Sample records for electric field driven

  1. Lightning-driven electric and magnetic fields measured in the stratosphere: Implications for sprites

    NASA Astrophysics Data System (ADS)

    Thomas, Jeremy Norman

    A well accepted model for sprite production involves quasi-electrostatic fields (QSF) driven by large positive cloud-to-ground (+CG) strokes that can cause electrical breakdown in the middle atmosphere. A new high voltage, high impedance, double Langmuir probe instrument is designed specifically for measuring these large lightning-driven electric field changes at altitudes above 30 km. This High Voltage (HV) Electric Field Detector measured 200 nearby (<75 km) lightning-driven electric field changes, up to 140 V/m in magnitude, during the Brazil Sprite Balloon Campaign 2002--03. A numerical QSF model is developed and compared to the in situ measurements. It is found that the amplitudes and relaxation times of the electric fields driven by these nearby lightning events generally agree with the numerical QSF model, which suggests that the QSF approach is valid for modeling lightning-driven fields. Using the best fit parameters of this comparison, it is predicted that the electric fields at sprite altitudes (60--90 km) never surpass conventional breakdown in the mesosphere for each of these 200 nearby lightning events. Lightning-driven ELF to VLF (25 Hz--8 kHz) electric field changes were measured for each of the 2467 cloud-to-ground lightning (CGs) detected by the Brazilian Integrated Lightning Network (BIN) at distances of 75--600 km, and magnetic field changes (300 Hz--8 kHz) above the background noise were measured for about 35% (858) of these CGs. ELF pulses that occur 4--12 ms after the retarded time of the lightning sferic, which have been previously attributed to sprites, were found for 1.4% of 934 CGs examined with a strong bias towards +CGs (4.9% or 9/184) compared to -CGs (0.5% or 4/750). These results disagree with results from the Sprites99 Balloon Campaign [Bering et al., 2004b], in which the lightning-driven electric and magnetic field changes were rare, while the CG delayed ELF pulses were frequent. The Brazil Campaign results thus suggest that mesospheric currents are likely the result of the QSF driven by large charge moment strokes, which are usually +CG strokes, initiating breakdown in the middle atmosphere.

  2. Efficiency of wave-driven rigid body rotation toroidal confinement

    NASA Astrophysics Data System (ADS)

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  3. Electrically Driving Donor Spin Qubits in Silicon Using Photonic Bandgap Resonators

    NASA Astrophysics Data System (ADS)

    Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.

    In conventional experiments, donor nuclear spin qubits in silicon are driven using radiofrequency (RF) magnetic fields. However, magnetic fields are difficult to confine at the nanoscale, which poses major issues for individually addressable qubits and device scalability. Ideally one could drive spin qubits using RF electric fields, which are easy to confine, but spins do not naturally have electric dipole transitions. In this talk, we present a new method for electrically controlling nuclear spin qubits in silicon by modulating the hyperfine interaction between the nuclear spin qubit and the donor-bound electron. By fabricating planar superconducting photonic bandgap resonators, we are able to use pulsed electron-nuclear double resonance (ENDOR) techniques to selectively probe both electrically and magnetically driven transitions for 31P and 75As nuclear spin qubits. The electrically driven spin resonance mechanism allows qubits to be driven at either their transition frequency, or at one-half their transition frequency, thus reducing bandwidth requirements for future quantum devices. Moreover, this form of control allows for higher qubit densities and lower power requirements compared to magnetically driven schemes. In our proof-of-principle experiments we demonstrate electrically driven Rabi frequencies of approximately 50 kHz for widely spaced (10 μm) gates which should be extendable to MHz for nanoscale devices.

  4. 30 CFR 18.90 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated... requirements for permissibility which must be met to obtain MSHA field approval of electrically operated...

  5. 30 CFR 18.90 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated... requirements for permissibility which must be met to obtain MSHA field approval of electrically operated...

  6. Manipulation of a neutral and nonpolar nanoparticle in water using a nonuniform electric field

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Wang, Chunlei; Sheng, Nan; Hu, Guohui; Zhou, Zhewei; Fang, Haiping

    2016-01-01

    The manipulation of nanoparticles in water is of essential importance in chemical physics, nanotechnology, medical technology, and biotechnology applications. Generally, a particle with net charges or charge polarity can be driven by an electric field. However, many practical particles only have weak and even negligible charge and polarity, which hinders the electric field to exert a force large enough to drive these nanoparticles directly. Here, we use molecular dynamics simulations to show that a neutral and nonpolar nanoparticle in liquid water can be driven directionally by an external electric field. The directed motion benefits from a nonuniform water environment produced by a nonuniform external electric field, since lower water energies exist under a higher intensity electric field. The nanoparticle spontaneously moves toward locations with a weaker electric field intensity to minimize the energy of the whole system. Considering that the distance between adjacent regions of nonuniform field intensity can reach the micrometer scale, this finding provides a new mechanism of manipulating nanoparticles from the nanoscale to the microscale.

  7. 30 CFR 18.91 - Electric equipment for which field approvals will be issued.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment for which field approvals... OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.91 Electric equipment...

  8. 30 CFR 18.91 - Electric equipment for which field approvals will be issued.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric equipment for which field approvals... OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.91 Electric equipment...

  9. Field-aligned currents and large scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1980-01-01

    D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.

  10. Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Qiang; Dong, Xin; Ye, Hong-Fei; Cheng, Guang-Gui; Ding, Jian-Ning; Ling, Zhi-Yong

    2015-02-01

    Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.

  11. Electrokinetic effects on motion of submicron particles in microchannel

    NASA Astrophysics Data System (ADS)

    Sato, Yohei; Hishida, Koichi

    2006-11-01

    Two-fluid mixing utilizing electrokinetically driven flow in a micro-channel is investigated by micron-resolution particle image velocimetry and an image processing technique. Submicron particles are transported and mixed with deionized water by electrophoresis. The particle electrophoretic velocity that is proportional to an applied electric field is measured in a closed cell, which is used to calculate the electroosmotic flow velocity. At a constant electric field, addition of pressure-driven flow to electrokinetically driven flow in a T-shaped micro-channel enhances two-fluid mixing because the momentum flux is increased. On the other hand, on application of an alternative sinusoidal electric field, the velocity difference between pressure-driven and electroosmotic flows has a significant effect on increasing the length of interface formed between two fluids. It is concluded from the present experiments that the transport and mixing process in the micro-channel will be enhanced by accurate flow-rate control of both pressure-driven and electroosmotic flows.

  12. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane

    NASA Astrophysics Data System (ADS)

    Zhang, Y. A.; Lin, C. F.; Lin, J. P.; Zeng, X. Y.; Yan, Q.; Zhou, X. T.; Guo, T. L.

    2018-04-01

    Electric-field-driven liquid crystal (ELC) lens with tunable focal length and their depth of field has been extensively applied in 3D display and imaging systems. In this work, a dual-layer electrode-driven liquid crystal (DELC) lens with electrically tunable focal length and controllable focal plane is demonstrated. ITO-SiO2-AZO electrodes with the dual-layer staggered structure on the top substrate are used as driven electrodes within a LC cell, which permits the establishment of an alternative controllability. The focal length of the DELC lens can be adjusted from 1.41 cm to 0.29 cm when the operating voltage changes from 15 V to 40 V. Furthermore, the focal plane of the DELC lens can selectively move by changing the driving method of the applied voltage to the next driven electrodes. This work demonstrates that the DELC lens has potential applications in imaging systems because of electrically tunable focal length and controllable focal plane.

  13. Electric-field-driven electron-transfer in mixed-valence molecules.

    PubMed

    Blair, Enrique P; Corcelli, Steven A; Lent, Craig S

    2016-07-07

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate the electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.

  14. Proliferation of metallic domains caused by inhomogeneous heating near the electrically driven transition in VO2 nanobeams

    NASA Astrophysics Data System (ADS)

    Singh, Sujay; Horrocks, Gregory; Marley, Peter M.; Shi, Zhenzhong; Banerjee, Sarbajit; Sambandamurthy, G.

    2015-10-01

    We discuss the mechanisms behind the electrically driven insulator-metal transition in single-crystalline VO2 nanobeams. Our dc and ac transport measurements and the versatile harmonic analysis method employed show that nonuniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. A Poole-Frenkel-like purely electric-field-induced transition is found to be absent, and the role of percolation near and away from the electrically driven transition in VO2 is also identified. The results and the harmonic analysis can be generalized to many strongly correlated materials that exhibit electrically driven transitions.

  15. A simulation of dielectrophoresis force actuated liquid lens

    NASA Astrophysics Data System (ADS)

    Yao, Xiaoyin; Xia, Jun

    2009-11-01

    Dielectrophoresis (DEP) and electrowetting on dielectric (EWOD) are based on the electrokinetic mechanisms which have great potential in microfluidic manipulation. DEP dominate the movement of particles induced by polarization effects in nonuniform electric field ,while EWOD has become one of the most widely used tools for manipulating tiny amounts of liquids on solid surfaces. Liquid lens driven by EWOD have been well studied and developed. But liquid lens driven by DEP has not been studied adequately. This paper focuses on modeling liquid lens driven by DEP force. A simulation of DEP driven droplet dynamics was performed by coupling of the electrostatic field and the two-phase flow field. Two incompressible and dielectric liquids with different permittivity were chosen in the two-phase flow field. The DEP force density, in direct proportion to gradient of the square of the electric field intensity, was used as a body force density in Navier-Stokes equation. When voltage applied, the liquid with high permittivity flowed to the place where the gradient of the square of the electric field intensity was higher, and thus change the curvature of interface between two immiscible liquid. The differences between DEP and EWOD liquid lens were also presented.

  16. En route to surface-bound electric field-driven molecular motors.

    PubMed

    Jian, Huahua; Tour, James M

    2003-06-27

    Four caltrop-shaped molecules that might be useful as surface-bound electric field-driven molecular motors have been synthesized. The caltrops are comprised of a pair of electron donor-acceptor arms and a tripod base. The molecular arms are based on a carbazole or oligo(phenylene ethynylene) core with a strong net dipole. The tripod base uses a silicon atom as its core. The legs of the tripod bear sulfur-tipped bonding units, as acetyl-protected benzylic thiols, for bonding to a gold surface. The geometry of the tripod base allows the caltrop to project upward from a metallic surface after self-assembly. Ellipsometric studies show that self-assembled monolayers of the caltrops are formed on Au surfaces with molecular thicknesses consistent with the desired upright-shaft arrangement. As a result, the zwitterionic molecular arms might be controllable when electric fields are applied around the caltrops, thereby constituting field-driven motors.

  17. Wide-view transflective liquid crystal display for mobile applications

    NASA Astrophysics Data System (ADS)

    Kim, Hyang Yul; Ge, Zhibing; Wu, Shin-Tson; Lee, Seung Hee

    2007-12-01

    A high optical efficiency and wide-view transflective liquid crystal display based on fringe-field switching structure is proposed. The transmissive part has a homogenous liquid crystal (LC) alignment and is driven by a fringe electric field, which exhibits excellent electro-optic characteristics. The reflective part has a hybrid LC alignment with quarter-wave phase retardation and is also driven by a fringe electric field. Consequently, the transmissive and reflective parts have similar gamma curves.

  18. High-order harmonic generation driven by inhomogeneous plasmonics fields spatially bounded: influence on the cut-off law

    NASA Astrophysics Data System (ADS)

    Neyra, E.; Videla, F.; Ciappina, M. F.; Pérez-Hernández, J. A.; Roso, L.; Lewenstein, M.; Torchia, G. A.

    2018-03-01

    We study high-order harmonic generation (HHG) in model atoms driven by plasmonic-enhanced fields. These fields result from the illumination of plasmonic nanostructures by few-cycle laser pulses. We demonstrate that the spatial inhomogeneous character of the laser electric field, in a form of Gaussian-shaped functions, leads to an unexpected relationship between the HHG cutoff and the laser wavelength. Precise description of the spatial form of the plasmonic-enhanced field allows us to predict this relationship. We combine the numerical solutions of the time-dependent Schrödinger equation (TDSE) with the plasmonic-enhanced electric fields obtained from 3D finite element simulations. We additionally employ classical simulations to supplement the TDSE outcomes and characterize the extended HHG spectra by means of their associated electron trajectories. A proper definition of the spatially inhomogeneous laser electric field is instrumental to accurately describe the underlying physics of HHG driven by plasmonic-enhanced fields. This characterization opens up new perspectives for HHG control with various experimental nano-setups.

  19. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Qingtao; Li, Liyu; Nie, Zimin

    We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplifiedmore » mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.« less

  1. Electric-field-driven electron-transfer in mixed-valence molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, Enrique P., E-mail: enrique-blair@baylor.edu; Corcelli, Steven A., E-mail: scorcell@nd.edu; Lent, Craig S., E-mail: lent@nd.edu

    2016-07-07

    Molecular quantum-dot cellular automata is a computing paradigm in which digital information is encoded by the charge configuration of a mixed-valence molecule. General-purpose computing can be achieved by arranging these compounds on a substrate and exploiting intermolecular Coulombic coupling. The operation of such a device relies on nonequilibrium electron transfer (ET), whereby the time-varying electric field of one molecule induces an ET event in a neighboring molecule. The magnitude of the electric fields can be quite large because of close spatial proximity, and the induced ET rate is a measure of the nonequilibrium response of the molecule. We calculate themore » electric-field-driven ET rate for a model mixed-valence compound. The mixed-valence molecule is regarded as a two-state electronic system coupled to a molecular vibrational mode, which is, in turn, coupled to a thermal environment. Both the electronic and vibrational degrees-of-freedom are treated quantum mechanically, and the dissipative vibrational-bath interaction is modeled with the Lindblad equation. This approach captures both tunneling and nonadiabatic dynamics. Relationships between microscopic molecular properties and the driven ET rate are explored for two time-dependent applied fields: an abruptly switched field and a linearly ramped field. In both cases, the driven ET rate is only weakly temperature dependent. When the model is applied using parameters appropriate to a specific mixed-valence molecule, diferrocenylacetylene, terahertz-range ET transfer rates are predicted.« less

  2. Giant Electric Field Enhancement in Split Ring Resonators Featuring Nanometer-Sized Gaps

    NASA Astrophysics Data System (ADS)

    Bagiante, S.; Enderli, F.; Fabiańska, J.; Sigg, H.; Feurer, T.

    2015-01-01

    Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm-1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations.

  3. 30 CFR 18.93 - Application for field approval; filing procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Application for field approval; filing... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.93 Application for field approval; filing...

  4. 30 CFR 18.93 - Application for field approval; filing procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Application for field approval; filing... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.93 Application for field approval; filing...

  5. Electrically Driven Liquid Film Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  6. Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials.

    PubMed

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-27

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator's gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  7. 30 CFR 18.92 - Quality of material and design.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field... shall be designed to facilitate maintenance and inspection. (b) MSHA shall conduct field investigations and, where necessary, field test electric machinery only where such machinery is found to be...

  8. 30 CFR 18.92 - Quality of material and design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field... shall be designed to facilitate maintenance and inspection. (b) MSHA shall conduct field investigations and, where necessary, field test electric machinery only where such machinery is found to be...

  9. Characterization of an induced pressure pumping force for microfluidics

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Fan, Na; Peng, Bei; Weng, Xuan

    2017-05-01

    The electro-osmotic pumping and pressure-driven manipulation of fluids are considered as the most common strategies in microfluidic devices. However, both of them exhibit major disadvantages such as hard integration and high reagent consumption, and they are destructive methods for detection and photo bleaching. In this paper, an electric field-effect flow control approach, combining the electro-osmotic pumping force and the pressure-driven pumping force, was developed to generate the induced pressure-driven flow in a T-shaped microfluidic chip. Electro-osmotic flow between the T-intersection and two reservoirs was demonstrated, and it provided a stable, continuous, and electric field-free flow in the section of the microchannel without the electrodes. The velocity of the induced pressure-driven flow was linearly proportional to the applied voltages. Both numerical and experimental investigations were conducted to prove the concept, and the experimental results showed good agreement with the numerical simulations. In comparison to other induced pressure pumping methods, this approach can induce a high and controllable pressure drop in the electric field-free segment, subsequently causing an induced pressure-driven flow for transporting particles or biological cells. In addition, the generation of bubbles and the blocking of the microchannel are avoided.

  10. Electroosmotic Flow Driven by DC and AC Electric Fields in Curved Microchannels

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Kun; Luo, Win-Jet; Yang, Ruey-Jen

    2006-10-01

    The purpose of this study is to investigate electroosmotic flows driven by externally applied DC and AC electric fields in curved microchannels. For the DC electric driving field, the velocity distribution and secondary flow patterns are investigated in microchannels with various curvature ratios. We use the Dean number to describe the curvature effect of the flow field in DC electric field. The result implies that the effect of curvatures and the strength of the secondary flows become get stronger when the curvature ratio of C/A (where C is the radius of curvature of the microchannel and A is the half-height of rectangular curved tube.) is smaller. For the AC electric field, the velocity distribution and secondary flow patterns are investigated for driving frequencies in the range of 2.0 kHz (\\mathit{Wo}=0.71) to 11 kHz (\\mathit{Wo}=1.66). The numerical results reveal that the velocity at the center of the microchannel becomes lower at higher frequencies of the AC electric field and the strength of the secondary flow decreases. When the applied frequency exceeds 3.0 kHz (\\mathit{Wo}=0.87), vortices are no longer observed at the corners of the microchannel. Therefore, it can be concluded that the secondary flow induced at higher AC electric field frequencies has virtually no effect on the axial flow field in the microchannel.

  11. The neutral wind 'flywheel' as a source of quiet-time, polar-cap currents

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Walterscheid, R. L.; Killeen, T. L.

    1985-01-01

    The neutral wind pattern over the summer polar cap can be driven by plasma convection to resemble the convection pattern. For a north-south component of the interplanetary magnetic field Bz directed southward, the wind speeds in the conducting E-region can become approximately 25 percent of the electric field drift speeds. If convection ceases, this neutral wind distribution can drive a significant polar cap current system for approximately 6 hours. The currents are reversed from those driven by the electric fields for southward Bz, and the Hall and field-aligned components of the current system resemble those observed during periods of northward Bz. The current magnitudes are similar to those observed during periods of small, northward Bz; however, observations indicate that electric fields often contribute to the currents as much as, or more than, the neutral winds.

