Jun, James Jaeyoon; Longtin, André; Maler, Leonard
2013-01-01
In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal’s positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source localization. PMID:23805244
NASA Technical Reports Server (NTRS)
Armoundas, A. A.; Feldman, A. B.; Sherman, D. A.; Cohen, R. J.
2001-01-01
Although the single equivalent point dipole model has been used to represent well-localised bio-electrical sources, in realistic situations the source is distributed. Consequently, position estimates of point dipoles determined by inverse algorithms suffer from systematic error due to the non-exact applicability of the inverse model. In realistic situations, this systematic error cannot be avoided, a limitation that is independent of the complexity of the torso model used. This study quantitatively investigates the intrinsic limitations in the assignment of a location to the equivalent dipole due to distributed electrical source. To simulate arrhythmic activity in the heart, a model of a wave of depolarisation spreading from a focal source over the surface of a spherical shell is used. The activity is represented by a sequence of concentric belt sources (obtained by slicing the shell with a sequence of parallel plane pairs), with constant dipole moment per unit length (circumferentially) directed parallel to the propagation direction. The distributed source is represented by N dipoles at equal arc lengths along the belt. The sum of the dipole potentials is calculated at predefined electrode locations. The inverse problem involves finding a single equivalent point dipole that best reproduces the electrode potentials due to the distributed source. The inverse problem is implemented by minimising the chi2 per degree of freedom. It is found that the trajectory traced by the equivalent dipole is sensitive to the location of the spherical shell relative to the fixed electrodes. It is shown that this trajectory does not coincide with the sequence of geometrical centres of the consecutive belt sources. For distributed sources within a bounded spherical medium, displaced from the sphere's centre by 40% of the sphere's radius, it is found that the error in the equivalent dipole location varies from 3 to 20% for sources with size between 5 and 50% of the sphere's radius. Finally, a method is devised to obtain the size of the distributed source during the cardiac cycle.
Huygens’ Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators
Liu, Sheng; Vaskin, Aleksandr; Campione, Salvatore; ...
2017-06-07
Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. Here in this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrallymore » overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.« less
Magnetoencephalographic accuracy profiles for the detection of auditory pathway sources.
Bauer, Martin; Trahms, Lutz; Sander, Tilmann
2015-04-01
The detection limits for cortical and brain stem sources associated with the auditory pathway are examined in order to analyse brain responses at the limits of the audible frequency range. The results obtained from this study are also relevant to other issues of auditory brain research. A complementary approach consisting of recordings of magnetoencephalographic (MEG) data and simulations of magnetic field distributions is presented in this work. A biomagnetic phantom consisting of a spherical volume filled with a saline solution and four current dipoles is built. The magnetic fields outside of the phantom generated by the current dipoles are then measured for a range of applied electric dipole moments with a planar multichannel SQUID magnetometer device and a helmet MEG gradiometer device. The inclusion of a magnetometer system is expected to be more sensitive to brain stem sources compared with a gradiometer system. The same electrical and geometrical configuration is simulated in a forward calculation. From both the measured and the simulated data, the dipole positions are estimated using an inverse calculation. Results are obtained for the reconstruction accuracy as a function of applied electric dipole moment and depth of the current dipole. We found that both systems can localize cortical and subcortical sources at physiological dipole strength even for brain stem sources. Further, we found that a planar magnetometer system is more suitable if the position of the brain source can be restricted in a limited region of the brain. If this is not the case, a helmet-shaped sensor system offers more accurate source estimation.
NASA Astrophysics Data System (ADS)
Haroon, Amir; Mogilatov, Vladimir; Goldman, Mark; Bergers, Rainer; Tezkan, Bülent
2016-05-01
Two novel transient controlled source electromagnetic methods called circular electrical dipole (CED) and differential electrical dipole (DED) are theoretically analysed for applications in shallow marine environments. 1-D and 3-D time-domain modelling studies are used to investigate the detectability and applicability of the methods when investigating resistive layers/targets representing hydrocarbon-saturated formations. The results are compared to the conventional time-domain horizontal electrical dipole (HED) and vertical electrical dipole (VED) sources. The applied theoretical modelling studies demonstrate that CED and DED have higher signal detectability towards resistive targets compared to TD-CSEM, but demonstrate significantly poorer signal amplitudes. Future CED/DED applications will have to solve this issue prior to measuring. Furthermore, the two novel methods have very similar detectability characteristics towards 3-D resistive targets embedded in marine sediments as VED while being less susceptible towards non-verticality. Due to the complex transmitter design of CED/DED the systems are prone to geometrical errors. Modelling studies show that even small transmitter inaccuracies have strong effects on the signal characteristics of CED making an actual marine application difficult at the present time. In contrast, the DED signal is less affected by geometrical errors in comparison to CED and may therefore be more adequate for marine applications.
Simulation of Light Collection for Neutron Electrical Dipole Moment measurement
NASA Astrophysics Data System (ADS)
Ji, Pan; nEDM Collaboration
2017-09-01
nEDM (Neutron Electrical Dipole moment) measurement addresses a critical topic in particle physics and Standard Model, that is CPT violation in neutron electrical dipole moment if detected in which the Time reversal violation is connected to the matter/antimatter imparity of the universe. The neutron electric dipole moment was first measured in 1950 by Smith, Purcell, and Ramsey at the Oak Ridge Reactor - the first intense neutron source. This measurement showed that the neutron was very nearly round (to better than one part in a million). The goal of the nEDM experiment is to further improve the precision of this measurement by another factor of 100. The signal from the experiment is detected by collecting the photons generated when neutron beams were captured by liquid helium 3. The Geant4 simulation project that I participate simulates the process of light collection to improve the design for higher capture efficiency. The simulated geometry includes light source, reflector, wavelength shifting fibers, wavelength shifting TPB and acrylic as in real experiment. The UV photons exiting from Helium go through two wavelength-shifting processes in TPB and fibers to be finally captured. Oak Ridge National Laboratory Neutron Electric Dipole Moment measurement project.
Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region
NASA Astrophysics Data System (ADS)
Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.
2014-11-01
The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.
Source analysis of MEG activities during sleep (abstract)
NASA Astrophysics Data System (ADS)
Ueno, S.; Iramina, K.
1991-04-01
The present study focuses on magnetic fields of the brain activities during sleep, in particular on K-complexes, vertex waves, and sleep spindles in human subjects. We analyzed these waveforms based on both topographic EEG (electroencephalographic) maps and magnetic fields measurements, called MEGs (magnetoencephalograms). The components of magnetic fields perpendicular to the surface of the head were measured using a dc SQUID magnetometer with a second derivative gradiometer. In our computer simulation, the head is assumed to be a homogeneous spherical volume conductor, with electric sources of brain activity modeled as current dipoles. Comparison of computer simulations with the measured data, particularly the MEG, suggests that the source of K-complexes can be modeled by two current dipoles. A source for the vertex wave is modeled by a single current dipole which orients along the body axis out of the head. By again measuring the simultaneous MEG and EEG signals, it is possible to uniquely determine the orientation of this dipole, particularly when it is tilted slightly off-axis. In sleep stage 2, fast waves of magnetic fields consistently appeared, but EEG spindles appeared intermittently. The results suggest that there exist sources which are undetectable by electrical measurement but are detectable by magnetic-field measurement. Such source can be described by a pair of opposing dipoles of which directions are oppositely oriented.
Circular current loops, magnetic dipoles and spherical harmonic analysis.
Alldredge, L.R.
1980-01-01
Spherical harmonic analysis (SHA) is the most used method of describing the Earth's magnetic field, even though spherical harmonic coefficients (SHC) almost completely defy interpretation in terms of real sources. Some moderately successful efforts have been made to represent the field in terms of dipoles placed in the core in an effort to have the model come closer to representing real sources. Dipole sources are only a first approximation to the real sources which are thought to be a very complicated network of electrical currents in the core of the Earth. -Author
Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André
2013-09-27
It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator's gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.
NASA Astrophysics Data System (ADS)
Irimia, Andrei; Swinney, Kenneth R.; Wikswo, John P.
2009-05-01
In this paper, we clearly demonstrate that the electric potential and the magnetic field can contain different information about current sources in three-dimensional conducting media. Expressions for the magnetic fields of electric dipole and quadrupole current sources immersed in an infinite conducting medium are derived, and it is shown that two different point dipole distributions that are electrically equivalent have different magnetic fields. Although measurements of the electric potential are not sufficient to determine uniquely the characteristics of a quadrupolar source, the radial component of the magnetic field can supply the additional information needed to resolve these ambiguities and to determine uniquely the configuration of dipoles required to specify the electric quadrupoles. We demonstrate how the process can be extended to even higher-order terms in an electrically silent series of magnetic multipoles. In the context of a spherical brain source model, it has been mathematically demonstrated that the part of the neuronal current generating the electric potential lives in the orthogonal complement of the part of the current generating the magnetic potential. This implies a mathematical relationship of complementarity between electroencephalography and magnetoencephalography, although the theoretical result in question does not apply to the nonspherical case [G. Dassios, Math. Med. Biol. 25, 133 (2008)]. Our results have important practical applications in cases where electrically silent sources that generate measurable magnetic fields are of interest. Moreover, electrically silent, magnetically active moments of higher order can be useful when cancellation due to superposition of fields can occur, since this situation leads to a substantial reduction in the measurable amplitude of the signal. In this context, information derived from magnetic recordings of electrically silent, magnetically active multipoles can supplement electrical recordings for the purpose of studying the physiology of the brain. Magnetic fields of the electric multipole sources in a conducting medium surrounded by an insulating spherical shell are also presented and the relevance of this calculation to cardiographic and encephalographic experimentation is discussed.
Wang, Zhaohui; Witte, Russell S.
2015-01-01
Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and neurologic disorders, including arrhythmia and epilepsy. PMID:24569247
Singular Behaviour of the Electrodynamic Fields of an Oscillating Dipole
ERIC Educational Resources Information Center
Leung, P. T.
2008-01-01
The singularity of the exact electromagnetic fields is derived to include the "source terms" for harmonically oscillating electric (and magnetic) dipoles, so that the fields will be consistent with the full Maxwell equations with a source. It is shown explicitly, as somewhat expected, that the same [delta]-function terms for the case of static…
Finke, Stefan; Gulrajani, Ramesh M; Gotman, Jean; Savard, Pierre
2013-01-01
The non-invasive localization of the primary sensory hand area can be achieved by solving the inverse problem of electroencephalography (EEG) for N(20)-P(20) somatosensory evoked potentials (SEPs). This study compares two different mathematical approaches for the computation of transfer matrices used to solve the EEG inverse problem. Forward transfer matrices relating dipole sources to scalp potentials are determined via conventional and reciprocal approaches using individual, realistically shaped head models. The reciprocal approach entails calculating the electric field at the dipole position when scalp electrodes are reciprocally energized with unit current-scalp potentials are obtained from the scalar product of this electric field and the dipole moment. Median nerve stimulation is performed on three healthy subjects and single-dipole inverse solutions for the N(20)-P(20) SEPs are then obtained by simplex minimization and validated against the primary sensory hand area identified on magnetic resonance images. Solutions are presented for different time points, filtering strategies, boundary-element method discretizations, and skull conductivity values. Both approaches produce similarly small position errors for the N(20)-P(20) SEP. Position error for single-dipole inverse solutions is inherently robust to inaccuracies in forward transfer matrices but dependent on the overlapping activity of other neural sources. Significantly smaller time and storage requirements are the principal advantages of the reciprocal approach. Reduced computational requirements and similar dipole position accuracy support the use of reciprocal approaches over conventional approaches for N(20)-P(20) SEP source localization.
Electric levitation using ϵ-near-zero metamaterials.
Rodríguez-Fortuño, Francisco J; Vakil, Ashkan; Engheta, Nader
2014-01-24
The ability to manufacture metamaterials with exotic electromagnetic properties has potential for surprising new applications. Here we report how a specific type of metamaterial--one whose permittivity is near zero--exerts a repulsive force on an electric dipole source, resulting in levitation of the dipole. The phenomenon relies on the expulsion of the time-varying electric field from the metamaterial interior, resembling the perfect diamagnetic expulsion of magnetostatic fields. Leveraging this concept, we study some realistic requirements for the levitation or repulsion of a polarized particle radiating at any frequency, from microwave to optics.
Neutron electric dipole moment and possibilities of increasing accuracy of experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.
The paper reports the results of an experiment on searching for the neutron electric dipole moment (EDM), performed on the ILL reactor (Grenoble, France). The double-chamber magnetic resonance spectrometer (Petersburg Nuclear Physics Institute (PNPI)) with prolonged holding of ultra cold neutrons has been used. Sources of possible systematic errors are analyzed, and their influence on the measurement results is estimated. The ways and prospects of increasing accuracy of the experiment are discussed.
Magnetic Johnson Noise Constraints on Electron Electric Dipole Moment Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munger, C.
2004-11-18
Magnetic fields from statistical fluctuations in currents in conducting materials broaden atomic linewidths by the Zeeman effect. The constraints so imposed on the design of experiments to measure the electric dipole moment of the electron are analyzed. Contrary to the predictions of Lamoreaux [S.K. Lamoreaux, Phys. Rev. A60, 1717(1999)], the standard material for high-permeability magnetic shields proves to be as significant a source of broadening as an ordinary metal. A scheme that would replace this standard material with ferrite is proposed.
Controlled dipole-dipole interactions between K Rydberg atoms in a laser-chopped effusive beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutteruf, M. R.; Jones, R. R.
2010-12-15
We explore pulsed-field control of resonant dipole-dipole interactions between K Rydberg atoms. A laser-based atomic beam chopper is used to reduce the relative velocities of Rydberg atoms excited from an effusive thermal source. Resonant energy transfer (RET) between pairs of atoms is controlled via Stark tuning of the relevant Rydberg energy levels. Resonance line shapes in the electric field dependence of the RET probability are used to determine the effective temperature of the sample. We demonstrate that the relative atom velocities can be reduced to the point where the duration of the electric-field tuning pulses, and not the motion ofmore » neighboring atoms, defines the interaction time for each pair within the ensemble. Coherent, transform-limited broadening of the resonance line shape is observed as the tuning pulse duration is reduced below the natural time scale for collisions.« less
Valeriani, M; Restuccia, D; Di Lazzaro, V; Le Pera, D; Barba, C; Tonali, P; Mauguiere, F
1998-06-01
Brain electrical source analysis (BESA) of the scalp electroencephalographic activity is well adapted to distinguish neighbouring cerebral generators precisely. Therefore, we performed dipolar source modelling in scalp medium nerve somatosensory evoked potentials (SEPs) recorded at 1.5-Hz stimulation rate, where all the early components should be identifiable. We built a four-dipole model, which was issued from the grand average, and applied it also to recordings from single individuals. Our model included a dipole at the base of the skull and three other perirolandic dipoles. The first of the latter dipoles was tangentially oriented and was active at the same latencies as the N20/P20 potential and, with opposite polarity, the P24/N24 response. The second perirolandic dipole showed an initial peak of activity slightly earlier than that of the N20/P20 dipolar source and, later, it was active at the same latency as the central P22 potential. Lastly, the third perirolandic dipole explaining the fronto-central N30 potential scalp distribution was constantly more posterior than the first one. In order to evaluate the effect of an increasing repetition frequency on the activity of SEP dipolar sources, we applied the model built from 1.5-Hz SEPs to traces recorded at 3-Hz and 10-Hz repetition rates. We found that the 10-Hz stimulus frequency reduced selectively the later of the two activity phases of the first perirolandic dipole. The decrement in strength of this dipolar source can be explained if we assume that: (a) the later activity of the first perirolandic dipole can represent the inhibitory phase of a "primary response"; (b) two different clusters of cells generate the opposite activities of the tangential perirolandic dipole. An additional finding in our model was that two different perirolandic dipoles contribute to the centro-parietal N20 potential generation.
NASA Astrophysics Data System (ADS)
Jacobs, James Patrick
Optically pumped atomic oscillators driven with a modulated light source have been used to measure the Permanent Electric Dipole Moment (PEDM) of the ^{199}Hg atom. A nonzero PEDM on the ground state of ^{199} Hg would be a direct violation of time reversal symmetry. The measurement was obtained by searching for a relative shift in the resonance frequency of the processing nuclear magnetic moments when an externally applied electric field was reversed relative to an externally applied magnetic field. The null result, d(^{199} Hg) = (.3 +/- 5.7 +/- 5.0) times 10 ^{-28} ecdotcm, represents nearly a factor of 15 improvement over previous ^{199}Hg measurements, and a factor of 25 improvement in statistical uncertainty. When combined with theoretical calculations, the result sets stringent limits on possible sources of time reversal symmetry violation in atomic systems.
Morishige, Ken-ichi; Yoshioka, Taku; Kawawaki, Dai; Hiroe, Nobuo; Sato, Masa-aki; Kawato, Mitsuo
2014-11-01
One of the major obstacles in estimating cortical currents from MEG signals is the disturbance caused by magnetic artifacts derived from extra-cortical current sources such as heartbeats and eye movements. To remove the effect of such extra-brain sources, we improved the hybrid hierarchical variational Bayesian method (hyVBED) proposed by Fujiwara et al. (NeuroImage, 2009). hyVBED simultaneously estimates cortical and extra-brain source currents by placing dipoles on cortical surfaces as well as extra-brain sources. This method requires EOG data for an EOG forward model that describes the relationship between eye dipoles and electric potentials. In contrast, our improved approach requires no EOG and less a priori knowledge about the current variance of extra-brain sources. We propose a new method, "extra-dipole," that optimally selects hyper-parameter values regarding current variances of the cortical surface and extra-brain source dipoles. With the selected parameter values, the cortical and extra-brain dipole currents were accurately estimated from the simulated MEG data. The performance of this method was demonstrated to be better than conventional approaches, such as principal component analysis and independent component analysis, which use only statistical properties of MEG signals. Furthermore, we applied our proposed method to measured MEG data during covert pursuit of a smoothly moving target and confirmed its effectiveness. Copyright © 2014 Elsevier Inc. All rights reserved.
Backward renormalization-group inference of cortical dipole sources and neural connectivity efficacy
NASA Astrophysics Data System (ADS)
Amaral, Selene da Rocha; Baccalá, Luiz A.; Barbosa, Leonardo S.; Caticha, Nestor
2017-06-01
Proper neural connectivity inference has become essential for understanding cognitive processes associated with human brain function. Its efficacy is often hampered by the curse of dimensionality. In the electroencephalogram case, which is a noninvasive electrophysiological monitoring technique to record electrical activity of the brain, a possible way around this is to replace multichannel electrode information with dipole reconstructed data. We use a method based on maximum entropy and the renormalization group to infer the position of the sources, whose success hinges on transmitting information from low- to high-resolution representations of the cortex. The performance of this method compares favorably to other available source inference algorithms, which are ranked here in terms of their performance with respect to directed connectivity inference by using artificially generated dynamic data. We examine some representative scenarios comprising different numbers of dynamically connected dipoles over distinct cortical surface positions and under different sensor noise impairment levels. The overall conclusion is that inverse problem solutions do not affect the correct inference of the direction of the flow of information as long as the equivalent dipole sources are correctly found.
Radiating dipole model of interference induced in spacecraft circuitry by surface discharges
NASA Technical Reports Server (NTRS)
Metz, R. N.
1984-01-01
Spacecraft in geosynchronous orbit can be charged electrically to high voltages by interaction with the space plasma. Differential charging of spacecraft surfaces leads to arc and blowoff discharging. The discharges are thought to upset interior, computer-level circuitry. In addition to capacitive or electrostatic effects, significant inductive and less significant radiative effects of these discharges exist and can be modeled in a dipole approximation. Flight measurements suggest source frequencies of 5 to 50 MHz. Laboratory tests indicate source current strengths of several amperes. Electrical and magnetic fields at distances of many centimeters from such sources can be as large as tens of volts per meter and meter squared, respectively. Estimates of field attenuation by spacecraft walls and structures suggest that interior fields may be appreciable if electromagnetic shielding is much thinner than about 0.025 mm (1 mil). Pickup of such fields by wires and cables interconnecting circuit components could be a source of interference signals of several volts amplitude.
Hidden momentum and the Abraham-Minkowski debate
NASA Astrophysics Data System (ADS)
Saldanha, Pablo L.; Filho, J. S. Oliveira
2017-04-01
We use an extended version of electrodynamics, which admits the existence of magnetic charges and currents, to discuss how different models for electric and magnetic dipoles do or do not carry hidden momentum under the influence of external electromagnetic fields. Based on that, we discuss how the models adopted for the electric and magnetic dipoles from the particles that compose a material medium influence the expression for the electromagnetic part of the light momentum in the medium. We show that Abraham expression is compatible with electric dipoles formed by electric charges and magnetic dipoles formed by magnetic charges, while Minkowski expression is compatible with electric dipoles formed by magnetic currents and magnetic dipoles formed by electric currents. The expression ɛ0E ×B , on the other hand, is shown to be compatible with electric dipoles formed by electric charges and magnetic dipoles formed by electric currents, which are much more natural models. So this expression has an interesting interpretation in the Abraham-Minkowski debate about the momentum of light in a medium: It is the expression compatible with the nonexistence of magnetic charges. We also provide a simple justification of why Abraham and Minkowski momenta can be associated with the kinetic and canonical momentum of light, respectively.
Enhanced and tunable electric dipole-dipole interactions near a planar metal film
NASA Astrophysics Data System (ADS)
Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen
2017-08-01
We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.
Method and apparatus for detecting external cracks from within a metal tube
Caffey, Thurlow W. H.
2001-08-07
A method and tool using a continuous electromagnetic wave from a transverse magnetic-dipole source with a coaxial electric-dipole receiver is described for the detection of external sidewall cracks and other anomalies in boiler tubes and other enclosures. The invention utilizes the concept of radar backscatter rather than eddy-currents or ultrasound, which are sometimes used in prior art crack-detection methods. A numerical study of the distribution of the fields shows that the direct transmission from the source to the receiver is reduced from that in free space. Further, if the diameter of the receiver dipole is made sufficiently small, it should be possible to detect cracks with a scattering loss of up to -40 dB in thin-walled boiler tubes.
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
NASA Astrophysics Data System (ADS)
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
NASA Astrophysics Data System (ADS)
Ito, T. M.; Adamek, E. R.; Callahan, N. B.; Choi, J. H.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D. E.; Geltenbort, P.; Lamoreaux, S. K.; Liu, C.-Y.; MacDonald, S.; Makela, M.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S.; Sprow, A. P.; Tang, Z.; Weaver, H. L.; Wei, W.; Young, A. R.
2018-01-01
The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184 (32 ) UCN /cm3 , a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39 (7 ) UCN /cm3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ (dn) =3 ×10-27e cm .
Decay pattern of the Pygmy Dipole Resonance in 130Te
NASA Astrophysics Data System (ADS)
Isaak, J.; Beller, J.; Fiori, E.; Krtička, M.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Savran, D.; Scheck, M.; Silva, J.; Sonnabend, K.; Tonchev, A.; Tornow, W.; Weller, H.; Zweidinger, M.
2014-03-01
The electric dipole strength distribution in 130Te has been investigated using the method of Nuclear Resonance Fluorescence. The experiments were performed at the Darmstadt High Intensity Photon Setup using bremsstrahlung as photon source and at the High Intensity overrightarrow γ -Ray Source, where quasi-monochromatic and polarized photon beams are provided. Average decay properties of 130Te below the neutron separation energy are determined. Comparing the experimental data to the predictions of the statistical model indicate, that nuclear structure effects play an important role even at sufficiently high excitation energies. Preliminary results will be presented.
NASA Astrophysics Data System (ADS)
Wetterling, F.; Liehr, M.; Schimpf, P.; Liu, H.; Haueisen, J.
2009-09-01
The non-invasive localization of focal heart activity via body surface potential measurements (BSPM) could greatly benefit the understanding and treatment of arrhythmic heart diseases. However, the in vivo validation of source localization algorithms is rather difficult with currently available measurement techniques. In this study, we used a physical torso phantom composed of different conductive compartments and seven dipoles, which were placed in the anatomical position of the human heart in order to assess the performance of the Recursively Applied and Projected Multiple Signal Classification (RAP-MUSIC) algorithm. Electric potentials were measured on the torso surface for single dipoles with and without further uncorrelated or correlated dipole activity. The localization error averaged 11 ± 5 mm over 22 dipoles, which shows the ability of RAP-MUSIC to distinguish an uncorrelated dipole from surrounding sources activity. For the first time, real computational modelling errors could be included within the validation procedure due to the physically modelled heterogeneities. In conclusion, the introduced heterogeneous torso phantom can be used to validate state-of-the-art algorithms under nearly realistic measurement conditions.
Gravitational dynamos and the low-frequency geomagnetic secular variation.
Olson, P
2007-12-18
Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.
Gravitational dynamos and the low-frequency geomagnetic secular variation
Olson, P.
2007-01-01
Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345
Dipole response of 76Se above 4 MeV
NASA Astrophysics Data System (ADS)
Goddard, P. M.; Cooper, N.; Werner, V.; Rusev, G.; Stevenson, P. D.; Rios, A.; Bernards, C.; Chakraborty, A.; Crider, B. P.; Glorius, J.; Ilieva, R. S.; Kelley, J. H.; Kwan, E.; Peters, E. E.; Pietralla, N.; Raut, R.; Romig, C.; Savran, D.; Schnorrenberger, L.; Smith, M. K.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Yates, S. W.
2013-12-01
The dipole response of 3476Se in the energy range from 4 to 9 MeV has been analyzed using a (γ⃗,γ') polarized photon scattering technique, performed at the High Intensity γ-Ray Source facility at Triangle Universities Nuclear Laboratory, to complement previous work performed using unpolarized photons. The results of this work offer both an enhanced sensitivity scan of the dipole response and an unambiguous determination of the parities of the observed J=1 states. The dipole response is found to be dominated by E1 excitations, and can reasonably be attributed to a pygmy dipole resonance. Evidence is presented to suggest that a significant amount of directly unobserved excitation strength is present in the region, due to unobserved branching transitions in the decays of resonantly excited states. The dipole response of the region is underestimated when considering only ground state decay branches. We investigate the electric dipole response theoretically, performing calculations in a three-dimensional (3D) Cartesian-basis time-dependent Skyrme-Hartree-Fock framework.
Electric dipole moment of the diatomic tif in its higher vibrational states
NASA Astrophysics Data System (ADS)
Nair, K. P. R.; Hoeft, J.
1983-04-01
The electric dipole moment of 205Tl 19F has been measured in its higher vibrational states up to ν = 7 by studying the Statk effect in the J = O → 1 rotational transitions. The variation of the electric dipole moment with vibrational states is discussed. The electric dipole moment can be written as lμ νl = 4.1941 (15) + 0.0681(12) (ν + 1/2) D.
NASA Astrophysics Data System (ADS)
Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.
2018-05-01
We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic (EM) field must be presented as the superposition of more fundamental quantum phases emerging for elementary charges. Using this idea, we find two new fundamental quantum phases for point-like charges, next to the known electric and magnetic Aharonov-Bohm (A-B) phases, named by us as the complementary electric and magnetic phases, correspondingly. We further demonstrate that these new phases can indeed be derived via the Schrödinger equation for a particle in an EM field, where however the operator of momentum is re-defined via the replacement of the canonical momentum of particle by the sum of its mechanical momentum and interactional field momentum for a system "charged particle and a macroscopic source of EM field". The implications of the obtained results are discussed.
Local electric dipole moments for periodic systems via density functional theory embedding.
Luber, Sandra
2014-12-21
We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.
Dipole Relaxation in an Electric Field.
ERIC Educational Resources Information Center
Neumann, Richard M.
1980-01-01
Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)
Neutron electric dipole moment from electric and chromoelectric dipole moments of quarks
NASA Astrophysics Data System (ADS)
Pospelov, Maxim; Ritz, Adam
2001-04-01
Using QCD sum rules, we calculate the electric dipole moment of the neutron dn induced by all CP violating operators up to dimension five. We find that the chromoelectric dipole moments of quarks d~i, including that of the strange quark, provide significant contributions comparable in magnitude to those induced by the quark electric dipole moments di. When the theta term is removed via the Peccei-Quinn symmetry, the strange quark contribution is also suppressed and dn=(1+/-0.5)\\{0.55e(d~d+0.5d~u)+0.7(dd-0.25du)\\}.
Impact of a CP-violating Higgs sector: from LHC to baryogenesis.
Shu, Jing; Zhang, Yue
2013-08-30
We observe a generic connection between LHC Higgs data and electroweak baryogenesis: the particle that contributes to the CP-odd hgg or hγγ vertex would provide the CP-violating source during a first-order phase transition. It is illustrated in the two Higgs doublet model that a common complex phase controls the lightest Higgs properties at the LHC, electric dipole moments, and the CP-violating source for electroweak baryogenesis. We perform a general parametrization of Higgs effective couplings and a global fit to the LHC Higgs data. Current LHC measurements prefer a nonzero phase for tanβ≲1 and electric dipole moment constraints still allow an order-one phase for tanβ∼1, which gives sufficient room to generate the correct cosmic baryon asymmetry. We also give some prospects in the direct measurements of CP violation in the Higgs sector at the LHC.
Theory for electric dipole superconductivity with an application for bilayer excitons.
Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X C
2015-07-08
Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afach, S.; Fertl, M.; Franke, B., E-mail: beatrice.franke@psi.ch, E-mail: bernhard.lauss@psi.ch
The Surrounding Field Compensation (SFC) system described in this work is installed around the four-layer Mu-metal magnetic shield of the neutron electric dipole moment spectrometer located at the Paul Scherrer Institute. The SFC system reduces the DC component of the external magnetic field by a factor of about 20. Within a control volume of approximately 2.5 m × 2.5 m × 3 m, disturbances of the magnetic field are attenuated by factors of 5–50 at a bandwidth from 10{sup −3} Hz up to 0.5 Hz, which corresponds to integration times longer than several hundreds of seconds and represent the important timescale for the neutron electric dipole moment measurement.more » These shielding factors apply to random environmental noise from arbitrary sources. This is achieved via a proportional-integral feedback stabilization system that includes a regularized pseudoinverse matrix of proportionality factors which correlates magnetic field changes at all sensor positions to current changes in the SFC coils.« less
NASA Astrophysics Data System (ADS)
Terekhov, P. D.; Baryshnikova, K. V.; Evlyukhin, A. B.; Shalin, A. S.
2017-11-01
We demonstrate numerically the possibility of multipole interference in the TiO2 (titanium dioxide) microcylinders and microfrustums in the wavelength range 210-300 μm. Resonantly strong destructive interference between toroidal and electric dipole contributions to the scattered field is achieved by a geometry tuning. The toroidal and electric dipole mode overlapping at the resonant wavelength with almost total suppression of the total electric dipole moment is achieved.
Jemel, Boutheina; Oades, Robert D; Oknina, Ljubov; Achenbach, Christiane; Röpcke, Bernd
2003-01-01
Frontal and temporal lobe sources for electrical activity associated with auditory controlled attention (negative difference, Nd) were sought for comparison with those reported to arise from the earlier detection of stimulus-change (mismatch negativity, MMN: Jemel et al. 2002). In two sessions a month apart (T1 and T2), 14 subjects were presented with a 3-tone oddball passively, then as a discrimination task. In EEG recordings (32 sites), Nd was calculated by subtraction of the event-related potential elicited by a non-attended stimulus from that after the same frequency-deviant as target Putative generators in the 180-228 ms latency-range were modelled with brain electrical source analysis and mapped to the modified Montreal brain-atlas. Initial T1-analyses located bilateral Nd dipoles in the superior temporal gyrus (BA22) and the dorsolateral prefrontal cortex (BA8). Re-test allowed estimates of the temporal and spatial extension of activity. Peak activity occurred 14 ms later. Step-by-stepanalysis showed that the best spatial fit for the inverse-solutions extended 3-6 mm from the point sources, but for temporal lobe sources this increased 15 mm caudally. The right mid-frontal source (BA10) was rostral and ventral from that in the left superior frontal gyrus (BAB). T1 and T2 dipole strengths were well correlated. Nd measures of controlled attention localised to areas associated with sustained attention, problem-solving and working-memory. Temporal lobe sources were later and more posterior and medial than for automatic change-detection. Frontal Nd sources were more dorsal on the right and more rostral on the left than MMN dipoles reported for the right inferior frontal and left anterior cingulate. The sequence of information processing is reviewed.
Elementary quantum mechanics of the neutron with an electric dipole moment
Baym, Gordon; Beck, D. H.
2016-01-01
The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, D→, is not constrained to lie along the spin operator. Although the expectation value of D→ in the neutron is less than 10−13 of the neutron radius, rn, the expectation value of D→ 2 is of order rn2. We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron. PMID:27325765
Elementary quantum mechanics of the neutron with an electric dipole moment.
Baym, Gordon; Beck, D H
2016-07-05
The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, [Formula: see text], is not constrained to lie along the spin operator. Although the expectation value of [Formula: see text] in the neutron is less than [Formula: see text] of the neutron radius, [Formula: see text], the expectation value of [Formula: see text] is of order [Formula: see text] We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron.
Comparison between electric dipole and magnetic loop antennas for emitting whistler modes
NASA Astrophysics Data System (ADS)
Stenzel, R.; Urrutia, J. M.
2016-12-01
In a large uniform and unbounded laboratory plasma low frequency whistler modes are excited from an electric dipole and a magnetic loop. The excited waves are measured with a magnetic probe which resolves the three field components in 3D space and time. This yields the group velocity and energy density, from which one obtains the emitted power. The same rf generator is used for both antennas and the radiated power is measured under identical plasma conditions. The magnetic loop radiates 8000 times more power than the electric dipole. The reason is that the loop antenna carries a large conduction current while the electric dipole current is a much smaller displacement current through the sheath. The current, hence magnetic field excites whistlers, not the dipole electric field. Incidentally, a dipole antenna does not launch plane waves but m = 1 helicon modes. The findings suggest that active wave injections into the magnetosphere should be done with magnetic antennas. Two parallel dipoles connected at the free end could serve as an elongated loop.
Electric dipole moment of the electron and of the neutron
NASA Technical Reports Server (NTRS)
Barr, S. M.; Zee, A.
1990-01-01
It is shown that if Higgs-boson exchange mediates CP violation a significant electric dipole moment for the electron can result. Analogous effects can contribute to the neutron's electric dipole moment at a level competitive with Weinberg's three-gluon operator.
NASA Astrophysics Data System (ADS)
Mansuripur, Masud
2015-01-01
The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density 𝜌𝜌free, electric current-density 𝑱𝑱free, polarization 𝑷𝑷, and magnetization 𝑴𝑴. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media—the seat of the sources of the EM field—thereby exerting force and torque on these media. In the Lorentz formulation of classical electrodynamics, the electric and magnetic fields, 𝑬𝑬 and 𝑩𝑩, exert forces and torques on electric charge and current distributions. An electric dipole is then modeled as a pair of electric charges on a stick (or spring), and a magnetic dipole is modeled as an Amperian current loop, so that the Lorentz force law can be applied to the corresponding (bound) charges and (bound) currents of these dipoles. In contrast, the Einstein-Laub formulation circumvents the need for specific models of the dipoles by simply providing a recipe for calculating the force- and torque-densities exerted by the 𝑬𝑬 and 𝑯𝑯 fields on charge, current, polarization and magnetization. The two formulations, while similar in many respects, have significant differences. For example, in the Lorentz approach, the Poynting vector is 𝑺𝑺𝐿𝐿 = 𝜇𝜇0 -1𝑬𝑬 × 𝑩𝑩, and the linear and angular momentum densities of the EM field are 𝓹𝓹𝐿𝐿 = 𝜀𝜀0𝑬𝑬 × 𝑩𝑩 and 𝓛𝓛𝐿𝐿 = 𝒓𝒓 × 𝓹𝓹𝐿𝐿, whereas in the Einstein-Laub formulation the corresponding entities are 𝑺𝑺𝐸𝐸𝐸𝐸= 𝑬𝑬 × 𝑯𝑯, 𝓹𝓹𝐸𝐸𝐸𝐸= 𝑬𝑬 × 𝑯𝑯⁄𝑐𝑐2, and 𝓛𝓛𝐸𝐸𝐸𝐸= 𝒓𝒓 × 𝓹𝓹𝐸𝐸𝐸𝐸. (Here 𝜇𝜇0 and 𝜀𝜀0 are the permeability and permittivity of free space, 𝑐𝑐 is the speed of light in vacuum, 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 + 𝑴𝑴, and 𝒓𝒓 is the position vector.) Such differences can be reconciled by recognizing the need for the so-called hidden energy and hidden momentum associated with Amperian current loops of the Lorentz formalism. (Hidden entities of the sort do not arise in the Einstein-Laub treatment of magnetic dipoles.) Other differences arise from over-simplistic assumptions concerning the equivalence between free charges and currents on the one hand, and their bound counterparts on the other. A more nuanced treatment of EM force and torque densities exerted on polarization and magnetization in the Lorentz approach would help bridge the gap that superficially separates the two formulations. Atoms and molecules may collide with each other and, in general, material constituents can exchange energy, momentum, and angular momentum via direct mechanical interactions. In the case of continuous media, elastic and hydrodynamic stresses, phenomenological forces such as those related to exchange coupling in ferromagnets, etc., subject small volumes of materials to external forces and torques. Such matter-matter interactions, although fundamentally EM in nature, are distinct from field-matter interactions in classical physics. Beyond the classical regime, however, the dichotomy that distinguishes the EM field from EM sources gets blurred. An electron's wavefunction may overlap that of an atomic nucleus, thereby initiating a contact interaction between the magnetic dipole moments of the two particles. Or a neutron passing through a ferromagnetic material may give rise to scattering events involving overlaps between the wave-functions of the neutron and magnetic electrons. Such matter-matter interactions exert equal and opposite forces and/or torques on the colliding particles, and their observable effects often shed light on the nature of the particles involved. It is through such observations that the Amperian model of a magnetic dipole has come to gain prominence over the Gilbertian model. In situations involving overlapping particle wave-functions, it is imperative to take account of the particle-particle interaction energy when computing the scattering amplitudes. As far as total force and total torque on a given volume of material are concerned, such particle-particle interactions do not affect the outcome of calculations, since the mutual actions of the two (overlapping) particles cancel each other out. Both Lorentz and Einstein-Laub formalisms thus yield the same total force and total torque on a given volume—provided that hidden entities are properly removed. The Lorentz formalism, with its roots in the Amperian current-loop model, correctly predicts the interaction energy between two overlapping magnetic dipoles 𝒎𝒎1 and 𝒎𝒎2 as being proportional to -𝒎𝒎1 • 𝒎𝒎2. In contrast, the Einstein-Laub formalism, which is ignorant of such particle-particle interactions, needs to account for them separately.
Molecules with an induced dipole moment in a stochastic electric field.
Band, Y B; Ben-Shimol, Y
2013-10-01
The mean-field dynamics of a molecule with an induced dipole moment (e.g., a homonuclear diatomic molecule) in a deterministic and a stochastic (fluctuating) electric field is solved to obtain the decoherence properties of the system. The average (over fluctuations) electric dipole moment and average angular momentum as a function of time for a Gaussian white noise electric field are determined via perturbative and nonperturbative solutions in the fluctuating field. In the perturbative solution, the components of the average electric dipole moment and the average angular momentum along the deterministic electric field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a Gaussian white noise magnetic field. In the nonperturbative solution, the component of the average electric dipole moment and the average angular momentum in the deterministic electric field direction also decay to zero.
Theory for electric dipole superconductivity with an application for bilayer excitons
Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X. C.
2015-01-01
Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current. PMID:26154838
NASA Astrophysics Data System (ADS)
Chigrin, Dmitry N.; Kumar, Deepu; von Plessen, Gero
2016-09-01
Emission quenching is analysed at nanometer distances from the surface of an absorbing nanoparticle. It is demonstrated that emission quenching at small distances to the surface is much weaker for magnetic-dipole (MD) than for electric-dipole (ED) transitions. This difference is explained by the fact that the electric field induced by a magnetic dipole has a weaker distance dependence than the electric field of an electric dipole. It is also demonstrated that in the extreme near-field regime the non-locality of the optical response of the metal results in additional emission quenching for both ED and MD transitions.
Systematics of the electric dipole response in stable tin isotopes
NASA Astrophysics Data System (ADS)
Bassauer, Sergej; von Neumann-Cosel, Peter; Tamii, Atsushi
2018-05-01
The electric dipole is an important property of heavy nuclei. Precise information on the electric dipole response provides information on the electric dipole polarisability which in turn allows to extract important constraints on neutron-skin thickness in heavy nuclei and parameters of the symmetry energy. The tin isotope chain is particularly suited for a systematic study of the dependence of the electric dipole response on neutron excess as it provides a wide mass range of accessible isotopes with little change of the underlying structure. Recently an inelastic proton scattering experiment under forward angles including 0º on 112,116,124Sn was performed at the Research Centre for Nuclear Physics (RCNP), Japan with a focus on the low-energy dipole strength and the polarisability. First results are presented here. Using data from an earlier proton scattering experiment on 120Sn the gamma strength function and level density are determined for this nucleus.
Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.; ...
2018-01-29
We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.
We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less
Ideal Magnetic Dipole Scattering
NASA Astrophysics Data System (ADS)
Feng, Tianhua; Xu, Yi; Zhang, Wei; Miroshnichenko, Andrey E.
2017-04-01
We introduce the concept of tunable ideal magnetic dipole scattering, where a nonmagnetic nanoparticle scatters light as a pure magnetic dipole. High refractive index subwavelength nanoparticles usually support both electric and magnetic dipole responses. Thus, to achieve ideal magnetic dipole scattering one has to suppress the electric dipole response. Such a possibility was recently demonstrated for the so-called anapole mode, which is associated with zero electric dipole scattering. By spectrally overlapping the magnetic dipole resonance with the anapole mode, we achieve ideal magnetic dipole scattering in the far field with tunable strong scattering resonances in the near infrared spectrum. We demonstrate that such a condition can be realized at least for two subwavelength geometries. One of them is a core-shell nanosphere consisting of a Au core and silicon shell. It can be also achieved in other geometries, including nanodisks, which are compatible with current nanofabrication technology.
Electric dipole hyperfine structure of TIF
NASA Astrophysics Data System (ADS)
Hinds, Edward A.; Sandars, P. G. H.
1980-02-01
The authors have calculated the electric dipole interaction energy of the 205TI nucleus in TIF assuming a nonzero electric dipole moment dp on the proton. The result is used in the accompanying experimental paper to obtain a new value of (-1.4+/-6)×10-21 e cm for dp.
NASA Astrophysics Data System (ADS)
Dzuba, V. A.; Flambaum, V. V.; Porsev, S. G.
2009-09-01
Electric dipole moments of diamagnetic atoms of experimental interest are calculated using the relativistic Hartree-Fock and random-phase approximation methods, the many-body perturbation theory, and the configuration-interaction technique. We consider (P,T) -odd interactions, which give rise to atomic electric dipole moment in the second order of the perturbation theory. These include nuclear Schiff moment, (P,T) -odd electron-nucleon interaction, and electron electric dipole moment. Interpretation of an experimental constraint of a permanent electric dipole moment of H199g [W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and E. N. Fortson, Phys. Rev. Lett. 102, 101601 (2009)] is discussed.
electric dipole superconductor in bilayer exciton system
NASA Astrophysics Data System (ADS)
Sun, Qing-Feng; Jiang, Qing-Dong; Bao, Zhi-Qiang; Xie, X. C.
Recently, it was reported that the bilayer exciton systems could exhibit many new phenomena, including the large bilayer counterflow conductivity, the Coulomb drag, etc. These phenomena imply the formation of exciton condensate superfluid state. On the other hand, it is now well known that the superconductor is the condensate superfluid state of the Cooper pairs, which can be viewed as electric monopoles. In other words, the superconductor state is the electric monopole condensate superfluid state. Thus, one may wonder whether there exists electric dipole superfluid state. In this talk, we point out that the exciton in a bilayer system can be considered as a charge neutral electric dipole. And we derive the London-type and Ginzburg-Landau-type equations of electric dipole superconductivity. From these equations, we discover the Meissner-type effect (against spatial variation of magnetic fields), and the dipole current Josephson effect. The frequency in the AC Josephson effect of the dipole current is equal to that in the normal (monopole) superconductor. These results can provide direct evidence for the formation of exciton superfluid state in the bilayer systems and pave new ways to obtain the electric dipole current. We gratefully acknowledge the financial support by NBRP of China (2012CB921303 and 2015CB921102) and NSF-China under Grants Nos. 11274364 and 11574007.
Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale.
Aigouy, L; Cazé, A; Gredin, P; Mortier, M; Carminati, R
2014-08-15
We report on an experimental technique to quantify the relative importance of electric and magnetic dipole luminescence from a single nanosource in structured environments. By attaching a Eu^{3+}-doped nanocrystal to a near-field scanning optical microscope tip, we map the branching ratios associated with two electric dipole and one magnetic dipole transitions in three dimensions on a gold stripe. The relative weights of the electric and magnetic radiative local density of states can be recovered quantitatively, based on a multilevel model. This paves the way towards the full electric and magnetic characterization of nanostructures for the control of single emitter luminescence.
NASA Astrophysics Data System (ADS)
Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.
2017-08-01
A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.
Microgravity Electron Electric Dipole Moment Experiment with a Cold Atom Beam
NASA Technical Reports Server (NTRS)
Gould, Harvey
2003-01-01
New physics beyond the Standard Model: The small CP violation contained in the Standard Model is insufficient to account for the baryon/antibaryon asymmetry in the universe. New sources of CP violation are provided by extensions to the Standard Model. They contain CP-violating phases that couple directly to leptons and from which a large electron electric dipole moment (EDM) may be generated. Observation of an electron EDM would be proof of a Standard Model extension because the Standard Model only allows an electron EDM of less than 10(exppp -57) C-m (S.I. units; 1 C-m = 1.6 x 10(exp -21) e-cm). A null result, however, constrains models and improving the limit tightens constraints, further restricting the models.
Etalon (standard) for surface potential distribution produced by electric activity of the heart.
