thus provide the electrical contact. This connector schema was successfully used to register AFM images with piezoresistive cantilevers.

  19. 77 FR 29995 - Electricity Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... DEPARTMENT OF ENERGY Electricity Advisory Committee AGENCY: Office of Electricity Delivery and... a meeting of the Electricity Advisory Committee (EAC). The Federal Advisory Committee Act (Pub. L... INFORMATION CONTACT: Matthew Rosenbaum, Office of Electricity Delivery and Energy Reliability, U.S. Department...

  20. 77 FR 58534 - Electricity Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... DEPARTMENT OF ENERGY Electricity Advisory Committee AGENCY: Office of Electricity Delivery and... a meeting of the Electricity Advisory Committee (EAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Matthew Rosenbaum, Office of Electricity Delivery and Energy Reliability, U.S...

  1. 78 FR 9038 - Electricity Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... DEPARTMENT OF ENERGY Electricity Advisory Committee Meeting AGENCY: Office of Electricity Delivery... announces a meeting of the Electricity Advisory Committee (EAC). The Federal Advisory Committee Act (Pub. L..., Arlington, Virginia 22203. FOR FURTHER INFORMATION CONTACT: Matthew Rosenbaum, Office of Electricity...

  2. 76 FR 10577 - Electricity Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... DEPARTMENT OF ENERGY Electricity Advisory Committee Meeting AGENCY: Office of Electricity Delivery... announces a meeting of the reestablished Electricity Advisory Committee (EAC). The Federal Advisory... CONTACT: David Meyer, Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy...

  3. 76 FR 59667 - Electricity Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... DEPARTMENT OF ENERGY Electricity Advisory Committee AGENCY: Office of Electricity Delivery and... a meeting of the Electricity Advisory Committee (EAC). The Federal Advisory Committee Act (Pub. L..., Virginia 22203. FOR FURTHER INFORMATION CONTACT: David Meyer, Office of Electricity Delivery and Energy...

  4. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousineau, Emily; Bennion, Kevin; Devoto, Douglas

    Thermal management for electric motors is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric-drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform. As thermal management improves, there will be a direct trade-off among motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. During the development of thermal finite element analysis models and computational fluid dynamics models for electric motors, it was found that there was a lackmore » of open literature detailing the thermal properties of key materials common in electric motors that are significant in terms of heat removal. The lack of available literature, coupled with the strong interest from industry in the passive-stack thermal measurement results, led to experiments to characterize the thermal contact resistance between motor laminations. We examined four lamination materials, including the commonly used 26 gauge and 29 gauge M19 materials, the HF10 and Arnon 7 materials. These latter two materials are thinner and reduce eddy currents responsible for core losses. We measured the thermal conductivity of the lamination materials and the thermal contact resistance between laminations in a stack, as well as investigated factors affecting contact resistance between laminations such as the contact pressure and surface finish. Lamination property data will be provided and we also develop a model to estimate the through-stack thermal conductivity for materials beyond those that were directly tested in this work. For example, at a clamping pressure of 138 kPa, the 29 gauge M19 material has a through-stack thermal conductivity of 1.68 W/m-K, and the contact resistance between laminations was measured to be 193 mm^2-K/W. The measured bulk thermal conductivity for the M19 29 gauge material is 21.0 W/m-K. Density and specific heat were measured to be 7450 kg/m^3 and 463 J/kg-K, respectively. These results are helping, and will continue to help engineers and researchers in the design and development of motors.« less

  5. Transport measurements on monolayer and few-layer WSe2

    NASA Astrophysics Data System (ADS)

    Palomaki, Tauno; Zhao, Wenjin; Finney, Joe; Fei, Zaiyao; Nguyen, Paul; McKay, Frank; Cobden, David

    The behavior of the electrical contacts often dominates transport measurements in mono and few-layer transition metal dichalcogenide (TMD) devices. Creating good contacts for some TMDs is particularly challenging since the fabrication procedure should prevent the TMD from oxidizing or chemically interacting with the contacts. In this talk, we discuss our progress on creating mono and few-layer WSe2 devices with both good electrical contacts and minimal effects from the substrate, polymer contamination, oxidation and other chemistry. For example, we have developed a technique for encapsulating metallic contacts and WSe2 flakes together in hexagonal boron nitride with multiple gates to separate and control the contributions from the channel and the Schottky barriers at the contacts. Research supported in part by Samsung GRO grant US 040814

  6. Electrically tunable infrared metamaterial devices

    DOEpatents

    Brener, Igal; Jun, Young Chul

    2015-07-21

    A wavelength-tunable, depletion-type infrared metamaterial optical device is provided. The device includes a thin, highly doped epilayer whose electrical permittivity can become negative at some infrared wavelengths. This highly-doped buried layer optically couples with a metamaterial layer. Changes in the transmission spectrum of the device can be induced via the electrical control of this optical coupling. An embodiment includes a contact layer of semiconductor material that is sufficiently doped for operation as a contact layer and that is effectively transparent to an operating range of infrared wavelengths, a thin, highly doped buried layer of epitaxially grown semiconductor material that overlies the contact layer, and a metallized layer overlying the buried layer and patterned as a resonant metamaterial.

  7. Electrical safety device

    DOEpatents

    White, David B.

    1991-01-01

    An electrical safety device for use in power tools that is designed to automatically discontinue operation of the power tool upon physical contact of the tool with a concealed conductive material. A step down transformer is used to supply the operating power for a disconnect relay and a reset relay. When physical contact is made between the power tool and the conductive material, an electrical circuit through the disconnect relay is completed and the operation of the power tool is automatically interrupted. Once the contact between the tool and conductive material is broken, the power tool can be quickly and easily reactivated by a reset push button activating the reset relay. A remote reset is provided for convenience and efficiency of operation.

  8. Rotary Transformer Seals Power In

    NASA Technical Reports Server (NTRS)

    Studer, P. A.; Paulkovich, J.

    1982-01-01

    Rotary transformer originally developed for spacecraft transfers electrical power from stationary primary winding to rotating secondary without sliding contacts and very little leakage of electromagnetic radiation. Transformer has two stationary primary windings connected in parallel. Secondary, mounted on a shaft that extends out of housing, rotates between two windings of primary. Shaft of secondary is composed of electrically conducting inner and outer parts separated by an insulator. Electrical contact is made from secondary winding, through shaft, to external leads.

  9. Electrochemical system and method for electropolishing superconductive radio frequency cavities

    DOEpatents

    Taylor, E. Jennings; Inman, Maria E.; Hall, Timothy

    2015-04-14

    An electrochemical finishing system for super conducting radio frequency (SCRF) cavities including a low viscosity electrolyte solution that is free of hydrofluoric acid, an electrode in contact with the electrolyte solution, the SCRF cavity being spaced apart from the electrode and in contact with the electrolyte solution and a power source including a first electrical lead electrically coupled to the electrode and a second electrical lead electrically coupled to the cavity, the power source being configured to pass an electric current between the electrode and the workpiece, wherein the electric current includes anodic pulses and cathodic pulses, and wherein the cathodic pulses are interposed between at least some of the anodic pulses. The SCRF cavity may be vertically oriented during the finishing process.

  10. Changes of electrical conductivity of the metal surface layer by the laser alloying with foreign elements

    NASA Astrophysics Data System (ADS)

    Kostrubiec, Franciszek; Pawlak, Ryszard; Raczynski, Tomasz; Walczak, Maria

    1994-09-01

    Laser treatment of the surface of materials is of major importance for many fields technology. One of the latest and most significant methods of this treatment is laser alloying consisting of introducing foreign atoms into the metal surface layer during the reaction of laser radiation with the surface. This opens up vast possibilities for the modification of properties of such a layer (obtaining layers of increased microhardness, increased resistance to electroerosion in an electric arc, etc.). Conductivity of the material is a very important parameter in case of conductive materials used for electrical contacts. The paper presents the results of studies on change in electrical conductivity of the surface layer of metals alloyed with a laser. A comparative analysis of conductivity of base metal surface layers prior to and following laser treatment has been performed. Depending on the base metal and the alloying element, optical treatment parameters allowing a required change in the surface layer conductivity have been selected. A very important property of the contact material is its resistance to plastic strain. It affects the real value of contact surface coming into contact and, along with the material conductivity, determines contact resistance and the amount of heat generated in place of contact. These quantities are directly related to the initiation and the course of an arc discharge, hence they also affect resistance to electroerosion. The parameter that reflects plastic properties with loads concentrated on a small surface, as is the case with a reciprocal contact force of two real surfaces with their irregularities being in contact, is microhardness. In the paper, the results of investigations into microhardness of modified surface layers compared with base metal microhardness have been presented.

  11. 77 FR 10486 - Electricity Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... DEPARTMENT OF ENERGY Electricity Advisory Committee Meeting AGENCY: Office of Electricity Delivery... announces a meeting of the Electricity Advisory Committee (EAC). The Federal Advisory Committee Act (Pub. L... 20229. FOR FURTHER INFORMATION CONTACT: Matthew Rosenbaum, Office of Electricity Delivery and Energy...

  12. Electrical injury from subway third rails: serious injury associated with intermediate voltage contact.

    PubMed

    Rabban, J; Adler, J; Rosen, C; Blair, J; Sheridan, R

    1997-09-01

    Railway and subway-associated electrical trauma is rare and typically involves high voltage (> 20,000) arc injuries. Not all rail systems utilize such high voltage. We report 16 cases of electrical trauma due to 600 V direct contact with subway 'third' rails. A case series of injured patients presenting to Shriners Burns Institute, Boston or Massachusetts General Hospital between 1970 and 1995 was retrospectively analyzed. A total of 16 cases was identified. Among seven subway workers, the mechanism of rail contact was unintentional by a tool, a hand or by falling; no deaths occurred. Among nine non-occupational victims, injuries involved suicide attempts, unintentional falls, or risk-taking behavior. This group suffered greater burn severity, operative procedures, and complications; three deaths occurred. This is the largest report series of direct electrical trauma from a subway third rail. The high morbidity and mortality from this 600 V contact suggests that the traditional classification of low voltage (< 1000 V) exposure can be subdivided to reflect the serious and lethal potential of intermediate range exposures compared to household range exposures (0-220 V).

  13. Electrical Nanocontact Between Bismuth Nanowire Edges and Electrodes

    NASA Astrophysics Data System (ADS)

    Murata, Masayuki; Nakamura, Daiki; Hasegawa, Yasuhiro; Komine, Takashi; Uematsu, Daisuke; Nakamura, Shinichiro; Taguchi, Takashi

    2010-09-01

    Three methods for attaching electrodes to a bismuth nanowire sample were investigated. In the first and second methods, thin layers of titanium and copper were deposited by ion plating under vacuum onto the edge surface of individual bismuth nanowire samples that were encapsulated in a quartz template. Good electrical contact between the electrodes and the nanowire was achieved using silver epoxy and conventional solder on the thin-film layers in the first and second methods, respectively. In the third method, a low-melting-point solder was utilized and was also successful in achieving good electrical contact in air atmosphere. The connection methods showed no difference in terms of resistivity temperature dependence or Seebeck coefficient. The third method has an advantage in that nanocontact is easily achieved; however, diffusion of the solder into the nanowire allows contamination near the melting point of the solder. In the first and second methods, the thin-film layer enabled electrical contact to be more safely achieved than the direct contact used in the third method, because the thin-film layer prevented diffusion of binder components.

  14. Improved ion detector

    DOEpatents

    Tullis, A.M.

    1986-01-30

    An improved ion detector device of the ionization detection device chamber type comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  15. Control of Surface Attack by Gallium Alloys in Electrical Contacts.

    DTIC Science & Technology

    1986-03-28

    and atmospheric control but does not allow visual observation of the contact brushes. This machine is a small homopolar motor built from mild steel...collectors,gallium, homopolar devices,liquid metals,~- is. ABSTRACT ICNI.. .. w 41N"w -~dv.mp.d Wrllt by Itabata" * Electrical contact between a copp’er...32 5 Test rig with felt metal brushes 32 6 Homopolar test apparatus 33 7 Rewetting of alloy track 33 8 Alloy track after running with finger 34 brushes

  16. Oxygen-Free Welding Contact Tips

    NASA Technical Reports Server (NTRS)

    Pike, James F.

    1993-01-01

    Contact tips for gas/metal arc welding (GMAW) fabricated from oxygen-free copper. Prototype tips tested in robotic welding, for which application intended. Reduces electrical erosion, increases electrical conductivity, and reduces mechanical wear. Productivity of robotic welding increases while time during welding interrupted for removal and replacement of contact tips minimal. Improves alignment of joints and filler metal, reducing rate of rejection and repair of unacceptable weldments. Utility extends beyond aerospace industry to mass production of various types of hardware, including heavy off-highway construction equipment.

  17. Pioneer Design of Non-contact Synchronized Measurement Devices Using Electric and Magnetic Field Sensors

    DOE PAGES

    Yao, Wenxuan; Zhang, Yingchen; Liu, Yong; ...

    2017-04-10

    Traditional synchrophasors rely on CTs and PTs physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to lack of facilities. Since transmission lines naturally generate alternating electrical and magnetic fields in the surrounding atmosphere, this paper presents two innovative designs for non-contact synchronized measurement devices (NCSMD), including an electric field sensor based non-contact SMD (E-NCSMD) and a magnetic field sensor based non-contact SMD (M-NCSMD). Compared with conventional synchrophasors, E-NCSMD and M-NCSMD are much more flexible to be deployedmore » and have much lower costs, making E-NCSMDs and M-NCSMD highly accessible and useful for a wide array of phasor measurement applications. Laboratory and field experiment results verified the effectiveness of the designs of both E-NCSMD and M-NCSMD.« less

  18. Pioneer Design of Non-contact Synchronized Measurement Devices Using Electric and Magnetic Field Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Wenxuan; Zhang, Yingchen; Liu, Yong

    Traditional synchrophasors rely on CTs and PTs physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to lack of facilities. Since transmission lines naturally generate alternating electrical and magnetic fields in the surrounding atmosphere, this paper presents two innovative designs for non-contact synchronized measurement devices (NCSMD), including an electric field sensor based non-contact SMD (E-NCSMD) and a magnetic field sensor based non-contact SMD (M-NCSMD). Compared with conventional synchrophasors, E-NCSMD and M-NCSMD are much more flexible to be deployedmore » and have much lower costs, making E-NCSMDs and M-NCSMD highly accessible and useful for a wide array of phasor measurement applications. Laboratory and field experiment results verified the effectiveness of the designs of both E-NCSMD and M-NCSMD.« less

  19. Apparatus for mounting a diode in a microwave circuit

    DOEpatents

    Liu, Shing-gong

    1976-07-27

    Apparatus for mounting a diode in a microwave circuit for making electrical contact between the circuit and ground and for dissipation of heat between the diode and a heat sink. The diode, supported on a thermally and electrically conductive member, is resiliently pressed in electrical contact with the microwave circuit. A tapered collar on the member is elastically deformably wedged into a tapered aperture formed in a heat sink. The wedged collar tightens firmly around the member establishing good thermal and electrical conduction from the diode to the heat sink and ground. Disassembly is facilitated because of the elastically deformed collar.

  20. Changes in the structure of the surface layer of metal materials upon friction and electric current loading

    NASA Astrophysics Data System (ADS)

    Fadin, V. V.

    2013-09-01

    Dependences of the electric conductivity of a contact and wear intensity of metal materials on the electric current density in sliding friction are obtained. It is established that alloying of the material basis leads to faster damage of the friction surface. The presence of about 40 аt.% oxygen in the surface layer is detected by the Auger spectrometry method. It is demonstrated by the x-ray diffraction method that FeO formed in the surface layer leads to an increase in the electric conductivity of the contact.

  1. Kinematics of the tooth tapping movement.

    PubMed

    Widmalm, S E; Hedegård, B

    1977-07-01

    Electrical activity in the masseter muscles and tooth contact vibrations were recorded simultaneously from subjects tapping their teeth slowly into maximal intercuspidation and again with maximal frequency. High speed cinephotography was also used with four of the ten subjects. Three main parts could be distinguished on the obtained graphical representation of the tooth tapping movement: tooth contact phase (TCP), opening phase (OP) and closing phase (CP). Tapping frequency was increased by decreasing the jaw opening degree and the durations of TCP, OP and CP. The jaw velocity immediately before tooth contact, which may be of significance for the reflex response, was however not increased. The average jaw speed was nevertheless increased from 10 to 15 cm/s since the turning from OP to CP was more abrupt in high than in low frequency tapping. The duration of electrical activity after tooth contact was significantly shorter at tapping with high than with low frequency. The teeth maintained contact without detectable rebound between each open-close cycle. The OP started about 100 ms after the cessation of electrical activity both at low and high tapping frequency. The time between end of electrical activity and the start of a new OP was supposed to be dependent upon the relaxation time of the masseter muscles.

  2. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nirwal, Varun Singh, E-mail: varun.nirwal30@gmail.com; Singh, Joginder; Gautam, Khyati

    2016-05-06

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10{sup −5} Amore » to 7.31×10{sup −7} A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of R{sub s} decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.« less

  3. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    PubMed Central

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-01-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437

  4. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    PubMed

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  5. Electrical Contacts in Monolayer Arsenene Devices.

    PubMed

    Wang, Yangyang; Ye, Meng; Weng, Mouyi; Li, Jingzhen; Zhang, Xiuying; Zhang, Han; Guo, Ying; Pan, Yuanyuan; Xiao, Lin; Liu, Junku; Pan, Feng; Lu, Jing

    2017-08-30

    Arsenene, arsenic analogue of graphene, as an emerging member of two-dimensional semiconductors (2DSCs), is quite promising in next-generation electronic and optoelectronic applications. The metal electrical contacts play a vital role in the charge transport and photoresponse processes of nanoscale 2DSC devices and even can mask the intrinsic properties of 2DSCs. Here, we present a first comprehensive study of the electrical contact properties of monolayer (ML) arsenene with different electrodes by using ab initio electronic calculations and quantum transport simulations. Schottky barrier is always formed with bulk metal contacts owing to the Fermi level pinning (pinning factor S = 0.33), with electron Schottky barrier height (SBH) of 0.12, 0.21, 0.25, 0.35, and 0.50 eV for Sc, Ti, Ag, Cu, and Au contacts and hole SBH of 0.75 and 0.78 eV for Pd and Pt contacts, respectively. However, by contact with 2D graphene, the Fermi level pinning effect can be reduced due to the suppression of metal-induced gap states. Remarkably, a barrier free hole injection is realized in ML arsenene device with graphene-Pt hybrid electrode, suggestive of a high device performance in such a ML arsenene device. Our study provides a theoretical foundation for the selection of favorable electrodes in future ML arsenene devices.

  6. Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same

    NASA Technical Reports Server (NTRS)

    Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)

    2013-01-01

    An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.

  7. Electrochemical Device Comprising Composite Bipolar Plate and Method of Using the Same

    NASA Technical Reports Server (NTRS)

    Mittelsteadt, Cortney K. (Inventor); Braff, William A. (Inventor)

    2017-01-01

    An electrochemical device and methods of using the same. In one embodiment, the electrochemical device may be used as a fuel cell and/or as an electrolyzer and includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, chemically-inert, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, as well as a fluid chamber and a non-porous an electrically-conductive plate.

  8. 78 FR 12042 - Electric Grid Integration Technical Workshops

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    .... The documents are the Electricity Distribution System Workshop Discussion Summary and the Electricity... FURTHER INFORMATION CONTACT: Caitlin A. Callaghan, National Electricity Delivery Division, Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy, Forrestal Building, Room 8E-032, 1000...

  9. Using an alternate light source to detect electrically singed feathers and hair in a forensic setting.

    PubMed

    Viner, Tabitha C; Kagan, Rebecca A; Johnson, Jennifer L

    2014-01-01

    Mortality due to electrical injury in wildlife may occur in the form of lightning strike or power line contact. Evidence of electrical contact may be grossly obvious, with extensive singeing, curling, and blackening of feathers, fur, or skin. Occasionally, changes may be subtle, owing to lower current or reduced conductivity, making a definitive diagnosis of electrocution more difficult. We describe the use of an alternate light source in the examination of cases of lightning strike and power line contact in wildlife, and the enhanced detection of changes due to electrical currents in the hair and feathers of affected animals. Subtle changes in the wing feathers of 12 snow geese and 1 wolf that were struck by separate lightning events were made obvious by the use of an alternate light source. Similarly, this technique can be used to strengthen the evidence for power line exposure in birds. Published by Elsevier Ireland Ltd.

  10. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  11. Chemical control of electrical contact to sp² carbon atoms.

    PubMed

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-04-16

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp(2) carbon structures.

  12. Chemical control of electrical contact to sp2 carbon atoms

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-04-01

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp2 carbon structures.

  13. Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge.

    PubMed

    Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert

    2012-07-07

    Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators.

  14. Characterization of Cr/6H-SiC(0 0 0 1) nano-contacts by current-sensing AFM

    NASA Astrophysics Data System (ADS)

    Grodzicki, Miłosz; Smolarek, Szymon; Mazur, Piotr; Zuber, Stefan; Ciszewski, Antoni

    2009-11-01

    The electrical properties and interface chemistry of Cr/6H-SiC(0 0 0 1) contacts have been studied by current-sensing atomic force microscopy (CS-AFM) and X-ray photoelectron spectroscopy (XPS). Cr layers were vapor deposited under ultrahigh vacuum onto both ex situ etched in H 2 and in situ Ar + ion-bombarded samples. The Cr/SiC contacts are electrically non-uniform. Both the measured I- V characteristics and the modeling calculations enabled to estimate changes of the Schottky barrier height caused by Ar + bombardment. Formation of ohmic nano-contacts on Ar +-bombarded surfaces was observed.

  15. Improving the contact resistance at low force using gold coated carbon nanotube surfaces

    NASA Astrophysics Data System (ADS)

    McBride, J. W.; Yunus, E. M.; Spearing, S. M.

    2010-04-01

    Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.

  16. Integrated electrical connector

    DOEpatents

    Benett, William J.; Ackler, Harold D.

    2005-05-24

    An electrical connector is formed from a sheet of electrically conductive material that lies in between the two layers of nonconducting material that comprise the casing of an electrical chip. The connector is electrically connected to an electrical element embedded within the chip. An opening in the sheet is concentrically aligned with a pair of larger holes respectively bored through the nonconducting layers. The opening is also smaller than the diameter of an electrically conductive contact pin. However, the sheet is composed flexible material so that the opening adapts to the diameter of the pin when the pin is inserted therethrough. The periphery of the opening applies force to the sides of the pin when the pin is inserted, and thus holds the pin within the opening and in contact with the sheet, by friction. The pin can be withdrawn from the connector by applying sufficient axial force.

  17. Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guanguang; Singh, Prabhakar; Stevenson, Jeffry W.

    In this work, simulated cathode/interconnect structures were used to investigate the effects of different contact materials on the contact resistance between a strontium doped lanthanum ferrite cathode and a Crofer22 APU interconnect. Among the materials studied, Pt, which has a prohibitive cost for the application, demonstrated the best performance as a contact paste. For the relatively cost-effective perovskites, the contact ASR was found to depend on their electrical conductivity, scale growth on the metallic interconnect, and interactions between the contact material and the metallic interconnect or particularly the scale grown on the interconnect. Manganites appeared to promote manganese-containing spinel interlayer formation that helped minimize the increase of contact ASR. Chromium from the interconnects reacted with strontium in the perovskites to form SrCrO 4. An improved performance was achieved by application of a thermally grown (Mn,Co) 3O 4 spinel protection layer on Crofer22 APU that dramatically minimized the contact resistance between the cathodes and interconnects.

  18. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-potential electrical conductors. 57.12011... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential electrical conductors shall be covered, insulated, or placed to prevent contact with low potential conductors. ...

  19. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-potential electrical conductors. 57.12011... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential electrical conductors shall be covered, insulated, or placed to prevent contact with low potential conductors. ...

  20. Reliable aluminum contact formation by electrostatic bonding

    NASA Astrophysics Data System (ADS)

    Kárpáti, T.; Pap, A. E.; Radnóczi, Gy; Beke, B.; Bársony, I.; Fürjes, P.

    2015-07-01

    The paper presents a detailed study of a reliable method developed for aluminum fusion wafer bonding assisted by the electrostatic force evolving during the anodic bonding process. The IC-compatible procedure described allows the parallel formation of electrical and mechanical contacts, facilitating a reliable packaging of electromechanical systems with backside electrical contacts. This fusion bonding method supports the fabrication of complex microelectromechanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) structures with enhanced temperature stability, which is crucial in mechanical sensor applications such as pressure or force sensors. Due to the applied electrical potential of  -1000 V the Al metal layers are compressed by electrostatic force, and at the bonding temperature of 450 °C intermetallic diffusion causes aluminum ions to migrate between metal layers.

  1. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    NASA Astrophysics Data System (ADS)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  2. Low resistance thin film organic solar cell electrodes

    DOEpatents

    Forrest, Stephen [Princeton, NJ; Xue, Jiangeng [Piscataway, NJ

    2008-01-01

    A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.

  3. Electrical contact structures for solid oxide electrolyte fuel cell

    DOEpatents

    Isenberg, Arnold O.

    1984-01-01

    An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.

  4. Conformally encapsulated multi-electrode arrays with seamless insulation

    DOEpatents

    Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah

    2016-11-22

    Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.

  5. Steel refining with an electrochemical cell

    DOEpatents

    Blander, M.; Cook, G.M.

    1988-05-17

    Apparatus is described for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom. 2 figs.

  6. Steel refining with an electrochemical cell

    DOEpatents

    Blander, M.; Cook, G.M.

    1985-05-21

    Disclosed is an apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  7. Steel refining with an electrochemical cell

    DOEpatents

    Blander, Milton; Cook, Glenn M.

    1988-01-01

    Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  8. Ink-Jet Printer Forms Solar-Cell Contacts

    NASA Technical Reports Server (NTRS)

    Alexander, Paul, Jr.; Vest, R. W.; Binford, Don A.; Tweedell, Eric P.

    1988-01-01

    Contacts formed in controllable patterns with metal-based inks. System forms upper metal contact patterns on silicon photovoltaic cells. Uses metallo-organic ink, decomposes when heated, leaving behind metallic, electrically conductive residue in printed area.

  9. Non-permeable substrate carrier for electroplating

    DOEpatents

    Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava

    2012-11-27

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  10. Non-permeable substrate carrier for electroplating

    DOEpatents

    Abas, Emmanuel Chua; Chen, Chen-an; Ma, Diana Xiaobing; Ganti, Kalyana; Divino, Edmundo Anida; Ermita, Jake Randal G.; Capulong, Jose Francisco S.; Castillo, Arnold Villamor

    2015-12-29

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  11. 21 CFR 884.4150 - Bipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... high frequency electrical current through tissue between two electrical contacts of a probe. This generic type of device may include the following accessories: an electrical generator, probes, and...

  12. 21 CFR 884.4150 - Bipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... high frequency electrical current through tissue between two electrical contacts of a probe. This generic type of device may include the following accessories: an electrical generator, probes, and...

  13. 21 CFR 884.4150 - Bipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... high frequency electrical current through tissue between two electrical contacts of a probe. This generic type of device may include the following accessories: an electrical generator, probes, and...

  14. 21 CFR 884.4150 - Bipolar endoscopic coagulator-cutter and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... high frequency electrical current through tissue between two electrical contacts of a probe. This generic type of device may include the following accessories: an electrical generator, probes, and...

  15. Effect of Yttrium on the Microstructure and Properties of Pt-Ir Electrical Contact Materials

    NASA Astrophysics Data System (ADS)

    Wang, Saibei; Sun, Yong; Wang, Song; Peng, Mingjun; Liu, Manmen; Duan, Yonghua; Chen, Yongtai; Yang, Youcai; Chen, Song; Li, Aikun; Xie, Ming

    2017-10-01

    The Pt-10Ir and Pt-10Ir-1Y were prepared by high frequency induction melting, then the samples were obtained by powder metallurgy, hot extrusion and drawing. The influence of Y addition on microstructure and electrical contact properties of Pt-10Ir alloy has been investigated by using optical microscopy, SEM, electronic balance and the contact material test system. The results show that the addition of Y leads to the micro-structural refinement and directional change of material transfer, but has almost no influence on erosion morphology.

  16. Flex-gear electrical power transmission

    NASA Technical Reports Server (NTRS)

    Vranish, John; Peritt, Jonathan

    1993-01-01

    This study was conducted to develop an alternative way of transferring electricity across a continuously rotating joint, with little wear and the potential for low electrical noise. The problems with wires, slip rings, electromagnetic couplings, and recently invented roll-rings are discussed. Flex-gears, an improvement of roll-rings, are described. An entire class of flexgear devices is developed. Finally, the preferred flex-gear device is optimized for maximum electrical contact and analyzed for average mechanical power loss and maximum stress. For a device diameter of six inches, the preferred device is predicted to have a total electrical contact area of 0.066 square inches. In the preferred device, a small amount of internal sliding produces a 0.003 inch-pound torque that resists the motion of the device.

  17. Miniature intermittent contact switch

    NASA Technical Reports Server (NTRS)

    Sword, A.

    1972-01-01

    Design of electric switch for providing intermittent contact is presented. Switch consists of flexible conductor surrounding, but separated from, fixed conductor. Flexing of outside conductor to contact fixed conductor completes circuit. Advantage is small size of switch compared to standard switches.

  18. Electric Shock Injuries in Children

    MedlinePlus

    ... comes into direct contact with a source of electricity, the current passes through it, producing what's called ... sturdy, dry, nonmetallic object that won't conduct electricity. Move the child as little as possible because ...

  19. 77 FR 35368 - Inside Passage Electric Cooperative; Notice of Application Tendered for Filing With the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ..., 16 U.S.C. 791(a)-825(r). h. Applicant Contact: Mr. Peter A. Bibb, Operations Manager, Inside Passage... No.: P-14066-002. c. Date filed: May 25, 2012. d. Applicant: Inside Passage Electric Cooperative. e..., [email protected] . i. FERC Contact: Ryan Hansen, 888 1st St. NE., Washington, DC 20426, (202) 502-8074, ryan...