  12. Electric-field-driven Phenomena for Manipulating Particles in Micro-Devices

    NASA Technical Reports Server (NTRS)

    Khusid, Boris; Acrivos, Andreas

    2004-01-01

    Compared to other available methods, ac dielectrophoresis is particularly well-suited for the manipulation of minute particles in micro- and nano-fluidics. The essential advantage of this technique is that an ac field at a sufficiently high frequency suppresses unwanted electric effects in a liquid. To date very little has been achieved towards understanding the micro-scale field-and shear driven behavior of a suspension in that, the concepts currently favored for the design and operation of dielectrophoretic micro-devices adopt the approach used for macro-scale electric filters. This strategy considers the trend of the field-induced particle motions by computing the spatial distribution of the field strength over a channel as if it were filled only with a liquid and then evaluating the direction of the dielectrophoretic force, exerted on a single particle placed in the liquid. However, the exposure of suspended particles to a field generates not only the dielectrophoretic force acting on each of these particles, but also the dipolar interactions of the particles due to their polarization. Furthermore, the field-driven motion of the particles is accompanied by their hydrodynamic interactions. We present the results of our experimental and theoretical studies which indicate that, under certain conditions, these long-range electrical and hydrodynamic interparticle interactions drastically affect the suspension behavior in a micro-channel due to its small dimensions.

  13. Laser-driven electron acceleration in a plasma channel with an additional electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Li-Hong; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn; Liu, Jie, E-mail: liu-jie@iapcm.ac.cn

    2016-05-15

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the lasermore » pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.« less

  14. 30 CFR 18.99 - Notice of approval or disapproval; letters of approval and approval plates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approval or disapproval of the machine. (a) If the qualified electrical representative recommends field..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.99 Notice of approval or...

  15. 30 CFR 18.99 - Notice of approval or disapproval; letters of approval and approval plates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... approval or disapproval of the machine. (a) If the qualified electrical representative recommends field..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.99 Notice of approval or...

  16. Electrically driven cation exchange for in situ fabrication of individual nanostructures

    DOE PAGES

    Zhang, Qiubo; Yin, Kuibo; Dong, Hui; ...

    2017-04-12

    Cation exchange (CE) has been recognized as a particularly powerful tool for the synthesis of heterogeneous nanocrystals. Presently, CE can be divided into two categories, namely ion solvation-driven CE reaction and thermally activated CE reaction. Here we report an electrically driven CE reaction to prepare individual nanostructures inside a transmission electron microscope. During the process, Cd is eliminated due to Ohmic heating, whereas Cu + migrates into the crystal driven by the electrical field force. Contrast experiments reveal that the feasibility of electrically driven CE is determined by the structural similarity of the sulfur sublattices between the initial and finalmore » phases, and the standard electrode potentials of the active electrodes. These experimental results demonstrate a strategy for the selective growth of individual nanocrystals and provide crucial insights into understanding of the microscopic pathways leading to the formation of heterogeneous structures.« less

  17. Electric field driven evolution of topological domain structure in hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Yang, K. L.; Zhang, Y.; Zheng, S. H.; Lin, L.; Yan, Z. B.; Liu, J.-M.; Cheong, S.-W.

    2017-10-01

    Controlling and manipulating the topological state represents an important topic in condensed matters for both fundamental researches and applications. In this work, we focus on the evolution of a real-space topological domain structure in hexagonal manganites driven by electric field, using the analytical and numerical calculations based on the Ginzburg-Landau theory. It is revealed that the electric field drives a transition of the topological domain structure from the type-I pattern to the type-II one. In particular, it is identified that a high electric field can enforce the two antiphase-plus-ferroelectric (AP +FE ) domain walls with Δ Φ =π /3 to approach each other and to merge into one domain wall with Δ Φ = 2 π /3 eventually if the electric field is sufficiently high, where Δ Φ is the difference in the trimerization phase between two neighboring domains. Our simulations also reveal that the vortex cores of the topological structure can be disabled at a sufficiently high critical electric field by suppressing the structural trimerization therein, beyond which the vortex core region is replaced by a single ferroelectric domain without structural trimerization (Q = 0 ). Our results provide a stimulating reference for understanding the manipulation of real-space topological domain structure in hexagonal manganites.

  18. Numerical simulation of plasma processes driven by transverse ion heating

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  19. Anti-Le-Chatelet behavior driven by strong natural light

    NASA Astrophysics Data System (ADS)

    Antonyuk, B. P.

    2007-01-01

    We show that strong incoherent broad band light causes positive feedback in response to a static electric field in random media: electric current flows in opposite to a voltage drop direction; static polarization is induced in opposition to an applied electric field. This type of the electron motion amplifies the external action revealing anti-Le-Chatelet behavior. The applied static electric field is amplified up to the domain of optical damage of a silica glass ≈10 7 V/cm.

  20. Robust ion current oscillations under a steady electric field: An ion channel analog.

    PubMed

    Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2016-08-01

    We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1/f power spectrum.

  1. Electricity in foams: from one soapy interface to the macroscopic material

    NASA Astrophysics Data System (ADS)

    Biance, Anne-Laure

    2017-11-01

    Liquid foams (a dispersion of gas bubbles in a soapy solution) destabilize with time due to coarsening, coalescence and gravity driven drainage. We propose here to inhibit (or trigger) the foam destabilization by applying an electric field to the material. This effect is investigated at the different scales of the system: one soapy interface, one liquid film, the macroscopic foam. The generation of an electroosmotic flow near a soapy liquid/gas interface raises many issues. How does the flow affect surfactant repartition? Is there a Marangoni stress at the interface? At the scale of one soap film, how the electric field affects the film stability and deformation? In a macroscopic foam, one can wonder whether the electric field can indeed reverse gravity driven drainage and increase foam lifetime? These different issues are considered by developing new experimental techniques allowing us to probe surfactant repartition at liquid interfaces, soap film thicknesses and liquid foam properties when an electric field is applied. The results will be presented together with a comprehensive picture of the mechanisms arising at each scale of the material, to conclude with the potential use of electricity in liquid foams to control destabilization. Collaborators: Baptiste Blanc, Oriane Bonhomme, Laurent Joly, Christophe Ybert.

  2. 30 CFR 18.96 - Preparation of machines for inspection; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.96 Preparation of machines for inspection... place at which a field approval investigation will be conducted with respect to any machine, the...

  3. 30 CFR 18.96 - Preparation of machines for inspection; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.96 Preparation of machines for inspection... place at which a field approval investigation will be conducted with respect to any machine, the...

  4. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field

    NASA Astrophysics Data System (ADS)

    Krishnaveni, T.; Renganathan, T.; Picardo, J. R.; Pushpavanam, S.

    2017-09-01

    We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.

  5. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field.

    PubMed

    Krishnaveni, T; Renganathan, T; Picardo, J R; Pushpavanam, S

    2017-09-01

    We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.

  6. Strong Nonvolatile Magnon-Driven Magnetoelectric Coupling in Single-Crystal Co /[PbMg1/3Nb2/3O3] 0.71[PbTiO3]0.29 Heterostructures

    NASA Astrophysics Data System (ADS)

    Zhou, Cai; Shen, Lvkang; Liu, Ming; Gao, Cunxu; Jia, Chenglong; Jiang, Changjun

    2018-01-01

    The ability to manipulate the magnetism on interfacing ferromagnetic and ferroelectric materials via electric fields to achieve an emergent multiferroic response has enormous potential for nanoscale devices with novel functionalities. Herein, a strong electric-field control of the magnetism modulation is reported for a single-crystal Co (14 nm )/(001 )Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (PMN-PT) heterostructure by fabricating an epitaxial Co layer on a PMN-PT substrate. Electric-field-tuned ferromagnetic resonance exhibits a large resonance field shift, with a 120-Oe difference between that under positive and negative remanent polarizations, which demonstrates nonvolatile electric-field control of the magnetism. Further, considering the complexity of the twofold symmetry magnetic anisotropy, the linear change of the fourfold symmetry magnetic anisotropy, relating to the single-crystal cubic magnetocrystal anisotropy of the Co thin film, is resolved and quantified to exert a magnon-driven, strong direct magnetoelectric effect on the Co /PMN -PT interface. These results are promising for future multiferroic devices.

  7. Electrokinetically driven microfluidic mixing with patchwise surface heterogeneity and AC applied electric field

    NASA Astrophysics Data System (ADS)

    Luo, Win-Jet; Yue, Cheng-Feng

    2004-12-01

    This paper investigates two-dimensional, time-dependent electroosmotic flows driven by an AC electric field via patchwise surface heterogeneities distributed along the microchannel walls. The time-dependent flow fields through the microchannel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. It is shown that the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in accordance with the applied periodic AC electric field intensity. The circulations provide an effective means of enhancing species mixing in the microchannel. A suitable design of the patchwise heterogeneous surface pattern permits the mixing channel length and the retention time required to attain a homogeneous solution to be reduced significantly.

  8. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Homoepitaxial Islands on Crystalline Conducting Substrates

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    2017-07-01

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.

  9. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  10. Electric-field driven jetting from dielectric liquids

    NASA Astrophysics Data System (ADS)

    Jayasinghe, S. N.; Edirisinghe, M. J.

    2004-11-01

    Three dielectric (electrical conductivity ˜10-13Sm-1) Newtonian liquids with viscosity in the range 1-100 mPa s were passed through a needle at a controlled flow rate under the influence of an electric field. At an electric field strength of 1.5kV/mm, the liquid exiting the needle instantaneously transformed from dripping droplets to an elliptically pendent droplet from the apex of which a fine jet evolved. Thus, a jet can be obtained on demand, and in this letter we define this phenomenon and explain a basis for it.

  11. Electrically driven spin qubit based on valley mixing

    NASA Astrophysics Data System (ADS)

    Huang, Wister; Veldhorst, Menno; Zimmerman, Neil M.; Dzurak, Andrew S.; Culcer, Dimitrie

    2017-02-01

    The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.

  12. An Experimental Study of Continuous Plasma Flows Driven by a Confined Arc in a Transverse Magnetic Field

    NASA Technical Reports Server (NTRS)

    Barger, R. L.; Brooks, J. D.; Beasley, W. D.

    1961-01-01

    A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.

  13. First Observations of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plettner, T.; Byer, R.L.; Smith, T.I.

    2006-02-17

    We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transitionmore » radiation process. experiment as the Laser Electron Accelerator Project (LEAP).« less

  14. Electrical Aspects of Impinging Flames

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer from the flame to the plate can be controlled using the electric field are the two main goals of this research. Multiple diagnostic techniques are employed such as OH chemiluminescence to identify the reaction zone, OH PLIF to characterize the location of this radical species, CO released from the flame, IR imaging and OH PLIF thermometry to understand the surface and gas temperature distribution, respectively. The principal finding is that carbon monoxide release from an impinging diffusion flame results from the escape of carbon monoxide created on the fuel side of the flame along the boundary layer near the surface where it avoids oxidation by OH, which sits to the air side of the reaction sheet interface. In addition, the plate proximity to the flame has a stronger influence on the emission of toxic carbon monoxide than does the electric field strength. There is, however, a narrow region of burner to surface distance where the electric field is most effective. The results also show that heat transfer can be spatially concentrated effectively using an electric field driven ion wind, particularly at some burner to surface distances.

  15. Magnetic structures and excitations in a multiferroic Y-type hexaferrite BaSrCo 2 Fe 11 AlO 22

    DOE PAGES

    Nakajima, Taro; Tokunaga, Yusuke; Matsuda, Masaaki; ...

    2016-11-30

    Here, we have investigated magnetic orders and excitations in a Y-type hexaferrite BaSrCo 2Fe 11AlO 22 (BSCoFAO), which was reported to exhibit spin-driven ferroelectricity at room temperature. By means of magnetization, electric polarization, and neutron-diffraction measurements using single-crystal samples, we establish a H-T magnetic phase diagram for magnetic field perpendicular to the c axis (H ⟂c). This system exhibits an alternating longitudinal conical (ALC) magnetic structure in the ground state, and it turns into a non-co-planar commensurate magnetic order with spin-driven ferroelectricity under H ⟂c. The field-induced ferroelectric phase remains as a metastable state after removing magnetic field below 250more » K. This metastability is the key to understanding of magnetic field reversal of the spin-driven electric polarization in this system. Inelastic polarized neutron-scattering measurements in the ALC phase reveal a magnetic excitation at around 7.5 meV, which is attributed to spin components oscillating in a plane perpendicular to the cone axis. This phasonlike excitation is expected to be an electric-field active magnon, i.e., electromagnon excitation, in terms of the magnetostriction mechanism.« less

  16. Magnetic structures and excitations in a multiferroic Y-type hexaferrite BaSrCo2Fe11AlO22

    NASA Astrophysics Data System (ADS)

    Nakajima, Taro; Tokunaga, Yusuke; Matsuda, Masaaki; Dissanayake, Sachith; Fernandez-Baca, Jaime; Kakurai, Kazuhisa; Taguchi, Yasujiro; Tokura, Yoshinori; Arima, Taka-hisa

    2016-11-01

    We have investigated magnetic orders and excitations in a Y-type hexaferrite BaSrCo2Fe11AlO22 (BSCoFAO), which was reported to exhibit spin-driven ferroelectricity at room temperature [S. Hirose, K. Haruki, A. Ando, and T. Kimura, Appl. Phys. Lett. 104, 022907 (2014), 10.1063/1.4862432]. By means of magnetization, electric polarization, and neutron-diffraction measurements using single-crystal samples, we establish a H -T magnetic phase diagram for magnetic field perpendicular to the c axis (H⊥c). This system exhibits an alternating longitudinal conical (ALC) magnetic structure in the ground state, and it turns into a non-co-planar commensurate magnetic order with spin-driven ferroelectricity under H⊥c. The field-induced ferroelectric phase remains as a metastable state after removing magnetic field below ˜250 K. This metastability is the key to understanding of magnetic field reversal of the spin-driven electric polarization in this system. Inelastic polarized neutron-scattering measurements in the ALC phase reveal a magnetic excitation at around 7.5 meV, which is attributed to spin components oscillating in a plane perpendicular to the cone axis. This phasonlike excitation is expected to be an electric-field active magnon, i.e., electromagnon excitation, in terms of the magnetostriction mechanism.

  17. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Epitaxial Islands on Crystalline Conducting Substrates

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on face-centered cubic (FCC) crystalline conducting substrate surfaces under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast diffusion direction. For larger than critical island sizes on {110} and {100} FCC substrates, we show that multiple necking instabilities generate complex island patterns, including void-containing islands, mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The analysis reveals that the pattern formation kinetics follows a universal scaling relation. Division of Materials Sciences & Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (Award No.: DE-FG02-07ER46407).

  18. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkattraman, Ayyaswamy

    2013-11-15

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential andmore » the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.« less

  19. Two-stage Electron Acceleration by 3D Collisionless Guide-field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Buechner, J.; Munoz, P.

    2017-12-01

    We discuss a two-stage process of electron acceleration near X-lines of 3D collisionless guide-field magnetic reconnection. Non-relativistic electrons are first pre-accelerated by magnetic-field-aligned (parallel) electric fields. At the nonlinear stage of 3D guide-field magnetic reconnection electric and magnetic fields become filamentary structured due to streaming instabilities. This causes an additional curvature-driven electron acceleration in the guide-field direction. The resulting spectrum of the accelerated electrons follows a power law.

  20. Effect of electron-to-ion mass ratio on radial electric field generation in tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenqian; Dong, Jiaqi; Sheng, Zhengmao

    Generation of coherent radial electric fields in plasma by drift-wave turbulence driven by plasma inhomogeneities is ab initio studied using gyro-kinetic particle simulation for conditions of operational tokamaks. In particular, the effect of the electron-to-ion mass ratio epsilon on the entire evolution of the plasma is considered. In conclusion, it is found that the electric field can be increased, and the turbulence-induced particle transport reduced, by making epsilon smaller, in agreement with many existing experimental observations.

  1. Effect of electron-to-ion mass ratio on radial electric field generation in tokamak

    DOE PAGES

    Li, Zhenqian; Dong, Jiaqi; Sheng, Zhengmao; ...

    2017-11-21

    Generation of coherent radial electric fields in plasma by drift-wave turbulence driven by plasma inhomogeneities is ab initio studied using gyro-kinetic particle simulation for conditions of operational tokamaks. In particular, the effect of the electron-to-ion mass ratio epsilon on the entire evolution of the plasma is considered. In conclusion, it is found that the electric field can be increased, and the turbulence-induced particle transport reduced, by making epsilon smaller, in agreement with many existing experimental observations.

  2. 30 CFR 18.97 - Inspection of machines; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.97 Inspection of machines; minimum... shall be conducted by an electrical representative and such inspection shall include: (1) Examination of...

  3. 30 CFR 18.97 - Inspection of machines; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.97 Inspection of machines; minimum... shall be conducted by an electrical representative and such inspection shall include: (1) Examination of...

  4. Electric-field-induced domain intersection in BaTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Mengxia; Zhang, Zhihua

    2017-03-01

    Large-angle convergent beam electron diffraction was used to determine the directions of polarization vectors in a BaTiO3 single crystal. Domain intersections driven by an electric field were investigated by in situ transmission electron microscopy. The dark triangles observed in the domain intersection region can be accounted for by dislocations and the strain field. Domains nucleate at the domain tip depending on the dislocations and strain field to relieve the accumulated stress. Schematic representations of the intersecting domains and the microscopic structure are given, clarifying the special electric-field-induced domain structure.

  5. Absolute and convective instabilities of a film flow down a vertical fiber subjected to a radial electric field

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Chen, Xue; Ding, Zijing

    2018-01-01

    We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.

  6. Regional United States electric field and GIC hazard impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Gannon, J. L.; Balch, C. C.; Trichtchenko, L.

    2013-12-01

    Geomagnetically Induced Currents (GICs) are primarily driven by impulsive geomagnetic disturbances created by the interaction between the Earth's magnetosphere and sharp velocity, density, and magnetic field enhancements in the solar wind. However, the magnitude of the induced electric field response at the ground level, and therefore the resulting hazard to the bulk power system, is determined not only by magnetic drivers, but also by the underlying geology. Convolution techniques are used to calculate surface electric fields beginning from the spectral characteristics of magnetic field drivers and the frequency response of the local geology. Using these techniques, we describe historical scenarios for regions across the United States, and the potential impact of large events on electric power infrastructure.

  7. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems.

    PubMed

    Wang, Decai; Li, Ping; Wen, Yumei

    2016-10-01

    In this paper, the design and modeling of a magnetically driven electric-field sensor for non-contact DC voltage measurement are presented. The magnetic drive structure of the sensor is composed of a small solenoid and a cantilever beam with a cylindrical magnet mounted on it. The interaction of the magnet and the solenoid provides the magnetic driving force for the sensor. Employing magnetic drive structure brings the benefits of low driving voltage and large vibrating displacement, which consequently results in less interference from the drive signal. In the theoretical analyses, the capacitance calculation model between the wire and the sensing electrode is built. The expression of the magnetic driving force is derived by the method of linear fitting. The dynamical model of the magnetic-driven cantilever beam actuator is built by using Euler-Bernoulli theory and distributed parameter method. Taking advantage of the theoretical model, the output voltage of proposed sensor can be predicted. The experimental results are in good agreement with the theoretical results. The proposed sensor shows a favorable linear response characteristic. The proposed sensor has a measuring sensitivity of 9.87 μV/(V/m) at an excitation current of 37.5 mA. The electric field intensity resolution can reach 10.13 V/m.