Szathmáry, V; Ruttkay-Nedecký, I
1981-01-01
The authors submit etalon (standard) equipotential maps as an aid in the evaluation of maps of surface potential distributions in living subjects. They were obtained by measuring potentials on the surface of an electrolytic tank shaped like the thorax. The individual etalon maps were determined in such a way that the parameters of the physical dipole forming the source of the electric field in the tank corresponded to the mean vectorcardiographic parameters measured in a healthy population sample. The technique also allows a quantitative estimate of the degree of non-dipolarity of the heart as the source of the electric field.
Terahertz radiation in graphene hyperbolic medium excited by an electric dipole.
Feng, Xiaodong; Gong, Sen; Zhong, Renbin; Zhao, Tao; Hu, Min; Zhang, Chao; Liu, Shenggang
2018-03-01
In this Letter, the enhanced and directional radiation in a wide terahertz (THz) frequency range in a graphene hyperbolic medium excited by an electric dipole is presented. The numerical simulations and theoretical analyses indicate that the enhanced radiation comes from the strong surface plasmon couplings in the graphene hyperbolic medium, consisting of alternative graphene and dielectric substrate layers. The simulation results also show that the peak power flow of the enhanced THz radiation in the graphene hyperbolic medium is dramatically enhanced by more than 1 order of magnitude over that in a general medium within a certain distance from the dipole, and the electromagnetic fields are strongly concentrated in a narrow angle. Also, the radiation fields can be manipulated, and the fields' angular distributions can be tuned by adjusting the dielectric permittivity and thickness of the substrates, and the chemical potential of graphene. Accordingly, it provides a good opportunity for developing miniature, integratable, high-power-density, and tunable radiation sources in the THz band at room temperature.
Maser Emission from Gravitational States on Isolated Neutron Stars
NASA Astrophysics Data System (ADS)
Tepliakov, Nikita V.; Vovk, Tatiana A.; Rukhlenko, Ivan D.; Rozhdestvensky, Yuri V.
2018-04-01
Despite years of research on neutron stars, the source of their radio emission is still under debate. Here we propose a new coherent mechanism of pulsar radio emission based on transitions between gravitational states of electrons confined above the pulsar atmosphere. Our mechanism assumes that the coherent radiation is generated upon the electric and magnetic dipole transitions of electrons falling onto the polar caps of the pulsar, and predicts that this radiation occurs at radio frequencies—in full agreement with the observed emission spectra. We show that while the linearly polarized electric dipole radiation propagates parallel to the neutron star surface and has a fan-shape angular spectrum, the magnetic dipole emission comes from the magnetic poles of the pulsar in the form of two narrow beams and is elliptically polarized due to the spin–orbit coupling of electrons confined by the magnetic field. By explaining the main observables of the pulsar radio emission, the proposed mechanism indicates that gravitational quantum confinement plays an essential role in the physics of neutron stars.
Quantitative analysis on electric dipole energy in Rashba band splitting.
Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji
2015-09-01
We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.
Quantitative analysis on electric dipole energy in Rashba band splitting
Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji
2015-01-01
We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime. PMID:26323493
Manipulation of positron orbits in a dipole magnetic field with fluctuating electric fields
NASA Astrophysics Data System (ADS)
Saitoh, H.; Horn-Stanja, J.; Nißl, S.; Stenson, E. V.; Hergenhahn, U.; Pedersen, T. Sunn; Singer, M.; Dickmann, M.; Hugenschmidt, C.; Stoneking, M. R.; Danielson, J. R.; Surko, C. M.
2018-01-01
We report the manipulation of positron orbits in a toroidal dipole magnetic field configuration realized with electric fields generated by segmented electrodes. When the toroidal circulation motion of positrons in the dipole field is coupled with time-varying electric fields generated by azimuthally segmented outer electrodes, positrons undergo oscillations of their radial positions. This enables quick manipulation of the spatial profiles of positrons in a dipole field trap by choosing appropriate frequency, amplitude, phase, and gating time of the electric fields. According to numerical orbit analysis, we applied these electric fields to positrons injected from the NEPOMUC slow positron facility into a prototype dipole field trap experiment with a permanent magnet. Measurements with annihilation γ-rays clearly demonstrated the efficient compression effects of positrons into the strong magnetic field region of the dipole field configuration. This positron manipulation technique can be used as one of essential tools for future experiments on the formation of electron-positron plasmas.
NASA Technical Reports Server (NTRS)
Walsh, Brian M.; Armagan, Guzin; Dibartolo, Baldassare; Modlin, Edward A.
1995-01-01
The optical spectra of rare earth ions in solids arise primarily from electric and magnetic dipole transitions between stark split multiplets of the 4f(sup N) electronic configuration. Electric dipole transitions are parity forbidden between levels of the 4f(sup N) configuration, while those of magnetic dipole origin are allowed. It is known from experiment, however, that the significant contributions to the intensities of most transitions are electric dipole in nature. Judd and Ofelt developed the theory of forced electric dipole transitions of rare-earth ions. This study is devoted to determining electric dipole transition probabilities and branching ratios for Tm(3+) and Ho(3+) ions in Yttrium Aluminum Garnet (YAG) and Yttrium Lithium Fluoride (YLF) using the theory of Judd and Ofelt. The radiative rates determined from the Judd-Ofelt analysis are used with measured lifetimes to find nonradiative rates of relaxation.
Budkov, Yu A; Kolesnikov, A L
2016-11-01
We present a new simple self-consistent field theory of a polarizable flexible polymer chain under an external constant electric field with account for the many-body electrostatic dipole correlations. We show the effects of electrostatic dipole correlations on the electric-field-induced globule-coil transition. We demonstrate that only when the polymer chain is in the coil conformation, the electrostatic dipole correlations of monomers can be considered as pairwise. However, when the polymer chain is in a collapsed state, the dipole correlations have to be considered at the many-body level.
A new search for the permanent electric dipole moment of 129Xe at FRM-II
NASA Astrophysics Data System (ADS)
Sachdeva, N.; Chupp, T.; Degenkolb, S.; Fierlinger, P.; Kraegloh, E.; Kuchler, F.; Lins, T.; Meinel, J.; Niessen, B.; Stuiber, S.; Terrano, W. A.; Burghoff, M.; Fan, I.; Kilian, W.; Grüneberg, S.; Schnabel, A.; Seifert, F.; Stollfuss, D.; Trahms, L.; Voight, J.; Babcock, E.; Salhi, Z.; Huneau, J.; Singh, J.
2017-01-01
CP-violating sources in beyond-the-standard-model physics, necessary to explain baryon asymmetry, give rise to permanent electric dipole moments (EDMs). Precise EDM measurements of the neutron, electron, paramagnetic and diamagnetic atoms constrain CP-violating parameters. The previous limit for the 129Xe EDM is 6 ×10-27 e . cm (95 % CL). The HeXeEDM experiment at FRM-II (Munich Research Reactor) utilizes an ultralow magnetic field in a high-performance magnetically shielded room and 3He comagnetometer to improve the limit by up to three orders of magnitude. In the experiment, hyperpolarized 3He and 129Xe precession signals are detected with a SQUID magnetometer array in the presence of applied electric and magnetic fields. Recent progress will be presented. This work is supported US Department of Energy Grant No. DE FG02 04 ER41331.
Quasi-Static Electric Field Generator
NASA Technical Reports Server (NTRS)
Generazio, Edward R. (Inventor)
2017-01-01
A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.
A simple method for EEG guided transcranial electrical stimulation without models.
Cancelli, Andrea; Cottone, Carlo; Tecchio, Franca; Truong, Dennis Q; Dmochowski, Jacek; Bikson, Marom
2016-06-01
There is longstanding interest in using EEG measurements to inform transcranial Electrical Stimulation (tES) but adoption is lacking because users need a simple and adaptable recipe. The conventional approach is to use anatomical head-models for both source localization (the EEG inverse problem) and current flow modeling (the tES forward model), but this approach is computationally demanding, requires an anatomical MRI, and strict assumptions about the target brain regions. We evaluate techniques whereby tES dose is derived from EEG without the need for an anatomical head model, target assumptions, difficult case-by-case conjecture, or many stimulation electrodes. We developed a simple two-step approach to EEG-guided tES that based on the topography of the EEG: (1) selects locations to be used for stimulation; (2) determines current applied to each electrode. Each step is performed based solely on the EEG with no need for head models or source localization. Cortical dipoles represent idealized brain targets. EEG-guided tES strategies are verified using a finite element method simulation of the EEG generated by a dipole, oriented either tangential or radial to the scalp surface, and then simulating the tES-generated electric field produced by each model-free technique. These model-free approaches are compared to a 'gold standard' numerically optimized dose of tES that assumes perfect understanding of the dipole location and head anatomy. We vary the number of electrodes from a few to over three hundred, with focality or intensity as optimization criterion. Model-free approaches evaluated include (1) voltage-to-voltage, (2) voltage-to-current; (3) Laplacian; and two Ad-Hoc techniques (4) dipole sink-to-sink; and (5) sink to concentric. Our results demonstrate that simple ad hoc approaches can achieve reasonable targeting for the case of a cortical dipole, remarkably with only 2-8 electrodes and no need for a model of the head. Our approach is verified directly only for a theoretically localized source, but may be potentially applied to an arbitrary EEG topography. For its simplicity and linearity, our recipe for model-free EEG guided tES lends itself to broad adoption and can be applied to static (tDCS), time-variant (e.g., tACS, tRNS, tPCS), or closed-loop tES.
A simple method for EEG guided transcranial electrical stimulation without models
NASA Astrophysics Data System (ADS)
Cancelli, Andrea; Cottone, Carlo; Tecchio, Franca; Truong, Dennis Q.; Dmochowski, Jacek; Bikson, Marom
2016-06-01
Objective. There is longstanding interest in using EEG measurements to inform transcranial Electrical Stimulation (tES) but adoption is lacking because users need a simple and adaptable recipe. The conventional approach is to use anatomical head-models for both source localization (the EEG inverse problem) and current flow modeling (the tES forward model), but this approach is computationally demanding, requires an anatomical MRI, and strict assumptions about the target brain regions. We evaluate techniques whereby tES dose is derived from EEG without the need for an anatomical head model, target assumptions, difficult case-by-case conjecture, or many stimulation electrodes. Approach. We developed a simple two-step approach to EEG-guided tES that based on the topography of the EEG: (1) selects locations to be used for stimulation; (2) determines current applied to each electrode. Each step is performed based solely on the EEG with no need for head models or source localization. Cortical dipoles represent idealized brain targets. EEG-guided tES strategies are verified using a finite element method simulation of the EEG generated by a dipole, oriented either tangential or radial to the scalp surface, and then simulating the tES-generated electric field produced by each model-free technique. These model-free approaches are compared to a ‘gold standard’ numerically optimized dose of tES that assumes perfect understanding of the dipole location and head anatomy. We vary the number of electrodes from a few to over three hundred, with focality or intensity as optimization criterion. Main results. Model-free approaches evaluated include (1) voltage-to-voltage, (2) voltage-to-current; (3) Laplacian; and two Ad-Hoc techniques (4) dipole sink-to-sink; and (5) sink to concentric. Our results demonstrate that simple ad hoc approaches can achieve reasonable targeting for the case of a cortical dipole, remarkably with only 2-8 electrodes and no need for a model of the head. Significance. Our approach is verified directly only for a theoretically localized source, but may be potentially applied to an arbitrary EEG topography. For its simplicity and linearity, our recipe for model-free EEG guided tES lends itself to broad adoption and can be applied to static (tDCS), time-variant (e.g., tACS, tRNS, tPCS), or closed-loop tES.
NASA Astrophysics Data System (ADS)
Silenko, Alexander J.
2017-10-01
We calculate the corrections for constant radial magnetic field in muon {g}-2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of {g}-2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab.
EEG source analysis of data from paralysed subjects
NASA Astrophysics Data System (ADS)
Carabali, Carmen A.; Willoughby, John O.; Fitzgibbon, Sean P.; Grummett, Tyler; Lewis, Trent; DeLosAngeles, Dylan; Pope, Kenneth J.
2015-12-01
One of the limitations of Encephalography (EEG) data is its quality, as it is usually contaminated with electric signal from muscle. This research intends to study results of two EEG source analysis methods applied to scalp recordings taken in paralysis and in normal conditions during the performance of a cognitive task. The aim is to determinate which types of analysis are appropriate for dealing with EEG data containing myogenic components. The data used are the scalp recordings of six subjects in normal conditions and during paralysis while performing different cognitive tasks including the oddball task which is the object of this research. The data were pre-processed by filtering it and correcting artefact, then, epochs of one second long for targets and distractors were extracted. Distributed source analysis was performed in BESA Research 6.0, using its results and information from the literature, 9 ideal locations for source dipoles were identified. The nine dipoles were used to perform discrete source analysis, fitting them to the averaged epochs for obtaining source waveforms. The results were statistically analysed comparing the outcomes before and after the subjects were paralysed. Finally, frequency analysis was performed for better explain the results. The findings were that distributed source analysis could produce confounded results for EEG contaminated with myogenic signals, conversely, statistical analysis of the results from discrete source analysis showed that this method could help for dealing with EEG data contaminated with muscle electrical signal.
Experimental constraint on quark electric dipole moments
NASA Astrophysics Data System (ADS)
Liu, Tianbo; Zhao, Zhiwen; Gao, Haiyan
2018-04-01
The electric dipole moments (EDMs) of nucleons are sensitive probes of additional C P violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, tensor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to C P violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as 1.27 ×10-24 e .cm for the up quark and 1.17 ×10-24 e .cm for the down quark at the scale of 4 GeV2 . We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about 3 orders of magnitude leading to a much more sensitive probe of new physics models.
Self-force on an electric dipole in the spacetime of a cosmic string
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muniz, C.R., E-mail: celiomuniz@yahoo.com; Bezerra, V.B., E-mail: valdir@ufpb.br
2014-01-15
We calculate the electrostatic self-force on an electric dipole in the spacetime generated by a static, thin, infinite and straight cosmic string. The electric dipole is held fixed in different configurations, namely, parallel, perpendicular to the cosmic string and oriented along the azimuthal direction around this topological defect, which is stretched along the z axis. We show that the self-force is equivalent to an interaction of the electric dipole with an effective dipole moment which depends on the linear mass density of the cosmic string and on the configuration. The plots of the self-forces as functions of the parameter whichmore » determines the angular deficit of the cosmic string are shown for those different configurations. -- Highlights: •Review of regularized Green’s function applied to the problem. •Self-force on an electric dipole in the string spacetime for some orientations. •Representation via graphs of the self-forces versus angular parameter of the cosmic string. •Self-force induced by the string seen as an interaction between two dipoles. •Discussion about the superposition principle in this non-trivial background.« less
Multi-Polarization Reconfigurable Antenna for Wireless Biomedical System.
Wong, Hang; Lin, Wei; Huitema, Laure; Arnaud, Eric
2017-06-01
This paper presents a multi-polarization reconfigurable antenna with four dipole radiators for biomedical applications in body-centric wireless communication system (BWCS). The proposed multi-dipole antenna with switchable 0°, +45°, 90° and -45° linear polarizations is able to overcome the polarization mismatching and multi-path distortion in complex wireless channels as in BWCS. To realize this reconfigurable feature for the first time among all the reported antenna designs, we assembled four dipoles together with 45° rotated sequential arrangements. These dipoles are excited by the same feeding source provided by a ground tapered Balun. A metallic reflector is placed below the dipoles to generate a broadside radiation. By introducing eight PIN diodes as RF switches between the excitation source and the four dipoles, we can control a specific dipole to operate. As the results, 0°, +45°, 90° and -45° linear polarizations can be switched correspondingly to different operating dipoles. Experimental results agree with the simulation and show that the proposed antenna well works in all polarization modes with desirable electrical characteristics. The antenna has a wide impedance bandwidth of 34% from 2.2 to 3.1 GHz (for the reflection coefficient ≤ -10 dB) and exhibits a stable cardioid-shaped radiation pattern across the operating bandwidth with a peak gain of 5.2 dBi. To validate the effectiveness of the multi-dipole antenna for biomedical applications, we also designed a meandered PIFA as the implantable antenna. Finally, the communication link measurement shows that our proposed antenna is able to minimize the polarization mismatching and maintains the optimal communication link thanks to its polarization reconfigurability.
Search for a Neutron Electric Dipole Moment
Golub, R.; Huffman, P. R.
2005-01-01
The possible existence of a nonzero electric dipole moment (EDM) of the neutron is of great fundamental interest in itself and directly impacts our understanding of the nature of electro-weak and strong interactions. The experimental search for this moment has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The goal of the current experiment is to significantly improve the measurement sensitivity to the neutron EDM over what is reported in the literature. The experiment has the potential to either measure the magnitude of the neutron EDM or to lower the current experimental limit by two orders of magnitude. Achieving these objectives will have a major impact on our understanding of the physics of both weak and strong interactions. PMID:27308116
NASA Astrophysics Data System (ADS)
Kim, E.; Safavi-Naini, A.; Hite, D. A.; McKay, K. S.; Pappas, D. P.; Weck, P. F.; Sadeghpour, H. R.
2017-03-01
The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from the trap-electrode surfaces. In this work, we investigate the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by density functional theory, based on detailed scanning probe microscopy, how the carbon adatom diffusion on the gold surface changes the energy landscape and how the adatom dipole moment varies with the diffusive motion. A simple model for the diffusion noise, which varies quadratically with the variation of the dipole moment, predicts a noise spectrum, in accordance with the measured values.
NASA Astrophysics Data System (ADS)
Ban, G.; Bison, G.; Bodek, K.; Daum, M.; Fertl, M.; Franke, B.; Grujić, Z. D.; Heil, W.; Horras, M.; Kasprzak, M.; Kermaidic, Y.; Kirch, K.; Koch, H.-C.; Komposch, S.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Mtchedlishvili, A.; Pignol, G.; Piegsa, F. M.; Prashanth, P.; Quéméner, G.; Rawlik, M.; Rebreyend, D.; Ries, D.; Roccia, S.; Rozpedzik, D.; Schmidt-Wellenburg, P.; Severijns, N.; Weis, A.; Wyszynski, G.; Zejma, J.; Zsigmond, G.
2018-07-01
We report on a laser based 199Hg co-magnetometer deployed in an experiment searching for a permanent electric dipole moment of the neutron. We demonstrate a more than five times increased signal to-noise-ratio in a direct comparison measurement with its 204Hg discharge bulb-based predecessor. An improved data model for the extraction of important system parameters such as the degrees of absorption and polarization is derived. Laser- and lamp-based data-sets can be consistently described by the improved model which permits to compare measurements using the two different light sources and to explain the increase in magnetometer performance. The laser-based magnetometer satisfies the magnetic field sensitivity requirements for the next generation nEDM experiments.
Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed
ERIC Educational Resources Information Center
Smith, Glenn S.
2011-01-01
The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de; Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT; Brookes, Mike
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In thismore » paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole sources. • Inverse solutions are based on longitudinal and transverse line integral measurements. • Transverse line integral measurements are used as a sparsity constraint. • Numerical procedure to approximate the line integrals is described in detail. • Patterns of the studied electric fields are correctly estimated.« less
Axion induced oscillating electric dipole moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Christopher T.
In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency m a and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.
Reply to “Comment on ‘Axion induced oscillating electric dipole moments’”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Christopher T.
A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, inmore » an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.« less
Neutron Electric Dipole Moment from Gauge-String Duality.
Bartolini, Lorenzo; Bigazzi, Francesco; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea
2017-03-03
We compute the electric dipole moment of nucleons in the large N_{c} QCD model by Witten, Sakai, and Sugimoto with N_{f}=2 degenerate massive flavors. Baryons in the model are instantonic solitons of an effective five-dimensional action describing the whole tower of mesonic fields. We find that the dipole electromagnetic form factor of the nucleons, induced by a finite topological θ angle, exhibits complete vector meson dominance. We are able to evaluate the contribution of each vector meson to the final result-a small number of modes are relevant to obtain an accurate estimate. Extrapolating the model parameters to real QCD data, the neutron electric dipole moment is evaluated to be d_{n}=1.8×10^{-16}θ e cm. The electric dipole moment of the proton is exactly the opposite.
A 7T Spine Array Based on Electric Dipole Transmitters
Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A.; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S.; Duyn, Jeff H.; Merkle, Hellmut
2015-01-01
Purpose In this work the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high field is explored. Method A 2-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining 8 loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared to a design using quadrature loop pairs. The radio-frequency (RF) energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. Results The results indicate dramatically improved transmit efficiency for the dipole design as compared to the loop excitation. Up to 76% gain was achieved within the spinal region. Conclusion For imaging of the spine, electric-dipole based transmitters provided an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high field. PMID:26190585
Unidirectional emission in an all-dielectric nanoantenna
NASA Astrophysics Data System (ADS)
Feng, Tianhua; Zhang, Wei; Liang, Zixian; Xu, Yi
2018-03-01
All-dielectric nanoantennas are a promising alternative to plasmonic optical antennas for engineering light emission because of their low-loss nature in the optical spectrum. Nevertheless, it is still challenging to manipulate directional light emission with subwavelength all-dielectric nanoantennas. Here, we propose and numerically demonstrate that a hollow silicon nanodisk can serve as a versatile antenna for directing and enhancing the emission from either an electric or magnetic dipole emitter. When primarily coupled to both electric and magnetic dipole modes of a nanoantenna, broadband nearly-unidirectional emission can be realized by the interference of two modes, which can be spectrally tuned via the geometric parameters in an easy way. More importantly, the emission directions for the magnetic and electric dipole emitters are shown as opposite to each other through control of the phase difference between the induced magnetic and electric dipole modes of the antenna. Meanwhile, the Purcell factors can be enhanced by more than one order of magnitude and high quantum efficiencies can be maintained at the visible spectrum for both kinds of dipole emitters. We further show that these unidirectional emission phenomena can withstand small disorder effects of in-plane dipole orientation and location. Our study provides a simple yet versatile platform that can shape the emission of both magnetic and electric dipole emitters.
Modification of electric and magnetic dipole emission in anisotropic plasmonic systems.
Noginova, N; Hussain, R; Noginov, M A; Vella, J; Urbas, A
2013-10-07
In order to investigate the effects of plasmonic environments on spontaneous emission of magnetic and electric dipoles, we have studied luminescence of Eu³⁺ ions in close vicinity to gold nanostrip arrays. Significant changes in the emission kinetics, emission polarization, and radiation patterns have been observed in the wavelength range corresponding to the plasmonic resonance. The effect of the plasmonic resonance on the magnetic dipole transition ⁵D₀-->⁷F₁ is found to be very different from its effect on the electric dipole transitions. This makes Eu³⁺₋ containing complexes promising for mapping local distributions of magnetic and electric fields in metamaterials and plasmonic systems.
NASA Astrophysics Data System (ADS)
Serebrov, A. P.
2018-03-01
The use of ultracold neutrons opens unique possibilities for studying fundamental interactions in particles physics. Searches for the neutron electric dipole moment are aimed at testing models of CP violation. A precise measurement of the neutron lifetime is of paramount importance for cosmology and astrophysics. Considerable advances in these realms can be made with the aid of a new ultracold-neutron (UCN) supersource presently under construction at Petersburg Nuclear Physics Institute. With this source, it would be possible to obtain an UCN density approximately 100 times as high as that at currently the best UCN source at the high-flux reactor of the Institute Laue-Langevin (ILL, Grenoble, France). To date, the design and basic elements of the source have been prepared, tests of a full-scale source model have been performed, and the research program has been developed. It is planned to improve accuracy in measuring the neutron electric dipole moment by one order of magnitude to a level of 10-27 to 10-28 e cm. This is of crucial importance for particle physics. The accuracy in measuring the neutron lifetime can also be improved by one order of magnitude. Finally, experiments that would seek neutron-antineutron oscillations by employing ultracold neutrons will become possible upon reaching an UCN density of 103 to 104 cm-3. The current status of the source and the proposed research program are discussed.
Rotation Detection Using the Precession of Molecular Electric Dipole Moment
NASA Astrophysics Data System (ADS)
Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun
2017-11-01
We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strengthmore » can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.« less
Quantum electric-dipole liquid on a triangular lattice.
Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F; Sun, Young
2016-02-04
Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.
Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
NASA Astrophysics Data System (ADS)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong
2015-12-01
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czarnecki, A.; Krause, B.
1997-06-01
We present a complete three-loop calculation of the electric dipole moment of the u and d quarks in the standard model. For the d quark, more relevant for the experimentally important neutron electric dipole moment, we find cancellations which lead to an order of magnitude suppression compared with previous estimates. {copyright} {ital 1997} {ital The American Physical Society}
Dipole interaction of the Quincke rotating particles.
Dolinsky, Yu; Elperin, T
2012-02-01
We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.
Dipole interaction of the Quincke rotating particles
NASA Astrophysics Data System (ADS)
Dolinsky, Yu.; Elperin, T.
2012-02-01
We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.
Electric-dipole-induced universality for Dirac fermions in graphene.
De Martino, Alessandro; Klöpfer, Denis; Matrasulov, Davron; Egger, Reinhold
2014-05-09
We study electric dipole effects for massive Dirac fermions in graphene and related materials. The dipole potential accommodates towers of infinitely many bound states exhibiting a universal Efimov-like scaling hierarchy. The dipole moment determines the number of towers, but there is always at least one tower. The corresponding eigenstates show a characteristic angular asymmetry, observable in tunnel spectroscopy. However, charge transport properties inferred from scattering states are highly isotropic.
NASA Astrophysics Data System (ADS)
Schmidt, V.; Lehrach, A.
2017-07-01
The Jülich Electric Dipole moment Investigations (JEDI) collaboration in Julich is preparing a direct EDM measurement of protons and deuterons first at the storage ring COSY (COoler SYnchrotron) and later at a dedicated storage ring. Ensuring a precise measurement, various beam and spin manipulating effects have to be considered and investigated. A distortion of the closed orbit is one of the major sources for systematic uncertainties. Therefore misalignments of magnets and residual power supply oscillations are simulated using the MAD-X code in order to analyse their effect on the orbit. The underlying model for all simulations includes the dipoles, quadrupoles and sextupoles at COSY as well as the corrector magnets and BPMs (Beam Position Monitors). Since most sextupoles are only used during beam extraction, the sextupole strengths are set to zero resulting in a linear machine. The optics is adjusted in a way that the dispersion is zero in the straight sections. The closed orbit studies are performed for deuterons with a momentum of 970 MeV/c.
Repulsive vacuum-induced forces on a magnetic particle
NASA Astrophysics Data System (ADS)
Sinha, Kanupriya
2018-03-01
We study the possibility of obtaining a repulsive vacuum-induced force for a magnetic point particle near a surface. Considering the toy model of a particle with an electric-dipole transition and a large magnetic spin, we analyze the interplay between the repulsive magnetic-dipole and the attractive electric-dipole contributions to the total Casimir-Polder force. Particularly noting that the magnetic-dipole interaction is longer ranged than the electric dipole due to the difference in their respective characteristic transition frequencies, we find a regime where the repulsive magnetic contribution to the total force can potentially exceed the attractive electric part in magnitude for a sufficiently large spin. We analyze ways to further enhance the magnitude of the repulsive magnetic Casimir-Polder force for an excited particle, such as by preparing it in a "super-radiant" magnetic sublevel and designing surface resonances close to the magnetic transition frequency.
Gas Hydrates of Coal Layers as a Methane Source in the Atmosphere and Mine Working
NASA Astrophysics Data System (ADS)
Dyrdin, Valery; Shepeleva, Sofya; Kim, Tatiana
2017-11-01
Living conditions of gas hydrates of a methane in a coal matrix as one of possible forms of finding of molecules of a methane in coal layers are considered. However, gas hydrates are formed not in all mineral coals even under the thermobaric conditions corresponding to their equilibrium state as the minimum humidity and the corresponding pore width are necessary for each brand of coal for formation of gas hydrate. It is shown that it depends on electric electrical dipole moment of a macromolecule of coal. Coals of brands K, D, Zh were considered. The electric field created by the surface of coal does not allow molecules of water to carry out threedimensional driving, and they keep on an internal surface of a time. By means of theoretical model operation a dipole - dipole interaction of molecules of water with the steam surface of coal values of energy of fiber interaction for various functional groups located in coal "fringe" which size for the first and second layers does not allow molecules of water to participate in formation of gas hydrates are received. For coals of brands K, Zh, D, considering distribution of a time on radiuses, the percent of moisture, which cannot share in education solid coal of gas solutions, is calculated.
All-silicon-based nano-antennas for wavelength and polarization demultiplexing.
Panmai, Mingcheng; Xiang, Jin; Sun, Zhibo; Peng, Yuanyuan; Liu, Hongfeng; Liu, Haiying; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng
2018-05-14
We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.
First results from experiment in South China Sea using marine controlled source electromagnetic
NASA Astrophysics Data System (ADS)
Li, Yuan; Wang, Lipeng; Deng, Ming
2016-04-01
We concentrated on the use of marine controlled-source electromagnetic (CSEM) sounding with a horizontal electric dipole source towed close to the seafloor and receivers anchored on the seafloor. We applied the CSEM method in South China Sea for the first time in 2014, which not only test the application of our instrument, but also test our data processing method. Electromagnetic fields transmitted by a towed electric dipole source in deep sea were measured by a linear array of six seafloor receivers, positioned 600 meter (m) apart. Our results provided two highly resistivity layers beneath the survey line and the gas hydrate saturation profile associated with the anomalous resistivity. In the letter, we discussed some anomalous layers during the interpretation steps. The most plausible explanation of the first resistivity layer anomalies is that large amounts of gas hydrate have accumulated at 200 m depth below the seep sites, and the second layers is considerable volumes of gas hydrate have accumulated the seafloor at survey line according to the conceptual model, during the resistivity compared with other evidence like seismic and well data from the same survey. We should try other observation like heat flow, geochemical or other evidence to test the statement in the future.
Controlling electric, magnetic, and chiral dipolar emission with PT-symmetric potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alaeian, Hadiseh; Dionne, Jennifer A.
We investigate the effect of parity-time (PT) symmetric optical potentials on the radiation of achiral and chiral dipole sources. Two properties unique to PT-symmetric potentials are observed. First, the dipole can be tuned to behave as a strong optical emitter or absorber based on the non-Hermiticity parameter and the dipole location. Second, exceptional points give rise to new system resonances that lead to orders-of-magnitude enhancements in the dipolar emitted or absorbed power. Utilizing these properties, we show that enantiomers of chiral molecules near PT-symmetric metamaterials exhibit a 4.5-fold difference in their emitted power and decay rate. The results of thismore » work could enable new atom-cavity interactions for quantum optics, as well as all-optical enantioselective separation.« less
Negative refraction with low absorption using Raman transitions with magnetoelectric coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikes, D. E.; Yavuz, D. D.
2010-07-15
We suggest a scheme for obtaining negative refraction that does not require the simultaneous presence of an electric-dipole and a magnetic-dipole transition near the same transition frequency. The key idea of the scheme is to obtain a strong electric response by using far-off-resonant Raman transitions. We propose to use a pair of electric-dipole Raman transitions and utilize magneto-electric cross coupling to achieve a negative index of refraction without requiring negative permeability. The interference of the two Raman transitions allows tunable negative refraction with low absorption.
A 7T spine array based on electric dipole transmitters.
Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S; Duyn, Jeff H; Merkle, Hellmut
2015-10-01
The goal of this study was to explore the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high fields. A two-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining eight loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared with a design using quadrature loop pairs. The radiofrequency energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. The results indicate dramatically improved transmit efficiency for the dipole design compared with the loop excitation. A gain of up to 76% was achieved within the spinal region. For imaging of the spine, electric dipole-based transmitters provide an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high fields. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Electric dipole polarizability from first principles calculations
Miorelli, M.; Bacca, S.; Barnea, N.; ...
2016-09-19
The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for themore » 4He, 40Ca, and 16O nuclei, and predict the dipole polarizability for the rare nucleus 22O.« less
First Measurement of the Atomic Electric Dipole Moment of (225)Ra.
Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T
2015-06-12
The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22) e cm (95% confidence).
A class of Fourier integrals based on the electric potential of an elongated dipole.
Skianis, Georgios Aim
2014-01-01
In the present paper the closed expressions of a class of non tabulated Fourier integrals are derived. These integrals are associated with a group of functions at space domain, which represent the electric potential of a distribution of elongated dipoles which are perpendicular to a flat surface. It is shown that the Fourier integrals are produced by the Fourier transform of the Green's function of the potential of the dipole distribution, times a definite integral in which the distribution of the polarization is involved. Therefore the form of this distribution controls the expression of the Fourier integral. Introducing various dipole distributions, the respective Fourier integrals are derived. These integrals may be useful in the quantitative interpretation of electric potential anomalies produced by elongated dipole distributions, at spatial frequency domain.
Electric Field Detection in Sawfish and Shovelnose Rays
Wueringer, Barbara E.; Jnr, Lyle Squire; Kajiura, Stephen M.; Tibbetts, Ian R.; Hart, Nathan S.; Collin, Shaun P.
2012-01-01
In the aquatic environment, living organisms emit weak dipole electric fields, which spread in the surrounding water. Elasmobranchs detect these dipole electric fields with their highly sensitive electroreceptors, the ampullae of Lorenzini. Freshwater sawfish, Pristis microdon, and two species of shovelnose rays, Glaucostegus typus and Aptychotrema rostrata were tested for their reactions towards weak artificial electric dipole fields. The comparison of sawfishes and shovelnose rays sheds light on the evolution and function of the elongated rostrum (‘saw’) of sawfish, as both groups evolved from a shovelnose ray-like ancestor. Electric stimuli were presented both on the substrate (to mimic benthic prey) and suspended in the water column (to mimic free-swimming prey). Analysis of around 480 behavioural sequences shows that all three species are highly sensitive towards weak electric dipole fields, and initiate behavioural responses at median field strengths between 5.15 and 79.6 nVcm−1. The response behaviours used by sawfish and shovelnose rays depended on the location of the dipoles. The elongation of the sawfish’s rostrum clearly expanded their electroreceptive search area into the water column and enables them to target free-swimming prey. PMID:22848543
Resonance energy transfer: when a dipole fails.
Andrews, David L; Leeder, Jamie M
2009-05-14
The Coulombic coupling of electric dipole (E1) transition moments is the most commonly studied and widely operative mechanism for energy migration in multichromophore systems. However a significant number of exceptions exist, in which donor decay and/or acceptor excitation processes are E1-forbidden. The alternative transfer mechanisms that can apply in such cases include roles for higher multipole transitions, exciton- or phonon-assisted interactions, and non-Coulombic interactions based on electron exchange. A quantum electrodynamical formulation provides a rigorous basis to assess the first of these, specifically addressing the relative significance of higher multipole contributions to the process of energy transfer in donor-acceptor systems where electric dipole transitions are precluded by symmetry. Working within the near-zone limit, where donor-acceptor separations are small in comparison to the chromophore scale, the analysis highlights the contributions of both electric quadrupole-electric quadrupole (E2-E2) coupling and the seldom considered second-order electric dipole-electric dipole (E1(2)-E1(2)) coupling. For both forms of interaction, experimentally meaningful rate equations are secured by the use of orientational averaging, and the mechanisms are analyzed with reference to systems in which E1-forbidden transitions are commonly reported.
NASA Astrophysics Data System (ADS)
Grachev, A. I.
2018-04-01
Rotation of a spherical particle in a static electric field and under steady irradiation that induces an electric dipole moment in the particle is studied for the first time. Along with the general treatment of the phenomenon, we analyze possible mechanisms underlying the photoinduction of dipole moment in the particle. Estimations of the angular velocity and the power expended by the rotating particle are provided. The indicated characteristics reach their maximum values if the size of particles is within the range of 10 nm to 10 μm.
Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter
2016-11-14
The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At 2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.
NASA Astrophysics Data System (ADS)
Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter
2016-11-01
The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.
Frequency shifts of an electric-dipole resonance near a conducting surface
NASA Technical Reports Server (NTRS)
Holland, W. R.; Hall, D. G.
1984-01-01
The resonance frequency of an electric dipole placed near a conducting surface is shifted by the dipole-surface interaction. The observation and measurement of these shifts at optical frequencies is reported for an experimental system that consists of a metal-island film spaced a distance d from a continuous Ag film. The dependence of the shift in the frequency of the island resonance on d shows good agreement with that predicted by a classical theory of the dipole-surface interaction.
Mercury monohalides: suitability for electron electric dipole moment searches.
Prasannaa, V S; Vutha, A C; Abe, M; Das, B P
2015-05-08
Heavy polar diatomic molecules are the primary tools for searching for the T-violating permanent electric dipole moment of the electron (eEDM). Valence electrons in some molecules experience extremely large effective electric fields due to relativistic interactions. These large effective electric fields are crucial to the success of polar-molecule-based eEDM search experiments. Here we report on the results of relativistic ab initio calculations of the effective electric fields in a series of molecules that are highly sensitive to an eEDM, the mercury monohalides (HgF, HgCl, HgBr, and HgI). We study the influence of the halide anions on E_{eff}, and identify HgBr and HgI as attractive candidates for future electric dipole moment search experiments.
Atom-Pair Kinetics with Strong Electric-Dipole Interactions.
Thaicharoen, N; Gonçalves, L F; Raithel, G
2016-05-27
Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.
First Measurement of the Atomic Electric Dipole Moment of Ra 225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, R. H.; Dietrich, M. R.; Kalita, M. R.
The radioactive radium-225 (Ra-225) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, Ra-225 is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of Ra-225 atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of vertical bar d(Ra-225)vertical bar < 5.0 x 10(-22) e cm (95% confidence).
Nonradiating anapole modes in dielectric nanoparticles
Miroshnichenko, Andrey E.; Evlyukhin, Andrey B.; Yu, Ye Feng; Bakker, Reuben M.; Chipouline, Arkadi; Kuznetsov, Arseniy I.; Luk'yanchuk, Boris; Chichkov, Boris N.; Kivshar, Yuri S.
2015-01-01
Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms. One intriguing example of such a nonradiating source is known as ‘anapole'. An anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their far-field scattering patterns. Here we demonstrate experimentally that dielectric nanoparticles can exhibit a radiationless anapole mode in visible. We achieve the spectral overlap of the toroidal and electric dipole modes through a geometry tuning, and observe a highly pronounced dip in the far-field scattering accompanied by the specific near-field distribution associated with the anapole mode. The anapole physics provides a unique playground for the study of electromagnetic properties of nontrivial excitations of complex fields, reciprocity violation and Aharonov–Bohm like phenomena at optical frequencies. PMID:26311109
Kim, E.; Safavi-Naini, A.; Hite, D. A.; ...
2017-03-01
The decoherence of trapped-ion quantum bits due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from processes on the trap-electrode surfaces. In this work, we address the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by detailed scanned probe microscopy and density functional theory how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. Lastly, a simple model for the diffusion noise,more » which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, E.; Safavi-Naini, A.; Hite, D. A.
The decoherence of trapped-ion quantum bits due to heating of their motional modes is a fundamental science and engineering problem. This heating is attributed to electric-field noise arising from processes on the trap-electrode surfaces. In this work, we address the source of this noise by focusing on the diffusion of carbon-containing adsorbates on the surface of Au(110). We show by detailed scanned probe microscopy and density functional theory how the carbon adatom diffusion on the gold surface changes the energy landscape, and how the adatom dipole moment varies with the diffusive motion. Lastly, a simple model for the diffusion noise,more » which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.« less
Lineshapes of Dipole-Dipole Resonances in a Cold Rydberg Gas
NASA Astrophysics Data System (ADS)
Richards, B. G.; Jones, R. R.
2015-05-01
We have examined the lineshapes associated with Stark tuned, dipole-dipole resonances involving Rydberg atoms in a cold gas. Rb atoms in a MOT are laser excited from the 5 p level to 32p3 / 2 in the presence of a weak electric field. A fast rising electric field pulse Stark tunes the total energy of two 32 p atom pairs so it is (nearly) degenerate with that of the 32s1 / 2+33s1 / 2 states. Because of the dipole-dipole coupling, atom pairs separated by a distance R, develop 32s1 / 2+33s1 / 2 character. The maximum probability for finding atoms in s-states depends on the detuning from degeneracy and on the dipole-dipole coupling. We obtain the ``resonance'' lineshape by measuring, via state-selective field ionization, the s-state population as a function of the tuning field. The resonance width decreases with density due to R-3 dependence of the dipole-dipole coupling. In principle, the lineshape provides information about the distribution of Rydberg atom spacings in the sample. For equally spaced atoms, the lineshape should be Lorentzian while for a random nearest neighbor distribution it appears as a cusp. At low densities nearly Gaussian lineshapes are observed with widths that are too large to be the result of inhomogeneous electric or magnetic fields. Supported by the NSF.
Electromagnetic toroidal excitations in matter and free space.
Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I
2016-03-01
The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.
Corrected Four-Sphere Head Model for EEG Signals.
Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K
2017-01-01
The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.
Corrected Four-Sphere Head Model for EEG Signals
Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V.; Dale, Anders M.; Einevoll, Gaute T.; Wójcik, Daniel K.
2017-01-01
The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations. PMID:29093671
Investigation of a 129Xe magnetometer for the Neutron Electric Dipole Moment Experiment at TRIUMF
NASA Astrophysics Data System (ADS)
Lang, Michael; Nedm At Triumf Collaboration
2016-03-01
A non-zero neutron electric dipole moment (nEDM) would signify a previously unknown source of CP (or T) violation. New sources of CP violation are believed to be required to explain the baryon asymmetry of the universe. Employing a newly developed high-density UCN source, an experiment at TRIUMF aims to measure the nEDM to the level of 10-27 e . cm in its initial phase. Precession frequency differences for UCN stored in a bottle subject to parallel and anti-parallel E and B fields signify a permanent nEDM. Magnetic field instability and inhomogeneity, as well as field changes resulting from leakage currents (correlated with E fields) are the dominant systematic effects in nEDM measurements. To address this, passive and active magnetic shielding are in development along with a dual species (129Xe and 199Hg) atomic comagnetometer. Simultaneously introducing both atomic species into the UCN cell, the comagnetometer can mitigate false EDMs. 199Hg precession will be detected by Faraday rotation spectroscopy, and 129Xe precession will measured via two-photon excitation and emission. The present comagnetometer progress will be discussed, with focus on polarized 129Xe production and delivery. Work supported by the Natural Sciences and Engineering Research Council of Canada.
Use of electrical resistivity to detect underground mine voids in Ohio
Sheets, Rodney A.
2002-01-01
Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.
Comparison of electric dipole and magnetic loop antennas for exciting whistler modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
2016-08-15
The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that ofmore » the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.« less
Permanent electric dipole moments of PtX (X = H, F, Cl, Br, and I) by the composite approach
NASA Astrophysics Data System (ADS)
Deng, Dan; Lian, Yongqin; Zou, Wenli
2017-11-01
Using the FPD composite approach of Peterson et. al. we calculate the permanent electric dipole moments of PtX (X = H, F, Cl, Br, and I) at the equilibrium geometries of their ground states. The dipole moment of PtF is estimated to be 3.421 Debye, being very close to the experimental value of 3.42(6) Debye. This research also suggests the ordering of dipole moments of PtX being proportional to the electronegativity of X.
NASA Astrophysics Data System (ADS)
Sıdır, Yadigar Gülseven; Sıdır, İsa; Demiray, Ferhat
2017-08-01
The authors regret to inform that three references in the article titled ;Dipole moment and solvatochromism of benzoic acid liquid crystals: Tuning the dipole moment and molecular orbital energies by substituted Au under external electric field; are not given in the manuscript. This is purely an oversight mistake. The references are as shown in this correction. The authors would like to apologize for any inconvenience caused.
Archaeological Graves Revealing By Means of Seismic-electric Effect
NASA Astrophysics Data System (ADS)
Boulytchov, A.
[a4paper,12pt]article english Seismic-electric effect was applied in field to forecast subsurface archaeological cul- tural objects. A source of seismic waves were repeated blows of a heavy hammer or powerful signals of magnetostrictive installation. Main frequency used was 500 Hz. Passed a soil layer and reached a second boundary between upper clayey-sand sedi- ments and archaeological object, the seismic wave caused electromagnetic fields on the both boundaries what in general is due to dipole charge separation owe to an im- balance of streaming currents induced by the seismic wave on opposite sides of a boundary interface. According to theoretical works of Pride the electromagnetic field appears on a boundary between two layers with different physical properties in the time of seismic wave propagation. Electric responses of electromagnetic fields were measured on a surface by pair of grounded dipole antennas or by one pivot and a long wire antenna acting as a capacitive pickup. The arrival times of first series of responses correspond to the time of seismic wave propagation from a source to a boundary between soil and clayey-sand layers. The arrival times of second row of responses correspond to the time of seismic wave way from a source to a boundary of clayey-sand layer with the archaeological object. The method depths successfully investigated were between 0.5-10 m. Similar electromagnetic field on another type of geological structure was also revealed by Mikhailov et al., Massachusetts, but their signals registered from two frontiers were too faint and not evident in comparing with ours ones that occurred to be perfect and clear. Seismic-electric method field experi- ments were successfully provided for the first time on archaeological objects.
Gluon structure function of a color dipole in the light-cone limit of lattice QCD
NASA Astrophysics Data System (ADS)
Grünewald, D.; Ilgenfritz, E.-M.; Pirner, H. J.
2009-10-01
We calculate the gluon structure function of a color dipole in near-light-cone SU(2) lattice QCD as a function of xB. The quark and antiquark are external nondynamical degrees of freedom which act as sources of the gluon string configuration defining the dipole. We compute the color dipole matrix element of transversal chromo-electric and chromo-magnetic field operators separated along a direction close to the light cone, the Fourier transform of which is the gluon structure function. As vacuum state in the pure glue sector, we use a variational ground state of the near-light-cone Hamiltonian. We derive a recursion relation for the gluon structure function on the lattice similar to the perturbative Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation. It depends on the number of transversal links assembling the Schwinger string of the dipole. Fixing the mean momentum fraction of the gluons to the “experimental value” in a proton, we compare our gluon structure function for a dipole state with four links with the next-to-leading-order MRST 2002 and the CTEQ AB-0 parametrizations at Q2=1.5GeV2. Within the systematic uncertainty we find rather good agreement. We also discuss the low xB behavior of the gluon structure function in our model calculation.