  20. 75 FR 140 - Cordova Electric Cooperative, Inc.; Notice of Intent To File License Application, Filing of Pre...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13328-001] Cordova Electric... Electric Cooperative, Inc. (Cordova Electric). e. Name of Project: Snyder Falls Creek Hydroelectric Project... 5.3 of the Commission's regulations. h. Applicant Contact: Clay Koplin, CEO, Cordova Electric...

  1. Impact of incomplete metal coverage on the electrical properties of metal-CNT contacts: A large-scale ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fediai, Artem, E-mail: artem.fediai@nano.tu-dresden.de; Ryndyk, Dmitry A.; Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden

    2016-09-05

    Using a dedicated combination of the non-equilibrium Green function formalism and large-scale density functional theory calculations, we investigated how incomplete metal coverage influences two of the most important electrical properties of carbon nanotube (CNT)-based transistors: contact resistance and its scaling with contact length, and maximum current. These quantities have been derived from parameter-free simulations of atomic systems that are as close as possible to experimental geometries. Physical mechanisms that govern these dependences have been identified for various metals, representing different CNT-metal interaction strengths from chemisorption to physisorption. Our results pave the way for an application-oriented design of CNT-metal contacts.

  2. Long-Term Stability of Oxide Nanowire Sensors via Heavily Doped Oxide Contact.

    PubMed

    Zeng, Hao; Takahashi, Tsunaki; Kanai, Masaki; Zhang, Guozhu; He, Yong; Nagashima, Kazuki; Yanagida, Takeshi

    2017-12-22

    Long-term stability of a chemical sensor is an essential quality for long-term collection of data related to exhaled breath, environmental air, and other sources in the Internet of things (IoT) era. Although an oxide nanowire sensor has shown great potential as a chemical sensor, the long-term stability of sensitivity has not been realized yet due to electrical degradation under harsh sensing conditions. Here, we report a rational concept to accomplish long-term electrical stability of metal oxide nanowire sensors via introduction of a heavily doped metal oxide contact layer. Antimony-doped SnO 2 (ATO) contacts on SnO 2 nanowires show much more stable and lower electrical contact resistance than conventional Ti contacts for high temperature (200 °C) conditions, which are required to operate chemical sensors. The stable and low contact resistance of ATO was confirmed for at least 1960 h under 200 °C in open air. This heavily doped oxide contact enables us to realize the long-term stability of SnO 2 nanowire sensors while maintaining the sensitivity for both NO 2 gas and light (photo) detections. The applicability of our method is confirmed for sensors on a flexible polyethylene naphthalate (PEN) substrate. Since the proposed fundamental concept can be applied to various oxide nanostructures, it will give a foundation for designing long-term stable oxide nanomaterial-based IoT sensors.

  3. Convenient mounting method for electrical measurements of thin samples

    NASA Technical Reports Server (NTRS)

    Matus, L. G.; Summers, R. L.

    1986-01-01

    A method for mounting thin samples for electrical measurements is described. The technique is based on a vacuum chuck concept in which the vacuum chuck simultaneously holds the sample and established electrical contact. The mounting plate is composed of a glass-ceramic insulating material and the surfaces of the plate and vacuum chuck are polished. The operation of the vacuum chuck is examined. The contacts on the sample and mounting plate, which are sputter-deposited through metal masks, are analyzed. The mounting method was utilized for van der Pauw measurements.

  4. Charge gradient microscopy

    DOEpatents

    Roelofs, Andreas; Hong, Seungbum

    2018-02-06

    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.

  5. Tin Whisker Electrical Short Circuit Characteristics Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Bayliss, Jon A.; Ludwib, Lawrence L.; Zapata, Maria C.

    2007-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB).

  6. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    DOE PAGES

    Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor; ...

    2018-05-08

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less

  7. Active alignment/contact verification system

    DOEpatents

    Greenbaum, William M.

    2000-01-01

    A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.

  8. Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor

    Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less

  9. 78 FR 41339 - Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ...] Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards AGENCY: Federal... Reliability Standards identified by the North American Electric Reliability Corporation (NERC), the Commission-certified Electric Reliability Organization. FOR FURTHER INFORMATION CONTACT: Kevin Ryan (Legal Information...

  10. Occupational fatalities due to electrocutions in the construction industry.

    PubMed

    Janicak, Christopher A

    2008-01-01

    Occupational fatalities due to contact with electricity account for approximately 9% of all deaths in the construction industry and is the fourth leading cause of death in this industry. Differences in the proportions of electrocutions in the construction industry are significantly different from other industries based upon the age of the worker and the source of the electricity. This study found that, in the construction industry, the proportion of occupational fatalities due to contact with electric current is significantly higher for workers in the 16 to 19 years old age group. Contact with overhead power lines occurred more frequently with younger workers, while contact with electric wiring, transformers, and related equipment was found to occur more frequently with older workers. The proportion of fatalities due to this event was also found to account for a significantly greater proportion of fatalities in the construction industry overall. The proportions of electrocution fatalities in the construction industry were found to be significantly higher for younger workers when compared to all other industries. Focusing prevention measures toward younger workers who work near overhead power lines could have a significant impact upon death rates. For older workers, the focus should be on those who work on or near transformers, electrical wiring, and components. Across the construction industry, implementation of effective lockout-tagout programs, and verification of energy isolation, can prevent approximately 125 fatalities per year in the construction industry.

  11. Nanoscale electro-structural characterisation of ohmic contacts formed on p-type implanted 4H-SiC

    NASA Astrophysics Data System (ADS)

    Frazzetto, Alessia; Giannazzo, Filippo; Lo Nigro, Raffaella; di Franco, Salvatore; Bongiorno, Corrado; Saggio, Mario; Zanetti, Edoardo; Raineri, Vito; Roccaforte, Fabrizio

    2011-12-01

    This work reports a nanoscale electro-structural characterisation of Ti/Al ohmic contacts formed on p-type Al-implanted silicon carbide (4H-SiC). The morphological and the electrical properties of the Al-implanted layer, annealed at 1700°C with or without a protective capping layer, and of the ohmic contacts were studied using atomic force microscopy [AFM], transmission line model measurements and local current measurements performed with conductive AFM. The characteristics of the contacts were significantly affected by the roughness of the underlying SiC. In particular, the surface roughness of the Al-implanted SiC regions annealed at 1700°C could be strongly reduced using a protective carbon capping layer during annealing. This latter resulted in an improved surface morphology and specific contact resistance of the Ti/Al ohmic contacts formed on these regions. The microstructure of the contacts was monitored by X-ray diffraction analysis and a cross-sectional transmission electron microscopy, and correlated with the electrical results.

  12. Awards to Boost Research into Cheaper Solar Electricity

    Science.gov Websites

    Awards to Boost Research into Cheaper Solar Electricity For more information contact: George thin-film photovoltaic cells. Photovoltaics (solar cells) generate electricity directly from sunlight cut the cost of solar electricity," said Energy Secretary Spencer Abraham. "With lowered

  13. Method For Creating Corrosion Resistant Surface On An Aluminum Copper Alloy

    DOEpatents

    Mansfeld, Florian B.; Wang, You; Lin, Simon H.

    1997-06-03

    A method for treating the surface of aluminum alloys hang a relatively high copper content is provided which includes the steps of removing substantially all of the copper from the surface, contacting the surface with a first solution containing cerium, electrically charging the surface while contacting the surface in an aqueous molybdate solution, and contacting the surface with a second solution containing cerium. The copper is substantially removed from the surface in the first step either by (i) contacting the surface with an acidic chromate solution or by (ii) contacting the surface with an acidic nitrate solution while subjecting the surface to an electric potential. The corrosion-resistant surface resulting from the invention is excellent, consistent and uniform throughout the surface. Surfaces treated by the invention may often be certified for use in salt-water services.

  14. Electro-thermal analysis of contact resistance

    NASA Astrophysics Data System (ADS)

    Pandey, Nitin; Jain, Ishant; Reddy, Sudhakar; Gulhane, Nitin P.

    2018-05-01

    Electro-Mechanical characterization over copper samples are performed at the macroscopic level to understand the dependence of electrical contact resistance and temperature on surface roughness and contact pressure. For two different surface roughness levels of samples, six levels of load are selected and varied to capture the bulk temperature rise and electrical contact resistance. Accordingly, the copper samples are modelled and analysed using COMSOLTM as a simulation package and the results are validated by the experiments. The interface temperature during simulation is obtained using Mikic-Elastic correlation and by directly entering experimental contact resistance value. The load values are varied and then reversed in a similar fashion to capture the hysteresis losses. The governing equations & assumptions underlying these models and their significance are examined & possible justification for the observed variations are discussed. Equivalent Greenwood model is also predicted by mapping the results of the experiment.

  15. Controlling interface oxygen for forming Ag ohmic contact to semi-polar (1 1 -2 2) plane p-type GaN

    NASA Astrophysics Data System (ADS)

    Park, Jae-Seong; Han, Jaecheon; Seong, Tae-Yeon

    2014-11-01

    Low-resistance Ag ohmic contacts to semi-polar (1 1 -2 2) p-GaN were developed by controlling interfacial oxide using a Zn layer. The 300 °C-annealed Zn/Ag samples showed ohmic behavior with a contact resistivity of 6.0 × 10-4 Ω cm2 better than that of Ag-only contacts (1.0 × 10-3 Ω cm2). The X-ray photoemission spectroscopy (XPS) results showed that annealing caused the indiffusion of oxygen at the contact/GaN interface, resulting in the formation of different types of interfacial oxides, viz. Ga-oxide and Ga-doped ZnO. Based on the XPS and electrical results, the possible mechanisms underlying the improved electrical properties of the Zn/Ag samples are discussed.

  16. [Epidemiological investigation on 2 133 hospitalized patients with electrical burns].

    PubMed

    Jiang, M J; Li, Z; Xie, W G

    2017-12-20

    Objective: To analyze the epidemiological characteristics of the hospitalized patients with electrical burns in Institute of Burns of Tongren Hospital of Wuhan University & Wuhan Third Hospital (hereinafter referred to as Institute of Burns of Wuhan Third Hospital), so as to provide reference for the prevention and treatment of electrical burns. Methods: Medical records of all hospitalized burn patients in Institute of Burns of Wuhan Third Hospital from January 2004 to December 2016 were collected. Genders, ages, social categories, seasons of injury, total burn areas, depths of wounds, electrical voltages of injury, sites of wound, treatment methods, amputation rates, lengths of hospital stay, operation costs, hospitalization costs, and treatment outcomes of the electrical burn patients were collected. Treatment methods, lengths of hospital stay, operation costs, and hospitalization costs of the thermal burn patients were collected and compared with those of the electrical burn patients. Electrical voltages of injury, amputation rates, operation costs, hospitalization costs, and treatment outcomes were compared and analyzed between the electrical contact burn patients and the electrical arc burn patients. Data were processed with Chi-square test and Wilcoxon rank-sum test. Results: During the 13 years, 23 534 burn patients were admitted to Institute of Burns of Wuhan Third Hospital, among whom 2 133 (9.1%) were with electrical burns, without obvious variation in admission number of electrical burn patients every year. There were 1 418 patients (66.5%) with electrical contact burns and 715 patients (33.5%) with electrical arc burns. The ratio of male to female was 11.2∶1.0 among the electrical burn patients with known genders. The proportions of three age groups of more than 20 years old and less than or equal to 30 years old, more than 30 years old and less than or equal to 40 years old, and more than 40 years old and less than or equal to 50 years old were relatively higher, which were 18.3% (391/2 133), 22.1% (471/2 133), and 24.6% (525/2 133), respectively. The first three social category groups in proportions were workers, peasants, and preschool children, which were 57.9% (1 235/2 133), 14.6% (311/2 133), and 6.0% (128/2 133), respectively. Among the electrical burn patients with known seasons of injury, most cases were injured in summer (659 cases, accounting for 34.1%), obviously more than the proportions in autumn (537 cases, accounting for 27.8%), spring (455 cases, accounting for 23.5%), and winter (283 cases, accounting for 14.6%), with χ (2) values from 8.414 to 149.573, P values below 0.01. The group of patients with total burn areas less than 10% total body surface area (TBSA) occupied the highest proportion (1 603 cases, accounting for 75.15%), among whom 229 (10.74%) were with scattered small wounds which were less than 1% TBSA. The percentage of electrical contact burn patients with deep wounds was 79.1% (1 122/1 418), which was obviously higher than 2.5% (18/715) of the electrical arc burn patients ( χ (2)=381.741, P <0.001). Among the patients with known electrical voltages of injury, patients injured by high voltage among the electrical contact burn patients accounted for 78.4% (469/598), which was obviously higher than 8.7% (11/127) of the electrical arc burn patients ( χ (2)=227.893, P <0.001). The most common wound site of the electrical burn patients was upper limbs (1 650 cases, accounting for 63.2%), followed by lower limbs (382 cases, accounting for 14.6%), head and neck (292 cases, accounting for 11.2%), trunk (247 cases, accounting for 9.5%), and hip and perineum (40 cases, accounting for 1.5%). The operation rate of electrical burn patients was 32.4% (691/2 133), obviously higher than 19.1% (3 860/20 209)of the thermal burn patients during the same period ( χ (2)=210.255, P <0.001). Wounds of 116 electrical contact burn patients were repaired with free flap by vascular anastomosis, of which 9 (7.8%) failed. The length of hospital stay, the operation cost, and the hospitalization cost of electrical burn patients were (28±29) d, (9 534±16 935) and (44 258±93 012) Yuan, respectively, obviously longer or higher than those of the thermal burn patients during the same period [(17±19) d, (2 990±8 916) and (23 291±88 340) Yuan, respectively, with Z values from -21.323 to -10.996, P values below 0.001]. The amputation rate and the death rate of electrical burn patients were 3.8% (82/2 133) and 0.8% (16/2 133) respectively. Compared with those of electrical arc burn patients, the amputation rate and the operation cost of electrical contact burn patients were obviously higher ( χ (2)=36.970, Z =-11.351, P values below 0.001), and the length of hospital stay of electrical contact burn patients was obviously longer ( Z =-5.181, P <0.001). There were no significant differences in hospitalization cost and treatment outcome between the electrical contact burn patients and the electrical arc burn patients ( Z =-1.461, χ (2)=1.673, P values above 0.05). Conclusions: The number and the proportion of hospitalized electrical burn patients in Institute of Burns of Wuhan Third Hospital were relatively high, indicating a hard task of prevention for electrical burns in Wuhan area. Working-age workers and farmers, and preschool children were the key groups in prevention from electrical burns. The length of hospital stay, the operation cost, and the hospitalization cost of electrical burn patients were obviously higher than those of thermal burn patients. The amputation rate and the operation cost of electrical contact burn patients were obviously higher than those of electrical arc burn patients, but there were no obvious differences in hospitalization cost or treatment outcome between them. Actively using tissue flaps including free flap to repair of wounds may be helpful to reduce the amputation rate, improve the results, and shorten the time of treatment.

  17. Variable reluctance switch avoids contact corrosion and contact bounce

    NASA Technical Reports Server (NTRS)

    Watson, P. C.

    1967-01-01

    Variable reluctance switch avoids contact corrosion and bounce in a hostile environment. It consists of a wire-wound magnetic core and moveable bridge piece that alters the core flux pattern to produce an electrical output useful for switching control media.

  18. Towards an optimal contact metal for CNTFETs.

    PubMed

    Fediai, Artem; Ryndyk, Dmitry A; Seifert, Gotthard; Mothes, Sven; Claus, Martin; Schröter, Michael; Cuniberti, Gianaurelio

    2016-05-21

    Downscaling of the contact length Lc of a side-contacted carbon nanotube field-effect transistor (CNTFET) is challenging because of the rapidly increasing contact resistance as Lc falls below 20-50 nm. If in agreement with existing experimental results, theoretical work might answer the question, which metals yield the lowest CNT-metal contact resistance and what physical mechanisms govern the geometry dependence of the contact resistance. However, at the scale of 10 nm, parameter-free models of electron transport become computationally prohibitively expensive. In our work we used a dedicated combination of the Green function formalism and density functional theory to perform an overall ab initio simulation of extended CNT-metal contacts of an arbitrary length (including infinite), a previously not achievable level of simulations. We provide a systematic and comprehensive discussion of metal-CNT contact properties as a function of the metal type and the contact length. We have found and been able to explain very uncommon relations between chemical, physical and electrical properties observed in CNT-metal contacts. The calculated electrical characteristics are in reasonable quantitative agreement and exhibit similar trends as the latest experimental data in terms of: (i) contact resistance for Lc = ∞, (ii) scaling of contact resistance Rc(Lc); (iii) metal-defined polarity of a CNTFET. Our results can guide technology development and contact material selection for downscaling the length of side-contacts below 10 nm.

  19. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag-Cu-In Brazing Alloy.

    PubMed

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-10

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n -type 9.104 × 10 -3 mol % PbI₂-doped PbTe TE legs and the Ag 0.32 Cu 0.43 In 0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm² was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators.

  20. Computational study of graphene-based vertical field effect transistor

    NASA Astrophysics Data System (ADS)

    Chen, Wenchao; Rinzler, Andrew; Guo, Jing

    2013-03-01

    Poisson and drift-diffusion equations are solved in a three-dimensional device structure to simulate graphene-based vertical field effect transistors (GVFETs). Operation mechanisms of the GVFET with and without punched holes in the graphene source contact are presented and compared. The graphene-channel Schottky barrier can be modulated by gate electric field due to graphene's low density of states. For the graphene contact with punched holes, the contact barrier thinning and lowering around punched hole edge allow orders of magnitude higher tunneling current compared to the region away from the punched hole edge, which is responsible for significant performance improvement as already verified by experiments. Small hole size is preferred due to less electrostatic screening from channel inversion layer, which gives large electric field around the punched hole edge, thus, leading to a thinner and lower barrier. Bilayer and trilayer graphenes as the source contact degrade the performance improvement because stronger electrostatic screening leads to smaller contact barrier lowering and thinning. High punched hole area percentage improves current performance by allowing more gate electric field to modulate the graphene-channel barrier. Low effective mass channel material gives better on-off current ratio.

  1. Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression - Part I: Electrical conductivity

    NASA Astrophysics Data System (ADS)

    Vikram, Ajit; Chowdhury, Prabudhya Roy; Phillips, Ryan K.; Hoorfar, Mina

    2016-07-01

    This paper describes a measurement technique developed for the determination of the effective electrical bulk resistance of the gas diffusion layer (GDL) and the contact resistance distribution at the interface of the GDL and the bipolar plate (BPP). The novelty of this study is the measurement and separation of the bulk and contact resistance under inhomogeneous compression, occurring in an actual fuel cell assembly due to the presence of the channels and ribs on the bipolar plates. The measurement of the electrical contact resistance, contributing to nearly two-third of the ohmic losses in the fuel cell assembly, shows a non-linear distribution along the GDL/BPP interface. The effective bulk resistance of the GDL under inhomogeneous compression showed a decrease of nearly 40% compared to that estimated for homogeneous compression at different compression pressures. Such a decrease in the effective bulk resistance under inhomogeneous compression could be due to the non-uniform distribution of pressure under the ribs and the channels. This measurement technique can be used to identify optimum GDL, BPP and channel-rib structures based on minimum bulk and contact resistances measured under inhomogeneous compression.

  2. Contact-Engineered Electrical Properties of MoS2 Field-Effect Transistors via Selectively Deposited Thiol-Molecules.

    PubMed

    Cho, Kyungjune; Pak, Jinsu; Kim, Jae-Keun; Kang, Keehoon; Kim, Tae-Young; Shin, Jiwon; Choi, Barbara Yuri; Chung, Seungjun; Lee, Takhee

    2018-05-01

    Although 2D molybdenum disulfide (MoS 2 ) has gained much attention due to its unique electrical and optical properties, the limited electrical contact to 2D semiconductors still impedes the realization of high-performance 2D MoS 2 -based devices. In this regard, many studies have been conducted to improve the carrier-injection properties by inserting functional paths, such as graphene or hexagonal boron nitride, between the electrodes and 2D semiconductors. The reported strategies, however, require relatively time-consuming and low-yield transfer processes on sub-micrometer MoS 2 flakes. Here, a simple contact-engineering method is suggested, introducing chemically adsorbed thiol-molecules as thin tunneling barriers between the metal electrodes and MoS 2 channels. The selectively deposited thiol-molecules via the vapor-deposition process provide additional tunneling paths at the contact regions, improving the carrier-injection properties with lower activation energies in MoS 2 field-effect transistors. Additionally, by inserting thiol-molecules at the only one contact region, asymmetric carrier-injection is feasible depending on the temperature and gate bias. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing.

    PubMed

    Ling, Xue; Wang, Yusheng; Li, Xide

    2014-10-01

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.

  4. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing

    NASA Astrophysics Data System (ADS)

    Ling, Xue; Wang, Yusheng; Li, Xide

    2014-10-01

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.

  5. Bipolar fuel cell

    DOEpatents

    McElroy, James F.

    1989-01-01

    The present invention discloses an improved fuel cell utilizing an ion transporting membrane having a catalytic anode and a catalytic cathode bonded to opposite sides of the membrane, a wet-proofed carbon sheet in contact with the cathode surface opposite that bonded to the membrane and a bipolar separator positioned in electrical contact with the carbon sheet and the anode of the adjacent fuel cell. Said bipolar separator and carbon sheet forming an oxidant flowpath, wherein the improvement comprises an electrically conductive screen between and in contact with the wet-proofed carbon sheet and the bipolar separator improving the product water removal system of the fuel cell.

  6. Electrical and Thermal Conductivity of Solid Solution Sn1- x Mn x Te (0 ≥ x ≥ 0.04)

    NASA Astrophysics Data System (ADS)

    Akhundova, N. M.

    2018-01-01

    Electrical and thermal properties of the Sn1-xMnxTe single crystals (0 ≥ x ≥ 0.04) with contacts of eutectic alloy 57Bi + 43Sn (in mass%) are investigated at temperatures from 77 to 300 K. Experimental results show that this alloy with specified single crystals forms ohmic contact with a sufficiently low contact resistance. The electronic thermal conductivity in some samples reaches about 50% of the total thermal conductivity, and structural defects contribute significantly to the thermal resistance of the crystals.

  7. Electrical contacts to thin layers of Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Suzuki, Shota; Taniguchi, Hiroki; Kawakami, Tsukasa; Cosset-Cheneau, Maxen; Arakawa, Tomonori; Miyasaka, Shigeki; Tajima, Setsuko; Niimi, Yasuhiro; Kobayashi, Kensuke

    2018-05-01

    Thin layers of Bi2Sr2CaCu2O8+δ (Bi2212) were fabricated using the mechanical exfoliation technique. Good electrical contacts to the thin Bi2212 films with low contact resistance were realized by depositing Ag and Au electrodes onto the Bi2212 films and annealing them with an oxygen flow at 350 °C for 30 min. We observed cross-section images of the Bi2212 thin film device using a transmission electron microscope to characterize the diffusion of Ag and Au atoms into the Bi2212 thin film.

  8. Effect of contact barrier on electron transport in graphene.

    PubMed

    Zhou, Yang-Bo; Han, Bing-Hong; Liao, Zhi-Min; Zhao, Qing; Xu, Jun; Yu, Da-Peng

    2010-01-14

    The influence of the barrier between metal electrodes and graphene on the electrical properties was studied on a two-electrode device. A classical barrier model was used to analyze the current-voltage characteristics. Primary parameters including barrier height and effective resistance were achieved. The electron transport properties under magnetic field were further investigated. An abnormal peak-valley-peak shape of voltage-magnetoresistance curve was observed. The underlying mechanisms were discussed under the consideration of the important influence of the contact barrier. Our results indicate electrical properties of graphene based devices are sensitive to the contact interface.

  9. Endoplasmic Reticulum-Plasma Membrane Contacts Regulate Cellular Excitability.

    PubMed

    Dickson, Eamonn J

    2017-01-01

    Cells that have intrinsic electrical excitability utilize changes in membrane potential to communicate with neighboring cells and initiate cellular cascades. Excitable cells like neurons and myocytes have evolved highly specialized subcellular architectures to translate these electrical signals into cellular events. One such structural specialization is sarco-/endoplasmic reticulum-plasma membrane contact sites. These membrane contact sites are positioned by specific membrane-membrane tethering proteins and contain an ever-expanding list of additional proteins that organize information transfer across the junctional space (~ 15-25 nm distance) to shape membrane identity and control cellular excitability. In this chapter we discuss how contacts between the sarco-/endoplasmic reticulum and plasma membrane are essential for regulated excitation-contraction coupling in striated muscle and control of lipid-dependent ion channels.

  10. Analysis of Laser Injection Condition and Electrical Properties in Local BSF for Laser Fired Contact c-Si Solar Cell Applications.

    PubMed

    Park, Cheolmin; Choi, Gyuho; Balaji, Nagarajan; Ju, Minkyu; Lee, Youn-Jung; Lee, Haeseok; Yi, Junsin

    2018-07-01

    A crystalline silicon (c-Si) local-back-contact (LBC) solar cell for which a laser-condition-optimized surface-recombination velocity (SRV), a contact resistance (Rc), and local back surface fields (LBSFs) were utilized is reported. The effect of the laser condition on the rear-side electrical properties of the laser-fired LBC solar cell was studied. The Nd:YAG-laser (1064-nm wavelength) power and frequency were varied to obtain LBSF values with a lower contact resistance. A 10-kHz laser power of 44 mW resulted in an Rc of 0.125 ohms with an LBSF thickness of 2.09 μm and a higher open-circuit voltage (VOC) of 642 mV.

  11. An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers-Part I

    NASA Technical Reports Server (NTRS)

    Courey, Karim; Wright, Clara; Asfour, Shihab; Bayliss, Jon; Ludwig, Larry

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance, electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data, we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. In addition, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross sectioned and studied using a focused ion beam (FIB).

  12. Flow diagram analysis of electrical fatalities in construction industry.

    PubMed

    Chi, Chia-Fen; Lin, Yuan-Yuan; Ikhwan, Mohamad

    2012-01-01

    The current study reanalyzed 250 electrical fatalities in the construction industry from 1996 to 2002 into seven patterns based on source of electricity (power line, energized equipment, improperly installed or damaged equipment), direct contact or indirect contact through some source of injury (boom vehicle, metal bar or pipe, and other conductive material). Each fatality was coded in terms of age, company size, experience, performing tasks, source of injury, accident cause and hazard pattern. The Chi-square Automatic Interaction Detector (CHAID) was applied to the coded data of the fatal electrocution to find a subset of predictors that might derive meaningful classifications or accidents scenarios. A series of Flow Diagrams was constructed based on CHAID result to illustrate the flow of electricity travelling from electrical source to human body. Each of the flow diagrams can be directly linked with feasible prevention strategies by cutting the flow of electricity.

  13. Validation of bending tests by nanoindentation for micro-contact analysis of MEMS switches

    NASA Astrophysics Data System (ADS)

    Broue, Adrien; Fourcade, Thibaut; Dhennin, Jérémie; Courtade, Frédéric; Charvet, Pierre–Louis; Pons, Patrick; Lafontan, Xavier; Plana, Robert

    2010-08-01

    Research on contact characterization for microelectromechanical system (MEMS) switches has been driven by the necessity to reach a high-reliability level for micro-switch applications. One of the main failures observed during cycling of the devices is the increase of the electrical contact resistance. The key issue is the electromechanical behaviour of the materials used at the contact interface where the current flows through. Metal contact switches have a large and complex set of failure mechanisms according to the current level. This paper demonstrates the validity of a new methodology using a commercial nanoindenter coupled with electrical measurements on test vehicles specially designed to investigate the micro-scale contact physics. Dedicated validation tests and modelling are performed to assess the introduced methodology by analyzing the gold contact interface with 5 µm2 square bumps at various current levels. Contact temperature rise is measured, which affects the mechanical properties of the contact materials and modifies the contact topology. In addition, the data provide a better understanding of micro-contact behaviour related to the impact of current at low- to medium-power levels. This article was originally submitted for the special section 'Selected papers from the 20th Micromechanics Europe Workshop (MME 09) (Toulouse, France, 20-22 September 2009)', Journal of Micromechanics and Microengineering, volume 20, issue 6.

  14. Electrostatic force assisted deposition of graphene

    DOEpatents

    Liang, Xiaogan [Berkeley, CA

    2011-11-15

    An embodiment of a method of depositing graphene includes bringing a stamp into contact with a substrate over a contact area. The stamp has at least a few layers of the graphene covering the contact area. An electric field is developed over the contact area. The stamp is removed from the vicinity of the substrate which leaves at least a layer of the graphene substantially covering the contact area.

  15. Remarks on the thermal stability of an Ohmic-heated nanowire

    NASA Astrophysics Data System (ADS)

    Timsit, Roland S.

    2018-05-01

    The rise in temperature of a wire made from specific materials, due to ohmic heating by a DC electrical current, may lead to uncontrollable thermal runaway with ensuing melting. Thermal runaway stems from a steep decrease with increasing temperature of the thermal conductivity of the conducting material and subsequent trapping of the ohmic heat in the wire, i.e., from the inability of the wire to dissipate the heat sufficiently quickly by conduction to the cooler ends of the wire. In this paper, we show that the theory used to evaluate the temperature of contacting surfaces in a bulk electrical contact may be applied to calculate the conditions for thermal runaway in a nanowire. Implications of this effect for electrical contacts are addressed. A possible implication for memory devices using ohmic-heated nanofilms or nanowires is also discussed.

  16. Is an electric field always a promoter of wetting? Electro-dewetting of metals by electrolytes probed by in situ X-ray nanotomography

    DOE PAGES

    Nave, Maryana I.; Gu, Yu; Karen Chen-Wiegart, Yu-Chen; ...

    2017-01-05

    We developed a special electrochemical cell enabling quantitative analysis andin situX-ray nanotomography of metal/electrolyte interfaces subject to corrosion. Using this cell and applying the nodoid model to describe menisci formed on tungsten wires during anodization, the evolution of the electrolyte surface tension, the concentration of reaction products, and the meniscus contact angle were studied. In contrast to the electrowetting effect, where the applied electric field decreases the contact angle of electrolytes, anodization of the tungsten wires increases the contact angle of the meniscus. Hence, an electric field favors dewetting rather than wetting of the newly formed surface. Finally, the discoveredmore » effect opens up new opportunities for the control of wetting phenomena and calls for the revision of existing theories of electrowetting.« less

  17. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.