  8. Experimental results on current-driven turbulence in plasmas - a survey

    NASA Astrophysics Data System (ADS)

    de Kluiver, H.; Perepelkin, N. F.; Hirose, A.

    1991-01-01

    The experimental consequences of plasma turbulence driven by a current parallel to a magnetic field and concurrent anomalous plasma heating are reviewed, with an attempt to deduce universalities in key parameters such as the anomalous electrical conductivities observed in diverse devices. It has been found that the nature of plasma turbulence and turbulent heating depends on several parameters including the electric field, current and magnetic fields. A classification of turbulence regimes based on these parameters has been made. Experimental observations of the anomalous electrical conductivity, plasma heating, skin effect, runaway electron braking and turbulent fluctuations are surveyed, and current theoretical understanding is briefly reviewed. Experimental results recently obtained in stellarators (SIRIUS, URAGAN at Kharkov), and in tokamaks (TORTUR at Nieuwegein, STOR-1M at Saskatoon) are presented in some detail in the light of investigating the feasibility of using turbulent heating as a means of injecting a large power into toroidal devices.

  9. Criticality in a non-equilibrium, driven system: charged colloidal rods (fd-viruses) in electric fields.

    PubMed

    Kang, K; Dhont, J K G

    2009-11-01

    Experiments on suspensions of charged colloidal rods (fd-virus particles) in external electric fields are performed, which show that a non-equilibrium critical point can be identified. Several transition lines of field-induced phases and states meet at this point and it is shown that there is a length- and time-scale which diverge at the non-equilibrium critical point. The off-critical and critical behavior is characterized, with both power law and logarithmic divergencies. These experiments show that analogous features of the classical, critical divergence of correlation lengths and relaxation times in equilibrium systems are also exhibited by driven systems that are far out of equilibrium, related to phases/states that do not exist in the absence of the external field.

  10. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm.

    PubMed

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-10-28

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection.

  11. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm

    PubMed Central

    Zhu, Tao; Zhou, Liming; Liu, Min; Zhang, Jingdong; Shi, Leilei

    2015-01-01

    The traditional electrical field sensing can be realized by utilizing electro-optic materials or liquid crystals, and has limitations of easy breakdown, free assembly and difficult measurement of low-frequency. Here, we propose a new method to realize safe measurement of spatial dynamic electric field by using a micro fiber interferometer integrated with gold nanofilm. The energy of the electric charge received through antenna forms the intrinsic electric field with two micro electrodes, one of which is the 120 nm gold film vibration beam micromachined by femtosecond lasers and integrated with the micro fiber. The change of the intrinsic electric field force due to the spatial electric field will cause the vibration of the film beam. By demodulating the output signal of the micro fiber interferometer, the electric field can be measured. We demonstrate the detectable frequency ranges from tens of Hz to tens of KHz, and the minimum electric field intensity is ~200 V/m at 1 KHz. Our electric field measurement technology combining optical fiber interference with gold nanostructures shows the advantages of security, high sensitivity, compact size, and multiplexed multi-point and remote detection. PMID:26507680

  12. Coupled multiferroic domain switching in the canted conical spin spiral system Mn2GeO4

    NASA Astrophysics Data System (ADS)

    Honda, T.; White, J. S.; Harris, A. B.; Chapon, L. C.; Fennell, A.; Roessli, B.; Zaharko, O.; Murakami, Y.; Kenzelmann, M.; Kimura, T.

    2017-06-01

    Despite remarkable progress in developing multifunctional materials, spin-driven ferroelectrics featuring both spontaneous magnetization and electric polarization are still rare. Among such ferromagnetic ferroelectrics are conical spin spiral magnets with a simultaneous reversal of magnetization and electric polarization that is still little understood. Such materials can feature various multiferroic domains that complicates their study. Here we study the multiferroic domains in ferromagnetic ferroelectric Mn2GeO4 using neutron diffraction, and show that it features a double-Q conical magnetic structure that, apart from trivial 180o commensurate magnetic domains, can be described by ferromagnetic and ferroelectric domains only. We show unconventional magnetoelectric couplings such as the magnetic-field-driven reversal of ferroelectric polarization with no change of spin-helicity, and present a phenomenological theory that successfully explains the magnetoelectric coupling. Our measurements establish Mn2GeO4 as a conceptually simple multiferroic in which the magnetic-field-driven flop of conical spin spirals leads to the simultaneous reversal of magnetization and electric polarization.

  13. Maximum Langmuir Fields in Planetary Foreshocks Determined from the Electrostatic Decay Threshold

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, Iver H.

    1995-01-01

    Maximum electric fields of Langmuir waves at planetary foreshocks are estimated from the threshold for electrostatic decay, assuming it saturates beam driven growth, and incorporating heliospheric variation of plasma density and temperature. Comparisons with spacecraft observations yields good quantitative agreement. Observations in type 3 radio sources are also in accord with this interpretation. A single mechanism can thus account for the highest fields of beam driven waves in both contexts.

  14. Perovskite photonic sources

    NASA Astrophysics Data System (ADS)

    Sutherland, Brandon R.; Sargent, Edward H.

    2016-05-01

    The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

  15. Electric-field-driven switching of individual magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Hsu, Pin-Jui; Kubetzka, André; Finco, Aurore; Romming, Niklas; von Bergmann, Kirsten; Wiesendanger, Roland

    2017-02-01

    Controlling magnetism with electric fields is a key challenge to develop future energy-efficient devices. The present magnetic information technology is mainly based on writing processes requiring either local magnetic fields or spin torques, but it has also been demonstrated that magnetic properties can be altered on the application of electric fields. This has been ascribed to changes in magnetocrystalline anisotropy caused by spin-dependent screening and modifications of the band structure, changes in atom positions or differences in hybridization with an adjacent oxide layer. However, the switching between states related by time reversal, for example magnetization up and down as used in the present technology, is not straightforward because the electric field does not break time-reversal symmetry. Several workarounds have been applied to toggle between bistable magnetic states with electric fields, including changes of material composition as a result of electric fields. Here we demonstrate that local electric fields can be used to switch reversibly between a magnetic skyrmion and the ferromagnetic state. These two states are topologically inequivalent, and we find that the direction of the electric field directly determines the final state. This observation establishes the possibility to combine electric-field writing with the recently envisaged skyrmion racetrack-type memories.

  16. Simulations of particle structuring driven by electric fields

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Vlahovska, Petia; Miksis, Michael

    2015-11-01

    Recent experiments (Ouriemi and Vlahovska, 2014) show intriguing surface patterns when a uniform electric field is applied to a droplet covered with colloidal particles. Depending on the particle properties and the electric field intensity, particles organize into an equatorial belt, pole-to-pole chains, or dynamic vortices. Here we present 3D simulations of the collective particle dynamics, which account for electrohydrodynamic flow and dielectrophoresis of particles. In stronger electric fields, particles are expected to undergo Quincke rotation and impose disturbance to the ambient flow. Transition from ribbon-shaped belt to rotating clusters is observed in the presence of the rotation-induced hydrodynamical interactions. Our results provide insight into the various particle assembles discovered in the experiments.

  17. Electric-field-driven phase transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Wu, B.; Zimmers, A.; Aubin, H.; Ghosh, R.; Liu, Y.; Lopez, R.

    2011-12-01

    We report on local probe measurements of current-voltage and electrostatic force-voltage characteristics of electric-field-induced insulator to metal transition in VO2 thin film. In conducting AFM mode, switching from the insulating to metallic state occurs for electric-field threshold E˜6.5×107Vm-1 at 300K. Upon lifting the tip above the sample surface, we find that the transition can also be observed through a change in electrostatic force and in tunneling current. In this noncontact regime, the transition is characterized by random telegraphic noise. These results show that electric field alone is sufficient to induce the transition; however, the electronic current provides a positive feedback effect that amplifies the phenomena.

  18. Field tuning the g factor in InAs nanowire double quantum dots.

    PubMed

    Schroer, M D; Petersson, K D; Jung, M; Petta, J R

    2011-10-21

    We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the electric-dipole spin resonance response, allowing selective single spin control. © 2011 American Physical Society

  19. Strain-engineered inverse charge-funnelling in layered semiconductors.

    PubMed

    De Sanctis, Adolfo; Amit, Iddo; Hepplestone, Steven P; Craciun, Monica F; Russo, Saverio

    2018-04-25

    The control of charges in a circuit due to an external electric field is ubiquitous to the exchange, storage and manipulation of information in a wide range of applications. Conversely, the ability to grow clean interfaces between materials has been a stepping stone for engineering built-in electric fields largely exploited in modern photovoltaics and opto-electronics. The emergence of atomically thin semiconductors is now enabling new ways to attain electric fields and unveil novel charge transport mechanisms. Here, we report the first direct electrical observation of the inverse charge-funnel effect enabled by deterministic and spatially resolved strain-induced electric fields in a thin sheet of HfS 2 . We demonstrate that charges driven by these spatially varying electric fields in the channel of a phototransistor lead to a 350% enhancement in the responsivity. These findings could enable the informed design of highly efficient photovoltaic cells.

  20. Imaging the Dynamics of the Ferroelectric Stripe Phase Near a Field-Driven Phase Transition in Bismuth Ferrite

    NASA Astrophysics Data System (ADS)

    Laanait, Nouamane; Li, Qian; Zhang, Zhan; Kalinin, Sergei

    Electric field-driven phase transitions in multiferroic systems such as Bismuth Ferrite could potentially host interesting domain dynamics due to the coexistence of multiple order parameters. Structural imaging of these dynamics under a host of elastic and electric boundary conditions is therefore of interest. Here, we present X-ray diffraction microscopy (XDM) studies of the domain wall dynamics in a bismuth ferrite thin-film near the field-driven transition from rhombohedral to monoclinic (R to M). XDM is a novel full-field imaging technique that uses Bragg diffraction contrast to image structural configurations with sub-100nm lateral resolutions and fast acquisition times (milliseconds to seconds per image). We find that under electric fields 100 kV/cm, a bismuth ferrite thin-film (100 nm BiFeO3/DyScO3 (110)) undergoes a structural phase transition but that this new phase (M) is pinned by the preexisting ferroelectric/ferroelastic stripe phase (R). At higher fields ( 300 kV/cm), we observe unusually slow domain wall dynamics in the stripe phase, consisting of periodicity doubling, domain wall roughening and crowding. These observed ferroelastic domain wall spatial dynamics are weakly constrained by the crystal symmetry of the orthorhombic substrate but exhibit nonlinear dynamics more commonly associated with disordered nematic systems. This work was supported by the Eugene P. Wigner Fellowship program at Oak Ridge National Laboratory, a U.S. Department of Energy facility.

  1. Interaction and Aggregation of Colloidal Biological Particles and Droplets in Electrically-Driven Flows

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.; Loewenberg, Michael

    1997-01-01

    The primary objective of this research was to develop a fundamental understanding of aggregation and coalescence processes during electrically-driven migration of cells, particles and droplets. The process by which charged cells, particles, molecules, or drops migrate in a weak electric field is known as electrophoresis. If the migrating species have different charges or surface potentials, they will migrate at different speeds and thus may collide and aggregate or coalesce. Aggregation and coalescence are undesirable, if the goal is to separate the different species on the basis of their different electrophoretic mobilities.

  2. Holographic Floquet states I: a strongly coupled Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Kinoshita, Shunichiro; Murata, Keiju; Oka, Takashi

    2017-05-01

    Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N = 2 supersymmetric massless QCD in a rotating electric field in the large N c limit realizing the first example of a "holographic Floquet state". In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm's law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the "periodic thermodynamic" concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.

  3. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.

    PubMed

    Lewpiriyawong, Nuttawut; Xu, Guolin; Yang, Chun

    2018-03-01

    This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Plasma-driven ultrashort bunch diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dornmair, I.; Schroeder, C. B.; Floettmann, K.

    2016-06-10

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  5. Electrical Aspects of Flames in Microgravity Combustion

    NASA Technical Reports Server (NTRS)

    Dunn-Rankin, D.; Strayer, B.; Weinberg, F.; Carleton, F.

    1999-01-01

    A principal characteristic of combustion in microgravity is the absence of buoyancy driven flows. In some cases, such as for spherically symmetrical droplet burning, the absence of buoyancy is desirable for matching analytical treatments with experiments. In other cases, however, it can be more valuable to arbitrarily control the flame's convective environment independent of the environmental gravitational condition. To accomplish this, we propose the use of ion generated winds driven by electric fields to control local convection of flames. Such control can produce reduced buoyancy (effectively zero buoyancy) conditions in the laboratory in 1-g facilitating a wide range of laser diagnostics that can probe the system without special packaging required for drop tower or flight tests. In addition, the electric field generated ionic winds allow varying gravitational convection equivalents even if the test occurs in reduced gravity environments.

  6. Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures.

    PubMed

    Amendt, Peter; Landen, O L; Robey, H F; Li, C K; Petrasso, R D

    2010-09-10

    The observation of large, self-generated electric fields (≥10(9)  V/m) in imploding capsules using proton radiography has been reported [C. K. Li, Phys. Rev. Lett. 100, 225001 (2008)]. A model of pressure gradient-driven diffusion in a plasma with self-generated electric fields is developed and applied to reported neutron yield deficits for equimolar D3He [J. R. Rygg, Phys. Plasmas 13, 052702 (2006)] and (DT)3He [H. W. Herrmann, Phys. Plasmas 16, 056312 (2009)] fuel mixtures and Ar-doped deuterium fuels [J. D. Lindl, Phys. Plasmas 11, 339 (2004)]. The observed anomalies are explained as a mild loss of deuterium nuclei near capsule center arising from shock-driven diffusion in the high-field limit.

  7. Electric-field-driven magnetization reversal in square-shaped nanomagnet-based multiferroic heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Ren-Ci; Nan, Ce-Wen, E-mail: jzw12@psu.edu, E-mail: cwnan@tsinghua.edu.cn; Wang, J. J., E-mail: jzw12@psu.edu, E-mail: cwnan@tsinghua.edu.cn

    Based on phase field modeling and thermodynamic analysis, purely electric-field-driven magnetization reversal was shown to be possible in a multiferroic heterostructure of a square-shaped amorphous Co{sub 40}Fe{sub 40}B{sub 20} nanomagnet on top of a ferroelectric layer through electrostrain. The reversal is made possible by engineering the mutual interactions among the built-in uniaxial magnetic anisotropy, the geometry-dependent magnetic configuration anisotropy, and the magnetoelastic anisotropy. Particularly, the incorporation of the built-in uniaxial anisotropy made it possible to reverse magnetization with one single unipolar electrostrain pulse, which is simpler than previous designs involving the use of bipolar electrostrains and may alleviate ferroelectric fatigue.more » Critical conditions for triggering the magnetization reversal are identified.« less

  8. Quasi-Static Electric Field Generator

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  9. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.

  10. Dielectrics for long term space exposure and spacecraft charging: A briefing

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.

    1989-01-01

    Charging of dielectrics is a bulk, not a surface property. Radiation driven charge stops within the bulk and is not quickly conducted to the surface. Very large electric fields develop in the bulk due to this stopped charge. At space radiation levels, it typically requires hours or days for the internal electric fields to reach steady state. The resulting electric fields are large enough to produce electrical failure within the insulator. This type failure is thought to produce nearly all electric discharge anomalies. Radiation also induces bond breakage, creates reactive radicals, displaces atoms and, in general, severely changes the chemistry of the solid state material. Electric fields can alter this process by reacting with charged species, driving them through the solid. Irradiated polymers often lose as much as a percent of their mass, or more, at exposures typical in space. Very different aging or contaminant emission can be induced by the stopped charge electric fields. These radiation effects are detailed.

  11. Field-aligned currents and large-scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1979-01-01

    The existence of field-aligned currents (FAC) at northern and southern high latitudes was confirmed by a number of observations, most clearly by experiments on the TRIAD and ISIS 2 satellites. The high-latitude FAC system is used to relate what is presently known about the large-scale pattern of high-latitude ionospheric electric fields and their relation to solar wind parameters. Recently a simplified model was presented for polar cap electric fields. The model is of considerable help in visualizing the large-scale features of FAC systems. A summary of the FAC observations is given. The simplified model is used to visualize how the FAC systems are driven by their generators.

  12. Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, F.; Zhu, Y.; Liu, S.

    The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO 3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent across unit cells. Thismore » effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.« less

  13. Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, F.; Zhu, Y.; Liu, S.

    The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here in this paper we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO 3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent acrossmore » unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.« less

  14. Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO 3

    DOE PAGES

    Chen, F.; Zhu, Y.; Liu, S.; ...

    2016-11-22

    The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here in this paper we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO 3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent acrossmore » unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained.« less

  15. The Ionospheric Impact of an ICME-Driven Sheath Region Over Indian and American Sectors in the Absence of a Typical Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Rout, Diptiranjan; Chakrabarty, D.; Sarkhel, S.; Sekar, R.; Fejer, B. G.; Reeves, G. D.; Kulkarni, Atul S.; Aponte, Nestor; Sulzer, Mike; Mathews, John D.; Kerr, Robert B.; Noto, John

    2018-05-01

    On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18-hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM-H) index did not go below -7 nT during this event suggesting the absence of a typical geomagnetic storm. The responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigated using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545-0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2-type electric field perturbations with ˜40-min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. This result shows that SYM-H index may not capture the full geoeffectivenss of the ICME sheath-driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME.

  16. Runaway tails in magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Vlahos, L.; Rowland, H. L.; Papadopoulos, K.

    1985-01-01

    The evolution of a runaway tail driven by a dc electric field in a magnetized plasma is analyzed. Depending on the strength of the electric field and the ratio of plasma to gyrofrequency, there are three different regimes in the evolution of the tail. The tail can be (1) stable with electrons accelerated to large parallel velocities, (2) unstable to Cerenkov resonance because of the depletion of the bulk and the formation of a positive slope, (3) unstable to the anomalous Doppler resonance instability driven by the large velocity anisotropy in the tail. Once an instability is triggered (Cerenkov or anomalous Doppler resonance) the tail relaxes into an isotropic distribution. The role of a convection type loss term is also discussed.