Booth, D; Rittenhouse, S T; Yang, J; Sadeghpour, H R; Shaffer, J P
2015-04-03
Permanent electric dipole moments are important for understanding symmetry breaking in molecular physics, control of chemical reactions, and realization of strongly correlated many-body quantum systems. However, large molecular permanent electric dipole moments are challenging to realize experimentally. We report the observation of ultralong-range Rydberg molecules with bond lengths of ~100 nanometers and kilo-Debye permanent electric dipole moments that form when an ultracold ground-state cesium (Cs) atom becomes bound within the electronic cloud of an extended Cs electronic orbit. The electronic character of this hybrid class of "trilobite" molecules is dominated by degenerate Rydberg manifolds, making them difficult to produce by conventional photoassociation. We used detailed coupled-channel calculations to reproduce their properties quantitatively. Our findings may lead to progress in ultracold chemistry and strongly correlated many-body physics. Copyright © 2015, American Association for the Advancement of Science.
Surface plasmon-mediated energy transfer of electrically-pumped excitons
An, Kwang Hyup; Shtein, Max; Pipe, Kevin P.
2015-08-25
An electrically pumped light emitting device emits a light when powered by a power source. The light emitting device includes a first electrode, a second electrode including an outer surface, and at least one active organic semiconductor disposed between the first and second electrodes. The device also includes a dye adjacent the outer surface of the second electrode such that the second electrode is disposed between the dye and the active organic semiconductor. A voltage applied by the power source across the first and second electrodes causes energy to couple from decaying dipoles into surface plasmon polariton modes, which then evanescently couple to the dye to cause the light to be emitted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argurio, Riccardo; Dehouck, Francois
We study how gravitational duality acts on rotating solutions, using the Kerr-NUT black hole as an example. After properly reconsidering how to take into account both electric (i.e. masslike) and magnetic (i.e. NUT-like) sources in the equations of general relativity, we propose a set of definitions for the dual Lorentz charges. We then show that the Kerr-NUT solution has nontrivial such charges. Further, we clarify in which respect Kerr's source can be seen as a mass M with a dipole of NUT charges.
1991-09-01
12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (Maximum 200 words) Vector spherical harmonic expansions are...electric and magnetic field vectors from E rand B - r alone. Genural expressions are given relating the scattered field expansion coefficients to the source...Prescnbed by ANSI Std. Z39-18 29W-102 NCSC TR 426-90 CONTENTS Pag o INTRODUCTION 1 BACKGROUND 1 ANGULAR MOMENTUM OPERATOR AND VECTOR SPHERICAL
Electric dipole moments of light nuclei from {chi}EFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higa, Renato
I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.
Electric dipole moments of light nuclei from χEFT
NASA Astrophysics Data System (ADS)
Higa, Renato
2013-03-01
I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.
Rodriguez-Falces, Javier
2015-03-01
A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However, this model is unsuitably complex for teaching purposes. In addition, the Hodgkin and Huxley approach describes the shape of the action potential only in terms of ionic currents, i.e., it is unable to explain the electrical significance of the action potential or describe the electrical field arising from this source using basic concepts of electromagnetic theory. The goal of the present report was to propose a new model to describe the electrical behaviour of the action potential in terms of elementary electrical sources (in particular, dipoles). The efficacy of this model was tested through a closed-book written exam. The proposed model increased the ability of students to appreciate the distributed character of the action potential and also to recognize that this source spreads out along the fiber as function of space. In addition, the new approach allowed students to realize that the amplitude and sign of the extracellular electrical potential arising from the action potential are determined by the spatial derivative of this intracellular source. The proposed model, which incorporates intuitive graphical representations, has improved students' understanding of the electrical potentials generated by bioelectrical sources and has heightened their interest in bioelectricity. Copyright © 2015 The American Physiological Society.
USAF Radiofrequency Radiation Bioeffects Research Program - A Review
1981-12-01
Experimental Methods--SARa have been measured in scaled saline spheroidal phantoms irradiated by the near fields of short electric monopoles above ground planes...aperture analysis might be the case where some industrial machines have an equivalent electric dipole parallel to the operator, which causes maximum...short electric monopoles on a ground plane simulating electric dipoles. Some results of these measurements are shown in Fig. 16, with the measured
Electric dipole moments and chemical bonding of diatomic alkali-alkaline earth molecules.
Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E
2016-02-17
We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory. We further discuss dissociation energies and bond distances. We analyze trends and provide an empirically motivated model for the prediction of the permanent electric dipole moment for combinations of alkali and alkaline earth atoms not studied in this work.
Electric Dipole Polarizability of ^{48}Ca and Implications for the Neutron Skin.
Birkhan, J; Miorelli, M; Bacca, S; Bassauer, S; Bertulani, C A; Hagen, G; Matsubara, H; von Neumann-Cosel, P; Papenbrock, T; Pietralla, N; Ponomarev, V Yu; Richter, A; Schwenk, A; Tamii, A
2017-06-23
The electric dipole strength distribution in ^{48}Ca between 5 and 25 MeV has been determined at RCNP, Osaka from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables the first extraction of the electric dipole polarizability α_{D}(^{48}Ca)=2.07(22) fm^{3}. Remarkably, the dipole response of ^{48}Ca is found to be very similar to that of ^{40}Ca, consistent with a small neutron skin in ^{48}Ca. The experimental results are in good agreement with ab initio calculations based on chiral effective field theory interactions and with state-of-the-art density-functional calculations, implying a neutron skin in ^{48}Ca of 0.14-0.20 fm.
Electric Dipole Polarizability of Ca 48 and Implications for the Neutron Skin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkhan, J.; Miorelli, M.; Bacca, S.
The electric dipole strength distribution in 48Ca between 5 and 25 MeV has been determined at RCNP, Osaka, from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables the rst extraction of the electric dipole polarizability D( 48Ca) = 2:07(22) fm 3. Remarkably, the dipole response of 48Ca is found to be very similar to that of 40Ca, consistent with a small neutron skin in 48Ca. The experimental results are in good agreement with ab initio calculations based on chiral e ective eld theory interactions and with state-of-the-art density-functional calculations, implying amore » neutron skin in 48Ca of 0:14 - 0:20 fm.« less
Electric Dipole Polarizability of Ca 48 and Implications for the Neutron Skin
Birkhan, J.; Miorelli, M.; Bacca, S.; ...
2017-06-23
The electric dipole strength distribution in 48Ca between 5 and 25 MeV has been determined at RCNP, Osaka, from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables the rst extraction of the electric dipole polarizability D( 48Ca) = 2:07(22) fm 3. Remarkably, the dipole response of 48Ca is found to be very similar to that of 40Ca, consistent with a small neutron skin in 48Ca. The experimental results are in good agreement with ab initio calculations based on chiral e ective eld theory interactions and with state-of-the-art density-functional calculations, implying amore » neutron skin in 48Ca of 0:14 - 0:20 fm.« less
Theoretical electric dipole moments of SiH, GeH and SnH
NASA Technical Reports Server (NTRS)
Pettersson, L. G. M.; Langhoff, S. R.
1986-01-01
Accurate theoretical dipole moments have been computed for the X2Pi ground states of Si(-)H(+) (0.118 D), Ge(+)H(-) (0.085 D), and Sn(+)H(-) (0.357 D). The trend down the periodic table is regular and follows that expected from the electronegativities of the group IV atoms. The dipole moment of 1.24 + or - 0.1 D for GeH recently derived by Brown, Evenson and Sears (1985) from the relative intensities of electric and magnetic dipole transitions in the 10-micron spectrum of the X2Pi state is seriously questioned.
Theoretical Electric Dipole Moments of SiH, GeH and SnH
NASA Technical Reports Server (NTRS)
Pettersson, Lars G. M.; Langhoff, Stephen R.
1986-01-01
Accurate theoretical dipole moments (mu(sub c) have been computed for the X(exp 2)Pi ground states of Si(-)H(+)(0.118 D), Ge(+)H(-)(0.085 D) and Sn(+)H(-)(0.357 D). The trend down the periodic table is regular and follows that expected from the electronegativities of the group IV atoms. The dipole moment of 1.24 +/- 0.1 D for GeH recently derived by Brown, Evenson and Sears from the relative intensities of electric and magnetic dipole transitions in the 10 microns spectrum of the X(exp 2)Pi state is seriously questioned.
NASA Technical Reports Server (NTRS)
Chackerian, C., Jr.
1976-01-01
The electric dipole moment function of the ground electronic state of carbon monoxide has been determined by combining numerical solutions of the radial Schrodinger equation with absolute intensity data of vibration-rotation bands. The derived dipole moment function is used to calculate matrix elements of interest to stellar astronomy and of importance in the carbon monoxide laser.
3D magnetic sources' framework estimation using Genetic Algorithm (GA)
NASA Astrophysics Data System (ADS)
Ponte-Neto, C. F.; Barbosa, V. C.
2008-05-01
We present a method for inverting total-field anomaly for determining simple 3D magnetic sources' framework such as: batholiths, dikes, sills, geological contacts, kimberlite and lamproite pipes. We use GA to obtain magnetic sources' frameworks and their magnetic features simultaneously. Specifically, we estimate the magnetization direction (inclination and declination) and the total dipole moment intensity, and the horizontal and vertical positions, in Cartesian coordinates , of a finite set of elementary magnetic dipoles. The spatial distribution of these magnetic dipoles composes the skeletal outlines of the geologic sources. We assume that the geologic sources have a homogeneous magnetization distribution and, thus all dipoles have the same magnetization direction and dipole moment intensity. To implement the GA, we use real-valued encoding with crossover, mutation, and elitism. To obtain a unique and stable solution, we set upper and lower bounds on declination and inclination of [0,360°] and [-90°, 90°], respectively. We also set the criterion of minimum scattering of the dipole-position coordinates, to guarantee that spatial distribution of the dipoles (defining the source skeleton) be as close as possible to continuous distribution. To this end, we fix the upper and lower bounds of the dipole moment intensity and we evaluate the dipole-position estimates. If the dipole scattering is greater than a value expected by the interpreter, the upper bound of the dipole moment intensity is reduced by 10 % of the latter. We repeat this procedure until the dipole scattering and the data fitting are acceptable. We apply our method to noise-corrupted magnetic data from simulated 3D magnetic sources with simple geometries and located at different depths. In tests simulating sources such as sphere and cube, all estimates of the dipole coordinates are agreeing with center of mass of these sources. To elongated-prismatic sources in an arbitrary direction, we estimate dipole-position coordinates coincident with principal axis of sources. In tests with synthetic data, simulating the magnetic anomaly yielded by intrusive 2D structures such as dikes and sills, the estimates of the dipole coordinates are coincident with the principal plane of these 2D sources. We also inverted the aeromagnetic data from Serra do Cabral, in southeastern, Brazil, and we estimated dipoles distributed on a horizontal plane at depth of 30 km, with inclination and declination of 59.1° and -48.0°, respectively. The results showed close agreement with previous interpretation.
A quasi-static model of global atmospheric electricity. I - The lower atmosphere
NASA Technical Reports Server (NTRS)
Hays, P. B.; Roble, R. G.
1979-01-01
A quasi-steady model of global lower atmospheric electricity is presented. The model considers thunderstorms as dipole electric generators that can be randomly distributed in various regions and that are the only source of atmospheric electricity and includes the effects of orography and electrical coupling along geomagnetic field lines in the ionosphere and magnetosphere. The model is used to calculate the global distribution of electric potential and current for model conductivities and assumed spatial distributions of thunderstorms. Results indicate that large positive electric potentials are generated over thunderstorms and penetrate to ionospheric heights and into the conjugate hemisphere along magnetic field lines. The perturbation of the calculated electric potential and current distributions during solar flares and subsequent Forbush decreases is discussed, and future measurements of atmospheric electrical parameters and modifications of the model which would improve the agreement between calculations and measurements are suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Es’kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V., E-mail: kud@rf.unn.ru
Electromagnetic radiation from filamentary electric-dipole and magnetic-current sources of infinite length in the presence of gyrotropic cylindrical scatterers in the surrounding free space is studied. The scatterers are assumed to be infinitely long, axially magnetized circular plasma columns parallel to the axis of the filamentary source. The field and the radiation pattern of each source are calculated in the case where the source frequency is equal to one of the surface plasmon resonance frequencies of the cylindrical scatterers. It is shown that the presence of even a single resonant magnetized plasma scatterer of small electrical radius or a few suchmore » scatterers significantly affects the total fields of the filamentary sources, so that their radiation patterns become essentially different from those in the absence of scatterers or the presence of isotropic scatterers of the same shape and size. It is concluded that the radiation characteristics of the considered sources can efficiently be controlled using their resonance interaction with the neighboring gyrotropic scatterers.« less
Polarization and angle independent magneto-electric Fano resonance in multilayer hetero-nanoshells
NASA Astrophysics Data System (ADS)
Wang, Wudeng; Xiong, Li; Zheng, Li; Li, Wei; Shi, Ying; Qi, Jianguang
2018-05-01
In this work, we have demonstrated that the Si-SiO2 -Au multilayer hetero-nanoshells can support the polarization and angle independent magneto-electric Fano resonance. Such Fano resonance arises from the direct destructive interference between the orthogonal electric dipole mode of Au core and magnetic dipole mode of the Si shell and is independent of the angle due to the high structural symmetry. In contrast to metal particle arrays, here is a possibility to generate controllable interaction between the electric and magnetic dipole resonances of individual nanoshell with the structural features. The discrete magnetic responses provided directly by the Si shell pave the groundwork for designing the magnetic responses at optical frequencies and enable many fascinating applications in nanophotonics.
Pair aligning improved motility of Quincke rollers.
Lu, Shi Qing; Zhang, Bing Yue; Zhang, Zhi Chao; Shi, Yan; Zhang, Tian Hui
2018-06-06
Density-dependent speed is studied in a two-dimensional active colloid in which the colloidal particles are propelled by an external electric field via a Quincke rotation. Above the critcal electric field, dense dynamic clusters form spotaneously, in which the particles are highly aligned in velocity and move much faster than isolated units. Detailed observations on pair collision reveal that the alignment of velocity is induced by the long-ranged hydrodynamic interactions and the improvement of speed in the clusters arises from pair aligning in which two particles are closely paired and rotate synchronically. In the aligning state, the short-range in-plane dipole-dipole attraction enhances the rotation torque and gives rises to a larger rolling speed. The pair aligning becomes difficult and unstable at high electric field where the normal dipole-dipole repulsion becomes dominant. As a consequence, the dependence of speed on density becomes weak increasingly upon the increase of the electric field. This result offers an interpretation for the discrepancy between our and previous observations on Quincke rollers.
Dynamically fluctuating electric dipole moments in fullerene-based magnets.
Kambe, Takashi; Oshima, Kokichi
2014-09-19
We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet--the ferromagnetic α-phase and the antiferromagnetic α'-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)--as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn-Teller distorted C60s is also discussed.
Dynamically fluctuating electric dipole moments in fullerene-based magnets
Kambe, Takashi; Oshima, Kokichi
2014-01-01
We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet—the ferromagnetic α-phase and the antiferromagnetic α′-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)—as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn–Teller distorted C60s is also discussed. PMID:25236361
Spin-orbit coupling and electric-dipole spin resonance in a nanowire double quantum dot.
Liu, Zhi-Hai; Li, Rui; Hu, Xuedong; You, J Q
2018-02-02
We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mechanisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large g-factor of strong SOC materials such as InSb.
NASA Astrophysics Data System (ADS)
Fujimura, Nobuyuki; Ohta, Akio; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi
2018-04-01
The electrical dipole moment at an ultrathin high-k (HfO2, Al2O3, TiO2, Y2O3, and SrO)/SiO2 interface and its correlation with the oxygen density ratio at the interface have been directly evaluated by X-ray photoelectron spectroscopy (XPS) under monochromatized Al Kα radiation. The electrical dipole moment at the high-k/SiO2 interface has been measured from the change in the cut-off energy of secondary photoelectrons. Moreover, the oxygen density ratio at the interface between high-k and SiO2 has been estimated from cation core-line signals, such as Hf 4f, Al 2p, Y 3d, Ti 2p, Sr 3d, and Si 2p. We have experimentally clarified the relationship between the measured electrical dipole moment and the oxygen density ratio at the high-k/SiO2 interface.
ARC: An open-source library for calculating properties of alkali Rydberg atoms
NASA Astrophysics Data System (ADS)
Šibalić, N.; Pritchard, J. D.; Adams, C. S.; Weatherill, K. J.
2017-11-01
We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program Files doi:http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole-dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrödinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and benchmarking runs (.html and .ipynb). [1] T.E. Oliphant, Comput. Sci. Eng. 9, 10 (2007). http://www.scipy.org/. [2] J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007). http://matplotlib.org/.
Leaky Waves in Metamaterials for Antenna Applications
2011-07-01
excitation problems, electromagnetic fields are often represented as Sommerfeld integrals [31,32]. A detailed discussion about Sommerfeld integral is...source removed. In the rest of this section, a de- tailed discussion about Sommerfeld Integral Path is presented. 4.1 Spectral Domain Approach 4.1.1... Sommerfeld integral path for evaluating fields accurately and efficiently, the radiation intensity and directivity of electric/magnetic dipoles over a grounded
Spatiotemporal mapping of scalp potentials.
Fender, D H; Santoro, T P
1977-11-01
Computerized analysis and display techniques are applied to the problem of identifying the origins of visually evoked scalped potentials (VESP's). A new stimulus for VESP work, white noise, is being incorporated in the solution of this problem. VESP's for white-noise stimulation exhibit time domain behavior similar to the classical response for flash stimuli but with certain significant differences. Contour mapping algorithms are used to display the time behavior of equipotential surfaces on the scalp during the VESP. The electrical and geometrical parameters of the head are modeled. Electrical fields closely matching those obtained experimentally are generated on the surface of the model head by optimally selecting the location and strength parameters of one or two dipole current sources contained within the model. Computer graphics are used to display as a movie the actual and model scalp potential field and the parameters of the dipole generators whithin the model head during the time course of the VESP. These techniques are currently used to study retinotopic mapping, fusion, and texture perception in the human.
The search for permanent electric dipole moments, in particular for the one of the neutron
Kirch, Klaus
2018-05-04
Nonzero permanent electric dipole moments (EDM) of fundamental systems like particles, nuclei, atoms or molecules violate parity and time reversal invariance. Invoking the CPT theorem, time reversal violation implies CP violation. Although CP-violation is implemented in the standard electro-weak theory, EDM generated this way remain undetectably small. However, this CP-violation also appears to fail explaining the observed baryon asymmetry of our universe. Extensions of the standard theory usually include new CP violating phases which often lead to the prediciton of larger EDM. EDM searches in different systems are complementary and various efforts worldwide are underway, but no finite value could be established yet. An improved search for the EDM of the neutron requires, among other things, much better statistics. At PSI, we are presently commissioning a new high intensity source of ultracold neutrons. At the same time, with an international collaboration, we are setting up for a new measurement of the neutron EDM which is starting this year.
An alternative resolution to the Mansuripur paradox
NASA Astrophysics Data System (ADS)
Redfern, Francis
2016-04-01
In 2013 an article published online by the journal Science declared that the paradox proposed by Masud Mansuripur was resolved. This paradox concerns a point charge-Amperian magnetic dipole system as seen in a frame of reference where they are at rest and one in which they are moving. In the latter frame an electric dipole appears on the magnetic dipole. A torque is then exerted upon the electric dipole by the point charge, a torque that is not observed in the at-rest frame. Mansuripur points out this violates the relativity principle and suggests the Lorentz force responsible for the torque be replaced by the Einstein-Laub force. The resolution of the paradox reported by Science, based on numerous papers in the physics literature, preserves the Lorentz force but depends on the concept of hidden momentum. Here I propose a different resolution based on the overlooked fact that the charge-magnetic dipole system contains linear and angular electromagnetic field momentum. The time rate of change of the field angular-momentum in the frame through which the system is moving cancels that due to the charge-electric dipole interaction. From this point of view hidden momentum is not needed in the resolution of the paradox.
Quantum phases for a charged particle and electric/magnetic dipole in an electromagnetic field
NASA Astrophysics Data System (ADS)
Kholmetskii, Alexander; Yarman, Tolga
2017-11-01
We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic field must be composed from more fundamental quantum phases emerging for moving elementary charges. Using this idea, we have found two new fundamental quantum phases, next to the known magnetic and electric Aharonov-Bohm phases, and discuss their general properties and physical meaning.
Energy flow of electric dipole radiation in between parallel mirrors
NASA Astrophysics Data System (ADS)
Xu, Zhangjin; Arnoldus, Henk F.
2017-11-01
We have studied the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of energy) can have very intricate structures, including many singularities and vortices. The flow line patterns depend on the distance between the mirrors, the distance of the dipole to one of the mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating under a finite angle with the surface normal, the radiating tends to swirl around the dipole before travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the flow line structure becomes even more complicated, with numerous vortices in the pattern, and tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, and these can be found without any specific knowledge about the flow lines. This provides an independent means of studying the propagation of dipole radiation between mirrors.
Sun, Xiaodong; Fang, Dawei; Zhang, Dong; Ma, Qingyu
2013-05-01
Different from the theory of acoustic monopole spherical radiation, the acoustic dipole radiation based theory introduces the radiation pattern of Lorentz force induced dipole sources to describe the principle of magnetoacoustic tomography with magnetic induction (MAT-MI). Although two-dimensional (2D) simulations have been studied for cylindrical phantom models, layer effects of the dipole sources within the entire object along the z direction still need to be investigated to evaluate the performance of MAT-MI for different geometric specifications. The purpose of this work is further verifying the validity and generality of acoustic dipole radiation based theory for MAT-MI with two new models in different shapes, dimensions, and conductivities. Based on the theory of acoustic dipole radiation, the principles of MAT-MI were analyzed with derived analytic formulae. 2D and 3D numerical studies for two new models of aluminum foil and cooked egg were conducted to simulate acoustic pressures and corresponding waveforms, and 2D images of the scanned layers were reconstructed with the simplified back projection algorithm for the waveforms collected around the models. The spatial resolution for conductivity boundary differentiation was also analyzed with different foil thickness. For comparison, two experimental measurements were conducted for a cylindrical aluminum foil phantom and a shell-peeled cooked egg. The collected waveforms and the reconstructed images of the scanned layers were achieved to verify the validation of the acoustic dipole radiation based theory for MAT-MI. Despite the difference between the 2D and 3D simulated pressures, good consistence of the collected waveforms proves that wave clusters are generated by the abrupt pressure changes with bipolar vibration phases, representing the opposite polarities of the conductivity changes along the measurement direction. The configuration of the scanned layer can be reconstructed in terms of shape and size, and the conductivity boundaries are displayed in stripes with different contrast and bipolar intensities. Layer effects are demonstrated to have little influence on the collected waveforms and the reconstructed images of the scanned layers for the two new models. The experimental results have good agreements with numerical simulations, and the reconstructed 2D images provide conductivity configurations in the scanned layers of the aluminum foil and the egg models. It can be concluded that the acoustic pressure of MAT-MI is produced by the divergence of the induced Lorentz force, and the collected waveforms comprise wave clusters with bipolar vibration phases and different amplitudes, providing the information of conductivity boundaries in the scanned layer. With the simplified back projection algorithm for diffraction sources, collected waveforms can be used to reconstruct 2D conductivity contrast image and the conductivity configuration in the scanned layer can be obtained in terms of shape and size in stripes with the spatial resolution of the acoustic wavelength. The favorable results further verify the validity and generality of the acoustic dipole radiation based theory and suggest the feasibility of MAT-MI as an effective electrical impedance contrast imaging approach for medical imaging.
Application of classical models of chirality to optical rectification
NASA Astrophysics Data System (ADS)
Wang, Xiao-Ou; Gong, Li-Jing; Li, Chun-Fei
2008-08-01
Classical models of chirality are used to investigate the optical rectification effect in chiral molecular media. Calculation of the zero frequency first hyperpolarizabilities of chiral molecules with different structures is performed and applied to the derivation of a dc electric-dipole polarization. The expression of second-order nonlinear static-electric-dipole susceptibilities is obtained by theoretical derivation in the isotropic chiral thin films. The microscopic mechanism producing optical rectification is analyzed in view of this calculation. We find that optical rectification is derived from interaction between the electric field gradient (spatial dispersion) and chiral molecules in optically active liquids and solution by our calculation, which is consistent with the result given by Woźniak and Wagnière [Opt. Commun. 114, 131 (1995)]: The optical rectification depends on the fourth-order electric-dipole susceptibilities.
Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingdi; Averitt, Richard D., E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu; Department of Physics, Boston University, Boston, Massachusetts 02215
We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits amore » linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.« less
Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna
NASA Astrophysics Data System (ADS)
Qin, Yuwei; Xiong, Xiaoyan Y. Z.; Sha, Wei E. I.; Jiang, Li Jun
2018-04-01
The unique gate-voltage dependent optical properties of graphene make it a promising electrically-tunable plasmonic material. In this work, we proposed in situ control of the polarization of nanoantennas by combining plasmonic structures with an electrostatically tunable graphene monolayer. The tunable polarizer is designed based on an asymmetric cross nanoantenna comprising two orthogonal metallic dipoles sharing the same feed gap. Graphene monolayer is deposited on a Si/SiO2 substrate, and inserted beneath the nanoantenna. Our modelling demonstrates that as the chemical potential is incremented up to 1 eV by electrostatic doping, resonant wavelength for the longer graphene-loaded dipole is blue shifted for 500 nm (~10% of the resonance) in the mid-infrared range, whereas the shorter dipole experiences much smaller influences due to the unique wavelength-dependent optical properties of graphene. In this way, the relative field amplitude and phase between the two dipole nanoantennas are electrically adjusted, and the polarization state of the reflected wave can be electrically tuned from the circular into near-linear states with the axial ratio changing over 8 dB. Our study thus confirms the strong light-graphene interaction with metallic nanostructures, and illuminates promises for high-speed electrically controllable optoelectronic devices.
Self-force as a probe of global structure
NASA Astrophysics Data System (ADS)
Davidson, Karl; Poisson, Eric
2018-05-01
We calculate the self-force on an electric charge and electric dipole held at rest in a closed universe that results from joining two copies of Minkowski spacetime at a common boundary. Spacetime is strictly flat on each side of the boundary, but there is curvature at the surface layer required to join the two Minkowski spacetimes. We find that the self-force on the charge is always directed away from the surface layer. This is analogous to the case of an electric charge held at rest inside a spherical shell of matter, for which the self-force is also directed away from the shell. For the dipole, the direction of the self-force is a function of the dipole's position and orientation. Both self-forces become infinite when the charge or dipole is made to approach the surface layer. This study reveals that a self-force can arise even when the Riemann tensor vanishes at the position of the charge or dipole; in such cases the self-force is a manifestation of the global curvature of spacetime.
Electromagnetic moments and electric dipole transitions in carbon isotopes
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi
2003-07-01
We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12C, 13C, and 14C, both in the low energy region below ħω=14 MeV and in the high energy giant resonance region (14 MeV <ħω⩽30 MeV). The calculated transition strength below the giant dipole resonance (ħω⩽14 MeV) in C isotopes heavier than 15C is found to exhaust about 12 16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50 80 % of the cluster sum rule value.
Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa
2014-03-01
Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salam, A., E-mail: salama@wfu.edu
2013-12-28
The theory of molecular quantum electrodynamics (QED) is used to calculate higher electric multipole contributions to the dispersion energy shift between three atoms or molecules arranged in a straight line or in an equilateral triangle configuration. As in two-body potentials, three-body dispersion interactions are viewed in the QED formalism to arise from exchange of virtual photons between coupled pairs of particles. By employing an interaction Hamiltonian that is quadratic in the electric displacement field means that third-order perturbation theory can be used to yield the energy shift for a particular combination of electric multipole polarizable species, with only six time-orderedmore » diagrams needing to be summed over. Specific potentials evaluated include dipole-dipole-quadrupole (DDQ), dipole-quadrupole-quadrupole (DQQ), and dipole-dipole-octupole (DDO) terms. For the geometries of interest, near-zone limiting forms are found to exhibit an R{sup −11} dependence on separation distance for the DDQ interaction, and an R{sup −13} behaviour for DQQ and DDO shifts, agreeing with an earlier semi-classical computation. Retardation weakens the potential in each case by R{sup −1} in the far-zone. It is found that by decomposing the octupole moment into its irreducible components of weights-1 and -3 that the former contribution to the DDO potential may be taken to be a higher-order correction to the leading triple dipole energy shift.« less
Electric Dipole Moment Results from lattice QCD
NASA Astrophysics Data System (ADS)
Dragos, Jack; Luu, Thomas; Shindler, Andrea; de Vries, Jordy
2018-03-01
We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG) using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a) improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.
Giammanco, F; Perona, A; Marsili, P; Conti, F; Fidecaro, F; Gozzini, S; Lucchesini, A
2017-01-15
We describe an experiment of atomic spectroscopy devoted to ascertaining whether the orbital angular momentum (OAM) of photons has the same property of interacting with atoms or molecules as occurs for the spin angular momentum (SAM). In our experiment, rubidium vapors are excited by means of laser radiation with different combinations of OAM and SAM, particularly selected to inhibit or enhance the fluorescence according to the selection rules for the electric dipole transitions between the fundamental state and the first excited doublet. Our results clearly show that an electric-dipole-type transition is insensitive to the OAM value, and provide an original validation of a problem long debated in theoretical works.
Evidence for a quantum dipole liquid state in an organic quasi–two-dimensional material
NASA Astrophysics Data System (ADS)
Hassan, Nora; Cunningham, Streit; Mourigal, Martin; Zhilyaeva, Elena I.; Torunova, Svetlana A.; Lyubovskaya, Rimma N.; Schlueter, John A.; Drichko, Natalia
2018-06-01
Mott insulators are commonly pictured with electrons localized on lattice sites, with their low-energy degrees of freedom involving spins only. Here, we observe emergent charge degrees of freedom in a molecule-based Mott insulator κ-(BEDT-TTF)2Hg(SCN)2Br, resulting in a quantum dipole liquid state. Electrons localized on molecular dimer lattice sites form electric dipoles that do not order at low temperatures and fluctuate with frequency detected experimentally in our Raman spectroscopy experiments. The heat capacity and Raman scattering response are consistent with a scenario in which the composite spin and electric dipole degrees of freedom remain fluctuating down to the lowest measured temperatures.
Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea
2015-09-28
Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.
Zang, Huidong; Cristea, Mihail; Shen, Xuan; ...
2015-08-05
Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.
Force law in material media, hidden momentum and quantum phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kholmetskii, Alexander L., E-mail: alkholmetskii@gmail.com; Missevitch, Oleg V.; Yarman, T.
We address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein–Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density ofmore » Einstein–Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed.« less
Khromova, Irina; Kužel, Petr; Brener, Igal; ...
2016-06-27
Monocrystalline titanium dioxide (TiO 2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO 2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO 2 micro-resonators can be used to enhance the interplay of magneticmore » and electric dipole resonances in the emerging THz all-dielectric metamaterial technology.« less
Improved limit on the Ra 225 electric dipole moment
Bishof, Michael; Parker, Richard H.; Bailey, Kevin G.; ...
2016-08-03
In this study, octupole-deformed nuclei, such as that of 225Ra, are expected to amplify observable atomic electric dipole moments (EDMs) that arise from time-reversal and parity-violating interactions in the nuclear medium. In 2015 we reported the first “proof-of-principle” measurement of the 225Ra atomic EDM.
Improved limit on the Ra 225 electric dipole moment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishof, Michael; Parker, Richard H.; Bailey, Kevin G.
In this study, octupole-deformed nuclei, such as that of 225Ra, are expected to amplify observable atomic electric dipole moments (EDMs) that arise from time-reversal and parity-violating interactions in the nuclear medium. In 2015 we reported the first “proof-of-principle” measurement of the 225Ra atomic EDM.
Silicon Mie resonators for highly directional light emission from monolayer MoS2
NASA Astrophysics Data System (ADS)
Cihan, Ahmet Fatih; Curto, Alberto G.; Raza, Søren; Kik, Pieter G.; Brongersma, Mark L.
2018-05-01
Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire.
A kinetic approach to magnetospheric modeling
NASA Technical Reports Server (NTRS)
Whipple, E. C., Jr.
1979-01-01
The earth's magnetosphere is caused by the interaction between the flowing solar wind and the earth's magnetic dipole, with the distorted magnetic field in the outer parts of the magnetosphere due to the current systems resulting from this interaction. It is surprising that even the conceptually simple problem of the collisionless interaction of a flowing plasma with a dipole magnetic field has not been solved. A kinetic approach is essential if one is to take into account the dispersion of particles with different energies and pitch angles and the fact that particles on different trajectories have different histories and may come from different sources. Solving the interaction problem involves finding the various types of possible trajectories, populating them with particles appropriately, and then treating the electric and magnetic fields self-consistently with the resulting particle densities and currents. This approach is illustrated by formulating a procedure for solving the collisionless interaction problem on open field lines in the case of a slowly flowing magnetized plasma interacting with a magnetic dipole.
Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment
NASA Astrophysics Data System (ADS)
Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.
2017-07-01
We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.
Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.
Simmen, Benjamin; Mátyus, Edit; Reiher, Markus
2014-10-21
This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.
Magnetoencephalography recording and analysis.
Velmurugan, Jayabal; Sinha, Sanjib; Satishchandra, Parthasarathy
2014-03-01
Magnetoencephalography (MEG) non-invasively measures the magnetic field generated due to the excitatory postsynaptic electrical activity of the apical dendritic pyramidal cells. Such a tiny magnetic field is measured with the help of the biomagnetometer sensors coupled with the Super Conducting Quantum Interference Device (SQUID) inside the magnetically shielded room (MSR). The subjects are usually screened for the presence of ferromagnetic materials, and then the head position indicator coils, electroencephalography (EEG) electrodes (if measured simultaneously), and fiducials are digitized using a 3D digitizer, which aids in movement correction and also in transferring the MEG data from the head coordinates to the device and voxel coordinates, thereby enabling more accurate co-registration and localization. MEG data pre-processing involves filtering the data for environmental and subject interferences, artefact identification, and rejection. Magnetic resonance Imaging (MRI) is processed for correction and identifying fiducials. After choosing and computing for the appropriate head models (spherical or realistic; boundary/finite element model), the interictal/ictal epileptiform discharges are selected and modeled by an appropriate source modeling technique (clinically and commonly used - single equivalent current dipole - ECD model). The equivalent current dipole (ECD) source localization of the modeled interictal epileptiform discharge (IED) is considered physiologically valid or acceptable based on waveform morphology, isofield pattern, and dipole parameters (localization, dipole moment, confidence volume, goodness of fit). Thus, MEG source localization can aid clinicians in sublobar localization, lateralization, and grid placement, by evoking the irritative/seizure onset zone. It also accurately localizes the eloquent cortex-like visual, language areas. MEG also aids in diagnosing and delineating multiple novel findings in other neuropsychiatric disorders, including Alzheimer's disease, Parkinsonism, Traumatic brain injury, autistic disorders, and so oon.
Quantum phases of dipolar rotors on two-dimensional lattices
NASA Astrophysics Data System (ADS)
Abolins, B. P.; Zillich, R. E.; Whaley, K. B.
2018-03-01
The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.
NASA Astrophysics Data System (ADS)
Gang, Yin; Yingtang, Zhang; Hongbo, Fan; Zhining, Li; Guoquan, Ren
2016-05-01
We have developed a method for automatic detection, localization and classification (DLC) of multiple dipole sources using magnetic gradient tensor data. First, we define modified tilt angles to estimate the approximate horizontal locations of the multiple dipole-like magnetic sources simultaneously and detect the number of magnetic sources using a fixed threshold. Secondly, based on the isotropy of the normalized source strength (NSS) response of a dipole, we obtain accurate horizontal locations of the dipoles. Then the vertical locations are calculated using magnitude magnetic transforms of magnetic gradient tensor data. Finally, we invert for the magnetic moments of the sources using the measured magnetic gradient tensor data and forward model. Synthetic and field data sets demonstrate effectiveness and practicality of the proposed method.
Seng, Frederick; Yang, Zhenchao; King, Rex; Shumway, LeGrand; Stan, Nikola; Hammond, Alec; Warnick, Karl F; Schultz, Stephen
2017-06-10
This work introduces a passive dipole antenna integrated into the packaging of a slab-coupled optical sensor to enhance the directional sensitivity of electro-optic electric field measurements parallel to the fiber axis. Using the passive integrated dipole antenna described in this work, a sensor that can typically only sense fields transverse to the fiber direction is able to sense a 1.25 kV/m field along the fiber direction with a gain of 17.5. This is verified through simulation and experiment.
On the He-McKellar-Wilkens phase of an electric dipole
NASA Astrophysics Data System (ADS)
Rai, Yam P.; Rai, Dhurba
2017-08-01
The He-McKellar-Wilkens (HMW) phase of an electric dipole moving in a static magnetic field is derived by explicitly considering the interaction between the currents associated with the moving dipole and the magnetic vector potential. Conditions for the observation of the HMW phase in different field configurations are investigated. A practical setup is proposed that provides essentially a radial magnetic field with inverse radial dependence for the observation of the HMW phase with magnetic field alone. Possible magnetic field control of exciton current in an open ring setup is discussed.
Half wavelength dipole antennas over stratified media
NASA Technical Reports Server (NTRS)
Latorraca, G. A.
1972-01-01
Theoretical solutions of the fields induced by half-wavelength, horizontal, electric field dipoles (HEDS) are determined based on studies of infinitesimal, horizontal, electric field dipoles over low loss plane-stratified media. To determine these solutions, an approximation to the current distribution of a half-wavelength HED is derived and experimentally verified. Traverse and antenna measurements obtained on the Athabasca Glacier in the summer of 1971 are related to the characteristics of the transmitting antenna design, and the measurement techniques and field equipment used in the glacier trials are described and evaluated.
Four-dimensional ultrasound current source density imaging of a dipole field
NASA Astrophysics Data System (ADS)
Wang, Z. H.; Olafsson, R.; Ingram, P.; Li, Q.; Qin, Y.; Witte, R. S.
2011-09-01
Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was scanned near the source and sink, while the AE signal was detected on remote recording electrodes, resulting in time-lapsed volume movies of the alternating current distribution.
Power loss of an oscillating electric dipole in a quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaderipoor, L.; Mehramiz, A.
2012-12-15
A system of linearized quantum plasma equations (quantum hydrodynamic model) has been used for investigating the dispersion equation for electrostatic waves in the plasma. Furthermore, dispersion relations and their modifications due to quantum effects are used for calculating the power loss of an oscillating electric dipole. Finally, the results are compared in quantum and classical regimes.
Antenna radiation patterns in the whistler wave regime measured in a large laboratory plasma
NASA Technical Reports Server (NTRS)
Stenzel, R. L.
1976-01-01
Antenna radiation patterns of balanced electric dipoles and shielded magnetic loop antennas are obtained by measuring the relative wave amplitude with a small receiver antenna scanned around the exciter in a large uniform collisionless magnetized laboratory plasma in the whistler wave regime. The boundary effects are assumed to be negligible even for many farfield patterns. Characteristic differences are observed between electrically short and long antennas, the former exhibiting resonance cones and the latter showing dipole-like antenna patterns along the magnetic field. Resonance cones due to small electric dipoles and magnetic loops are observed in both the near zone and the far zone. A self-focusing process is revealed which produces a pencil-shaped field-aligned radiation pattern.
Effects of loss aversion on neural responses to loss outcomes: An event-related potential study.
Kokmotou, Katerina; Cook, Stephanie; Xie, Yuxin; Wright, Hazel; Soto, Vicente; Fallon, Nicholas; Giesbrecht, Timo; Pantelous, Athanasios; Stancak, Andrej
2017-05-01
Loss aversion is the tendency to prefer avoiding losses over acquiring gains of the same amount. To shed light on the spatio-temporal processes underlying loss aversion, we analysed the associations between individual loss aversion and electrophysiological responses to loss and gain outcomes in a monetary gamble task. Electroencephalographic feedback-related negativity (FRN) was computed in 29 healthy participants as the difference in electrical potentials between losses and gains. Loss aversion was evaluated using non-linear parametric fitting of choices in a separate gamble task. Loss aversion correlated positively with FRN amplitude (233-263ms) at electrodes covering the lower face. Feedback related potentials were modelled by five equivalent source dipoles. From these dipoles, stronger activity in a source located in the orbitofrontal cortex was associated with loss aversion. The results suggest that loss aversion implemented during risky decision making is related to a valuation process in the orbitofrontal cortex, which manifests during learning choice outcomes. Copyright © 2017. Published by Elsevier B.V.
Calculated electric dipole moment of NiH X2Delta
NASA Technical Reports Server (NTRS)
Walch, S.; Bauschlicher, C. W., Jr.; Langhoff, S. R.
1985-01-01
A calculated dipole moment of 2.39 D at R sub e = 2.79 a sub 0 is reported, obtained from complete active space SCF/configuration interaction calculations plus one natural orbital iteration. The calculation is in good agreement with the experimental value of 2.4 + or - 0.1 D measured for the lowest vibrational level. In agreement with Gray et al. (1985), it is found that the dipole moment is strongly correlated with the 3d electron population; the good agreement with experiment thus provides verification of the mixed state model of NiH. It is concluded that the electric dipole moment of NiH is a sensitive test of the quality of the NiH wave function.
A storage ring experiment to detect a proton electric dipole moment
Anastassopoulos, V.; Andrianov, S.; Baartman, R.; ...
2016-11-29
We describe a new experiment to detect a permanent electric dipole moment of the proton with a sensitivity of 10 $-$29e cm by using polarized “magic” momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000 TeV.
A storage ring experiment to detect a proton electric dipole moment.
Anastassopoulos, V; Andrianov, S; Baartman, R; Baessler, S; Bai, M; Benante, J; Berz, M; Blaskiewicz, M; Bowcock, T; Brown, K; Casey, B; Conte, M; Crnkovic, J D; D'Imperio, N; Fanourakis, G; Fedotov, A; Fierlinger, P; Fischer, W; Gaisser, M O; Giomataris, Y; Grosse-Perdekamp, M; Guidoboni, G; Hacıömeroğlu, S; Hoffstaetter, G; Huang, H; Incagli, M; Ivanov, A; Kawall, D; Kim, Y I; King, B; Koop, I A; Lazarus, D M; Lebedev, V; Lee, M J; Lee, S; Lee, Y H; Lehrach, A; Lenisa, P; Levi Sandri, P; Luccio, A U; Lyapin, A; MacKay, W; Maier, R; Makino, K; Malitsky, N; Marciano, W J; Meng, W; Meot, F; Metodiev, E M; Miceli, L; Moricciani, D; Morse, W M; Nagaitsev, S; Nayak, S K; Orlov, Y F; Ozben, C S; Park, S T; Pesce, A; Petrakou, E; Pile, P; Podobedov, B; Polychronakos, V; Pretz, J; Ptitsyn, V; Ramberg, E; Raparia, D; Rathmann, F; Rescia, S; Roser, T; Kamal Sayed, H; Semertzidis, Y K; Senichev, Y; Sidorin, A; Silenko, A; Simos, N; Stahl, A; Stephenson, E J; Ströher, H; Syphers, M J; Talman, J; Talman, R M; Tishchenko, V; Touramanis, C; Tsoupas, N; Venanzoni, G; Vetter, K; Vlassis, S; Won, E; Zavattini, G; Zelenski, A; Zioutas, K
2016-11-01
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10 -29 e ⋅ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.
A storage ring experiment to detect a proton electric dipole moment
NASA Astrophysics Data System (ADS)
Anastassopoulos, V.; Andrianov, S.; Baartman, R.; Baessler, S.; Bai, M.; Benante, J.; Berz, M.; Blaskiewicz, M.; Bowcock, T.; Brown, K.; Casey, B.; Conte, M.; Crnkovic, J. D.; D'Imperio, N.; Fanourakis, G.; Fedotov, A.; Fierlinger, P.; Fischer, W.; Gaisser, M. O.; Giomataris, Y.; Grosse-Perdekamp, M.; Guidoboni, G.; Hacıömeroǧlu, S.; Hoffstaetter, G.; Huang, H.; Incagli, M.; Ivanov, A.; Kawall, D.; Kim, Y. I.; King, B.; Koop, I. A.; Lazarus, D. M.; Lebedev, V.; Lee, M. J.; Lee, S.; Lee, Y. H.; Lehrach, A.; Lenisa, P.; Levi Sandri, P.; Luccio, A. U.; Lyapin, A.; MacKay, W.; Maier, R.; Makino, K.; Malitsky, N.; Marciano, W. J.; Meng, W.; Meot, F.; Metodiev, E. M.; Miceli, L.; Moricciani, D.; Morse, W. M.; Nagaitsev, S.; Nayak, S. K.; Orlov, Y. F.; Ozben, C. S.; Park, S. T.; Pesce, A.; Petrakou, E.; Pile, P.; Podobedov, B.; Polychronakos, V.; Pretz, J.; Ptitsyn, V.; Ramberg, E.; Raparia, D.; Rathmann, F.; Rescia, S.; Roser, T.; Kamal Sayed, H.; Semertzidis, Y. K.; Senichev, Y.; Sidorin, A.; Silenko, A.; Simos, N.; Stahl, A.; Stephenson, E. J.; Ströher, H.; Syphers, M. J.; Talman, J.; Talman, R. M.; Tishchenko, V.; Touramanis, C.; Tsoupas, N.; Venanzoni, G.; Vetter, K.; Vlassis, S.; Won, E.; Zavattini, G.; Zelenski, A.; Zioutas, K.
2016-11-01
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10-29 e ṡ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.
Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.
2005-07-26
A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.
All-dielectric cylindrical nanoantennas in the visible range
NASA Astrophysics Data System (ADS)
Dalal, Reena; Shankhwar, Nishant; Kalra, Yogita; Kumar, Ajeet; Sinha, R. K.