    PubMed

    Habicht, S; Zhao, Q T; Feste, S F; Knoll, L; Trellenkamp, S; Ghyselen, B; Mantl, S

    2010-03-12

    We present electrical characterization of nickel monosilicide (NiSi) contacts formed on strained and unstrained silicon nanowires (NWs), which were fabricated by top-down processing of initially As(+) implanted and activated strained and unstrained silicon-on-insulator (SOI) substrates. The resistivity of doped Si NWs and the contact resistivity of the NiSi to Si NW contacts are studied as functions of the As(+) ion implantation dose and the cross-sectional area of the wires. Strained silicon NWs show lower resistivity for all doping concentrations due to their enhanced electron mobility compared to the unstrained case. An increase in resistivity with decreasing cross section of the NWs was observed for all implantation doses. This is ascribed to the occurrence of dopant deactivation. Comparing the silicidation of uniaxially tensile strained and unstrained Si NWs shows no difference in silicidation speed and in contact resistivity between NiSi/Si NW. Contact resistivities as low as 1.2 x 10(-8) Omega cm(-2) were obtained for NiSi contacts to both strained and unstrained Si NWs. Compared to planar contacts, the NiSi/Si NW contact resistivity is two orders of magnitude lower.

  18. Termination unit

    DOEpatents

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  19. 76 FR 56745 - Notice of Availability of Government-Owned Inventions; Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... No. 12/175262: Coupled Electric Field Sensors for DC Target Electric Field Detection; U.S. Patent Application No. 12/732023: Coupled Bi-Stable Microcircuit System for Ultra-Sensitive Electrical and Magnetic... Electric Field Sensing Utilizing Differential Transistors Pairs. FOR FURTHER INFORMATION CONTACT: Brian Suh...

  20. Interdigitated photovoltaic power conversion device

    DOEpatents

    Ward, James Scott; Wanlass, Mark Woodbury; Gessert, Timothy Arthur

    1999-01-01

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  1. Interdigitated photovoltaic power conversion device

    DOEpatents

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  2. Effects of ultra-vacuum and space environment on contact ohmic resistance: LDEF experiment AO 138-11

    NASA Technical Reports Server (NTRS)

    Assie, Jean-Pierre; Perotto, Alfred

    1992-01-01

    The FRECOPA experimentation of chemical resistance of electrical connector contacts, as described, has evidenced the detrimental time variations of nickel plated conductors and gilded copper contacts, irrespective of crimping storage or metal peening conditions. With a view to reorient aluminum technology a silvered aluminum conductor/gilded aluminum contact solution was evaluated.

  3. Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces.

    PubMed

    Foley, Brian M; Hernández, Sandra C; Duda, John C; Robinson, Jeremy T; Walton, Scott G; Hopkins, Patrick E

    2015-08-12

    The high mobility exhibited by both supported and suspended graphene, as well as its large in-plane thermal conductivity, has generated much excitement across a variety of applications. As exciting as these properties are, one of the principal issues inhibiting the development of graphene technologies pertains to difficulties in engineering high-quality metal contacts on graphene. As device dimensions decrease, the thermal and electrical resistance at the metal/graphene interface plays a dominant role in degrading overall performance. Here we demonstrate the use of a low energy, electron-beam plasma to functionalize graphene with oxygen, fluorine, and nitrogen groups, as a method to tune the thermal and electrical transport properties across gold-single layer graphene (Au/SLG) interfaces. We find that while oxygen and nitrogen groups improve the thermal boundary conductance (hK) at the interface, their presence impairs electrical transport leading to increased contact resistance (ρC). Conversely, functionalization with fluorine has no impact on hK, yet ρC decreases with increasing coverage densities. These findings indicate exciting possibilities using plasma-based chemical functionalization to tailor the thermal and electrical transport properties of metal/2D material contacts.

  4. Electrical Injuries

    MedlinePlus

    ... long you were exposed. Other factors include how healthy you are, and how quickly you get treatment. Causes of electrical injuries include Lightning strikes Faulty electrical appliances Work-related exposures Contact with household wiring or power lines Accidents in small children, when they bite ...

  5. Device serves as hinge and electrical connector for circuit boards

    NASA Technical Reports Server (NTRS)

    Bethel, P. G.; Harris, G. G.

    1966-01-01

    Hinge makes both sides of electrical circuit boards readily accessible for component checkout and servicing. The hinge permits mounting of two circuit boards and incorporates connectors to maintain continuous electrical contact between the components on both boards.

  6. Transition from steady to periodic liquid-metal magnetohydrodynamic flow in a sliding electrical contact

    NASA Astrophysics Data System (ADS)

    Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1993-09-01

    In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.

  7. The formation mechanism for printed silver-contacts for silicon solar cells.

    PubMed

    Fields, Jeremy D; Ahmad, Md Imteyaz; Pool, Vanessa L; Yu, Jiafan; Van Campen, Douglas G; Parilla, Philip A; Toney, Michael F; van Hest, Maikel F A M

    2016-04-01

    Screen-printing provides an economically attractive means for making Ag electrical contacts to Si solar cells, but the use of Ag substantiates a significant manufacturing cost, and the glass frit used in the paste to enable contact formation contains Pb. To achieve optimal electrical performance and to develop pastes with alternative, abundant and non-toxic materials, a better understanding the contact formation process during firing is required. Here, we use in situ X-ray diffraction during firing to reveal the reaction sequence. The findings suggest that between 500 and 650 °C PbO in the frit etches the SiNx antireflective-coating on the solar cell, exposing the Si surface. Then, above 650 °C, Ag(+) dissolves into the molten glass frit - key for enabling deposition of metallic Ag on the emitter surface and precipitation of Ag nanocrystals within the glass. Ultimately, this work clarifies contact formation mechanisms and suggests approaches for development of inexpensive, nontoxic solar cell contacting pastes.

  8. The formation mechanism for printed silver-contacts for silicon solar cells

    DOE PAGES

    Fields, Jeremy D.; Ahmad, Md. Imteyaz; Pool, Vanessa L.; ...

    2016-04-01

    Screen-printing provides an economically attractive means for making Ag electrical contacts to Si solar cells, but the use of Ag substantiates a significant manufacturing cost, and the glass frit used in the paste to enable contact formation contains Pb. To achieve optimal electrical performance and to develop pastes with alternative, abundant, and non-toxic materials requires understanding the contact formation process during firing. Here, we use in-situ X-ray diffraction during firing to reveal the reaction sequence. The findings suggest that between 500 degrees C and 650 degrees C PbO in the frit etches the SiNx antireflective-coating on the solar cell, exposingmore » the Si surface. Then, above 650 degrees C, Ag+ dissolves into the molten glass frit -- key for enabling deposition of metallic Ag on the emitter surface and precipitation of Ag nanocrystals within the glass. Ultimately, this work clarifies contact formation mechanisms and suggests approaches for development of inexpensive, nontoxic solar cell contacting pastes.« less

  9. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    PubMed

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).

  10. Characterization of Resistances of a Capacitive Deionization System

    DOE PAGES

    Qu, Yatian; Baumann, Theodore F.; Santiago, Juan G.; ...

    2015-07-27

    Capacitive deionization (CDI) is a promising desalination technology, which operates at low pressure, low temperature, requires little infrastructure, and has the potential to consume less energy for brackish water desalination. However, CDI devices consume significantly more energy than the theoretical thermodynamic minimum, and this is at least partly due to resistive power dissipation. We here report our efforts to characterize electric resistances in a CDI system, with a focus on the resistance associated with the contact between current collectors and porous electrodes. We present an equivalent circuit model to describe resistive components in a CDI cell. We propose measurable figuresmore » of merit to characterize cell resistance. We also show that contact pressure between porous electrodes and current collectors can significantly reduce contact resistance. As a result, we propose and test an alternative electrical contact configuration which uses a pore-filling conductive adhesive (silver epoxy) and achieves significant reductions in contact resistance.« less

  11. Viral contacts confound studies of childhood leukemia and high-voltage transmission lines.

    PubMed

    Sahl, J D

    1994-05-01

    Studies of childhood leukemia have reported a link with residential proximity to electric utility facilities. This paper elaborates on the hypothesis that residential proximity to electric utility transmission-systems is a surrogate for viral contacts, a potential confounder in these studies. While the causal implications of increased viral contacts is not established, the assumption made here is that a significant component of childhood leukemia has an infectious etiology. Increased viral contacts can result from residential mobility, being first born, or use of community childcare facilities. Re-analysis of existing studies should look specifically for the interaction between childhood leukemia, markers for viral contacts (e.g., residential mobility, birth order, use of outside childcare facilities), and residential proximity to high-voltage transmission lines. New study designs should include parameters to test directly for a virus-related infectious model for childhood leukemia.

  12. Au/Zn Contacts to rho-InP: Electrical and Metallurgical Characteristics and the Relationship Between Them

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.; Korenyi-Both, Andras L.

    1994-01-01

    The metallurgical and electrical behavior of Au/Zn contacting metallization on p-type InP was investigated as a function of the Zn content in the metallization. It was found that ohmic behavior can be achieved with Zn concentrations as small as 0.05 atomic percent Zn. For Zn concentrations between 0.1 and 36 at. percent, the contact resistivity rho(sub c) was found to be independent of the Zn content. For low Zn concentrations the realization of ohmic behavior was found to require the growth of the compound Au2P3 at the metal-InP interface. The magnitude of rho(sub c) is shown to be very sensitive to the growth rate of the interfacial Au2P3 layer. The possibility of exploiting this sensitivity to provide low resistance contacts while avoiding the semiconductor structural damage that is normally attendant to contact formation is discussed.

  13. Multi-winding homopolar electric machine

    DOEpatents

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  14. Electrochromic device using mercaptans and organothiolate compounds

    DOEpatents

    Lampert, Carl M.; Ma, Yan-ping; Doeff, Marca M.; Visco, Steven

    1995-01-01

    An electrochromic cell is disclosed which comprises an electrochromic layer and a composite ion counter electrode for transporting ions. The counter electrode further comprises a polymer electrolyte material and an organosulfur material in which, in its discharged state, the organosulfur material is further comprised of a mercaptan or an organothiolate. In one preferred embodiment, both the electrochromic electrode and the counter electrode are transparent either to visible light or to the entire electromagnetic spectrum in both charged and discharged states. An electrochromic device is disclosed which comprises one or more electrochromic electrodes encased in glass or plastic plates on the inner surface of each of which is formed a transparent electrically conductive film. Electrical contacts, which are in electrical contact with the conductive films, facilitate external electrical connection.

  15. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  16. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1993-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  17. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1995-01-31

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  18. Deaths from electricity.

    PubMed

    Brokenshire, B; Cairns, F J; Koelmeyer, T D; Smeeton, W M; Tie, A B

    1984-03-14

    This paper reviews the circumstances of 95 fatalities from electrical injuries. Eighty-nine were accidental, four were suicides and two occurred during autoerotic electrical stimulation. Forty-nine of the accidental fatalities occurred at work, Twenty-eight in the home and twelve in the course of outside recreational activities. In many accidents the circumstances were distressingly similar and included: (1) Contact with overhead distribution lines by a length of conductor such as a yacht mast or crane. (2) Faulty wiring or electrical repairs performed by unqualified people. (3) Badly deteriorated cords, plugs and occasionally appliances. (4) Failure to use isolating transformers when indicated. Deaths involving children are a particular cause of concern. Nine fatalites involved children under the age of five years who contacted inadequately protected wires.

  19. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Xue; Wang, Yusheng; Li, Xide, E-mail: lixide@tsinghua.edu.cn

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects ofmore » the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li–Etsion–Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.« less

  20. A generic approach for vertical integration of nanowires.

    PubMed

    Latu-Romain, E; Gilet, P; Noel, P; Garcia, J; Ferret, P; Rosina, M; Feuillet, G; Lévy, F; Chelnokov, A

    2008-08-27

    We report on the collective integration technology of vertically aligned nanowires (NWs). Si and ZnO NWs have been used in order to develop a generic technological process. Both mineral and organic planarizations of the as-grown nanowires have been achieved. Chemical vapour deposition (CVD) oxides, spin on glass (SOG), and polymer have been investigated as filling materials. Polishing and/or etching of the composite structures have been set up so as to obtain a suitable morphology for the top and bottom electrical contacts. Electrical and optical characterizations of the integrated NWs have been performed. Contacts ohmicity has been demonstrated and specific contact resistances have been reported. The photoconducting properties of polymer-integrated ZnO NWs have also been investigated in the UV-visible range through collective electrical contacts. A small increase of the resistivity in the ZnO NWs under sub-bandgap illumination has been observed and discussed. A comparison of the photoluminescence (PL) spectra at 300 K of the as-grown and SOG-integrated ZnO nanowires has shown no significant impact of the integration process on the crystal quality of the NWs.

  1. Refractory lining for electrochemical cell

    DOEpatents

    Blander, Milton; Cook, Glenn M.

    1987-01-01

    Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contcat with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  2. Nanodevices for spintronics and methods of using same

    DOEpatents

    Zaliznyak, Igor; Tsvelik, Alexei; Kharzeev, Dmitri

    2013-02-19

    Graphene magnet multilayers (GMMs) are employed to facilitate development of spintronic devices. The GMMs can include a sheet of monolayer (ML) or few-layer (FL) graphene in contact with a magnetic material, such as a ferromagnetic (FM) or an antiferromagnetic material. Electrode terminals can be disposed on the GMMs to be in electrical contact with the graphene. A magnetic field effect is induced in the graphene sheet based on an exchange magnetic field resulting from a magnetization of the magnetic material which is in contact with graphene. Electrical characteristics of the graphene can be manipulated based on the magnetization of the magnetic material in the GMM.

  3. Liquid and gel electrodes for transverse free flow electrophoresis

    DOEpatents

    Jung, Byoungsok; Rose, Klint A; Shusteff, Maxim; Persat, Alexandre; Santiago, Juan

    2015-04-07

    The present invention provides a mechanism for separating or isolating charged particles under the influence of an electric field without metal electrodes being in direct contact with the sample solution. The metal electrodes normally in contact with the sample are replaced with high conductivity fluid electrodes situated parallel and adjacent to the sample. When the fluid electrodes transmit the electric field across the sample, particles within the sample migrate according to their electrophoretic mobility.

  4. Characterization of plasmonic hole arrays as transparent electrical contacts for organic photovoltaics using high-brightness Fourier transform methods

    DOE PAGES

    Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; ...

    2014-05-15

    Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm 2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for usemore » as transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.« less

  5. An Overview of Dynamic Contact Resistance Measurement of HV Circuit Breakers

    NASA Astrophysics Data System (ADS)

    Bhole, A. A.; Gandhare, W. Z.

    2016-06-01

    With the deregulation of the electrical power industry, utilities and service companies are operating in a changing business environment. High voltage circuit breakers are extremely important for the function of modern electric power supply systems. The need to predict the proper function of circuit breaker grew over the years as the transmission networks expanded. The maintenance of circuit breakers deserves special consideration because of their importance for routine switching and for protection of other equipments. Electric transmission system breakups and equipment destruction can occur if a circuit breaker fails to operate because of a lack of preventive maintenance. Dynamic Contact Resistance Measurement (DCRM) is known as an effective technique for assessing the condition of power circuit breakers contacts and operating mechanism. This paper gives a general review about DCRM. It discusses the practical case studies on use of DCRM for condition assessment of high voltage circuit breakers.

  6. Monolithic integration of a MOSFET with a MEMS device

    DOEpatents

    Bennett, Reid; Draper, Bruce

    2003-01-01

    An integrated microelectromechanical system comprises at least one MOSFET interconnected to at least one MEMS device on a common substrate. A method for integrating the MOSFET with the MEMS device comprises fabricating the MOSFET and MEMS device monolithically on the common substrate. Conveniently, the gate insulator, gate electrode, and electrical contacts for the gate, source, and drain can be formed simultaneously with the MEMS device structure, thereby eliminating many process steps and materials. In particular, the gate electrode and electrical contacts of the MOSFET and the structural layers of the MEMS device can be doped polysilicon. Dopant diffusion from the electrical contacts is used to form the source and drain regions of the MOSFET. The thermal diffusion step for forming the source and drain of the MOSFET can comprise one or more of the thermal anneal steps to relieve stress in the structural layers of the MEMS device.

  7. Electrical contact of wurtzite GaN mircrodisks on p-type GaN template

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Da; Lo, Ikai; Wang, Ying-Chieh; Hsu, Yu-Chi; Shih, Cheng-Hung; Pang, Wen-Yuan; You, Shuo-Ting; Hu, Chia-Hsuan; Chou, Mitch M. C.; Yang, Chen-Chi; Lin, Yu-Chiao

    2015-03-01

    We developed a back processing to fabricate a secure electrical contact of wurtzite GaN microdisk on a transparent p-type GaN template with the orientation, [10-10]disk // [10-10]template. GaN microdisks were grown on LiAlO2 substrate by using plasma-assisted molecular beam epitaxy. In the further study, we analyzed the TEM specimen of a sample with annealed GaN microdisk/p-typed GaN template by selection area diffraction (SAD) to confirm the alignment of the microdisks with the template at the interface. From the I-V measurements performed on the samples, we obtained a threshold voltage of ~ 5.9 V for the current passing through the GaN microdisks with a resistance of ~ 45 K Ω. The electrical contact can be applied to the nanometer-scaled GaN light-emitting diode.

  8. Nanoparticle-wetted surfaces for relays and energy transmission contacts.

    PubMed

    Voevodin, Andrey A; Vaia, Richard A; Patton, Steven T; Diamanti, Steven; Pender, Mark; Yoonessi, Mitra; Brubaker, Jennifer; Hu, Jian-Jun; Sanders, Jeffrey H; Phillips, Benjamin S; MacCuspie, Robert I

    2007-11-01

    Submonolayer coatings of noble-metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single-component materials consisting of a metal nanoparticle core (5-20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic-liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact-retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy.

  9. Mounting Thin Samples For Electrical Measurements

    NASA Technical Reports Server (NTRS)

    Matus, L. G.; Summers, R. L.

    1988-01-01

    New method for mounting thin sample for electrical measurements involves use of vacuum chuck to hold a ceramic mounting plate, which holds sample. Contacts on mounting plate establish electrical connection to sample. Used to make electrical measurements over temperature range from 77 to 1,000 K and does not introduce distortions into magnetic field during Hall measurements.

  10. Novel non-contact control system of electric bed for medical healthcare.

    PubMed

    Lo, Chi-Chun; Tsai, Shang-Ho; Lin, Bor-Shyh

    2017-03-01

    A novel non-contact controller of the electric bed for medical healthcare was proposed in this study. Nowadays, the electric beds are widely used for hospitals and home-care, and the conventional control method of the electric beds usually involves in the manual operation. However, it is more difficult for the disabled and bedridden patients, who might totally depend on others, to operate the conventional electric beds by themselves. Different from the current controlling method, the proposed system provides a new concept of controlling the electric bed via visual stimuli, without manual operation. The disabled patients could operate the electric bed by focusing on the control icons of a visual stimulus tablet in the proposed system. Besides, a wearable and wireless EEG acquisition module was also implemented to monitor the EEG signals of patients. The experimental results showed that the proposed system successfully measured and extracted the EEG features related to visual stimuli, and the disabled patients could operate the adjustable function of the electric bed by themselves to effectively reduce the long-term care burden.

  11. Multiple pole electromagnetic propulsion system with separated ballistic guidance and electrical current contact surfaces

    DOEpatents

    Sims, Jr., James R.

    2008-07-15

    An electromagnetic propulsion system is disclosed having separate rails for ballistic guidance and for carrying current. In this system, one or more pairs of ballistic guidance rails are provided, with each ballistic guidance rail having a pair of current carrying rails joined to it to form a combined rail. Each combined rail is separated electrically from adjacent combined rails by electrically insulating blocks. Each of the current carrying rails in a given combined rail pair have the same electrical polarity, and the polarities alternate between adjacent combined rails. Armatures contact current carrying rails to complete the circuit to generate the accelerating Lorentz force on the armatures. Bore riders on the sabot and/or projectile are in contact with the ballistic guide rails. Separation of the current carrying and ballistic guidance functions increases resistance of the system to rail movement and bending, as well as reduced wear/damage to the rails. In further embodiments, a circumferential over wrap providing compressive force on the rails further increases resistance of the system to rail movement and bending.

  12. Assessment of risk factors for death in electrical injury.

    PubMed

    Dokov, William

    2009-02-01

    Fatal high-voltage injuries present a problem which has not yet been studied sufficiently in the context of interaction between the human body and electricity, as a technical, anthropogenic and natural phenomenon. The forensic medicine records of 291 cases of death caused by high-voltage current for a 41-year-long period (1965-2006) were examined in retrospect. The descriptive statistical analyses were made using the SPSS 11.0 software. Death was found to result most commonly from contact between the deceased and elements of the power transmission and distribution grid: (41.24%), and from the action of lightning: (32.3%), the difference in their relative share being insignificant. Much more rarely, death was due to contact with construction and repair electrical devices: (7.56%), or with elements of the power transport railway infrastructure: (6.87%). Death resulting from contact with agricultural electrical devices was only occasional: (0.68%). The victims' average age was 36.19 years. Our analysis indicates that the relative share (43.98%) of the victims is the highest in the age period between 25 and 44. The ratio between women and men is 1:21.38.

  13. Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag–Cu–In Brazing Alloy

    PubMed Central

    Ben-Ayoun, Dana; Sadia, Yatir; Gelbstein, Yaniv

    2018-01-01

    In thermoelectric (TE) generators, maximizing the efficiency of conversion of direct heat to electricity requires the reduction of any thermal and electrical contact resistances between the TE legs and the metallic contacts. This requirement is especially challenging in the development of intermediate to high-temperature TE generators. PbTe-based TE materials are known to be highly efficient up to temperatures of around 500 °C; however, only a few practical TE generators based on these materials are currently commercially available. One reason for that is the insufficient bonding techniques between the TE legs and the hot-side metallic contacts. The current research is focused on the interaction between cobalt-metallized n-type 9.104 × 10−3 mol % PbI2-doped PbTe TE legs and the Ag0.32Cu0.43In0.25 brazing alloy, which is free of volatile species. Clear and fine interfaces without any noticeable formation of adverse brittle intermetallic compounds were observed following prolonged thermal treatment testing. Moreover, a reasonable electrical contact resistance of ~2.25 mΩmm2 was observed upon brazing at 600 °C, highlighting the potential of such contacts while developing practical PbTe-based TE generators. PMID:29320430

  14. Nanoscale electrical characteristics of metal (Au, Pd)-graphene-metal (Cu) contacts

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Meli, G.; Grimaldi, M. G.

    2016-01-01

    Free-standing graphene presents exceptional physical properties (as a high carrier mobility) making it the ideal candidate for the next generation nanoelectronics. However, when graphene layers are inserted in real electronics devices, metal contacting is required. The metal-graphene interaction significantly affects the graphene electrical properties, drastically changing its behavior with respect to the free-standing configuration. So, this work presents an experimental study on the nanoscale electric characteristics of metal/graphene/metal contacts. In particular, starting from single-layer graphene grown on Cu foil we deposited on the graphene surface two different metal films (Au or Pd) and the Au/graphene/Cu and Pd/graphene/Cu current-voltage characteristics are acquired, on the nanometric scale, by the conductive atomic force microscopy. Both systems presented a current voltage rectifying behavior. However, the Au/graphene/Cu system conducts significantly at negative applied bias (graphene behaves as a p-type semiconductor in a meta/semiconductor contact), while in the Pd/graphene/Cu at positive applied bias (graphene behaves as a n-type semiconductor in a metal/semiconductor contact). This difference is discussed on the basis of the band energy diagram at the metal/graphene interface and the modification of the graphene Fermi level due to the Au/graphene or Pd/graphene interaction.

  15. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS2/WSe2 van der Waals Heterostructure.

    PubMed

    Khan, Muhammad Atif; Rathi, Servin; Lee, Changhee; Lim, Dongsuk; Kim, Yunseob; Yun, Sun Jin; Youn, Doo Hyeb; Kim, Gil-Ho

    2018-06-25

    Two-dimensional (2D) materials based heterostructures provide a unique platform where interaction between stacked 2D layers can enhance the electrical and opto-electrical properties as well as give rise to interesting new phenomena. Here, operation of a van der Waals heterostructure device comprising of vertically stacked bi-layer MoS 2 and few layered WSe 2 has been demonstrated in which atomically thin MoS 2 layer has been employed as a tunneling layer to the underlying WSe 2 layer. In this way, simultaneous contacts to both MoS 2 and WSe 2 2D layers have been established by forming direct MS (metal semiconductor) to MoS 2 and tunneling based MIS (metal insulator semiconductor) contacts to WSe 2 , respectively. The use of MoS 2 as a dielectric tunneling layer results in improved contact resistance (80 kΩ-µm) for WSe 2 contact, which is attributed to reduction in effective Schottky barrier height and is also confirmed from the temperature dependent measurement. Further, this unique contact engineering and type II band alignment between MoS 2 and WSe 2 enables a selective and independent carrier transport across the respective layers. This contact engineered dual channel heterostructure exhibits an excellent gate control and both channel current and carrier types can be modulated by the vertical electric field of the gate electrode, which is also reflected in on/off ratio of 10 4 for both electrons (MoS 2 ) and holes (WSe 2 ) channels. Moreover, the charge transfer at the heterointerface is studied quantitatively from the shift in the threshold voltage of the pristine MoS 2 and heterostructure device, which agrees with the carrier recombination induced optical quenching as observed in the Raman spectra of the pristine and heterostructure layers. This observation of dual channel ambipolar transport enabled by the hybrid tunneling contacts and strong interlayer coupling can be utilized for high performance opto-electrical devices and applications.

  16. Burns

    MedlinePlus

    ... occur by direct or indirect contact with heat, electric current, radiation, or chemical agents. Burns can lead ... is. The burn is caused by chemicals or electricity. The person shows signs of shock . The person ...

  17. Correlation between the electrical properties and the interfacial microstructures of TiAl-based ohmic contacts to p-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Tsukimoto, S.; Nitta, K.; Sakai, T.; Moriyama, M.; Murakami, Masanori

    2004-05-01

    In order to understand a mechanism of TiAl-based ohmic contact formation for p-type 4H-SiC, the electrical properties and microstructures of Ti/Al and Ni/Ti/Al contacts, which provided the specific contact resistances of approximately 2×10-5 Ω-cm2 and 7×10-5 Ω-cm2 after annealing at 1000°C and 800°C, respectively, were investigated using x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Ternary Ti3SiC2 carbide layers were observed to grow on the SiC surfaces in both the Ti/Al and the Ni/Ti/Al contacts when the contacts yielded low resistance. The Ti3SiC2 carbide layers with hexagonal structures had an epitaxial orientation relationship with the 4H-SiC substrates. The (0001)-oriented terraces were observed periodically at the interfaces between the carbide layers and the SiC, and the terraces were atomically flat. We believed the Ti3SiC2 carbide layers primarily reduced the high Schottky barrier height at the contact metal/p-SiC interface down to about 0.3 eV, and, thus, low contact resistances were obtained for p-type TiAl-based ohmic contacts.

  18. Microstructural Characterization of Base Metal Alloys with Conductive Native Oxides for Electrical Contact Applications

    NASA Astrophysics Data System (ADS)

    Senturk, Bilge Seda

    Metallic contacts are a ubiquitous method of connecting electrical and electronic components/systems. These contacts are usually fabricated from base metals because they are inexpensive, have high bulk electrical conductivities and exhibit excellent formability. Unfortunately, such base metals oxidize in air under ambient conditions, and the characteristics of the native oxide scales leads to contact resistances orders of magnitude higher than those for mating bare metal surface. This is a critical technological issue since the development of unacceptably high contact resistances over time is now by far the most common cause of failure in electrical/electronic devices and systems. To overcome these problems, several distinct approaches are developed for alloying base metals to promote the formation of self-healing inherently conductive native oxide scales. The objective of this dissertation study is to demonstrate the viability of these approaches through analyzing the data from Cu-9La (at%) and Fe-V binary alloy systems. The Cu-9 La alloy structure consists of eutectic colonies tens of microns in diameter wherein a rod-like Cu phase lies within a Cu6La matrix phase. The thin oxide scale formed on the Cu phase was found to be Cu2O as expected while the thicker oxide scale formed on the Cu6La phase was found to be a polycrystalline La-rich Cu2O. The enhanced electrical conductivity in the native oxide scale of the Cu-9La alloy arises from heavy n-type doping of the Cu2O lattice by La3+. The Fe-V alloy structures consist of a mixture of large elongated and equiaxed grains. A thin polycrystalline Fe3O4 oxide scale formed on all of the Fe-V alloys. The electrical conductivities of the oxide scales formed on the Fe-V alloys are higher than that formed on pure Fe. It is inferred that this enhanced conductivity arises from doping of the magnetite with V+4 which promotes electron-polaron hopping. Thus, it has been demonstrated that even in simple binary alloy systems one can obtain a dramatic reduction in the contact resistances of alloy oxidized surfaces as compared with those of the pure base metals.

  19. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  20. 75 FR 58444 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Guide, DG-1244, ``Availability of Electric Power Sources.'' FOR FURTHER INFORMATION CONTACT: Satish..., ``Availability of Electric Power Sources'' temporarily identified by its task number, DG- 1244, which should be... Commission (NRC) considers acceptable when the available electric power sources are less than the number of...

  1. CPR (For Parents)

    MedlinePlus

    ... or she is no longer in contact with electricity before offering assistance to prevent becoming electrocuted yourself. (For instance, turn off the source of electricity, such as a light switch or a circuit ...

  2. Electrochromic optical switching device

    DOEpatents

    Lampert, C.M.; Visco, S.J.

    1992-08-25

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

  3. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1993-11-16

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figures.

  4. Electrochromic device using mercaptans and organothiolate compounds

    DOEpatents

    Lampert, C.M.; Ma, Y.P.; Doeff, M.M.; Visco, S.