  17. Dielectrophoretic systems without embedded electrodes

    DOEpatents

    Cummings, Eric B [Livermore, CA; Singh, Anup K [San Francisco, CA

    2006-03-21

    Method and apparatus for dielectrophoretic separation of particles in a fluid based using array of insulating structures arranged in a fluid flow channel. By utilizing an array of insulating structures, a spatially inhomogeneous electric field is created without the use of the embedded electrodes conventionally employed for dielectrophoretic separations. Moreover, by using these insulating structures a steady applied electric field has been shown to provide for dielectrophoresis in contrast to the conventional use of an alternating electric field. In a uniform array of posts, dielectrophoretic effects have been produced flows having significant pressure-driven and electrokinetic transport. Above a threshold applied electric field, filaments of concentrated and rarefied particles appear in the flow as a result of dielectrophoresis. Above a higher threshold applied voltage, dielectrophoresis produces zones of highly concentrated and immobilized particles. These patterns are strongly influenced by the angle of the array of insulating structures with respect to the mean applied electric field and the shape of the insulating structures.

  18. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE PAGES

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  19. Particle orbits in a force-balanced, wave-driven, rotating torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochs, I. E.; Fisch, N. J.

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in thismore » desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.« less

  20. Particle orbits in a force-balanced, wave-driven, rotating torus

    NASA Astrophysics Data System (ADS)

    Ochs, I. E.; Fisch, N. J.

    2017-09-01

    A wave-driven rotating torus is a recently proposed fusion concept where the rotational transform is provided by the E × B drift resulting from a minor radial electric field. This field can be produced, for instance, by the RF-wave-mediated extraction of fusion-born alpha particles. In this paper, we discuss how macroscopic force balance, i.e., balance of the thermal hoop force, can be achieved in such a device. We show that this requires the inclusion of a small plasma current and vertical magnetic field and identify the desirable reactor regime through free energy considerations. We then analyze particle orbits in this desirable regime, identifying velocity-space anisotropies in trapped (banana) orbits, resulting from the cancellation of rotational transforms due to the radial electric and poloidal magnetic fields. The potential neoclassical effects of these orbits on the perpendicular conductivity, current drive, and transport are discussed.

  1. Electrical Control of g-Factor in a Few-Hole Silicon Nanowire MOSFET.

    PubMed

    Voisin, B; Maurand, R; Barraud, S; Vinet, M; Jehl, X; Sanquer, M; Renard, J; De Franceschi, S

    2016-01-13

    Hole spins in silicon represent a promising yet barely explored direction for solid-state quantum computation, possibly combining long spin coherence, resulting from a reduced hyperfine interaction, and fast electrically driven qubit manipulation. Here we show that a silicon-nanowire field-effect transistor based on state-of-the-art silicon-on-insulator technology can be operated as a few-hole quantum dot. A detailed magnetotransport study of the first accessible hole reveals a g-factor with unexpectedly strong anisotropy and gate dependence. We infer that these two characteristics could enable an electrically driven g-tensor-modulation spin resonance with Rabi frequencies exceeding several hundred mega-Hertz.

  2. Optically Tunable Resistive-Switching Memory in Multiferroic Heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Ming; Ni, Hao; Xu, Xiaoke; Qi, Yaping; Li, Xiaomin; Gao, Ju

    2018-04-01

    Electronic phase separation has been used to realize exotic functionalities in complex oxides with external stimuli, such as magnetic field, electric field, current, light, strain, etc. Using the Nd0.7Sr0.3MnO3/0.7 Pb (Mg1 /3Nb2 /3)O3-0 .3 PbTiO3 multiferroic heterostructure as a model system, we investigate the electric field and light cocontrol of phase separation in resistive switching. The electric-field-induced nonvolatile electroresistance response is achieved at room temperature using reversible ferroelastic domain switching, which can be robustly modified on illumination of light. Moreover, the electrically controlled ferroelastic strain can effectively enhance the visible-light-induced photoresistance effect. These findings demonstrate that the electric-field- and light-induced effects strongly correlate with each other and are essentially driven by electronic phase separation. Our work opens a gate to design electrically tunable multifunctional storage devices based on multiferroic heterostructures by adding light as an extra control parameter.

  3. Plasma rotation by electric and magnetic fields in a discharge cylinder

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.

  4. Electrical Manipulation of Donor Spin Qubits in Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Sigillito, Anthony James

    Many proposals for quantum information devices rely on electronic or nuclear spins in semiconductors because of their long coherence times and compatibility with industrial fabrication processes. One of the most notable qubits is the electron spin bound to phosphorus donors in silicon, which offers coherence times exceeding seconds at low temperatures. These donors are naturally isolated from their environments to the extent that silicon has been coined a "semiconductor vacuum". While this makes for ultra-coherent qubits, it is difficult to couple two remote donors so quantum information proposals rely on high density arrays of qubits. Here, single qubit addressability becomes an issue. Ideally one would address individual qubits using electric fields which can be easily confined. Typically these schemes rely on tuning a donor spin qubit onto and off of resonance with a magnetic driving field. In this thesis, we measure the electrical tunability of phosphorus donors in silicon and use the extracted parameters to estimate the effects of electric-field noise on qubit coherence times. Our measurements show that donor ionization may set in before electron spins can be sufficiently tuned. We therefore explore two alternative options for qubit addressability. First, we demonstrate that nuclear spin qubits can be directly driven using electric fields instead of magnetic fields and show that this approach offers several advantages over magnetically driven spin resonance. In particular, spin transitions can occur at half the spin resonance frequency and double quantum transitions (magnetic-dipole forbidden) can occur. In a second approach to realizing tunable qubits in semiconductors, we explore the option of replacing silicon with germanium. We first measure the coherence and relaxation times for shallow donor spin qubits in natural and isotopically enriched germanium. We find that in isotopically enriched material, coherence times can exceed 1 ms and are limited by a single-phonon T1 process. At lower frequencies or lower temperatures the qubit coherence times should substantially increase. Finally, we measure the electric field tunability of donors in germanium and find a four order-of-magnitude enhancement in the spin-orbit Stark shift and confirm that the donors should be tunable by at least 4 times the electron spin ensemble linewidth (in isotopically enriched material). Germanium should therefore also be more sensitive to electrically driven nuclear magnetic resonance. Based on these results germanium is a promising alternative to silicon for spin qubits.

  5. Separation of large DNA molecules by applying pulsed electric field to size exclusion chromatography-based microchip

    NASA Astrophysics Data System (ADS)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2018-02-01

    Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.

  6. Key parameters controlling the performance of catalytic motors.

    PubMed

    Esplandiu, Maria J; Afshar Farniya, Ali; Reguera, David

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  7. High-velocity, multistage, nozzled, ion driven wind generator and method of operation of the same adaptable to mesoscale realization

    NASA Technical Reports Server (NTRS)

    Rickard, Matthew J. A. (Inventor); Dunn-Rankin, Derek (Inventor)

    2011-01-01

    Gas flows of modest velocities are generated when an organized ion flux in an electric field initiates an ion-driven wind of neutral molecules. When a needle in ambient air is electrically charged to a potential sufficient to produce a corona discharge near its tip, such a gas flow can be utilized downstream of a ring-shaped or other permeable earthed electrode. In view of the potential practical applications of such devices, as they represent blowers with no moving parts, a methodology for increasing their flow velocities includes exploitation of the divergence of electric field lines, avoidance of regions of high curvature on the second electrode, control of atmospheric humidity, and the use of linear arrays of stages, terminating in a converging nozzle. The design becomes particularly advantageous when implemented in mesoscale domains.

  8. Thermally and electrically controllable multiple high harmonics generation by harmonically driven quasi-two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Maglevanny, I. I.; Smolar, V. A.; Karyakina, T. I.

    2018-06-01

    In this paper, we consider the activation processes in nonlinear meta-stable system based on a lateral (quasi-two-dimensional) superlattice and study the dynamics of such a system externally driven by a harmonic force. The internal control parameters are the longitudinal applied electric field and the sample temperature. The spontaneous transverse electric field is considered as an order parameter. The forced violations of order parameter are considered as a response of a system to periodic driving. We investigate the cooperative effects of self-organization and high harmonic forcing from the viewpoint of catastrophe theory and show the possibility of generation of third and higher odd harmonics in output signal that lead to distortion of its wave front. A higher harmonics detection strategy is further proposed and explained in detail by exploring the influences of system parameters on the response output of the system that are discussed through numerical simulations.

  9. 30 CFR 18.90 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Purpose. 18.90 Section 18.90 Mineral Resources... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.90 Purpose. The regulations of this subpart E set forth the procedures and...

  10. 30 CFR 18.90 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Purpose. 18.90 Section 18.90 Mineral Resources... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.90 Purpose. The regulations of this subpart E set forth the procedures and...

  11. 30 CFR 18.90 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Purpose. 18.90 Section 18.90 Mineral Resources... PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.90 Purpose. The regulations of this subpart E set forth the procedures and...

  12. 30 CFR 18.20 - Quality of material, workmanship, and design.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... facilitate inspection and maintenance. (b) MSHA will test only electrical equipment that in the opinion of... shall be accessible for field inspection, where practicable. (e) An audible warning device shall be...

  13. 30 CFR 18.20 - Quality of material, workmanship, and design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... facilitate inspection and maintenance. (b) MSHA will test only electrical equipment that in the opinion of... shall be accessible for field inspection, where practicable. (e) An audible warning device shall be...

  14. Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics.

    PubMed

    Chekhov, Alexander L; Stognij, Alexander I; Satoh, Takuya; Murzina, Tatiana V; Razdolski, Ilya; Stupakiewicz, Andrzej

    2018-05-09

    We report spatial localization of the effective magnetic field generated via the inverse Faraday effect employing surface plasmon polaritons (SPPs) at Au/garnet interface. Analyzing both numerically and analytically the electric field of the SPPs at this interface, we corroborate our study with a proof-of-concept experiment showing efficient SPP-driven excitation of coherent spin precession with 0.41 THz frequency. We argue that the subdiffractional confinement of the SPP electric field enables strong spatial localization of the SPP-mediated excitation of spin dynamics. We demonstrate two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within a 100 nm layer of a dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways toward nonthermal opto-magnetic recording on the nanoscale.

  15. Solar wind: Internal parameters driven by external source

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    A new concept interpreting solar wind parameters is suggested. The process of increasing twofold of a moving volume in the solar wind (with energy transfer across its surface which is comparable with its whole internal energy) is a more rapid process than the relaxation for the pressure. Thus, the solar wind is unique from the point of view of thermodynamics of irreversible processes. The presumptive source of the solar wind creation - the induction electric field of the solar origin - has very low entropy. The state of interplanetary plasma must be very far from the thermodynamic equilibrium. Plasma internal energy is contained mainly in non-degenerate forms (plasma waves, resonant plasma oscillations, electric currents). Microscopic oscillating electric fields in the solar wind plasma should be about 1 V/m. It allows one to describe the solar wind by simple dissipative MHD equations with small effective mean free path (required for hydrodynamical description), low value of electrical conductivity combined with very big apparent thermal conductivity (required for observed solar wind acceleration). These internal parameters are interrelated only due to their origin: they are externally driven. Their relation can change during the interaction of solar wind plasma with an obstacle (planet, spacecraft). The concept proposed can be verified by the special electric field measurements, not ruining the primordial plasma state.

  16. Lateral electric-field control of giant magnetoresistance in Co/Cu/Fe/BaTiO{sub 3} multiferroic heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savitha Pillai, S.; Kojima, H.; Itoh, M.

    2015-08-17

    We report lateral electric-field-driven sizable changes in the magnetoresistance of Co/Cu/Fe tri-layered wires on BaTiO{sub 3} single crystal. While the observed change is marginal in the tetragonal phase of BaTiO{sub 3}, it reaches over 40% in the orthorhombic and rhombohedral phases with an electric field of 66 kV/cm. We attribute it to possible electric-field-induced variations of the spin-dependent electronic structures, i.e., spin polarization, of the Fe via interfacial strain transfer from BaTiO{sub 3}. The contrasting results for the different phases of BaTiO{sub 3} are discussed, associated with the distinct aspects of the ferroelectric polarization switching processes in each phase.

  17. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.

    PubMed

    Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  18. Harnessing electrical forces for separation. Capillary zone electrophoresis, isoelectric focusing, field-flow fractionation, split-flow thin-cell continuous-separation and other techniques.

    PubMed

    Giddings, J C

    1989-10-20

    A simple analysis, first presented twenty years ago, showed that the effectiveness of a field-driven separation like electrophoresis, as expressed by the maximum number of theoretical plates (N), is given by the dimensionless ratio of two energies N = -delta mu ext/2RT in which -delta mu ext is the electrical potential energy drop of a charged species and RT is the thermal energy (R is the gas constant and T is the absolute temperature). Quantity -delta mu ext is the product of the force F acting on the species and the path length X of separation. The exceptional power of electrophoresis, for which often N approximately 10(6), can be traced directly to the enormous magnitude of the electrical force F. This paper explores the fundamentals underlying several different means for utilizing these powerful electrical forces for separation, including capillary zone electrophoresis, gel electrophoresis, isoelectric focusing, electrical field-flow fractionation and split-flow thin continuous separation cells. Remarkably, the above equation and its relatives are found to describe the approximate performance of all these diverse electrically driven systems. Factors affecting both the resolving power and separation speed of the systems are addressed; from these considerations some broad optimization criteria emerge. The capabilities of the different methods are compared using numerical examples.

  19. Evidence of a primordial solar wind. [T Tauri-type evolution model

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1974-01-01

    A model is reviewed which requires a T Tauri 'wind' and at the same time encompasses certain early-object stellar features. The theory rests on electromagnetic induction driven by the 'wind'. Plasma confinement of the induced field prohibits a scattered field, and all energy loss is via ohmic heating in the scatterer (i.e., planetary objects). Two modes, one caused by the interplanetary electric field (transverse magnetic) and the other by time variations in the interplanetary magnetic field (transverse electric) are present. Parent body melting, lunar surface melting, and a primordial magnetic field are components of the proposed model.

  20. A NEW TECHNIQUE FOR THE PHOTOSPHERIC DRIVING OF NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinzierl, Marion; Yeates, Anthony R.; Mackay, Duncan H.

    2016-05-20

    In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surfacemore » flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.« less

  1. PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Sarri, G.; Murphy, G. C.; Bret, A.; Romagnani, L.; Kourakis, I.; Borghesi, M.; Ynnerman, A.; O'C Drury, L.

    2012-02-01

    The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here whether the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here that this electric field modification triggers a second magnetic instability, which results in a rotational low-frequency magnetowave. The relevance of the TAWI is discussed for the growth of small-scale magnetic fields in astrophysical environments, which are needed to explain the electromagnetic emissions by astrophysical jets. It is outlined how this instability could be examined experimentally.

  2. Nonlinear structures and anomalous transport in partially magnetized E×B plasmas

    DOE PAGES

    Janhunen, Salomon; Smolyakov, Andrei; Chapurin, Oleksandr; ...

    2017-12-29

    Nonlinear dynamics of the electron-cyclotron instability driven by the electron E x B current in a crossed electric and magnetic field is studied. In the nonlinear regime, the instability proceeds by developing a large amplitude coherent wave driven by the energy input from the fundamental cyclotron resonance. Further evolution shows the formation of the long wavelength envelope akin to the modulational instability. Simultaneously, the ion density shows the development of a high-k content responsible for wave focusing and sharp peaks on the periodic cnoidal wave structure. Here, it is shown that the anomalous electron transport (along the direction of themore » applied electric field) is dominated by the long wavelength part of the turbulent spectrum.« less

  3. ELECTRIC AND MAGNETIC FIELDS <100 KHZ IN ELECTRIC AND GASOLINE-POWERED VEHICLES.

    PubMed

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m -1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m -1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001)

    NASA Astrophysics Data System (ADS)

    Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji

    2018-01-01

    The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).

  5. Ionizing potential waves and high-voltage breakdown streamers.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  6. A fully electric field driven scalable magnetoelectric switching element

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Victora, R. H.

    2018-04-01

    A technique for micromagnetic simulation of the magnetoelectric (ME) effect in Cr2O3 based structures has been developed. It has been observed that the microscopic ME susceptibility differs significantly from the experimentally measured values. The deviation between the two susceptibilities becomes more prominent near the Curie temperature, affecting the operation of the device at room temperature. A fully electric field controlled ME switching element has been proposed for use at technologically interesting densities: it employs quantum mechanical exchange at the boundaries instead of the applied magnetic field needed in traditional switching schemes. After establishing temperature dependent physics-based parameters, switching performances have been studied for different temperatures, applied electric fields, and Cr2O3 cross-sections. It has been found that our proposed use of quantum mechanical exchange favors reduced electric field operation and enhanced scalability while retaining reliable thermal stability.

  7. Electric field around a dielectric elastomer actuator in proximity to the human body

    NASA Astrophysics Data System (ADS)

    McKenzie, Anita C.; Calius, Emilio P.; Anderson, Iain A.

    2008-03-01

    Dielectric elastomer actuators (DEAs) are a promising artificial muscle technology that will enable new kinds of prostheses and wearable rehabilitation devices. DEAs are driven by electric fields in the MV/m range and the dielectric elastomer itself is typically 30μm in thickness or more. Large operating voltages, in the order of several kilovolts, are then required to produce useful strains and these large voltages and the resulting electric fields could potentially pose problems when DEAs are used in close proximity to the human body. The fringing electric fields of a DEA in close association with the skin were modelled using finite element methods. The model was verified against a known analytic solution describing the electric field surrounding a capacitor in air. The agreement between the two is good, as the difference is less than 10% unless within 4.5mm of the DEA's lateral edges. As expected, it was found that for a DEA constructed with thinner dielectric layers, the fringe field strength dropped in direct proportion to the reduction in applied voltage, despite the internal field being maintained at the same level. More interestingly, modelling the electric field around stacked DEAs showed that for an even number of layers the electric field is an order of magnitude less than for an odd number of layers, due to the cancelling of opposing electric fields.

  8. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  9. Self-assembly of metal nanowires induced by alternating current electric fields

    NASA Astrophysics Data System (ADS)

    García-Sánchez, Pablo; Arcenegui, Juan J.; Morgan, Hywel; Ramos, Antonio

    2015-01-01

    We describe the reversible assembly of an aqueous suspension of metal nanowires into two different 2-dimensional stable configurations. The assembly is induced by an AC electric field of magnitude around 10 kV/m. It is known that single metal nanowires orientate parallel to the electric field for all values of applied frequency, according to two different mechanisms depending on the frequency. These different mechanisms also govern the mutual interaction between nanowires, which leads to directed-assembly into distinctive structures, the shape of which depends on the frequency of the applied field. We show that for frequencies higher than the typical frequency for charging the electrical double layer at the metal-electrolyte interface, dipole-dipole interaction leads to the formation of chains of nanowires. For lower frequencies, the nanowires form wavy bands perpendicular to the electric field direction. This behavior appears to be driven by the electroosmotic flow induced on the metal surface of the nanowires. Remarkably, no similar structures have been reported in previous studies of nanowires.