2017-08-01
All-dielectric nanoparticles have attained a lot of attention owing to the lesser loss and better quality than their metallic counterparts. As a result, they perceive applications in the field of nanoantennas, photovoltaics and nanolasers. In the dielectric nanoparticles, the electric and magnetic dipoles are created in dielectric nanoparticles when they interact with the light of a particular frequency. Kerker's type scattering is obtained where electric and magnetic dipoles interfere. In our design, Silicon cylindrical nanoparticles having radius of 70 nm and length 120 nm have been considered. The propagation of light is taken along the length of the cylinder. The scattering cross section has been obtained and plotted with respect to the wavelength. At the peaks of scattering spectra, electric and magnetic dipoles are created at the wavelengths of 510 nm and 600 nm, respectively. Both dipoles interfere at the wavelengths of 550 nm and 645 nm. At these wavelengths, far field scattering pattern has been calculated. At the wavelength 645 nm, forward scattering takes place because electric and magnetic dipoles are in phase at this wavelength. Further, directivity is enhanced by taking the planar array of the nanoparticles. It has been observed that directivity increases by increasing the size of the array. Also, there is an increase in the directivity by increasing the gap between the nanoparticles. This enhancement of directivity can lead to the design of all dielectric cylindrical nanoantennas.
NASA Astrophysics Data System (ADS)
Kim, Ji-Soo; Han, Soo-Hyung; Ryang, Woo-Hun
2001-12-01
Electrical resistivity mapping was conducted to delineate boundaries and architecture of the Eumsung Basin Cretaceous. Basin boundaries are effectively clarified in electrical dipole-dipole resistivity sections as high-resistivity contrast bands. High resistivities most likely originate from the basement of Jurassic granite and Precambrian gneiss, contrasting with the lower resistivities from infilled sedimentary rocks. The electrical properties of basin-margin boundaries are compatible with the results of vertical electrical soundings and very-low-frequency electromagnetic surveys. A statistical analysis of the resistivity sections is tested in terms of standard deviation and is found to be an effective scheme for the subsurface reconstruction of basin architecture as well as the surface demarcation of basin-margin faults and brittle fracture zones, characterized by much higher standard deviation. Pseudo three-dimensional architecture of the basin is delineated by integrating the composite resistivity structure information from two cross-basin E-W magnetotelluric lines and dipole-dipole resistivity lines. Based on statistical analysis, the maximum depth of the basin varies from about 1 km in the northern part to 3 km or more in the middle part. This strong variation supports the view that the basin experienced pull-apart opening with rapid subsidence of the central blocks and asymmetric cross-basinal extension.
Take-Home Electrostatics Experiments
NASA Astrophysics Data System (ADS)
Brown, Michael H.
1997-10-01
Important concepts in electrostatics can be taught using apparatus that students can find or build at home. A TV or monitor screens serves as the source of a strong electric field (10,000 V/m). It can be used to charge a capacitor made from foil-covered cardboard plates supported by the bottom of a plastic pop bottle. A foil ball suspended between the plates transfers charges in a version of Franklin's experiment. An electric dipole compass,made of carnauba wax polarized in the electric field of the TV, can be used to map the fringing field of the capacitor. Discharge of charged foil-covered balls produces ``static'' that can be detected with an AM radio. *supported in part by NSF CCD grant DUE-9555215
NASA Astrophysics Data System (ADS)
Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Hoyos, L. M.; Flores-Mijangos, J.; Ramírez-Martínez, F.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.
2018-04-01
Doppler-free optical double-resonance spectroscopy is used to study the 5S1/2 → 5P3/2 → 6Pj (j = 3/2,1/2) excitation sequence in room-temperature rubidium atoms. This involves a 5S1/2 → 5P3/2 electric dipole preparation step followed by the 5P3/2 → 6Pj electric quadrupole excitation. The electric dipole forbidden transitions occur at 911.0 nm (j = 3/2) and 917.5 nm (j = 1/2). Production of atoms in the 6Pj states is detected by observing their direct decay to the ground state through emission of blue photons (λ ≈ 420 nm). A detailed experimental and theoretical study of the dependence on the relative linear polarizations of excitation beams is made. It is shown that specific electric quadrupole selection rules over magnetic quantum numbers are directly related to the relative orientation of the linear polarization of the excitation beams.
NASA Astrophysics Data System (ADS)
Chang, Chia-Feng; Hung, P. Q.; Nugroho, Chrisna Setyo; Tran, Van Que; Yuan, Tzu-Chiang
2018-03-01
The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.
NASA Astrophysics Data System (ADS)
Sıdır, Yadigar Gülseven; Sıdır, İsa; Demiray, Ferhat
2017-06-01
The optical absorption and steady-state fluorescence spectra of 4-heptyloxybenzoic acid (4hoba), 4-octyloxybenzoic acid (4ooba) and 4-nonyloxybenzoic acid (4noba) liquid crystals have been measured in a series of different polarity organic solvents. The ground state (μg) and excited state (μe) dipole moments of the monomeric and dimeric 4-alkyloxybenzoic acid liquid crystals have been obtained by means of different solvatochromic shift methods. HOMO-LUMO gaps (HLG) and dipole moments have been tuned by applying external electric (EF) field on monomer, dimer and Au substituted monomer and dimer liquid crystal structures. By applying external electric field, Au substituted monomer liquid crystals display semiconductor character, while Au substituted dimer liquid crystals gain metallic character under E = 0.04 V/Å. Eventuated specific and non-specific interactions between solvent and solute in solvent medium have been expounded by using LSER (Linear Solvation Energy Relationships).
The Physics of Coupled Atomic-Molecular Condensate System
2010-10-09
electric dipoles represents a novel state of matter with long-range and anisotropic dipole-dipole interactions, that are highly amenable to the...free-bound FC factor. Simultaneously, a series of laser �elds of (molecular) Rabi frequency i (i 2) are applied to move the molecules from the
Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field
NASA Technical Reports Server (NTRS)
Voorhies, C.
1998-01-01
The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.
Influence of complex configurations on properties of pygmy dipole resonances
NASA Astrophysics Data System (ADS)
Arsenyev, N. N.; Severyukhin, A. P.; Voronov, V. V.; Van Giai, Nguyen
2018-05-01
Starting from the quasiparticle random phase approximation based on the Skyrme interaction SLy5, we study the effects of phonon-phonon coupling (PPC) on the low-energy electric dipole responses in some spherical nuclei. The inclusion of the PPC results in the formation of low-energy 1‑ states. There is an impact of the PPC effect on low-energy E1 strength. The PPC effect on the electric dipole polarizability is discussed. We predict a strong increase of the summed E1 strength below 10 MeV, with increasing neutron number from 48Ca till 58Ca.
Peng, Chunwang; Liu, Jie; Zhao, Daohui; Zhou, Jian
2014-09-30
In this work, the adsorptions of hydrophobin (HFBI) on four different self-assembled monolayers (SAMs) (i.e., CH3-SAM, OH-SAM, COOH-SAM, and NH2-SAM) were investigated by parallel tempering Monte Carlo and molecular dynamics simulations. Simulation results indicate that the orientation of HFBI adsorbed on neutral surfaces is dominated by a hydrophobic dipole. HFBI adsorbs on the hydrophobic CH3-SAM through its hydrophobic patch and adopts a nearly vertical hydrophobic dipole relative to the surface, while it is nearly horizontal when adsorbed on the hydrophilic OH-SAM. For charged SAM surfaces, HFBI adopts a nearly vertical electric dipole relative to the surface. HFBI has the narrowest orientation distribution on the CH3-SAM, and thus can form an ordered monolayer and reverse the wettability of the surface. For HFBI adsorption on charged SAMs, the adsorption strength weakens as the surface charge density increases. Compared with those on other SAMs, a larger area of the hydrophobic patch is exposed to the solution when HFBI adsorbs on the NH2-SAM. This leads to an increase of the hydrophobicity of the surface, which is consistent with the experimental results. The binding of HFBI to the CH3-SAM is mainly through hydrophobic interactions, while it is mediated through a hydration water layer near the surface for the OH-SAM. For the charged SAM surfaces, the adsorption is mainly induced by electrostatic interactions between the charged surfaces and the oppositely charged residues. The effect of a hydrophobic dipole on protein adsorption onto hydrophobic surfaces is similar to that of an electric dipole for charged surfaces. Therefore, the hydrophobic dipole may be applied to predict the probable orientations of protein adsorbed on hydrophobic surfaces.
Gravitational anti-screening as an alternative to dark matter
NASA Astrophysics Data System (ADS)
Penner, A. Raymond
2016-04-01
A semiclassical model of the screening of electric charge by virtual electric dipoles, as found in electrodynamic theory, will be presented. This model is then applied to the hypothetical case of an electric force where like charges attract. The resulting anti-screening of the electric charge is found to have the same functional dependence on the field source and observation distance that is found with the Baryonic Tully-Fisher Relationship. This leads to an anti-screening model for the gravitational force which is then used to determine the theoretical rotational curve of the Galaxy and the theoretical velocity dispersions and shear values for the Coma cluster. These theoretical results are found to be in good agreement with the corresponding astronomical observations. The screening of electric charge as found in QED and the larger apparent masses of galaxies and galactic clusters therefore appears to be two sides of the same coin.
Hu, Li; Huang, Yingzhou; Pan, Lujun; Fang, Yurui
2017-09-11
Plasmonic chirality represents significant potential for novel nanooptical devices due to its association with strong chiroptical responses. Previous reports on plasmonic chirality mechanism mainly focus on phase retardation and coupling. In this paper, we propose a model similar to the chiral molecules for explaining the intrinsic plasmonic chirality mechanism of varies 3D chiral structures quantitatively based on the interplay and mixing of electric and magnetic dipole modes (directly from electromagnetic field numerical simulations), which forms mixed electric and magnetic polarizability.
A storage ring experiment to detect a proton electric dipole moment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastassopoulos, V.; Andrianov, S.; Baartman, R.
2016-11-01
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity ofmore » $$10^{-29}e\\cdot$$cm by using polarized "magic" momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.« less
Form factors of the d*(2380 ) resonance
NASA Astrophysics Data System (ADS)
Dong, Yubing; Shen, Pengnian; Zhang, Zongye
2018-06-01
In order to explore the possible physical quantities for judging different structures of the newly observed resonance d*(2380 ), we study its electromagnetic form factors. In addition to the electric charge monopole C 0 , we calculate its electric quadrupole E 2 , magnetic dipole M 1 , and magnetic octupole M 3 form factors on the base of the realistic coupled Δ Δ +C8C8 channel d* wave function with both the S - and D -partial waves. The results show that the magnetic dipole moment and electric quadrupole deformation of d* are 7.602 and 2.53 ×10-2 fm2 , respectively. The calculated magnetic dipole moment in the naive constituent quark model is also compared with the result of D12π picture. By comparing with partial results where the d* state is considered with a single Δ Δ and with a D12π structures, we find that in addition to the charge distribution of d*, the magnetic dipole moment and magnetic radius can be used to discriminate different structures of d*. Moreover, a quite small electric quadrupole deformation indicates that d* is more inclined to a slightly oblate shape due to our compact hexaquark dominated structure of d*.
Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu
2018-04-01
In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.
The dipole anisotropy of AllWISE galaxies
NASA Astrophysics Data System (ADS)
Rameez, M.; Mohayaee, R.; Sarkar, S.; Colin, J.
2018-06-01
We determine the dipole in the WISE (Wide Infrared Satellite Explorer) galaxy catalogue. After reducing star contamination to < 0.1 per cent by rejecting sources with high apparent motion and those close to the Galactic plane, we eliminate low redshift sources to suppress the non-kinematic, clustering dipole. We remove sources within ±5° of the supergalactic plane, as well as those within 1ʺ of 2MRS sources at redshift z < 0.03. We enforce cuts on the source angular extent to preferentially select distant ones. As we progress along these steps, the dipole converges in direction to within 5° of the Cosmic Microwave Background (CMB) dipole and its magnitude also progressively reduces but stabilizes at ˜0.012, corresponding to a velocity >1000 km s-1 if it is solely of kinematic origin. However, previous studies have shown that only ˜ 70 per cent of the velocity of the Local Group as inferred from the CMB dipole is due to sources at z < 0.03. We examine the Dark Sky simulations to quantify the prevalence of such environments and find that <2.1 per cent of Milky Way-like observers in a ΛCDM universe should observe the bulk flow (>240 km s-1 extending to z > 0.03) that we do. We construct mock catalogues in the neighbourhood of such peculiar observers in order to mimic our final galaxy selection and quantify the residual clustering dipole. After subtracting this, the remaining dipole is 0.0048 ± 0.0022, corresponding to a velocity of 420 ± 213 km s-1, which is consistent with the CMB. However, the sources (at z > 0.03) of such a large clustering dipole remain to be identified.
A new experimental limit on the electric dipole moment of the electron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, C.; Gould, H.; Abdullah, K.
1990-12-01
We describe a search for the electric dipole moment d{sub e} of the electron, carried out with {sup 205}Tl atoms in the ground state. The experiment makes use of the separated-oscillating-field magnetic-resonance method, laser state selection, fluorescence detection, and two counter-propagating atomic beams. Very careful attention is paid to systematic effects. The result for the atomic electric dipole moment is d{sub a} = (1.6 {plus minus} 5.0) {times} 10{sup {minus}24} e cm. If we assume the theoretical ratio d{sub a}/d{sub e} = {minus}600, this yields d{sub e} = ({minus}2.7 {plus minus} 8.3) {times} 10{sup {minus}27} e cm. 17 refs., 7more » figs., 1 tab.« less
Explicit symplectic orbit and spin tracking method for electric storage ring
Hwang, Kilean; Lee, S. Y.
2016-08-18
We develop a symplectic charged particle tracking method for phase space coordinates and polarization in all electric storage rings. Near the magic energy, the spin precession tune is proportional to the fractional momentum deviation δ m from the magic energy, and the amplitude of the radial and longitudinal spin precession is proportional to η/δ m, where η is the electric dipole moment for an initially vertically polarized beam. As a result, the method can be used to extract the electron electric dipole moment of a charged particle by employing narrow band frequency analysis of polarization around the magic energy.
Engineering matter interactions using squeezed vacuum
NASA Astrophysics Data System (ADS)
Zeytinoglu, Sina; Imamoglu, Atac; Huber, Sebastian
Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by the quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the latter can be used to engineer the strength and the range of inter-particle interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or waveguides which modify the electromagnetic fluctuations. In this submission, we demonstrate theoretically that the enhanced fluctuations in the anti-squeezed quadrature of a squeezed vacuum state allows for engineering interactions between electric dipoles without the need for a photonic cavity or waveguide. Thus, the strength and range of the resulting dipole-dipole coupling can be engineered by dynamically changing the spatial profile of the squeezed vacuum in a travelling-wave geometry. ETH-Zurich.
Engineering matter interactions using squeezed vacuum
NASA Astrophysics Data System (ADS)
Zeytinoglu, Sina; Imamoglu, Atac; Huber, Sebastian
Virtually all interactions that are relevant for atomic and condensed matter physics are mediated by the quantum fluctuations of the electromagnetic field vacuum. Consequently, controlling the latter can be used to engineer the strength and the range of inter-particle interactions. Recent experiments have used this premise to demonstrate novel quantum phases or entangling gates by embedding electric dipoles in photonic cavities or waveguides which modify the electromagnetic fluctuations. In this talk, we demonstrate theoretically that the enhanced fluctuations in the anti-squeezed quadrature of a squeezed vacuum state allows for engineering interactions between electric dipoles without the need for a photonic cavity or waveguide. Thus, the strength and range of the resulting dipole-dipole coupling can be engineered by dynamically changing the spatial profile of the squeezed vacuum in a travelling-wave geometry. ETH Zurich.
High-order above-threshold ionization beyond the electric dipole approximation
NASA Astrophysics Data System (ADS)
Brennecke, Simon; Lein, Manfred
2018-05-01
Photoelectron momentum distributions from strong-field ionization are calculated by numerical solution of the one-electron time-dependent Schrödinger equation for a model atom including effects beyond the electric dipole approximation. We focus on the high-energy electrons from rescattering and analyze their momentum component along the field propagation direction. We show that the boundary of the calculated momentum distribution is deformed in accordance with the classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/backward directions. Taken together, the two non-dipole effects give rise to a considerable average forward momentum component of the order of 0.1 a.u. for realistic laser parameters.
Microwave absorption in powders of small conducting particles for heating applications.
Porch, Adrian; Slocombe, Daniel; Edwards, Peter P
2013-02-28
In microwave chemistry there is a common misconception that small, highly conducting particles heat profusely when placed in a large microwave electric field. However, this is not the case; with the simple physical explanation that the electric field (which drives the heating) within a highly conducting particle is highly screened. Instead, it is the magnetic absorption associated with induction that accounts for the large experimental heating rates observed for small metal particles. We present simple principles for the effective heating of particles in microwave fields from calculations of electric and magnetic dipole absorptions for a range of practical values of particle size and conductivity. For highly conducting particles, magnetic absorption dominates electric absorption over a wide range of particle radii, with an optimum absorption set by the ratio of mean particle radius a to the skin depth δ (specifically, by the condition a = 2.41δ). This means that for particles of any conductivity, optimized magnetic absorption (and hence microwave heating by magnetic induction) can be achieved by simple selection of the mean particle size. For weakly conducting samples, electric dipole absorption dominates, and is maximized when the conductivity is approximately σ ≈ 3ωε(0) ≈ 0.4 S m(-1), independent of particle radius. Therefore, although electric dipole heating can be as effective as magnetic dipole heating for a powder sample of the same volume, it is harder to obtain optimized conditions at a fixed frequency of microwave field. The absorption of sub-micron particles is ineffective in both magnetic and electric fields. However, if the particles are magnetic, with a lossy part to their complex permeability, then magnetic dipole losses are dramatically enhanced compared to their values for non-magnetic particles. An interesting application of this is the use of very small magnetic particles for the selective microwave heating of biological samples.
Selection rule engineering of forbidden transitions of a hydrogen atom near a nanogap
NASA Astrophysics Data System (ADS)
Kim, Hyunyoung Y.; Kim, Daisik S.
2018-01-01
We perform an analytical study on the allowance of forbidden transitions for a hydrogen atom placed near line dipole sources, mimicking light emanating from a one-dimensional metallic nanogap. It is shown that the rapid variation of the electric field vector, inevitable in the near zone, completely breaks the selection rule of Δl=±1. While the forbidden transitions between spherically symmetric S states, such as 2S to 1S or 3S to 1S (Δl=0), are rather robust against selection rule breakage, Δl=±2 transitions such as between 3D and 1S or 3D and 2S states are very vulnerable to the spatial variation of the perturbing electric field. Transitions between 2S and 3D states are enhanced by many orders of magnitude, aided by the quadratic nature of both the perturbing Hamiltonian and D wavefunctions. The forbidden dipole moment, which approaches one Bohr radius times the electric charge in the vicinity of the gap, can be written in a simple closed form owing to the one-dimensional nature of our gap. With large enough effective volume together with the symmetric nature of the excited state wavefunctions, our work paves way towards atomic physics application of infinitely long nanogaps.
How to Introduce the Magnetic Dipole Moment
ERIC Educational Resources Information Center
Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…
Nanoscale shift of the intensity distribution of dipole radiation.
Shu, Jie; Li, Xin; Arnoldus, Henk F
2009-02-01
The energy flow lines (field lines of the Poynting vector) for radiation emitted by a dipole are in general curves, rather than straight lines. For a linear dipole the field lines are straight, but when the dipole moment of a source rotates, the field lines wind numerous times around an axis, which is perpendicular to the plane of rotation, before asymptotically approaching a straight line. We consider an elliptical dipole moment, representing the most general state of oscillation, and this includes the linear dipole as a special case. Due to the spiraling near the source, for the case of a rotating dipole moment, the field lines in the far field are displaced with respect to the outward radial direction, and this leads to a shift of the intensity distribution of the radiation in the far field. This shift is shown to be independent of the distance to the source and, although of nanoscale dimension, should be experimentally observable.
Electric Dipole Moments of Light Nuclei From Chiral Effective Field Theory
NASA Astrophysics Data System (ADS)
Higa, R.
2013-08-01
Recent calculations of EDMs of light nuclei in the framework of chiral effective field theory are presented. We argue that they can be written in terms of the leading six low-energy constants encoding CP-violating physics. EDMs of the deuteron, triton, and helion are explicitly given in order to corroborate our claim. An eventual non-zero measurement of these EDMs can be used to disentangle the different sources and strengths of CP-violation.
Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment
NASA Astrophysics Data System (ADS)
Lim, J.; Almond, J. R.; Trigatzis, M. A.; Devlin, J. A.; Fitch, N. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A.
2018-03-01
We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μ K . This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.
Laser Cooled YbF Molecules for Measuring the Electron's Electric Dipole Moment.
Lim, J; Almond, J R; Trigatzis, M A; Devlin, J A; Fitch, N J; Sauer, B E; Tarbutt, M R; Hinds, E A
2018-03-23
We demonstrate one-dimensional sub-Doppler laser cooling of a beam of YbF molecules to 100 μK. This is a key step towards a measurement of the electron's electric dipole moment using ultracold molecules. We compare the effectiveness of magnetically assisted and polarization-gradient sub-Doppler cooling mechanisms. We model the experiment and find good agreement with our data.
Additional motional-magnetic-field considerations for electric-dipole-moment experiments
NASA Astrophysics Data System (ADS)
Lamoreaux, S. K.
1996-06-01
Electric-dipole-moment experiments based on spin-precession measurements of stored atoms or neutrons are generally considered to be immune from the effects of v×E or motional magnetic fields. This is because the average velocity for such systems is zero. We show here that the fluctuating field associated with the random velocity, heretofore not considered, can in fact lead to sizable systematic effects.
UHF Antenna Design for AFIT Random Noise Radar
2012-03-01
relatives of monopole , dipole, and slot antennas. One particularly interesting style amongst these is the Vivaldi antenna. There are two primary... monopole versions using Earth’s surface as a ground plane [26]. Antenna design and construction caught up with these early innovations over the next...Frequency independent antennas Electric antennas (e.g. dipoles and monopoles ) Magnetic antennas (e.g. loops) Electrically small antennas
On the VHF Source Retrieval Errors Associated with Lightning Mapping Arrays (LMAs)
NASA Technical Reports Server (NTRS)
Koshak, W.
2016-01-01
This presentation examines in detail the standard retrieval method: that of retrieving the (x, y, z, t) parameters of a lightning VHF point source from multiple ground-based Lightning Mapping Array (LMA) time-of-arrival (TOA) observations. The solution is found by minimizing a chi-squared function via the Levenberg-Marquardt algorithm. The associated forward problem is examined to illustrate the importance of signal-to-noise ratio (SNR). Monte Carlo simulated retrievals are used to assess the benefits of changing various LMA network properties. A generalized retrieval method is also introduced that, in addition to TOA data, uses LMA electric field amplitude measurements to retrieve a transient VHF dipole moment source.
Electric Dipolar Kondo Effect Emerging from a Vibrating Magnetic Ion
NASA Astrophysics Data System (ADS)
Hotta, Takashi; Ueda, Kazuo
2012-06-01
When a magnetic ion vibrates in a metal, it inevitably introduces a new channel of hybridization with conduction electrons, and in general, the vibrating ion induces an electric dipole moment. In such a situation, we find that magnetic and nonmagnetic Kondo effects alternatively occur due to the screening of the spin moment and electric dipole moment of the vibrating ion. In particular, the electric dipolar two-channel Kondo effect is found to occur for a weak Coulomb interaction. We also show that a magnetically robust heavy-electron state appears near the fixed point of the electric dipolar two-channel Kondo effect. We believe that the vibrating magnetic ion opens a new door in Kondo physics.
Electric Dipole Theory of Chemical Synaptic Transmission
Wei, Ling Y.
1968-01-01
In this paper we propose that chemicals such as acetylcholine are electric dipoles which when oriented and arranged in a large array could produce an electric field strong enough to drive positive ions over the junction barrier of the post-synaptic membrane and thus initiate excitation or produce depolarization. This theory is able to explain a great number of facts such as cleft size, synaptic delay, nonregeneration, subthreshold integration, facilitation with repetition, and the calcium and magnesium effects. It also shows why and how acetylcholine could act as excitatory or inhibitory transmitters under different circumstances. Our conclusion is that the nature of synaptic transmission is essentially electrical, be it mediated by electrical or chemical transmitters. PMID:4296121
Optical activity of chirally distorted nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.
2016-05-21
We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ bymore » a factor of 10{sup 5}. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.« less
Electric dipole moments of nanosolvated acid molecules in water clusters.
Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V
2015-01-30
The electric dipole moments of (H2O)nDCl (n=3-9) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n≈5-6. This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.
Optical activity of chirally distorted nanocrystals
NASA Astrophysics Data System (ADS)
Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.
2016-05-01
We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.
Electric-field-induced structural changes in water confined between two graphene layers
NASA Astrophysics Data System (ADS)
Sobrino Fernández, Mario; Peeters, F. M.; Neek-Amal, M.
2016-07-01
An external electric field changes the physical properties of polar liquids due to the reorientation of their permanent dipoles. Using molecular dynamics simulations, we predict that an in-plane electric field applied parallel to the channel polarizes water molecules which are confined between two graphene layers, resulting in distinct ferroelectricity and electrical hysteresis. We found that electric fields alter the in-plane order of the hydrogen bonds: Reversing the electric field does not restore the system to the nonpolar initial state, instead a residual dipole moment remains in the system. The square-rhombic structure of 2D ice is transformed into two rhombic-rhombic structures. Our study provides insights into the ferroelectric state of water when confined in nanochannels and shows how this can be tuned by an electric field.
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios
Cesium iodide coated graphitic fibers and scandate cathodes are two important electron emission technologies. The coated fibers are utilized as field emitters for high power microwave sources. The scandate cathodes are promising thermionic cathode materials for pulsed power vacuum electron devices. This work attempts to understand the fundamental physical and chemical relationships between the atomic structure of the emitting cathode surfaces and the superior emission characteristics of these cathodes. Ab initio computational modeling in conjunction with experimental investigations was performed on coated fiber cathodes to understand the origin of their very low turn on electric field, which can be reduced by as much as ten-fold compared to uncoated fibers. Copious amounts of cesium and oxygen were found co-localized on the fiber, but no iodine was detected on the surface. Additional ab initio studies confirmed that cesium oxide dimers could lower the work function significantly. Surface cesium oxide dipoles are therefore proposed as the source of the observed reduction in the turn on electric field. It is also proposed that emission may be further enhanced by secondary electrons from cesium oxide during operation. Thermal conditioning of the coated cathode may be a mechanism by which surface cesium iodide is converted into cesium oxide, promoting the depletion of iodine by formation of volatile gas. Ab initio modeling was also utilized to investigate the stability and work functions of scandate structures. The work demonstrated that monolayer barium-scandium-oxygen surface structures on tungsten can dramatically lower the work function of the underlying tungsten substrate from 4.6 eV down to 1.16 eV, by the formation of multiple surface dipoles. On the basis of this work, we conclude that high temperature kinetics force conventional dispenser cathodes (barium-oxygen monolayers on tungsten) to operate in a non-equilibrium compositional steady state with higher than optimal work functions of ˜2 eV. We hypothesize that scandium enables the barium-oxygen surface monolayer kinetics to access a more thermodynamically stable phase with reported work functions as low as ˜1.3 eV.
Low-lying dipole strength of the open-shell nucleus 94Mo
NASA Astrophysics Data System (ADS)
Romig, C.; Beller, J.; Glorius, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Ponomarev, V. Yu.; Sauerwein, A.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.
2013-10-01
The low-lying dipole strength of the open-shell nucleus 94Mo was studied via the nuclear resonance fluorescence technique up to 8.7 MeV excitation energy at the bremsstrahlung facility at the Superconducting Darmstadt Electron Linear Accelerator (S-DALINAC), and with Compton backscattered photons at the High Intensity γ-ray Source (HIγS) facility. In total, 83 excited states were identified. Exploiting polarized quasi-monoenergetic photons at HIγS, parity quantum numbers were assigned to 41 states excited by dipole transitions. The electric dipole-strength distribution was determined up to 8.7 MeV and compared to microscopic calculations within the quasiparticle phonon model. Calculations and experimental data are in good agreement for the fragmentation, as well as for the integrated strength. The average decay pattern of the excited states was investigated exploiting the HIγS measurements at five energy settings. Mean branching ratios to the ground state and first excited 21+ state were extracted from the measurements with quasi-monoenergetic photons and compared to γ-cascade simulations within the statistical model. The experimentally deduced mean branching ratios exhibit a resonance-like maximum at 6.4 MeV which cannot be reproduced within the statistical model. This indicates a nonstatistical structure in the energy range between 5.5 and 7.5 MeV.
Efficient injection of an intense positron beam into a dipole magnetic field
NASA Astrophysics Data System (ADS)
Saitoh, H.; Stanja, J.; Stenson, E. V.; Hergenhahn, U.; Niemann, H.; Pedersen, T. Sunn; Stoneking, M. R.; Piochacz, C.; Hugenschmidt, C.
2015-10-01
We have demonstrated efficient injection and trapping of a cold positron beam in a dipole magnetic field configuration. The intense 5 eV positron beam was provided by the NEutron induced POsitron source MUniCh facility at the Heinz Maier-Leibnitz Zentrum, and transported into the confinement region of the dipole field trap generated by a supported, permanent magnet with 0.6 T strength at the pole faces. We achieved transport into the region of field lines that do not intersect the outer wall using the {E}× {B} drift of the positron beam between a pair of tailored plates that created the electric field. We present evidence that up to 38% of the beam particles are able to reach the intended confinement region and make at least a 180° rotation around the magnet where they annihilate on an insertable target. When the target is removed and the {E}× {B} plate voltages are switched off, confinement of a small population persists for on the order of 1 ms. These results lend optimism to our larger aims to apply a magnetic dipole field configuration for trapping of both positrons and electrons in order to test predictions of the unique properties of a pair plasma.
Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces
Campione, Salvatore; Basilio, Lorena I.; Warne, Larry K.; ...
2015-01-28
In this paper we describe a methodology for tailoring the design of metamaterial dielectric resonators, which represent a promising path toward low-loss metamaterials at optical frequencies. We first describe a procedure to decompose the far field scattered by subwavelength resonators in terms of multipolar field components, providing explicit expressions for the multipolar far fields. We apply this formulation to confirm that an isolated high-permittivity dielectric cube resonator possesses frequency separated electric and magnetic dipole resonances, as well as a magnetic quadrupole resonance in close proximity to the electric dipole resonance. We then introduce multiple dielectric gaps to the resonator geometrymore » in a manner suggested by perturbation theory, and demonstrate the ability to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering by satisfying the first Kerker condition. We further demonstrate the ability to push the quadrupole resonance away from the degenerate dipole resonances to achieve local behavior. These properties are confirmed through the multipolar expansion and show that the use of geometries suggested by perturbation theory is a viable route to achieve purely dipole resonances for metamaterial applications such as wave-front manipulation with Huygens’ metasurfaces. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.« less
Exotic Structure of Carbon Isotopes
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi
2003-12-01
Ground state properties of C isotopes, deformation and elecromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parities of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12 ~ 15% of the Thomas-Reiche-Kuhn sum rule value and 50 ~ 80% of the cluster sum rule value.
SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy
Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.
2016-01-01
Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012
Control of the electromagnetic drag using fluctuating light fields
NASA Astrophysics Data System (ADS)
Pastor, Víctor J. López; Marqués, Manuel I.
2018-05-01
An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.
Schmidt, Burkhard; Friedrich, Bretislav
2014-02-14
We show that combined permanent and induced electric dipole interactions of linear polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables - such as alignment and orientation cosines - in the plane spanned by the permanent and induced dipole interaction parameters. We find that the loci of the intersections of the surfaces can be traced analytically and that the eigenstates as well as the number of their intersections can be characterized by a single integer index. The value of the index, distinctive for a particular ratio of the interaction parameters, brings out a close kinship with the eigenproperties obtained previously for a class of Stark states via the apparatus of supersymmetric quantum mechanics.
Engineering electric and magnetic dipole coupling in arrays of dielectric nanoparticles
NASA Astrophysics Data System (ADS)
Li, Jiaqi; Verellen, Niels; Van Dorpe, Pol
2018-02-01
Dielectric nanoparticles with both strong electric and magnetic dipole (ED and MD) resonances offer unique opportunities for efficient manipulation of light-matter interactions. Here, based on numerical simulations, we show far-field diffractive coupling of the ED and MD modes in a periodic rectangular array. By using unequal periodicities in the orthogonal directions, each dipole mode is separately coupled and strongly tuned. With this method, the electric and magnetic response of the dielectric nanoparticles can be deliberately engineered to accomplish various optical functionalities. Remarkably, an ultra-sharp MD resonance with sub-10 nm linewidth is achieved with a large enhancement factor for the magnetic field intensity on the order of ˜103. Our results will find useful applications for the detection of chemical and biological molecules as well as the design of novel photonic metadevices.
Topological phases reviewed: The Aharonov Bohm, Aharonov Casher, and He McKellar Wilkens phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKellar, B. H. J.; He, X-G.; Klein, A. G.
2014-03-05
There are three topological phases related to electromagnetic interactions in quantum mechanics: 1. The Aharonov Bohm phase acquired when a charged particle encircles a magnetic field but travels through a field free region. 2. The Aharonov Casher phase acquired when a magnetic dipole encircles electric charges but travels through a charge free region. 3. The He McKellar Wilkens phase acquired when an electric dipole encircles magnetic charges but travels through a charge free region. We review the conditions under which these phases are indeed topological and their experimental realisation. Because the He McKellar Wilkens phase has been recently observed wemore » pay particular attention to how the basic concept of 'an electric dipole encircles magnetic charges' was realised experimentally, and discuss possible future experimental realisations.« less
Electron electric dipole moment and hyperfine interaction constants for ThO
NASA Astrophysics Data System (ADS)
Fleig, Timo; Nayak, Malaya K.
2014-06-01
A recently implemented relativistic four-component configuration interaction approach to study P- and T-odd interaction constants in atoms and molecules is employed to determine the electron electric dipole moment effective electric field in the Ω=1 first excited state of the ThO molecule. We obtain a value of Eeff=75.2GV/cm with an estimated error bar of 3% and 10% smaller than a previously reported result (Skripnikov et al., 2013). Using the same wavefunction model we obtain an excitation energy of TvΩ=1=5410 (cm), in accord with the experimental value within 2%. In addition, we report the implementation of the magnetic hyperfine interaction constant A|| as an expectation value, resulting in A||=-1339 (MHz) for the Ω=1 state in ThO. The smaller effective electric field increases the previously determined upper bound (Baron et al., 2014) on the electron electric dipole moment to |de|<9.7×10-29e cm and thus mildly mitigates constraints to possible extensions of the Standard Model of particle physics.
NASA Astrophysics Data System (ADS)
Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Ruiz-Martínez, E.; López-Hernández, O.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.
2018-01-01
An advanced undergraduate experiment to study the 5 P 3 / 2 → 6 P 3 / 2 electric quadrupole transition in rubidium atoms is presented. The experiment uses two external cavity diode lasers, one operating at the D2 rubidium resonance line and the other built with commercial parts to emit at 911 nm. The lasers produce the 5 s → 5 p → 6 p excitation sequence in which the second step is the forbidden transition. Production of atoms in the 6 P 3 / 2 state is observed by detection of the 420 nm fluorescence that results from electric dipole decay into the ground state. Lines whose widths are significantly narrower than the Doppler width are used to study the hyperfine structure of the 6 P 3 / 2 state in rubidium. The spectra illustrate characteristics unique to electric dipole forbidden transitions, like the electric quadrupole selection rules; they are also used to show general aspects of two-color laser spectroscopy such as velocity selection and hyperfine pumping.
Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo
2015-10-09
We report observation of a 'non-volatile' converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in 'non-volatility'. In isolated nanomagnets, the magnetization rotates by <90° upon application of the electric field, but in a dipole-coupled pair consisting of one 'hard' and one 'soft' nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet's magnetization rotates by [Formula: see text] upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.
Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.
Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W
2014-09-01
Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.
Evidence for a quantum dipole liquid state in an organic quasi-two-dimensional material.
Hassan, Nora; Cunningham, Streit; Mourigal, Martin; Zhilyaeva, Elena I; Torunova, Svetlana A; Lyubovskaya, Rimma N; Schlueter, John A; Drichko, Natalia
2018-06-08
Mott insulators are commonly pictured with electrons localized on lattice sites, with their low-energy degrees of freedom involving spins only. Here, we observe emergent charge degrees of freedom in a molecule-based Mott insulator κ-(BEDT-TTF) 2 Hg(SCN) 2 Br, resulting in a quantum dipole liquid state. Electrons localized on molecular dimer lattice sites form electric dipoles that do not order at low temperatures and fluctuate with frequency detected experimentally in our Raman spectroscopy experiments. The heat capacity and Raman scattering response are consistent with a scenario in which the composite spin and electric dipole degrees of freedom remain fluctuating down to the lowest measured temperatures. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain
NASA Astrophysics Data System (ADS)
Shuai, Chen-yang; Wang, Guang-ming
2017-12-01
A simple ultra-wideband magneto-electric dipole antenna utilizing a differential-fed structure is designed. The antenna mainly comprises three parts, including a novel circular horned reflector, two vertical semicircular shorted patches as a magnetic dipole, and a horizontal U-shaped semicircular electric dipole. A differential feeding structure working as a perfect balun excites the designed antenna. The results of simulation have a good match with the ones of measurement. Results indicate that the designed antenna achieves a wide frequency bandwidth of 107 % which is 3.19 10.61 GHz, when VSWR is below 2. Via introducing the circular horned reflector, the designed antenna attains a steady and high gain of 12±1.5dBi. Moreover, settled broadside direction main beam, high front-to-back ratio, low cross polarization, and the symmetrical and relatively stable radiation patterns in the E-and H-plane are gotten in the impedance bandwidth range. In the practical applications, the proposed antenna that is dc grounded and has a simple structure satisfies the requirement of many outdoor antennas.
NASA Astrophysics Data System (ADS)
Sadeghpour, Hossein; Kim, Eunja; Safavi-Naini, Arghavan; Weck, Philippe; Hite, Dustin; McKay, Kyle; Pappas, David
2017-04-01
The decoherence of trapped-ion quantum gates due to heating of their motional modes is a fundamental science and engineering challenge. Mitigating this noise, is fundamental to efficient and scalable operations in ion microtraps. To understand heating at the trap-electrode surfaces, we investigate the possible source of noise by focusing on the diffusion of carbon-containing adsorbates onto the Au(110) surface. Using density functional theory and detailed scanning probe microscopy, we show that the diffusive motion of carbon adatom on gold surface significantly affect the energy landscape and adatom dipole moment variation. A model for the diffusion noise, which varies quadratically with the variation of the dipole moment, qualitatively reproduces the measured noise spectrum, and the estimate of the noise spectral density is in accord with measured values.
Lattice calculation of electric dipole moments and form factors of the nucleon
NASA Astrophysics Data System (ADS)
Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.
2017-07-01
We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.
NASA Astrophysics Data System (ADS)
Magiera, Andrzej
2017-09-01
Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.
Electric field mill network products to improve detection of the lightning hazard
NASA Technical Reports Server (NTRS)
Maier, Launa M.
1987-01-01
An electric field mill network has been used at Kennedy Space Center for over 10 years as part of the thunderstorm detection system. Several algorithms are currently available to improve the informational output of the electric field mill data. The charge distributions of roughly 50 percent of all lightning can be modeled as if they reduced the charged cloud by a point charge or a point dipole. Using these models, the spatial differences in the lightning induced electric field changes, and a least squares algorithm to obtain an optimum solution, the three-dimensional locations of the lightning charge centers can be located. During the lifetime of a thunderstorm, dynamically induced charging, modeled as a current source, can be located spatially with measurements of Maxwell current density. The electric field mills can be used to calculate the Maxwell current density at times when it is equal to the displacement current density. These improvements will produce more accurate assessments of the potential electrical activity, identify active cells, and forecast thunderstorm termination.
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.
1974-01-01
With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.
NASA Astrophysics Data System (ADS)
Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl
2017-11-01
In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.
NASA Astrophysics Data System (ADS)
Sakamoto, Hironori; Takeuchi, Eito; Yoshida, Kouki; Morita, Ken; Ma, Bei; Ishitani, Yoshihiro
2018-01-01
Interface phonon polaritons (IPhPs) in nano-structures excluding metal components are thoroughly investigated because they have lower loss in optical emission or absorption and higher quality factors than surface plasmon polaritons. In previous reports, it is found that strong infrared (IR) absorption is based on the interaction of p-polarized light and materials, and the resonance photon energy highly depends on the structure size and angle of incidence. We report the optical absorption by metal/semiconductor (bulk-GaAs and thin film-AlN)-stripe structures in THz to mid-IR region for the electric field of light perpendicular to the stripes, where both of s- and p-polarized light are absorbed. The absorption resonates with longitudinal optical (LO) phonon or LO phonon-plasmon coupling (LOPC) modes, and thus is independent of the angle of incidence or structure size. This absorption is attributed to the electric dipoles by the optically induced polarization charges at the metal/semiconductor, heterointerfaces, or interfaces of high electron density layers and depression ones. The electric permittivity is modified by the formation of these dipoles. It is found to be indispensable to utilize our form of altered permittivity to explain the experimental dispersion relations of metal/semiconductor-IPhP and SPhP in these samples. This analysis reveals that the IPhPs in the stripe structures of metal/AlN-film on a SiC substrate are highly confined in the AlN film, while the permittivity of the structures of metal/bulk-GaAs is partially affected by the electric-dipoles. The quality factors of the electric-dipole absorption are found to be 42-54 for undoped samples, and the value of 62 is obtained for Al/AlN-IPhP. It is thought that metal-contained structures are not obstacles to mode energy selectivity in phonon energy region of semiconductors.
TE/TM decomposition of electromagnetic sources
NASA Technical Reports Server (NTRS)
Lindell, Ismo V.
1988-01-01
Three methods are given by which bounded EM sources can be decomposed into two parts radiating transverse electric (TE) and transverse magnetic (TM) fields with respect to a given constant direction in space. The theory applies source equivalence and nonradiating source concepts, which lead to decomposition methods based on a recursive formula or two differential equations for the determination of the TE and TM components of the original source. Decompositions for a dipole in terms of point, line, and plane sources are studied in detail. The planar decomposition is seen to match to an earlier result given by Clemmow (1963). As an application of the point decomposition method, it is demonstrated that the general exact image expression for the Sommerfeld half-space problem, previously derived through heuristic reasoning, can be more straightforwardly obtained through the present decomposition method.
The Crossed-Dipole Structure of Aircraft in an Electromagnetic Pulse Environment
1974-09-01
The crossed-dipole receiving antenna has been used as a representative model to approximate electromagnetic pulse effects on aircraft. This paper...receiving antenna is excited by a broad spectrum electromagnetic pulse , certain important electrical resonances occur: that is, at specific single...dipole are presented which give insight into methods of analyzing aircraft in an electromagnetic pulse environment.
Electrically rotating suspended films of polar liquids
NASA Astrophysics Data System (ADS)
Shirsavar, R.; Amjadi, A.; Tonddast-Navaei, A.; Ejtehadi, M. R.
2011-02-01
Controlled rotation of a suspended soap water film, simply generated by applying an electric field, has been reported recently. The film rotates when the applied electric field exceeds a certain threshold. In this study, we investigate the phenomenon in films made of a number of other liquids with various physical and chemical properties. Our measurements show that the intrinsic electrical dipole moments of the liquid molecules seems to be vital for the corresponding film rotation. All the investigated rotating liquids have a molecular electric dipole moment of above 1 Debye, while weakly polar liquids do not rotate. However, the liquids investigated here cover a wide range of physical parameters (e.g. viscosity, density, conductivity, etc.). So far, no significant correlation has been observed between the electric field thresholds and macroscopic properties of the liquids.
Dipole and quadrupole synthesis of electric potential fields. M.S. Thesis
NASA Technical Reports Server (NTRS)
Tilley, D. G.
1979-01-01
A general technique for expanding an unknown potential field in terms of a linear summation of weighted dipole or quadrupole fields is described. Computational methods were developed for the iterative addition of dipole fields. Various solution potentials were compared inside the boundary with a more precise calculation of the potential to derive optimal schemes for locating the singularities of the dipole fields. Then, the problem of determining solutions to Laplace's equation on an unbounded domain as constrained by pertinent electron trajectory data was considered.
Dipole and spin-dipole strength distributions in ^{124,126,128,130} Te isotopes
NASA Astrophysics Data System (ADS)
Cakmak, Necla; Cakmak, Sadiye; Selam, Cevad; Unlu, Serdar
2018-02-01
We try to present the structure of 1- excitations in open-shell ^{124,126,128,130} Te isotopes. Electric dipole states are investigated within a translational and Galilean invariant model. Also, a theoretical description of charge-conserving spin-dipole {1}- excitations is presented for the same isotopes. The energy spectra for both kinds of excitations are analysed in detail. Furthermore, a comparison of the calculated cross-sections and energies with the available experimental data is given.
Multimode seismoelectric phenomena generated using explosive and vibroseis sources
NASA Astrophysics Data System (ADS)
Butler, Karl E.; Kulessa, Bernd; Pugin, André J.-M.
2018-05-01
A field trial of seismoelectric surveying was carried out at a site underlain by 20 m of water-saturated clayey Champlain Sea sediments, renowned for their amenability to high resolution imaging by seismic reflection surveys. Seismically induced electrokinetic effects were recorded using an array of 26 grounded dipole electric field antennas, and two different seismic sources including an eight-gauge shotgun, and a moderate power (10 000 lb Minivib) vibrator. Despite the high electrical conductivity of the sediments, shot records show evidence of possible interfacial seismoelectric conversions caused by the arrival of P-waves at the base of the clay/top of bedrock and at the top of a layer of elevated porosity and conductivity within the clay at 7 m depth. However, the data are more remarkable for the fact that P-wave, S-wave, and PS/SP converted wave reflections evident in the seismic records all give rise to electrical arrivals exhibiting very similar moveout patterns in the seismoelectric records. Superficially, these electrical responses could be misinterpreted as simple coseismic seismoelectric effects associated with the arrival of reflected seismic waves at each dipole antenna on surface. However, their broader bandwidth, superior coherency and earlier arrival times compared to their corresponding seismic arrivals indicate that the electrical effects are generated by the arrival of seismic reflections below each dipole at the shallow intraclay interface 7 m below surface. Such quasi-coseismic arrivals have recently been predicted by full-waveform seismoelectric modelling and characterized as evanescent electromagnetic (EM) waves. In retrospect, they were also observed in earlier seismoelectric field trials, but not measured as clearly nor recognized as a distinct seismoelectric mode intermediate between interfacial and coseismic effects. We propose that the observed quasi-coseismic effect can be understood physically as a fringing field emanating from the travelling charge separation associated with a P-wave (direct or mode-converted) crossing a subsurface interface at an oblique angle. Such effects may be nearly indistinguishable from coseismic effects if the interface depth is small compared to the seismic wavelength, but recognition of the phenomenon contributes to an improved understanding of the seismoelectric wavefield, and will lead to improved interpretations. From a practical standpoint, the results of this field trial suggest that using electric field receivers to supplement geophones on surface could yield significantly higher resolution seismic reflection images in those areas where suitable near-surface layers exist for the generation of quasi-coseismic effects. The results also reinforce the importance of using multichannel recording to allow interfacial seismoelectric conversions originating at depth to be distinguished from stronger coseismic and quasi-coseismic arrivals originating in the near-surface by measurement of their arrival time versus offset (moveout) and amplitude versus offset behaviours.