    1995-08-15

    An electrochromic cell is disclosed which comprises an electrochromic layer and a composite ion counter electrode for transporting ions. The counter electrode further comprises a polymer electrolyte material and an organosulfur material in which, in its discharged state, the organosulfur material is further comprised of a mercaptan or an organothiolate. In one preferred embodiment, both the electrochromic electrode and the counter electrode are transparent either to visible light or to the entire electromagnetic spectrum in both charged and discharged states. An electrochromic device is disclosed which comprises one or more electrochromic electrodes encased in glass or plastic plates on the inner surface of each of which is formed a transparent electrically conductive film. Electrical contacts, which are in electrical contact with the conductive films, facilitate external electrical connection. 5 figs.

  5. Electrochromic optical switching device

    DOEpatents

    Lampert, Carl M.; Visco, Steven J.

    1992-01-01

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

  6. Early Reconstruction of Distal Leg and Foot in Acute High-Voltage Electrical Burn: Does Location of Pedicle in the Zone of Injury Affect the Outcome of Distally Based Sural Flap?

    PubMed

    Asʼadi, Kamran; Salehi, Seyed Hamid; Shoar, Saeed

    2017-01-01

    Distally based fasciocutaneous sural flap is popular in the reconstruction of distal leg and foot burns. However, utilization of this technique in high-voltage electrical injury has been challenging. The present study aimed to compare the outcome of early aggressive debridement and coverage of contact point of acute high-voltage electrical injury using distally based fasciocutaneous sural flap between high-risk and low-risk patients defined by the anatomic proximity of the flap pedicle to the zone of injury. A total of 51 patients with contact point of high-voltage electrical burn (HVEB) in distal leg and foot undergoing distally based fasciocutaneous sural flap were included in this prospective clinical study. In 28 patients, the flap pedicle was not involved in the contact point of high-voltage electrical injury (low risk/control group), whereas in 21 patients, it was located inside the zone of injury (high-risk/case group). Patients were followed up for a median of 21 months (range, 12-44 months). Wound dimensions to be covered were relatively similar between the 2 groups. Complications of flap survival (primary outcome) and other minor early and late complications (secondary outcome) did not significantly differ between the 2 groups (P > 0.05). Provided that early and completed debridements of contact points of HVEB were achieved, distally based sural flap is feasible and there is reliable coverage in HVEB even in patients with flap pedicle located in vicinity of the zone of injury.

  7. Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In

    Science.gov Websites

    Electric BusesA> North Carolina Airport Advances With Plug-In Electric Buses to someone by E-mail passengers with plug-in hybrid electric buses. For information about this project, contact Centralina Clean . Provided by Maryland Public Television Related Videos Photo of a car Electric Vehicles Charge up at State

  8. 78 FR 62347 - The City of Holyoke Gas & Electric Department; Notice of Intent To File License Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-18

    ... Holyoke Gas & Electric Department; Notice of Intent To File License Application, Filing of Pre-Application.... c. Date Filed: August 26, 2013. d. Submitted By: City of Holyoke Gas & Electric Department. e. Name... & Electric, 99 Suffolk Street, Holyoke, MA 01040; (413) 536-9340; [email protected] i. FERC Contact...

  9. Electrical, structural and surface morphological properties of thermally stable low-resistance W/Ti/Au multilayer ohmic contacts to n-type GaN

    NASA Astrophysics Data System (ADS)

    Jyothi, I.; Reddy, V. Rajagopal

    2010-10-01

    A W/Ti/Au multilayer scheme has been fabricated for achieving thermally stable low-resistance ohmic contact to n-type GaN (4.0 × 10 18 cm -3). It is shown that the as-deposited W/Ti/Au contact exhibits near linear I- V behaviour. However, annealing at temperature below 800 °C the contacts exhibit non-linear behaviour. After annealing at a temperature in excess of 850 °C, the W/Ti/Au contact showed ohmic behaviour. The W/Ti/Au contact produced specific contact resistance as low as 6.7 × 10 -6 Ω cm 2 after annealing at 900 °C for 1 min in a N 2 ambient. It is noted that the specific contact resistance decreases with increase in annealing temperature. It is also noted that annealing the contacts at 900 °C for 30 min causes insignificant degradation of the electrical and thermal properties. It is further shown that the overall surface morphology of the W/Ti/Au stayed fairly smooth even after annealing at 900 °C. The W/Ti/Au ohmic contact showed good edge sharpness after annealing at 900 °C for 30 min. Based on the Auger electron spectroscopy and glancing angle X-ray diffraction results, possible explanation for the annealing dependence of the specific contact resistance of the W/Ti/Au contacts are described and discussed.

  10. Eutectic Contact Inks for Solar Cells

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1985-01-01

    Low-resistance electrical contacts formed on solar cells by melting powders of eutectic composition of semiconductor and dopant. Process improves cell performance without subjecting cell to processing temperatures high enough to degrade other characteristics.

  11. Electrical characteristics of n-GaN Schottky contacts on cleaved surfaces of free-standing substrates: Metal work function dependence of Schottky barrier height

    NASA Astrophysics Data System (ADS)

    Imadate, Hiroyoshi; Mishima, Tomoyoshi; Shiojima, Kenji

    2018-04-01

    We report the electrical characteristics of Schottky contacts with nine different metals (Ag, Ti, Cr, W, Mo, Au, Pd, Ni, and Pt) formed on clean m-plane surfaces by cleaving freestanding GaN substrates, compared with these of contacts on Ga-polar c-plane n-GaN surfaces grown on GaN substrates. The n-values from the forward current–voltage (I–V) characteristics are as good as 1.02–1.18 and 1.02–1.09 for the m- and c-plane samples, respectively. We found that the reverse I–V curves of both samples can be explained by the thermionic field emission theory, and that the Schottky barrier height of the cleaved m-plane contacts shows a metal work function dependence.

  12. Piezo-phototronic sensor

    DOEpatents

    Wang, Zhong L.; Hu, Youfan; Zhang, Yan

    2013-10-15

    A device includes a substrate having a first surface. A piezoelectric nanowire is disposed on the first surface of the substrate. The piezoelectric nanowire has a first end and an opposite second end. The piezoelectric nanowire is subjected to an amount of strain. A first Schottky contact is in electrical communication with the first end of the piezoelectric nanowire. A second Schottky contact is in electrical communication with the second end of the piezoelectric nanowire. A bias voltage source is configured to impart a bias voltage between the first Schottky contact and the second Schottky contact. A mechanism is configured to measure current flowing through the piezoelectric nanowire. The amount of strain is selected so that a predetermined current will flow through the piezoelectric nanowire when light of a selected intensity is applied to a first location on the piezoelectric nanowire.

  13. From tunneling to point contact: Correlation between forces and current

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Mortensen, Henrik; Schär, Sacha; Lucier, Anne-Sophie; Miyahara, Yoichi; Grütter, Peter; Hofer, Werner

    2005-05-01

    We used a combined ultrahigh vacuum scanning tunneling and atomic force microscope (STM/AFM) to study W tip-Au(111) sample interactions in the regimes from weak coupling to strong interaction and simultaneously measure current changes from picoamperes to microamperes. Close correlation between conductance and interaction forces in a STM configuration was observed. In particular, the electrical and mechanical points of contact are determined based on the observed barrier collapse and adhesive bond formation, respectively. These points of contact, as defined by force and current measurements, coincide within measurement error. Ab initio calculations of the current as a function of distance in the tunneling regime is in quantitative agreement with experimental results. The obtained results are discussed in the context of dissipation in noncontact AFM as well as electrical contact formation in molecular electronics.

  14. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  15. 78 FR 23691 - Airworthiness Directives; the Boeing Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... off electrical power to the in-flight entertainment (IFE) systems and other non-essential electrical...., Washington, DC 20590. FOR FURTHER INFORMATION CONTACT: Ray Mei, Aerospace Engineer, Systems and Equipment... circuit breaker, relays, and wiring to allow the flightcrew to turn off electrical power to the IFE...

  16. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  17. Contact resistance change memory using N-doped Cr2Ge2Te6 phase-change material showing non-bulk resistance change

    NASA Astrophysics Data System (ADS)

    Shuang, Y.; Sutou, Y.; Hatayama, S.; Shindo, S.; Song, Y. H.; Ando, D.; Koike, J.

    2018-04-01

    Phase-change random access memory (PCRAM) is enabled by a large resistance contrast between amorphous and crystalline phases upon reversible switching between the two states. Thus, great efforts have been devoted to identifying potential phase-change materials (PCMs) with large electrical contrast to realize a more accurate reading operation. In contrast, although the truly dominant resistance in a scaled PCRAM cell is contact resistance, less attention has been paid toward the investigation of the contact property between PCMs and electrode metals. This study aims to propose a non-bulk-resistance-dominant PCRAM whose resistance is modulated only by contact. The contact-resistance-dominated PCM exploited here is N-doped Cr2Ge2Te6 (NCrGT), which exhibits almost no electrical resistivity difference between the two phases but exhibits a typical switching behavior involving a three-order-of-magnitude SET/RESET resistance ratio owing to its large contact resistance contrast. The conduction mechanism was discussed on the basis of current-voltage characteristics of the interface between the NCrGT and the W electrode.

  18. Experimental characterization of electrochemically polymerized polycarbazole film and study of its behavior with different metals contacts

    NASA Astrophysics Data System (ADS)

    Srivastava, Aditi; Chakrabarti, P.

    2017-12-01

    In this paper, we present the method of fabrication, experimental characterization, and comparison of electrical parameters of semiconducting polycarbazole film with different rectifying metals contacts. Electrochemical polymerization and deposition of organic semiconductor, i.e., polycarbazole on ITO-coated glass substrate, were performed using an electrochemical workstation. Experimental characterization of the prepared polymer film was done in respect of morphology, absorption, bandgap, and thickness. The stability and electro-activity of polycarbazole film were verified by the cyclic voltammetric method. Study of the behavior of prepared polycarbazole film with the different metals contacts such as Aluminum, Copper, Tungsten, and Tin has been done using semiconductor device analyzer. Various electrical parameters such as barrier height, ideality factor, and reverse saturation current have been extracted with different metal contacts, and the values were compared and contrasted. The nature of I- V characteristic of polycarbazole film in non-contact mode has also been analyzed using scanning tunneling microscope. The rectifying I- V characteristics obtained with different metals contacts have also been validated by the simulation on Deckbuild platform of the of ATLAS® software tool from Silvaco Inc.

  19. Electric field control of magnetoresistance in InP nanowires with ferromagnetic contacts.

    PubMed

    Zwanenburg, F A; van der Mast, D W; Heersche, H B; Kouwenhoven, L P; Bakkers, E P A M

    2009-07-01

    We demonstrate electric field control of sign and magnitude of the magnetoresistance in InP nanowires with ferromagnetic contacts. The sign change in the magnetoresistance is directly correlated with a sign change in the transconductance. Additionally, the magnetoresistance is shown to persist at such a high bias that Coulomb blockade has been lifted. We also observe the magnetoresistance when one of the ferromagnets is replaced by a nonmagnetic metal. We conclude that it must be induced by a single ferromagnetic contact, and that spin transport can be ruled out as the origin. Our results emphasize the importance of a systematic investigation of spin-valve devices in order to discriminate between ambiguous interpretations.

  20. Properties of perpendicular-anisotropy magnetic tunnel junctions fabricated over the bottom electrode contact

    NASA Astrophysics Data System (ADS)

    Miura, Sadahiko; Honjo, Hiroaki; Kinoshita, Keizo; Tokutome, Keiichi; Koike, Hiroaki; Ikeda, Shoji; Endoh, Tetsuo; Ohno, Hideo

    2015-04-01

    Perpendicular-anisotropy magnetic tunnel junctions (MTJs) were prepared on four substrate geometries, i.e., directly on the axis of the bottom electrode contact, directly off the axis of the bottom electrode contact, on the axis of the bottom electrode contact with a polished bottom electrode, and off the axis of the bottom electrode contact with a polished bottom electrode. Electrical shorts were observed for direct on-axis geometry at a certain extent, whereas there were no electrical shorts for the other three geometries. The MR ratio/σR, JC0, and thermal stability factor of the devices for polish on-axis geometry were almost the same as those for polish off-axis geometry. From TEM observations of the polish on-axis device, the interface between the bottom contact and the base electrode was determined to be rough, whereas the MgO barrier layer was determined to be smooth, indicating that the polish process was effective for smooth magnetic tunnel junction fabrication over the bottom contact. MTJs for polish on-axis geometry eliminated the base electrode resistance and increased the magnetoresistance ratio. This technology contributes to the higher density of spin transfer torque magnetic random access memory.

  1. Examination of local and systemic in vivo responses to electrical injury using an electrical burn delivery system.

    PubMed

    Shupp, Jeffrey W; Moffatt, Lauren T; Nguyen, Thu; Ramella-Roman, Jessica C; Hammamieh, Rasha; Miller, Stacy-Ann; Leto, Ellen J; Jo, Daniel Y; Randad, Pranay R; Jett, Marti; Jeng, James C; Jordan, Marion H

    2012-01-01

    Electrical injuries are devastating and are difficult to manage due to the complexity of the tissue damage and physiological impacts. A paucity of literature exists which describes models for electrical injury. To date, those models have been used primarily to demonstrate thermal and morphological effects at the points of contact. Creating a more representative model for human injury and further elucidating the physics and pathophysiology of this unique form of tissue injury could be helpful in designing stage-appropriate therapy and improving limb salvage. An electrical burn delivery system was developed to accurately and reliably deliver electrical current at varying exposure times. A series of Sprague-Dawley rats were anesthetized and subjected to injury with 1000 V of direct current at incremental exposure times (2-20 seconds). Whole blood and plasma were obtained immediately before shock, immediately postinjury, and then hourly for 3 hours. Laser Doppler images of tissue adjacent to the entrance and exit wounds were obtained at the outlined time points to provide information on tissue perfusion. The electrical exposure was nonlethal in all animals. The size and the depth of contact injury increased in proportion to the exposure times and were reproducible. Skin adjacent to injury (both entrance and exit sites) exhibited marked edema within 30 minutes. In adjacent skin of upper extremity wounds, mean perfusion units increased immediately postinjury and then gradually decreased in proportion to the severity of the injuries. In the lower extremity, this phenomenon was only observed for short contact times, while longer contact times had marked malperfusion throughout. In the plasma, interleukin-10 and vascular endothelial growth factor levels were found to be augmented by injury. Systemic transcriptome analysis revealed promising information about signal networks involved in dermatological, connective tissue, and neurological pathophysiological processes. A reliable and reproducible in vivo model has been developed for characterizing the pathophysiology of high-tension electrical injury. Changes in perfusion were observed near and between entrance and exit wounds that appear consistent with injury severity. Further studies are underway to correlate differential mRNA expression with injury severity.

  2. Ohmic contacts to semiconducting diamond

    NASA Astrophysics Data System (ADS)

    Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.

    1990-10-01

    Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.

  3. Applying contact to individual silicon nanowires using a dielectrophoresis (DEP)-based technique

    NASA Astrophysics Data System (ADS)

    Leiterer, Christian; Broenstrup, Gerald; Jahr, Norbert; Urban, Matthias; Arnold, Cornelia; Christiansen, Silke; Fritzsche, Wolfgang

    2013-05-01

    One major challenge for the technological use of nanostructures is the control of their electrical and optoelectronic properties. For that purpose, extensive research into the electrical characterization and therefore a fast and reliable way of contacting these structures are needed. Here, we report on a new, dielectrophoresis (DEP)-based technique, which enables to apply sufficient and reliable contact to individual nanostructures, like semiconducting nanowires (NW), easily and without the need for lithography. The DEP contacting technique presented in this article can be done without high-tech equipment and monitored in situ with an optical microscope. In the presented experiments, individual SiNWs are trapped and subsequently welded between two photolithographically pre-patterned electrodes by applying varying AC voltages to the electrodes. To proof the quality of these contacts, I-V curves, photoresponse and photoconductivity of a single SiNW were measured. Furthermore, the measured photoconductivity in dependence on the wavelength of illuminated light and was compared with calculations predicting the absorption spectra of an individual SiNW.

  4. Image Reconstruction Under Contact Impedance Effect in Micro Electrical Impedance Tomography Sensors.

    PubMed

    Liu, Xiayi; Yao, Jiafeng; Zhao, Tong; Obara, Hiromichi; Cui, Yahui; Takei, Masahiro

    2018-06-01

    Contact impedance has an important effect on micro electrical impedance tomography (EIT) sensors compared to conventional macro sensors. In the present work, a complex contact impedance effect ratio ξ is defined to quantitatively evaluate the effect of the contact impedance on the accuracy of the reconstructed images by micro EIT. Quality of the reconstructed image under various ξ is estimated by the phantom simulation to find the optimum algorithm. The generalized vector sampled pattern matching (GVSPM) method reveals the best image quality and the best tolerance to ξ. Moreover, the images of yeast cells sedimentary distribution in a multilayered microchannel are reconstructed by the GVSPM method under various mean magnitudes of contact impedance effect ratio |ξ|. The result shows that the best image quality that has the smallest voltage error U E = 0.581 is achieved with measurement frequency f = 1 MHz and mean magnitude |ξ| = 26. In addition, the reconstructed images of cells distribution become improper while f < 10 kHz and mean value of |ξ| > 2400.

  5. Concentrating Solar Power Projects - Dhursar | Concentrating Solar Power |

    Science.gov Websites

    : 125.0 MW Status: Operational Start Year: 2014 Do you have more information, corrections, or comments Electricity Generation: 280,000 MWh/yr (Expected) Contact(s): Webmaster Solar Start Production: November 11

  6. Concentrating Solar Power Projects - Arenales | Concentrating Solar Power |

    Science.gov Websites

    MW Status: Operational Start Year: 2013 Do you have more information, corrections, or comments Electricity Generation: 166,000 MWh/yr (Estimated) Contact(s): SolarPACES Break Ground: November 2011 Start

  7. Design and Fabrication of a Strain-Powered Microelectromechanical System (MEMS) Switch

    DTIC Science & Technology

    2014-09-01

    release showing uniform folding upwards; the top edge appears to be anchored to the substrate, which necessitated a mask rewrite after reducing...underdeveloped resist causing the switch to be anchored (left), thin-film shearing at the contact edge (right), and thin- film edge anchoring (right). Geometry...a “hip” joint and an “ ankle ” joint—while a center hinge was designed to fold down at a “knee” joint and make electrical contact with an electrical

  8. Physically separating printed circuit boards with a resilient, conductive contact

    NASA Technical Reports Server (NTRS)

    Baker, John D. (Inventor); Montalvo, Alberto (Inventor)

    1999-01-01

    A multi-board module provides high density electronic packaging in which multiple printed circuit boards are stacked. Electrical power, or signals, are conducted between the boards through a resilient contact. One end of the contact is located at a via in the lower circuit board and soldered to a pad near the via. The top surface of the contact rests against a via of the facing printed circuit board.

  9. 30 CFR 56.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...

  10. 30 CFR 56.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...

  11. 30 CFR 56.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...

  12. 30 CFR 56.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...

  13. 30 CFR 56.6605 - Isolation of blasting circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact between...

  14. A scanning probe mounted on a field-effect transistor: Characterization of ion damage in Si.

    PubMed

    Shin, Kumjae; Lee, Hoontaek; Sung, Min; Lee, Sang Hoon; Shin, Hyunjung; Moon, Wonkyu

    2017-10-01

    We have examined the capabilities of a Tip-On-Gate of Field-Effect Transistor (ToGoFET) probe for characterization of FIB-induced damage in Si surface. A ToGoFET probe is the SPM probe which the Field Effect Transistor(FET) is embedded at the end of a cantilever and a Pt tip was mounted at the gate of FET. The ToGoFET probe can detect the surface electrical properties by measuring source-drain current directly modulated by the charge on the tip. In this study, a Si specimen whose surface was processed with Ga+ ion beam was prepared. Irradiation and implantation with Ga+ ions induce highly localized modifications to the contact potential. The FET embedded on ToGoFET probe detected the surface electric field profile generated by schottky contact between the Pt tip and the sample surface. Experimentally, it was shown that significant differences of electric field due to the contact potential barrier in differently processed specimens were observed using ToGOFET probe. This result shows the potential that the local contact potential difference can be measured by simple working principle with high sensitivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices.

    PubMed

    Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J

    2015-11-06

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  16. Comparing measurement response and inverted results of electrical resistivity tomography instruments

    USGS Publications Warehouse

    Parsekian, Andrew D.; Claes, Niels; Singha, Kamini; Minsley, Burke J.; Carr, Bradley; Voytek, Emily; Harmon, Ryan; Kass, Andy; Carey, Austin; Thayer, Drew; Flinchum, Brady

    2017-01-01

    In this investigation, we compare the results of electrical resistivity measurements made by six commercially available instruments on the same line of electrodes to determine if there are differences in the measured data or inverted results. These comparisons are important to determine whether measurements made between different instruments are consistent. We also degraded contact resistance on one quarter of the electrodes to study how each instrument responds to different electrical connection with the ground. We find that each instrument produced statistically similar apparent resistivity results, and that any conservative assessment of the final inverted resistivity models would result in a similar interpretation for each. We also note that inversions, as expected, are affected by measurement error weights. Increased measurement errors were most closely associated with degraded contact resistance in this set of experiments. In a separate test we recorded the full measured waveform for a single four-electrode array to show how poor electrode contact and instrument-specific recording settings can lead to systematic measurement errors. We find that it would be acceptable to use more than one instrument during an investigation with the expectation that the results would be comparable assuming contact resistance remained consistent.

  17. 78 FR 72077 - Energy Efficiency Program for Industrial Equipment: Final Determination Classifying UL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Verification Services Inc. as a Nationally Recognized Certification Program for Small Electric Motors AGENCY... FURTHER INFORMATION CONTACT: Mr. Lucas Adin, U.S. Department of Energy, Building Technologies Office, Mail... conservation requirements for, among other things, electric motors and small electric motors, including test...

  18. Power Electronics and Electric Machines Publications | Transportation

    Science.gov Websites

    electric machines. For more information about the following publications, contact Sreekant Narumanchi. A , NREL Software Spray System Evaluation (Software 1.1 MB) Papers 2017 Electric Motor Thermal Management Source: Douglas DeVoto. 2017. 14 pp. NREL/MP-5400-67117. Power Electronics Thermal Management Research

  19. Alternative Fuels Data Center: Electric Trolley Boosts Business in

    Science.gov Websites

    Bakersfield, CaliforniaA> Electric Trolley Boosts Business in Bakersfield, California to someone Business in Bakersfield, California Discover how Bakersfield's electric trolley is giving a green boost to downtown businesses. For information about this project, contact San Joaquin Valley Clean Cities. Download

  20. 78 FR 38711 - Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Electric Association, Inc.; Notice of Availability of Environmental Assessment In accordance with the... 47897), the Office of Energy Projects has reviewed Copper Valley Electric Association, Inc.'s... three digits in the docket number field to access the document. For assistance, contact FERC Online...

  1. 30 CFR 75.1003-2 - Requirements for movement of off-track mining equipment in areas of active workings where...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chapter (Bureau of Mines Schedule 2G). (e) Electrical contact shall be maintained between the mine track...)(i) Except as provided in paragraph (f)(1)(ii) of this section electric power shall be supplied to... transported. (ii) Where direct current electric power is used and such electric power can be supplied only...

  2. 30 CFR 75.1003-2 - Requirements for movement of off-track mining equipment in areas of active workings where...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chapter (Bureau of Mines Schedule 2G). (e) Electrical contact shall be maintained between the mine track...)(i) Except as provided in paragraph (f)(1)(ii) of this section electric power shall be supplied to... transported. (ii) Where direct current electric power is used and such electric power can be supplied only...

  3. 30 CFR 75.1003-2 - Requirements for movement of off-track mining equipment in areas of active workings where...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chapter (Bureau of Mines Schedule 2G). (e) Electrical contact shall be maintained between the mine track...)(i) Except as provided in paragraph (f)(1)(ii) of this section electric power shall be supplied to... transported. (ii) Where direct current electric power is used and such electric power can be supplied only...

  4. 30 CFR 75.1003-2 - Requirements for movement of off-track mining equipment in areas of active workings where...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chapter (Bureau of Mines Schedule 2G). (e) Electrical contact shall be maintained between the mine track...)(i) Except as provided in paragraph (f)(1)(ii) of this section electric power shall be supplied to... transported. (ii) Where direct current electric power is used and such electric power can be supplied only...

  5. 30 CFR 75.1003-2 - Requirements for movement of off-track mining equipment in areas of active workings where...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chapter (Bureau of Mines Schedule 2G). (e) Electrical contact shall be maintained between the mine track...)(i) Except as provided in paragraph (f)(1)(ii) of this section electric power shall be supplied to... transported. (ii) Where direct current electric power is used and such electric power can be supplied only...

  6. Gasket Assembly for Sealing Mating Surfaces

    NASA Technical Reports Server (NTRS)

    Bryant, Melvin A., III (Inventor)

    2003-01-01

    A pair of substantially opposed mating surfaces are joined to each other and sealed in place by means of an electrically-conductive member which is placed in proximity to the mating surfaces. The electrically-conductive member has at least one element secured thereto which is positioned to contact the mating surfaces, and which softens when the electrically-conductive member is heated by passing an electric current therethrough. The softened element conforms to the mating surfaces, and upon cooling of the softened element the mating surfaces are joined together in an effective seal. Of particular significance is an embodiment of the electrically-conductive member which is a gasket having an electrically-conductive gasket base and a pair of the elements secured to opposite sides of the gasket base. This embodiment is positioned between the opposed mating surfaces to be joined to each other. Also significant is an embodiment of the electrically-conductive member which is an electrically-conductive sleeve having an element secured to its inner surface. This embodiment surrounds cylindrical members the bases of which are the substantially opposed mating surfaces to be joined, and the element on the inner surface of the sleeve contacts the outer surfaces of the cylindrical members.

  7. Jumping liquid metal droplet in electrolyte triggered by solid metal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jianbo; University of Chinese Academy of Sciences, Beijing 100049; Wang, Junjie

    2016-05-30

    We report the electron discharge effect due to point contact between liquid metal and solid metal particles in electrolyte. Adding nickel particles induces drastic hydrogen generating and intermittent jumping of a sub-millimeter EGaIn droplet in NaOH solution. Observations from different orientations disclose that such jumping behavior is triggered by pressurized bubbles under the assistance of interfacial interactions. Hydrogen evolution around particles provides clear evidence that such electric instability originates from the varied electric potential and morphology between the two metallic materials. The point-contact-induced charge concentration significantly enhances the near-surface electric field intensity at the particle tips and thus causes electricmore » breakdown of the electrolyte.« less

  8. Current Transport Properties of Monolayer Graphene/n-Si Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Pathak, C. S.; Garg, Manjari; Singh, J. P.; Singh, R.

    2018-05-01

    The present work reports on the fabrication and the detailed macroscopic and nanoscale electrical characteristics of monolayer graphene/n-Si Schottky diodes. The temperature dependent electrical transport properties of monolayer graphene/n-Si Schottky diodes were investigated. Nanoscale electrical characterizations were carried out using Kelvin probe force microscopy and conducting atomic force microscopy. Most the values of ideality factor and barrier height are found to be in the range of 2.0–4.4 and 0.50–0.70 eV for monolayer graphene/n-Si nanoscale Schottky contacts. The tunneling of electrons is found to be responsible for the high value of ideality factor for nanoscale Schottky contacts.

  9. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Phillips, Wayne (Inventor); Borshchevsky, Alex (Inventor); Kolawa, Elizabeth A. (Inventor); Ryan, Margaret A. (Inventor); Caillat, Thierry (Inventor); Mueller, Peter (Inventor); Snyder, G. Jeffrey (Inventor); Kascich, Thorsten (Inventor)

    2002-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  10. Optimization of power generating thermoelectric modules utilizing LNG cold energy

    NASA Astrophysics Data System (ADS)

    Jeong, Eun Soo

    2017-12-01

    A theoretical investigation to optimize thermoelectric modules, which convert LNG cold energy into electrical power, is performed using a novel one-dimensional analytic model. In the model the optimum thermoelement length and external load resistance, which maximize the energy conversion ratio, are determined by the heat supplied to the cold heat reservoir, the hot and cold side temperatures, the thermal and electrical contact resistances and the properties of thermoelectric materials. The effects of the thermal and electrical contact resistances and the heat supplied to the cold heat reservoir on the maximum energy conversion ratio, the optimum thermoelement length and the optimum external load resistance are shown.

  11. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  12. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2004-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  13. Fuel cell assembly fluid flow plate having conductive fibers and rigidizing material therein

    DOEpatents

    Walsh, Michael M.

    2000-01-01

    A fluid flow plate is preferably formed with three initial sections, for instance, two layers of conductive (e.g., metal) fibers and a barrier material (e.g., metal foil) which is interposed between the two layers. For example, sintering of these three sections can provide electrical path(s) between outer faces of the two layers. Then, the sintered sections can be, for instance, placed in a mold for forming of flow channel(s) into one or more of the outer faces. Next, rigidizing material (e.g., resin) can be injected into the mold, for example, to fill and/or seal space(s) about a conductive matrix of the electrical path(s). Preferably, abrading of surface(s) of the outer face(s) serves to expose electrical contact(s) to the electrical path(s).

  14. The effect of a source-contacted light shield on the electrical characteristics of an LTPS TFT

    NASA Astrophysics Data System (ADS)

    Kim, Miryeon; Sun, Wookyung; Kang, Jongseuk; Shin, Hyungsoon

    2017-08-01

    The electrical characteristics of a low-temperature polycrystalline silicon thin-film transistor (TFT) with a source-contacted light shield (SCLS) are observed and analyzed. Compared with that of a conventional TFT without a light shield (LS), the on-current of the TFT with an SCLS is lower because the SCLS blocks the fringing electric field from the drain to the active layer. Furthermore, the gate-to-source capacitance (C gs) of the TFT with an SCLS in the off and saturation regions is higher than that of a conventional TFT, which is due to the gate-to-LS capacitance (C g-LS). The electrical characteristics of the TFT with an SCLS are thoroughly investigated by two-dimensional device simulations, and a semi-empirical C g-LS model for SPICE simulation is proposed and verified.