  10. Measuring Energy Scaling of Laser Driven Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Goyon, Clement; Mariscal, Derek; Pollock, Brad; Patankar, Siddharth; Moody, John

    2016-10-01

    Laser-driven magnetic fields are of interest in particle confinement, fast ignition, and ICF platforms as an alternative to pulsed power systems to achieve many times higher fields. A comprehensive model describing the mechanism responsible for creating and maintaining magnetic fields from laser-driven coils has not yet been established. Understanding the scaling of key experimental parameters such as spatial and temporal uniformity and duration are necessary to implement coil targets in practical applications yet these measurements prove difficult due to the highly transient nature of the fields. We report on direct voltage measurements of laser-driven coil targets in which the laser energy spans more than four orders of magnitude. Results suggest that at low energies, laser-driven coils can be modeled as an electric circuit; however, at higher energies plasma effects dominate and a simple circuit treatment is insufficient to describe all observed phenomenon. The favorable scaling with laser power and pulse duration, observed in the present study and others at kilojoule energies, has positive implications for sustained, large magnetic fields for applications on the NIF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Electric field control of magnon-induced magnetization dynamics in multiferroics.

    PubMed

    Risinggård, Vetle; Kulagina, Iryna; Linder, Jacob

    2016-08-24

    We consider theoretically the effect of an inhomogeneous magnetoelectric coupling on the magnon-induced dynamics of a ferromagnet. The magnon-mediated magnetoelectric torque affects both the homogeneous magnetization and magnon-driven domain wall motion. In the domains, we predict a reorientation of the magnetization, controllable by the applied electric field, which is almost an order of magnitude larger than that observed in other physical systems via the same mechanism. The applied electric field can also be used to tune the domain wall speed and direction of motion in a linear fashion, producing domain wall velocities several times the zero field velocity. These results show that multiferroic systems offer a promising arena to achieve low-dissipation magnetization rotation and domain wall motion by exciting spin-waves.

  12. Methodology for Time-Domain Estimation of Storm-Time Electric Fields Using the 3D Earth Impedance

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Balch, C. C.; Pulkkinen, A. A.; Egbert, G. D.; Love, J. J.; Rigler, E. J.; Fujii, I.

    2016-12-01

    Magnetic storms can induce geoelectric fields in the Earth's electrically conducting interior, interfering with the operations of electric-power grid industry. The ability to estimate these electric fields at Earth's surface in close to real-time and to provide local short-term predictions would improve the ability of the industry to protect their operations. At any given time, the electric field at the Earth's surface is a function of the time-variant magnetic activity (driven by the solar wind), and the local electrical conductivity structure of the Earth's crust and mantle. For this reason, implementation of an operational electric field estimation service requires an interdisciplinary, collaborative effort between space science, real-time space weather operations, and solid Earth geophysics. We highlight in this talk an ongoing collaboration between USGS, NOAA, NASA, Oregon State University, and the Japan Meteorological Agency, to develop algorithms that can be used for scenario analyses and which might be implemented in a real-time, operational setting. We discuss the development of a time domain algorithm that employs discrete time domain representation of the impedance tensor for a realistic 3D Earth, known as the discrete time impulse response (DTIR), convolved with the local magnetic field time series, to estimate the local electric field disturbances. The algorithm is validated against measured storm-time electric field data collected in the United States and Japan. We also discuss our plans for operational real-time electric field estimation using 3D Earth impedances.

  13. Maximum entropy reconstruction of poloidal magnetic field and radial electric field profiles in tokamaks

    NASA Astrophysics Data System (ADS)

    Chen, Yihang; Xiao, Chijie; Yang, Xiaoyi; Wang, Tianbo; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang

    2017-10-01

    The Laser-driven Ion beam trace probe (LITP) is a new diagnostic method for measuring poloidal magnetic field (Bp) and radial electric field (Er) in tokamaks. LITP injects a laser-driven ion beam into the tokamak, and Bp and Er profiles can be reconstructed using tomography methods. A reconstruction code has been developed to validate the LITP theory, and both 2D reconstruction of Bp and simultaneous reconstruction of Bp and Er have been attained. To reconstruct from experimental data with noise, Maximum Entropy and Gaussian-Bayesian tomography methods were applied and improved according to the characteristics of the LITP problem. With these improved methods, a reconstruction error level below 15% has been attained with a data noise level of 10%. These methods will be further tested and applied in the following LITP experiments. Supported by the ITER-CHINA program 2015GB120001, CHINA MOST under 2012YQ030142 and National Natural Science Foundation Abstract of China under 11575014 and 11375053.

  14. Key parameters controlling the performance of catalytic motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David, E-mail: dreguera@ub.edu

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential andmore » the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.« less

  15. In vivo study of transepithelial potential difference (TEPD) in proximal convoluted tubules of rat kidney by synchronization modulation electric field.

    PubMed

    Clausell, Mathis; Fang, Zhihui; Chen, Wei

    2014-07-01

    Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.

  16. The effect of an external electric field on the growth of incongruent-melting material

    NASA Astrophysics Data System (ADS)

    Uda, Satoshi; Huang, Xinming; Wang, Shou-Qi

    2005-02-01

    The significance of an electric field on the crystallization process is differentiated into two consequences; (i) thermodynamic effect and (ii) growth-dynamic effect. The former modifies the chemical potential of the associated phases which changes the equilibrium phase relationship while the latter influences the solute transport, growth kinetics, surface creation and defect generation during growth. The intrinsic electric field generating during growth is attributed to the crystallization-related electromotive force and the thermoelectric power driven by the temperature gradient at the interface which influences the solute transport and solute partitioning. The external electric field was applied to the growth apparatus in the ternary system of La2O3- Ga2O3- SiO2 so that the chemical potential of both solid and liquid phases changed leading to the variation of the equilibrium phase relationship. Imposing a 500 V/cm electric field on the system moved the boundary of primary phase field of lanthanum gallate ( LaGaO3) and Ga-bearing lanthanum silicate ( La14GaxSi9-xO) toward the SiO2 apex by 5 mol% which clearly demonstrated the change of the phase relationship by the external electric field.

  17. Dynamical features and electric field strengths of double layers driven by currents. [in auroras

    NASA Technical Reports Server (NTRS)

    Singh, N.; Thiemann, H.; Schunk, R. W.

    1985-01-01

    In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.

  18. Electroviscous effect and electrokinetic energy conversion in time periodic pressure-driven flow through a parallel-plate nanochannel with surface charge-dependent slip

    NASA Astrophysics Data System (ADS)

    Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long

    2018-05-01

    In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.

  19. On the impact of self-clearing on electroactive polymer (EAP) actuators

    NASA Astrophysics Data System (ADS)

    Ahmed, Saad; Ounaies, Zoubeida; Lanagan, Michael T.

    2017-10-01

    Electroactive polymer (EAP)-based actuators have large potential for a wide array of applications; however, their practical implementation is still a challenge because of the requirement of high driving voltage, which most often leads to premature defect-driven electrical breakdown. Polymer-based capacitors have the ability to clear defects with partial electrical breakdown and subsequent removal of a localized electrode section near the defect. In this study, this process, which is known as self-clearing, is adopted for EAP technologies. We report a methodical approach to self-clear an EAP, more specifically P(VDF-TrFE-CTFE) terpolymer, to delay premature defect-driven electrical breakdown of the terpolymer actuators at high operating electric fields. Breakdown results show that electrical breakdown strength is improved up to 18% in comparison to a control sample after self-clearing. Furthermore, the electromechanical performance in terms of blocked force and free displacement of P(VDF-TrFE-CTFE) terpolymer-based bending actuators are examined after self-clearing and precleared samples show improved blocked force, free displacement and maximum sustainable electric field compared to control samples. The study demonstrates that controlled self-clearing of EAPs improves the breakdown limit and reliability of the EAP actuators for practical applications without impeding their electromechanical performance.

  20. Nanoscale electron manipulation in metals with intense THz electric fields

    NASA Astrophysics Data System (ADS)

    Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi

    2018-03-01

    Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.

  1. Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing

    The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less

  2. Magnetic quantum phase transition in Cr-doped Bi 2(Se xTe 1-x) 3 driven by the Stark effect

    DOE PAGES

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing; ...

    2017-08-07

    The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less

  3. Transient electroosmotic flow induced by AC electric field in micro-channel with patchwise surface heterogeneities.

    PubMed

    Luo, Win-Jet

    2006-03-15

    This paper investigates two-dimensional, time-dependent electroosmotic flow driven by an AC electric field via patchwise surface heterogeneities distributed along the micro-channel walls. The time-dependent flow fields through the micro-channel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. The transient behavior characteristics of the generated electroosmotic flow are then discussed in terms of the influence of the patchwise surface heterogeneities, the direction of the applied AC electric field, and the velocity of the bulk flow. It is shown that the presence of oppositely charged surface heterogeneities on the micro-channel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in phase with the applied periodic AC electric field intensity. The location and rotational direction of the induced circulations are determined by the directions of the bulk flow velocity and the applied electric field.

  4. The variation of the ground electric field associated with the Mei-Nung earthquake on Feb. 6, 2016

    NASA Astrophysics Data System (ADS)

    Bing-Chih Chen, Alfred; Yeh, Er-Chun; Chuang, Chia-Wen

    2017-04-01

    Recent studies show that a strong coupling exists between lithosphere, atmosphere and extending up to the ionosphere. Natural phenomena on the ground surface such as oceans variation, volcanic and seismic activities such as earthquakes, and lightning possibly generate significant impacts at ionosphere immediately by electrodynamic processes. The electric field near the ground is one of the potential quantities to explore this coupling process, especially caused by earthquake. Unfortunately, thunderstorm, dust storm or human activities also affect the measured electric field at ground. To investigate the feasibility of a network to monitor the variation of the ground electric field driven by the lightning and earthquake, a filed mill has been deployed in the NCKU campus since Dec. 2015, and luckily experienced the earthquake with a moment magnitude of 6.4 struck 28 km on 6 Feb. 2016. The recorded ground electric field deceased steadily since 1.5 days before the earthquake, and returned to normal level gradually. Moreover, this special feature can not be identified in the other period of the field test. The detail analysis is reported in this presentation.

  5. How enzymes can capture and transmit free energy from an oscillating electric field.

    PubMed

    Westerhoff, H V; Tsong, T Y; Chock, P B; Chen, Y D; Astumian, R D

    1986-07-01

    Recently, it has been demonstrated that free energy from an alternating electric field can drive the active transport of Rb+ by way of the Na+, K+-ATPase. In the present work, it is shown why many transmembrane enzymes can be expected to absorb free energy from an oscillating electric field and transduce that to chemical or transport work. In the theoretical analysis it turned out to be sufficient that (i) the catalytic process be accompanied by either net or cyclic charge translocation across the membrane and (ii) the stability of the enzyme states involved be asymmetric. Calculations based on a four-state model reveal that free-energy transduction occurs with sinusoidal, square-wave, and positive-only oscillating electric fields and for cases that exhibit either linear or exponential field-dependent rate constants. The results suggest that in addition to oscillating electric field-driven transport, the proposed mechanism can also be used to explain, in part, the "missing" free energy term in the cases in which ATP synthesis has been observed with insufficient transmembrane proton electrochemical potential difference.

  6. How enzymes can capture and transmit free energy from an oscillating electric field.

    PubMed Central

    Westerhoff, H V; Tsong, T Y; Chock, P B; Chen, Y D; Astumian, R D

    1986-01-01

    Recently, it has been demonstrated that free energy from an alternating electric field can drive the active transport of Rb+ by way of the Na+, K+-ATPase. In the present work, it is shown why many transmembrane enzymes can be expected to absorb free energy from an oscillating electric field and transduce that to chemical or transport work. In the theoretical analysis it turned out to be sufficient that (i) the catalytic process be accompanied by either net or cyclic charge translocation across the membrane and (ii) the stability of the enzyme states involved be asymmetric. Calculations based on a four-state model reveal that free-energy transduction occurs with sinusoidal, square-wave, and positive-only oscillating electric fields and for cases that exhibit either linear or exponential field-dependent rate constants. The results suggest that in addition to oscillating electric field-driven transport, the proposed mechanism can also be used to explain, in part, the "missing" free energy term in the cases in which ATP synthesis has been observed with insufficient transmembrane proton electrochemical potential difference. PMID:2941758

  7. An evidence for prompt electric field disturbance driven by changes in the solar wind density under northward IMF Bz condition

    DOE PAGES

    Rout, Diptiranjan; Chakrabarty, D.; Sekar, R.; ...

    2016-05-26

    Before the onset of a geomagnetic storm on 22 January 2012 (Ap = 24), an enhancement in solar wind number density from 10/cm 3 to 22/cm 3 during 0440–0510 UT under northward interplanetary magnetic field (IMF Bz) condition is shown to have enhanced the high-latitude ionospheric convection and also caused variations in the geomagnetic field globally. Some conspicuous changes in ΔX are observed not only at longitudinally separated low-latitude stations over Indian (prenoon), South American (midnight), Japanese (afternoon), Pacific (afternoon) and African (morning) sectors but also at latitudinally separated stations located over high and middle latitudes. The latitudinal variation ofmore » the amplitude of the ΔX during 0440–0510 UT is shown to be consistent with the characteristics of prompt penetration electric field disturbances. Most importantly, the density pulse event caused enhancements in the equatorial electrojet strength and the peak height of the F layer (h mF 2) over the Indian dip equatorial sector. Furthermore, the concomitant enhancements in electrojet current and F layer movement over the dip equator observed during this space weather event suggest a common driver of prompt electric field disturbance at this time. Such simultaneous variations are found to be absent during magnetically quiet days. In the absence of significant change in solar wind velocity and magnetospheric substorm activity, these observations point toward perceptible prompt electric field disturbance over the dip equator driven by the overcompression of the magnetosphere by solar wind density enhancement.« less

  8. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  9. Computational modeling of electrically-driven deposition of ionized polydisperse particulate powder mixtures in advanced manufacturing processes

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2017-07-01

    A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise, deposition is difficult or impossible using mechanical means alone. It is for this reason that electromagnetically-driven methods are being pursued in industry, whereby the particles are ionized and an electromagnetic field is used to guide them into place. The goal of this work is to develop a model and simulation framework to investigate the behavior of a deposition as a function of an applied electric field. The approach develops a modular discrete-element type method for the simulation of the particle dynamics, which provides researchers with a framework to construct computational tools for this growing industry.

  10. How to manipulate magnetic states of antiferromagnets

    NASA Astrophysics Data System (ADS)

    Song, Cheng; You, Yunfeng; Chen, Xianzhe; Zhou, Xiaofeng; Wang, Yuyan; Pan, Feng

    2018-03-01

    Antiferromagnetic materials, which have drawn considerable attention recently, have fascinating features: they are robust against perturbation, produce no stray fields, and exhibit ultrafast dynamics. Discerning how to efficiently manipulate the magnetic state of an antiferromagnet is key to the development of antiferromagnetic spintronics. In this review, we introduce four main methods (magnetic, strain, electrical, and optical) to mediate the magnetic states and elaborate on intrinsic origins of different antiferromagnetic materials. Magnetic control includes a strong magnetic field, exchange bias, and field cooling, which are traditional and basic. Strain control involves the magnetic anisotropy effect or metamagnetic transition. Electrical control can be divided into two parts, electric field and electric current, both of which are convenient for practical applications. Optical control includes thermal and electronic excitation, an inertia-driven mechanism, and terahertz laser control, with the potential for ultrafast antiferromagnetic manipulation. This review sheds light on effective usage of antiferromagnets and provides a new perspective on antiferromagnetic spintronics.

  11. Kinetic-scale flux rope reconnection in periodic and line-tied geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauppe, J. P.; Daughton, W.

    Here, the collisionless reconnection of two parallel flux ropes driven by both the coalescence and kink instabilities is examined using fully kinetic simulations in periodic and line-tied geometries. The three-dimensional reconnection rate is computed from the maximum of the quasi-potential, Ξ≡-∫E·dℓ, where the integral of the electric field is taken along the magnetic field lines across the system. In periodic simulations in which the kink mode is nearly suppressed, reconnection is driven by the coalescence instability, and the peak rate is within 3%–8% of comparable 2D simulations. When a strong kink growth is observed, the peak reconnection rate drops bymore » 10%–25%, and there is a larger drop for lower guide field. With line-tied boundary conditions, the kink instability plays a key role in allowing the flux ropes to interact and partially reconnect. In this limit, the field lines with maximum quasi-potential are associated with a quasi-separatrix layer, and the electric field along these special field lines is supported predominantly by the divergence of the electron pressure tensor. Both of these features, along with the observed reconnection rate, are consistent with recent laboratory experiments on kinetic-scale flux ropes. In kinetic simulations, the non-gyrotropic pressure tensor terms contribute significantly more to the reconnecting electric field than do the gyrotropic terms, while contributions from the electron inertia are significant for field lines adjacent to the quasi-separatrix layer.« less

  12. Kinetic-scale flux rope reconnection in periodic and line-tied geometries

    DOE PAGES

    Sauppe, J. P.; Daughton, W.

    2017-12-28

    Here, the collisionless reconnection of two parallel flux ropes driven by both the coalescence and kink instabilities is examined using fully kinetic simulations in periodic and line-tied geometries. The three-dimensional reconnection rate is computed from the maximum of the quasi-potential, Ξ≡-∫E·dℓ, where the integral of the electric field is taken along the magnetic field lines across the system. In periodic simulations in which the kink mode is nearly suppressed, reconnection is driven by the coalescence instability, and the peak rate is within 3%–8% of comparable 2D simulations. When a strong kink growth is observed, the peak reconnection rate drops bymore » 10%–25%, and there is a larger drop for lower guide field. With line-tied boundary conditions, the kink instability plays a key role in allowing the flux ropes to interact and partially reconnect. In this limit, the field lines with maximum quasi-potential are associated with a quasi-separatrix layer, and the electric field along these special field lines is supported predominantly by the divergence of the electron pressure tensor. Both of these features, along with the observed reconnection rate, are consistent with recent laboratory experiments on kinetic-scale flux ropes. In kinetic simulations, the non-gyrotropic pressure tensor terms contribute significantly more to the reconnecting electric field than do the gyrotropic terms, while contributions from the electron inertia are significant for field lines adjacent to the quasi-separatrix layer.« less

  13. Gas breakdown driven by L band short-pulse high-power microwave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Yiming; Yuan Chengwei; Qian Baoliang

    2012-12-15

    High power microwave (HPM) driven gas breakdown is a major factor in limiting the radiation and transmission of HPM. A method that HPM driven gas breakdown could be obtained by changing the aperture of horn antenna is studied in this paper. Changing the effective aperture of horn antenna can adjust the electric field in near field zone, leading to gas breakdown. With this method, measurements of air and SF{sub 6} breakdowns are carried out on a magnetically insulated transmission-line oscillators, which is capable of generating HPM with pulse duration of 30 ns, and frequency of 1.74 GHz. The typical breakdownmore » waveforms of air and SF{sub 6} are presented. Besides, the breakdown field strengths of the two gases are derived at different pressures. It is found that the effects of air and SF{sub 6} breakdown on the transmission of HPM are different: air breakdown mainly shortens the pulse width of HPM while SF{sub 6} breakdown mainly reduces the peak output power of HPM. The electric field threshold of SF{sub 6} is about 2.4 times larger than that of air. These differences suggest that gas properties have a great effect on the transmission characteristic of HPM in gases.« less

  14. Plasmapause Variations During the 17 March 2013 Identified by Ground-based and Space-based GPS Signals

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Coster, A. J.; Turner, D. L.; Nikoukar, R.; Lemon, C.; Bust, G. S.; Roeder, J. L.