Manipulating Smith-Purcell Emission with Babinet Metasurfaces
NASA Astrophysics Data System (ADS)
Wang, Zuojia; Yao, Kan; Chen, Min; Chen, Hongsheng; Liu, Yongmin
2016-10-01
Swift electrons moving closely parallel to a periodic grating produce far-field radiation of light, which is known as the Smith-Purcell effect. In this letter, we demonstrate that designer Babinet metasurfaces composed of C -aperture resonators offer a powerful control over the polarization state of the Smith-Purcell emission, which can hardly be achieved via traditional gratings. By coupling the intrinsically nonradiative energy bound at the source current sheet to the out-of-plane electric dipole and in-plane magnetic dipole of the C -aperture resonator, we are able to excite cross-polarized light thanks to the bianisotropic nature of the metasurface. The polarization direction of the emitted light is aligned with the orientation of the C -aperture resonator. Furthermore, the efficiency of the Smith-Purcell emission from Babinet metasurfaces is significantly increased by 84%, in comparison with the case of conventional gratings. These findings not only open up a new way to manipulate the electron-beam-induced emission in the near-field region but also promise compact, tunable, and efficient light sources and particle detectors.
Manipulating Smith-Purcell Emission with Babinet Metasurfaces.
Wang, Zuojia; Yao, Kan; Chen, Min; Chen, Hongsheng; Liu, Yongmin
2016-10-07
Swift electrons moving closely parallel to a periodic grating produce far-field radiation of light, which is known as the Smith-Purcell effect. In this letter, we demonstrate that designer Babinet metasurfaces composed of C-aperture resonators offer a powerful control over the polarization state of the Smith-Purcell emission, which can hardly be achieved via traditional gratings. By coupling the intrinsically nonradiative energy bound at the source current sheet to the out-of-plane electric dipole and in-plane magnetic dipole of the C-aperture resonator, we are able to excite cross-polarized light thanks to the bianisotropic nature of the metasurface. The polarization direction of the emitted light is aligned with the orientation of the C-aperture resonator. Furthermore, the efficiency of the Smith-Purcell emission from Babinet metasurfaces is significantly increased by 84%, in comparison with the case of conventional gratings. These findings not only open up a new way to manipulate the electron-beam-induced emission in the near-field region but also promise compact, tunable, and efficient light sources and particle detectors.
Felker, Peter M; Bačić, Zlatko
2017-02-28
We report on variational solutions to the twelve-dimensional (12D) Schrödinger equation appertaining to the translation-rotation (TR) eigenstates of H 2 O@C 60 dimer, associated with the quantized "rattling" motions of the two encapsulated H 2 O molecules. Both H 2 O and C 60 moieties are treated as rigid and the cage-cage geometry is taken to be fixed. We consider the TR eigenstates of H 2 O@C 60 monomers in the dimer to be coupled by the electric dipole-dipole interaction between water moieties and develop expressions for computing the matrix elements of that interaction in a dimer basis composed of products of monomer 6D TR eigenstates reported by us recently [P. M. Felker and Z. Bačić, J. Chem. Phys. 144, 201101 (2016)]. We use these expressions to compute TR Hamiltonian matrices of H 2 O@C 60 dimer for two values of the water dipole moment and for various dimer geometries. 12D TR eigenstates of the dimer are then obtained by filter diagonalization. The results reveal two classes of eigenstates, distinguished by the leading order (first or second) at which dipole-dipole coupling contributes to them. The two types of eigenstates differ in the general magnitude of their dipole-induced energy shifts and in the dependence of those shifts on the value of the water dipole moment and on the distance between the H 2 O@C 60 monomers. The dimer results are also found to be markedly insensitive to any change in the orientations of the C 60 cages. Finally, the results lend some support for the interpretation that electric dipole-dipole coupling is at least partially responsible for the apparent reduced-symmetry environment experienced by H 2 O in the powder samples of H 2 O@C 60 [K. S. K. Goh et al., Phys. Chem. Chem. Phys. 16, 21330 (2014)], but only if the water dipole is taken to have a magnitude close to that of free water. The methodology developed in the paper is transferable directly to the calculation of TR eigenstates of larger H 2 O@C 60 assemblies, that will be required for more extensive modeling of crystalline H 2 O@C 60 .
NASA Astrophysics Data System (ADS)
Bertolotto, Jorge A.; Umazano, Juan P.
2016-06-01
In the present work we make a theoretical study of the steady state electric linear dichroism of DNA fragments in aqueous solution. The here developed theoretical approach considers a flexible bent rod model with a saturating induced dipole moment. The electric polarizability tensor of bent DNA fragments is calculated considering a phenomenological model which theoretical and experimental backgroung is presented here. The model has into account the electric polarizability longitudinal and transversal to the macroion. Molecular flexibility is described using an elastic potential. We consider DNA fragments originally bent with bending fluctuations around an average bending angle. The induced dipole moment is supposed constant once the electric field strength grows up at critical value. To calculate the reduced electric linear dichroism we determine the optical factor considering the basis of the bent DNA perpendicular to the molecular axis. The orientational distribution function has into account the anisotropic electric properties and the molecule flexibility. We applied the present theoretical background to fit electric dichroism experimental data of DNA fragments reported in the bibliography in a wide range of molecular weight and electric field. From these fits, values of DNA physical properties are estimated. We compare and discuss the results here obtained with the theoretical and experimental data presented by other authors. The original contributions of this work are: the inclusion of the transversal electric polarizability saturating with the electric field, the description of the electric properties with an electric polarizability tensor dependant on the bending angle and the use of an arc model originally bent.
NASA Astrophysics Data System (ADS)
Felker, Peter M.; Bačić, Zlatko
2017-09-01
We present methodology for variational calculation of the 6 n -dimensional translation-rotation (TR) eigenstates of assemblies of n H2O@C60 moieties coupled by dipole-dipole interactions. We show that the TR Hamiltonian matrix for any n can be constructed from dipole-dipole matrix elements computed for n = 2 . We present results for linear H2O@C60 assemblies. Two classes of eigenstates are revealed. One class comprises excitations of the 111 rotational level of H2O. The lowest-energy 111 -derived eigenstate for each assembly exhibits significant dipole ordering and shifts down in energy with the assembly size.
Screened dipolar interactions in some molecular crystals
NASA Astrophysics Data System (ADS)
Munn, R. W.; Hurst, M.
1990-10-01
Screened dipole energies and dipole electric fields are calculated for the crystals of HCN, meta- and para-nitroaniline, the nonlinear optical compounds POM, MAP and DAN, meta-dinitrobenzene, and acetanilide. Only para-nitroaniline is centrosymmetric, but all the crystals have significant negative dipole energies (of the order of -20 kJ mol -1) except for POM and metadinitrobenzene, where they are positive but small in magnitude. Local dipole fields are of the order of 10 GV m -1. The results assume that surface charge annuls any macroscopic dipole field. It is speculated that the observed preponderance of centrosymmetric crystals of polar molecules may reflect a favourable dipole energy in the initial crystal nucleus rather than the macroscopic crystal.
Theoretical Study of the Electric Dipole Moment Function of the CIO Molecule
NASA Technical Reports Server (NTRS)
Pettersson, Lars G. M.; Langhoff, Stephen R.; Chong, Delano P.
1986-01-01
The potential energy function and electric dipole moment function (EDMF) are computed for CIO Chi(sup 2)Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. Remaining questions concerning the position of the maximum of the EDMF may be resolved through experimental measurement of dipole moments of higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 +/- 2 /sq cm atm in good agreement with three experimental values, but larger than a recent value of 5 /sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.
NASA Astrophysics Data System (ADS)
Filter, Robert; Mühlig, Stefan; Eichelkraut, Toni; Rockstuhl, Carsten; Lederer, Falk
2012-07-01
We suggest to excite dipole-forbidden transitions in quantum mechanical systems by using appropriately designed optical nanoantennas. The antennas are tailored such that their near field contains sufficiently strong contributions of higher-order multipole moments. The strengths of these moments exceed their free-space analogs by several orders of magnitude. The impact of such excitation enhancement is exemplarily investigated by studying the dynamics of a three-level system. It decays upon excitation by an electric quadrupole transition via two electric dipole transitions. Since one dipole transition is assumed to be radiative, the enhancement of this emission serves as a figure of merit. Such self-consistent treatment of excitation, emission, and internal dynamics as developed in this contribution is the key to predict any observable quantity. The suggested scheme may represent a blueprint for future experiments and will find many obvious spectroscopic and sensing applications.
Computation of the dipole moments of proteins.
Antosiewicz, J
1995-10-01
A simple and computationally feasible procedure for the calculation of net charges and dipole moments of proteins at arbitrary pH and salt conditions is described. The method is intended to provide data that may be compared to the results of transient electric dichroism experiments on protein solutions. The procedure consists of three major steps: (i) calculation of self energies and interaction energies for ionizable groups in the protein by using the finite-difference Poisson-Boltzmann method, (ii) determination of the position of the center of diffusion (to which the calculated dipole moment refers) and the extinction coefficient tensor for the protein, and (iii) generation of the equilibrium distribution of protonation states of the protein by a Monte Carlo procedure, from which mean and root-mean-square dipole moments and optical anisotropies are calculated. The procedure is applied to 12 proteins. It is shown that it gives hydrodynamic and electrical parameters for proteins in good agreement with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyotl, A.; Rosado, A.; Tavares-Velasco, G.
The magnetic dipole moment and the electric dipole moment of leptons are calculated under the assumption of lepton flavor violation (LFV) induced by spin-1 unparticles with both vector and axial-vector couplings to leptons, including a CP-violating phase. The experimental limits on the muon magnetic dipole moment and LFV process, such as the decay l{sub i}{sup -}{yields}l{sub j}{sup -}l{sub k}{sup -}l{sub k}{sup +}, are then used to constrain the LFV couplings for particular values of the unparticle operator dimension d{sub U} and the unparticle scale {Lambda}{sub U}, assuming that LFV transitions between the tau and muon leptons are dominant. It ismore » found that the current experimental constraints favor a scenario with dominance of the vector couplings over the axial-vector couplings. We also obtain estimates for the electric dipole moments of the electron and the muon, which are well below the experimental values.« less
Effects of the Neutrino B-term on SLepton Mixing and Electric Dipole Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farzan, Y
2003-10-10
The supersymmetric standard model with right-handed neutrino supermultiplets generically contains a soft supersymmetry breaking mass term: {delta}L = 1/2B{sub {nu}}M{tilde {nu}}{sub R}{tilde {nu}}{sub R}. The authors call this operator the ''neutrino B-term''. We show that the neutrino B-term can give the dominant effects from the neutrino sector to lepton flavor violating processes and to lepton electric dipole moments.
Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance.
Chesi, Stefano; Yang, Li-Ping; Loss, Daniel
2016-02-12
We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.
Higgs-Higgsino-gaugino induced two loop electric dipole moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yingchuan; Profumo, Stefano; Ramsey-Musolf, Michael
2008-10-01
We compute the complete set of Higgs-mediated chargino-neutralino two-loop contributions to the electric dipole moments of the electron and neutron in the minimal supersymmetric standard model (MSSM). We study the dependence of these contributions on the parameters that govern CP-violation in the MSSM gauge-gaugino-Higgs-Higgsino sector. We find that contributions mediated by the exchange of WH{sup {+-}} and ZA{sup 0} pairs, where H{sup {+-}} and A{sup 0} are the charged and CP-odd Higgs scalars, respectively, are comparable to or dominate over those mediated by the exchange of neutral gauge bosons and CP-even Higgs scalars. We also emphasize that the result ofmore » this complete set of diagrams is essential for the full quantitative study of a number of phenomenological issues, such as electric dipole moment searches and their implications for electroweak baryogenesis.« less
NASA Astrophysics Data System (ADS)
Stack, Daniel; Rodenburg, Bradon; Pappas, Stephen; Su, Wangshen; St. John, Marc; Kunz, Paul; Simon, Matt; Gordon, Joshua; Holloway, Christopher
2017-04-01
Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. A useful tool to address this problem are highly-excited (Rydberg) neutral atoms which have very large electric-dipole moments and many dipole-allowed transitions in the range of 1-500 GHz. Using Rydberg states, it is possible to sensitively probe the electric field in this frequency range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This atom-light interaction can be modeled by the classical description of a harmonically bound electron. The classical damped, driven, coupled-oscillators model yields significant insights into the deep connections between classical and quantum physics. We will present a detailed experimental analysis of the noise processes in making such measurements in the laboratory and discuss the prospects for building a practical atomic microwave receiver.
Theoretical study of the electric dipole moment function of the ClO molecule
NASA Technical Reports Server (NTRS)
Pettersson, L. G. M.; Langhoff, S. R.; Chong, D. P.
1986-01-01
The potential energy function and electric dipole moment function (EDMF) are computed for ClO X 2Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 + or - 2 per sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.
On a neutral particle with permanent magnetic dipole moment in a magnetic medium
NASA Astrophysics Data System (ADS)
Bakke, K.; Salvador, C.
2018-03-01
We investigate quantum effects that stem from the interaction of a permanent magnetic dipole moment of a neutral particle with an electric field in a magnetic medium. We consider a long non-conductor cylinder that possesses a uniform distribution of electric charges and a non-uniform magnetization. We discuss the possibility of achieving this non-uniform magnetization from the experimental point of view. Besides, due to this non-uniform magnetization, the permanent magnetic dipole moment of the neutral particle also interacts with a non-uniform magnetic field. This interaction gives rise to a linear scalar potential. Then, we show that bound states solutions to the Schrödinger-Pauli equation can be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khromova, Irina; Kužel, Petr; Brener, Igal
Monocrystalline titanium dioxide (TiO 2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO 2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO 2 micro-resonators can be used to enhance the interplay of magneticmore » and electric dipole resonances in the emerging THz all-dielectric metamaterial technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkhan, J.; Miorelli, M.; Bacca, S.
The electric dipole strength distribution in 48Ca between 5 and 25 MeV has been determined at RCNP, Osaka, from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables the rst extraction of the electric dipole polarizability D( 48Ca) = 2:07(22) fm 3. Remarkably, the dipole response of 48Ca is found to be very similar to that of 40Ca, consistent with a small neutron skin in 48Ca. The experimental results are in good agreement with ab initio calculations based on chiral e ective eld theory interactions and with state-of-the-art density-functional calculations, implying amore » neutron skin in 48Ca of 0:14 - 0:20 fm.« less
NASA Astrophysics Data System (ADS)
Im, Chang-Hwan; Jung, Hyun-Kyo; Fujimaki, Norio
2005-10-01
This paper proposes an alternative approach to enhance localization accuracy of MEG and EEG focal sources. The proposed approach assumes anatomically constrained spatio-temporal dipoles, initial positions of which are estimated from local peak positions of distributed sources obtained from a pre-execution of distributed source reconstruction. The positions of the dipoles are then adjusted on the cortical surface using a novel updating scheme named cortical surface scanning. The proposed approach has many advantages over the conventional ones: (1) as the cortical surface scanning algorithm uses spatio-temporal dipoles, it is robust with respect to noise; (2) it requires no a priori information on the numbers and initial locations of the activations; (3) as the locations of dipoles are restricted only on a tessellated cortical surface, it is physiologically more plausible than the conventional ECD model. To verify the proposed approach, it was applied to several realistic MEG/EEG simulations and practical experiments. From the several case studies, it is concluded that the anatomically constrained dipole adjustment (ANACONDA) approach will be a very promising technique to enhance accuracy of focal source localization which is essential in many clinical and neurological applications of MEG and EEG.
Hillebrand, A; Fazio, P; de Munck, J C; van Dijk, B W
2013-01-01
To evaluate the viability of MEG source reconstruction in the presence of large interference due to orthodontic material. We recorded the magnetic fields following a simple hand movement and following electrical stimulation of the median nerve (somatosensory evoked field -SEF). These two tasks were performed twice, once with and once without artificial dental artefacts. Temporal Signal Space Separation (tSSS) was applied to spatially filter the data and source reconstruction was performed according to standard procedures for pre-surgical mapping of eloquent cortex, applying dipole fitting to the SEF data and beamforming to the hand movement data. Comparing the data with braces to the data without braces, the observed distances between the activations following hand movement in the two conditions were on average 6.4 and 4.5 mm for the left and right hand, respectively, whereas the dipole localisation errors for the SEF were 4.1 and 5.4 mm, respectively. Without tSSS it was generally not possible to obtain reliable dipole fit or beamforming results when wearing braces. We confirm that tSSS is a required and effective pre-processing step for data recorded with the Elekta-MEG system. Moreover, we have shown that even the presence of large interference from orthodontic material does not significantly alter the results from dipole localisation or beamformer analysis, provided the data are spatially filtered by tSSS. State-of-the-art signal processing techniques enable the use of MEG for pre-surgical evaluation in a much larger clinical population than previously thought possible. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Field tuning the g factor in InAs nanowire double quantum dots.
Schroer, M D; Petersson, K D; Jung, M; Petta, J R
2011-10-21
We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society
Finite-difference modeling of the electroseismic logging in a fluid-saturated porous formation
NASA Astrophysics Data System (ADS)
Guan, Wei; Hu, Hengshan
2008-05-01
In a fluid-saturated porous medium, an electromagnetic (EM) wavefield induces an acoustic wavefield due to the electrokinetic effect. A potential geophysical application of this effect is electroseismic (ES) logging, in which the converted acoustic wavefield is received in a fluid-filled borehole to evaluate the parameters of the porous formation around the borehole. In this paper, a finite-difference scheme is proposed to model the ES logging responses to a vertical low frequency electric dipole along the borehole axis. The EM field excited by the electric dipole is calculated separately by finite-difference first, and is considered as a distributed exciting source term in a set of extended Biot's equations for the converted acoustic wavefield in the formation. This set of equations is solved by a modified finite-difference time-domain (FDTD) algorithm that allows for the calculation of dynamic permeability so that it is not restricted to low-frequency poroelastic wave problems. The perfectly matched layer (PML) technique without splitting the fields is applied to truncate the computational region. The simulated ES logging waveforms approximately agree with those obtained by the analytical method. The FDTD algorithm applies also to acoustic logging simulation in porous formations.
An alternative subspace approach to EEG dipole source localization
NASA Astrophysics Data System (ADS)
Xu, Xiao-Liang; Xu, Bobby; He, Bin
2004-01-01
In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.
From Morphology to Neural Information: The Electric Sense of the Skate
Camperi, Marcelo; Tricas, Timothy C; Brown, Brandon R
2007-01-01
Morphology typically enhances the fidelity of sensory systems. Sharks, skates, and rays have a well-developed electrosense that presents strikingly unique morphologies. Here, we model the dynamics of the peripheral electrosensory system of the skate, a dorsally flattened batoid, moving near an electric dipole source (e.g., a prey organism). We compute the coincident electric signals that develop across an array of the skate's electrosensors, using electrodynamics married to precise morphological measurements of sensor location, infrastructure, and vector projection. Our results demonstrate that skate morphology enhances electrosensory information. Not only could the skate locate prey using a simple population vector algorithm, but its morphology also specifically leads to quick shifts in firing rates that are well-suited to the demonstrated bandwidth of the electrosensory system. Finally, we propose electrophysiology trials to test the modeling scheme. PMID:17571918
Static weak dipole moments of the τ lepton via renormalizable scalar leptoquark interactions
NASA Astrophysics Data System (ADS)
Bolaños, A.; Moyotl, A.; Tavares-Velasco, G.
2014-03-01
The weak dipole moments of elementary fermions are calculated at the one-loop level in the framework of a renormalizable scalar leptoquark model that forbids baryon number violating processes and so is free from the strong constraints arising from experimental data. In this model there are two scalar leptoquarks accommodated in a SUL(2)×UY(1) doublet: One of these leptoquarks is nonchiral and has electric charge of 5/3e, whereas the other one is chiral and has electric charge 2/3e. In particular, a nonchiral leptoquark contributes to the weak properties of an up fermion via a chirality-flipping term proportional to the mass of the virtual fermion, and can also induce a nonzero weak electric dipole moment provided that the leptoquark couplings are complex. The numerical analysis is focused on the weak properties of the τ lepton since they offer good prospects for experimental study. The constraints on leptoquark couplings are briefly discussed for a nonchiral leptoquark with nondiagonal couplings to the second and third fermion generations, a third-generation nonchiral leptoquark, and a third-generation chiral leptoquark. It is found that although the chirality-flipping term can enhance the weak properties of the τ lepton via the top quark contribution, such an enhancement would be offset by the strong constraints on the leptoquark couplings. So, the contribution of scalar leptoquarks to the weak magnetic dipole moment of the τ lepton are smaller than the standard model (SM) contributions but can be of similar size to those arising in some SM extensions. A nonchiral leptoquark can also give contributions to the weak electric dipole moment larger than the SM one but well below the experimental limit. We also discuss the case of the off-shell weak dipole moments and, for completeness, analyze the behavior of the τ electromagnetic properties.
Electric polarization switching in an atomically thin binary rock salt structure
NASA Astrophysics Data System (ADS)
Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.
2018-01-01
Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.
New two-loop contributions to hadronic EDMs in the MSSM
NASA Astrophysics Data System (ADS)
Hisano, Junji; Nagai, Minoru; Paradisi, Paride
2006-11-01
Flavor-changing terms with CP-violating phases in the quark sector may contribute to the hadronic electric dipole moments (EDMs). However, within the Standard Model (SM), the source of CP violation comes from the unique CKM phase, and it turns out that the EDMs are strongly suppressed. This implies that the EDMs are very sensitive to non-minimal flavor violation structures of theories beyond the SM. In this Letter, we discuss the quark EDMs and CEDMs (chromoelectric dipole moments) in the MSSM with general flavor-changing terms in the squark mass matrices. In particular, the charged-Higgs mediated contributions to the down-quark EDM and CEDM are evaluated at two-loop level. We point out that these two-loop contributions may dominate over the one-loop induced gluino or higgsino contributions even when the squark and gluino masses are around few TeV and tanβ is moderate.
Surface towed electromagnetic system for mapping of subsea Arctic permafrost
NASA Astrophysics Data System (ADS)
Sherman, Dallas; Kannberg, Peter; Constable, Steven
2017-02-01
Sea level has risen globally since the late Pleistocene, resulting in permafrost-bearing coastal zones in the Arctic being submerged and subjected to temperature induced degradation. Knowing the extent of permafrost and how it changes over time is important for climate change predictions and for planning engineering activities in the Arctic environment. We developed a controlled source electromagnetic (CSEM) method to obtain information on the depth, thickness, and lateral extent of marine permafrost. To operate in shallow water we used a surface towed electric dipole-dipole CSEM system suitable for deployment from small boats. This system was used to map permafrost on the Arctic shelf offshore Prudhoe Bay, Alaska. Our results show significant lateral variability in the presence of permafrost, with the thickest layers associated with a large river outflow where freshwater influx seems to have a preserving effect on relict subsea permafrost.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1977-01-01
The branching ratios in hydrogen-like atoms due to the electric-dipole transitions are tabulated for the initial principal and azimuthal quantum numbers n prime l prime, and final principal and azimuthal quantum numbers n l. Average values with respect to l prime are given. The branching ratios not tabulated, including the initial states n prime yields infinity l prime corresponding to the threshold of the continuum, could be obtained by extrapolation.
NASA Astrophysics Data System (ADS)
Michalski, Krzysztof A.; Lin, Hung-I.
2018-01-01
Second-order asymptotic formulas for the electromagnetic fields of a horizontal electric dipole over an imperfectly conducting half-space are derived using the modified saddle-point method. Application examples are presented for ordinary and plasmonic media, and the accuracy of the new formulation is assessed by comparisons with two alternative state-of-the-art theories and with the rigorous results of numerical integration.
Macy, Jamie P.; Kryder, Levi; Walker, Jamieson
2012-01-01
Coordinated application of electrical and electromagnetic geophysical methods provided better characterization of the Highway 95 Fault. The comparison of dipole-dipole resistivity, TEM, and CSAMT data confirm faulting of an uplifted block of resistive Paleozoic Carbonate that lies beneath a more conductive sandstone unit. A more resistive alluvial basin-fill unit is found above the sandstone unit, and it constitutes only about 150 m of the uppermost subsurface.
NASA Technical Reports Server (NTRS)
Pilling, M. J.; Bass, A. M.; Braun, W.
1971-01-01
The curve of growth method has been employed to determine f-values for the fourth positive system of CO and the magnetic dipole and electric quadrupole components of the Lyman-Birge-Hopfield system of N2. No significant dependence on r-centroid was found. The mean value of the ratio of the electric quadrupole to magnetic dipole f-values was 0.076.
The Bloch equation with terms induced by an electric field
NASA Astrophysics Data System (ADS)
Garbacz, Piotr
2018-01-01
The Bloch equation of the nuclear magnetization of spin-1/2 nuclei in molecules, which have permanent electric dipole moments μe that are placed simultaneously in a magnetic field B and an electric field E, is derived. It is shown that if the principal components of the nuclear magnetic shielding tensor σ and the dipole moment μe are known, then the measurement of the transverse component to the magnetic field B of the nuclear magnetization, which is induced by the application of the electric field oscillating at the half of the spin precession frequency, allows determining the orientation of the dipole moment μe with respect to the principal axis system of the symmetric part of the tensor σ. Four-component relativistic density functional theory computations, which have been performed for several molecules containing heavy nuclei, i.e., 207Pb, 205Tl, 199Hg, 195Pt, and 125Te, indicate that coefficients of the relaxation matrix perturbed by the electric field E are in favorable cases of the order of 1000 pm2 V-2 T-2. Therefore, the spin dynamics is perturbed at experimentally observable levels for the strengths of electric and magnetic fields E = 5 kV/mm and B = 10 T, respectively.
Reshaping and linking of molecules in ion-pair traps
NASA Astrophysics Data System (ADS)
Cochrane, Bryce; Naumkin, Fedor Y.
2016-01-01
A series of insertion complexes of small molecules trapped between alkali-halide counter-ions are investigated ab initio. The molecular shape is altered inside the complexes and varies in corresponding anions. Stabilities and charge distributions are investigated. Strong charge-transfer in the alkali-halide component effectively through the almost neutral molecule results in very large dipole moments. The most stable species is used to construct a dimer significantly bound via dipole-dipole interaction. Another complex with two alkali-halide diatoms trapping the molecule represents a unit of corresponding longer oligomer. This completes the array of systems with the molecule effectively in ion-pair, ion-dipole, dipole-pair electric fields.
NASA Astrophysics Data System (ADS)
Liu, Changsheng; Lin, Jun; Zhou, Fengdao; Hu, Ruihua; Sun, Caitang
2013-12-01
The frequency-domain controlled-source electromagnetic method (FDCSEM) has played an important role in the terrestrial and oceanic exploration. However, the measuring manners and the detecting abilities in two kinds of environment are much different. This paper analyses the electromagnetic theories of the FDCSEM exploration on land and in ocean, simulates the electromagnetic responses in the two cases based on a united physical and mathematical model, and studies the physical mechanism leading to these differences. In this study, the relationship between the propagation paths and the detecting ability is illuminated and the way to improve the detecting ability of FDCSEM is brought forward. In terrestrial exploration, FDCSEM widely adopts the measuring manner of controlled-source audio-frequency magnetotelluric method (CSAMT), which records the electromagnetic fields in the far zone in the broadside direction of an electric dipole source. This manner utilizes the airwave (i.e. the Earth surface wave) and takes the stratum wave as interference. It is sensitive to the conductive target but insensitive to the resistive one. In oceanic exploration, FDCSEM usually adopts the measuring manner of marine controlled-source electromagnetic method (MCSEM), which records the electromagnetic fields, commonly the horizontal electric fields, in the in-line direction of the electric dipole source. This manner utilizes the stratum wave (i.e. the seafloor wave and the guided wave in resistive targets) and takes the airwave as interference. It is sensitive to the resistive target but relatively insensitive to the conductive one. The numerical simulation shows that both the airwave and the stratum wave contribute to the FDCSEM exploration. United utilization of them will enhance the anomalies of targets and congregate the advantages of CSAMT and MCSEM theories. At different azimuth and different offset, the contribution of the airwave and the stratum wave to electromagnetic anomaly is different. Observation at moderate offset in the in-line direction is the best choice for the exploration of resistive targets, no matter the environment is land or shallow sea. It is also the best choice for the exploration of conductive targets in terrestrial environment. As for the conductive targets in shallow sea, observation at moderate offset in the broadside direction is better. Synthetic and felicitous utilization of the airwave and the stratum wave will optimize the performance of FDCSEM.
Progress towards an electron electric dipole moment search in Europium-Barium Titanates
NASA Astrophysics Data System (ADS)
Eckel, Stephen; Sushkov, Alexander; Lamoreaux, Steven
2012-06-01
We report on recent progress on a search for the electron's electric dipole moment (eEDM) using solid- state Eu0.5Ba0.5TiO3. This material has many desirable properties including ferroelectricity below 200 K and paramagnetism above 1.8 K. When the sample has a non-zero electric polarization, the seven unpaired 4f electrons of the Eu^2+ ions in the lattice feel a large effective electric field of order 10 MV/cm in the direction of the polarization. This causes the electron spins to align with the electric polarization and generate a magnetization, which is measured using DC SQUID magnetometers. We will detail measurements of systematic effects along with recent results toward a measurement of the eEDM.
Communication: theoretical study of ThO for the electron electric dipole moment search.
Skripnikov, L V; Petrov, A N; Titov, A V
2013-12-14
An experiment to search for the electron electric dipole moment (eEDM) on the metastable H(3)Δ1 state of ThO molecule was proposed and now prepared by the ACME Collaboration [http://www.electronedm.org]. To interpret the experiment in terms of eEDM and dimensionless constant kT, P characterizing the strength of the T,P-odd pseudoscalar-scalar electron-nucleus neutral current interaction, an accurate theoretical study of an effective electric field on electron, Eeff, and a parameter of the T,P-odd pseudoscalar-scalar interaction, WT, P, in ThO is required. We report our results for Eeff (84 GV/cm) and WT, P (116 kHz) together with the hyperfine structure constant, molecule frame dipole moment, and H(3)Δ1 → X(1)Σ(+) transition energy, which can serve as a measure of reliability of the obtained Eeff and WT, P values. Besides, our results include a parity assignment and evaluation of the electric-field dependence for the magnetic g factors in the Ω-doublets of H(3)Δ1.
Lattice calculation of electric dipole moments and form factors of the nucleon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramczyk, M.; Aoki, S.; Blum, T.
In this paper, we analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF)more » $$F_3$$ and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor $$F_2$$ due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the CP-violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for $$F_3$$. In conclusion, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.« less
Unidirectional Magneto-Electric Dipole Antenna for Base Station: A Review
NASA Astrophysics Data System (ADS)
Idayachandran, Govindanarayanan; Nakkeeran, Rangaswamy
2018-04-01
Unidirectional base station antenna design using Magneto-Electric Dipole (MED) has created enormous interest among the researchers due to its excellent radiation characteristics like low back radiation, symmetrical radiation at E-plane and H-plane compared to conventional patch antenna. Generally, dual polarized antennas are used to increase channel capacity and reliability of the communication systems. In order to serve the evolving mobile communication standards like long term evolution LTE and beyond, unidirectional dual polarized MED antenna are required to have broad impedance bandwidth, broad half power beamwidth, high port isolation, low cross polarization level, high front to back ratio and high gain. In this paper, the critical electrical requirements of the base station antenna and frequently used frequency bands for modern mobile communication have been presented. It is followed by brief review on broadband patch antenna and discussion on complementary antenna concepts. Finally, the performance of linearly polarized and dual polarized magneto-electric dipole antennas along with their feeding techniques are discussed and summarized. Also, design and modeling of developed MED antenna is presented.
Lattice calculation of electric dipole moments and form factors of the nucleon
Abramczyk, M.; Aoki, S.; Blum, T.; ...
2017-07-10
In this paper, we analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF)more » $$F_3$$ and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor $$F_2$$ due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the CP-violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for $$F_3$$. In conclusion, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.« less
Tada, Shigeru; Shen, Yan; Qiu, Zhiyong
2017-06-01
When a suspension of polarizable particles is subjected to a gradient AC electric field, the particles exhibit collective motion due to an interaction between the dipole induced in the particles and the spatial gradient of the electric field; this is known as dielectrophoresis. In the present study, the collective dynamics of suspended particles in a parallel-plate electric chamber was investigated by simulating numerically the trajectories of individual particles under the action of combined dielectrophoretic and dipole-dipole interparticle forces. The particles were transported by the dielectrophoretic forces toward the grounded electrodes. Before long, when the particles approached the site of the minimum field strength, attractive/repulsive interparticle forces became dominant and acted among the particles attempting to form a column-like cluster, having the particles distribution in concentric circles in its cross-section, in line with the centerline of the grounded electrodes. Our results also well reproduced the transient particle aggregation that was observed experimentally. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hod, M.; Dobroserdova, A.; Samin, S.; Dobbrow, C.; Schmidt, A. M.; Gottlieb, M.; Kantorovich, S.
2017-08-01
Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.
Hod, M; Dobroserdova, A; Samin, S; Dobbrow, C; Schmidt, A M; Gottlieb, M; Kantorovich, S
2017-08-28
Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.
Isospin properties of electric dipole excitations in 48Ca
NASA Astrophysics Data System (ADS)
Derya, V.; Savran, D.; Endres, J.; Harakeh, M. N.; Hergert, H.; Kelley, J. H.; Papakonstantinou, P.; Pietralla, N.; Ponomarev, V. Yu.; Roth, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Wörtche, H. J.; Zilges, A.
2014-03-01
Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α‧γ) experiment at Eα=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.
Electric dipole radiation at VLF in a uniform warm magneto-plasma.
NASA Technical Reports Server (NTRS)
Wang, T. N. C.; Bell, T. F.
1972-01-01
Use of a linear full electromagnetic wave theory to calculate the input impedance of an electric antenna embedded in a uniform, lossless, unbounded warm magnetoplasma, which is assumed to consist of warm electrons and cold ions. In calculating the dipole radiation resistance for the thermal modes and the thermally modified whistler mode the analysis includes the finite temperature only for the electrons. In deriving the formal solution of the warm plasma dipole input impedance a full-wave analysis is used and two antenna orientations are considered, parallel and perpendicular to the static magnetic field. A general dispersion equation governing the modes of propagation is derived and a detailed analysis is made of the propagation characteristics of these modes.
Local-Field Distribution of Two Dielectric Inclusions at Small Separation
NASA Astrophysics Data System (ADS)
Siu, Yuet-Lun; Yu, Kin-Wah
2001-03-01
When two dielectric inclusions approach to each other in a composite medium, significant mutual polarization effects must occur. These effects are multipolar in nature and are difficult to treat from first principles(J. D. Jackson, Classical Electrodynamics), 2nd edition, (Wiley, New York, 1975).. In this work, we employ the discrete-dipole theory(B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A 11) 1491 (1994). to account for the mutual polarization effects by dividing the inclusions into many small subparts. We begin the calculation at small inclusion sizes and large separation, where the point-dipole limit being valid, and proceed to larger inclusion sizes and small separation, for which the mutual polarization effect becomes important. Then, we apply the theory to determine the dipole moment of each subpart self-consistently. In this way, each dipole moment yields the local electric field, which in turn polarizes the neighboring dipoles. We also begin the calculation at small inclusion sizes and large separation, where the point-dipole limit being valid, and proceed to larger inclusion sizes and small separation. Our resluts indicate that convergence is achieved with moderate computational effects. The results produce valuable information about the local electric field distribution, which is relevant to optical absorption due to surface phonon-polaritons of ionic microcrystals.
Induced dipole-dipole coupling between two atoms at a migration resonance
NASA Astrophysics Data System (ADS)
Kaur, Maninder; Mian, Mahmood
2018-05-01
Results of numerical simulations for the resonant energy exchange phenomenon called Migration reaction between two cold Rydberg atoms are presented. The effect of spatial interatomic distance on the onset of peculiar coherent mechanism is investigated. Observation of Rabi-like population inversion oscillation at the resonance provides a clear signature of dipole induced exchange of electronic excitations between the atoms. Further we present the results for the dependence of expectation value of the interaction hamiltonian on the interatomic distance, which is responsible for energy exchange process. The results of this observation endorse the range of inter atomic distance within which the excitation exchange process occurs completely or partially. Migration process enhance the Rydberg-Rydberg interaction in the absence of an external field, under the condition of the zero permanent dipole moments. Our next observation sheds light on the fundamental mechanism of induced electric fields initiated by the oscillating dipoles in such energy exchange processes. We explore the dependence of induced electric field on the interatomic distance and angle between the dipoles highlighting the inverse power law dependence and anisotropic property of the field. We put forward an idea to utilise the coherent energy exchange process to build efficient and fast energy transfer channels by incorporating more atoms organised at successive distances with decreasing distance gradient.
NASA Astrophysics Data System (ADS)
Liu, Shi; Cohen, R. E.
2017-08-01
The role of defects in solids of mixed ionic-covalent bonds such as ferroelectric oxides is complex. Current understanding of defects on ferroelectric properties at the single-defect level remains mostly at the empirical level, and the detailed atomistic mechanisms for many defect-mediated polarization-switching processes have not been convincingly revealed quantum mechanically. We simulate the polarization-electric field (P-E) and strain-electric field (ɛ-E) hysteresis loops for BaTiO3 in the presence of generic defect dipoles with large-scale molecular dynamics and provide a detailed atomistic picture of the defect dipole-enhanced electromechanical coupling. We develop a general first-principles-based atomistic model, enabling a quantitative understanding of the relationship between macroscopic ferroelectric properties and dipolar impurities of different orientations, concentrations, and dipole moments. We find that the collective orientation of dipolar defects relative to the external field is the key microscopic structure feature that strongly affects materials hardening/softening and electromechanical coupling. We show that a small concentration (≈0.1 at. %) of defect dipoles dramatically improves electromechanical responses. This offers the opportunity to improve the performance of inexpensive polycrystalline ferroelectric ceramics through defect dipole engineering for a range of applications including piezoelectric sensors, actuators, and transducers.
NASA Astrophysics Data System (ADS)
Cotti, Gina; Linnartz, Harold; Meerts, W. Leo; van der Avoird, Ad; Olthof, Edgar H. T.
1996-03-01
In this paper we present Stark measurements on the G:K=-1 vibration-rotation-tunneling (VRT) transition, band origin 747.2 GHz, of the ammonia dimer. The observed splitting pattern and selection rules can be explained by considering the G36 and G144 symmetries of the inversion states involved, and almost complete mixing of these states by the applied electric field. The absolute values of the electric dipole moments of the ground and excited state are determined to be 0.763(15) and 0.365(10) D, respectively. From the theoretical analysis and the observed selection rules it is possible to establish that the dipole moments of the two interchange states must have opposite sign. The theoretical calculations are in good agreement with the experimental results: The calculated dipole moments are -0.74 D for the lower and +0.35 D for the higher state. Our results, in combination with the earlier dipole measurements on the G:K=0 ground state and the G:K=1 transition with band origin 486.8 GHz, confirm that the ammonia dimer is highly nonrigid. Its relatively small and strongly K-dependent dipole moment, which changes sign upon far-infrared excitation, originates from the difference in dynamical behavior of ortho and para NH3.
NASA Astrophysics Data System (ADS)
Saitoh, H.; Yoshida, Z.; Yano, Y.; Nishiura, M.; Kawazura, Y.; Horn-Stanja, J.; Pedersen, T. Sunn
2016-10-01
We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a 22Na source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small 22Na source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.
Four-body calculation of {sup 12}C(α, γ){sup 16}O radiative capture reaction at stellar energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, H., E-mail: H-Sadeghi@Araku.ac.ir; Firoozabadi, M. M.
2016-01-15
On the basis of the four-alphamodel, the {sup 12}C(α, γ){sup 16}Oradiative capture process is investigated by using the four-body Faddeev–Yakubovsky equations as well as the two- and three-body electromagnetic currents. The present calculation is an application of our current conservation realistic potentials method for the {sup 12}C(α, γ){sup 16}Oradiative capture process. This work clears the way formore refinedmodels of radiative capture based on two- and three-body realistic potentials and current conservation. The calculation is carried out by considering the {sup 4}He + {sup 12}C (1 + 3) and the {sup 8}Be + {sup 8}Be (2 + 2) subamplitudes, respectively. Radiativemore » capture {sup 12}C(α, γ){sup 16}Oreaction is one of the most important reactions in nuclear astrophysics. For this reaction, the electric dipole transitions between states with the same isospin are forbidden in the first order. Because the state 1{sup +} and 0{sup +} ground state nuclei {sup 16}O have zero isospin, thus the electric dipole radiations are not at the first order between two levels and electric dipole radiation will be the second order and electric dipole radiation is the same order as the electric quadrupole radiation. Therefore, we must consider the effects of both radiations. In comparison with other theoretical methods and available experimental data, good agreement is achieved for the E{sub 1} and E{sub 2} contribution to the cross section and the astrophysical S factor for this process.« less
Magnetoencephalography signals are influenced by skull defects.
Lau, S; Flemming, L; Haueisen, J
2014-08-01
Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Progress toward measuring the 6S1/2 <--> 5D3/2 magnetic-dipole transition moment in Ba+
NASA Astrophysics Data System (ADS)
Williams, Spencer; Jayakumar, Anupriya; Hoffman, Matthew; Blinov, Boris; Fortson, Norval
2015-05-01
We report the latest results from our effort to measure the magnetic-dipole transition moment (M1) between the 6S1 / 2 and 5D3 / 2 manifolds in Ba+. We describe a new technique for calibrating view-port birefringence and how we will use it to enhance the M1 signal. To access the transition moment we use a variation of a previously proposed technique that allows us to isolate the magnetic-dipole coupling from the much larger electric-quadrupole coupling in the transition rates between particular Zeeman sub-levels. Knowledge of M1 is crucial for a parity-nonconservation experiment in the ion where M1 will be a leading source of systematic errors. No measurement of this M1 has been made in Ba+, however, there are three calculations that predict it to be 80 ×10-5μB, 22 ×10-5μB, and 17 ×10-5μB. A precise measurement may help resolve this theoretical discrepancy which originates from their different estimations of many-body effects. Supported by NSF Grant No. 09-06494F.
NASA Technical Reports Server (NTRS)
Chackerian, C., Jr.; Farreng, R.; Guelachvili, G.; Rossetti, C.; Urban, W.
1984-01-01
Experimental intensity information is combined with numerically obtained vibrational wave functions in a nonlinear least squares fitting procedure to obtain the ground electronic state electric-dipole-moment function of carbon monoxide valid in the range of nuclear oscillation (0.87 to 1.01 A) of about the V = 38th vibrational level. Mechanical anharmonicity intensity factors, H, are computed from this function for delta V + = 1, 2, 3, with or = to 38.
NASA Technical Reports Server (NTRS)
Chackerian, C., Jr.; Farrenq, R.; Guelachvili, G.; Rossetti, C.; Urban, W.
1984-01-01
Experimental intensity information is combined with numerically obtained vibrational wave functions in a nonlinear least-squares fitting procedure to obtain the ground electronic state electric dipole moment function of carbon monoxide valid in the range of nuclear oscillation (0.87-1.91 A) of about the V = 38th vibrational level. Vibrational transition matrix elements are computed from this function for Delta V = 1, 2, 3 with V not more than 38.
NASA Astrophysics Data System (ADS)
Aiello, Andrea; Ornigotti, Marco
2014-09-01
We address the question of whether there exists a hidden relationship between the near-field distribution generated by an oscillating electric dipole and the so-called cross-polarization of a collimated beam of light. We find that the answer is affirmative by showing that the complex field distributions occurring in both cases have a common physical origin: the requirement that the electromagnetic fields must be transverse.
Electric dipole moment of magnetoexciton in concentric quantum rings
NASA Astrophysics Data System (ADS)
García, L. F.; Mikhailov, I. D.; Revinova, S. Yu
2017-12-01
We study properties of exciton in a weakly coupled concentric quantum rings, penetrated by an axially directed magnetic flux and subjected to an electric field in the ring’s plane. To this end, we adopt a simple model of quasi-one-dimensional rotator, for which the wave functions and the corresponding energies we found by using the double Fourier series expansion method. Revealed multiple intersections of the energy levels provide conditions for abrupt changes of the radial and the angular quantum numbers, making possible the tunnelling of carriers between rings and allowing the formation of a permanent large dipole moment. We show that the electric and magnetic polarizability of concentric quantum rings with a trapped exciton are very sensible to external electric and magnetic fields.
Some aspects of an induced electric dipole moment in rotating and non-rotating frames.
Oliveira, Abinael B; Bakke, Knut
2017-06-01
Quantum effects on a neutral particle (atom or molecule) with an induced electric dipole moment are investigated when it is subject to the Kratzer potential and a scalar potential proportional to the radial distance. In addition, this neutral is placed in a region with electric and magnetic fields. This system is analysed in both non-rotating and rotating reference frames. Then, it is shown that bound state solutions to the Schrödinger equation can be achieved and, in the search for polynomial solutions to the radial wave function, a restriction on the values of the cyclotron frequency is analysed in both reference frames.