  15. Monovalent Ions and Water Dipoles in Contact with Dipolar Zwitterionic Lipid Headgroups-Theory and MD Simulations

    PubMed Central

    Velikonja, Aljaž; Perutkova, Šarka; Gongadze, Ekaterina; Kramar, Peter; Polak, Andraž; Maček-Lebar, Alenka; Iglič, Aleš

    2013-01-01

    The lipid bilayer is a basic building block of biological membranes and can be pictured as a barrier separating two compartments filled with electrolyte solution. Artificial planar lipid bilayers are therefore commonly used as model systems to study the physical and electrical properties of the cell membranes in contact with electrolyte solution. Among them the glycerol-based polar phospholipids which have dipolar, but electrically neutral head groups, are most frequently used in formation of artificial lipid bilayers. In this work the electrical properties of the lipid layer composed of zwitterionic lipids with non-zero dipole moments are studied theoretically. In the model, the zwitterionic lipid bilayer is assumed to be in contact with aqueous solution of monovalent salt ions. The orientational ordering of water, resulting in spatial variation of permittivity, is explicitly taken into account. It is shown that due to saturation effect in orientational ordering of water dipoles the relative permittivity in the zwitterionic headgroup region is decreased, while the corresponding electric potential becomes strongly negative. Some of the predictions of the presented mean-field theoretical consideration are critically evaluated using the results of molecular dynamics (MD) simulation. PMID:23434651

  16. Universal Majorana thermoelectric noise

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2018-04-01

    Thermoelectric phenomena resulting from an interplay between particle flows induced by electric fields and temperature inhomogeneities are extremely insightful as a tool providing substantial knowledge about the microscopic structure of a given system. By tuning, e.g., parameters of a nanoscopic system coupled via tunneling mechanisms to two contacts, one may achieve various situations where the electric current induced by an external bias voltage competes with the electric current excited by the temperature difference of the two contacts. Even more exciting physics emerges when the system's electronic degrees freedom split to form Majorana fermions which make the thermoelectric dynamics universal. Here, we propose revealing these unique universal signatures of Majorana fermions in strongly nonequilibrium quantum dots via noise of the thermoelectric transport beyond linear response. It is demonstrated that whereas mean thermoelectric quantities are only universal at large-bias voltages, the noise of the electric current excited by an external bias voltage and the temperature difference of the contacts is universal at any bias voltage. We provide truly universal, i.e., independent of the system's parameters, thermoelectric ratios between nonlinear response coefficients of the noise and mean current at large-bias voltages where experiments may easily be performed to uniquely detect these truly universal Majorana thermoelectric signatures.

  17. Rotary Power Transformer and Inverter Circuit

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W. T.; Bridgeforth, A. O.

    1985-01-01

    Noise lower than with sliprings. Rotary transformer transfers electric power across rotary joint. No wearing contacts, no contact noise, and no contamination from lubricants or wear debris. Because additional inductor not required, size and complexity of circuit reduced considerably.

  18. Liquid metal porous matrix sliding electrical contact: A concept

    NASA Technical Reports Server (NTRS)

    Ferguson, H.

    1973-01-01

    Concept utilizes porous metal or nonmetal matrix containing liquid metal in porous structure and confines liquid metal to contact area between rotor and brush by capillary forces. System may also be used to lubricate bearing systems.

  19. Reliability improvements in tunable Pb1-xSnxSe diode lasers

    NASA Technical Reports Server (NTRS)

    Linden, K. J.; Butler, J. F.; Nill, K. W.; Reeder, R. E.

    1980-01-01

    Recent developments in the technology of Pb-salt diode lasers which have led to significant improvements in reliability and lifetime, and to improved operation at very long wavelengths are described. A combination of packaging and contacting-metallurgy improvements has led to diode lasers that are stable both in terms of temperature cycling and shelf-storage time. Lasers cycled over 500 times between 77 K and 300 K have exhibited no measurable changes in either electrical contact resistance or threshold current. Utilizing metallurgical contacting process, both lasers and experimental n-type and p-type bulk materials are shown to have electrical contact resistance values that are stable for shelf storage periods well in excess of one year. Problems and experiments which have led to devices with improved performance stability are discussed. Stable device configurations achieved for material compositions yielding lasers which operate continuously at wavelengths as long as 30.3 micrometers are described.

  20. Gage for micromachining system

    DOEpatents

    Miller, Donald M.

    1979-02-27

    A gage for measuring the contour of the surface of an element of a micromachining tool system and of a work piece machined by the micromachining tool system. The gage comprises a glass plate containing two electrical contacts and supporting a steel ball resting against the contacts. As the element or workpiece is moved against the steel ball, the very slight contact pressure causes an extremely small movement of the steel ball which breaks the electrical circuit between the two contacts. The contour information is supplied to a dedicated computer controlling the micromachining tool so that the computer knows the contour of the element and the work piece to an accuracy of .+-. 25 nm. The micromachining tool system with X- and omega-axes is used to machine spherical, aspherical, and irregular surfaces with a maximum contour error of 100 nanometers (nm) and surface waviness of no more than 0.8 nm RMS.

  1. Correlation between Ti source/drain contact and performance of InGaZnO-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Choi, Kwang-Hyuk; Kim, Han-Ki

    2013-02-01

    Ti contact properties and their electrical contribution to an amorphous InGaZnO (a-IGZO) semiconductor-based thin film transistor (TFT) were investigated in terms of chemical, structural, and electrical considerations. TFT device parameters were quantitatively studied by a transmission line method. By comparing various a-IGZO TFT parameters with those of different Ag and Ti source/drain electrodes, Ti S/D contact with an a-IGZO channel was found to lead to a negative shift in VT (-Δ 0.52 V). This resulted in higher saturation mobility (8.48 cm2/Vs) of a-IGZO TFTs due to effective interfacial reaction between Ti and an a-IGZO semiconducting layer. Based on transmission electron microcopy, x-ray photoelectron depth profile analyses, and numerical calculation of TFT parameters, we suggest a possible Ti contact mechanism on semiconducting a-IGZO channel layers for TFTs.

  2. Electrically contacted enzyme based on dual hairpin DNA structure and its application for amplified detection of Hg2+.

    PubMed

    Wang, Guangfeng; Huang, Hao; Zhang, Xiaojun; Wang, Lun

    2012-05-15

    In the present study, based on a dual hairpin DNA structure, a novel system of electrically contacted enzyme and its signal amplification for ultrasensitive detection of Hg(2+) was demonstrated. In the presence of Hg(2+), with the interaction of thymine-Hg(2+)-thymine (T-Hg(2+)-T), DNA sequence dully labeled with ferrocene (Fc) at 5' end and horseradish peroxidase (HRP) at 3' end, hybridized to the capture probe and formed the dual hairpin structure on the electrode. Fc unit acts as a relay that electrically contacts HRP with the electrode and activates the bioelectrocatalyzed reduction of H(2)O(2). And based on the bioelectrocatalyzed signal amplification of the presented system, Hg(2+) could be quantitatively detected in the range of 10(-10)-10(-6)M with a low detection limit of 52 pM. And it also demonstrated excellent selectivity against other interferential metal ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Carbon nanotubes/fluorinated polymers nanocomposite thin films for electrical contacts lubrication

    NASA Astrophysics Data System (ADS)

    Benedetto, A.; Viel, P.; Noël, S.; Izard, N.; Chenevier, P.; Palacin, S.

    2007-09-01

    The need to operate in extreme environmental conditions (ultra high vacuum, high temperatures, aerospatial environment, …) and the miniaturization toward micro electromechanical systems is demanding new materials in the field of low-level electrical contacts lubrication. Dry and chemically immobilized lubrication is expected to be an alternative to the traditional wet lubricants oils. With the goal to conciliate electrical conductivity and lubricant properties we designed nanocomposite thin films composed of a 2D carbon nanotubes network embedded in an organic matrix. The nanotubes networks were deposited on gold surfaces modified by electrochemical cathodic grafting of poly(acrylonitrile). The same substrate served for covalently bonding the low-friction organic matrix. Three different matrixes were tested: a perfluorinated oligomer chemically grafted and two different polyfluorinated acrylates electrochemically grafted. The nanocomposite thin films have been characterized by ATR FT-IR, XPS and Raman spectroscopy. We measured the effects of the different matrixes and the nanotubes addition on the tribological properties and on the contact resistances of the films.

  4. Occupational exposure to electric fields and induced currents associated with 400 kV substation tasks from different service platforms.

    PubMed

    Korpinen, Leena H; Elovaara, Jarmo A; Kuisti, Harri A

    2011-01-01

    The aim of the study was to investigate the occupational exposure to electric fields, average current densities, and average total contact currents at 400 kV substation tasks from different service platforms (main transformer inspection, maintenance of operating device of disconnector, maintenance of operating device of circuit breaker). The average values are calculated over measured periods (about 2.5 min). In many work tasks, the maximum electric field strengths exceeded the action values proposed in the EU Directive 2004/40/EC, but the average electric fields (0.2-24.5 kV/m) were at least 40% lower than the maximum values. The average current densities were 0.1-2.3 mA/m² and the average total contact currents 2.0-143.2 µA, that is, clearly less than the limit values of the EU Directive. The average values of the currents in head and contact currents were 16-68% lower than the maximum values when we compared the average value from all cases in the same substation. In the future it is important to pay attention to the fact that the action and limit values of the EU Directive differ significantly. It is also important to take into account that generally, the workers' exposure to the electric fields, current densities, and total contact currents are obviously lower if we use the average values from a certain measured time period (e.g., 2.5 min) than in the case where exposure is defined with only the help of the maximum values. © 2010 Wiley-Liss, Inc.

  5. Defining the value of injection current and effective electrical contact area for EGaIn-based molecular tunneling junctions.

    PubMed

    Simeone, Felice C; Yoon, Hyo Jae; Thuo, Martin M; Barber, Jabulani R; Smith, Barbara; Whitesides, George M

    2013-12-04

    Analysis of rates of tunneling across self-assembled monolayers (SAMs) of n-alkanethiolates SCn (with n = number of carbon atoms) incorporated in junctions having structure Ag(TS)-SAM//Ga2O3/EGaIn leads to a value for the injection tunnel current density J0 (i.e., the current flowing through an ideal junction with n = 0) of 10(3.6±0.3) A·cm(-2) (V = +0.5 V). This estimation of J0 does not involve an extrapolation in length, because it was possible to measure current densities across SAMs over the range of lengths n = 1-18. This value of J0 is estimated under the assumption that values of the geometrical contact area equal the values of the effective electrical contact area. Detailed experimental analysis, however, indicates that the roughness of the Ga2O3 layer, and that of the Ag(TS)-SAM, determine values of the effective electrical contact area that are ~10(-4) the corresponding values of the geometrical contact area. Conversion of the values of geometrical contact area into the corresponding values of effective electrical contact area results in J0(+0.5 V) = 10(7.6±0.8) A·cm(-2), which is compatible with values reported for junctions using top-electrodes of evaporated Au, and graphene, and also comparable with values of J0 estimated from tunneling through single molecules. For these EGaIn-based junctions, the value of the tunneling decay factor β (β = 0.75 ± 0.02 Å(-1); β = 0.92 ± 0.02 nC(-1)) falls within the consensus range across different types of junctions (β = 0.73-0.89 Å(-1); β = 0.9-1.1 nC(-1)). A comparison of the characteristics of conical Ga2O3/EGaIn tips with the characteristics of other top-electrodes suggests that the EGaIn-based electrodes provide a particularly attractive technology for physical-organic studies of charge transport across SAMs.

  6. Characterization of structural and electrostatic complexity in pentacene thin films by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Puntambekar, Kanan Prakash

    The advancement of organic electronics for applications in solar energy conversion, printed circuitry, displays, and solid-state lighting depends upon optimization of structure and properties for a variety of organic semiconductor interfaces. Organic semiconductor/insulator (O/I) and organic-metal (O/M) interfaces, in particular, are critical to the operation of organic thin film transistors (OTFTs) currently being developed for printed flexible electronics. Scanning probe microscopy (SPM) is a powerful tool to isolate and characterize the bottlenecks to charge transport at these interfaces. This thesis establishes a direct correlation between the structural disorder and electrical complexity at these interfaces, using various SPM based methods and discusses the implications of such complexity on device performance. To examine the O/M interfaces, surface potentials of operating pentacene TFTs with two different contact geometries (bottom or top) were mapped by Kelvin probe force microscopy (KFM). The surface potential distribution was used to isolate the potential drops at the source and drain contacts. Simultaneously obtained topography and surface potential maps elucidated the correlation between the morphology and contact resistance at the O/M interface; the bottom contact TFTs were observed to be contact limited at large gate voltages, while the top contact TFTs were not contact limited. A direct correlation between structural defects and electric potential variations at the pentacene and silicon dioxide, a common insulator, is demonstrated. Lateral force microscopy (LFM) generates striking images of the polycrystalline microstructure of a monolayer thick pentacene film, allowing clear visualization of the grain boundary network. Further more, surface potential wells localized at the grain boundaries were observed by KFM, suggesting that the grain boundaries may serve as charge carrier (hole) traps. Line dislocations were also revealed in the second monolayer by chemical etching and SPM and produce strong variations in the surface potential that must affect the interfacial charge conductance. Structural disorder at the O/I and O/M interfaces degrades both injection and transport of charge, and therefore needs to be minimized. Thus both visualization and correlation of structural and electrical complexity at these interfaces have important implications for understanding electrical transport in OTFTs and for defining strategies to improve device performance.

  7. Capillary zone electrophoresis-mass spectrometer interface

    DOEpatents

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  8. Capillary zone electrophoresis-mass spectrometer interface

    DOEpatents

    D'Silva, Arthur

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.

  9. Changing patterns in electrical burn injuries in a developing country: should prevention programs focus on the rural population?

    PubMed

    Patil, Surendra B; Khare, Nishant Anil; Jaiswal, Sumeet; Jain, Arvind; Chitranshi, Anurag; Math, Mahantesh

    2010-01-01

    In the developing world, the incidence of electrical injuries has increased in the past few years. This study attempts to identify the causative and demographic risk factors that can help in formulating a targeted prevention program. The study was conducted prospectively and retrospectively from 2004 to 2009. Eighty-four consecutive patients with electrical burn injuries were analyzed for their demographic profile, age, sex, occupation, rural-urban distribution, mode of injury, and place of injury. The patients were asked to fill out a questionnaire regarding their awareness about electrical burn injuries, and the results were tabulated. The age of presentation ranged from 3 to 61 years. The most frequently affected age group was the second decade of life (33.3%). Of 84 patients studied, 71 were male and 13 female. Fifty-nine patients were from the urban area, while 25 were from the surrounding rural area. Students including children and adolescents were the most common affected single group (22.5%). Contact with live wire or contact with an object that was in contact with a live wire (secondary contact) accounted for 43 of 84 cases (51%). Home was the most common location where injury occurred (51.2%). Twenty-one of 59 cases (35.6%) reported from the urban area and 3 of 25 cases (12%) from the rural area had specific knowledge about prevention of electrical burn injury. Forty-one patients (69.4%) from the urban area and 22 (88%) from the rural area believed that adequate information regarding electrical burn injury was not available. Thirty-six patients (61%) from the urban area and 24 (96%) from the rural area believed that they would have behaved differently if the information had been available. The authors recommend that prevention programs should be modified to cater to the specific needs of the younger age groups and the rural population.

  10. 46 CFR 154.514 - Piping: Electrical bonding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Process Piping Systems § 154.514 Piping: Electrical bonding. (a) Cargo tanks or piping that are... strap attached by welding or bolting. (2) Two or more bolts that give metal to metal contact between the...

  11. Investigation of innovative silicon detector assembling solutions for hadron calorimeter modules.

    NASA Astrophysics Data System (ADS)

    Cai, G.; Ammannati, N.

    1995-11-01

    The application of large areas of silicon detector mosaics in calorimetry for high energy particles measurement in Physics has grown in the last few years and is still in progress. The high number of mosaic units in the calorimeter implies the following main requirements to be satisfied: a simple low cost for manufacturing and assembling easy mountable/dismountabic units possibility to move or change silicon detectors easily reliability of the electrical contacts between the aluminium layer on the silicon detectors surface and the PCB breaker points In order to satisfy the above requirements several assembling solutions have been investigated and tested recently, as fixed contact by using conducting epoxy-glues, mechanical-dismountable contacts of gold-plated PCB copper to the silicon detectors, and others. The results of the tests show a general degradation of the original electrical characteristics of the contacts after of varying lengths operating times. This fact, due to corrosion phenomena assisted by chemical residuals in the contact interface, causes an irreversible damage of the detectors in the long term. In addition we found a room temperature interdiffusion of gold and copper. A promising solution to these problems can be achieved by careful removal of chemical, increase of golden layer of the PCB electrical copper contacts or aluminising them by pure aluminium vapour deposition in vacuum chamber. The estimated degradation time between the PCB copper and the aluminium film is very low in this case, and the risk of diffusion in the detector aluminium film surface is low along the whole operating life of the calorimeter.

  12. Nanoink bridge-induced capillary pen printing for chemical sensors.

    PubMed

    Kahng, Seong-Joong; Cerwyn, Chiew; Dincau, Brian M; Kim, Jong-Hoon; Novosselov, Igor V; Anantram, M P; Chung, Jae-Hyun

    2018-08-17

    Single-walled carbon nanotubes (SWCNTs) are used as a key component for chemical sensors. For miniature scale design, a continuous printing method is preferred for electrical conductance without damaging the substrate. In this paper, a non-contact capillary pen printing method is presented by the formation of a nanoink bridge between the nib of a capillary pen and a polyethylene terephthalate film. A critical parameter for stable printing is the advancing contact angle at the bridge meniscus, which is a function of substrate temperature and printing speed. The printed pattern including dots, lines, and films of SWCNTs are characterized by morphology, optical transparency, and electrical properties. Gas and pH sensors fabricated using the non-contact printing method are demonstrated as applications.

  13. Surface engineering of ferroelectric polymer for the enhanced electrical performance of organic transistor memory

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk

    2018-05-01

    We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.

  14. Ultrananocrystalline diamond contacts for electronic devices

    DOEpatents

    Sumant, Anirudha V.; Smedley, John; Muller, Erik

    2016-11-01

    A method of forming electrical contacts on a diamond substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The mixture of gases include a source of a p-type or an n-type dopant. The plasma ball is disposed at a first distance from the diamond substrate. The diamond substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the diamond substrate for a first time, and a UNCD film, which is doped with at least one of a p-type dopant and an n-type dopant, is disposed on the diamond substrate. The doped UNCD film is patterned to define UNCD electrical contacts on the diamond substrate.

  15. Ultrananocrystalline diamond contacts for electronic devices

    DOEpatents

    Sumant, Anirudha V.; Smedley, John; Muller, Erik

    2017-12-12

    A method of forming electrical contacts on a diamond substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The mixture of gases include a source of a p-type or an n-type dopant. The plasma ball is disposed at a first distance from the diamond substrate. The diamond substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the diamond substrate for a first time, and a UNCD film, which is doped with at least one of a p-type dopant and an n-type dopant, is disposed on the diamond substrate. The doped UNCD film is patterned to define UNCD electrical contacts on the diamond substrate.

  16. Photovoltaic device having light transmitting electrically conductive stacked films

    DOEpatents

    Weber, Michael F.; Tran, Nang T.; Jeffrey, Frank R.; Gilbert, James R.; Aspen, Frank E.

    1990-07-10

    A light transmitting electrically conductive stacked film, useful as a light transmitting electrode, including a first light transmitting electrically conductive layer, having a first optical thickness, a second light transmitting layer, having a second optical thickness different from the optical thickness of the first layer, and an electrically conductive metallic layer interposed between and in initimate contact with the first and second layers.

  17. Wet etch methods for InAs nanowire patterning and self-aligned electrical contacts

    NASA Astrophysics Data System (ADS)

    Fülöp, G.; d'Hollosy, S.; Hofstetter, L.; Baumgartner, A.; Nygård, J.; Schönenberger, C.; Csonka, S.

    2016-05-01

    Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, indium arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only a few techniques have been developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.

  18. InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface

    NASA Astrophysics Data System (ADS)

    Teubert, J.; Koslowski, S.; Lippert, S.; Schäfer, M.; Wallys, J.; Dimitrakopulos, G.; Kehagias, Th.; Komninou, Ph.; Das, A.; Monroy, E.; Eickhoff, M.

    2013-08-01

    We investigated the electric-field dependence of the photoluminescence-emission properties of InGaN/GaN quantum dot multilayers in contact with an electrolyte. Controlled variations of the surface potential were achieved by the application of external electric fields using the electrolytic Schottky contact and by variation of the solution's pH value. Prior to characterization, a selective electrochemical passivation process was required to suppress leakage currents. The quantum dot luminescence is strongly affected by surface potential variations, i.e., it increases exponentially with cathodic bias and acidic pH values. The results cannot be explained by a modification of intra-dot polarization induced electric fields via the quantum confined Stark effect but are attributed to the suppression/enhancement of non-radiative recombination processes, i.e., mainly hole transfer into the electrolyte. The results establish a link between the photoluminescence intensity and the magnitude of electric fields at the semiconductor/electrolyte interface.

  19. 78 FR 54885 - Union Electric Company (dba Ameren Missouri); Notice of Availability of Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... projects. For assistance, contact FERC Online Support. For further information, please contact Janet Hutzel by telephone at (202) 502-8675, or by email at janet[email protected] . Dated: August 29, 2013...

  20. 76 FR 18542 - Copper Valley Electric Association; Notice of Scoping Document 2 and Soliciting Scoping Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley.... Applicant: Copper Valley Electric Association (Copper Valley) d. Name of Project: Allison Creek Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  1. 76 FR 50663 - Revisions to Form, Procedures and Criteria for Certification of Qualifying Facility Status for a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... facilities. List of Subjects in 18 CFR Part 292 Electric power, Electric power plants, Electric utilities... to Form, Procedures and Criteria for Certification of Qualifying Facility Status for a Small Power... small power production or cogeneration facility. DATES: August 16, 2011. FOR FURTHER INFORMATION CONTACT...

  2. 75 FR 47302 - Pacific Gas & Electric Company; Notice of Public Meeting on Draft Environmental Impact Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ...] Pacific Gas & Electric Company; Notice of Public Meeting on Draft Environmental Impact Statement July 29... Electric Company. This meeting is open to the public. At this meeting, State and Federal resource agency... further information on this project, contact the environmental coordinator CarLisa Linton-Peters at (202...

  3. 75 FR 43964 - South Carolina Electric and Gas Company, South Carolina; Notice of Availability of Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Electric and Gas Company, South Carolina; Notice of Availability of Environmental Assessment July 20, 2010..., 52 Federal Register [FR] 47897), the Office of Energy Projects has reviewed South Carolina Electric... digits in the docket number field to access the document. For assistance, contact FERC Online Support at...

  4. Sensors for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)

    1998-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  5. Sensors for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Severin, Erik (Inventor); Lewis, Nathan S. (Inventor)

    2001-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  6. Sensors for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Severin, Erik (Inventor)

    1999-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g., electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  7. Sensor arrays for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    1996-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g. electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  8. Better Ohmic Contacts For InP Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Four design modifications enable fabrication of improved ohmic contacts on InP-based semiconductor devices. First modification consists of insertion of layer of gold phosphide between n-doped InP and metal or other overlayer of contact material. Second, includes first modification plus use of particular metal overlayer to achieve very low contact resistivities. Third, also involves deposition of Au(2)P(3) interlayer; in addition, refractory metal (W or Ta) deposited to form contact overlayer. In fourth, contact layer of Auln alloy deposited directly on InP. Improved contacts exhibit low electrical resistances and fabricated without exposing devices to destructive predeposition or postdeposition treatments.

  9. Electrodynamics of frictional interaction in tribolink “metal-polymer”

    NASA Astrophysics Data System (ADS)

    Volchenko, N. A.; Krasin, P. S.; Volchenko, A. I.; Zhuravlev, D. Yu

    2018-03-01

    The materials of the article illustrate the estimation of the energy loading of a metal friction element in the metal-electrolyte-polymer friction pair while forming various types of double electrical layers with the release of its thermal stabilization state. The energy loading of the contact spots of the microprotrusions of the friction pairs of braking devices depends to a large extent on the electrical, thermal and chemical fields that are of a different nature to an allowable temperature and are above the surface layers of the polymer patch. The latter is significantly influenced by double electrical layers that are formed at the boundaries of the phases “metal-metal”, “metal-polymer”, “metal-semiconductor”, “semiconductor-semiconductor” and “metal-electrolyte”. When two electrically conducting phases come into contact with electrothermomechanical friction, a difference in electrical potentials arises, which is due to the formation of a double electric layer, that is an asymmetric distribution of charged particles near the phase boundary. The structure of the double electric layer does not matter for the magnitude of the reversible electrode potential, which is determined by the variation of the isobaric-isothermal potential of the corresponding electrochemical reaction.

  10. An electric-eel-inspired soft power source from stacked hydrogels.

    PubMed

    Schroeder, Thomas B H; Guha, Anirvan; Lamoureux, Aaron; VanRenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-13

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  11. Pediatric electrical burns: management strategies.

    PubMed

    Zubair, M; Besner, G E

    1997-08-01

    The purpose of the present study was to analyse the course of patients hospitalised with electrical burn wounds in the past 25 years at a major children's hospital in the United States in order to devise safe and cost effective management strategies for these patients. The study was a retrospective chart review of patients with electrical injuries admitted to the hospital between 1971 and 1995. We identified 127 children who were included in the study. Injuries resulted from biting an electrical cord (oral injury) (n = 48), placing an object into an electrical socket (outlet injury) (n = 33), contacting a low voltage wire or appliance indoors (low voltage household injury) (n = 25), contacting a high voltage wire outdoors (high voltage wire injury) (n = 18), or being struck by lightning (n = 3). A retrospective review revealed that the great majority of patients with low voltage electrical injuries did not need admission to the hospital and could have been cared for on an outpatient basis. Almost every patient with high voltage injury had a justified admission due to the severity of the injury. On the basis of these results we conclude that we can safely reduce the number of admissions to the hospital for children with low voltage minor electrical injuries.

  12. An electric-eel-inspired soft power source from stacked hydrogels

    NASA Astrophysics Data System (ADS)

    Schroeder, Thomas B. H.; Guha, Anirvan; Lamoureux, Aaron; Vanrenterghem, Gloria; Sept, David; Shtein, Max; Yang, Jerry; Mayer, Michael

    2017-12-01

    Progress towards the integration of technology into living organisms requires electrical power sources that are biocompatible, mechanically flexible, and able to harness the chemical energy available inside biological systems. Conventional batteries were not designed with these criteria in mind. The electric organ of the knifefish Electrophorus electricus (commonly known as the electric eel) is, however, an example of an electrical power source that operates within biological constraints while featuring power characteristics that include peak potential differences of 600 volts and currents of 1 ampere. Here we introduce an electric-eel-inspired power concept that uses gradients of ions between miniature polyacrylamide hydrogel compartments bounded by a repeating sequence of cation- and anion-selective hydrogel membranes. The system uses a scalable stacking or folding geometry that generates 110 volts at open circuit or 27 milliwatts per square metre per gel cell upon simultaneous, self-registered mechanical contact activation of thousands of gel compartments in series while circumventing power dissipation before contact. Unlike typical batteries, these systems are soft, flexible, transparent, and potentially biocompatible. These characteristics suggest that artificial electric organs could be used to power next-generation implant materials such as pacemakers, implantable sensors, or prosthetic devices in hybrids of living and non-living systems.

  13. Development and fabrication of lithium-doped solar cells

    NASA Technical Reports Server (NTRS)

    Iles, P. A.

    1971-01-01

    The application of contacts and coatings after lithium diffusion provides good electrical output and satisfactory contact adhesion by sintering for short times at temperatures less than the lithium diffusion temperature. High output and repeatability are obtainable from both oxygen-rich and oxygen-lean silicon. These fabrication sequence alterations have led to higher cell output, better appearance, and increased contact strength.

  14. Occupational Contact Dermatitis in Mechanics and Repairers Referred for Patch Testing: Retrospective Analysis From the North American Contact Dermatitis Group 1998-2014.

    PubMed

    Warshaw, Erin M; Hagen, Solveig L; Sasseville, Denis; Maibach, Howard I; DeKoven, Joel G; Belsito, Donald V; Fowler, Joseph F; Zug, Kathryn A; Taylor, James S; Mathias, C G Toby; Fransway, Anthony F; DeLeo, Vincent A; Marks, James G; Pratt, Melanie D; Zirwas, Matthew J; Storrs, Frances J

    Contact dermatoses are common in mechanic and repair occupations. This study aimed to (1) estimate the prevalence of occupationally related contact dermatitis among mechanics/repairers patch tested from 1998 to 2014 by the North American Contact Dermatitis Group, (2) characterize responsible allergens and irritants, and their sources, and (3) compare results among 3 occupational subgroups (mechanics, electrical/electronic, and other). A cross-sectional analysis of patients patch tested by the North American Contact Dermatitis Group between 1998 and 2014. Of 38,784 patients patch tested, 691 (1.8%) were mechanics/repairers. Male sex (93.5%) and hand involvement (59.5%) were common overall. Occupationally related skin disease was more prevalent among vehicle and mobile equipment mechanics/repairers (52.7%) and other mechanics/repairers (41.4%) than electrical/electronic equipment mechanics/repairers (21.3%). Overall, carba mix, thiuram mix, and methylchloroisothiazolone/methylisothiazolone were the most common occupation-related clinically relevant allergens. Gloves, automotive vehicles, solvents, oils, lubricants, and fuels were the most common sources of responsible allergens. Common occupationally related allergens included rubber accelerators and the preservative methylchloroisothiazolone/methylisothiazolone.

  15. Repulsion-based model for contact angle saturation in electrowetting

    PubMed Central

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results. PMID:25759748

  16. Repulsion-based model for contact angle saturation in electrowetting.

    PubMed

    Ali, Hassan Abdelmoumen Abdellah; Mohamed, Hany Ahmed; Abdelgawad, Mohamed

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.