    2016-12-01

    Earth's plasmasphere is a region of cold (T ≤ 1 eV), dense (n 101 to 104 cm-3) plasma located in the inner magnetosphere and coincident with a portion of the ionosphere that co-rotates with the planet in the geomagnetic field. Plasmaspheric plasma originates in the ionosphere and fills the magnetic flux tubes on which the corotation electric field dominates over the convection electric field. The corotation electric field results from Earth's spinning magnetic field while the convection electric field results from the solar wind driving of global plasma convection within the magnetosphere. The outer boundary of the plasmasphere is the plasmapause, and it corresponds to the transition region between corotation-driven vs. convection-driven plasmas. During quiet periods of low solar wind speed and weak interplanetary magnetic field (IMF), ionospheric outflow from lower altitudes can fill the plasmasphere over the course of several days with the plasmapause expanding to higher L-shells. However, when the convection electric field is enhanced during active solar wind periods, such as magnetic storms, the plasmasphere can be rapidly eroded to L 2.5 or less leading to many interesting magnetospheric and ionospheric features such as plasmapause erosion, plasmaspheric plumes and ionospheric plasma outflows. In this presentation, we focus on the dynamics of the plasmapause as observed by ground-based and space-borne GPS receivers. We will focus on the period 15 March to 19 March 2013, which includes the on-set and recovery periods of a strong geomagnetic storm. We will examine the location and erosion time scales of the plasmapause during the active portion of the storm. An extensive global network of ground-based scientific receivers ( 4000) will be utilized in the study. Space-based observations will be obtained from data from the CORISS GPS radio occultation (RO) sensor on the C/NOFS satellite as well as the COSMIC GPS RO sensors.

  15. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  16. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, S. K.; Chang, H. Y.

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with themore » theories of electromagnetic effects in large area and/or high frequency capacitive discharges.« less

  17. Electric field control of magnon-induced magnetization dynamics in multiferroics

    PubMed Central

    Risinggård, Vetle; Kulagina, Iryna; Linder, Jacob

    2016-01-01

    We consider theoretically the effect of an inhomogeneous magnetoelectric coupling on the magnon-induced dynamics of a ferromagnet. The magnon-mediated magnetoelectric torque affects both the homogeneous magnetization and magnon-driven domain wall motion. In the domains, we predict a reorientation of the magnetization, controllable by the applied electric field, which is almost an order of magnitude larger than that observed in other physical systems via the same mechanism. The applied electric field can also be used to tune the domain wall speed and direction of motion in a linear fashion, producing domain wall velocities several times the zero field velocity. These results show that multiferroic systems offer a promising arena to achieve low-dissipation magnetization rotation and domain wall motion by exciting spin-waves. PMID:27554064

  18. Nonequilibrium response of an electron-mediated charge density wave ordered material to a large dc electric field

    NASA Astrophysics Data System (ADS)

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2016-01-01

    Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.

  19. Picosecond electric-field-induced threshold switching in phase-change materials [THz-induced threshold switching and crystallization of phase-change materials

    DOE PAGES

    Zalden, Peter; Shu, Michael J.; Chen, Frank; ...

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag 4In 3Sb 67Te 26. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. As a result, this supports purely electronic models of thresholdmore » switching and reveals potential applications as an ultrafast electronic switch.« less

  20. Large-scale disruptions in a current-carrying magnetofluid

    NASA Technical Reports Server (NTRS)

    Dahlburg, J. P.; Montgomery, D.; Doolen, G. D.; Matthaeus, W. H.

    1986-01-01

    Internal disruptions in a strongly magnetized electrically conducting fluid contained within a rigid conducting cylinder of square cross section are investigated theoretically, both with and without an externally applied axial electric field, by means of computer simulations using the pseudospectral three-dimensional Strauss-equations code of Dahlburg et al. (1985). Results from undriven inviscid, driven inviscid, and driven viscid simulations are presented graphically, and the significant effects of low-order truncations on the modeling accuracy are considered. A helical current filament about the cylinder axis is observed. The ratio of turbulent kinetic energy to total poloidal magnetic energy is found to undergo cyclic bounces in the undriven inviscid case, to exhibit one large bounce followed by decay to a quasi-steady state with poloidal fluid velocity flow in the driven inviscid case, and to show one large bounce followed by further sawtoothlike bounces in the driven viscid case.

  1. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort

    PubMed Central

    Shepertycky, Michael; Li, Qingguo

    2015-01-01

    Background Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). Methodology/Principal Findings We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester’s overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. Conclusions/Significance These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities. PMID:26039493

  2. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.

    PubMed

    Shepertycky, Michael; Li, Qingguo

    2015-01-01

    Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.

  3. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  4. Field alignment of bent-core smectic liquid crystals for analog optical phase modulation

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Goodhew, L.; Shao, R.; Moran, M.; Korblova, E.; Walba, D. M.; Clark, N. A.; Maclennan, J. E.; Rudquist, P.

    2015-05-01

    A general method for aligning bent-core smectic liquid crystal materials is described. Alternating electric fields between interdigitated electrodes patterned on one cell surface create torques on the liquid crystal that result in uniform "bookshelf" orientation of the smectic layers. The aligned cell can then be driven in the conventional way by applying an electric field between all of the stripe electrodes connected together and a monolithic electrode on the other cell surface. Fast, analog, optical phase-only modulation is demonstrated in a device containing a polar, bent-core SmAPF material aligned using this technique.

  5. Fluid Flow and Mass Transfer in Micro/Nano-Channels

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; McFerran, Jennifer; Hansford, Derek; Zheng, Zhi

    2001-11-01

    In this work the fluid flow and mass transfer due to the presence of an electric field in a rectangular channel is examined. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or somewhat greater than the width of the EDL(nanochannel). For the electroosmotic flow so induced, the velocity field and the potential are similar. The fluid is assumed to behave as a continuum and the Boltzmann distribution for the mole fractions of the ions emerges from the classical dilute mass transfer equation in the limiting case where the EDL thickness is much less than the channel height. Depending on the relative magnitude of the mole fractions at the walls of the channel, both forward and reversed flow may occur. The volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that power requirements for small channels are much greater for pressure driven flow. Supported by DARPA

  6. Hydrogel Actuation by Electric Field Driven Effects

    NASA Astrophysics Data System (ADS)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of the applied electric field. We extend the use of ionoprinting to develop multi-responsive bilayer gel systems capable of more complex shape transformation. The localized crosslinked regions determine the bending axis as the gel responds to the external environment. The bending can be tuned to reverse direction isothermally by changing the solvent quality or by changing the temperature at a fixed concentration. The multi-responsive behavior is caused by the volume transitions of a non-ionic, thermos-sensitive hydrogel coupled with a superabsorbent ionic hydrogel. Lastly, electric field driven microparticle assembly, using dielectrophoretic (DEP) forces, organized colloidal microparticles within a hydrogel matrix. The use of DEP forces enables rapid, efficient and precise control over the colloidal distribution. The resulting supracolloidal endoskeleton structures impart directional bending as the hydrogel shrinks. We compare the ordered particles structures to random particle distributions in affecting the hydrogel sheet bending response. This study demonstrates a universal technique for imparting directional properties in hydrogels towards new generations of hybrid soft materials.

  7. 30 CFR 18.81 - Field modification of approved (permissible) equipment; application for approval of modification...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... and Certification Center, 765 Technology Drive, Triadelphia, WV 26059. (b) Proposed modifications...

  8. Influence of an electric field on the buoyancy-driven instabilities.

    PubMed

    Zadrazil, Ales; Sevcíková, Hana

    2005-11-01

    The influence of dc electric fields (EFs) on the development of buoyancy-driven instabilities of reaction fronts is investigated experimentally in a modified Hele-Shaw cell for the arsenous acid-iodate system. Assessment of effects of external EFs is made both visually and through dispersion curves. It is shown that density fingering, observed on ascending fronts, is suppressed by the EF if the front propagates towards the positive electrode and is enhanced when the front propagates towards the negative electrode. The stabilizing (destabilizing) effects include slower (faster) development of fingers and the decrease (increase) in their numbers. The descending front, stable under no EF conditions, remains stable when an EF is applied with the positive electrode facing the approaching front. When the descending front faces the negative electrode, the tiny fingerlike structure develops after quite a long time.

  9. Conduction in In 2O 3/YSZ heterostructures: Complex interplay between electrons and ions, mediated by interfaces

    DOE PAGES

    Veal, B. W.; Eastman, J. A.

    2017-03-01

    Thin film In 2O 3/YSZ heterostructures exhibit significant increases in electrical conductance with time when small in-plane electric fields are applied. Contact resistances between the current electrodes and film, and between current electrodes and substrate are responsible for the behavior. With an in-plane electric field, different field profiles are established in the two materials, with the result that oxygen ions can be driven across the heterointerface, altering the doping of the n-type In 2O 3. Furthermore, a low frequency inductive feature observed in AC impedance spectroscopy measurements under DC bias conditions was found to be due to frequency-dependent changes inmore » the contact resistance.« less

  10. Nonequilibrium excitations and transport of Dirac electrons in electric-field-driven graphene

    NASA Astrophysics Data System (ADS)

    Li, Jiajun; Han, Jong E.

    2018-05-01

    We investigate nonequilibrium excitations and charge transport in charge-neutral graphene driven with dc electric field by using the nonequilibrium Green's-function technique. Due to the vanishing Fermi surface, electrons are subject to nontrivial nonequilibrium excitations such as highly anisotropic momentum distribution of electron-hole pairs, an analog of the Schwinger effect. We show that the electron-hole excitations, initiated by the Landau-Zener tunneling with a superlinear I V relation I ∝E3 /2 , reaches a steady state dominated by the dissipation due to optical phonons, resulting in a marginally sublinear I V with I ∝E , in agreement with recent experiments. The linear I V starts to show the sign of current saturation as the graphene is doped away from the Dirac point, and recovers the semiclassical relation for the saturated velocity. We give a detailed discussion on the nonequilibrium charge creation and the relation between the electron-phonon scattering rate and the electric field in the steady-state limit. We explain how the apparent Ohmic I V is recovered near the Dirac point. We propose a mechanism where the peculiar nonequilibrium electron-hole creation can be utilized in a infrared device.

  11. Subfemtosecond directional control of chemical processes in molecules

    NASA Astrophysics Data System (ADS)

    Alnaser, Ali S.; Litvinyuk, Igor V.

    2017-02-01

    Laser pulses with a waveform-controlled electric field and broken inversion symmetry establish the opportunity to achieve directional control of molecular processes on a subfemtosecond timescale. Several techniques could be used to break the inversion symmetry of an electric field. The most common ones include combining a fundamental laser frequency with its second harmonic or with higher -frequency pulses (or pulse trains) as well as using few-cycle pulses with known carrier-envelope phase (CEP). In the case of CEP, control over chemical transformations, typically occurring on a timescale of many femtoseconds, is driven by much faster sub-cycle processes of subfemtosecond to few-femtosecond duration. This is possible because electrons are much lighter than nuclei and fast electron motion is coupled to the much slower nuclear motion. The control originates from populating coherent superpositions of different electronic or vibrational states with relative phases that are dependent on the CEP or phase offset between components of a two-color pulse. In this paper, we review the recent progress made in the directional control over chemical processes, driven by intense few-cycle laser pulses a of waveform-tailored electric field, in different molecules.

  12. Comparative In Situ Measurements of Plasma Instabilities in the Equatorial and Auroral Electrojets

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.

    2008-01-01

    This presentation provides a comparison of in situ measurements of plasma instabilities gathered by rocket-borne probes in the equatorial and auroral electrojets. Specifically, using detailed measurements of the DC electric fields, current density, and plasma number density within the unstable daytime equatorial electrojet from Brazil (Guara Campaign) and in the auroral electrojet from Sweden (ERRIS Campaign), we present comparative observations and general conclusions regarding the observed physical properties of Farley-Buneman two-stream waves and large scale, gradient drift waves. The two stream observations reveal coherent-like waves propagating near the E x B direction but at reduced speeds (nearer to the presumed acoustic velocity) with wavelengths of approximately 5-10m in both the equatorial and auroral electrojet, as measured using the spaced-receiver technique. The auroral electrojet data generally shows extensions to shorter wavelengths, in concert with the fact that these waves are driven harder. With respect to gradient-drift driven waves, observations of this instability are much more pronounced in the equatorial electrojet, given the more favorable geometry for growth provided by the vertical gradient and horizontal magnetic field lines. We present new analysis of Guara rocket observations of electric field and plasma density data that reveal considerable structuring in the middle and lower portion of the electrojet (90-105 km) where the ambient plasma density gradient is unstable. Although the electric field amplitudes are largest (approximately 10-15 mV/m) in the zonal direction, considerable structure (approximately 5-10 mV/m) is also observed in the vertical electric field component as well, implying that the dominant large scale waves involve significant vertical interaction and coupling within the narrow altitude range where they are observed. Furthermore, a detailed examination of the phase of the waveforms show that on some, but not all occasions, locally enhanced eastward fields are associated with locally enhanced upwards (polarization) electric fields. The measurements are discussed in terms of theories involving the non-linear evolution and structuring of plasma waves.

  13. Lorentz factor determination for local electric fields in semiconductor devices utilizing hyper-thin dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, J. W., E-mail: mcpherson.reliability@yahoo.com

    The local electric field (the field that distorts, polarizes, and weakens polar molecular bonds in dielectrics) has been investigated for hyper-thin dielectrics. Hyper-thin dielectrics are currently required for advanced semiconductor devices. In the work presented, it is shown that the common practice of using a Lorentz factor of L = 1/3, to describe the local electric field in a dielectric layer, remains valid for hyper-thin dielectrics. However, at the very edge of device structures, a rise in the macroscopic/Maxwell electric field E{sub diel} occurs and this causes a sharp rise in the effective Lorentz factor L{sub eff}. At capacitor and transistor edges,more » L{sub eff} is found to increase to a value 2/3 < L{sub eff} < 1. The increase in L{sub eff} results in a local electric field, at device edge, that is 50%–100% greater than in the bulk of the dielectric. This increase in local electric field serves to weaken polar bonds thus making them more susceptible to breakage by standard Boltzmann and/or current-driven processes. This has important time-dependent dielectric breakdown (TDDB) implications for all electronic devices utilizing polar materials, including GaN devices that suffer from device-edge TDDB.« less

  14. Enhancement of convective heat transfer in internal flows using an electrically-induced corona jet

    NASA Astrophysics Data System (ADS)

    Baghaei Lakeh, Reza

    The enhancement of heat transfer by active and passive methods has been the subject of many academic and industrial research studies. Internal flows play a major role in many applications and different methods have been utilized to augment the heat transfer to internal flows. Secondary flows consume part of the kinetic energy of the flow and disturb the boundary layer. Inducing secondary flows is known as mechanism for heat transfer enhancement. Secondary flows may be generated by corona discharge and ion-driven flows. When a high electric potential is applied to a conductor, a high electric field will be generated. The high electric field may exceed the partial break-down of the neutral molecules of surrounding gas (air) and generate a low-temperature plasma in the vicinity of the conductor. The generated plasma acts as a source of ions that accelerate under the influence of the electric field and escape beyond the plasma region and move toward the grounded electrode. The accelerating ions collide with neutral particles of the surrounding gas and impose a dragging effect which is interpreted as a body-force to the air particles. The shape and configuration of the emitting and receiving electrodes has a significant impact on the distribution of the electric body-force and the resulting electrically-induced flow field. It turned out that the certain configurations of longitudinal electrodes may cause a jet-like secondary flow field on the cross section of the flow passage in internal flows. The impingement effect of the corona jet on the walls of the channel disturbs the boundary layer, enhances the convective heat transfer, and generates targeted cooling along the centerline of the jet. The results of the current study show that the concentric configuration of a suspended wire-electrode in a circular tube leads to a hydrostatic condition and do not develop any electrically-induced secondary flow; however, the eccentric wire-electrode configuration generates a corona jet along the eccentricity direction. The generated corona jet exhibits interesting specifications similar to conventional inertia-driven air jets which are among common techniques for cooling and heat transfer enhancement. On the other hand, wall-mounted flat electrode pairs along the parallel walls of a rectangular mini-channel develop a similar jet-like flow pattern. The impingement of the corona jet to the receiving wall causes excessive heat transfer enhancement and cooling effect. The flat electrode pairs were also utilized to study the effect of corona discharge on the heat transfer specifications of the internal flow between parallel plates in fully-developed condition. It turned out that the electrically-induced secondary flow along with a pressure-driven main flow generates a swirling effect which can enhance the heat transfer significantly in fully-developed condition.

  15. Electrically tunable hole g factor of an optically active quantum dot for fast spin rotations

    NASA Astrophysics Data System (ADS)

    Prechtel, Jonathan H.; Maier, Franziska; Houel, Julien; Kuhlmann, Andreas V.; Ludwig, Arne; Wieck, Andreas D.; Loss, Daniel; Warburton, Richard J.

    2015-04-01

    We report a large g factor tunability of a single hole spin in an InGaAs quantum dot via an electric field. The magnetic field lies in the in-plane direction x , the direction required for a coherent hole spin. The electrical field lies along the growth direction z and is changed over a large range, 100 kV/cm. Both electron and hole g factors are determined by high resolution laser spectroscopy with resonance fluorescence detection. This, along with the low electrical-noise environment, gives very high quality experimental results. The hole g factor ghx depends linearly on the electric field Fz,d ghx/d Fz=(8.3 ±1.2 ) ×10-4 cm/kV, whereas the electron g factor gex is independent of electric field d gex/d Fz=(0.1 ±0.3 ) ×10-4 cm/kV (results averaged over a number of quantum dots). The dependence of ghx on Fz is well reproduced by a 4 ×4 k .p model demonstrating that the electric field sensitivity arises from a combination of soft hole confining potential, an In concentration gradient, and a strong dependence of material parameters on In concentration. The electric field sensitivity of the hole spin can be exploited for electrically driven hole spin rotations via the g tensor modulation technique and based on these results, a hole spin coupling as large as ˜1 GHz can be envisaged.