Studies into Equine Electrocardiography and Vectorcardiography
Holmes, J. R.; Alps, B. J.
1967-01-01
Theoretical consideration has been given in two horses to the properties of the electric field created by the equine heart acting as a simple electric generator. The principles of the vectorial theory have been applied to test the validity of application of the dipole concept. The cardiac electric forces, althrough complex in the immediate region of the heart, appear at the body surface in a similar form to those arising from a relatively immobile, single equivalent dipole. The potential value of the technique of vectorcardiography in cardiological investigations is briefly discussed. ImagesFig. 1.Fig. 3.Fig. 5.Fig. 10.Fig. 12.Fig. 13. PMID:17649586
Systematic effects in the HfF+-ion experiment to search for the electron electric dipole moment
NASA Astrophysics Data System (ADS)
Petrov, A. N.
2018-05-01
The energy splittings for J =1 , F =3 /2 , | mF|=3 /2 hyperfine levels of the 3Δ1 electronic state of 180Hf+19F ion are calculated as functions of the external variable electric and magnetic fields within two approaches. In the first one, the transition to the rotating frame is performed, whereas in the second approach, the quantization of rotating electromagnetic field is performed. Calculations are required for understanding possible systematic errors in the experiment to search for the electron electric dipole moment (e EDM ) with the 180Hf+19F ion.
NASA Astrophysics Data System (ADS)
Sugita, Atsushi; Suzuki, Kyoko; Tasaka, Shigeru
2004-06-01
We studied ferroelectric ordering in a triphenylene derivative embedded with electric dipoles [2,3,6,7,10,11-hexakis (4-octyloxy-benzoyloxy) triphenylene (HOBPT)] in a crystalline state. Experimental results indicate that the ferroelectricity in HOBPT is caused by an ordered orientation of CO dipoles. Our experiments also reveal that dielectric anomaly due to ferroelectric paraelectric phase transition occurs at 380 K . A photovoltaic effect was observed in an electrically treated thin film of HOBPT. The phenomenon results from a high charge mobility due to the π-π stack between adjacent molecules as well as an internal electric field derived by the residual polarization.
NASA Astrophysics Data System (ADS)
Tseng, Yi-Chuan; Lee, Yang-Chun; Chang, Sih-Wei; Lin, Tzu-Yao; Ma, Dai-Liang; Lin, Bo-Cheng; Chen, Hsuen-Li
2017-11-01
In this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347. The hot zones of intense electric field were generated not only within the nonmetallic NPs but also around them, even within the underlying substrate. We observed experimentally that gallium nitride (GaN) and silicon carbide (SiC) surfaces presenting very few SiNPs (coverage: <0.3%) could display significantly enhanced (>50%) Raman signals. In contrast, the Raman signals of the underlying substrates were not enhanced by gold nanoparticles (AuNPs), even though these NPs displayed a localized surface plasmon resonance (LSPR) phenomenon. A comparison of the areas of the electric field hot zones (E 2 > 10) generated by SiNPs undergoing magnetic dipole resonance with the electric field hot spots (E 2 > 10) generated by AuNPs undergoing LSPR revealed that the former was approximately 70 times that of the latter. More noteworthily, the electromagnetic field hot zone generated from the SiNP is able to extend into the surrounding and underlying media. Relative to metallic NPs undergoing LSPR, these nonmetallic NPs displaying magnetic dipole resonance were more effective at enhancing the Raman scattering signals from analytes that were underlying, or even far away from, them. This application of magnetic dipole resonance in metal-free structures appears to have great potential for use in developing next-generation techniques for Raman enhancement.
Comparison Study of Three Different Image Reconstruction Algorithms for MAT-MI
Xia, Rongmin; Li, Xu
2010-01-01
We report a theoretical study on magnetoacoustic tomography with magnetic induction (MAT-MI). According to the description of signal generation mechanism using Green’s function, the acoustic dipole model was proposed to describe acoustic source excited by the Lorentz force. Using Green’s function, three kinds of reconstruction algorithms based on different models of acoustic source (potential energy, vectored acoustic pressure, and divergence of Lorenz force) are deduced and compared, and corresponding numerical simulations were conducted to compare these three kinds of reconstruction algorithms. The computer simulation results indicate that the potential energy method and vectored pressure method can directly reconstruct the Lorentz force distribution and give a more accurate reconstruction of electrical conductivity. PMID:19846363
Electrorotation of a metal sphere immersed in an electrolyte of finite Debye length.
García-Sánchez, Pablo; Ramos, Antonio
2015-11-01
We theoretically study the rotation induced on a metal sphere immersed in an electrolyte and subjected to a rotating electric field. The rotation arises from the interaction of the field with the electric charges induced at the metal-electrolyte interface, i.e., the induced electrical double layer (EDL). Particle rotation is due to the torque on the induced dipole, and also from induced-charge electro-osmostic flow (ICEO). The interaction of the electric field with the induced dipole on the system gives rise to counterfield rotation, i.e., the direction opposite to the rotation of the electric field. ICEO generates co-field rotation of the sphere. For thin EDL, ICEO generates negligible rotation. For increasing size of EDL, co-field rotation appears and, in the limit of very thick EDL, it compensates the counter-field rotation induced by the electrical torque. We also report computations of the rotating fluid velocity field around the sphere.
Dipolar response of hydrated proteins
NASA Astrophysics Data System (ADS)
Matyushov, Dmitry V.
2012-02-01
The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ≃240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ˜2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.
Dipolar response of hydrated proteins.
Matyushov, Dmitry V
2012-02-28
The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ≃240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ~2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.
Equivalent source modeling of the core magnetic field using magsat data
NASA Technical Reports Server (NTRS)
Mayhew, M. A.; Estes, R. H.
1983-01-01
Experiments are carried out on fitting the main field using different numbers of equivalent sources arranged in equal area at fixed radii at and inside the core-mantle boundary. In fixing the radius for a given series of runs, the convergence problems that result from the extreme nonlinearity of the problem when dipole positions are allowed to vary are avoided. Results are presented from a comparison between this approach and the standard spherical harmonic approach for modeling the main field in terms of accuracy and computational efficiency. The modeling of the main field with an equivalent dipole representation is found to be comparable to the standard spherical harmonic approach in accuracy. The 32 deg dipole density (42 dipoles) corresponds approximately to an eleventh degree/order spherical harmonic expansion (143 parameters), whereas the 21 dipole density (92 dipoles) corresponds to approximately a seventeenth degree and order expansion (323 parameters). It is pointed out that fixing the dipole positions results in rapid convergence of the dipole solutions for single-epoch models.
Non-linear and non-local behaviour in spontaneously electrical solids.
Roman, M; Taj, S; Gutowski, M; McCoustra, M R S; Dunn, A C; Keolopile, Z G; Rosu-Finsen, A; Cassidy, A M; Field, D
2018-02-14
Using reflection-absorption infrared spectroscopy (RAIRS), we show that solids displaying spontaneous dipole orientation possess quite general non-local and non-linear characteristics, exemplified through their internal electric fields. The most graphic illustration of this, uncovered originally through electron beam studies, may be found in films of cis-methyl formate (cis-MF), for which data demonstrated the counter-intuitive property that the degree of dipole order in the film does not monotonically decrease as the temperature of deposition rises, but rather increases sharply above ∼77 K. Here we show how RAIRS provides independent evidence to support this conclusion. These new data confirm (i) that the behaviour of spontelectrics is governed by an expression for the degree of dipole orientation, which is continuous in temperature, but with a discontinuity in the derivative, and (ii) that the temperature of deposition associated with this discontinuity matches the temperature above which dipole order switches from the expected reduction with temperature to an increase with temperature.
Campione, Salvatore; Warne, Larry K.; Basilio, Lorena I.
2017-09-29
In this paper we develop a fully-retarded, dipole approximation model to estimate the effective polarizabilities of a dimer made of dielectric resonators. They are computed from the polarizabilities of the two resonators composing the dimer. We analyze the situation of full-cubes as well as split-cubes, which have been shown to exhibit overlapping electric and magnetic resonances. We compare the effective dimer polarizabilities to ones retrieved via full-wave simulations as well as ones computed via a quasi-static, dipole approximation. We observe good agreement between the fully-retarded solution and the full-wave results, whereas the quasi-static approximation is less accurate for the problemmore » at hand. The developed model can be used to predict the electric and magnetic resonances of a dimer under parallel or orthogonal (to the dimer axis) excitation. This is particularly helpful when interested in locating frequencies at which the dimer will emit directional radiation.« less
Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils
NASA Astrophysics Data System (ADS)
Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.
2017-09-01
In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.
Operator evolution for ab initio electric dipole transitions of 4He
Schuster, Micah D.; Quaglioni, Sofia; Johnson, Calvin W.; ...
2015-07-24
A goal of nuclear theory is to make quantitative predictions of low-energy nuclear observables starting from accurate microscopic internucleon forces. A major element of such an effort is applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence of ab initio calculations as a function of the model space size. The consistent simultaneous transformation of external operators, however, has been overlooked in applications of the theory, particularly for nonscalar transitions. We study the evolution of the electric dipole operator in the framework of the similarity renormalization group method and apply the renormalized matrix elements to the calculationmore » of the 4He total photoabsorption cross section and electric dipole polarizability. All observables are calculated within the ab initio no-core shell model. Furthermore, we find that, although seemingly small, the effects of evolved operators on the photoabsorption cross section are comparable in magnitude to the correction produced by including the chiral three-nucleon force and cannot be neglected.« less
Low-loss resonance modes in a gain-assisted plasmonic multimer
NASA Astrophysics Data System (ADS)
Pan, Gui-Ming; Yang, Da-Jie; Zhou, Li; Hao, Zhong-Hua
2018-03-01
We theoretically study the properties of optical losses in a plasmonic multimer and find modes with lower radiative losses due to the cancellation of the dipole moment. High order plasmonic resonances, including electric quadrupole and magnetic dipole resonances, can be achieved by the reduction of symmetry in a multimer. Meanwhile, the dipole moment can be significantly reduced in these high order modes, and consequently, the radiative losses decrease efficiently. The low-loss modes can lead to a lower gain threshold in the gain-assisted nanosystem. In particular, compared with the electric dipolar mode in a single nanoshell, the gain threshold of the electric quadrupolar and magnetic dipolar modes in a multimer can drop by 57.66% and 59.22%, respectively. On the other hand, the gain threshold can reflect the extent of the optical losses of the plasmonic mode in a nanosystem. These findings may have potential applications in the design of a nanolaser, plasmon waveguide and photo-thermal device.
Deng, Fengyuan; Ulcickas, James R W; Simpson, Garth J
2016-11-03
Fluorescence optical rotary dispersion (F-ORD) is proposed as a novel chiral-specific and interface-specific spectroscopic method. F-ORD measurements of uniaxial assemblies are predicted to be fully electric-dipole-allowed, with corresponding increases in sensitivity to chirality relative to chiral-specific measurements in isotropic assemblies that are commonly interpreted through coupling between electric and magnetic dynamic dipoles. Observations of strong chiral sensitivity in prior single-molecule fluorescence measurements of chiral interfacial molecules are in excellent qualitative agreement with the predictions of the F-ORD mechanism and challenging to otherwise explain. F-ORD may provide methods to suppress background fluorescence in studies of biological interfaces, as the detected signal requires both polar local order and interfacial chirality. In addition, the molecular-level descriptions of the mechanisms underpinning F-ORD may also potentially apply to aid in interpreting chiral-specific Raman and surface-enhanced Raman spectroscopy measurements of uniaxially oriented assemblies, opening up opportunities for chiral-specific and interface-specific vibrational spectroscopy.
Zhang, Y; Joines, W T; Jirtle, R L; Samulski, T V
1993-08-01
The magnitude of E-field patterns generated by an annular array prototype device has been calculated and measured. Two models were used to describe the radiating sources: a simple linear dipole and a stripline antenna model. The stripline model includes detailed geometry of the actual antennas used in the prototype and an estimate of the antenna current based on microstrip transmission line theory. This more detailed model yields better agreement with the measured field patterns, reducing the rms discrepancy by a factor of about 6 (from approximately 23 to 4%) in the central region of interest where the SEM is within 25% of the maximum. We conclude that accurate modeling of source current distributions is important for determining SEM distributions associated with such heating devices.
NASA Astrophysics Data System (ADS)
Iwamoto, Mitsumasa; Manaka, Takaaki; Taguchi, Dai
2015-09-01
The probing and modeling of carrier motions in materials as well as in electronic devices is a fundamental research subject in science and electronics. According to the Maxwell electromagnetic field theory, carriers are a source of electric field. Therefore, by probing the dielectric polarization caused by the electric field arising from moving carriers and dipoles, we can find a way to visualize the carrier motions in materials and in devices. The techniques used here are an electrical Maxwell-displacement current (MDC) measurement and a novel optical method based on the electric field induced optical second harmonic generation (EFISHG) measurement. The MDC measurement probes changes of induced charge on electrodes, while the EFISHG probes nonlinear polarization induced in organic active layers due to the coupling of electron clouds of molecules and electro-magnetic waves of an incident laser beam in the presence of a DC field caused by electrons and holes. Both measurements allow us to probe dynamical carrier motions in solids through the detection of dielectric polarization phenomena originated from dipolar motions and electron transport. In this topical review, on the basis of Maxwell’s electro-magnetism theory of 1873, which stems from Faraday’s idea, the concept for probing electron and hole transport in solids by using the EFISHG is discussed in comparison with the conventional time of flight (TOF) measurement. We then visualize carrier transit in organic devices, i.e. organic field effect transistors, organic light emitting diodes, organic solar cells, and others. We also show that visualizing an EFISHG microscopic image is a novel way for characterizing anisotropic carrier transport in organic thin films. We also discuss the concept of the detection of rotational dipolar motions in monolayers by means of the MDC measurement, which is capable of probing the change of dielectric spontaneous polarization formed by dipoles in organic monolayers. Finally we conclude that the ideas and experiments on EFISHG and MDC lead to a novel way of analyzing dynamical motions of electrons, holes, and dipoles in solids, and thus are available in organic electronic device application.
Dyadic Green's function of a cluster of spheres.
Moneda, Angela P; Chrissoulidis, Dimitrios P
2007-11-01
The electric dyadic Green's function (dGf) of a cluster of spheres is obtained by application of the superposition principle, dyadic algebra, and the indirect mode-matching method. The analysis results in a set of linear equations for the unknown, vector, wave amplitudes of the dGf; that set is solved by truncation and matrix inversion. The theory is exact in the sense that no simplifying assumptions are made in the analytical steps leading to the dGf, and it is general in the sense that any number, position, size and electrical properties can be considered for the spheres that cluster together. The point source can be anywhere, even within one of the spheres. Energy conservation, reciprocity, and other tests prove that this solution is correct. Numerical results are presented for an electric Hertz dipole radiating in the presence of an array of rexolite spheres, which manifests lensing and beam-forming capabilities.
Theoretical Electric Dipole Moments and Dissociation Energies for the Ground States of GaH-BrH
NASA Technical Reports Server (NTRS)
Pettersson, Lars G. M.; Langhoff, Stephen R.
1986-01-01
Reliable experimental diople moments are available for the ground states of SeH and BrH whereas no values have been reported for GaH and AsH a recently reported experimental dipole moment for GeH of 1.24 + or -0.01 D has been seriously questioned, and a much lower value of, 0.1 + or - 0.05 D, suggested. In this work, we report accurate theoretical dipole moments, dipole derivatives, dissociation energies, and spectroscopic constants (tau(sub e), omega(sub e)) for the ground states of GaH through BrH.
NASA Astrophysics Data System (ADS)
Vutha, A.; Horbatsch, M.; Hessels, E.
2018-01-01
We propose a very sensitive method for measuring the electric dipole moment of the electron using polar molecules embedded in a cryogenic solid matrix of inert-gas atoms. The polar molecules can be oriented in the $\\hat{\\rm{z}}$ direction by an applied electric field, as has recently been demonstrated by Park, et al. [Angewandte Chemie {\\bf 129}, 1066 (2017)]. The trapped molecules are prepared into a state which has its electron spin perpendicular to $\\hat{\\rm{z}}$, and a magnetic field along $\\hat{\\rm{z}}$ causes precession of this spin. An electron electric dipole moment $d_e$ would affect this precession due to the up to 100~GV/cm effective electric field produced by the polar molecule. The large number of polar molecules that can be embedded in a matrix, along with the expected long coherence times for the precession, allows for the possibility of measuring $d_e$ to an accuracy that surpasses current measurements by many orders of magnitude. Because the matrix can inhibit molecular rotations and lock the orientation of the polar molecules, it may not be necessary to have an electric field present during the precession. The proposed technique can be applied using a variety of polar molecules and inert gases, which, along with other experimental variables, should allow for careful study of systematic uncertainties in the measurement.
Control of Rydberg atom blockade by dc electric field orientation in a quasi-one-dimensional sample
NASA Astrophysics Data System (ADS)
Goncalves, Luís Felipe; Marcassa, Luis Gustavo
2017-04-01
Rydberg atoms posse a strong atom-atom interaction, which limits its density in an atomic sample. Such effect is known as Rydberg atom blockade. Here, we present a novel way to control such effect by direct orienting the induced atomic dipole moment using a dc external electrical field. To demonstrate it, we excite the 50S1 / 2 Rb atomic state in a quasi-one-dimensional sample held in a quasi-electrostatic trap. A pure nS state holds only van der Waals interaction at long range, but in the presence of an external electric field the state mixing leads to strong dipole-dipole interactions. We have measured the Rydberg atom population as a function of ground state atoms density for several angles between the electric field and the main axis of the unidimensional sample. The results indicate that the limit on the final Rydberg density can be controlled by electric field orientation. Besides, we have characterized the sample by using direct spatial ion imaging, demonstrating that it does behave as an unidimensional sample. This work was supported by Sao Paulo Research Foundation (FAPESP) Grants No. 2011/22309-8 and No. 2013/02816- 8, the U.S. Army Research Office Grant No. W911NF-15-1-0638 and CNPq.
Step-off, vertical electromagnetic responses of a deep resistivity layer buried in marine sediments
NASA Astrophysics Data System (ADS)
Jang, Hangilro; Jang, Hannuree; Lee, Ki Ha; Kim, Hee Joon
2013-04-01
A frequency-domain, marine controlled-source electromagnetic (CSEM) method has been applied successfully in deep water areas for detecting hydrocarbon (HC) reservoirs. However, a typical technique with horizontal transmitters and receivers requires large source-receiver separations with respect to the target depth. A time-domain EM system with vertical transmitters and receivers can be an alternative because vertical electric fields are sensitive to deep resistive layers. In this paper, a time-domain modelling code, with multiple source and receiver dipoles that are finite in length, has been written to investigate transient EM problems. With the use of this code, we calculate step-off responses for one-dimensional HC reservoir models. Although the vertical electric field has much smaller amplitude of signal than the horizontal field, vertical currents resulting from a vertical transmitter are sensitive to resistive layers. The modelling shows a significant difference between step-off responses of HC- and water-filled reservoirs, and the contrast can be recognized at late times at relatively short offsets. A maximum contrast occurs at more than 4 s, being delayed with the depth of the HC layer.
NASA Astrophysics Data System (ADS)
Long, Jinqiao; Wang, Tianman; Luo, Zhirong; Gao, Yong; Song, Baoling; Liang, Jing; Liao, Sen; Huang, Yingheng; Zhang, Huaxin
2017-08-01
A series of Na3Mo12PO40:xEu3+ phosphors have been successfully synthesized by a solid-state method, and characterized by powder x-ray diffraction (PXRD). The PXRD results confirm that the samples have crystal phases of Na3Mo12PO40. For PL spectra of Na3Mo12PO40:2.0Eu3+ excited by 394 and 465 nm, R (R is the peak area ratio of 5D0 → 7F2 to 5D0 → 7F1) is only 1.46 with an excitation of 394 nm, but increases to 3.03 with an excitation of 465 nm. Furthermore, a new enhancement of electric dipole transition is observed. Emission spectrum (PL) intensity at 617 nm excited by 465 nm is 1.95 times as high as the excitation spectrum (PLE) intensity at 465 nm. Thus, cooperative energy transfers from the magnetic dipole (MD) Eu3+ center to the electric dipole (ED) Eu3+ center when excited by 465 nm is demonstrated for the new fluorescent behavior.
Thermospheric Response to Solar Wind Electric Field Fluctuations
NASA Astrophysics Data System (ADS)
Perlongo, N. J.; Ridley, A. J.
2013-12-01
The electron density of the thermosphere is of paramount importance for radio communications and drag on low altitude satellites, particularly during geomagnetic storms. Transient enhancements of ion velocities and subsequent density and temperature increases frequently occur as a result of storm-driven solar wind electric field fluctuations. Since the Earth's dipole magnetic field is tilted and offset from the center of the planet, significant asymmetries arise that alter the thermospheric response to energy input based upon the time of day of the disturbance. This study utilizes the Global Ionosphere-Thermosphere Model (GITM) to investigate this phenomenon by enhancing the convective electric field for one hour of the day in 22 different simulations. An additional baseline run was conducted with no IMF perturbation. Furthermore, four configurations of Earth's magnetic field were considered, Internal Geomagnetic Reference Field (IGRF), a perfect dipole, a dipole tilted by 10 degrees, and a tilted and offset dipole. These runs were conducted at equinox when the amount of sunlight falling on the different hemispheres is the same. Two additional runs were conducted at the solstices for comparison. It was found that the most geo-effective times are when the poles are pointed towards the sun. The electron density, neutral density and temperature as well as the winds are explored.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
NASA Astrophysics Data System (ADS)
Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville
2017-01-01
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.
Optical magnetic mirrors without metals
Liu, Sheng; Sinclair, Michael B.; Mahony, Thomas S.; ...
2014-01-01
The reflection of an optical wave from metal, arising from strong interactions between the optical electric field and the free carriers of the metal, is accompanied by a phase reversal of the reflected electric field. A far less common route to achieving high reflectivity exploits strong interactions between the material and the optical magnetic field to produce a “magnetic mirror” that does not reverse the phase of the reflected electric field. At optical frequencies, the magnetic properties required for strong interaction can be achieved only by using artificially tailored materials. Here, we experimentally demonstrate, for the first time to themore » best of our knowledge, the magnetic mirror behavior of a low-loss all-dielectric metasurface at infrared optical frequencies through direct measurements of the phase and amplitude of the reflected optical wave. The enhanced absorption and emission of transverse-electric dipoles placed close to magnetic mirrors can lead to exciting new advances in sensors, photodetectors, and light sources.« less
NASA Astrophysics Data System (ADS)
Das, Suchandra; Musunuri, Naga; Kucheryavy, Pavel; Lockard, Jenny; Fischer, Ian; Singh, Pushpendra; New Jersey Institute of Technology Collaboration; Rutgers University Newark Collaboration
2017-11-01
We present a technique that uses an electric field in the direction normal to the interface for self-assembling monolayers of gold nanoparticles on fluid-liquid interfaces and freezing these monolayers onto the surface of a flexible thin film. The electric field gives rise to dipole-dipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another fluid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film. We are using these films for surface enhanced Raman scattering (SERS) applications. Initial measurements indicate improved performance over commercially available SERS substrates.
The permanent electric dipole moment of thorium sulfide, ThS.
Le, Anh; Heaven, Michael C; Steimle, Timothy C
2014-01-14
Numerous rotational lines of the {18.26}1-X(1)Σ(+) band system of thorium sulfide, ThS, were recorded near 547.6 nm at a resolution of approximately 30 MHz. Measurements were made under field-free conditions, and in the presence of a static electric field. The field-free spectrum was analyzed to produce rotational and Λ-doubling parameters. The Stark shifts induced by the electric field were analyzed to determine permanent electric dipole moments, μ⃗el, of 4.58(10) D and 6.72(5) D for the X(1)Σ(+) (v = 0) and {18.26}1 states, respectively. The results are compared with the predictions of previous and new electronic structure calculations for ThS, and the properties of isovalent ThO.
The ISEE-1 and ISEE-2 plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Scarf, F. L.; Fredricks, R. W.; Smith, E. J.
1978-01-01
The ISEE-1 and ISEE-2 plasma wave experiments are designed to provide basic information on wave-particle interactions in the earth's magnetosphere and in the solar wind. The ISEE-1 plasma wave instrument uses three electric dipole antennas with lengths of 215, 73.5 and 0.61 m for electric field measurements, and a triaxial search coil antenna for magnetic field measurements. The ISEE-2 instrument uses two electric dipole antennas with lengths of 30 and 0.61 m for electric field measurements and a single-axis search coil antenna for magnetic field measurements. The primary scientific objectives of the experiments are described, including the resolution of space-time relationships of plasma wave phenomena and VLBI studies. The instrumentation is described, with emphasis on the antennas and the electronics.
Burghardt, T P; Thompson, N L
1984-01-01
We consider the effect of planar dielectric interfaces (e.g., solid/liquid) on the fluorescence emission of nearby probes. First, we derive an integral expression for the electric field radiated by an oscillating electric dipole when it is close to a dielectric interface. The electric field depends on the refractive indices of the interface, the orientation of the dipole, the distance from the dipole to the interface, and the position of observation. We numerically calculate the electric field intensity for a dipole on an interface, as a function of observation position. These results are applicable to fluorescent molecules excited by the evanescent field of a totally internally reflected laser beam and thus very close to a solid/liquid interface. Next, we derive an integral expression for the electric field radiated when a second dielectric interface is also close to the fluorescent molecule. We numerically calculate this intensity as observed through the second interface. These results are useful when the fluorescence is collected by a high-aperture microscope objective. Finally, we define and calculate a "dichroic factor," which describes the efficiency of collection, in the two-interface system, of polarized fluorescence. The limit when the first interface is removed is applicable for any high-aperture collection of polarized or unpolarized fluorescence. The limit when the second interface is removed has application in the collection of fluorescence with any aperture from molecules close to a dielectric interface. The results of this paper are required for the interpretation of order parameter measurements on fluorescent probes in supported phospholipid monolayers (Thompson, N.L., H. M. McConnell, and T. P. Burghardt, 1984, Biophys. J., 46:739-747). PMID:6518253
Velikonja, Aljaž; Perutkova, Šarka; Gongadze, Ekaterina; Kramar, Peter; Polak, Andraž; Maček-Lebar, Alenka; Iglič, Aleš
2013-01-01
The lipid bilayer is a basic building block of biological membranes and can be pictured as a barrier separating two compartments filled with electrolyte solution. Artificial planar lipid bilayers are therefore commonly used as model systems to study the physical and electrical properties of the cell membranes in contact with electrolyte solution. Among them the glycerol-based polar phospholipids which have dipolar, but electrically neutral head groups, are most frequently used in formation of artificial lipid bilayers. In this work the electrical properties of the lipid layer composed of zwitterionic lipids with non-zero dipole moments are studied theoretically. In the model, the zwitterionic lipid bilayer is assumed to be in contact with aqueous solution of monovalent salt ions. The orientational ordering of water, resulting in spatial variation of permittivity, is explicitly taken into account. It is shown that due to saturation effect in orientational ordering of water dipoles the relative permittivity in the zwitterionic headgroup region is decreased, while the corresponding electric potential becomes strongly negative. Some of the predictions of the presented mean-field theoretical consideration are critically evaluated using the results of molecular dynamics (MD) simulation. PMID:23434651
The electric dipole moment of the A2Π state of ScO
NASA Astrophysics Data System (ADS)
Rice, S. F.; Field, R. W.
1986-10-01
The electric dipole moment of the A2Π state ( v = 1) of ScO is determined to be 4.13 ± 0.21 D in A 2Π{3}/{2} and 4.25 ± 0.25 D (2σ uncertainties) in A 2Π{1}/{2} by laser induced fluorescence excitation spectroscopy of the RQ 24 + RR 24 (1) and PP 1G + PQ 1G (1) ( G = 3 or 4 where G I + S) lines in the presence of a large homogeneous electric field. The positions of low- J lines in the A2Π - X2Σ + (1,0) band are also reported.
NASA Astrophysics Data System (ADS)
Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.
2016-08-01
The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1-2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.
The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR database.
Takashima, S; Yamaoka, K
1999-08-30
Electric birefringence measurements indicated the presence of a large permanent dipole moment in HU protein-DNA complex. In order to substantiate this observation, numerical computation of the dipole moment of HU protein homodimer was carried out by using NMR protein databases. The dipole moments of globular proteins have hitherto been calculated with X-ray databases and NMR data have never been used before. The advantages of NMR databases are: (a) NMR data are obtained, unlike X-ray databases, using protein solutions. Accordingly, this method eliminates the bothersome question as to the possible alteration of the protein structure due to the transition from the crystalline state to the solution state. This question is particularly important for proteins such as HU protein which has some degree of internal flexibility; (b) the three-dimensional coordinates of hydrogen atoms in protein molecules can be determined with a sufficient resolution and this enables the N-H as well as C = O bond moments to be calculated. Since the NMR database of HU protein from Bacillus stearothermophilus consists of 25 models, the surface charge as well as the core dipole moments were computed for each of these structures. The results of these calculations show that the net permanent dipole moments of HU protein homodimer is approximately 500-530 D (1 D = 3.33 x 10(-30) Cm) at pH 7.5 and 600-630 D at the isoelectric point (pH 10.5). These permanent dipole moments are unusually large for a small protein of the size of 19.5 kDa. Nevertheless, the result of numerical calculations is compatible with the electro-optical observation, confirming a very large dipole moment in this protein.
MUSIC electromagnetic imaging with enhanced resolution for small inclusions
NASA Astrophysics Data System (ADS)
Chen, Xudong; Zhong, Yu
2009-01-01
This paper investigates the influence of the test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC does not apply.
A new MUSIC electromagnetic imaging method with enhanced resolution for small inclusions
NASA Astrophysics Data System (ADS)
Zhong, Yu; Chen, Xudong
2008-11-01
This paper investigates the influence of test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply.
Electric dipole transitions for four-times ionized cerium (Ce V)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usta, Betül Karaçoban, E-mail: bkaracoban@sakarya.edu.tr; Akgün, Elif, E-mail: elif.akgun@ogr.sakarya.edu.tr; Alparslan, Büşra, E-mail: busra.alparslan1@ogr.sakarya.edu.tr
2016-03-25
We have calculated the transition parameters, such as wavelengths, oscillator strengths, and transition probabilities (or rates), for the electric dipole (E1) transitions in four-times ionized cerium (Ce V, Z = 58) by using the multiconfiguration Hartree-Fock method within the framework of Breit-Pauli (MCHF+BP) relativistic corrections and the relativistic Hartree-Fock (HFR) method. The obtained results have been compared with other works available in literature. A discussion of these calculations for Ce V in this study has also been in view of the MCHF+BP and HFR methods.
Stark Interference of Electric and Magnetic Dipole Transitions in the A-X Band of OH.
Schewe, H Christian; Zhang, Dongdong; Meijer, Gerard; Field, Robert W; Sartakov, Boris G; Groenenboom, Gerrit C; van der Avoird, Ad; Vanhaecke, Nicolas
2016-04-15
An experimental method is demonstrated that allows determination of the ratio between the electric (E1) and magnetic (M1) transition dipole moments in the A-X band of OH, including their relative sign. Although the transition strengths differ by more than 3 orders of magnitude, the measured M1-to-E1 ratio agrees with the ratio of the ab initio calculated values to within 3%. The relative sign is found to be negative, also in agreement with theory.
The permanent electric dipole moment of chromium monoxide
NASA Technical Reports Server (NTRS)
Steimle, Timothy C.; Nachman, David F.; Shirley, Jeffrey E.; Bauschlicher, Charles W.; Langhoff, Stephen R.
1989-01-01
The permanent electric dipole moments for the X 5Pi and B 5pi states of gas-phase CrO have been experimentally determined using the sub-Doppler optical technique of intermodulated fluorescence spectroscopy in conjunction with the Stark effect. The measured values are 3.88 + or - 0.13 and 4.1 + or - 1.8 D for the X and B states, respectively. The theoretical values determined for the X state using multireference CI iterative-natural-orbital and finite-field calculations are in excellent agreement with the experimental value.
Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.
Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S
2016-05-05
Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.
Search for an Electric Dipole Moment (EDM) of 199Hg
NASA Astrophysics Data System (ADS)
Heckel, Blayne
2017-04-01
The observation of a non-zero EDM of an atom or elementary particle, at current levels of experimental sensitivity, would imply CP violation beyond the CKM matrix of the standard model of particle physics. Additional sources of CP violation have been proposed to help explain the excess of matter over anti-matter in our universe and the magnitude of ΘQCD, the strength of CP violation in the strong interaction, remains unknown. We have recently completed a set of measurements on the EDM of 199Hg, sensitive to both new sources of CP violation and ΘQCD. The experiment compares the phase accumulated by precessing Hg spins in vapor cells with electric fields parallel and anti-parallel to a common magnetic field. Our new result represents a factor of 5 improvement over previous results. A description of the EDM experiment, data, systematic error considerations will be presented. This work was supported by NSF Grant No. 1306743 and by the DOE Office of Nuclear Physics under Award No. DE-FG02-97ER41020.
Park, SangWook; Kim, Minhyuk
2016-01-01
In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines.
Kim, Minhyuk
2016-01-01
In this paper, a numerical exposure assessment method is presented for a quasi-static analysis by the use of finite-difference time-domain (FDTD) algorithm. The proposed method is composed of scattered field FDTD method and quasi-static approximation for analyzing of the low frequency band electromagnetic problems. The proposed method provides an effective tool to compute induced electric fields in an anatomically realistic human voxel model exposed to an arbitrary non-uniform field source in the low frequency ranges. The method is verified, and excellent agreement with theoretical solutions is found for a dielectric sphere model exposed to a magnetic dipole source. The assessment method serves a practical example of the electric fields, current densities, and specific absorption rates induced in a human head and body in close proximity to a 150-kHz wireless power transfer system for cell phone charging. The results are compared to the limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the IEEE standard guidelines. PMID:27898688
Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking.
Picardi, Michela F; Zayats, Anatoly V; Rodríguez-Fortuño, Francisco J
2018-03-16
Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.
Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking
NASA Astrophysics Data System (ADS)
Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.
2018-03-01
Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.
Low-frequency RF Coupling To Unconventional (Fat Unbalanced) Dipoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, M M; Brown, C G; Perkins, M P
2010-12-07
The report explains radio frequency (RF) coupling to unconventional dipole antennas. Normal dipoles have thin equal length arms that operate at maximum efficiency around resonance frequencies. In some applications like high-explosive (HE) safety analysis, structures similar to dipoles with ''fat'' unequal length arms must be evaluated for indirect-lightning effects. An example is shown where a metal drum-shaped container with HE forms one arm and the detonator cable acts as the other. Even if the HE is in a facility converted into a ''Faraday cage'', a lightning strike to the facility could still produce electric fields inside. The detonator cable concentratesmore » the electric field and carries the energy into the detonator, potentially creating a hazard. This electromagnetic (EM) field coupling of lightning energy is the indirect effect of a lightning strike. In practice, ''Faraday cages'' are formed by the rebar of the concrete facilities. The individual rebar rods in the roof, walls and floor are normally electrically connected because of the construction technique of using metal wire to tie the pieces together. There are two additional requirements for a good cage. (1) The roof-wall joint and the wall-floor joint must be electrically attached. (2) All metallic penetrations into the facility must also be electrically connected to the rebar. In this report, it is assumed that these conditions have been met, and there is no arcing in the facility structure. Many types of detonators have metal ''cups'' that contain the explosives and thin electrical initiating wires, called bridge wires mounted between two pins. The pins are connected to the detonator cable. The area of concern is between the pins supporting the bridge wire and the metal cup forming the outside of the detonator. Detonator cables usually have two wires, and in this example, both wires generated the same voltage at the detonator bridge wire. This is called the common-mode voltage. The explosive component inside a detonator is relatively sensitive, and any electrical arc is a concern. In a safety analysis, the pin-to-cup voltage, i.e., detonator voltage, must be calculated to decide if an arc will form. If the electric field is known, the voltage between any two points is simply the integral of the field along a line between the points. Eq. 1.1. For simplicity, it is assumed that the electric field and dipole elements are aligned. Calculating the induced detonator voltage is more complex because of the field concentration caused by metal components. If the detonator cup is not electrically connected to the metal HE container, the portion of the voltage generated by the dipole at the detonator will divide between the container-to-cup and cup-to-pin gaps. The gap voltages are determined by their capacitances. As a simplification, it will be assumed the cup is electrically attached, short circuited, to the HE container. The electrical field in the pin-to-cup area is determined by the field near the dipole, the length of the dipole, the shape of the arms, and the orientation of the arms. Given the characteristics of a lightning strike and the inductance of the facility, the electric fields in the ''Faraday cage'' can be calculated. The important parameters for determining the voltage in an empty facility are the inductance of the rebars and the rate of change of the current, Eq. 1.3. The internal electric fields are directly related to the facility voltages, however, the electric fields in the pin-to-cup space is much higher than the facility fields because the antenna will concentrate the fields covered by the arms. Because the lightning current rise-time is different for every strike, the maximum electric field and the induced detonator voltage should be described by probability distributions. For pedantic purposes, the peak field in the simulations will be simply set to 1 V/m. Lightning induced detonator voltages can be calculated by scaling up with the facility fields. Any metal object around the explosives, such as a work stand, will also distort the electric fields. A computer simulation of the electric fields in a facility with a work stand and HE container is shown. In this configuration, the work stand is grounded, and the intensity of field around the HE (denoted in dark blue) is reduced relative to the rest of the work bay (denoted lighter blue). The area above work stand posts has much higher fields indicated by red. The fields on top of the container are also affected. Without an understanding of how the electric fields are distributed near the detonator cable and container, it is not possible to calculate the induced detonator voltage. The average lightning current has rise- and fall-times of 3 us and 50 us respectively, and this translates to a wavelength that is long when compared with the length of the HE container or detonator cable.« less
The Galileo plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Kurth, W. S.; Shaw, R. R.; Roux, A.; Gendrin, R.; Kennel, C. F.; Scarf, F. L.; Shawhan, S. D.
1992-01-01
The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10 percent, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.
Spectral structure of the pygmy dipole resonance.
Tonchev, A P; Hammond, S L; Kelley, J H; Kwan, E; Lenske, H; Rusev, G; Tornow, W; Tsoneva, N
2010-02-19
High-sensitivity studies of E1 and M1 transitions observed in the reaction 138Ba(gamma,gamma{'}) at energies below the one-neutron separation energy have been performed using the nearly monoenergetic and 100% linearly polarized photon beams of the HIgammaS facility. The electric dipole character of the so-called "pygmy" dipole resonance was experimentally verified for excitations from 4.0 to 8.6 MeV. The fine structure of the M1 "spin-flip" mode was observed for the first time in N=82 nuclei.
Giant Dipole Resonance in light and heavy nuclei beyond selfconsistent mean field theory
NASA Astrophysics Data System (ADS)
Krewald, Siegfried; Lyutorovich, Nikolay; Tselyaev, Victor; Speth, Josef; Gruemmer, Frank; Reinhard, Paul-Gerhard
2012-10-01
While bulk properties of stable nuclei are successfully reproduced by mean-field theories employing effective interactions, the dependence of the centroid energy of the electric giant dipole resonance on the nucleon number A is not. This problem is cured by considering many-particle correlations beyond mean-field theory, which we do within a selfconsistent generalization of the Quasiparticle Time Blocking Approximation [1,2]. The electric giant dipole resonances in ^16O, ^40Ca, and ^208Pb are calculated using two new Skyrme interactions. Perspectives for an extension to effective field theories[3] are discussed.[4pt] [1] V. Tselyaev et al., Phys.Rev.C75, 014315(2007).[0pt] [2] N. Lyutorovich et al., submitted to Phys.Rev.Lett.[0pt] [3] S. Krewald et al., Prog.Part.Nucl.Phys.67, 322(2012).
Excitonic giant-dipole potentials in cuprous oxide
NASA Astrophysics Data System (ADS)
Kurz, Markus; Grünwald, Peter; Scheel, Stefan
2017-06-01
In this paper we predict the existence of a novel species of Wannier excitons when exposed to crossed electric and magnetic fields. In particular, we present a theory of giant-dipole excitons in Cu2O in crossed fields. Within our theoretical approach we perform a pseudoseparation of the center-of-mass motion for the field-dressed excitonic species, thereby obtaining an effective single-particle Hamiltonian for the relative motion. For arbitrary gauge fields we exactly separate the gauge-dependent kinetic-energy terms from the effective single-particle interaction potential. Depending on the applied field strengths and the specific field orientation, the potential for the relative motion of electron and hole exhibits an outer well at spatial separations up to several micrometers and depths up to 380 μ eV , leading to possible permanent excitonic electric dipole moments of around 3 ×106 D.
Charge induced enhancement of adsorption for hydrogen storage materials
NASA Astrophysics Data System (ADS)
Sun, Xiang
2009-12-01
The rising concerns about environmental pollution and global warming have facilitated research interest in hydrogen energy as an alternative energy source. To apply hydrogen for transportations, several issues have to be solved, within which hydrogen storage is the most critical problem. Lots of materials and devices have been developed; however, none is able to meet the DOE storage target. The primary issue for hydrogen physisorption is a weak interaction between hydrogen and the surface of solid materials, resulting negligible adsorption at room temperature. To solve this issue, there is a need to increase the interaction between the hydrogen molecules and adsorbent surface. In this study, intrinsic electric dipole is investigated to enhance the adsorption energy. The results from the computer simulation of single ionic compounds with hydrogen molecules to form hydrogen clusters showed that electrical charge of substances plays an important role in generation of attractive interaction with hydrogen molecules. In order to further examine the effects of static interaction on hydrogen adsorption, activated carbon with a large surface area was impregnated with various ionic salts including LiCl, NaCl, KCl, KBr, and NiCl2 and their performance for hydrogen storage was evaluated by using a volumetric method. Corresponding computer simulations have been carried out by using DFT (Density Functional Theory) method combined with point charge arrays. Both experimental and computational results prove that the adsorption capacity of hydrogen and its interaction with the solid materials increased with electrical dipole moment. Besides the intrinsic dipole, an externally applied electric field could be another means to enhance hydrogen adsorption. Hydrogen adsorption under an applied electric field was examined by using porous nickel foil as electrodes. Electrical signals showed that adsorption capacity increased with the increasing of gas pressure and external electric voltage. Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy. Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.
Dipolar ordering and glassy freezing in methanol-{beta}-hydroquinone-clathrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woll, H.; Rheinstadter, M. C.; Kruchten, F.
2001-06-01
The dielectric, structural, and thermodynamic properties of single crystals of methanol-{beta}-hydroquinone-clathrates have been studied as function of temperature and of the concentration x of the polar guest molecules. At higher temperatures the dielectric response along the threefold crystal axis is of the quasi-one-dimensional Ising type. At lower temperatures the higher concentrated samples order antiferroelectrically whereas the lower concentrated ones freeze into dipole glasses. The behavior is interpreted in terms of the methanol dipole moments coupled by the electric dipole-dipole interaction which is highly frustrated because of the rhombohedral symmetry of the lattice. The dielectric relaxations have been analyzed.
Vortical structures for nanomagnetic memory induced by dipole-dipole interaction in monolayer disks
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ciftja, Orion; Zhang, Xichao; Zhou, Yan; Ian, Hou
2018-05-01
It is well known that magnetic domains in nanodisks can be used as storage units for computer memory. Using two quantum simulation approaches, we show here that spin vortices on magnetic monolayer nanodisks, which are chirality-free, can be induced by dipole-dipole interaction (DDI) on the disk-plane. When DDI is sufficiently strong, vortical and anti-vortical multi-domain textures can be generated simultaneously. Especially, a spin vortex can be easily created and deleted through either external magnetic or electrical signals, making them ideal to be used in nanomagnetic memory and logical devices. We demonstrate these properties in our simulations.
Interior and exterior sound field control using general two-dimensional first-order sources.
Poletti, M A; Abhayapala, T D
2011-01-01
Reproduction of a given sound field interior to a circular loudspeaker array without producing an undesirable exterior sound field is an unsolved problem over a broadband of frequencies. At low frequencies, by implementing the Kirchhoff-Helmholtz integral using a circular discrete array of line-source loudspeakers, a sound field can be recreated within the array and produce no exterior sound field, provided that the loudspeakers have azimuthal polar responses with variable first-order responses which are a combination of a two-dimensional (2D) monopole and a radially oriented 2D dipole. This paper examines the performance of circular discrete arrays of line-source loudspeakers which also include a tangential dipole, providing general variable-directivity responses in azimuth. It is shown that at low frequencies, the tangential dipoles are not required, but that near and above the Nyquist frequency, the tangential dipoles can both improve the interior accuracy and reduce the exterior sound field. The additional dipoles extend the useful range of the array by around an octave.
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenglian; Guo, Yongning
2014-10-01
The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.
Magnetic and Electric Transverse Spin Density of Spatially Confined Light
NASA Astrophysics Data System (ADS)
Neugebauer, Martin; Eismann, Jörg S.; Bauer, Thomas; Banzer, Peter
2018-04-01
When a beam of light is laterally confined, its field distribution can exhibit points where the local magnetic and electric field vectors spin in a plane containing the propagation direction of the electromagnetic wave. The phenomenon indicates the presence of a nonzero transverse spin density. Here, we experimentally investigate this transverse spin density of both magnetic and electric fields, occurring in highly confined structured fields of light. Our scheme relies on the utilization of a high-refractive-index nanoparticle as a local field probe, exhibiting magnetic and electric dipole resonances in the visible spectral range. Because of the directional emission of dipole moments that spin around an axis parallel to a nearby dielectric interface, such a probe particle is capable of locally sensing the magnetic and electric transverse spin density of a tightly focused beam impinging under normal incidence with respect to said interface. We exploit the achieved experimental results to emphasize the difference between magnetic and electric transverse spin densities.