  17. High-Current Rotating Contactor

    NASA Technical Reports Server (NTRS)

    Hagan, David W.; Wolff, Edwin D.

    1996-01-01

    Rotating electrical contactor capable of carrying 1,000 amperes of current built for use in rotating large workpiece in electroplating bath. Electrical contact made by use of 24 automotive starter motor brushes adapted to match inside diameter of shell electrode.

  18. Method and apparatus for electrospark deposition

    DOEpatents

    Bailey, Jeffrey A.; Johnson, Roger N.; Park, Walter R.; Munley, John T.

    2004-12-28

    A method and apparatus for controlling electrospark deposition (ESD) comprises using electrical variable waveforms from the ESD process as a feedback parameter. The method comprises measuring a plurality of peak amplitudes from a series of electrical energy pulses delivered to an electrode tip. The maximum peak value from among the plurality of peak amplitudes correlates to the contact force between the electrode tip and a workpiece. The method further comprises comparing the maximum peak value to a set point to determine an offset and optimizing the contact force according to the value of the offset. The apparatus comprises an electrode tip connected to an electrical energy wave generator and an electrical signal sensor, which connects to a high-speed data acquisition card. An actuator provides relative motion between the electrode tip and a workpiece by receiving a feedback drive signal from a processor that is operably connected to the actuator and the high-speed data acquisition card.

  19. Rotary electrical contact device and method for providing current to and/or from a rotating member

    DOEpatents

    Koplow, Jeffrey P

    2013-11-19

    Examples of rotary electrical connectors include a first pair and a second pair of opposing sheaves coupled together by intersecting first shaft connecting the first pair of opposing sheaves and a second shaft connecting the second pair of opposing sheaves, and at least partially electrically conductive belt disposed about respective perimeters of the first pair and second pair of opposing sheaves and adapted to remain in contact with at least a portion of the respective perimeters of the sheaves during motion of said sheaves. In example devices, one of the plurality of sheaves may remain stationary during operation of the device while the remaining sheaves rotate and/or orbit around a center axis of the stationary sheave, the device being configured to couple current between a stationary power source and a rotating member through the electrically conductive belt.

  20. Conduction in In 2O 3/YSZ heterostructures: Complex interplay between electrons and ions, mediated by interfaces

    DOE PAGES

    Veal, B. W.; Eastman, J. A.

    2017-03-01

    Thin film In 2O 3/YSZ heterostructures exhibit significant increases in electrical conductance with time when small in-plane electric fields are applied. Contact resistances between the current electrodes and film, and between current electrodes and substrate are responsible for the behavior. With an in-plane electric field, different field profiles are established in the two materials, with the result that oxygen ions can be driven across the heterointerface, altering the doping of the n-type In 2O 3. Furthermore, a low frequency inductive feature observed in AC impedance spectroscopy measurements under DC bias conditions was found to be due to frequency-dependent changes inmore » the contact resistance.« less

  1. Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making

    DOEpatents

    Wu, Xuanzhi; Coutts, Timothy J.; Sheldon, Peter; Rose, Douglas H.

    1999-01-01

    A photovoltaic device having a substrate, a layer of Cd.sub.2 SnO.sub.4 disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd.sub.2 SnO.sub.4, and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd.sub.2 SnO.sub.4, and depositing an electrically conductive film onto the thin film of semiconductor materials.

  2. Investigation of dielectric substrates on electrical and optical performance of wafer-scale graphene using non-contact methods

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ning, Jing; Zhang, Jincheng; Guo, Lixin; Hao, Yue

    2017-10-01

    Here we systemically discussed the influence of dielectric substrates on the surface morphology, electrical and optical performance of transferred graphene. The electrical properties were investigated using a microwave-probing technique without metal-graphene contact. We found that a complex mechanism governed the influence of the surface properties of the dielectric substrates, such as morphology, hydrophilicity, crystallinity, and polarization, on the performance of the graphene. We also found that graphene on r-Al2O3 was more effective for graphene-based devices with a high carrier mobility of ˜5000 cm2 V-1 s-1. This provides a new method to choose the most suitable substrate for fabricating graphene-based devices.

  3. Concepts, characterization, and modeling of MEMS microswitches with gold contacts in MUMPs

    NASA Astrophysics Data System (ADS)

    Lafontan, Xavier; Dufaza, Christian; Robert, Michel; Pressecq, Francis; Perez, Guy

    2001-04-01

    This paper demonstrates that RF MEMS micro-switches can be realized with a low cost MEMS technology such as MUMPs. Two different switches are proposed, namely the hinged beam switch and the gold overflowing switch. Their concepts, design and characterization are described in details. On-resistance as low as 5 - 6 (Omega) for the gold overflowing switch and 2 - 3 (Omega) for the hinged beam switch have been measured. Finally, experimental measurements showed that force and electrical current had strong influences on the overall electrical contact.

  4. Electroplating method and apparatus

    DOEpatents

    Looney, Robert B.; Smith, William E. L.

    1978-06-20

    An apparatus for high speed electroplating or anodizing tubular members such as nuclear reactor fuel elements. A loading arm positions the member on a base for subsequent support by one of two sets of electrical contacts. A carriage assembly positions electrodes into and around the member. Electrolyte is pumped between the electrodes and the member while electric current is applied. Programmed controls sequentially employ each of the two sets of contacts to expose all surfaces of the member to the electrolyte. The member is removed from the apparatus by an unloading arm.

  5. Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact

    DOEpatents

    Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT; Johnsen, Richard [New Fairfield, CT

    2007-04-10

    An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.

  6. Double interconnection fuel cell array

    DOEpatents

    Draper, R.; Zymboly, G.E.

    1993-12-28

    A fuel cell array is made, containing number of tubular, elongated fuel cells which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes and outer electrodes, with solid electrolyte between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections contacting the inner electrode, each cell having only three metallic felt electrical connectors which contact surrounding cells, where each row is electrically connected to the other. 5 figures.

  7. Measurement of contact angle in a clearance-fit pin-loaded hole

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.; Naik, R. A.

    1986-01-01

    A technique which measures load-contact variation in a clearance-fit, pin-loaded hole is presented in detail. A steel instrumented pin, which activates a make-or-break electrical circuit in the pin-hole contact region, was inserted into one aluminum and one polycarbonate specimen. The resulting load-contact variations are indicated schematically. The ability to accurately determine the arc of contact at any load was crucial to this measurement. It is noted that this simple experimental technique is applicable to both conducting and nonconducting materials.

  8. Dual ohmic contact to N- and P-type silicon carbide

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  9. Investigation into Contact Resistance And Damage of Metal Contacts Used in RF-MEMS Switches

    DTIC Science & Technology

    2009-09-01

    mechanically cycled by a piezo- electric transducer ( PZT ). The resistance through the simulated switch was measured using a four-wire measurement technique...research, including a brief overview of contact theory. Then chapter 3 gives an overview of engi- 13 V I PZT Sample Mount Cantilever Lower Contact...as described in [3, 118]. The measurement of surface texture and 4These figures were published in Materials Selection in Mechanical Design, Michael F

  10. Contact material optimization and contact physics in metal-contact microelectromechanical systems (MEMS) switches

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyin

    Metal-contact MEMS switches hold great promise for implementing agile radio frequency (RF) systems because of their small size, low fabrication cost, low power consumption, wide operational band, excellent isolation and exceptionally low signal insertion loss. Gold is often utilized as a contact material for metal-contact MEMS switches due to its excellent electrical conductivity and corrosion resistance. However contact wear and stiction are the two major failure modes for these switches due to its material softness and high surface adhesion energy. To strengthen the contact material, pure gold was alloyed with other metal elements. We designed and constructed a new micro-contacting test facility that closely mimic the typical MEMS operation and utilized this facility to efficiently evaluate optimized contact materials. Au-Ni binary alloy system as the candidate contact material for MEMS switches was systematically investigated. A correlation between contact material properties (etc. microstructure, micro-hardness, electrical resistivity, topology, surface structures and composition) and micro-contacting performance was established. It was demonstrated nano-scale graded two-phase Au-Ni film could possibly yield an improved device performance. Gold micro-contact degradation mechanisms were also systematically investigated by running the MEMS switching tests under a wide range of test conditions. According to our quantitative failure analysis, field evaporation could be the dominant failure mode for highfield (> critical threshold field) hot switching; transient thermal-assisted wear could be the dominant failure mode for low-field hot switching; on the other hand, pure mechanical wear and steady current heating (1 mA) caused much less contact degradation in cold switching tests. Results from low-force (50 muN/micro-contact), low current (0.1 mA) tests on real MEMS switches indicated that continuous adsorbed films from ambient air could degrade the switch contact resistance. Our work also contributes to the field of general nano-science and technology by resolving the transfer directionality of field evaporation of gold in atomic force microscope (AFM)/scanning tunneling microscope (STM).

  11. Effects of tissue conductivity and electrode area on internal electric fields in a numerical human model for ELF contact current exposures

    NASA Astrophysics Data System (ADS)

    Tarao, H.; Kuisti, H.; Korpinen, L.; Hayashi, N.; Isaka, K.

    2012-05-01

    Contact currents flow through the human body when a conducting object with different potential is touched. There are limited reports on numerical dosimetry for contact current exposure compared with electromagnetic field exposures. In this study, using an anatomical human adult male model, we performed numerical calculation of internal electric fields resulting from 60 Hz contact current flowing from the left hand to the left foot as a basis case. Next, we performed a variety of similar calculations with varying tissue conductivity and contact area, and compared the results with the basis case. We found that very low conductivity of skin and a small electrode size enhanced the internal fields in the muscle, subcutaneous fat and skin close to the contact region. The 99th percentile value of the fields in a particular tissue type did not reliably account for these fields near the electrode. In the arm and leg, the internal fields for the muscle anisotropy were identical to those in the isotropy case using a conductivity value longitudinal to the muscle fibre. Furthermore, the internal fields in the tissues abreast of the joints such as the wrist and the elbow, including low conductivity tissues, as well as the electrode contact region, exceeded the ICNIRP basic restriction for the general public with contact current as the reference level value.

  12. Breaking the electrical barrier between copper and carbon nanotubes.

    PubMed

    Milowska, Karolina Z; Ghorbani-Asl, Mahdi; Burda, Marek; Wolanicka, Lidia; Ćatić, Nordin; Bristowe, Paul D; Koziol, Krzysztof K K

    2017-06-22

    Improving the interface between copper and carbon nanotubes (CNTs) offers a straightforward strategy for the effective manufacturing and utilisation of Cu-CNT composite material that could be used in various industries including microelectronics, aerospace and transportation. Motivated by a combination of structural and electrical measurements on Cu-M-CNT bimetal systems (M = Ni, Cr) we show, using first principles calculations, that the conductance of this composite can exceed that of a pure Cu-CNT system and that the current density can even reach 10 11 A cm -2 . The results show that the proper choice of alloying element (M) and type of contact facilitate the fabrication of ultra-conductive Cu-M-CNT systems by creating a favourable interface geometry, increasing the interface electronic density of states and reducing the contact resistance. In particular, a small concentration of Ni between the Cu matrix and the CNT using either an "end contact" and or a "dot contact" can significantly improve the electrical performance of the composite. Furthermore the predicted conductance of Ni-doped Cu-CNT "carpets" exceeds that of an undoped system by ∼200%. Cr is shown to improve CNT integration and composite conductance over a wide temperature range while Al, at low voltages, can enhance the conductance beyond that of Cr.

  13. Measurement of the geometric parameters of power contact wire based on binocular stereovision

    NASA Astrophysics Data System (ADS)

    Pan, Xue-Tao; Zhang, Ya-feng; Meng, Fei

    2010-10-01

    In the electrified railway power supply system, electric locomotive obtains power from the catenary's wire through the pantograph. Under the action of the pantograph, combined with various factors such as vibration, touch current, relative sliding speed, load, etc, the contact wire will produce mechanical wear and electrical wear. Thus, in electrified railway construction and daily operations, the geometric parameters such as line height, pull value, the width of wear surface must be under real-timely and non-contact detection. On the one hand, the safe operation of electric railways will be guaranteed; on the other hand, the wire endurance will be extended, and operating costs reduced. Based on the characteristics of the worn wires' image signal, the binocular stereo vision technology was applied for measurement of contact wire geometry parameters, a mathematical model of measurement of geometric parameters was derived, and the boundaries of the wound wire abrasion-point value were extracted by means of sub-pixel edge detection method based on the LOG operator with the least-squares fitting, thus measurements of the wire geometry parameters were realized. Principles were demonstrated through simulation experiments, and the experimental results show that the detection methods presented in this paper for measuring the accuracy, efficiency and convenience, etc. are close to or superior to the traditional measurements, which has laid a good foundation for the measurement system of geometric parameters for the contact wire of the development of binocular vision.

  14. Alternative Fuels Data Center: Electric Vehicles Charge up at State Parks

    Science.gov Websites

    with free electric vehicle charging. For information about this project, contact State of West Virginia Vehicle Charging Aug. 4, 2017 Photo of a car Johnson Space Center Explores Alternative Fuel Vehicles May 19, 2017 Photo of a car. Electric Vehicle Charging Network Expands at National Parks May 11, 2017

  15. 76 FR 58256 - Notice of Application Tendered for Filing With the Commission; Copper Valley Electric Association...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... Application Tendered for Filing With the Commission; Copper Valley Electric Association, Inc. Take notice that..., 2011. d. Applicant: Copper Valley Electric Association, Inc.. e. Name of Project: Allison Creek...: Federal Power Act 16 U.S.C. 791 (a)--825(r) . h. Applicant Contact: Robert A. Wilkinson, CEO, Copper...

  16. Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality

    Science.gov Websites

    in MinnesotaA> Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail alternative fuel vehicles to improve air quality. For information about this project, contact Twin Cities Related Videos Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017

  17. String and Sticky Tape Experiments: Simple Self-Lubricated Electric Motor for Elementary Physics Lab.

    ERIC Educational Resources Information Center

    Entrikin, Jerry; Griffiths, David

    1983-01-01

    The main problem in constructing functioning electric motors from simple parts is the mounting of the axle (which is too flimsy to maintain good electrical contacts or too tight, imposing excessive friction at the supports). This problem is solved by using a pencil sharpened at both ends as the axle. (JN)

  18. Chemical Detection using Electrically Open Circuits having no Electrical Connections

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Olgesby, Donald M.; Taylor, Bryant D.; Shams, Qamar A.

    2008-01-01

    This paper presents investigations to date on chemical detection using a recently developed method for designing, powering and interrogating sensors as electrically open circuits having no electrical connections. In lieu of having each sensor from a closed circuit with multiple electrically connected components, an electrically conductive geometric pattern that is powered using oscillating magnetic fields and capable of storing an electric field and a magnetic field without the need of a closed circuit or electrical connections is used. When electrically active, the patterns respond with their own magnetic field whose frequency, amplitude and bandwidth can be correlated with the magnitude of the physical quantities being measured. Preliminary experimental results of using two different detection approaches will be presented. In one method, a thin film of a reactant is deposited on the surface of the open-circuit sensor. Exposure to a specific targeted reactant shifts the resonant frequency of the sensor. In the second method, a coating of conductive material is placed on a thin non-conductive plastic sheet that is placed over the surface of the sensor. There is no physical contact between the sensor and the electrically conductive material. When the conductive material is exposed to a targeted reactant, a chemical reaction occurs that renders the material non-conductive. The change in the material s electrical resistance within the magnetic field of the sensor alters the sensor s response bandwidth and amplitude, allowing detection of the reaction without having the reactants in physical contact with the sensor.

  19. Novel laboratory methods for determining the fine scale electrical resistivity structure of core

    NASA Astrophysics Data System (ADS)

    Haslam, E. P.; Gunn, D. A.; Jackson, P. D.; Lovell, M. A.; Aydin, A.; Prance, R. J.; Watson, P.

    2014-12-01

    High-resolution electrical resistivity measurements are made on saturated rocks using novel laboratory instrumentation and multiple electrical voltage measurements involving in principle a four-point electrode measurement but with a single, moving electrode. Flat, rectangular core samples are scanned by varying the electrode position over a range of hundreds of millimetres with an accuracy of a tenth of a millimetre. Two approaches are tested involving a contact electrode and a non-contact electrode arrangement. The first galvanic method uses balanced cycle switching of a floating direct current (DC) source to minimise charge polarisation effects masking the resistivity distribution related to fine scale structure. These contacting electrode measurements are made with high common mode noise rejection via differential amplification with respect to a reference point within the current flow path. A computer based multifunction data acquisition system logs the current through the sample and voltages along equipotentials from which the resistivity measurements are derived. Multiple measurements are combined to create images of the surface resistivity structure, with variable spatial resolution controlled by the electrode spacing. Fine scale sedimentary features and open fractures in saturated rocks are interpreted from the measurements with reference to established relationships between electrical resistivity and porosity. Our results successfully characterise grainfall lamination and sandflow cross-stratification in a brine saturated, dune bedded core sample representative of a southern North Sea reservoir sandstone, studied using the system in constant current, variable voltage mode. In contrast, in a low porosity marble, identification of open fracture porosity against a background very low matrix porosity is achieved using the constant voltage, variable current mode. This new system is limited by the diameter of the electrode that for practical reasons can only be reduced to between 0.5 and 0.75 mm. Improvements to this resolution may be achieved by further reducing the electrode footprint to 0.1 mm × 0.1 mm using a novel high-impedance, non-contact potential probe. Initial results with this non-contact electric potential sensor indicate the possibility for generating images with grain-scale resolution.

  20. Analysis of amorphous indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model

    NASA Astrophysics Data System (ADS)

    Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.

    2013-04-01

    It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.

  1. Material morphology and electrical resistivity differences in EPDM rubbers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Nancy Y. C.; Domeier, Linda A.

    2008-03-01

    Electrical resistance anomalies noted in EPDM gaskets have been attributed to zinc-enriched surface sublayers, about 10-{micro}m thick, in the sulfur cured rubber material. Gasket over-compression provided the necessary connector pin contact and was also found to cause surprising morphological changes on the gasket surfaces. These included distributions of zinc oxide whiskers in high pressure gasket areas and cone-shaped features rich in zinc, oxygen, and sulfur primarily in low pressure protruding gasket areas. Such whiskers and cones were only found on the pin side of the gaskets in contact with a molded plastic surface and not on the back side inmore » contact with an aluminum surface. The mechanisms by which such features are formed have not yet been defined.« less

  2. Grips for testing of electrical characteristics of a specimen under a mechanical load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Timothy; Loyola, Bryan

    Various technologies to facilitate coupled electrical and mechanical measurement of conductive materials are disclosed herein. A gripping device simultaneously holds a specimen in place and causes contact to be made between the specimen and a plurality of electrodes connected to an electrical measuring device. An electrical characteristic of the specimen is then measured while a mechanical load is applied to the specimen, and a relationship between the mechanical load and changes in the electrical characteristic can be identified.

  3. Towards a unified description of the charge transport mechanisms in conductive atomic force microscopy studies of semiconducting polymers.

    PubMed

    Moerman, D; Sebaihi, N; Kaviyil, S E; Leclère, P; Lazzaroni, R; Douhéret, O

    2014-09-21

    In this work, conductive atomic force microscopy (C-AFM) is used to study the local electrical properties in thin films of self-organized fibrillate poly(3-hexylthiophene) (P3HT), as a reference polymer semiconductor. Depending on the geometrical confinement in the transport channel, the C-AFM current is shown to be governed either by the charge transport in the film or by the carrier injection at the tip-sample contact, leading to either bulk or local electrical characterization of the semiconducting polymer, respectively. Local I-V profiles allow discrimination of the different dominating electrical mechanisms, i.e., resistive in the transport regime and space charge limited current (SCLC) in the local regime. A modified Mott-Gurney law is analytically derived for the contact regime, taking into account the point-probe geometry of the contact and the radial injection of carriers. Within the SCLC regime, the probed depth is shown to remain below 12 nm with a lateral electrical resolution below 5 nm. This confirms that high resolution is reached in those C-AFM measurements, which therefore allows for the analysis of single organic semiconducting nanostructures. The carrier density and mobility in the volume probed under the tip under steady-state conditions are also determined in the SCLC regime.

  4. The Influence of Interstitial Ga and Interfacial Au (sub 2)P (sub 3) on the Electrical and Metallurgical Behavior of Au-Contacted III-V Semiconductors

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1991-01-01

    The introduction of a very small amount of Ga into Au contact metallization on InP is shown to have a significant effect on both the metallurgical and electrical behavior of that contact system. Ga atoms in the interstices of the Au lattice are shown to be effective in preventing the solid state reactions that normally take place between Au and InP during contact sintering. In addition to suppressing the metallurgical interaction, the presence of small amounts of Ga is shown to cause an order of magnitude reduction in the specific contact resistivity. Evidence is presented that the reactions of GaP and GaAs with Au contacts are also drastically affected by the presence of Ga. The sintering behavior of the Au-GaP and the Au-GaAs systems (as contrasted with that of the Au-InP system) is explained as due to the presence of interstitial Ga in the contact metallization. Finally the large, two-to-three order of magnitude drop in the contact resistance that occurs in the Au-InP system upon sintering at 400 degrees Centigrade is shown to be a result of the formation of an Au (sub 2) P (sub 3) layer at the metal-semiconductor interface. Contact resistivities in the 10 (sup -6) ohm square centimeter range are obtained for as-deposited Au on InP when a thin (20 Angstrom) layer of Au (sub 2) P (sub 3) is introduced between the InP and the Au contacts.

  5. Neutron activated switch

    DOEpatents

    Barton, David M.

    1991-01-01

    A switch for reacting quickly to a neutron emission. A rod consisting of fissionable material is located inside a vacuum tight body. An adjustable contact is located coaxially at an adjustable distance from one end of the rod. Electrical leads are connected to the rod and to the adjustable contact. With a vacuum drawn inside the body, a neutron bombardment striking the rod causes it to heat and expand longitudinally until it comes into contact with the adjustable contact. This circuit closing occurs within a period of a few microseconds.

  6. Rugged Low-Resistance Contacts To High-Tc Superconductors

    NASA Technical Reports Server (NTRS)

    Caton, Randall; Selim, Raouf; Byvik, Charles E.; Buoncristiani, A. Martin

    1992-01-01

    Newly developed technique involving use of gold makes possible to fabricate low-resistance contacts with rugged connections to high-Tc superconductors. Gold diffused into specimen of superconducting material by melting gold beads onto surface of specimen, making strong mechanical contacts. Shear strength of gold bead contacts greater than epoxy or silver paste. Practical use in high-current-carrying applications of new high-Tc materials, including superconducting magnets, long-wavelength sensors, electrical ground planes at low temperatures, and efficient transmission of power.

  7. Soldering to a single atomic layer

    NASA Astrophysics Data System (ADS)

    Girit, ćaǧlar Ö.; Zettl, A.

    2007-11-01

    The standard technique to make electrical contact to nanostructures is electron beam lithography. This method has several drawbacks including complexity, cost, and sample contamination. We present a simple technique to cleanly solder submicron sized, Ohmic contacts to nanostructures. To demonstrate, we contact graphene, a single atomic layer of carbon, and investigate low- and high-bias electronic transport. We set lower bounds on the current carrying capacity of graphene. A simple model allows us to obtain device characteristics such as mobility, minimum conductance, and contact resistance.

  8. Soldering to a single atomic layer

    NASA Astrophysics Data System (ADS)

    Girit, Caglar; Zettl, Alex

    2008-03-01

    The standard technique to make electrical contact to nanostructures is electron beam lithography. This method has several drawbacks including complexity, cost, and sample contamination. We present a simple technique to cleanly solder submicron sized, Ohmic contacts to nanostructures. To demonstrate, we contact graphene, a single atomic layer of carbon, and investigate low- and high-bias electronic transport. We set lower bounds on the current carrying capacity of graphene. A simple model allows us to obtain device characteristics such as mobility, minimum conductance, and contact resistance.

  9. Method for manufacturing electrical contacts for a thin-film semiconductor device

    DOEpatents

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1988-11-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  10. Electrical contacts for a thin-film semiconductor device

    DOEpatents

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1989-08-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  11. Role of contact force in ischemic scar-related ventricular tachycardia ablation; optimal force required and impact of left ventricular access route.

    PubMed

    Elsokkari, Ihab; Sapp, John L; Doucette, Steve; Parkash, Ratika; Gray, Christopher J; Gardner, Martin J; Macintyre, Ciorsti; AbdelWahab, Amir M

    2018-06-26

    Contact force-sensing technology has become a widely used addition to catheter ablation procedures. Neither the optimal contact force required to achieve adequate lesion formation in the ventricle, nor the impact of left ventricular access route on contact force has been fully clarified. Consecutive patients (n = 24) with ischemic cardiomyopathy who underwent ablation for scar-related ventricular tachycardia were included in the study. All ablations (n = 25) were performed using irrigated contact force-sensing catheters (Smart Touch, Biosense Webster). Effective lesion formation was defined as electrical unexcitability post ablation at sites which were electrically excitable prior to ablation (unipolar pacing at 10 mA, 2 ms pulse width). We explored the contact force which achieved effective lesion formation and the impact of left ventricular access route (retrograde aortic or transseptal) on the contact force achieved in various segments of the left ventricle. Scar zone was defined as bipolar signal amplitude < 0.5 mV. Among 427 ablation points, effective lesion formation was achieved at 201 points (47.1%). Contact force did not predict effective lesion formation in the overall group. However, within the scar zone, mean contact force ≥ 10 g was significantly associated with effective lesion formation [OR 3.21 (1.43, 7.19) P = 0.005]. In the 12-segment model of the left ventricle, the retrograde approach was associated with higher median contact force in the apical anterior segment (31 vs 19 g; P = 0.045) while transseptal approach had higher median force in the basal inferior segment (25 vs 15 g; P = 0.021). In the 4-segment model, the retrograde approach had higher force in the anterior wall (28 vs 16 g; P = 0.004) while the transseptal approach had higher force in the lateral wall (21 vs 18 g; P = 0.032). There was a trend towards higher force in the inferior wall with the transseptal approach, but this was not statistically significant (20 vs 15 g; P = 0.063). In patients with ischemic cardiomyopathy, a mean contact force of 10 g or more within the scar zone had the best correlation with electrical unexcitability post ablation in our study. The retrograde aortic approach was associated with better contact force over the anterior wall while use of a transseptal approach had better contact force over the lateral wall.

  12. 75 FR 14207 - Virginia Electric and Power Company d/b/a/Dominion Virginia Power, and Old Dominion Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ..., VA. For Further Information, Contact: Alicia Williamson, Project Manager, Environmental Projects...-mail to Alicia[email protected] . Dated at Rockville, Maryland, this 17th day of March 2010. For the...

  13. Extended foil capacitor with radially spoked electrodes

    DOEpatents

    Foster, James C.

    1990-01-01

    An extended foil capacitor has a conductive disk electrically connected in oncrushing contact to the extended foil. A conductive paste is placed through spaces between radial spokes on the disk to electrically and mechanically connect the extended foil to the disk.

  14. Electrode Models for Electric Current Computed Tomography

    PubMed Central

    CHENG, KUO-SHENG; ISAACSON, DAVID; NEWELL, J. C.; GISSER, DAVID G.

    2016-01-01

    This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 Ω · cm were studied. Values of “effective” contact impedance z used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 Ω · cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an “effective” contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field. PMID:2777280

  15. Electrode models for electric current computed tomography.

    PubMed

    Cheng, K S; Isaacson, D; Newell, J C; Gisser, D G

    1989-09-01

    This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 omega.cm were studied. Values of "effective" contact impedance zeta used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 omega.cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an "effective" contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field.

  16. Analytical study of space processing of immiscible materials for superconductors and electrical contacts

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Collings, E. W.; Abbott, W. H.; Maringer, R. E.

    1977-01-01

    The results of a study conducted to determine the role space processing or materials research in space plays in the superconductor and electrical contact industries are presented. Visits were made to manufacturers, users, and research organizations connected with these products to provide information about the potential benefits of the space environment and to exchange views on the utilization of space facilities for manufacture, process development, or research. In addition, space experiments were suggested which could result in improved terrestrial processes or products. Notable examples of these are, in the case of superconductors, the development of Nb-bronze alloys (Tsuei alloys) and, in the electrical contact field, the production of Ag-Ni or Ag-metal oxide alloys with controlled microstructure for research and development activities as well as for product development. A preliminary experimental effort to produce and evaluate rapidly cooled Pb-Zn and Cu-Nb-Sn alloys in order to understand the relationship between microstructure and superconducting properties and to simulate the fine structure potentially achievable by space processing was also described.

  17. Stabilization of Joule Heating in the Electropyroelectric Method

    NASA Astrophysics Data System (ADS)

    Ivanov, R.; Hernández, M.; Marín, E.; Araujo, C.; Alaniz, D.; Araiza, M.; Martínez-Ordoñez, E. I.

    2012-11-01

    Recently the so-called electropyroelectric technique for thermal characterization of liquids has been proposed (Ivanov et al., J. Phys. D: Appl. Phys. 43, 225501 (2010)). In this method a pyroelectric sensor, in good thermal contact with the investigated sample, is heated by passing an amplitude-modulated electrical current through the electrical contacts. As a result of the heat dissipated to the sample, the pyroelectric signal measured as a voltage drop across the electrical contacts changes in a periodical way. The amplitude and phase of this signal can be measured by lock-in detection as a function of the electrical current modulation frequency. Because the signal amplitude and phase depend on the thermal properties of the sample, these can be determined straightforwardly by fitting the experimental data to a theoretical model based on the solution of the heat diffusion equation with proper boundary conditions. In general, the experimental conditions are selected so that the thermal effusivity becomes the measured magnitude. The technique has the following handicap. As the result of heating and wear of the metal coating layers (previously etched to achieve a serpentine form) with time, their electrical resistance changes with time, so that the heat power dissipated by the Joule effect can vary, and thermal effusivity measurement can become inaccurate. To avoid this problem in this study, a method is proposed that allows maintaining stable the Joule dissipated power. An electronic circuit is designed whose stability and characteristics are investigated and discussed.