  16. Dephasing effects on ac-driven triple quantum dot systems

    NASA Astrophysics Data System (ADS)

    Maldonado, I.; Villavicencio, J.; Contreras-Pulido, L. D.; Cota, E.; Maytorena, J. A.

    2018-05-01

    We analyze the effect of environmental dephasing on the electrical current in an ac-driven triple quantum dot system in a symmetric Λ configuration. The current is explored by solving the time evolution equation of the density matrix as a function of the frequency and amplitude of the driving field. Two characteristic spectra are observed depending on the field amplitude. At the resonance condition, when the frequency matches the interdot energy difference, one spectrum shows a distinctive Fano-type peak, while the other, occurring at larger values of the field amplitude, exhibits a strong current suppression due to dynamic localization. In the former case we observe that the current maximum is reduced due to dephasing, while in the latter it is shown that dephasing partially alleviates the localization. In both cases, away from resonance, we observe current oscillations which are dephasing-enhanced for a wide range of frequencies. These effects are also discussed using Floquet theory, and analytical expressions for the electrical current are obtained within the rotating wave approximation.

  17. Cast-to-shape electrokinetic trapping medium

    DOEpatents

    Shepodd, Timothy J.; Franklin, Elizabeth; Prickett, Zane T.; Artau, Alexander

    2004-08-03

    A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.

  18. Cast-to-shape electrokinetic trapping medium

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Franklin, Elizabeth [Rolla, MO; Prickett, Zane T [Golden, CO; Artau, Alexander [Pleasanton, CA

    2006-05-30

    A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.

  19. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    PubMed

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  20. Modeling Geoelectric Fields and Geomagnetically Induced Currents Around New Zealand to Explore GIC in the South Island's Electrical Transmission Network

    NASA Astrophysics Data System (ADS)

    Divett, T.; Ingham, M.; Beggan, C. D.; Richardson, G. S.; Rodger, C. J.; Thomson, A. W. P.; Dalzell, M.

    2017-10-01

    Transformers in New Zealand's South Island electrical transmission network have been impacted by geomagnetically induced currents (GIC) during geomagnetic storms. We explore the impact of GIC on this network by developing a thin-sheet conductance (TSC) model for the region, a geoelectric field model, and a GIC network model. (The TSC is composed of a thin-sheet conductance map with underlying layered resistivity structure.) Using modeling approaches that have been successfully used in the United Kingdom and Ireland, we applied a thin-sheet model to calculate the electric field as a function of magnetic field and ground conductance. We developed a TSC model based on magnetotelluric surveys, geology, and bathymetry, modified to account for offshore sediments. Using this representation, the thin sheet model gave good agreement with measured impedance vectors. Driven by a spatially uniform magnetic field variation, the thin-sheet model results in electric fields dominated by the ocean-land boundary with effects due to the deep ocean and steep terrain. There is a strong tendency for the electric field to align northwest-southeast, irrespective of the direction of the magnetic field. Applying this electric field to a GIC network model, we show that modeled GIC are dominated by northwest-southeast transmission lines rather than east-west lines usually assumed to dominate.

  1. Model Simulation of Ionosphere Electron Density with Dynamic Transportation and Mechanism of Sporadic E Layers in Lower Part of Ionosphere

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Chu, Y. H.

    2015-12-01

    There are many physical theories responsible for explanation the generation mechanism of sporadic E (Es) plasma irregularities. In middle latitude, it's generally believed that sporadic E layers occur in vertical ion convergent areas driven by horizontal neutral wind shear. The sporadic E layers appear characteristic of abundant metallic ion species (i.e., Fe+, Mg+, Na+), that lifetime are longer than molecular ions by a factor of several orders, have been demonstrated by rocket-borne mass spectrometric measurements. On the basic of the GPS Radio Occultation (RO), using the scintillations of the GPS signal-to-noise ratio and intense fluctuation of excess phase, the global and seasonal sporadic E layers occurrence rates could be retrieved. In our previous study we found there is averaged 10 kilometers shift in height between the COSMIC-retrieved sporadic E layer occurrence rate and the sporadic E occurrence rate modeled from considering the convergence/divergence of Fe+ vertical flux. There are many reasons that maybe result in the altitude differences, e.g., tidal wind with phase shift, electric field driven force, iron species distributions. In this research, the quantitative analyses for electric field drives Es layers translations in vertical direction are presented. The tidal wind driven sporadic E layers have been simulating by modeling several nonmetallic ions (O+(4S), O+(2D), O+(2p), N+, N2+, O2+, NO+) and metallic ions (Fe+, FeO2+, FeN2+, FeO+) with wind shear transportation. The simulation result shows the Fe+ particles accumulate at zonal wind shear convergent regions and form the thin sporadic E layers. With the electric field taking into account, the whole shape of sporadic E layers vertical shift 2~5 km that depending on what magnitude and direction of electric field is added.

  2. Quantum dynamics of light-driven chiral molecular motors.

    PubMed

    Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi

    2009-03-21

    The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.

  3. Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters

    NASA Astrophysics Data System (ADS)

    Tran, Jonathan; Eckhardt, Daniel; Martin, Robert

    2017-10-01

    Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.

  4. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-05-01

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  5. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Nersisyan, G.

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ∼20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from amore » laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.« less

  6. Néel Spin-Orbit Torque Driven Antiferromagnetic Resonance in Mn2Au Probed by Time-Domain THz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, N.; Sapozhnik, A. A.; Bodnar, S. Yu.; Grigorev, V. Yu.; Agustsson, S. Y.; Cao, J.; Dominko, D.; Obergfell, M.; Gomonay, O.; Sinova, J.; Kläui, M.; Elmers, H.-J.; Jourdan, M.; Demsar, J.

    2018-06-01

    We observe the excitation of collective modes in the terahertz (THz) range driven by the recently discovered Néel spin-orbit torques (NSOTs) in the metallic antiferromagnet Mn2Au . Temperature-dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 to 450 K softens and loses intensity. A comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR). The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by 3 orders of magnitude. Based on this and the agreement with our theory modeling, we infer that the driving mechanism for the observed mode is the current-induced NSOT. Here the electric field component of the THz pulse drives an ac current in the metal, which subsequently drives the AFMR. This electric manipulation of the Néel order parameter at high frequencies makes Mn2Au a prime candidate for antiferromagnetic ultrafast memory applications.

  7. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.

    2018-05-01

    Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.

  8. THz-driven demagnetization with perpendicular magnetic anisotropy: towards ultrafast ballistic switching

    NASA Astrophysics Data System (ADS)

    Polley, Debanjan; Pancaldi, Matteo; Hudl, Matthias; Vavassori, Paolo; Urazhdin, Sergei; Bonetti, Stefano

    2018-02-01

    We study THz-driven spin dynamics in thin CoPt films with perpendicular magnetic anisotropy. Femtosecond magneto-optical Kerr effect measurements show that demagnetization amplitude of about 1% can be achieved with a peak THz electric field of 300 kV cm-1, and a corresponding peak magnetic field of 0.1 T. The effect is more than an order of magnitude larger than observed in samples with easy-plane anisotropy irradiated with the same field strength. We also utilize finite-element simulations to design a meta-material structure that can enhance the THz magnetic field by more than an order of magnitude, over an area of several tens of square micrometers. Magnetic fields exceeding 1 Tesla, generated in such meta-materials with the available laser-based THz sources, are expected to produce full magnetization reversal via ultrafast ballistic precession driven by the THz radiation. Our results demonstrate the possibility of table-top ultrafast magnetization reversal induced by THz radiation.

  9. Electric-field control of a hydrogenic donor's spin in a semiconductor

    NASA Astrophysics Data System (ADS)

    de, Amrit; Pryor, Craig E.; Flatté, Michael E.

    2009-03-01

    The orbital wave function of an electron bound to a single donor in a semiconductor can be modulated by an applied AC electric field, which affects the electron spin dynamics via the spin-orbit interaction. Numerical calculations of the spin dynamics of a single hydrogenic donor (Si) using a real-space multi-band k.p formalism show that in addition to breaking the high symmetry of the hydrogenic donor state, the g-tensor has a strong nonlinear dependence on the applied fields. By explicitly integrating the time dependent Schr"odinger equation it is seen that Rabi oscillations can be obtained for electric fields modulated at sub-harmonics of the Larmor frequency. The Rabi frequencies obtained from sub-harmonic modulation depend on the magnitudes of the AC and DC components of the electric field. For a purely AC field, the highest Rabi frequency is obtained when E is driven at the 2nd sub-harmonic of the Larmor frequency. Apart from suggesting ways to measure g-tensor anisotropies and nonlinearities, these results also suggest the possibility of direct frequency domain measurements of Rabi frequencies.

  10. Ion heating and characteristics of ST plasma used by double-pulsing CHI on HIST

    NASA Astrophysics Data System (ADS)

    Hanao, Takafumi; Hirono, Hidetoshi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki; Nagata, Masayoshi

    2013-10-01

    Multi-pulsing Coaxial Helicity Injection (M-CHI) is an efficient current drive and sustainment method used in spheromak and spherical torus (ST). We have observed plasma current/flux amplification by double pulsing CHI. Poloidal ion temperature measured by Ion Doppler Spectrometer (IDS) has a peak at plasma core region. In this region, radial electric field has a negative peak. At more inboard side that is called separatrix between closed flux region and inner open flux region, poloidal flow has a large shear and radial electric field changes the polarity. After the second CHI pulse, we observed sharp and rapid ion heating at plasma core region and separatrix. In this region, the poloidal ion temperature is selective heating because electron temperature is almost uniform. At this time, flow shear become larger and radial electric field is amplified at separatorix. These effects produce direct heating of ion through the viscous flow damping. Furthermore, we observed decrease of electron density at separatrix. Decreased density makes Hall dynamo electric field as two-fluid effect. When the ion temperature is increasing, dynamo electric field is observed at separatrix. It may have influence with the ion heating. We will discuss characteristic of double pulsing CHI driven ST plasmas and correlation of direct heating of ion with dynamo electric field and any other parameters.

  11. Cell Fragmentation and Permeabilization by a 1 ns Pulse Driven Triple-Point Electrode

    PubMed Central

    Li, Joy; Cho, Michael

    2018-01-01

    Ultrashort electric pulses (ns-ps) are useful in gaining understanding as to how pulsed electric fields act upon biological cells, but the electric field intensity to induce biological responses is typically higher than longer pulses and therefore a high voltage ultrashort pulse generator is required. To deliver 1 ns pulses with sufficient electric field but at a relatively low voltage, we used a glass-encapsulated tungsten wire triple-point electrode (TPE) at the interface among glass, tungsten wire, and water when it is immersed in water. A high electric field (2 MV/cm) can be created when pulses are applied. However, such a high electric field was found to cause bubble emission and temperature rise in the water near the electrode. They can be attributed to Joule heating near the electrode. Adherent cells on a cover slip treated by the combination of these stimuli showed two major effects: (1) cells in a crater (<100 μm from electrode) were fragmented and the debris was blown away. The principal mechanism for the damage is presumed to be shear forces due to bubble collapse; and (2) cells in the periphery of the crater were permeabilized, which was due to the combination of bubble movement and microstreaming as well as pulsed electric fields. These results show that ultrashort electric fields assisted by microbubbles can cause significant cell response and therefore a triple-point electrode is a useful ablation tool for applications that require submillimeter precision. PMID:29744357

  12. Understanding the conductive channel evolution in Na:WO3-x-based planar devices

    NASA Astrophysics Data System (ADS)

    Shang, Dashan; Li, Peining; Wang, Tao; Carria, Egidio; Sun, Jirong; Shen, Baogen; Taubner, Thomas; Valov, Ilia; Waser, Rainer; Wuttig, Matthias

    2015-03-01

    An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO3-x) films on a soda-lime glass substrate, from which Na+ diffuses into the WO3-x films during the deposition. The entire process of Na+ migration driven by an alternating electric field is visualized in the Na-doped WO3-x films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na+ mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07545e

  13. Direct numerical simulation of the effect of an electric field on flame stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belhi, Memdouh; Domingo, Pascale; Vervisch, Pierre

    2010-12-15

    The role of electric fields in stabilising combustion is a well-known phenomenon. Among the possible mechanisms favouring the anchorage of the flame base, the ion-driven wind acting directly on flow momentum ahead of the flame base could be the leading one. Direct numerical simulation has been used to verify this hypothesis and lead to a better understanding of diffusion flame base anchoring in the presence of an externally applied voltage. In this context, a simplified modelling approach is proposed to describe combustion in the presence of electric body forces. The model reproduces the tendencies of experimental observations found in themore » literature. The sensitivity of the flame lift-off height to the applied voltage is studied and the modification of the velocity field ahead of the flame base induced by the electric volume forces is highlighted. (author)« less

  14. Mass transport through vertically aligned large diameter MWCNT embedded in parylene

    PubMed Central

    Krishnakumar, P; Tiwari, P B; Staples, S; Luo, T; Darici, Y; He, J; Lindsay, SM

    2013-01-01

    We have fabricated porous membranes using a parylene encapsulated vertically aligned forest of multi-walled carbon nanotube (MWCNT, about 7nm inner diameter). The transport of charged particles in electrolyte through these membranes was studied by applying electric field and pressure. Under an electric field in the range of 4.4×104 V/m, electrophoresis instead of electroomosis is found to be the main mechanism for ion transport. Small molecules and 5 nm gold nanoparticles can be driven through the membranes by an electric field. However, small biomolecules, like DNA oligomers, cannot. Due to the weak electric driving force, the interactions between charged particles and the hydrophobic CNT inner surface play important roles in the transport, leading to enhanced selectivity for small molecules. Simple chemical modification on the CNT ends also induces an obvious effect on the translocation of single strand DNA oligomer and gold nanoparticle under a modest pressure (<294 Pa). PMID:23064678

  15. Mechanical-magnetic-electric coupled behaviors for stress-driven Terfenol-D energy harvester

    NASA Astrophysics Data System (ADS)

    Cao, Shuying; Zheng, Jiaju; Wang, Bowen; Pan, Ruzheng; Zhao, Ran; Weng, Ling; Sun, Ying; Liu, Chengcheng

    2017-05-01

    The stress-driven Terfernol-D energy harvester exhibits the nonlinear mechanical-magnetic-electric coupled (MMEC) behaviors and the eddy current effects. To analyze and design the device, it is necessary to establish an accurate model of the device. Based on the effective magnetic field expression, the constitutive equations with eddy currents and variable coefficients, and the dynamic equations, a nonlinear dynamic MMEC model for the device is founded. Comparisons between the measured and calculated results show that the model can describe the nonlinear coupled curves of magnetization versus stress and strain versus stress under different bias fields, and can provide the reasonable data trends of piezomagnetic coefficients, Young's modulus and relative permeability for Terfenol-D. Moreover, the calculated power results show that the model can determine the optimal bias conditions, optimal resistance, suitable proof mass, suitable slices for the maximum energy extraction of the device under broad stress amplitude and broad frequency.

  16. Note on in situ (scanning) transmission electron microscopy study of liquid samples.

    PubMed

    Jiang, Nan

    2017-08-01

    Liquid cell (scanning) transmission electron microscopy has been developed rapidly, using amorphous SiN x membranes as electron transparent windows. The current interpretations of electron beam effects are mainly based on radiolytic processes. In this note, additional effects of the electric field due to electron-beam irradiation are discussed. The electric field can be produced by the charge accumulation due to the emission of secondary and Auger electrons. Besides various beam-induced phenomena, such as nanoparticle precipitation and gas bubble formation and motion, two other effects need to be considered; one is the change of Gibbs free energy of nucleation and the other is the violation of Brownian motion due to ion drifting driven by the electric field. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. On the role of electric field direction in the formation of sporadic E-layers in the southern polar cap ionosphere

    NASA Astrophysics Data System (ADS)

    Parkinson, M. L.; Dyson, P. L.; Monselesan, D. P.; Morris, R. J.

    1998-03-01

    Measurements of the occurrence of sporadic E (Es)-layers and F-region electric fields were obtained with a modern, HF digital ionosonde located at Casey, Antarctica (66.3°S, 110.5°E, 81°S CGM latitude) during the late austral summer of 1995/96. The occurrence of Es-layers was inferred from the presence of appropriate traces in normal swept-frequency ionograms, and the electric fields were inferred from F-region ``drift-mode'' velocities assuming that the plasma convection velocities given by E × B/B2 were measured, on average, by the interferometer. The theory of formation of high-latitude Es-layers predicts that electric fields directed toward the south west (SW) should be particularly effective at producing thin layers in the southern hemisphere. Our measurements made at a true polar cap station are consistent with this expectation, and are contrasted with observations made by incoherent scatter radars in the northern hemisphere, which also show the importance of SW electric fields, whereas the same theory predicts that NW electric fields should be important at northern latitudes. We reconcile the interhemispheric differences with simple calculations of ion convergence driven by the electric fields specified by the IZMIRAN electrodynamic model (IZMEM) in both hemispheres. The importance of the interplanetary magnetic field in the control of high-latitude Es formation is emphasised as an important adjunct to space weather modelling and forecasting.

  18. Mechanics of water pore formation in lipid membrane under electric field

    NASA Astrophysics Data System (ADS)

    Bu, Bing; Li, Dechang; Diao, Jiajie; Ji, Baohua

    2017-04-01

    Transmembrane water pores are crucial for substance transport through cell membranes via membrane fusion, such as in neural communication. However, the molecular mechanism of water pore formation is not clear. In this study, we apply all-atom molecular dynamics and bias-exchange metadynamics simulations to study the process of water pore formation under an electric field. We show that water molecules can enter a membrane under an electric field and form a water pore of a few nanometers in diameter. These water molecules disturb the interactions between lipid head groups and the ordered arrangement of lipids. Following the movement of water molecules, the lipid head groups are rotated and driven into the hydrophobic region of the membrane. The reorientated lipid head groups inside the membrane form a hydrophilic surface of the water pore. This study reveals the atomic details of how an electric field influences the movement of water molecules and lipid head groups, resulting in water pore formation.

  19. Electric field formation in three different plasmas: A fusion reactor, arc discharge, and the ionosphere

    NASA Astrophysics Data System (ADS)

    Lee, Kwan Chul

    2017-11-01

    Three examples of electric field formation in the plasma are analyzed based on a new mechanism driven by ion-neutral collisions. The Gyro-Center Shift analysis uses the iteration of three equations including perpendicular current induced by the momentum exchange between ions and neutrals when there is asymmetry over the gyro-motion. This method includes non-zero divergence of current that leads the solution of time dependent state. The first example is radial electric field formation at the boundary of the nuclear fusion device, which is a key factor in the high-confinement mode operation of future fusion reactors. The second example is the reversed rotation of the arc discharge cathode spot, which has been a mysterious subject for more than one hundred years. The third example is electric field formations in the earth's ionosphere, which are important components of the equatorial electrojet and black aurora. The use of one method that explains various examples from different plasmas is reported, along with a discussion of the applications.