Llinás, Rodolfo R.; Ustinin, Mikhail N.; Rykunov, Stanislav D.; Boyko, Anna I.; Sychev, Vyacheslav V.; Walton, Kerry D.; Rabello, Guilherme M.; Garcia, John
2015-01-01
A new method for the analysis and localization of brain activity has been developed, based on multichannel magnetic field recordings, over minutes, superimposed on the MRI of the individual. Here, a high resolution Fourier Transform is obtained over the entire recording period, leading to a detailed multi-frequency spectrum. Further analysis implements a total decomposition of the frequency components into functionally invariant entities, each having an invariant field pattern localizable in recording space. The method, addressed as functional tomography, makes it possible to find the distribution of magnetic field sources in space. Here, the method is applied to the analysis of simulated data, to oscillating signals activating a physical current dipoles phantom, and to recordings of spontaneous brain activity in 10 healthy adults. In the analysis of simulated data, 61 dipoles are localized with 0.7 mm precision. Concerning the physical phantom the method is able to localize three simultaneously activated current dipoles with 1 mm precision. Spatial resolution 3 mm was attained when localizing spontaneous alpha rhythm activity in 10 healthy adults, where the alpha peak was specified for each subject individually. Co-registration of the functional tomograms with each subject's head MRI localized alpha range activity to the occipital and/or posterior parietal brain region. This is the first application of this new functional tomography to human brain activity. The method successfully provides an overall view of brain electrical activity, a detailed spectral description and, combined with MRI, the localization of sources in anatomical brain space. PMID:26528119
Corrected body surface potential mapping.
Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland
2007-02-01
In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.
NASA Technical Reports Server (NTRS)
Kong, J. A.; Tsang, L.
1974-01-01
A series of interference and radiation patterns are presented for radio interferometry in subsurface probing. The interference patterns are due both to a vertical magnetic dipole and to a horizontal electric dipole. Mode solutions are also presented for layer thickness equal to 1 wavelength, as well as for thin layers.
Stavtsev, A Iu; Ushakov, V L
2010-01-01
The results of comparing the solutions of the direct task of electroencephalography on a spherical model and a spherical model with one nonuniformity are discussed. The nonuniformity was simulated by two parabolas situated on the same axis of symmetry and crossing the boundary of the gray and white matters. The region between the larger and the smaller parabolas had the physical characteristics of the gray matter, and the region inside the smaller parabola had the characteristics of the cerebrospinal fluid. The task was to find a combination of the parameters (the distance between the dipole and the nonuniformity, the angle of rotation of the dipole relative to the nonuniformity, the sizes of the dipole and the nonuniformity, etc.) that provides the maximum effect of the difference of potentials on the outer surface of the scalp in the spherical model with one nonuniformity and the spherical model. The influence of the points of ground location on the value of the effect was analyzed (ground only at the right ear and ground at both ears). The data obtained show that a maximum difference of potentials is reached at the positions of dipoles close to tangential relative to the scalp surface.
Static electric dipole polarizability of lithium atoms in Debye plasmas
NASA Astrophysics Data System (ADS)
Ning, Li-Na; Qi, Yue-Ying
2012-12-01
The static electric dipole polarizabilities of the ground state and n <= 3 excited states of a lithium atom embedded in a weekly coupled plasma environment are investigated as a function of the plasma screening radium. The plasma screening of the Coulomb interaction is described by the Debye—Hückel potential and the interaction between the valence electron and the atomic core is described by a model potential. The electron energies and wave functions for both the bound and continuum states are calculated by solving the Schrödinger equation numerically using the symplectic integrator. The oscillator strengths, partial-wave, and total static dipole polarizabilities of the ground state and n <= 3 excited states of the lithium atom are calculated. Comparison of present results with those of other authors, when available, is made. The results for the 2s ground state demonstrated that the oscillator strengths and the static dipole polarizabilities from np orbitals do not always increase or decrease with the plasma screening effect increasing, unlike that for hydrogen-like ions, especially for 2s→3p transition there is a zero value for both the oscillator strength and the static dipole polarizability for screening length D = 10.3106a0, which is associated with the Cooper minima.
Local electric dipole moments: A generalized approach.
Groß, Lynn; Herrmann, Carmen
2016-09-30
We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, "naively" defined local dipole moments are origin-dependent. Inspired by previous work based on Bader's atoms-in-molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin-independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Incipient ferroelectricity of water molecules confined to nano-channels of beryl
NASA Astrophysics Data System (ADS)
Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.
2016-09-01
Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.
NASA Astrophysics Data System (ADS)
Almurshedi, Ahmed; Ismail, Abd Khamim
2015-04-01
EEG source localization was studied in order to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes using EEGLAB with Independent Component Analysis (ICA) algorithm. Neuron source locations are responsible in generating current dipoles in different states of brain through the measured potentials. The current dipole sources localization are measured by fitting an equivalent current dipole model using a non-linear optimization technique with the implementation of standardized boundary element head model. To fit dipole models to ICA components in an EEGLAB dataset, ICA decomposition is performed and appropriate components to be fitted are selected. The topographical scalp distributions of delta, theta, alpha, and beta power spectrum and cross coherence of EEG signals are observed. In close eyes condition it shows that during resting and action states of brain, alpha band was activated from occipital (O1, O2) and partial (P3, P4) area. Therefore, parieto-occipital area of brain are active in both resting and action state of brain. However cross coherence tells that there is more coherence between right and left hemisphere in action state of brain than that in the resting state. The preliminary result indicates that these potentials arise from the same generators in the brain.
The electromagnetic radiation from simple sources in the presence of a homogeneous dielectric sphere
NASA Technical Reports Server (NTRS)
Mason, V. B.
1973-01-01
In this research, the effect of a homogeneous dielectric sphere on the electromagnetic radiation from simple sources is treated as a boundary value problem, and the solution is obtained by the technique of dyadic Green's functions. Exact representations of the electric fields in the various regions due to a source located inside, outside, or on the surface of a dielectric sphere are formulated. Particular attention is given to the effect of sphere size, source location, dielectric constant, and dielectric loss on the radiation patterns and directivity of small spheres (less than 5 wavelengths in diameter) using the Huygens' source excitation. The computed results are found to closely agree with those measured for waveguide-excited plexiglas spheres. Radiation patterns for an extended Huygens' source and for curved electric dipoles located on the sphere's surface are also presented. The resonance phenomenon associated with the dielectric sphere is studied in terms of the modal representation of the radiated fields. It is found that when the sphere is excited at certain frequencies, much of the energy is radiated into the sidelobes. The addition of a moderate amount of dielectric loss, however, quickly attenuates this resonance effect. A computer program which may be used to calculate the directivity and radiation pattern of a Huygens' source located inside or on the surface of a lossy dielectric sphere is listed.
Guarendi, Andrew N; Chandy, Abhilash J
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
Guarendi, Andrew N.; Chandy, Abhilash J.
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870
Electromagnetic surveying of seafloor mounds in the northern Gulf of Mexico
Ellis, M.; Evans, R.L.; Hutchinson, D.; Hart, P.; Gardner, J.; Hagen, R.
2008-01-01
Seafloor controlled source electromagnetic data, probing the uppermost 30 m of seafloor sediments, have been collected with a towed magnetic dipole-dipole system across two seafloor mounds at approximately 1300 m water depth in the northern Gulf of Mexico. One of these mounds was the focus of??a recent gas hydrate research drilling program. Rather than the highly resistive response expected of massive gas hydrate within the confines of the mounds, the EM data are dominated by the effects of raised temperatures and pore fluid salinities that result in an electrically conductive seafloor. This structure suggests that fluid advection towards the seafloor is taking place beneath both mounds. Similar responses are seen at discrete locations away from the mounds in areas that might be associated with faults, further suggesting substantial shallow fluid circulation. Raised temperatures and salinities may inhibit gas hydrate formation at depth as has been suggested at other similar locations in the Gulf of Mexico.
Purification of ^4He through Differential Evaporation
NASA Astrophysics Data System (ADS)
Dubose, F.; Haase, D. G.; Huffman, P. R.
2008-10-01
The neutron electric dipole moment (nEDM) experiment, to be housed at the Spallation Neutron Source at Oak Ridge National Laboratories, will probe for a dipole moment at the level of 10-28 e cm. As part of the measurement process, neutrons precess in an environment of isotopically pure helium, doped with polarized ^3He. After this ^3He depolarizes it must be removed. We are developing an evaporative purification technique for this removal, lowering the concentration of ^3He in ^4He from 10-8 to 10-10, at an operating temperature of 300 -- 350 mK. Because the vapor pressure of ^3He is enhanced at temperatures below 500mK, ^3He atoms can be preferentially removed from the solution. The purifier requires a large liquid surface area, while minimizing superfluid film flow. The evaporated atoms are adsorbed on activated charcoal. We have built a device to measure ^3He/^4He ratios using a leak detector mass spectrometer and a residual gas analyzer.
Pizzagalli, D; Lehmann, D; Gianotti, L; Koenig, T; Tanaka, H; Wackermann, J; Brugger, P
2000-12-22
The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation.
Theoretical simulation of the multipole seismoelectric logging while drilling
NASA Astrophysics Data System (ADS)
Guan, Wei; Hu, Hengshan; Zheng, Xiaobo
2013-11-01
Acoustic logging-while-drilling (LWD) technology has been commercially used in the petroleum industry. However it remains a rather difficult task to invert formation compressional and shear velocities from acoustic LWD signals due to the unwanted strong collar wave, which covers or interferes with signals from the formation. In this paper, seismoelectric LWD is investigated for solving that problem. The seismoelectric field is calculated by solving a modified Poisson's equation, whose source term is the electric disturbance induced electrokinetically by the travelling seismic wave. The seismic wavefield itself is obtained by solving Biot's equations for poroelastic waves. From the simulated waveforms and the semblance plots for monopole, dipole and quadrupole sources, it is found that the electric field accompanies the collar wave as well as other wave groups of the acoustic pressure, despite the fact that seismoelectric conversion occurs only in porous formations. The collar wave in the electric field, however, is significantly weakened compared with that in the acoustic pressure, in terms of its amplitude relative to the other wave groups in the full waveforms. Thus less and shallower grooves are required to damp the collar wave if the seismoelectric LWD signals are recorded for extracting formation compressional and shear velocities.
The electric dipole moment of cobalt monoxide, CoO.
Zhuang, Xiujuan; Steimle, Timothy C
2014-03-28
A number of low-rotational lines of the E(4)Δ7/2 ← X(4)Δ7/2 (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h7/2, and the electron quadrupole parameter, eQq0, for the E(4)Δ7/2(υ = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, μ(→)(el), for the X(4)Δ7/2 (υ = 0) and E(4)Δ7/2 (υ = 1) states were determined to be 4.18 ± 0.05 D and 3.28 ± 0.05 D, respectively, from the analysis of the observed Stark spectra of F' = 7 ← F″ = 6 branch feature in the Q(7/2) line and the F' = 8 ← F″ = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.
Axion Induced Oscillating Electric Dipole Moment of the Electron
Hill, Christopher T.
2016-01-12
A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10 -32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ ta(t) ∝ m α → 0. The analysis is subtle, and we find the general form of the action involves a local contact interactionmore » and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (m e >> m a). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less
Axion Induced Oscillating Electric Dipole Moment of the Electron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Christopher T.
A cosmic axion, via the electromagnetic anomaly, induces an oscillating electric dipole for the electron of frequency ma and strength ~(few) x 10 -32 e-cm, two orders of magnitude above the nucleon, and within a few orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, ∂ ta(t) ∝ m α → 0. The analysis is subtle, and we find the general form of the action involves a local contact interactionmore » and a nonlocal contribution, analogous to the “transverse current” in QED, that enforces the decoupling limit. We carefully derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi’s heavy quark formalism adapted to the “heavy electron” (m e >> m a). We compute the electric dipole radiation emitted by free electrons, magnets and currents, immersed in the cosmic axion field, and discuss experimental configurations that may yield a detectable signal.« less
NASA Astrophysics Data System (ADS)
Babb, James F.
2015-08-01
The dynamic electric dipole polarizability function for the magnesium atom is formed by assembling the atomic electric dipole oscillator strength distribution from combinations of theoretical and experimental data for resonance oscillator strengths and for photoionization cross sections of valence and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires the adopted principal resonance line oscillator strength to be several percent lower than the values given in two critical tabulations, though the value adopted is consistent with a number of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dynamic polarizability as a function of the photon energy with more elaborate calculations reveals the contributions of inner shell electron excitations. The present results are applied to calculate the long-range interactions between two and three magnesium atoms and the interaction between a magnesium atom and a perfectly conducting metallic plate. Extensive comparisons of prior results for the principal resonance line oscillator strength, for the static polarizability, and for the van der Waals coefficient are given in the Appendix.
Radiation patterns of interfacial dipole antennas
NASA Technical Reports Server (NTRS)
Engheta, N.; Papas, C. H.; Elachi, C.
1982-01-01
The radiation pattern of an infinitesimal electric dipole is calculated for the case where the dipole is vertically located on the plane interface of two dielectric half spaces and for the case where the dipole is lying horizontally along the interface. For the vertical case, it is found that the radiation pattern has nulls at the interface and along the dipole axis. For the horizontal case, it is found that the pattern has a null at the interface; that the pattern in the upper half space, whose index of refraction is taken to be less than that of the lower half space, has a single lobe whose maximum is normal to the interface; and that in the lower half space, in the plane normal to the interface and containing the dipole, the pattern has three lobes, whereas in the plane normal to the interface and normally bisecting the dipole, the pattern has two maxima located symmetrically about a minimum. Interpretation of these results in terms of the Cerenkov effect is given.
NASA Astrophysics Data System (ADS)
Commer, M.; Kowalsky, M. B.; Dafflon, B.; Wu, Y.; Hubbard, S. S.
2013-12-01
Geologic carbon sequestration is being evaluated as a means to mitigate the effects of greenhouse gas emissions. Efforts are underway to identify adequate reservoirs and to evaluate the behavior of injected CO2 over time; time-lapse geophysical methods are considered effective tools for these purposes. Pilot studies have shown that the invasion of CO2 into a background pore fluid can alter the electrical resistivity, with increases from CO2 in the super-critical or gaseous phase, and decreases from CO2 dissolved in groundwater (especially when calcite dissolution is occurring). Because of their sensitivity to resistivity changes, electrical and electromagnetic (EM) methods have been used in such studies for indirectly assessing CO2 saturation changes. While the electrical resistance tomography (ERT) method is a well-established technique for both crosswell and surface applications, its usefulness is limited by the relatively low-resolution information it provides. Controlled-source EM methods, including both frequency-domain and time-domain (transient EM) methods, can offer improved resolution. We report on three studies that aim to maximize the information content of electrical and electromagnetic measurements in inverse modeling applications that target the monitoring of resistivity changes due to CO2 migration and/or leakage. The first study considers a three-dimensional crosswell data set collected at an analogue site used for investigating CO2 distribution and geochemical reactivity within a shallow formation. We invert both resistance and phase data using a gradient-weighting method for descent-based inversion algorithms. This method essentially steers the search direction in the model space using low-cost non-linear conjugate gradient methods towards the more computationally expensive Gauss-Newton direction. The second study involves ERT data that were collected at the SECARB Cranfield site near Natchez, Mississippi, at depths exceeding 3000 m. We employ a ratio data inversion scheme, where the time-lapse input data are given by the measured ERT data normalized by their baseline values. We investigate whether three-dimensional time-lapse inversions yield improved results compared to two-dimensional results that were previously reported. Finally, we present a synthetic study that investigates a novel time-domain controlled-source EM method that has the potential for exploiting the resolution properties of vertically oriented source antennas while avoiding their logistical difficulties. A vertical source is replaced by an array of multiple horizontal dipoles arranged in a circle such that all dipoles have a common endpoint in the center. Overall, this study presents significant advances in developing adequate geophysical techniques to monitor CO2 migration and/or potential leaks in geological reservoirs.
Nuclear Resonance Fluorescence off 54Cr: The Onset of the Pygmy Dipole Resonance
NASA Astrophysics Data System (ADS)
Ries, P. C.; Beck, T.; Beller, J.; Krishichayan; Gayer, U.; Isaak, J.; Löher, B.; Mertes, L.; Pai, H.; Pietralla, N.; Romig, C.; Savran, D.; Schilling, M.; Tornow, W.; Werner, V.; Zweidinger, M.
2016-06-01
Low-lying electric and magnetic dipole excitations (E1 and M1) below the neutron separation threshold, particularly the Pygmy Dipole Resonance (PDR), have drawn considerable attention in the last years. So far, mostly moderately heavy nuclei in the mass regions around A = 90 and A = 140 were examined with respect to the PDR. In the present work, the systematics of the PDR have been extended by measuring excitation strengths and parity quantum numbers of J = 1 states in lighter nuclei near A = 50 in order to gather information on the onset of the PDR. The nuclei 50,52,54Cr and 48,50Ti were examined via bremsstrahlung produced at the DArmstadt Superconducting electron Linear Accelerator (S-DALINAC) with photon energies up to 9.7 MeV with the method of nuclear resonance fluorescence. Numerous excited states were observed, many of which for the first time. The parity quantum numbers of these states have been determined at the High Intensity Gamma-ray Source (HIγS) of the Triangle Universities Nuclear Laboratory in Durham, NC, USA. Informations to the methods and the experimental setups will be provided and the results on 54Cr achieved will be discussed with respect to the onset of the PDR.
Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing: Wellbore and Fluid Effects
NASA Astrophysics Data System (ADS)
Couchman, M. J.; Everett, M. E.
2017-12-01
As unconventional resources become increasingly important, we must tackle the issue of real-time monitoring of the efficiency of unconventional hydrocarbon extraction. Controlled Source Electromagnetics (CSEM) have been used primarily as a marine-based technique to monitor conventional oil bearing reservoirs with a strong resurgence the new millennium. Many of these studies revolving around detecting a thin resistive layer such as a reservoir at 1m - 3km depth. In these cases, the presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. The lessons learned from these studies can be applied to terrestrial unconventional settings with appropriate modifications. The work shown here is a means develop methods which enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. The predictive model validated for various 1-D marine, and terrestrial cases focus on the mapping of fluid flow in from a horizontal wellbore in a uniform halfspace using an in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The effect of the of the vertical and horizontal wellbores are documented taking into account the conductivity, size, and thickness of each wellbore. The fracturing fluids flow and conductivity are also taken into account throughout various stages of the fracturing process. In each case, the sensitivity at a location of the surface in-line electric field to a given resistive or conductive layer, due to a source is calculated.
Nuclear spin cooling by electric dipole spin resonance and coherent population trapping
NASA Astrophysics Data System (ADS)
Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei
2017-09-01
Nuclear spin fluctuation suppression is a key issue in preserving electron coherence for quantum information/computation. We propose an efficient way of nuclear spin cooling in semiconductor quantum dots (QDs) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. The EDSR can enhance the spin flip-flop rate and may bring out bistability under certain conditions. By tuning the optical fields, we can avoid the EDSR induced bistability and obtain highly polarized nuclear spin state, which results in long electron coherence time. With the help of CPT and EDSR, an enhancement of 1500 times of the electron coherence time can been obtained after a 500 ns preparation time.
Search for the permanent electric dipole moment of 129Xe
NASA Astrophysics Data System (ADS)
Sachdeva, Natasha; Chupp, Timothy; Gong, Fei; Babcock, Earl; Salhi, Zahir; Burghoff, Martin; Fan, Isaac; Killian, Wolfgang; Knappe-Grüneberg, Silvia; Schabel, Allard; Seifert, Frank; Trahms, Lutz; Voigt, Jens; Degenkolb, Skyler; Fierlinger, Peter; Krägeloh, Eva; Lins, Tobias; Marino, Michael; Meinel, Jonas; Niessen, Benjamin; Stuiber, Stefan; Terrano, William; Kuchler, Florian; Singh, Jaideep
2017-09-01
CP-violation in Beyond-the-Standard-Model physics, necessary to explain the baryon asymmetry, gives rise to permanent electric dipole moments (EDMs). EDM measurements of the neutron, electron, paramagnetic and diamagnetic atoms constrain CP-violating parameters. The current limit for the 129Xe EDM is 6 ×10-27 e . cm (95 % CL). The HeXeEDM experiment at FRM-II (Munich Research Reactor) and BMSR-2 (Berlin Magnetically Shielded Room) uses a stable magnetic field in a magnetically shielded room and 3He comagnetometer with potential to improve the limit by two orders of magnitude. Polarized 3He and 129Xe free precession is detected with SQUID magnetometers in the presence of applied electric and magnetic fields. Conclusions from recent measurements will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokina, Veronika, E-mail: ansonika@mail.ru; Nikiforov, Konstantin, E-mail: knikiforov@cc.spbu.ru
Studying emission characteristics of nanotubes is extremely important for development of electronics. Compared to other electron sources nanotube-based field emitters allow obtaining significant emission currents at relatively low values of the applied field. It is possible due to their unique structure. This article is devoted to theoretical investigation how external electric field effects several samples of open single-wall nanotubes from carbon and silicon carbide. Total energies, dipole moments and band gaps for five types of nanotubes were calculated from the first principles. The numerical experiment results indicate the adequacy of modeling. It was concluded that considered configurations of achiral carbonmore » nanotubes should be semiconductors.« less
Quantum rotor model for a Bose-Einstein condensate of dipolar molecules.
Armaitis, J; Duine, R A; Stoof, H T C
2013-11-22
We show that a Bose-Einstein condensate of heteronuclear molecules in the regime of small and static electric fields is described by a quantum rotor model for the macroscopic electric dipole moment of the molecular gas cloud. We solve this model exactly and find the symmetric, i.e., rotationally invariant, and dipolar phases expected from the single-molecule problem, but also an axial and planar nematic phase due to many-body effects. Investigation of the wave function of the macroscopic dipole moment also reveals squeezing of the probability distribution for the angular momentum of the molecules.
NASA Astrophysics Data System (ADS)
Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.
2017-09-01
We carry out the classical analysis of spin-orbit coupling in hydrogen-like atoms, using the modern expressions for the force and energy of an electric/magnetic dipole in an electromagnetic field. We disclose a novel physical meaning of this effect and show that for a laboratory observer the energy of spin-orbit interaction is represented solely by the mechanical energy of the spinning electron (considered as a gyroscope) due to the Thomas precession of its spin. Concurrently we disclose some errors in the old and new publications on this subject.
NASA Technical Reports Server (NTRS)
Perger, W. F.; Das, B. P.
1987-01-01
The parity-nonconserving electric-dipole-transition amplitudes for the 6s1/2-7s1/2 transition in cesium and the 6p1/2-7p1/2 transition in thallium have been calculated by the Dirac-Hartree-Fock method. The effects of using different Dirac-Hartree-Fock atomic core potentials are examined and the transition amplitudes for both the length and velocity gauges are given. It is found that the parity-nonconserving transition amplitudes exhibit a greater dependence on the starting potential for thallium than for cesium.
NASA Astrophysics Data System (ADS)
Mikhaylov, Alexander; Arias, Eduardo; Moggio, Ivana; Ziolo, Ronald; Uudsemaa, Merle; Trummal, Aleksander; Cooper, Thomas; Rebane, Aleksander
2017-02-01
Change of permanent electric dipole moment in the lower-energy charge transfer transitions for a series of symmetrical and non-symmetrical ferrocene-phenyleneethynylene oligomers were studied by measuring the corresponding femtosecond two-photon absorption cross section spectra, and were determined to be in the range Δμ = 3 - 10 D. Quantum-chemical calculations of Δμ for the non-symmetrical oligomers show good quantitative agreement with the experimental results, thus validating two-photon absorption spectroscopy as a viable experimental approach to study electrostatic properties of organometallics and other charge transfer systems.
Probing the Cosmological Principle in the counts of radio galaxies at different frequencies
NASA Astrophysics Data System (ADS)
Bengaly, Carlos A. P.; Maartens, Roy; Santos, Mario G.
2018-04-01
According to the Cosmological Principle, the matter distribution on very large scales should have a kinematic dipole that is aligned with that of the CMB. We determine the dipole anisotropy in the number counts of two all-sky surveys of radio galaxies. For the first time, this analysis is presented for the TGSS survey, allowing us to check consistency of the radio dipole at low and high frequencies by comparing the results with the well-known NVSS survey. We match the flux thresholds of the catalogues, with flux limits chosen to minimise systematics, and adopt a strict masking scheme. We find dipole directions that are in good agreement with each other and with the CMB dipole. In order to compare the amplitude of the dipoles with theoretical predictions, we produce sets of lognormal realisations. Our realisations include the theoretical kinematic dipole, galaxy clustering, Poisson noise, simulated redshift distributions which fit the NVSS and TGSS source counts, and errors in flux calibration. The measured dipole for NVSS is ~2 times larger than predicted by the mock data. For TGSS, the dipole is almost ~ 5 times larger than predicted, even after checking for completeness and taking account of errors in source fluxes and in flux calibration. Further work is required to understand the nature of the systematics that are the likely cause of the anomalously large TGSS dipole amplitude.
NASA Astrophysics Data System (ADS)
Abe, M.; Prasannaa, V. S.; Das, B. P.
2018-03-01
Heavy polar diatomic molecules are currently among the most promising probes of fundamental physics. Constraining the electric dipole moment of the electron (e EDM ), in order to explore physics beyond the standard model, requires a synergy of molecular experiment and theory. Recent advances in experiment in this field have motivated us to implement a finite-field coupled-cluster (FFCC) approach. This work has distinct advantages over the theoretical methods that we had used earlier in the analysis of e EDM searches. We used relativistic FFCC to calculate molecular properties of interest to e EDM experiments, that is, the effective electric field (Eeff) and the permanent electric dipole moment (PDM). We theoretically determine these quantities for the alkaline-earth monofluorides (AEMs), the mercury monohalides (Hg X ), and PbF. The latter two systems, as well as BaF from the AEMs, are of interest to e EDM searches. We also report the calculation of the properties using a relativistic finite-field coupled-cluster approach with single, double, and partial triples' excitations, which is considered to be the gold standard of electronic structure calculations. We also present a detailed error estimate, including errors that stem from our choice of basis sets, and higher-order correlation effects.
NASA Astrophysics Data System (ADS)
De, Deb Sankar; Saha, Santanu; Genovese, Luigi; Goedecker, Stefan
2018-06-01
We present a fully ab initio, unbiased structure search of the configurational space of decorated C60 fullerenes in the presence of an electric field. We observed that the potential-energy surface is significantly perturbed by an external electric field and that the energetic ordering of low-energy isomers differs with and without electric field. We identify the energetically lowest configuration for a varying number of decorating atoms (1 ≤n ≤12 ) for Li and (1 ≤n ≤6 ) for K on the C60 surface at different electric-field strengths. Using the correct geometric ground state in the electric field for the calculation of the dipole we obtain better agreement with the experimentally measured values than previous calculations based on the ground state in absence of an electric field. Since the lowest-energy structures are typically nearly degenerate in energy, a combination of different structures is expected to be found at room temperature. The experimentally measured dipole is therefore also expected to contain significant contributions from several low-energy structures.
Particles with nonlinear electric response: Suppressing van der Waals forces by an external field.
Soo, Heino; Dean, David S; Krüger, Matthias
2017-01-01
We study the classical thermal component of Casimir, or van der Waals, forces between point particles with highly anharmonic dipole Hamiltonians when they are subjected to an external electric field. Using a model for which the individual dipole moments saturate in a strong field (a model that mimics the charges in a neutral, perfectly conducting sphere), we find that the resulting Casimir force depends strongly on the strength of the field, as demonstrated by analytical results. For a certain angle between the external field and center-to-center axis, the fluctuation force can be tuned and suppressed to arbitrarily small values. We compare the forces between these particles with those between particles with harmonic Hamiltonians and also provide a simple formula for asymptotically large external fields, which we expect to be generally valid for the case of saturating dipole moments.
NASA Astrophysics Data System (ADS)
Fu, Y.; Wang, S.-M.; Wang, X.-D.; Larsson, A.
2005-08-01
We have studied theoretically the energy band structures and optical properties of highly strained dipole δ-doped In0.3Ga0.7As/GaAs single quantum wells. Including dopant diffusion effect, strain in the quantum well, spin-orbital interactions, and many-body effects, the self-consistent calculations of the eight-band k •p model and the Poisson equation show that the dipole δ doping induces an electric field across the In0.3Ga0.7As quantum well by the Stark effect so that both the interband transition energy and the wave-function overlap between the ground-state electrons and holes are reduced. Applying an external bias across the quantum well partially cancels the built-in electric field and reduces the wavelength redshift. The calculated material gain peak is close to the experimental lasing wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jia-Xing; Hu, Yuan; Jin, Yu
An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for bothmore » systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.« less
Entanglement of polar symmetric top molecules as candidate qubits.
Wei, Qi; Kais, Sabre; Friedrich, Bretislav; Herschbach, Dudley
2011-10-21
Proposals for quantum computing using rotational states of polar molecules as qubits have previously considered only diatomic molecules. For these the Stark effect is second-order, so a sizable external electric field is required to produce the requisite dipole moments in the laboratory frame. Here we consider use of polar symmetric top molecules. These offer advantages resulting from a first-order Stark effect, which renders the effective dipole moments nearly independent of the field strength. That permits use of much lower external field strengths for addressing sites. Moreover, for a particular choice of qubits, the electric dipole interactions become isomorphous with NMR systems for which many techniques enhancing logic gate operations have been developed. Also inviting is the wider chemical scope, since many symmetric top organic molecules provide options for auxiliary storage qubits in spin and hyperfine structure or in internal rotation states. © 2011 American Institute of Physics
Han, Jia-Xing; Hu, Yuan; Jin, Yu; Zhang, Guo-Feng
2016-04-07
An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for both systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.
B Physics, Hg EDM, and Lepton Flavor Violation in SUSY Models
NASA Astrophysics Data System (ADS)
Shimizu, Yasuhiro
2005-06-01
We consider the correlation between the CP asymmetry in B → ϕKs (S
1980-01-01
CATALOG NUMBER Tech. Report No. E715-1 4. TTE (ln tlitts LTYPE RPOT’ QcOIJj. Compendium of the ULF/ELF Electromagnetic Fields nccnicat Generated above...sidi if noeess’ry arid Identify hy bulock mriifi.rnb) ULF/ELF Electromagnetic Fields VMD, VED, HED, HMD Submerged Dipoles Undersea /Air Communication...a whole, it appears that the vertical electric component produced by th HED in the plane of the dipole (• =0) should be the most useful for undersea
The electric dipole moment of magnesium deuteride, MgD.
Steimle, Timothy C; Zhang, Ruohan; Wang, Hailing
2014-06-14
The (0,0) A(2)Π-X (2)Σ(+) band of a cold molecular beam sample of magnesium monodeuteride, MgD, has been recorded field-free and in the presence of a static electric field of up to 11 kV/cm. The lines associated with the lowest rotational levels are detected for the first time. The field-free spectrum was analyzed to produce an improved set of fine structure parameters for the A(2)Π (v = 0) state. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ(el) of 2.567(10)D and 1.31(8)D for A(2)Π (v = 0) and X(2)Σ(+)(v = 0) states, respectively. The recommended value for μ(el)(X(2)Σ(+) (v = 0)) for MgH, based upon the measured value for MgD, is 1.32(8)D.
IMP 8. Volume 1: EM field experiment
NASA Technical Reports Server (NTRS)
1980-01-01
The electromagnetic fields experiment on IMP-J used two electric dipole antennas and a triaxial search coil magnetic antenna to sense the electric and magnetic field of plasma waves in space. The electric dipole antennas consisted of a fine wire, 0.021 inches in diameter, with a nominal extended tip-to-tip length of 400 ft. The outermost 50 ft. of each element was conducting and the rest of the antenna was covered with an insulating coating. The search coil antennas each consisted of a high mu core with two separate windings of 40,000 turns each to sense ac magnetic fields. The search coils had a length of 18 inches tip-to-tip and are mounted on the end of a boom. The axes of the x prime and y prime search coil antennas were parallel to the x prime and y prime electric antenna axes.
NASA Astrophysics Data System (ADS)
Ding, Lei; Lai, Yuan; He, Bin
2005-01-01
It is of importance to localize neural sources from scalp recorded EEG. Low resolution brain electromagnetic tomography (LORETA) has received considerable attention for localizing brain electrical sources. However, most such efforts have used spherical head models in representing the head volume conductor. Investigation of the performance of LORETA in a realistic geometry head model, as compared with the spherical model, will provide useful information guiding interpretation of data obtained by using the spherical head model. The performance of LORETA was evaluated by means of computer simulations. The boundary element method was used to solve the forward problem. A three-shell realistic geometry (RG) head model was constructed from MRI scans of a human subject. Dipole source configurations of a single dipole located at different regions of the brain with varying depth were used to assess the performance of LORETA in different regions of the brain. A three-sphere head model was also used to approximate the RG head model, and similar simulations performed, and results compared with the RG-LORETA with reference to the locations of the simulated sources. Multi-source localizations were discussed and examples given in the RG head model. Localization errors employing the spherical LORETA, with reference to the source locations within the realistic geometry head, were about 20-30 mm, for four brain regions evaluated: frontal, parietal, temporal and occipital regions. Localization errors employing the RG head model were about 10 mm over the same four brain regions. The present simulation results suggest that the use of the RG head model reduces the localization error of LORETA, and that the RG head model based LORETA is desirable if high localization accuracy is needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Berg, R.; Brandino, G. P.; El Araby, O.
In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less
Competing interactions in semiconductor quantum dots
van den Berg, R.; Brandino, G. P.; El Araby, O.; ...
2014-10-14
In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less
Linear and Non-linear Polarizabilities for P2(X1Σg+)
NASA Astrophysics Data System (ADS)
Maroulis, George
1997-07-01
Electric polarizabilities and hyperpolarizabilities were calculated from accurate self-consistent field wavefunctions for P2. The following values are reported, using the experimental bond length of 1.8934 Å: dipole polarizability αzz = 69.83 and αxx = 41.20 e2 a02 Eh-1 , second dipole hyperpolarizability γzzzz = 17 040, γxxxx= 11 581 and γxxzz = 4724 e4a04Eh-3, quadrupole polarizability, Czz "zz = 276.14, Cxz,xz = 232.64 and Cxx,xx = 151.25 e2 a04Eh-1 , dipole-octopole polarizability, Ez,zzz, = 331.00 and Ex,xxx = -154.66 e2 a04Eh-1 and for the dipole-dipole-quadrupole hyperpolarizability, Bzz,zz = - 2441, Bxz,xz = - 1442, Bxx,zz = 866 and Bxx,xx = - 1411 e3a04Eh-2.
NASA Astrophysics Data System (ADS)
Trevino, S., III; Hickey, M. S.; Everett, M. E.
2017-12-01
Controlled-Source Electromagnetics (CSEM) can be used to monitor the movement and extent of injection fluid during a hydraulic fracture. The response of the fluid to energization by a CSEM source is dependent upon the electrical conductivity difference between the fluid and background geological formation. An important property that must be taken into account when modeling and interpreting CSEM responses is that electrical conductivity may be anisotropic. We study the effect of electrical anisotropy in both the background formation and the fluid-injection zone. First, various properties of the background formation can affect anisotropy including variations in grain size, composition and bedding-plane orientation. In certain formations, such as shale, the horizontal component of the conductivity can be more than an order of magnitude larger than the vertical component. We study this effect by computing differences in surface CSEM responses using the analytic 1-D anisotropic primary solution of a horizontal electric dipole positioned at the surface. Second, during hydraulic fracturing, the injected fluid can create new fractures and infill existing natural fractures. To include the explicit fracture geometry in modeling, a large increase in the number of nodes and computational time is required which may not be feasible. An alternative is to instead model the large-scale fracture geometry as a uniform slab with an appropriate bulk conductivity. Micro-scale fracture geometry may cause preferential fluid propagation in a single direction or plane which can be represented by electrical anisotropy of the slab. To study such effects of bulk anisotropy on CSEM responses we present results from multiple scenarios of surface to surface hydraulic fracture monitoring using 3-D finite element modeling. The model uses Coulomb-gauged potentials to solve Maxwell's equations in the frequency domain and we have updated the code to allow a triaxial electrical conductivity tensor to be specified. By allowing for formation and target electrical anisotropy these modeling results contribute to a better understanding and faster interpretation of field data.
Self-assembly of metal nanowires induced by alternating current electric fields
NASA Astrophysics Data System (ADS)
García-Sánchez, Pablo; Arcenegui, Juan J.; Morgan, Hywel; Ramos, Antonio
2015-01-01
We describe the reversible assembly of an aqueous suspension of metal nanowires into two different 2-dimensional stable configurations. The assembly is induced by an AC electric field of magnitude around 10 kV/m. It is known that single metal nanowires orientate parallel to the electric field for all values of applied frequency, according to two different mechanisms depending on the frequency. These different mechanisms also govern the mutual interaction between nanowires, which leads to directed-assembly into distinctive structures, the shape of which depends on the frequency of the applied field. We show that for frequencies higher than the typical frequency for charging the electrical double layer at the metal-electrolyte interface, dipole-dipole interaction leads to the formation of chains of nanowires. For lower frequencies, the nanowires form wavy bands perpendicular to the electric field direction. This behavior appears to be driven by the electroosmotic flow induced on the metal surface of the nanowires. Remarkably, no similar structures have been reported in previous studies of nanowires.
Suyatin, Dmitry B; Jain, Vishal; Nebol'sin, Valery A; Trägårdh, Johanna; Messing, Maria E; Wagner, Jakob B; Persson, Olof; Timm, Rainer; Mikkelsen, Anders; Maximov, Ivan; Samuelson, Lars; Pettersson, Håkan
2014-01-01
Nanoscale contacts between metals and semiconductors are critical for further downscaling of electronic and optoelectronic devices. However, realizing nanocontacts poses significant challenges since conventional approaches to achieve ohmic contacts through Schottky barrier suppression are often inadequate. Here we report the realization and characterization of low n-type Schottky barriers (~0.35 eV) formed at epitaxial contacts between Au-In alloy catalytic particles and GaAs-nanowires. In comparison to previous studies, our detailed characterization, employing selective electrical contacts defined by high-precision electron beam lithography, reveals the barrier to occur directly and solely at the abrupt interface between the catalyst and nanowire. We attribute this lowest-to-date-reported Schottky barrier to a reduced density of pinning states (~10(17) m(-2)) and the formation of an electric dipole layer at the epitaxial contacts. The insight into the physical mechanisms behind the observed low-energy Schottky barrier may guide future efforts to engineer abrupt nanoscale electrical contacts with tailored electrical properties.
Enhanced terahertz magnetic dipole response by subwavelength fiber
NASA Astrophysics Data System (ADS)
Atakaramians, Shaghik; Shadrivov, Ilya V.; Miroshnichenko, Andrey E.; Stefani, Alessio; Ebendorff-Heidepriem, Heike; Monro, Tanya M.; Afshar V., Shahraam
2018-05-01
Dielectric sub-wavelength particles have opened up a new platform for realization of magnetic light. Recently, we have demonstrated that a dipole emitter by a sub-wavelength fiber leads to an enhanced magnetic response. Here, we experimentally demonstrate an enhanced magnetic dipole source in the terahertz frequency range. By placing the fiber next to the hole in a metal screen, we find that the radiation power can be enhanced more than one order of magnitude. The enhancement is due to the excitation of the Mie-type resonances in the fiber. We demonstrate that such a system is equivalent to a double-fiber system excited by a magnetic source. This coupled magnetic dipole and optical fiber system can be considered a unit cell of metasurfaces for manipulation of terahertz radiation and is a proof-of-concept of a possibility to achieve enhanced radiation of a dipole source in proximity of a sub-wavelength fiber. It can also be scaled down to optical frequencies opening up promising avenues for developing integrated nanophotonic devices such as nanoantennas or lasers on fibers.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1985-01-01
Analytical solutions for the three dimensional inhomogeneous wave equation with flow in a hardwall rectangular wind tunnel and in the free field are presented for a stationary monopole noise source. Dipole noise sources are calculated by combining two monopoles 180 deg out of phase. Numerical calculations for the modal content, spectral response and directivity for both monopole and dipole sources are presented. In addition, the effect of tunnel alterations, such as the addition of a mounting plate, on the tunnels reverberant response are considered. In the frequency range of practical importance for the turboprop response, important features of the free field directivity can be approximated in a hardwall wind tunnel with flow if the major lobe of the noise source is not directed upstream. However, for an omnidirectional source, such as a monopole, the hardwall wind tunnel and free field response are not comparable.
Fano resonances in heterogeneous dimers of silicon and gold nanospheres
NASA Astrophysics Data System (ADS)
Zhao, Qian; Yang, Zhong-Jian; He, Jun
2018-06-01
We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.
Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles
NASA Astrophysics Data System (ADS)
Smirnova, Daria; Smirnov, Alexander I.; Kivshar, Yuri S.
2018-01-01
By combining analytical and numerical approaches, we study resonantly enhanced second-harmonic generation by individual high-index dielectric nanoparticles made of centrosymmetric materials. Considering both bulk and surface nonlinearities, we describe second-harmonic nonlinear scattering from a silicon nanoparticle optically excited in the vicinity of the magnetic and electric dipolar resonances. We discuss the contributions of different nonlinear sources and the effect of the low-order optical Mie modes on the characteristics of the generated far field. We demonstrate that the multipolar expansion of the radiated field is dominated by dipolar and quadrupolar modes (two axially symmetric electric quadrupoles, an electric dipole, and a magnetic quadrupole) and the interference of these modes can ensure directivity of the nonlinear scattering. The developed multipolar analysis can be instructive for interpreting the far-field measurements of the nonlinear scattering and it provides prospective insights into a design of complementary metal-oxide-semiconductor compatible nonlinear nanoantennas fully integrated with silicon-based photonic circuits, as well as methods of nonlinear diagnostics.
Transverse slot antennas for high field MRI
Lattanzi, Riccardo; Lakshmanan, Karthik; Brown, Ryan; Deniz, Cem M.; Sodickson, Daniel K.; Collins, Christopher M.
2018-01-01
Purpose Introduce a novel coil design using an electrically long transversely oriented slot in a conductive sheet. Theory and Methods Theoretical considerations, numerical simulations, and experimental measurements are presented for transverse slot antennas as compared with electric dipole antennas. Results Simulations show improved central and average transmit and receive efficiency, as well as larger coverage in the transverse plane, for a single slot as compared to a single dipole element. Experiments on a body phantom confirm the simulation results for a slot antenna relative to a dipole, demonstrating a large region of relatively high sensitivity and homogeneity. Images in a human subject also show a large imaging volume for a single slot and six slot antenna array. High central transmit efficiency was observed for slot arrays relative to dipole arrays. Conclusion Transverse slots can exhibit improved sensitivity and larger field of view compared with traditional conductive dipoles. Simulations and experiments indicate high potential for slot antennas in high field MRI. Magn Reson Med 80:1233–1242, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:29388250
Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers.
Clarke, R J
1997-07-25
A fluorescent ratio method utilizing styrylpyridinium dyes has recently been suggested for the measurement of the membrane dipole potential. Up to now only qualititative measurements have been possible. Here the fluorescence excitation ratio of the dye di-8-ANEPPS has been measured in lipid vesicles composed of a range of saturated and unsaturated phosphatidylcholines. It has been found that the fluorescence ratio is inversely proportional to the surface area occupied by the lipid in its fully hydrated state. This finding allows, by extra- and interpolation, the packing density to be estimated of phosphatidylcholines for which X-ray crystallographic data are not yet available. Comparison of the fluorescence data with literature data of the dipole potential from electrical measurements on monolayers and bilayers allows a calibration curve to be constructed, so that a quantitative determination of the dipole potential using di-8-ANEPPS is possible. It has been found that the value of the dipole potential decreases with increasing unsaturation and, in the case of unsaturated lipids, with increasing length of the hydrocarbon chains. This effect can be explained by the effects of chain packing on the spacing between the headgroups. In addition to the effects of lipid structure on membrane fluidity, these measurements demonstrate the possibility of a direct electrical mechanism for lipid regulation of protein function, in particular of ion transport proteins.
A frequency-stabilized light source at 399 nm using an Yb hollow-cathode lamp
NASA Astrophysics Data System (ADS)
Tanabe, Takehiko; Akamatsu, Daisuke; Inaba, Hajime; Okubo, Sho; Kobayashi, Takumi; Yasuda, Masami; Hosaka, Kazumoto; Hong, Feng-Lei
2018-06-01
We demonstrate a diode laser system operating at 399 nm that is stabilized to the 6s2 1S0–6s6p 1P1 electric dipole transition in ytterbium (Yb) atoms in a hollow-cathode lamp. The frequency stability of the laser reached 1.1 × 10‑11 at an averaging time of τ = 1 s. We performed an absolute frequency measurement using an optical frequency comb and determined that the absolute frequency of the laser stabilized to the 1S0–1P1 transition in 174Yb was 751 526 522.26(9) MHz. We also investigated several systematic frequency shifts while changing some of the light source parameters and measured several isotope shifts. The measured laser frequency will provide useful information regarding the practical use of the frequency-stabilized light source at 399 nm.
Zhao, Lei; Liu, Han; He, Zhihong; Dong, Shikui
2018-05-14
Multiband metamaterial perfect absorbers (MPAs) have promising applications in many fields like microbolometers, infrared detection, biosensing, and thermal emitters. In general, the single resonator can only excite a fundamental mode and achieve single absorption band. The multiband MPA can be achieved by combining several different sized resonators together. However, it's still challenging to design the MPA with absorption bands of more than four and average absorptivity of more than 90% due to the interaction between differently sized resonators. In this paper, three absorption bands are successfully achieved with average absorptivity up to 98.5% only utilizing single one our designed ring-strip resonator, which can simultaneously excite a fundamental electric dipole mode, a higher-order electric quadrupole mode, and a higher-order electric octopole mode. As the biosensor, the sensing performance of the higher-order modes is higher than the fundamental modes. Then we try to increase the absorption bands by combining different sized ring-strip resonators together and make the average absorptivity above 90% by optimizing the geometry parameters. A six-band MPA is achieved by combining two different sized ring-strip resonators with average absorptivity up to 98.8%, which can excite two dipole modes, two quadrupole modes, and two octopole modes. A twelve-band MPA is achieved by combining four different sized ring-strip resonators with average absorptivity up to 93.7%, which can excite four dipole modes, four quadrupole modes, and four octopole modes.
NASA Astrophysics Data System (ADS)
Miller, C. R.; Routh, P. S.; Donaldson, P. R.
2004-05-01
Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.