  18. 7 CFR 1710.400 - Initial contact.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Application... Department of Agriculture, Washington, DC 20250-1500. A field or headquarters staff representative may be... outstanding loans should contact their assigned RUS general field representative (GFR) or, in the case of a...

  19. 7 CFR 1710.400 - Initial contact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Application... Department of Agriculture, Washington, DC 20250-1500. A field or headquarters staff representative may be... outstanding loans should contact their assigned RUS general field representative (GFR) or, in the case of a...

  20. The significant effect of the thickness of Ni film on the performance of the Ni/Au Ohmic contact to p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.

    2014-10-28

    The significant effect of the thickness of Ni film on the performance of the Ohmic contact of Ni/Au to p-GaN is studied. The Ni/Au metal films with thickness of 15/50 nm on p-GaN led to better electrical characteristics, showing a lower specific contact resistivity after annealing in the presence of oxygen. Both the formation of a NiO layer and the evolution of metal structure on the sample surface and at the interface with p-GaN were checked by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The experimental results indicate that a too thin Ni film cannot form enough NiO to decrease themore » barrier height and get Ohmic contact to p-GaN, while a too thick Ni film will transform into too thick NiO cover on the sample surface and thus will also deteriorate the electrical conductivity of sample.« less

  1. Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics.

    PubMed

    Mora-Sero, Ivan; Bertoluzzi, Luca; Gonzalez-Pedro, Victoria; Gimenez, Sixto; Fabregat-Santiago, Francisco; Kemp, Kyle W; Sargent, Edward H; Bisquert, Juan

    2013-01-01

    Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells.

  2. Metallic Contact between MoS2 and Ni via Au Nanoglue.

    PubMed

    Shi, Xinying; Posysaev, Sergei; Huttula, Marko; Pankratov, Vladimir; Hoszowska, Joanna; Dousse, Jean-Claude; Zeeshan, Faisal; Niu, Yuran; Zakharov, Alexei; Li, Taohai; Miroshnichenko, Olga; Zhang, Meng; Wang, Xiao; Huang, Zhongjia; Saukko, Sami; González, Diego López; van Dijken, Sebastiaan; Alatalo, Matti; Cao, Wei

    2018-05-01

    A critical factor for electronics based on inorganic layered crystals stems from the electrical contact mode between the semiconducting crystals and the metal counterparts in the electric circuit. Here, a materials tailoring strategy via nanocomposite decoration is carried out to reach metallic contact between MoS 2 matrix and transition metal nanoparticles. Nickel nanoparticles (NiNPs) are successfully joined to the sides of a layered MoS 2 crystal through gold nanobuffers, forming semiconducting and magnetic NiNPs@MoS 2 complexes. The intrinsic semiconducting property of MoS 2 remains unchanged, and it can be lowered to only few layers. Chemical bonding of the Ni to the MoS 2 host is verified by synchrotron radiation based photoemission electron microscopy, and further proved by first-principles calculations. Following the system's band alignment, new electron migration channels between metal and the semiconducting side contribute to the metallic contact mechanism, while semiconductor-metal heterojunctions enhance the photocatalytic ability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Surface hole gas enabled transparent deep ultraviolet light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Gao, Ying; Zhou, Ling; Gil, Young-Un; Kim, Kyoung-Min

    2018-07-01

    The inherent deep-level nature of acceptors in wide-band-gap semiconductors makes p-ohmic contact formation and hole supply difficult, impeding progress for short-wavelength optoelectronics and high-power high-temperature bipolar electronics. We provide a general solution by demonstrating an ultrathin rather than a bulk wide-band-gap semiconductor to be a successful hole supplier and ohmic contact layer. Free holes in this ultrathin semiconductor are assisted to activate from deep acceptors and swept to surface to form hole gases by a large electric field, which can be provided by engineered spontaneous and piezoelectric polarizations. Experimentally, a 6 nm thick AlN layer with surface hole gas had formed p-ohmic contact to metals and provided sufficient hole injection to a 280 nm light-emitting diode, demonstrating a record electrical-optical conversion efficiency exceeding 8.5% at 20 mA (55 A cm‑2). Our approach of forming p-type wide-band-gap semiconductor ohmic contact is critical to realizing high-efficiency ultraviolet optoelectronic devices.

  4. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Li, Wei; Ma, Yaqiang; Dai, Xianqi

    2018-03-01

    Combining the electronic structures of two-dimensional monolayers in ultrathin hybrid nanocomposites is expected to display new properties beyond their single components. The effects of external electric field (Eext) on the electronic structures of monolayer SnS2 with graphene hybrid heterobilayers are studied by using the first-principle calculations. It is demonstrated that the intrinsic electronic properties of SnS2 and graphene are quite well preserved due to the weak van der Waals (vdW) interactions. We find that the n-type Schottky contacts with the significantly small Schottky barrier are formed at the graphene/SnS2 interface. In the graphene/SnS2 heterostructure, the vertical Eext can control not only the Schottky barriers (n-type and p-type) but also contact types (Schottky contact or Ohmic contact) at the interface. The present study would open a new avenue for application of ultrathin graphene/SnS2 heterostructures in future nano- and optoelectronics.

  5. Defect-free erbium silicide formation using an ultrathin Ni interlayer.

    PubMed

    Choi, Juyun; Choi, Seongheum; Kang, Yu-Seon; Na, Sekwon; Lee, Hoo-Jeong; Cho, Mann-Ho; Kim, Hyoungsub

    2014-08-27

    An ultrathin Ni interlayer (∼1 nm) was introduced between a TaN-capped Er film and a Si substrate to prevent the formation of surface defects during thermal Er silicidation. A nickel silicide interfacial layer formed at low temperatures and incurred uniform nucleation and the growth of a subsequently formed erbium silicide film, effectively inhibiting the generation of recessed-type surface defects and improving the surface roughness. As a side effect, the complete transformation of Er to erbium silicide was somewhat delayed, and the electrical contact property at low annealing temperatures was dominated by the nickel silicide phase with a high Schottky barrier height. After high-temperature annealing, the early-formed interfacial layer interacted with the growing erbium silicide, presumably forming an erbium silicide-rich Er-Si-Ni mixture. As a result, the electrical contact property reverted to that of the low-resistive erbium silicide/Si contact case, which warrants a promising source/drain contact application for future high-performance metal-oxide-semiconductor field-effect transistors.

  6. A model to non-uniform Ni Schottky contact on SiC annealed at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pristavu, G.; Brezeanu, G.; Badila, M.

    2015-06-29

    Ni Schottky contacts on SiC have a nonideal behavior, with strong temperature dependence of the electrical parameters, caused by a mixed barrier on the contact area and interface states. A simple analytical model that establishes a quantitative correlation between Schottky contact parameter variation with temperature and barrier height non-uniformity is proposed. A Schottky contact surface with double Schottky barrier is considered. The main model parameters are the lower barrier (Φ{sub Bn,l}) and a p factor which quantitatively evaluates the barrier non-uniformity on the Schottky contact area. The model is validated on Ni/4H-SiC Schottky contacts, post metallization sintered at high temperatures.more » The measured I{sub F}–V{sub F}–T characteristics, selected so as not to be affected by interface states, were used for model correlation. An inhomogeneous double Schottky barrier (with both nickel silicide and Ni droplets at the interface) is formed by a rapid thermal annealing (RTA) at 750 °C. High values of the p parameter are obtained from samples annealed at this temperature, using the proposed model. A significant improvement in the electrical properties occurs following RTA at 800 °C. The expansion of the Ni{sub 2}Si phase on the whole contact area is evinced by an X-Ray diffraction investigation. In this case, the p factor is much lower, attesting the uniformity of the contact. The model makes it possible to evaluate the real Schottky barrier, for a homogenous Schottky contact. Using data measured on samples annealed at 800 °C, a true barrier height of around 1.73 V has been obtained for Ni{sub 2}Si/4H-SiC Schottky contacts.« less

  7. Analysis of the axisymmetric indentation of a semi-infinite piezoelectric material: The evaluation of the contact stiffness and the effective piezoelectric constant

    NASA Astrophysics Data System (ADS)

    Yang, Fuqian

    2008-04-01

    A general solution of the axisymmetric indentation is obtained in the closed form for a semi-infinite, transverse isotropic piezoelectric material by a rigid-conducting indenter of arbitrary-axisymmetric profile. Explicit relationships are derived for dependences of the indentation depth and the indentation-induced charge on indentation force and applied electrical potential. Simple formulas are obtained for contact stiffness and effective piezoelectric constant, which can be used in indentation test and piezoresponse force microscopy to analyze the elastic and piezoelectric responses of piezoelectric materials. Depending on the direction of electric field (the potential difference), the electric field can either increase or suppress indentation deformation. The corresponding results are given for cylindrical, conical, and paraboloidal indenters.

  8. Biobriefcase electrostatic aerosol collector

    DOEpatents

    Bell, Perry M [Tracy, CA; Christian, Allen T [Madison, WI; Bailey, Christopher G [Pleasanton, CA; Willis, Ladona [Manteca, CA; Masquelier, Donald A [Tracy, CA; Nasarabadi, Shanavaz L [Livermore, CA

    2009-03-17

    A system for sampling air and collecting particles entrained in the air comprising a receiving surface, a liquid input that directs liquid to the receiving surface and produces a liquid surface, an air input that directs the air so that the air with particles entrained in the air impact the liquid surface, and an electrostatic contact connected to the liquid that imparts an electric charge to the liquid. The particles potentially including bioagents become captured in the liquid by the air with particles entrained in the air impacting the liquid surface. Collection efficiency is improved by the electrostatic contact electrically charging the liquid. The effects of impaction and adhesion due to electrically charging the liquid allows a unique combination in a particle capture medium that has a low fluid consumption rate while maintaining high efficiency.

  9. Photovoltaic devices comprising cadmium stannate transparent conducting films and method for making

    DOEpatents

    Wu, X.; Coutts, T.J.; Sheldon, P.; Rose, D.H.

    1999-07-13

    A photovoltaic device is disclosed having a substrate, a layer of Cd[sub 2]SnO[sub 4] disposed on said substrate as a front contact, a thin film comprising two or more layers of semiconductor materials disposed on said layer of Cd[sub 2]SnO[sub 4], and an electrically conductive film disposed on said thin film of semiconductor materials to form a rear electrical contact to said thin film. The device is formed by RF sputter coating a Cd[sub 2]SnO[sub 4] layer onto a substrate, depositing a thin film of semiconductor materials onto the layer of Cd[sub 2]SnO[sub 4], and depositing an electrically conductive film onto the thin film of semiconductor materials. 10 figs.

  10. Link module for a downhole drilling network

    DOEpatents

    Hall, David R [Provo, UT; Fox, Joe [Provo, UT

    2007-05-29

    A repeater is disclosed in one embodiment of the present invention as including a cylindrical housing, characterized by a proximal end and a distal end, and having a substantially cylindrical wall, the cylindrical wall defining a central bore passing therethrough. The cylindrical housing is formed to define at least one recess in the cylindrical wall, into which a repeater is inserted. The cylindrical housing also includes an annular recess formed into at least one of the proximal end and the distal end. An annular transmission element, operably connected to the repeater, is located in the annular recess. In selected embodiments, the annular transmission element inductively converts electrical energy to magnetic energy. In other embodiments, the annular transmission element includes an electrical contact to transmit electrical energy directly to another contact.

  11. Expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOEpatents

    Draper, Robert; Antol, Ronald F.; Zafred, Paolo R.

    2002-01-01

    A solid oxide fuel assembly is made, wherein rows (14, 24) of fuel cells (16, 18, 20, 26, 28, 30), each having an outer interconnection (36) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh (22) between each row of cells, the corrugated mesh (22) having top crown portions (40) and bottom shoulder portions (42), where the top crown portion (40) contacts outer interconnections (36) of the fuel cells (16, 18, 20) in a first row (14), and the bottom shoulder portions (42) contacts outer electrodes (32) of the fuel cells in a second row (24), said mesh electrically connecting each row of fuel cells, and where there are no metal felt connections between any fuel cells.

  12. Electrode material comprising graphene-composite materials in a graphite network

    DOEpatents

    Kung, Harold H.; Lee, Jung K.

    2014-07-15

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  13. Self-Aligning Mechanical And Electrical Coupling

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1993-01-01

    Two mating assemblies of mechanical and electrical coupling designed to align itself and so easy to use that robot can operate it. Rollers and v-grooves enforce required alignment when upper and lower assemblies brought into firm contact. Mechanism inside lower assembly provides spring preload between two assemblies plus mating of electrical connectors, all actuated by rotation of driver engaged with bolt via splines.

  14. Electrode material comprising graphene-composite materials in a graphite network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Harold H.; Lee, Jung K.

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  15. 77 FR 46087 - Inside Passage Electric Cooperative; Notice of Application Accepted for Filing With the Commision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    .... c. Date filed: May 25, 2012. d. Applicant: Inside Passage Electric Cooperative. e. Name of Project... project would not occupy any federal lands. g. Filed Pursuant to: Federal Power Act 16 U.S.C. 791(a)-825(r) (2006). h. Applicant Contact: Mr. Peter A. Bibb, Operations Manager, Inside Passage Electric Cooperative...

  16. Mounting improves heat-sink contact with beryllia washer

    NASA Technical Reports Server (NTRS)

    1966-01-01

    To conduct heat away from electrical components that must be electrically insulated from a metal heat sink, a metal washer and a coil spring are placed between one end of the electrical component and the beryllia washer mounted on the heat sink. The thermal paths are formed by the component lead and base, the metal and beryllia washers, and the compressed spring.

  17. Epidemiology of electrical and lightning-related injuries among Canadian children and youth, 1997-2010: A Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP) study.

    PubMed

    Böhrer, Madeleine; Stewart, Samuel A; Hurley, Katrina F

    2017-06-27

    Introduction Although death due to electrical injury and lightning are rare in children, these injuries are often preventable. Twenty years ago, most injuries occurred at home, precipitated by oral contact with electrical cords, contact with wall sockets and faulty electrical equipment. We sought to assess the epidemiology of electrical injuries in children presenting to Emergency Departments (EDs) that participate in the Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP). This study is a retrospective review of electrical and lightning injury data from CHIRPP. The study population included children and youth aged 0-19 presenting to participating CHIRPP EDs from 1997-2010. Age, sex, year, setting, circumstance and disposition were extracted. Variables were tested using Fisher's exact test and simple linear regression. The dataset included 1183 electrical injuries, with 84 (7%) resulting in hospitalization. Most events occurred at home in the 2-5 year age group and affected the hands. Since 1997 there has been a gradual decrease in the number of electrical injuries per year (p<0.01) and there is an annual surge in electrical injuries over the summer (p<0.01). Forty-six percent of injuries involved electrical outlets, 65% of injuries involved some sort of electrical equipment. Injuries due to lightning were rare (n=19). No deaths were recorded in the database. Despite the decrease in the number of electrical injuries per year, a large portion of injuries still appear to be preventable. Further research should focus on effective injury prevention strategies.

  18. Estimating the Probability of Electrical Short Circuits from Tin Whiskers. Part 2

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.; Asfour, Shihab S.; Onar, Arzu; Bayliss, Jon A.; Ludwig, Larry L.; Wright, Maria C.

    2009-01-01

    To comply with lead-free legislation, many manufacturers have converted from tin-lead to pure tin finishes of electronic components. However, pure tin finishes have a greater propensity to grow tin whiskers than tin-lead finishes. Since tin whiskers present an electrical short circuit hazard in electronic components, simulations have been developed to quantify the risk of said short circuits occurring. Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that had an unknown probability associated with it. Note however that due to contact resistance electrical shorts may not occur at lower voltage levels. In our first article we developed an empirical probability model for tin whisker shorting. In this paper, we develop a more comprehensive empirical model using a refined experiment with a larger sample size, in which we studied the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From the resulting data we estimated the probability distribution of an electrical short, as a function of voltage.

  19. An Investigation of the Electrical Short Circuit Characteristics of Tin Whiskers

    NASA Technical Reports Server (NTRS)

    Courey, Karim J.

    2008-01-01

    Existing risk simulations make the assumption that when a free tin whisker has bridged two adjacent exposed electrical conductors, the result is an electrical short circuit. This conservative assumption is made because shorting is a random event that has a currently unknown probability associated with it. Due to contact resistance electrical shorts may not occur at lower voltage levels. In this experiment, we study the effect of varying voltage on the breakdown of the contact resistance which leads to a short circuit. From this data we can estimate the probability of an electrical short, as a function of voltage, given that a free tin whisker has bridged two adjacent exposed electrical conductors. Also, three tin whiskers grown from the same Space Shuttle Orbiter card guide used in the aforementioned experiment were cross-sectioned and studied using a focused ion beam (FIB). The rare polycrystalline structure seen in the FIB cross section was confirmed using transmission electron microscopy (TEM). The FIB was also used to cross section two card guides to facilitate the measurement of the grain size to determine that the tin plating on the card guides had a bright finish.

  20. Design, construction and mechanical optimisation process of electrode with radial current flow in the scala tympani.

    PubMed

    Deman, P R; Kaiser, T M; Dirckx, J J; Offeciers, F E; Peeters, S A

    2003-09-30

    A 48 contact cochlear implant electrode has been constructed for electrical stimulation of the auditory nerve. The stimulating contacts of this electrode are organised in two layers: 31 contacts on the upper surface directed towards the habenula perforata and 17 contacts connected together as one longitudinal contact on the underside. The design of the electrode carrier aims to make radial current flow possible in the cochlea. The mechanical structure of the newly designed electrode was optimised to obtain maximal insertion depth. Electrode insertion tests were performed in a transparent acrylic model of the human cochlea.

  1. A functional electrical stimulation system for human walking inspired by reflexive control principles.

    PubMed

    Meng, Lin; Porr, Bernd; Macleod, Catherine A; Gollee, Henrik

    2017-04-01

    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation-assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking.

  2. Flexible nanogenerators

    DOEpatents

    Wang, Zhong L [Marietta, GA; Wang, Xudong [Atlanta, GA; Qin, Yong [Atlanta, GA; Yang, Rusen [Atlanta, GA

    2011-07-19

    A small scale electrical generator includes an elongated substrate and a first piezoelectric fine wire. The first piezoelectric fine wire is disposed along a surface of the substrate. The first piezoelectric fine wire has a first end and a spaced-apart second end. A first conductive contact secures the first end of the fine wire to a first portion of the substrate and a second conductive contact secures the second end of the fine wire to a second portion of the substrate. A fabric made of interwoven strands that includes fibers from which piezoelectric nanowires extend radially therefrom and conductive nanostructures extend therefrom is configured to generate electricity.

  3. Betavoltaics using scandium tritide and contact potential difference

    NASA Astrophysics Data System (ADS)

    Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan; Antoniazzi, Armando B.

    2008-02-01

    Tritium-powered betavoltaic micropower sources using contact potential difference (CPD) are demonstrated. Thermally stable scandium tritide thin films with a surface activity of 15mCi/cm2 were used as the beta particle source. The electrical field created by the work function difference between the ScT film and a platinum or copper electrode was used to separate the beta-generated electrical charge carriers. Open circuit voltages of 0.5 and 0.16V and short circuit current densities of 2.7 and 5.3nA/cm2 were achieved for gaseous and solid dielectric media-based CPD cells, respectively.

  4. Four-terminal electrical testing device. [initiator bridgewire resistance

    NASA Technical Reports Server (NTRS)

    Robinson, Robert L. (Inventor); Graves, Thomas J. (Inventor); Hoffman, William C., III (Inventor)

    1987-01-01

    The invention relates to a four-terminal electrical connector device for testing and measuring unknown resistances of initiators used for starting pyrotechnic events aboard the space shuttle. The testing device minimizes contact resistance degradation effects and so improves the reliability of resistance measurements taken with the device. Separate and independent voltage sensing and current supply circuits each include a pair of socket contacts for mating engagement with the pins of the initiator. The unknown resistance that is measured by the device is the resistance of the bridgewire of the initiator which is required to be between 0.95 and 1.15 ohms.

  5. Tubular solid oxide fuel cell current collector

    DOEpatents

    Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.

    2010-07-20

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  6. Adaptive neuro fuzzy system for modelling and prediction of distance pantograph catenary in railway transportation

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Panoiu, C.; Lihaciu, I. L.

    2018-01-01

    This research presents an adaptive neuro-fuzzy system which is used in the prediction of the distance between the pantograph and contact line of the electrical locomotives used in railway transportation. In railway transportation any incident that occurs in the electrical system can have major negative effects: traffic interrupts, equipment destroying. Therefore, a prediction as good as possible of such situations is very useful. In the paper was analyzing the possibility of modeling and prediction the variation of the distance between the pantograph and the contact line using intelligent techniques

  7. Comparison of Models of Stress Relaxation in Failure Analysis for Connectors under Long-term Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Yilin; Wan, Mengru

    2018-03-01

    Reliability requirements of the system equipment under long-term storage are put forward especially for the military products, so that the connectors in the equipment also need long-term storage life correspondingly. In this paper, the effects of stress relaxation of the elastic components on electrical contact of the connectors in long-term storage process were studied from the failure mechanism and degradation models. A wire spring connector was taken as an example to discuss the life prediction method for electrical contacts of the connectors based on stress relaxation degradation under long -term storage.

  8. Monolayer borophene electrode for effective elimination of both the Schottky barrier and strong electric field effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L. Z., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn; Xiong, S. J.; Wu, X. L., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn

    2016-08-08

    The formation of Schottky barriers between 2D semiconductors and traditional metallic electrodes has greatly limited the application of 2D semiconductors in nanoelectronic and optoelectronic devices. In this study, metallic borophene was used as a substitute for the traditional noble metal electrode to contact with the 2D semiconductor. Theoretical calculations demonstrated that no Schottky barrier exists in the borophene/2D semiconductor heterostructure. The contact remains ohmic even with a strong electric field applied. This finding provides a way to construct 2D electronic devices and sensors with greatly enhanced performance.

  9. Carbon-Nanotube Conductive Layers for Thin-Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2005-01-01

    Thin, transparent layers comprising mats of carbon nanotubes have been proposed for providing lateral (that is, inplane) electrical conductivities for collecting electric currents from the front surfaces of the emitter layers of thin-film solar photovoltaic cells. Traditionally, thin, semitransparent films of other electrically conductive materials (usually, indium tin oxide, zinc oxide, or cadmium sulfide) have been used for this purpose. As in the cases of the traditional semitransparent conductive films, the currents collected by the nanotube layers would, in turn, be further collected by front metal contact stripes. Depending on details of a specific solar-cell design, the layer of carbon nanotubes would be deposited in addition to, or instead of, a semitransparent layer of one of these traditional conductive materials (see figure). The proposal is expected to afford the following advantages: The electrical conductivity of the carbon- nanotube layer would exceed that of the corresponding semitransparent layer of traditional electrically conductive material. The greater electrical conductivity of the carbon-nanotube layer would make it possible to retain adequate lateral electrical conductivity while reducing the thickness of, or eliminating entirely, the traditional semitransparent conductive layer. As a consequence of thinning or elimination of the traditional semitransparent conductive layer, less light would be absorbed, so that more of the incident light would be available for photovoltaic conversion. The greater electrical conductivity of the carbon-nanotube layer would make it possible to increase the distance between front metal contact stripes, in addition to (or instead of) thinning or eliminating the layer of traditional semitransparent conductive material. Consequently, the fraction of solar-cell area shadowed by front metal contact stripes would be reduced again, making more of the incident light available for photovoltaic conversion. The electrical conductivities of individual carbon nanotubes can be so high that the mat of carbon nanotubes could be made sparse enough to be adequately transparent while affording adequate lateral electrical conductivity of the mat as a whole. The thickness of the nanotube layer would be chosen so that the layer would contribute significant lateral electrical conductivity, yet would be as nearly transparent as possible to incident light. A typical thickness for satisfying these competing requirements is expected to lie between 50 and 100 nm. The optimum thickness must be calculated by comparing the lateral electrical conductivity, the distance between front metal stripes, and the amount of light lost by absorption in the nanotube layer.

  10. RF MEMS microswitches design and characterization

    NASA Astrophysics Data System (ADS)

    Lafontan, Xavier; Dufaza, Christian; Robert, Michel; Perez, Guy; Pressecq, Francis

    2000-08-01

    This paper presents the work performed in MUMPs on RF MEMS micro-switch. Concepts, design and characterization of switches are studied. The study particularly focuses on the electrical resistance characterization and modelization. The switches developed uses two different principle: overflowed gold and hinged beam. The realized contacts exhibited high on resistance (~20(Omega) ) due to nanoscopics asperities of contacts and insulating interfacial films. Results of a typical contact cleaning method are also presented.

  11. All-optical lithography process for contacting nanometer precision donor devices

    NASA Astrophysics Data System (ADS)

    Ward, D. R.; Marshall, M. T.; Campbell, D. M.; Lu, T. M.; Koepke, J. C.; Scrymgeour, D. A.; Bussmann, E.; Misra, S.

    2017-11-01

    We describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  12. All-optical lithography process for contacting nanometer precision donor devices

    DOE PAGES

    Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie; ...

    2017-11-06

    In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  13. All-optical lithography process for contacting nanometer precision donor devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie

    In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  14. Contact electrification induced interfacial reactions and direct electrochemical nanoimprint lithography in n-type gallium arsenate wafer.

    PubMed

    Zhang, Jie; Zhang, Lin; Wang, Wei; Han, Lianhuan; Jia, Jing-Chun; Tian, Zhao-Wu; Tian, Zhong-Qun; Zhan, Dongping

    2017-03-01

    Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, i.e. , the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels ( E F ) become equal. In the presence of an electrolyte, the potential of the Pt/electrolyte interface will shift due to the contact electricity and induce the spontaneous reduction of MnO 4 - anions on the Pt surface. Because the equilibrium of contact electrification is disturbed, electrons will transfer from n-GaAs to Pt through the tunneling effect. Thus, the accumulated positive holes at the n-GaAs/electrolyte interface make n-GaAs dissolve anodically along the Pt/n-GaAs/electrolyte 3-phase interface. Based on this principle, we developed a direct electrochemical nanoimprint lithography method applicable to crystalline semiconductors.

  15. Numerical Investigation on Head and Brain Injuries Caused by Windshield Impact on Riders Using Electric Self-Balancing Scooters

    PubMed Central

    Zheng, Yanting; Shen, Ming; Yang, Xianfeng

    2018-01-01

    To investigate head-brain injuries caused by windshield impact on riders using electric self-balancing scooters (ESS). Numerical vehicle ESS crash scenarios are constructed by combining the finite element (FE) vehicle model and multibody scooter/rider models. Impact kinematic postures of the head-windshield contact under various impact conditions are captured. Then, the processes during head-windshield contact are reconstructed using validated FE head/laminated windshield models to assess the severity of brain injury caused by the head-windshield contact. Governing factors, such as vehicle speed, ESS speed, and the initial orientation of ESS rider, have nontrivial influences over the severity of a rider's brain injuries. Results also show positive correlations between vehicle speed and head-windshield impact speeds (linear and angular). Meanwhile, the time of head-windshield contact happens earlier when the vehicle speed is faster. According to the intensive study, windshield-head contact speed (linear and angular), impact location on the windshield, and head collision area are found to be direct factors on ESS riders' brain injuries during an impact. The von Mises stress and shear stress rise when relative contact speed of head-windshield increases. Brain injury indices vary widely when the head impacting the windshield from center to the edge or impacting with different areas. PMID:29770161

  16. Effect of contacts configuration and location on selective stimulation of cuff electrode.

    PubMed

    Taghipour-Farshi, Hamed; Frounchi, Javad; Ahmadiasl, Nasser; Shahabi, Parviz; Salekzamani, Yaghoub

    2015-01-01

    Cuff electrodes have been widely used chronically in different clinical applications. Advancements have been made in selective stimulation by using multi-contact cuff electrodes. Steering anodic current is a strategy to increase selectivity by reshaping and localizing electric fields. There are two configurations for contacts to be implemented in cuff, monopolar and tripolar. A cuff electrode with tripolar configuration can restrict the activation to a more localized region within a nerve trunk compared to a cuff with monopolar configuration and improve the selectivity. Anode contacts in tripolar configuration can be made in two structures, "ring" and "dot". In this study, the stimulation capabilities of these two structures were evaluated. The recruitment properties and the selectivity of stimulation were examined by measuring the electric potential produced by stimulation currents. The results of the present study indicated that using dot configuration, the current needed to stimulate fascicles in tripolar topologies would be reduced by 10%. It was also shown that stimulation threshold was increased by moving anode contacts inward the cuff. On the other hand, stimulation threshold was decreased by moving the anode contacts outward the cuff which would decrease selectivity, too. We conclude that dot configuration is a better choice for stimulation. Also, a cuff inward placement of 10% relative to the cuff length was near optimal.

  17. Electrical Engineering (Selected Articles).

    DTIC Science & Technology

    1980-05-15

    Homopolar Machine with Sodium-Potassium Ring-Shaped Contacts, by L.A. Sukhanov , G.A. Karmonov .......... 19 ACCESSION forWht hieSeto NTISuf ecine 1DOCS...3663 FACE 19 DIFECT-CURRENT HOMOPOLAS AACHIhI ITH SCIIUM-ECIASSIUM RING-SHAPED CONTACTS L. A. Sukhanov , Cand. tech. sciences, G. A. Karmanov, eng. ThA

  18. Heat transport through atomic contacts.

    PubMed

    Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd

    2017-05-01

    Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.

  19. Non-Contact Stiffness Measurement of a Suspended Single Walled Carbon Nanotube Device

    NASA Technical Reports Server (NTRS)

    Zheng, Yun; Su, Chanmin; Getty, Stephanie

    2010-01-01

    A new nanoscale electric field sensor was developed for studying triboelectric charging in terrestrial and Martian dust devils. This sensor is capable to measure the large electric fields for large dust devils without saturation. However, to quantify the electric charges and the field strength it is critical to calibrate the mechanical stiffness of the sensor devices. We performed a technical feasibility study of the Nano E-field Sensor stiffness by a non-contact stiffness measurement method. The measurement is based on laser Doppler vibrometer measurement of the thermal noise due to energy flunctuations in the devices. The experiment method provides a novel approach to acquire data that is essential in analyzing the quantitative performance of the E-field Nano Sensor. To carry out the non-contact stiffness measurement, we fabricated a new Single-Walled Carbon Nanotube (SWCNT) E-field sensor with different SWCNTs suspension conditions. The power spectra of the thermal induced displacement in the nano E-field sensor were measured at the accuracy of picometer. The power spectra were then used to derive the mechanical stiffness of the sensors. Effect of suspension conditions on stiffness and sensor sensitivty was discussed. After combined deformation and resistivity measurement, we can compare with our laboratory testing and field testing results. This new non-contact measurement technology can also help to explore to other nano and MEMS devices in the future.