Self-Paced Physics, Segments 19-23.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
Five study segments of the Self-Paced Physics Course materials are presented in this fourth problems and solutions book used as a part of student course work. The subject matter is related to electric charges, insulators, Coulomb's law, electric fields, lines of force, solid angles, conductors, motion of charged particles, dipoles, electric flux,…
NASA Astrophysics Data System (ADS)
Silenko, Alexander J.
2017-12-01
We consider a proton electric-dipole-moment experiment in an all-electric storage ring when the spin is frozen and local longitudinal and vertical electric fields alternate. In this experiment, the geometric (Berry) phases are very important. Due to the these phases, the spin rotates about the radial axis. The corresponding systematic error is rather important while it can be canceled with clockwise and counterclockwise beams. The geometric phases also lead to the spin rotation about the radial axis. This effect can be canceled with clockwise and counterclockwise beams as well. The sign of the azimuthal component of the angular velocity of the spin precession depends on the starting point where the spin orientation is perfect. The radial component of this quantity keeps its value and sign for each starting point. When the longitudinal and vertical electric fields are joined in the same sections without any alternation, the systematic error due to the geometric phases does not appear but another systematic effect of the spin rotation about the azimuthal axis takes place. It has opposite signs for clockwise and counterclockwise beams.
Shifman, Aaron R; Longtin, André; Lewis, John E
2015-10-30
Identifying and understanding the current sources that give rise to bioelectric fields is a fundamental problem in the biological sciences. It is very difficult, for example, to attribute the time-varying features of an electroencephalogram recorded from the head surface to the neural activity of specific brain areas; model systems can provide important insight into such problems. Some species of fish actively generate an oscillating (c. 1000 Hz) quasi-dipole electric field to communicate and sense their environment in the dark. A specialized electric organ comprises neuron-like cells whose collective signal underlies this electric field. As a step towards understanding the detailed biophysics of signal generation in these fish, we use an anatomically-detailed finite-element modelling approach to reverse-engineer the electric organ signal over one oscillation cycle. We find that the spatiotemporal profile of current along the electric organ constitutes a travelling wave that is well-described by two spatial Fourier components varying in time. The conduction velocity of this wave is faster than action potential conduction in any known neuronal axon (>200 m/s), suggesting that the spatiotemporal features of high-frequency electric organ discharges are not constrained by the conduction velocities of spinal neuron pathways.
Shifman, Aaron R.; Longtin, André; Lewis, John E.
2015-01-01
Identifying and understanding the current sources that give rise to bioelectric fields is a fundamental problem in the biological sciences. It is very difficult, for example, to attribute the time-varying features of an electroencephalogram recorded from the head surface to the neural activity of specific brain areas; model systems can provide important insight into such problems. Some species of fish actively generate an oscillating (c. 1000 Hz) quasi-dipole electric field to communicate and sense their environment in the dark. A specialized electric organ comprises neuron-like cells whose collective signal underlies this electric field. As a step towards understanding the detailed biophysics of signal generation in these fish, we use an anatomically-detailed finite-element modelling approach to reverse-engineer the electric organ signal over one oscillation cycle. We find that the spatiotemporal profile of current along the electric organ constitutes a travelling wave that is well-described by two spatial Fourier components varying in time. The conduction velocity of this wave is faster than action potential conduction in any known neuronal axon (>200 m/s), suggesting that the spatiotemporal features of high-frequency electric organ discharges are not constrained by the conduction velocities of spinal neuron pathways. PMID:26514932
Nanoparticles That "Remember" Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klajn, Rafal; Browne, Kevin P.; Siowling, Soh
2010-06-02
Photoresponsive gold nanoparticles dispersed in a solid/frozen matrix provide a basis for sensors that “remember” whether the sample has ever exceeded the melting temperature of the matrix. The operation of these sensors rests on the ability to photoinduce metastable electric dipoles on NP surfaces – upon melting, these dipoles drive NP aggregation, precipitation, and crosslinking. These events are manifested by a pronounced color change.
Subspace-based analysis of the ERT inverse problem
NASA Astrophysics Data System (ADS)
Ben Hadj Miled, Mohamed Khames; Miller, Eric L.
2004-05-01
In a previous work, we proposed a source-type formulation to the electrical resistance tomography (ERT) problem. Specifically, we showed that inhomogeneities in the medium can be viewed as secondary sources embedded in the homogeneous background medium and located at positions associated with variation in electrical conductivity. Assuming a piecewise constant conductivity distribution, the support of equivalent sources is equal to the boundary of the inhomogeneity. The estimation of the anomaly shape takes the form of an inverse source-type problem. In this paper, we explore the use of subspace methods to localize the secondary equivalent sources associated with discontinuities in the conductivity distribution. Our first alternative is the multiple signal classification (MUSIC) algorithm which is commonly used in the localization of multiple sources. The idea is to project a finite collection of plausible pole (or dipole) sources onto an estimated signal subspace and select those with largest correlations. In ERT, secondary sources are excited simultaneously but in different ways, i.e. with distinct amplitude patterns, depending on the locations and amplitudes of primary sources. If the number of receivers is "large enough", different source configurations can lead to a set of observation vectors that span the data subspace. However, since sources that are spatially close to each other have highly correlated signatures, seperation of such signals becomes very difficult in the presence of noise. To overcome this problem we consider iterative MUSIC algorithms like R-MUSIC and RAP-MUSIC. These recursive algorithms pose a computational burden as they require multiple large combinatorial searches. Results obtained with these algorithms using simulated data of different conductivity patterns are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, K.M.; Keenan, F.P.; Lawson, K.D.
Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n {<=} 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been notedmore » and explained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.B.
1962-09-01
The method of atomic-beam radiofrequency spectroscopy was used to determine some nuclear and atomic properties of Lu/sup 176m/, Br/sup 80/, Br/sup 80m/, and I/sup 132/. Hyperfine structure me asurements were raade to determine the magnetic dipole interaction constants and the electric quadrupole interaction constants of all these isotopes. Also the nuclear spin and the electronic g/sub J/ factor were measured for Lu/sup 176m/, and the nuclear magnetic dipole moments and the electric quadrupole moments for the isotopes were calculated. All results are listed. 62 references. (auth)
Geant4 Developments for the Radon Electric Dipole Moment Search at TRIUMF
NASA Astrophysics Data System (ADS)
Rand, E. T.; Bangay, J. C.; Bianco, L.; Dunlop, R.; Finlay, P.; Garrett, P. E.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Wong, J.
2011-09-01
An experiment is being developed at TRIUMF to search for a time-reversal violating electric dipole moment (EDM) in odd-A isotopes of Rn. Extensive simulations of the experiment are being performed with GEANT4 to study the backgrounds and sensitivity of the proposed measurement technique involving the detection of γ rays emitted following the β decay of polarized Rn nuclei. GEANT4 developments for the RnEDM experiment include both realistic modelling of the detector geometry and full tracking of the radioactive β, γ, internal conversion, and x-ray processes, including the γ-ray angular distributions essential for measuring an atomic EDM.
Parity-violating electric-dipole transitions in helium
NASA Technical Reports Server (NTRS)
Hiller, J.; Sucher, J.; Bhatia, A. K.; Feinberg, G.
1980-01-01
The paper examines parity-violating electric-dipole transitions in He in order to gain insight into the reliability of approximate calculations which are carried out for transitions in many-electron atoms. The contributions of the nearest-lying states are computed with a variety of wave functions, including very simple product wave functions, Hartree-Fock functions and Hylleraas-type wave functions with up to 84 parameters. It is found that values of the matrix elements of the parity-violating interaction can differ considerably from the values obtained from the good wave functions, even when these simple wave functions give accurate values for the matrix elements in question
Cheng, J L; Vermeulen, N; Sipe, J E
2017-03-06
We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllability of these effects by tuning the chemical potential, taking advantage of the dominant role played by interband optical transitions in the response.
Neutron Electric Dipole Moment on the Lattice
NASA Astrophysics Data System (ADS)
Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan
2018-03-01
For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.
NASA Astrophysics Data System (ADS)
Ramsey-Musolf, Michael J.; White, Graham; Winslow, Peter
2018-06-01
We propose a scenario that generates the observed baryon asymmetry of the Universe through a multistep phase transition in which SU(3) color symmetry is first broken and then restored. A spontaneous violation of B -L conservation leads to a contribution to the baryon asymmetry that becomes negligible in the final phase. The baryon asymmetry is therefore produced exclusively through the electroweak mechanism in the intermediate phase. We illustrate this scenario with a simple model that reproduces the observed baryon asymmetry. We discuss how future electric dipole moment and collider searches may probe this scenario, though future electric dipole moment searches would require an improved sensitivity of several orders of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassidy, Andrew; Jørgensen, Mads R. V.; Rosu-Finsen, Alexander
2016-10-02
It has recently been demonstrated that nanoscale molecular films can spontaneously assemble to self-generate intrinsic electric fields that can exceed 10 8 V/m. These electric fields originate from polarization charges in the material that arise because the films self-assemble to orient molecular dipole moments. This has been called the spontelectric effect. Such growth of spontaneously polarized layers of molecular solids has implications for our understanding of how intermolecular interactions dictate the structure of molecular materials used in a range of applications, for example, molecular semiconductors, sensors, and catalysts. In this paper, we present the first in situ structural characterization ofmore » a representative spontelectric solid, nitrous oxide. Infrared spectroscopy, temperature-programmed desorption, and neutron reflectivity measurements demonstrate that polarized films of nitrous oxide undergo a structural phase transformation upon heating above 48 K. A mean-field model can be used to describe quantitatively the magnitude of the spontaneously generated field as a function of film-growth temperature, and this model also recreates the phase change. Finally, this reinforces the spontelectric model as a means of describing long-range dipole–dipole interactions and points to a new type of ordering in molecular thin films.« less
Relativistic calculations of atomic properties
NASA Astrophysics Data System (ADS)
Kaur, Jasmeet; Sahoo, B. K.; Arora, Bindiya
2017-04-01
Singly charged ions are engaging candidates in many areas of Physics. They are especially important in astrophysics for evaluating the radiative properties of stellar objects, in optical frequency standards and for fundamental physics studies such as searches for permanent electric dipole moments and atomic parity violation. Interpretation of these experiments often requires a knowledge of their transition wavelengths and electric dipole amplitudes. In this work, we discuss the calculation of various properties of alkaline earth ions. The relativistic all-order SD method in which all single and double excitations of the Dirac-Fock wave function are included, is used to calculate these atomic properties. We use this method for evaluation of electric dipole matrix elements of alkaline earth ions. Combination of these matrix elements with experimental energies allow to obtain the polarizabilities of ground and excited states of ions. We discuss the applications of estimated polarizabiities as a function of imaginary frequencies in the calculations of long-range atom-ion interactions. We have also located the magic wavelengths for nS1 / 2 - nD3 / 2 , 5 / 2 transitions of alkaline earth ions. These calculated properties will be highly valuable to atomic and astrophysics community. UGC-BSR Grant No. F.7-273/2009/BSR.
Sarabi, B; Ramanayaka, A N; Burin, A L; Wellstood, F C; Osborn, K D
2016-04-22
Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2 D and p=p_{2}=8.3±0.4 D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume.
NASA Astrophysics Data System (ADS)
Carey, Austin M.; Paige, Ginger B.; Carr, Bradley J.; Dogan, Mine
2017-10-01
Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events.
PGOPHER: A program for simulating rotational, vibrational and electronic spectra
NASA Astrophysics Data System (ADS)
Western, Colin M.
2017-01-01
The PGOPHER program is a general purpose program for simulating and fitting molecular spectra, particularly the rotational structure. The current version can handle linear molecules, symmetric tops and asymmetric tops and many possible transitions, both allowed and forbidden, including multiphoton and Raman spectra in addition to the common electric dipole absorptions. Many different interactions can be included in the calculation, including those arising from electron and nuclear spin, and external electric and magnetic fields. Multiple states and interactions between them can also be accounted for, limited only by available memory. Fitting of experimental data can be to line positions (in many common formats), intensities or band contours and the parameters determined can be level populations as well as rotational constants. PGOPHER is provided with a powerful and flexible graphical user interface to simplify many of the tasks required in simulating, understanding and fitting molecular spectra, including Fortrat diagrams and energy level plots in addition to overlaying experimental and simulated spectra. The program is open source, and can be compiled with open source tools. This paper provides a formal description of the operation of version 9.1.
Dual band new bisected-Π CRLH metamaterial cell loaded dipole antennas
NASA Astrophysics Data System (ADS)
Abdalla, M. A.; Ghouz, M. H.; Abo El-Dahab, M.
2018-06-01
In this paper, two different designs for new metamaterial loaded dipole antenna are presented. The designs are based on loading printed dipole antennas with modified versions of composite right left handed cells. Different objectives are intended for these new designs; which are achieving compact size, dual band functionalities and good gain of the loaded dipole antenna. The designed antennas can serve different wireless services for GPS (1.227 GHz and 1.57 GHz), Universal Telecommunications System (UMTS 1.9 GHz), and WiFi (2.4 GHz). The two presented antennas have gain whose values are better than 1.9 dB up to 3.5 dB at all operating frequencies. The designed loading has reduced the physical / electrical length of conventional dipole antenna by 25%. The theoretical analysis, circuit model, full wave simulations and experimental measurements of the reported antennas are introduced.
Cavity quantum electrodynamics in the nonperturbative regime
NASA Astrophysics Data System (ADS)
De Bernardis, Daniele; Jaako, Tuomas; Rabl, Peter
2018-04-01
We study a generic cavity-QED system where a set of (artificial) two-level dipoles is coupled to the electric field of a single-mode L C resonator. This setup is used to derive a minimal quantum mechanical model for cavity QED, which accounts for both dipole-field and direct dipole-dipole interactions. The model is applicable for arbitrary coupling strengths and allows us to extend the usual Dicke model into the nonperturbative regime of QED, where the dipole-field interaction can be associated with an effective fine-structure constant of order unity. In this regime, we identify three distinct classes of normal, superradiant, and subradiant vacuum states and discuss their characteristic properties and the transitions between them. Our findings reconcile many of the previous, often contradictory predictions in this field and establish a common theoretical framework to describe ultrastrong-coupling phenomena in a diverse range of cavity-QED platforms.
NASA Astrophysics Data System (ADS)
Hallez, Hans; Staelens, Steven; Lemahieu, Ignace
2009-10-01
EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.
Shrestha, Rebika; Anderson, Cari M; Cardenas, Alfredo E; Elber, Ron; Webb, Lauren J
2017-04-20
Biological membranes are heterogeneous structures with complex electrostatic profiles arising from lipids, sterols, membrane proteins, and water molecules. We investigated the effect of cholesterol and its derivative 6-ketocholestanol (6-kc) on membrane electrostatics by directly measuring the dipole electric field (F⃗ d ) within lipid bilayers containing cholesterol or 6-kc at concentrations of 0-40 mol% through the vibrational Stark effect (VSE). We found that adding low concentrations of cholesterol, up to ∼10 mol %, increases F⃗ d , while adding more cholesterol up to 40 mol% lowers F⃗ d . In contrast, we measured a monotonic increase in F⃗ d as 6-kc concentration increased. We propose that this membrane electric field is affected by multiple factors: the polarity of the sterol molecules, the reorientation of the phospholipid dipole due to sterol, and the impact of the sterol on hydrogen bonding with surface water. We used molecular dynamics simulations to examine the distribution of phospholipids, sterol, and helix in bilayers containing these sterols. At low concentrations, we observed clustering of sterols near the vibrational probe whereas at high concentrations, we observed spatial correlation between the positions of the sterol molecules. This work demonstrates how a one-atom difference in a sterol changes the physicochemical and electric field properties of the bilayer.
Haider, S; Hrbek, A; Xu, Y
2008-06-01
Primarily this report outlines our investigation on utilizing magneto-acousto-electrical-tomography (MAET) to image the lead field current density in volume conductors. A lead field current density distribution is obtained when a current/voltage source is applied to a sample via a pair of electrodes. This is the first time a high-spatial-resolution image of current density is presented using MAET. We also compare an experimental image of current density in a sample with its corresponding numerical simulation. To image the lead field current density, rather than applying a current/voltage source directly to the sample, we place the sample in a static magnetic field and focus an ultrasonic pulse on the sample to simulate a point-like current dipole source at the focal point. Then by using electrodes we measure the voltage/current signal which, based on the reciprocity theorem, is proportional to a component of the lead field current density. In the theory section, we derive the equation relating the measured voltage to the lead field current density and the displacement velocity caused by ultrasound. The experimental data include the MAET signal and an image of the lead field current density for a thin sample. In addition, we discuss the potential improvements for MAET especially to overcome the limitation created by the observation that no signal was detected from the interior of a region having a uniform conductivity. As an auxiliary we offer a mathematical formula whereby the lead field current density may be utilized to reconstruct the distribution of the electrical impedance in a piecewise smooth object.
Pizzagalli, D; Koenig, T; Regard, M; Lehmann, D
1999-01-01
We investigated whether different, personality-related affective attitudes are associated with different brain electric field (EEG) sources before any emotional challenge (stimulus exposure). A 27-channel EEG was recorded in 15 subjects during eyes-closed resting. After recording, subjects rated 32 images of human faces for affective appeal. The subjects in the first (i.e., most negative) and fourth (i.e., most positive) quartile of general affective attitude were further analyzed. The EEG data (mean=25+/-4. 8 s/subject) were subjected to frequency-domain model dipole source analysis (FFT-Dipole-Approximation), resulting in 3-dimensional intracerebral source locations and strengths for the delta-theta, alpha, and beta EEG frequency band, and for the full range (1.5-30 Hz) band. Subjects with negative attitude (compared to those with positive attitude) showed the following source locations: more inferior for all frequency bands, more anterior for the delta-theta band, more posterior and more right for the alpha, beta and 1.5-30 Hz bands. One year later, the subjects were asked to rate the face images again. The rating scores for the same face images were highly correlated for all subjects, and original and retest affective mean attitude was highly correlated across subjects. The present results show that subjects with different affective attitudes to face images had different active, cerebral, neural populations in a task-free condition prior to viewing the images. We conclude that the brain functional state which implements affective attitude towards face images as a personality feature exists without elicitors, as a continuously present, dynamic feature of brain functioning. Copyright 1999 Elsevier Science B.V.
Luu, Phan; Tucker, Don M; Makeig, Scott
2004-08-01
The error-related negativity (ERN) is an event-related potential (ERP) peak occurring between 50 and 100 ms after the commission of a speeded motor response that the subject immediately realizes to be in error. The ERN is believed to index brain processes that monitor action outcomes. Our previous analyses of ERP and EEG data suggested that the ERN is dominated by partial phase-locking of intermittent theta-band EEG activity. In this paper, this possibility is further evaluated. The possibility that the ERN is produced by phase-locking of theta-band EEG activity was examined by analyzing the single-trial EEG traces from a forced-choice speeded response paradigm before and after applying theta-band (4-7 Hz) filtering and by comparing the averaged and single-trial phase-locked (ERP) and non-phase-locked (other) EEG data. Electrical source analyses were used to estimate the brain sources involved in the generation of the ERN. Beginning just before incorrect button presses in a speeded choice response paradigm, midfrontal theta-band activity increased in amplitude and became partially and transiently phase-locked to the subject's motor response, accounting for 57% of ERN peak amplitude. The portion of the theta-EEG activity increase remaining after subtracting the response-locked ERP from each trial was larger and longer lasting after error responses than after correct responses, extending on average 400 ms beyond the ERN peak. Multiple equivalent-dipole source analysis suggested 3 possible equivalent dipole sources of the theta-bandpassed ERN, while the scalp distribution of non-phase-locked theta amplitude suggested the presence of additional frontal theta-EEG sources. These results appear consistent with a body of research that demonstrates a relationship between limbic theta activity and action regulation, including error monitoring and learning.
NASA Astrophysics Data System (ADS)
Kappus, W.
1981-06-01
A model concerning adatom structures is proposed. Attractive nearest neighbour interactions, which may be of electronic nature lead to 2-dimensional condensation. Every pair bond causes and elastic dipole. The elastic dipoles interact via substrate strains with an anisotropic s -3 power law. Different types of adatoms or sites are permitted and many-body effects result, from the assumptions. Electric dipole interactions of adatoms are included for comparison. The model is applied to the W(110) surface and compared with superstructures experimentally found in the W(110)-0 system. It is found that there is still lack for an additional next-nearest neighbour interaction.
Negative refraction using Raman transitions and chirality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikes, D. E.; Yavuz, D. D.
2011-11-15
We present a scheme that achieves negative refraction with low absorption in far-off resonant atomic systems. The scheme utilizes Raman resonances and does not require the simultaneous presence of an electric-dipole transition and a magnetic-dipole transition near the same wavelength. We show that two interfering Raman tran-sitions coupled to a magnetic-dipole transition can achieve a negative index of refraction with low absorption through magnetoelectric cross-coupling. We confirm the validity of the analytical results with exact numerical simulations of the density matrix. We also discuss possible experimental implementations of the scheme in rare-earth metal atomic systems.
Gas-liquid coexistence in a system of dipolar soft spheres.
Jia, Ran; Braun, Heiko; Hentschke, Reinhard
2010-12-01
The existence of gas-liquid coexistence in dipolar fluids with no other contribution to attractive interaction than dipole-dipole interaction is a basic and open question in the theory of fluids. Here we compute the gas-liquid critical point in a system of dipolar soft spheres subject to an external electric field using molecular dynamics computer simulation. Tracking the critical point as the field strength is approaching zero we find the following limiting values: T(c)=0.063 and ρ(c)=0.0033 (dipole moment μ=1). These values are confirmed by independent simulation at zero field strength.
NASA Astrophysics Data System (ADS)
Clark, David A.
2012-09-01
Acquisition of magnetic gradient tensor data is likely to become routine in the near future. New methods for inverting gradient tensor surveys to obtain source parameters have been developed for several elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalised source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and is independent of magnetisation direction. In combination the NSS and its vector gradient determine source locations uniquely. NSS analysis can be extended to other useful models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the gradient tensor. Inversion based on the vector gradient of the NSS over the Tallawang magnetite deposit obtained good agreement between the inferred geometry of the tabular magnetite skarn body and drill hole intersections. Besides the geological applications, the algorithms for the dipole model are readily applicable to the detection, location and characterisation (DLC) of magnetic objects, such as naval mines, unexploded ordnance, shipwrecks, archaeological artefacts, and buried drums.
Repulsion of polarized particles from two-dimensional materials
NASA Astrophysics Data System (ADS)
Rodríguez-Fortuño, Francisco J.; Picardi, Michela F.; Zayats, Anatoly V.
2018-05-01
Repulsion of nanoparticles, molecules, and atoms from surfaces can have important applications in nanomechanical devices, microfluidics, optical manipulation, and atom optics. Here, through the solution of a classical scattering problem, we show that a dipole source oscillating at a frequency ω can experience a robust and strong repulsive force when its near-field interacts with a two-dimensional material. As an example, the case of graphene is considered, showing that a broad bandwidth of repulsion can be obtained at frequencies for which propagation of plasmon modes is allowed 0 <ℏ ω <(5 /3 ) μc , where μc is the chemical potential tunable electrically or by chemical doping.
Higgs C P violation from vectorlike quarks
Chen, Chien-Yi; Dawson, S.; Zhang, Yue
2015-10-20
We explore CP violating aspects in the Higgs sector of models where new vectorlike quarks carry Yukawa couplings mainly to the third generation quarks of the Standard Model. We point out that in the simplest model, Higgs CP violating interactions only exist in the hWW channel. At low energy, we nd that rare B decays can place similarly strong constraints as those from electric dipole moments on the source of CP violation. These observations offer a new handle to discriminate from other Higgs CP violating scenarios such as scalar sector extensions of the Standard Model, and imply an interesting futuremore » interplay among limits from different experiments.« less
NASA Astrophysics Data System (ADS)
Karpuškienė, R.; Bogdanovich, P.; Kisielius, R.
2017-05-01
The ab initio quasirelativistic approach developed specifically for the calculation of spectral parameters of highly charged ions was used to derive transition data for the tungsten ion W34+. The configuration interaction method was applied to include electron correlation effects. The relativistic effects were taken into account in the Breit-Pauli approximation. The level energies, radiative lifetimes τ, Landé g-factors are determined for the ground configuration 4p64d4 and two excited configurations 4p64d34f and 4p54d5. The radiative transition wavelengths λ and emission transition probabilities A for the electric dipole, electric quadrupole, electric octupole, magnetic dipole, and magnetic quadrupole transitions among the levels of these configurations are produced.
Zeroth order regular approximation approach to electric dipole moment interactions of the electron.
Gaul, Konstantin; Berger, Robert
2017-07-07
A quasi-relativistic two-component approach for an efficient calculation of P,T-odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.
Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M
2014-03-01
A sensitive dielectric spectroscopy setup is built to measure the response of nanoparticles dispersed in a liquid to an alternating electric field over a frequency range from 10(-2) to 10(7) Hz. The measured complex permittivity spectrum records both the rotational dynamics due to a permanent electric dipole moment and the translational dynamics due to net charges. The setup consists of a half-transparent capacitor connected in a bridge circuit, which is balanced on pure solvent only, using a software-controlled compensating voltage. In this way, the measured signal is dominated by the contributions of the nanoparticles rather than by the solvent. We demonstrate the performance of the setup with measurements on a dispersion of colloidal CdSe quantum dots in the apolar liquid decalin.
Zeroth order regular approximation approach to electric dipole moment interactions of the electron
NASA Astrophysics Data System (ADS)
Gaul, Konstantin; Berger, Robert
2017-07-01
A quasi-relativistic two-component approach for an efficient calculation of P ,T -odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.
NASA Astrophysics Data System (ADS)
Clayton, Steven; Chupp, Tim; Cude-Woods, Christopher; Currie, Scott; Ito, Takeyasu; Liu, Chen-Yu; Long, Joshua; MacDonald, Stephen; Makela, Mark; O'Shaughnessy, Christopher; Plaster, Brad; Ramsey, John; Saunders, Andy; LANL nEDM Collaboration
2017-09-01
The Los Alamos National Laboratory ultracold neutron (UCN) source was recently upgraded for a factor of 5 improvement in stored density, providing the statistical precision needed for a room temperature neutron electric dipole moment measurement with sensitivity 3 ×10-27 e . cm, a factor 10 better than the limit set by the Sussex-RAL-ILL experiment. Here, we show results of a demonstration of Ramsey's separated oscillatory fields method on stored UCNs at the LANL UCN source and in a geometry relevant for a nEDM measurement. We argue a world-leading nEDM experiment could be performed at LANL with existing technology and a short lead time, providing a physics result with sensitivity intermediate between the current limit set by Sussex-RAL-ILL, and the anticipated limit from the complex, cryogenic nEDM experiment planned for the next decade at the ORNL Spallation Neutron Source (SNS-nEDM). This work was supported by the Los Alamos LDRD Program, Project 20140015DR.
Sum Rule for a Schiff-Like Dipole Moment
NASA Astrophysics Data System (ADS)
Raduta, A. A.; Budaca, R.
The energy-weighted sum rule for an electric dipole transition operator of a Schiff type differs from the Thomas-Reiche-Kuhn (TRK) sum rule by several corrective terms which depend on the number of system components, N. For illustration the formalism was applied to the case of Na clusters. One concludes that the random phase approximation (RPA) results for Na clusters obey the modified TRK sum rule.
Helium Catalyzed D-D Fusion in a Levitated Dipole
NASA Astrophysics Data System (ADS)
Kesner, J.; Bromberg, L.; Garnier, D. T.; Hansen, A.; Mauel, M. E.
2003-10-01
Fusion research has focused on the goal of deuterium and tritium (D-T) fusion power because the reaction rate is large compared with the other fusion fuels: D-D or D-He3. Furthermore, the D-D cycle is difficult in traditional confinement devices, such as tokamaks, because good energy confinement is accompanied by good particle confinement which leads to an accumulation of ash. Fusion reactors based on the D-D reaction would be advantageous to D-T based reactors since they do not require the breeding of tritium and can reduce the flux of energetic neutrons that cause material damage. We propose a fusion power source based on the levitated dipole fusion concept that uses a "helium catalyzed D-D" fuel cycle, where rapid circulation of plasma allows the removal of tritium and the re-injection of the He3 decay product, eliminating the need for a massive blanket and shield. Stable dipole confinement derives from plasma compressibility instead of the magnetic shear and average good curvature. As a result, a dipole magnetic field can stabilize plasma at high beta while allowing large-scale adiabatic particle circulation. These properties may make the levitated dipole uniquely capable of achieving good energy confinement with low particle confinement. We find that a dipole based D-D power source can provide better utilization of magnetic field energy with a comparable mass power density to a D-T based tokamak power source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.Y.; Si, M.S., E-mail: sims@lzu.edu.cn; Peng, S.L.
2015-11-15
Blue phosphorene (BP) was theoretically predicted to be thermally stable recently. Considering its similar in-layer hexagonal lattice to MoS{sub 2}, MoS{sub 2} could be an appropriate substrate to grow BP in experiments. In this work, the van der Waals (vdW) heterostructures are constructed by stacking BP on top of MoS{sub 2}. The thermal stability and electronic structures are evaluated based on first principles calculations with vdW-corrected exchange-correlation functional. The formation of the heterostructures is demonstrated to be exothermic and the most stable stacking configuration is confirmed. The heterostructures BP/MoS{sub 2} preserve both the properties of BP and MoS{sub 2} butmore » exhibit relatively narrower bandgaps due to the interlayer coupling effect. The band structures can be further engineered by applying external electric fields. An indirect–direct bandgap transition in bilayer BP/MoS{sub 2} is demonstrated to be controlled by the symmetry property of the built-in electric dipole fields. - Graphical abstract: An indirect-direct band gap transition occurs in van der Waals heterostructure of MoS{sub 2}/BP under external electric fields which is demonstrated to be controlled by the symmetry of the built-in electric dipole fields. - Highlights: • The stacking of heterostructures of BP/MoS{sub 2} is demonstrated to be exothermic. • This suggests that it is possible to grow BP using MoS{sub 2} as the substrate. • The band structures of the heterostructures are exploited. • It realizes an indirect–direct gap transition under external electric fields. • The symmetry of the built-in electric dipole fields controls such gap transition.« less
Evidence of Biot Slow Waves in Electroseismic Measurementss on Laboratory-Scale
NASA Astrophysics Data System (ADS)
Devi, M. S.
2015-12-01
Electroseismic methods which are the opposite of seismo-electric methods have only been little investigated up to now especially in the near surface scale. These methods can generate the solid-fluid relative movement induced by the electric potential in fluid-filled porous media. These methods are the response of electro-osmosis due to the presence of the electrical double layer. Laboratory experiments and numerical simulations of electroseismic studies have been performed. Electroseismic measurements conducted in micro glass beads saturated with demineralized water. Pair of 37 x 37 mm square aluminium grids with 2 mm of aperture and 4 mm of spacing is used as the electric dipole that connected to the electric power source with the voltage output 150 V. A laser doppler vibrometer is the system used to measure velocity of vibrating objects during measurements by placing a line of reflective paper on the surface of media that scattered back a helium-neon laser. The results in homogeneous media shows that the compressional waves induced by an electric signal. We confirm that the results are not the effects of thermal expansion. We also noticed that there are two kinds of the compressional waves are recorded: fast and slow P-waves. The latter, Biot slow waves, indicate the dominant amplitude. Moreover, we found that the transition frequency (ωc) of Biot slow waves depends on mechanical parameters such as porosity and permeability. The ωc is not affected when varying conductivity of the fluid from 25 - 320 μS/cm, although the amplitude slightly changed. For the results in two layer media by placing a sandstone as a top layer shows that a large amount of transmission seismic waves (apparently as Biot slow waves) rather than converted electromagnetic-to-seismic waves. These properties have also been simulated with full waveform numerical simulations relying on Pride's (1994) using our computer code (Garambois & Dietrich, 2002). If it is true that the electric source in the safe voltage range generates seismic waves dominantly, it may be a reason of electro-osmosis dewatering technique to transport liquids. And this source may be used an alternative as a seismic source in geophysical exploration.
Zhang, Z; Jewett, D L
1994-01-01
Due to model misspecification, currently-used Dipole Source Localization (DSL) methods may contain Multiple-Generator Errors (MulGenErrs) when fitting simultaneously-active dipoles. The size of the MulGenErr is a function of both the model used, and the dipole parameters, including the dipoles' waveforms (time-varying magnitudes). For a given fitting model, by examining the variation of the MulGenErrs (or the fit parameters) under different waveforms for the same generating-dipoles, the accuracy of the fitting model for this set of dipoles can be determined. This method of testing model misspecification can be applied to evoked potential maps even when the parameters of the generating-dipoles are unknown. The dipole parameters fitted in a model should only be accepted if the model can be shown to be sufficiently accurate.
On the search for the electric dipole moment of strange and charm baryons at LHC
NASA Astrophysics Data System (ADS)
Botella, F. J.; Garcia Martin, L. M.; Marangotto, D.; Martinez Vidal, F.; Merli, A.; Neri, N.; Oyanguren, A.; Ruiz Vidal, J.
2017-03-01
Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in p p collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and \\overline{Λ} baryons. For short-lived {Λ} ^+c and {Ξ} ^+c baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed.
Pelloni, S; Provasi, P F; Pagola, G I; Ferraro, M B; Lazzeretti, P
2017-12-07
The trace of tensors that account for chiroptical response of the H 2 O 2 molecule is a function of the HO-OH dihedral angle. It vanishes at 0° and 180°, due to the presence of molecular symmetry planes, but also for values in the range 90-100° of this angle, in which the molecule is unquestionably chiral. Such an atypical effect is caused by counterbalancing contributions of diagonal tensor components with nearly maximal magnitude but opposite sign, determined by electron flow in open or closed helical paths, and associated with induced electric and magnetic dipole moments and anapole moments. For values of dihedral angle external to the 90-100° interval, the helical paths become smaller in size, thus reducing the amount of cancellation among diagonal components. Shrinking of helical paths determines the appearance of extremum values of tensor traces approximately at 50° and 140° dihedral angles.
Search for exotic short-range interactions using paramagnetic insulators
Chu, Pinghan; Weisman, E.; Liu, C. -Y.; ...
2015-05-26
We describe a proposed experimental search for exotic spin-coupled interactions using a solid-state paramagnetic insulator. The experiment is sensitive to the net magnetization induced by the exotic interaction between the unpaired insulator electrons with a dense, nonmagnetic mass in close proximity. An existing experiment has been used to set limits on the electric dipole moment of the electron by probing the magnetization induced in a cryogenic gadolinium gallium garnet sample on application of a strong electric field. With suitable additions, including a movable source mass, this experiment can be used to explore “monopole-dipole” forces on polarized electrons with unique ormore » unprecedented sensitivity. As a result, the solid-state, nonmagnetic construction, combined with the low-noise conditions and extremely sensitive magnetometry available at cryogenic temperatures could lead to a sensitivity over 10 orders of magnitude greater than exiting limits in the range below 1 mm.« less
Nucleon electromagnetic form factors using lattice simulations at the physical point
NASA Astrophysics Data System (ADS)
Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, Ch.; Koutsou, G.; Vaquero Aviles-Casco, A.
2017-08-01
We present results for the nucleon electromagnetic form factors using an ensemble of maximally twisted mass clover-improved fermions with pion mass of about 130 MeV. We use multiple sink-source separations and three analysis methods to probe ground-state dominance. We evaluate both the connected and disconnected contributions to the nucleon matrix elements. We find that the disconnected quark loop contributions to the isoscalar matrix elements are small, giving an upper bound of up to 2% of the connected and smaller than its statistical error. We present results for the isovector and isoscalar electric and magnetic Sachs form factors and the corresponding proton and neutron form factors. By fitting the momentum dependence of the form factors to a dipole form or to the z expansion, we extract the nucleon electric and magnetic radii, as well as the magnetic moment. We compare our results to experiment as well as to other recent lattice QCD calculations.
Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.
Ganem, Joseph; Bowman, Steven R
2013-11-01
Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.
White emission materials from glass doped with rare Earth ions: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasaka, P.; Kaewkhao, J., E-mail: mink110@hotmail.com; Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, 73000
2016-03-11
Solid State Lighting (SSL) based devices are predicted to play a crucial role in the coming years. Development of W-LED, which have an edge over traditional lighting sources due to their compact size, higher reliability, shock resistance, interesting design possibilities, higher transparency and an extremely long lifetime. Over the fifteen trivalent lanthanide ions, Dy{sup 3+} ions doped glasses are most appropriate for white light generation because of the fact that it exhibits two intense emission bands corresponds to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} (magnetic dipole) and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} (electric dipole) transitions at around 480-500 nm and 580-600 nmmore » pertaining to blue and yellow regions respectively. In this work, the developments of Dy3+ doped in several glass structures for white emitting materials application have reviewed. Properties of Dy{sup 3+} doped in glasses were discussed for use as a solid state lighting materials application.« less
Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources
NASA Astrophysics Data System (ADS)
Ganem, Joseph; Bowman, Steven R.
2013-11-01
Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.
Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources
2013-01-01
Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence. PMID:24180684
Exotic Leptons. Higgs, Flavor and Collider Phenomenology
Altmannshofer, Wolfgang; Bauer, Martin; Carena, Marcela
2014-01-15
We study extensions of the standard model by one generation of vector-like leptons with non-standard hypercharges, which allow for a sizable modification of the h → γγ decay rate for new lepton masses in the 300 GeV-1 TeV range. We also analyze vacuum stability implications for different hypercharges. Effects in h → Zγ are typically much smaller than in h → γγ, but distinct among the considered hypercharge assignments. Non-standard hypercharges constrain or entirely forbid possible mixing operators with standard model leptons. As a consequence, the leading contributions to the experimentally strongly constrained electric dipole moments of standard model fermionsmore » are only generated at the two loop level by the new CP violating sources of the considered setups. Furthermore, we derive the bounds from dipole moments, electro-weak precision observables and lepton flavor violating processes, and discuss their implications. Finally, we examine the production and decay channels of the vector-like leptons at the LHC, and find that signatures with multiple light leptons or taus are already probing interesting regions of parameter space.« less
Mapping Subsea Permafrost Using Suface-Towed Electromagnetic Methods Near Prudhoe Bay, AK
NASA Astrophysics Data System (ADS)
Sherman, D.; Constable, S.
2017-12-01
We have developed a surface-towed electric dipole-dipole system capable of operating in shallow water and deployable from small boats. Our system uses electromagnetic energy from a modulated manmade source to interrogate the underlying resistivity structure of the seafloor. We used this system in the summers of 2014 and 2015 to map subsea ice-bonded permafrost on the Beaufort Shelf along 200 km of coastline, from Tigvariak Island to Harrison Bay. Permafrost is resistive and was found to be anisotropic, likely due to interbedded layers of frozen and unfrozen sediment. Maps of depth to permafrost and its thickness were produced and results compared to borehole logs in the area. We observed elevated resistivity values offshore the Sagavanirktok River outflow, supporting the idea that fresh groundwater flow has a preserving effect on submerged permafrost. This system provides a cost effective method that could be used to further quantify permafrost extent, provide a baseline for measurements of future degradation, answer questions about the relationship between coastal erosion rates and offshore permafrost, and provide observational constraints on pore water salinity to aid in permafrost modeling studies.
NASA Astrophysics Data System (ADS)
Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof
2015-12-01
A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.
The electric dipole moments in the ground states of gold oxide, AuO, and gold sulfide, AuS.
Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy C; Cheng, Lan
2017-02-14
The B 2 Σ - - X 2 Π 3/2 (0,0) bands of a cold molecular beam sample of gold monoxide, AuO, and gold monosulfide, AuS, have been recorded at high resolution both field free and in the presence of a static electric field. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, μ→ el , of 2.94±0.06 D and 2.22±0.05 D for the X 2 Π 3/2 (v = 0) states of AuO and AuS, respectively. A molecular orbital correlation diagram is used to rationalize the trend in ground state μ→ el values for AuX (X = F, Cl, O, and S) molecules. The experimentally determined μ→ el are compared to those computed at the coupled-cluster singles and doubles (CCSD) level augmented with a perturbative inclusion of triple excitations (CCSD(T)) level of theory.
NASA Astrophysics Data System (ADS)
Wu, Shan; Burlingame, Quinn; Lin, Minren; Zhang, Qiming
2013-03-01
There is an increasing demand on dielectric materials with high electric energy density and low loss for a broad range of applications in modern electronics and electrical power systems such as hybrid electric vehicles (HEV), medical defibrillators, filters, and switched-mode power supplies. One major challenge in developing dielectric polymers is how to achieve high energy density Ue while maintaining low dielectric loss, even at very high-applied electric fields. Here we show that amorphous polar-polymers with very low impurity concentration can be promising for realizing such a dielectric polymer. Polar-polymer with high dipole moment and weak dipole coupling can provide relatively high dielectric constant for high Ue, eliminate polarization and conduction losses due to weak dipolar coupling and strong polar-scattering to charge carriers. Indeed, an aromatic polythiourea thin film can maintain low loss to high fields (>1 GV/m) with a high Ue (~ 24 J/cm3) , which is very attractive for energy storage capacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakke, K.
2010-09-15
Based on the Wei-Han-Wei setup [H. Wei, R. Han, and X. Wei, Phys. Rev. Lett. 75, 2071 (1995)], where a neutral particle with an induced electric dipole moment interacts with a configuration of crossed electric and magnetic fields, in this paper we study the bound states that arise when we change the Wei-Han-Wei field configuration and consider a field configuration of crossed azimuthal magnetic field and a radial electric field. Moreover, we consider here a spin-half neutral particle and the presence of a linear topological defect called disclination. We obtain the bound states in two distinct cases: in the firstmore » case, we consider that the wave function of the neutral particle is well-behaved at the origin and vanishes at the asymptotic limit; in the second case, we consider the neutral particle confined to a parabolic potential like a quantum dot.« less
Seismic equivalents of volcanic jet scaling laws and multipoles in acoustics
NASA Astrophysics Data System (ADS)
Haney, Matthew M.; Matoza, Robin S.; Fee, David; Aldridge, David F.
2018-04-01
We establish analogies between equivalent source theory in seismology (moment-tensor and single-force sources) and acoustics (monopoles, dipoles and quadrupoles) in the context of volcanic eruption signals. Although infrasound (acoustic waves < 20 Hz) from volcanic eruptions may be more complex than a simple monopole, dipole or quadrupole assumption, these elementary acoustic sources are a logical place to begin exploring relations with seismic sources. By considering the radiated power of a harmonic force source at the surface of an elastic half-space, we show that a volcanic jet or plume modelled as a seismic force has similar scaling with respect to eruption parameters (e.g. exit velocity and vent area) as an acoustic dipole. We support this by demonstrating, from first principles, a fundamental relationship that ties together explosion, torque and force sources in seismology and highlights the underlying dipole nature of seismic forces. This forges a connection between the multipole expansion of equivalent sources in acoustics and the use of forces and moments as equivalent sources in seismology. We further show that volcanic infrasound monopole and quadrupole sources exhibit scalings similar to seismicity radiated by volume injection and moment sources, respectively. We describe a scaling theory for seismic tremor during volcanic eruptions that agrees with observations showing a linear relation between radiated power of tremor and eruption rate. Volcanic tremor over the first 17 hr of the 2016 eruption at Pavlof Volcano, Alaska, obeyed the linear relation. Subsequent tremor during the main phase of the eruption did not obey the linear relation and demonstrates that volcanic eruption tremor can exhibit other scalings even during the same eruption.
Ultralight gravitons with tiny electric dipole moment are seeping from the vacuum
NASA Astrophysics Data System (ADS)
Novikov, Evgeny A.
2016-05-01
Mass and electric dipole moment (EDM) of graviton, which is identified as dark matter particle (DMP), are estimated. This change the concept of dark matter and can help to explain the baryon asymmetry of the universe. The calculations are based on quantum modification of the general relativity (Qmoger) with two additional terms in the Einstein equations, which takes into account production/absorption of gravitons. In this theory, there are no Big Bang in the beginning (some local bangs during the evolution of the universe are probable), no critical density of the universe, no dark energy (no need in cosmological constant) and no inflation. The theory (without fitting) is in good quantitative agreement with cosmic data.
Electric and Magnetic Dipole Strength at Low Energy.
Sieja, K
2017-08-04
A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ-ray strength of the ^{44}Sc isotope, for the first time taking into account both electric and magnetic dipole contributions obtained coherently in the same theoretical approach. The calculations are performed using the large-scale shell-model framework in a full 1ℏω sd-pf-gds model space. Our results corroborate previous theoretical findings for the low-energy enhancement of the M1 strength but show quite different behavior for the E1 strength.
The permanent electric dipole moment of CaOH
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Steimle, Timothy; Shirley, Jeffrey E.
1990-01-01
The X 2 Sigma(+), A 2Pi, and B 2Sigma(+) states of CaOH are characterized theoretically and experimentally, with a focus on the value of the permanent electric dipole moment (mu). Calculations based on SCF and SDCI studies of CaOH (Bauschlicher et al., 1984 and 1986) give mu values of 0.98, 0.49, and 0.11 D for the X, A, and B states, respectively, in good agreement with experiments in which the pure rotational spectra of these states were not detected. Modified Rittner (1951) and ligand-field models of these states are explored in detail, and the applicability of these results to observational searches for CaOH in circumstellar envelopes is indicated.
Electric Dipole Moment of the Neutron from 2+1 Flavor Lattice QCD.
Guo, F-K; Horsley, R; Meissner, U-G; Nakamura, Y; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Zanotti, J M
2015-08-07
We compute the electric dipole moment d(n) of the neutron from a fully dynamical simulation of lattice QCD with 2+1 flavors of clover fermions and nonvanishing θ term. The latter is rotated into a pseudoscalar density in the fermionic action using the axial anomaly. To make the action real, the vacuum angle θ is taken to be purely imaginary. The physical value of dd(n) is obtained by analytic continuation. We find d(n)=-3.9(2)(9)×10(-16) θ e cm, which, when combined with the experimental limit on d(n), leads to the upper bound |θ|≲7.4×10(-11).
Energy levels and radiative rates for transitions in B-like to F-like Kr ions (Kr XXXII XXVIII)
NASA Astrophysics Data System (ADS)
Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.
2008-05-01
Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n ⩽ 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been noted and explained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de
2016-01-28
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurationsmore » improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.« less