  20. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Block, Bruce P. (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Sacks, Richard D. (Inventor); Hasselbrink, Ernest F. (Inventor); Waite, J. Hunter (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary.

  1. High tension electrical injury from a telephone receiver.

    PubMed

    Thomas, P C; Kumar, P

    2001-08-01

    A high tension (13000 V) electrical injury to a young man from telephone receiver is described. The current entered the telephone circuit due to contact with a high tension live wire running close to the telephone wire 2 km away from the site of incidence.

  2. Bottom-up realization and electrical characterization of a graphene-based device.

    PubMed

    Maffucci, A; Micciulla, F; Cataldo, A; Miano, G; Bellucci, S

    2016-03-04

    We propose a bottom-up procedure to fabricate an easy-to-engineer graphene-based device, consisting of a microstrip-like circuit where few-layer graphene nanoplatelets are used to contact two copper electrodes. The graphene nanoplatelets are obtained by the microwave irradiation of intercalated graphite, i.e., an environmentally friendly, fast and low-cost procedure. The contact is created by a bottom-up process, driven by the application of a DC electrical field in the gap between the electrodes, yielding the formation of a graphene carpet. The electrical resistance of the device has been measured as a function of the gap length and device temperature. The possible use of this device as a gas sensor is demonstrated by measuring the sensitivity of its electrical resistance to the presence of gas. The measured results demonstrate a good degree of reproducibility in the fabrication process, and the competitive performance of devices, thus making the proposed technique potentially attractive for industrial applications.

  3. Wedge assembly for electrical transformer component spacing

    DOEpatents

    Baggett, Franklin E.; Cage, W. Franklin

    1991-01-01

    A wedge assembly that is easily inserted between two surfaces to be supported thereby, and thereafter expanded to produce a selected spacing between those surfaces. This wedge assembly has two outer members that are substantially identical except that they are mirror images of each other. Oppositely directed faces of these of these outer members are substantially parallel for the purpose of contacting the surfaces to be separated. The outer faces of these outer members that are directed toward each other are tapered so as to contact a center member having complementary tapers on both faces. A washer member is provided to contact a common end of the outer members, and a bolt member penetrates this washer and is threadably received in a receptor of the center member. As the bolt member is threaded into the center member, the center member is drawn further into the gap between the outer members and thereby separates these outer members to contact the surfaces to be separated. In the preferred embodiment, the contacting surfaces of the outer member and the center member are provided with guide elements. The wedge assembly is described for use in separating the secondary windings from the laminations of an electrical power transformer.

  4. Comparison of mechanical properties for several electrical spring contact alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordstrom, Terry V.

    Work was conducted to determine whether beryllium-nickel alloy 440 had mechanical properties which made it suitable as a substitute for the presently used precious metal contact alloys Paliney 7 and Neyoro G, in certain electrical contact applications. Possible areas of applicability for the alloy were where extremely low contact resistance was not necessary or in components encountering elevated temperatures above those presently seen in weapons applications. Evaluation of the alloy involved three major experimental areas: 1) measurement of the room temperature microplastic (epsilon approximately 10/sup -6/) and macroplastic (epsilon approximately 10/sup -3/) behavior of alloy 440 in various age hardeningmore » conditions, 2) determination of applied stress effects on stress relaxation or contact force loss and 3) measurement of elevated temperature mechanical properties and stress relaxation behavior. Similar measurements were also made on Neyoro G and Paliney 7 for comparison. The primary results of the study show that beryllium-nickel alloy 440 is from a mechanical properties standpoint, equal or superior to the presently used Paliney 7 and Neyoro G for normal Sandia requirements. For elevated temperature applications, alloy 440 has clearly superior mechanical properties.« less

  5. Concentrating Solar Power Projects - La Florida | Concentrating Solar Power

    Science.gov Websites

    | NREL Florida This page provides information on La Florida, a concentrating solar power (CSP : March 20, 2017 Project Overview Project Name: La Florida Country: Spain Location: Badajoz (Badajoz Solar Resource: La Florida Weather Station Electricity Generation: 175,000 MWh/yr (Estimated) Contact(s

  6. 49 CFR 172.606 - Carrier information contact.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... attached to the vehicle at the brake hose or electrical connection; or (2) Have the shipping paper and... required shall instruct the operator of a motor vehicle, train, aircraft, or vessel to contact the carrier...) For transportation by highway, if a transport vehicle, (e.g., a semi-trailer or freight container-on...

  7. 46 CFR 196.37-5 - General alarm bell contact makers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....37-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Markings for Fire and Emergency Equipment, etc. § 196.37-5 General alarm bell contact makers. (a... (Electrical Engineering Regulations) of this chapter. [CGD 74-125a, 47 FR 15279, Apr. 8, 1982] Cross Reference...

  8. 46 CFR 196.37-5 - General alarm bell contact makers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....37-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Markings for Fire and Emergency Equipment, etc. § 196.37-5 General alarm bell contact makers. (a... (Electrical Engineering Regulations) of this chapter. [CGD 74-125a, 47 FR 15279, Apr. 8, 1982] Cross Reference...

  9. Alternative Fuels Data Center: Electric Buses Hit the Streets in Kentucky

    Science.gov Websites

    , Kentucky, diversified its fleet with all-electric buses. For information about this project, contact Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017 Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4

  10. Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part II: Loss of gas-tightness, electrical contact and thermal buckling

    NASA Astrophysics Data System (ADS)

    Nakajo, Arata; Wuillemin, Zacharie; Van herle, Jan; Favrat, Daniel

    Structural stability issues in planar solid oxide fuel cells arise from the mismatch between the coefficients of thermal expansion of the components. The stress state at operating temperature is the superposition of several contributions, which differ depending on the component. First, the cells accumulate residual stresses due to the sintering phase during the manufacturing process. Further, the load applied during assembly of the stack to ensure electric contact and flatten the cells prevents a completely stress-free expansion of each component during the heat-up. Finally, thermal gradients cause additional stresses in operation. The temperature profile generated by a thermo-electrochemical model implemented in an equation-oriented process modelling tool (gPROMS) was imported into finite-element software (ABAQUS) to calculate the distribution of stress and contact pressure on all components of a standard solid oxide fuel cell repeat unit. The different layers of the cell in exception of the cathode, i.e. anode, electrolyte and compensating layer were considered in the analysis to account for the cell curvature. Both steady-state and dynamic simulations were performed, with an emphasis on the cycling of the electrical load. The study includes two different types of cell, operation under both thermal partial oxidation and internal steam-methane reforming and two different initial thicknesses of the air and fuel compressive sealing gaskets. The results generated by the models are presented in two papers: Part I focuses on cell cracking. In the present paper, Part II, the occurrences of loss of gas-tightness in the compressive gaskets and/or electrical contact in the gas diffusion layer were identified. In addition, the dependence on temperature of both coefficients of thermal expansion and Young's modulus of the metallic interconnect (MIC) were implemented in the finite-element model to compute the plastic deformation, while the possibilities of thermal buckling were analysed in a dedicated and separate model. The value of the minimum stable thickness of the MIC is large, even though significantly affected by the operating conditions. This phenomenon prevents any unconsidered decrease of the thickness to reduce the thermal inertia of the stack. Thermal gradients and the shape of the temperature profile during operation induce significant decreases of the contact pressure on the gaskets near the fuel manifold, at the inlet or outlet, depending on the flow configuration. On the contrary, the electrical contact was ensured independently of the operating point and history, even though plastic strain developed in the gas diffusion layer.

  11. A heater made from graphite composite material for potential deicing application

    NASA Technical Reports Server (NTRS)

    Hung, C. C.; Stahl, M.; Stahl, M.; Stahl, M.

    1986-01-01

    A surface heater was developed using a graphite fiber-epoxy composite as the heating element. This heater can be thin, highly electrically and thermally conductive, and can conform to an irregular surface. Therefore it may be used in an aircraft's thermal deicing system to quickly and uniformly heat the aircraft surface. One-ply of unidirectional graphite fiber-epoxy composite was laminated between two plies of fiber glass-epoxy composite, with nickel foil contacting the end portions of the composite and partly exposed beyond the composites for electrical contact. The model heater used brominated P-100 fibers from Amoco. The fiber's electrical resistivity, thermal conductivity and density were 50 micro ohms per centimeter, 270 W/m-K and 2.30 gm/cubic cm, respectively. The electricity was found to penetrate through the composite in the transverse direction to make an acceptably low foil-composite contact resistance. When conducting current, the heater temperature increase reached 50 percent of the steady state value within 20 sec. There was no overheating at the ends of the heater provided there was no water corrosion. If the foil-composite bonding failed during storage, liquid water exposure was found to oxidize the foil. Such bonding failure may be avoided if perforated nickel foil is used, so that the composite plies can bond to each other through the perforated holes and therefore lock the foil in place.

  12. Groin Flap in Paediatric Age Group to Salvage Hand after Electric Contact Burn: Challenges and Experience

    PubMed Central

    Gupta, Pradeep; Malviya, Manohar

    2017-01-01

    Introduction Electric contact burn is characterised by multiple wounds produced by entrance and exit of the current. Hand is most commonly involved in the same and children are particularly susceptible to such accidents. Aim To document effectiveness and challenges associated with the use of groin flap as an initial definitive treatment of electric contact burn in paediatric age group. Materials and Methods From January 2015 to December 2016, 25 children up to 12 years of age, who were admitted at SMS Medical College, Jaipur, Rajasthan, India, after electric burn injury with hand defect and who were treated by pedicled groin flap at the Department of Plastic and Reconstructive Surgery, were included in the study. Details related to gender, age, type of voltage injury, sites of injury and postoperative complications were recorded. The groin flap was used in these children for coverage of hand and finger defect with exposed bone and tendon. Results Normal functional results were seen in all children treated with pedicled groin flap and all were able to perform activities of daily living. All the children had satisfactory aesthetic result. Conclusion Although, groin flap was an uncomfortable procedure due to limb position that was particularly difficult for children, it was found to be a useful method to salvage hand and it resulted in favourable functional and aesthetic outcome in each case. PMID:28969190

  13. Peripheral nerve recruitment curve using near-infrared stimulation

    NASA Astrophysics Data System (ADS)

    Dautrebande, Marie; Doguet, Pascal; Gorza, Simon-Pierre; Delbeke, Jean; Nonclercq, Antoine

    2018-02-01

    In the context of near-infrared neurostimulation, we report on an experimental hybrid electrode allowing for simultaneous photonic or electrical neurostimulation and for electrical recording of evoked action potentials. The electrode includes three contacts and one optrode. The optrode is an opening in the cuff through which the tip of an optical fibre is held close to the epineurium. Two contacts provide action potential recording. The remaining contact, together with a remote subcutaneous electrode, is used for electric stimulation which allows periodical assessment of the viability of the nerve during the experiment. A 1470 nm light source was used to stimulate a mouse sciatic nerve. Neural action potentials were not successfully recorded because of the electrical noise so muscular activity was used to reflect the motor fibres stimulation. A recruitment curve was obtained by stimulating with photonic pulses of same power and increasing duration and recording the evoked muscular action potentials. Motor fibres can be recruited with radiant exposures between 0.05 and 0.23 J/cm2 for pulses in the 100 to 500 μs range. Successful stimulation at short duration and at a commercial wavelength is encouraging in the prospect of miniaturisation and practical applications. Motor fibres recruitment curve is a first step in an ongoing research work. Neural action potential acquisition will be improved, with aim to shed light on the mechanism of action potential initiation under photonic stimulation.

  14. Thermometry in dielectrophoresis chips for contact-free cell handling

    NASA Astrophysics Data System (ADS)

    Jaeger, M. S.; Mueller, T.; Schnelle, T.

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells.

  15. Evaluation of electrical propagation delay with cardiomyocytes by photosensitization reaction in vitro

    NASA Astrophysics Data System (ADS)

    Doi, Marika; Ogawa, Emiyu; Arai, Tsunenori

    2017-02-01

    In order to study cardiomyocyte electrical conduction damage by a photosensitization reaction (PR) mostly comes from outside of the cells in a few minutes after the PR, we studied propagation delay of contact action potential with cardiomyocyte by the PR. To determine appropriate PR condition for tachyarrhythmia ablation, a precise electrophysiological experiment in vitro has been preferable. We measured the contact action potential using a microelectrode array system of which information may be correct than conventional Ca2+ measurement. We investigated the propagation delays of an evoked potential to evaluate the electrical conduction damage by the PR. Rat cardiomyocytes were cultivated for 5-7 days on a dish with which 64 electrodes were patterned, in an incubator controlled to 37°C, 5% CO2. The following conditions were used for the PR: 40 μg/ml talapordfin sodium and 290 mW/cm2, 40-78 J/cm2 for an irradiation. A 2D map was obtained to visualize the propagation delays of the evoked potential. The propagation speed, which was calculated based on the measured propagation delays, was decreased by about 30-50% on average of all electrodes after the PR. Therefore, we think 2D propagation delays measurement of the evoked potential with contact action potential measuring system might be available to evaluate the acute electrical conduction damage of cardiomyocyte by the PR.

  16. Friction, wear and noise of slip ring and brush contacts for synchronous satellite use.

    NASA Technical Reports Server (NTRS)

    Lewis, N. E.; Cole, S. R.; Glossbrenner, E. W.; Vest, C. E.

    1972-01-01

    A program is being conducted for testing of slip rings for synchronous orbit application. Instrumentation systems necessary for monitoring electrical noise, friction, and brush wear at atmospheric pressure and at less than 50 ntorr have been developed. A multiplex scheme necessary for the simultaneous recording of brush displacement, friction, and electrical noise has also been developed. Composite brushes consisting of silver-molybdenum disulfide-graphite and silver-niobium diselenide-graphite have been employed on rings of coin silver and rhodium plate. Four contact combinations have been tested during an ambient condition run-in at 150 rpm and a humidity sequence at 0.1 rpm. The first six months of the two year vacuum test at 0.1 rpm have been completed. Electrical noise, friction and brush wear data recorded during these periods have been analyzed.

  17. Changes in electrical and thermal parameters of led packages under different current and heating stresses

    NASA Astrophysics Data System (ADS)

    Jayawardena, Adikaramge Asiri

    The goal of this dissertation is to identify electrical and thermal parameters of an LED package that can be used to predict catastrophic failure real-time in an application. Through an experimental study the series electrical resistance and thermal resistance were identified as good indicators of contact failure of LED packages. This study investigated the long-term changes in series electrical resistance and thermal resistance of LED packages at three different current and junction temperature stress conditions. Experiment results showed that the series electrical resistance went through four phases of change; including periods of latency, rapid increase, saturation, and finally a sharp decline just before failure. Formation of voids in the contact metallization was identified as the underlying mechanism for series resistance increase. The rate of series resistance change was linked to void growth using the theory of electromigration. The rate of increase of series resistance is dependent on temperature and current density. The results indicate that void growth occurred in the cap (Au) layer, was constrained by the contact metal (Ni) layer, preventing open circuit failure of contact metal layer. Short circuit failure occurred due to electromigration induced metal diffusion along dislocations in GaN. The increase in ideality factor, and reverse leakage current with time provided further evidence to presence of metal in the semiconductor. An empirical model was derived for estimation of LED package failure time due to metal diffusion. The model is based on the experimental results and theories of electromigration and diffusion. Furthermore, the experimental results showed that the thermal resistance of LED packages increased with aging time. A relationship between thermal resistance change rate, with case temperature and temperature gradient within the LED package was developed. The results showed that dislocation creep is responsible for creep induced plastic deformation in the die-attach solder. The temperatures inside the LED package reached the melting point of die-attach solder due to delamination just before catastrophic open circuit failure. A combined model that could estimate life of LED packages based on catastrophic failure of thermal and electrical contacts is presented for the first time. This model can be used to make a-priori or real-time estimation of LED package life based on catastrophic failure. Finally, to illustrate the usefulness of the findings from this thesis, two different implementations of real-time life prediction using prognostics and health monitoring techniques are discussed.

  18. Carbon fiber epoxy composites for both strengthening and health monitoring of structures.

    PubMed

    Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal

    2015-05-06

    This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the "wet process", which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring.

  19. Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures

    PubMed Central

    Salvado, Rita; Lopes, Catarina; Szojda, Leszek; Araújo, Pedro; Gorski, Marcin; Velez, Fernando José; Castro-Gomes, João; Krzywon, Rafal

    2015-01-01

    This paper presents a study of the electrical and mechanical behavior of several continuous carbon fibers epoxy composites for both strengthening and monitoring of structures. In these composites, the arrangement of fibers was deliberately diversified to test and understand the ability of the composites for self-sensing low strains. Composites with different arrangements of fibers and textile weaves, mainly unidirectional continuous carbon reinforced composites, were tested at the dynamometer. A two-probe method was considered to measure the relative electrical resistance of these composites during loading. The measured relative electrical resistance includes volume and contact electrical resistances. For all tested specimens, it increases with an increase in tensile strain, at low strain values. This is explained by the improved alignment of fibers and resulting reduction of the number of possible contacts between fibers during loading, increasing as a consequence the contact electrical resistance of the composite. Laboratory tests on strengthening of structural elements were also performed, making hand-made composites by the “wet process”, which is commonly used in civil engineering for the strengthening of all types of structures in-situ. Results show that the woven epoxy composite, used for strengthening of concrete elements is also able to sense low deformations, below 1%. Moreover, results clearly show that this textile sensor also improves the mechanical work of the strengthened structural elements, increasing their bearing capacity. Finally, the set of obtained results supports the concept of a textile fabric capable of both structural upgrade and self-monitoring of structures, especially large structures of difficult access and needing constant, sometimes very expensive, health monitoring. PMID:25954955

  20. Probability of conductive bond formation in a percolating network of nanowires with fusible tips

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Wang, Robert Y.

    2018-03-01

    Meeting the heat dissipation demands of microelectronic devices requires development of polymeric composites with high thermal conductivity. This property is drastically improved by percolation networks of metallic filler particles that have their particle-to-particle contact resistances reduced through thermal or electromagnetic fusing. However, composites with fused metallic fillers are electrically conductive, which prevents their application within the chip-board and the inter-chip gaps. Here, we propose that electrically insulating composites for these purposes can be achieved by the application of fusible metallic coatings to the tips of nanowires with thermally conductive but electrically insulating cores. We derive analytical models that relate the ratio of the coated and total nanowire lengths to the fraction of fused, and thus conductive, bonds within percolating networks of these structures. We consider two types of materials for these fusible coatings. First, we consider silver-like coatings, which form only conductive bonds when contacting the silver-like coating of another nanowire. Second, we consider liquid metal-like coatings, which form conductive bonds regardless of whether they contact a coated or an uncoated segment of another nanowire. These models were validated using Monte Carlo simulations, which also revealed that electrical short-circuiting is highly unlikely until most of the wire is coated. Furthermore, we demonstrate that switching the tip coating from silver- to liquid metal-like materials can double the fraction of conductive bonds. Consequently, this work provides motivation to develop scalable methods for fabrication of the hybrid liquid-coated nanowires, whose dispersion in a polymer matrix is predicted to yield highly thermally conductive but electrically insulating composites.

  1. 30 CFR 7.64 - Technical requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... voltage that can be applied across an electric contact that discharges a capacitor shall not be greater...) Capacitor discharge. The blasting unit shall include an automatic means to dissipate any electric charge remaining in any capacitor after the blasting unit is deenergized and not in use. (j) Construction. Blasting...

  2. 30 CFR 7.64 - Technical requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... voltage that can be applied across an electric contact that discharges a capacitor shall not be greater...) Capacitor discharge. The blasting unit shall include an automatic means to dissipate any electric charge remaining in any capacitor after the blasting unit is deenergized and not in use. (j) Construction. Blasting...

  3. 30 CFR 7.64 - Technical requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... voltage that can be applied across an electric contact that discharges a capacitor shall not be greater...) Capacitor discharge. The blasting unit shall include an automatic means to dissipate any electric charge remaining in any capacitor after the blasting unit is deenergized and not in use. (j) Construction. Blasting...

  4. Silicon switching transistor with high power and low saturation voltage

    NASA Technical Reports Server (NTRS)

    Stonebraker, E.; Stoneburner, D.; Ferree, H.

    1973-01-01

    Assembly of two individually encapsulated silicon-chip transistors produces silicon power-transistor that has low electrical resistance and low thermal impedance. Electrical resistance and thermal impedance are low because of short lead lengths, and external contact surfaces are plated to reduce resistance at interfaces.

  5. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, Thomas R.; Chilko, Robert J.

    1986-01-01

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask.

  6. Electrically conductive connection for an electrode

    DOEpatents

    Hornack, T.R.; Chilko, R.J.

    1986-09-02

    An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

  7. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Haodong; Wang, Hong, E-mail: ewanghong@ntu.edu.sg; Ke, Feixiang

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  8. Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches

    NASA Astrophysics Data System (ADS)

    Qiu, Haodong; Wang, Hong; Ke, Feixiang

    2014-06-01

    The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

  9. An in vivo study of electrical charge distribution on the bacterial cell wall by atomic force microscopy in vibrating force mode

    NASA Astrophysics Data System (ADS)

    Marlière, Christian; Dhahri, Samia

    2015-05-01

    We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, such as bacterial surface charge, was proved to be feasible at a spatial resolution better than a few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (>10 nm) the repulsive contact zone: the variations of surface stress come from the modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both the tip and the sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid/liquid interface, particularly in high-molarity electrolytes when compared to techniques focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in situ biological electrical surface processes involved in numerous practical applications and fundamental problems such as bacterial adhesion, biofilm formation, microbial fuel cells, etc.We report an in vivo electromechanical atomic force microscopy (AFM) study of charge distribution on the cell wall of Gram+ Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, under physiological conditions. The method presented in this paper relies on a detailed study of AFM approach/retract curves giving the variation of the interaction force versus distance between the tip and the sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, such as bacterial surface charge, was proved to be feasible at a spatial resolution better than a few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (>10 nm) the repulsive contact zone: the variations of surface stress come from the modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both the tip and the sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid/liquid interface, particularly in high-molarity electrolytes when compared to techniques focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in situ biological electrical surface processes involved in numerous practical applications and fundamental problems such as bacterial adhesion, biofilm formation, microbial fuel cells, etc. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00968e

  10. Organic [6,6]-phenyl-C61-butyric-acid-methyl-ester field effect transistors: Analysis of the contact properties by combined photoemission spectroscopy and electrical measurements

    NASA Astrophysics Data System (ADS)

    Scheinert, S.; Grobosch, M.; Sprogies, J.; Hörselmann, I.; Knupfer, M.; Paasch, G.

    2013-05-01

    Carrier injection barriers determined by photoemission spectroscopy for organic/metal interfaces are widely accepted to determine the performance of organic field-effect transistors (OFET), which strongly depends on this interface at the source/drain contacts. This assumption is checked here in detail, and a more sophisticated connection is presented. According to the preparation process described in our recently published article [S. Scheinert, J. Appl. Phys. 111, 064502 (2012)], we prepared PCBM/Au and PCBM/Al samples to characterize the interface by photoemission and electrical measurements of PCBM based OFETs with bottom and top (TOC) contacts, respectively. The larger drain currents for TOC OFETs indicate the presence of Schottky contacts at source/drain for both metals. The hole injection barrier as determined by photoemission is 1.8 eV for both Al and Au. Therefore, the electron injection barriers are also the same. In contrast, the drain currents are orders of magnitude larger for the transistors with the Al contacts than for those with the Au contacts. We show that indeed the injection is determined by two other properties measured also by photoemission, the (reduced) work functions, and the interface dipoles, which have different sign for each contact material. In addition, we demonstrate by core-level and valence band photoemission that the deposition of gold as top contact onto PCBM results in the growth of small gold clusters. With increasing gold coverage, the clusters grow inside and begin to form a metallic, but not uniform, closed film onto PCBM.

  11. Working Performance Analysis of Rolling Bearings Used in Mining Electric Excavator Crowd Reducer

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Hou, G.; Chen, G.; Liang, J. F.; Zheng, Y. M.

    2017-12-01

    Refer to the statistical load data of digging process, on the basis of simulation analysis of crowd reducer system dynamics, the working performance simulation analysis of rolling bearings used in crowd reducer of large mining electric excavator is completed. The contents of simulation analysis include analysis of internal load distribution, rolling elements contact stresses and rolling bearing fatigue life. The internal load characteristics of rolling elements in cylindrical roller bearings are obtained. The results of this study identified that all rolling bearings satisfy the requirements of contact strength and fatigue life. The rationality of bearings selection and arrangement is also verified.

  12. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  13. Nanowire mesh solar fuels generator

    DOEpatents

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  14. Double interconnection fuel cell array

    DOEpatents

    Draper, Robert; Zymboly, Gregory E.

    1993-01-01

    A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

  15. Comparison of optical and electrical measurements of the pantograph-catenary contact force

    NASA Astrophysics Data System (ADS)

    Bocciolone, Marco; Bucca, Giuseppe; Collina, Andrea; Comolli, Lorenzo

    2010-09-01

    In railway engineering the monitoring of contact force between pantograph and catenary gives information about the interaction between the two systems and it is useful to check the status of the overhead line. Indeed the failure of the catenary is one of the main causes of out of order problems. This study was conducted in a test campaign on an underground train instrumented with sensors able to monitor the line status. One of the more important measured quantities is the pantograph contact force, and two measurement systems were implemented: one optical and another electrical. The optical one was based on FBG sensors applied on the pantograph collector strip; the electrical one was based on two load cells positioned at the sides of the collector strip. The in-line measurements show that the optical solution is very promising, providing very reliable results that can be successfully used in the monitoring application, allowing the determination of the critical point in the line. The thermal compensation of any FBG sensors is a known problem and here is no exception: a thermal compensator was used to get also mean value measurements and the results are discussed.

  16. Microstructural analysis of mass transport phenomena in gas diffusion media for high current density operation in PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Mukherjee, Partha P.

    2015-04-01

    Cost reduction is a key issue for commercialization of fuel cell electric vehicles (FCEV). High current density operation is a solution pathway. In order to realize high current density operation, it is necessary to reduce mass transport resistance in the gas diffusion media commonly consisted of gas diffusion layer (GDL) and micro porous layer (MPL). However, fundamental understanding of the underlying mass transport phenomena in the porous components is not only critical but also not fully understood yet due to the inherent microstructural complexity. In this study, a comprehensive analysis of electron and oxygen transport in the GDL and MPL is conducted experimentally and numerically with three-dimensional (3D) microstructural data to reveal the structure-transport relationship. The results reveal that the mass transport in the GDL is strongly dependent on the local microstructural variations, such as local pore/solid volume fractions and connectivity. However, especially in the case of the electrical conductivity of MPL, the contact resistance between carbon particles is the dominant factor. This suggests that reducing the contact resistance between carbon particles and/or the number of contact points along the transport pathway can improve the electrical conductivity of MPL.

  17. Properties of carbon composite paper derived from coconut coir as a function of polytetrafluoroethylene content

    NASA Astrophysics Data System (ADS)

    Destyorini, Fredina; Indriyati; Indayaningsih, Nanik; Prihandoko, Bambang; Zulfia Syahrial, Anne

    2018-03-01

    The carbon composite papers were produced by utilizing carbon materials from coconut coir. In the present work, carbon composite papers (CCP) were prepared by mixing carbon materials in the form of powder and fibre with polymer (ethylene vinyl acetate and polyethylene glycol) in xylene at 100°C. Then, polytetrafluoroethylene (PTFE) with different content was used to treat the surface of CCP. The properties of PTFE-coated CCP were analysed by means of contact angle measurement, tensile testing, porosity, density, and electrical conductivity measurements. As expected, all CCP’s surfaces treated with PTFE were found to be hydrophobic with contact angle >120° and relatively constant during 60 minutes measurement. Furthermore, water contact angle, density, and mechanical properties of CCP generally increase with increasing PTFE content. However, the porosity and electrical conductivity of CCP decrease slightly as the PTFE content increased from 0 wt% to 30 wt%. Based on the observation and analysis, the optimum PTFE content on CCP was 20 %, in which the mechanical properties and hydrophobicity behaviour were improved significantly, but it was only caused a very small drop in porosity and electrical conductivity

  18. A fiber-optic technique for the measurement of contact angle in a clearance-fit pin-loaded hole

    NASA Technical Reports Server (NTRS)

    Prabhakaran, R.; Naik, R. A.

    1987-01-01

    A fiber-optic technique for measuring contact angle during pin loading of a specimen is proposed. The experimental design and procedures for loading a 49.8-mm-diameter instrumented pin into an quasi-isotropic graphite-epoxy specimen are described. The optical fiber was located just above the surface of the pin outer diameter in order to obtain accurate pin-hole contact-angle measurements at increasing load levels. The movement of the optical fiber through the no-contact, contact, and no-contact regions is discussed; the photodiode output decreased monotonically as the fiber moved from the no-contact to the contact region and then decreased monotonically as the fiber moved from the contact region to the no-contact region. Variations in the contact angle measurements are examined as function of applied load level. The measurements are compared to contact angle values obtained using a finite element analysis and an electrical technique; it is determined that the data correlate well.

  19. Use of separate ZnTe interface layers to form ohmic contacts to p-CdTe films

    DOEpatents

    Gessert, T.A.

    1999-06-01

    A method of is disclosed improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurium-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact. 11 figs.

  20. Use of separate ZnTe interface layers to form OHMIC contacts to p-CdTe films

    DOEpatents

    Gessert, Timothy A.

    1999-01-01

    A method of improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurim-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact.

Top