  20. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  1. Electrokinetic instability in microchannel ferrofluid/water co-flows

    PubMed Central

    Song, Le; Yu, Liandong; Zhou, Yilong; Antao, Asher Reginald; Prabhakaran, Rama Aravind; Xuan, Xiangchun

    2017-01-01

    Electrokinetic instability refers to unstable electric field-driven disturbance to fluid flows, which can be harnessed to promote mixing for various electrokinetic microfluidic applications. This work presents a combined numerical and experimental study of electrokinetic ferrofluid/water co-flows in microchannels of various depths. Instability waves are observed at the ferrofluid and water interface when the applied DC electric field is beyond a threshold value. They are generated by the electric body force that acts on the free charge induced by the mismatch of ferrofluid and water electric conductivities. A nonlinear depth-averaged numerical model is developed to understand and simulate the interfacial electrokinetic behaviors. It considers the top and bottom channel walls’ stabilizing effects on electrokinetic flow through the depth averaging of three-dimensional transport equations in a second-order asymptotic analysis. This model is found accurate to predict both the observed electrokinetic instability patterns and the measured threshold electric fields for ferrofluids of different concentrations in shallow microchannels. PMID:28406228

  2. Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.

    PubMed

    Luo, W-J

    2004-10-15

    This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.

  3. Optimal control of universal quantum gates in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Castelano, Leonardo K.; de Lima, Emanuel F.; Madureira, Justino R.; Degani, Marcos H.; Maialle, Marcelo Z.

    2018-06-01

    We theoretically investigate electron spin operations driven by applied electric fields in a semiconductor double quantum dot (DQD) formed in a nanowire with longitudinal potential modulated by local gating. We develop a model that describes the process of loading and unloading the DQD taking into account the overlap between the electron wave function and the leads. Such a model considers the spatial occupation and the spin Pauli blockade in a time-dependent fashion due to the highly mixed states driven by the external electric field. Moreover, we present a road map based on the quantum optimal control theory (QOCT) to find a specific electric field that performs two-qubit quantum gates on a faster timescale and with higher possible fidelity. By employing the QOCT, we demonstrate the possibility of performing within high efficiency a universal set of quantum gates {cnot, H, and T } , where cnot is the controlled-not gate, H is the Hadamard gate, and T is the π /8 gate, even in the presence of the loading/unloading process and charge noise effects. Furthermore, by varying the intensity of the applied magnetic field B , the optimized fidelity of the gates oscillates with a period inversely proportional to the gate operation time tf. This behavior can be useful to attain higher fidelity for fast gate operations (>1 GHz) by appropriately choosing B and tf to produce a maximum of the oscillation.

  4. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983]. We interpret these new observations in terms of fundamental plasma instabilities associated with the unstable, nighttime equatorial ionosphere.

  5. Electrically reversible cracks in an intermetallic film controlled by an electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z. Q.; Liu, J. H.; Biegalski, M. D.

    Cracks in solid-state materials are typically irreversible. We report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 10 8 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks canmore » reach over 10 7 cycles under 10-μs pulses, without catastrophic failure of the film.« less

  6. Electrically reversible cracks in an intermetallic film controlled by an electric field

    DOE PAGES

    Liu, Z. Q.; Liu, J. H.; Biegalski, M. D.; ...

    2018-01-03

    Cracks in solid-state materials are typically irreversible. We report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 10 8 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks canmore » reach over 10 7 cycles under 10-μs pulses, without catastrophic failure of the film.« less

  7. MMS Multipoint Electric Field Observations of Small-Scale Magnetic Holes

    NASA Technical Reports Server (NTRS)

    Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnus, Werner

    2016-01-01

    Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earths magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (p(sib i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.

  8. Depoling and fatigue behavior of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal at megahertz frequencies under bipolar electric field

    NASA Astrophysics Data System (ADS)

    Chen, Zhaojiang; Li, Shiyang; Zhang, Yang; Cao, Wenwu

    2017-05-01

    Bipolar electric field induced degradation in [001]c poled Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-0.29PT) single crystals was investigated at megahertz frequencies. The electromechanical coupling factor kt, dielectric constant ɛr, dielectric loss D, and piezoelectric constant d33 were measured as a function of amplitude, frequency, and number of cycles of the applied electric field. Our results showed that samples degrade rapidly when the field amplitude is larger than a critical value due to the onset of domain switching. We define this critical value as the effective coercive field Ec at high frequencies, which increases drastically with frequency. We also demonstrate an effective counter-depoling method by using a dc bias, which could help the design of high field driven devices based on PMN-PT single crystals and operated at megahertz frequencies.

  9. Local electric field direct writing – Electron-beam lithography and mechanism

    DOE PAGES

    Jiang, Nan; Su, Dong; Spence, John C. H.

    2017-08-24

    Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less

  10. Local electric field direct writing – Electron-beam lithography and mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Nan; Su, Dong; Spence, John C. H.

    Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less

  11. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  12. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  13. Plasmapause Dynamics Observed During the 17 March and 28 June 2013 Storms

    NASA Astrophysics Data System (ADS)

    Bishop, R. L.; Coster, A. J.; Turner, D. L.; Nikoukar, R.; Lemon, C.; Roeder, J. L.; Shumko, M.; Bhatt, R.; Payne, C.; Bust, G. S.

    2017-12-01

    Earth's plasmasphere is a region of cold (T ≤ 1 eV), dense (n 101 to 104 cm-3) plasma located in the inner magnetosphere and coincident with a portion of the ionosphere that co-rotates with the planet in the geomagnetic field. Plasmaspheric plasma originates in the ionosphere and fills the magnetic flux tubes on which the corotation electric field dominates over the convection electric field. The corotation electric field results from Earth's spinning magnetic field while the convection electric field results from the solar wind driving of global plasma convection within the magnetosphere. The outer boundary of the plasmasphere is the plasmapause, and it corresponds to the transition region between corotation-driven vs. convection-driven plasmas. When the convection electric field is enhanced during active solar wind periods, such as magnetic storms, the plasmasphere can rapidly erode to L 2.5 or less. During subsequent quiet periods of low solar wind speed and weak interplanetary magnetic field (IMF), ionospheric outflow from lower altitudes refills the plasmasphere over the course of several days or more, with the plasmapause expanding to higher L-shells. The combination of convection, corotation, and ionospheric plasma outflow during and after a storm leads to characteristic features such as plasmaspheric shoulders, notches, and plumes. In this presentation, we focus on the dynamics of the plasmapause during two storms in 2013: March 17 and June 28. The minimum Dst for the two storms were -139 and -98 nT, respectively. We examine plasmapause dynamics utilizing data from an extensive global network of ground-based scientific GPS receivers ( 4000) and line-of-sight observations from the GPS receivers on the COSMIC and C/NOFS satellites, along with data from THEMIS and van Allen Probes, and Millstone Hill Incoherent Scatter Radar. Using the various datasets, we will compare the pre-storm and storm-time plasmasphere. We will also examine the location, evolution, and erosion time scales of the plasmapause during the active portion of the storm using a combination of the observational data, the assimilative PDA model, and the RCM-E model.

  14. Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry

    NASA Astrophysics Data System (ADS)

    Gui, B.; Xia, T. Y.; Xu, X. Q.; Myra, J. R.; Xiao, X. T.

    2018-02-01

    The equilibrium electric field that results from an imposed DC bias potential, such as that driven by a radio frequency (RF) sheath, is calculated using a new minimal two-field model in the BOUT++ framework. Biasing, using an RF-modified sheath boundary condition, is applied to an axisymmetric limiter, and a thermal sheath boundary is applied to the divertor plates. The penetration of the bias potential into the plasma is studied with a minimal self-consistent model that includes the physics of vorticity (charge balance), ion polarization currents, force balance with E× B , ion diamagnetic flow (ion pressure gradient) and parallel electron charge loss to the thermal and biased sheaths. It is found that a positive radial electric field forms in the scrape-off layer and it smoothly connects across the separatrix to the force-balanced radial electric field in the closed flux surface region. The results are in qualitative agreement with the experiments. Plasma convection related to the E× B net flow in front of the limiter is also obtained from the calculation.

  15. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    PubMed

    Nakayama, Shinsuke; Sawamura, Kenta; Mohri, Kaneo; Uchiyama, Tsuyoshi

    2011-01-01

    This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI) sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT) level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  16. Ion-driven wind: Aerodynamics, performance limits, and optimization

    NASA Astrophysics Data System (ADS)

    Rickard, Matthew James Alan

    When a strong electric field is generated between a sharp, charged object and a grounded electrode in a gas medium, ions that are generated via a corona discharge near the tip of the sharp object migrate to the electrical ground, setting the neutral hulk gas in motion. The strength of the flow generated from such a process; known as a "corona", "ionic", or "ion-driven" wind, increases with electric field until electrical breakdown is reached. Previous studies have found an upper bound on the velocity of the ion-driven wind, even when a series of electrode stages are aggregated. With the intent of maximizing the gas flow front such devices, this dissertation describes a series of experiments that have been conducted and a numerical model that has been employed. Although typical hardware configurations include a wire parallel to a plate, a wire placed concentrically within a cylinder, or a needle facing a perpendicular plate or mesh, the chosen setup for this study is a needle facing a concentric ring. Using multiple experimental techniques and numerical simulation, velocity profiles have been observed at the ring exit and are sensitive to the design of the mounting hardware. The numerical model predicts the ideal electrode geometry for maximizing flow through a single unit. A modular, multi-staged system has been constructed and, when loaded with an exit nozzle, the exit velocity can be substantially increased. Further, if a small-scale (sub-millimeter) system is created, it is expected that the velocity will increase with multi-staging, even in the absence of an exit nozzle.

  17. Decontamination of Water Containing Radiological Warfare Agents

    DTIC Science & Technology

    1975-03-01

    debris was cond~ucted undcr Project Snowball. Open tanks of water were exposed to a 500- toxi TNT explosion 2 at varying distances from grouind zero...trailhr; 4-cylinder, 4-stroke, liquid- cooled gasoline engine: aluminum evaporator-conden ser; vapor complressor; watcr pumps; heat exchanger; cngine...field consists of a 10-kw gasoline -engine-driven generator and three electric-motor-driven pumps. See Figure 21 for a photograph of the cation and anion

  18. Classification and quantification of solar wind driver gases leading to intense geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Adekoya, B. J.; Chukwuma, V. U.

    2018-01-01

    Classification and quantification of the interplanetary structures causing intense geomagnetic storms (Dst ≤ -100 nT) that occurred during 1997-2016 are studied. The subject of this consists of solar wind parameters of seventy-three intense storms that are associated with the southward interplanetary magnetic field. About 30.14% of the storms were driven by a combination of the sheath and ejecta (S + E), magnetic clouds (MC) and sheath field (S) are 26% each, 10.96% by combined sheath and MCs (S + C), while 5.48% of the storms were driven by ejecta (E) alone. Therefore, we want to aver that for storms driven by: (1) S + E. The Bz is high (≥10 nT), high density (ρ) (>10 N/cm3), high plasma beta (β) (>0.8), and unspecified (i.e. high or low) structure of the plasma temperature (T) and the flow speed (V); (2) MC. The Bz is ≥10 nT, low temperature (T ≤ 400,000 K), low ρ (≤10 N/cm3), high V (≥450 km), and low β (≤0.8); (3) The structures of S + C are similar to that of MC except that the V is low (V ≤ 450 km); (4) S. The Bz is high, low T, high ρ, unspecified V, and low β; and (5) E. Is when the structures are directly opposite of the one driven by MCs except for high V. Although, westward ring current indicates intense storms, but the large intensity of geomagnetic storms is determined by the intense nature of the electric field strength and the Bz. Therefore, great storms (i.e. Dst ≤ -200 nT) are manifestation of high electric field strength (≥13 mV/m).

  19. Scaling Effect on Unipolar and Bipolar Resistive Switching of Metal Oxides

    PubMed Central

    Yanagida, Takeshi; Nagashima, Kazuki; Oka, Keisuke; Kanai, Masaki; Klamchuen, Annop; Park, Bae Ho; Kawai, Tomoji

    2013-01-01

    Electrically driven resistance change in metal oxides opens up an interdisciplinary research field for next-generation non-volatile memory. Resistive switching exhibits an electrical polarity dependent “bipolar-switching” and a polarity independent “unipolar-switching”, however tailoring the electrical polarity has been a challenging issue. Here we demonstrate a scaling effect on the emergence of the electrical polarity by examining the resistive switching behaviors of Pt/oxide/Pt junctions over 8 orders of magnitudes in the areas. We show that the emergence of two electrical polarities can be categorised as a diagram of an electric field and a cell area. This trend is qualitatively common for various oxides including NiOx, CoOx, and TiO2-x. We reveal the intrinsic difference between unipolar switching and bipolar switching on the area dependence, which causes a diversity of an electrical polarity for various resistive switching devices with different geometries. This will provide a foundation for tailoring resistive switching behaviors of metal oxides. PMID:23584551

  20. Four-dimensional electrical conductivity monitoring of stage-driven river water intrusion: Accounting for water table effects using a transient mesh boundary and conditional inversion constraints

    DOE PAGES

    Johnson, Tim; Versteeg, Roelof; Thomle, Jon; ...

    2015-08-01

    Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less

  1. Four-dimensional electrical conductivity monitoring of stage-driven river water intrusion: Accounting for water table effects using a transient mesh boundary and conditional inversion constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Tim; Versteeg, Roelof; Thomle, Jon

    Our paper describes and demonstrates two methods of providing a priori information to the surface-based time-lapse three-dimensional electrical resistivity tomography (ERT) problem for monitoring stage-driven or tide-driven surface water intrusion into aquifers. First, a mesh boundary is implemented that conforms to the known location of the water table through time, thereby enabling the inversion to place a sharp bulk conductivity contrast at that boundary without penalty. Moreover, a nonlinear inequality constraint is used to allow only positive or negative transient changes in EC to occur within the saturated zone, dependent on the relative contrast in fluid electrical conductivity between surfacemore » water and groundwater. A 3-D field experiment demonstrates that time-lapse imaging results using traditional smoothness constraints are unable to delineate river water intrusion. The water table and inequality constraints provide the inversion with the additional information necessary to resolve the spatial extent of river water intrusion through time.« less

  2. An Electrically Switchable Metal-Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, CA; Martin, PC; Schaef, T

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in amore » reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.« less

  3. An Electrically Switchable Metal-Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Carlos A.; Martin, Paul F.; Schaef, Herbert T.

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ 5 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in amore » reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.« less

  4. An Electrically Switchable Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Fernandez, Carlos A.; Martin, Paul C.; Schaef, Todd; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-08-01

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  5. Accelerated detection of viral particles by combining AC electric field effects and micro-Raman spectroscopy.

    PubMed

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-08

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the "fingerprinting" capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.

  6. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    PubMed Central

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-01

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses. PMID:25580902

  7. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  8. Reexamination of Induction Heating of Primitive Bodies in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond L.; Roberge, Wayne G.

    2013-10-01

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the "motional electric field" that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in the freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows "electrodynamic heating," calculate its upper limits, and compare them to heating produced by short-lived radionuclides.

  9. Performance Analysis of a Ring Current Model Driven by Global MHD

    NASA Astrophysics Data System (ADS)

    Falasca, A.; Keller, K. A.; Fok, M.; Hesse, M.; Gombosi, T.

    2003-12-01

    Effectively modeling the high-energy particles in Earth's inner magnetosphere has the potential to improve safety in both manned and unmanned spacecraft. One model of this environment is the Fok Ring Current Model. This model can utilize as inputs both solar wind data, and empirical ionospheric electric field and magnetic field models. Alternatively, we have a procedure which allows the model to be driven by outputs from the BATS-R-US global MHD model. By using in-situ satellite data we will compare the predictive capability of this model in its original stand-alone form, to that of the model when driven by the BATS-R-US Global Magnetosphere Model. As a basis for comparison we use the April 2002 and May 2003 storms where suitable LANL geosynchronous data are available.

  10. Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae.

    PubMed

    Crary, F J; Clarke, J T; Dougherty, M K; Hanlon, P G; Hansen, K C; Steinberg, J T; Barraclough, B L; Coates, A J; Gérard, J-C; Grodent, D; Kurth, W S; Mitchell, D G; Rymer, A M; Young, D T

    2005-02-17

    The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.

  11. Particle pinch with fully noninductive lower hybrid current drive in Tore Supra.

    PubMed

    Hoang, G T; Bourdelle, C; Pégourié, B; Schunke, B; Artaud, J F; Bucalossi, J; Clairet, F; Fenzi-Bonizec, C; Garbet, X; Gil, C; Guirlet, R; Imbeaux, F; Lasalle, J; Loarer, T; Lowry, C; Travère, J M; Tsitrone, E

    2003-04-18

    Recently, plasmas exceeding 4 min have been obtained with lower hybrid current drive (LHCD) in Tore Supra. These LHCD plasmas extend for over 80 times the resistive current diffusion time with zero loop voltage. Under such unique conditions the neoclassical particle pinch driven by the toroidal electric field vanishes. Nevertheless, the density profile remains peaked for more than 4 min. For the first time, the existence of an inward particle pinch in steady-state plasma without toroidal electric field, much larger than the value predicted by the collisional neoclassical theory, is experimentally demonstrated.

  12. Membraneless seawater desalination

    DOEpatents

    Crooks, Richard A.; Knust, Kyle N.; Perdue, Robbyn K.

    2018-04-03

    Disclosed are microfluidic devices and systems for the desalination of water. The devices and systems can include an electrode configured to generate an electric field gradient in proximity to an intersection formed by the divergence of two microfluidic channels from an inlet channel. Under an applied bias and in the presence of a pressure driven flow of saltwater, the electric field gradient can preferentially direct ions in saltwater into one of the diverging microfluidic channels, while desalted water flows into second diverging channel. Also provided are methods of using the devices and systems described herein to decrease the salinity of water.

  13. Middle atmosphere electrical energy coupling

    NASA Technical Reports Server (NTRS)

    Hale, L. C.

    1989-01-01

    The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.

  14. Light-field-driven currents in graphene

    NASA Astrophysics Data System (ADS)

    Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B.; Hommelhoff, Peter

    2017-10-01

    The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in graphene take place on a hitherto unexplored timescale, faster than electron-electron scattering (tens of femtoseconds) and electron-phonon scattering (hundreds of femtoseconds). We expect these results to have direct ramifications for band-structure tomography and light-field-driven petahertz electronics.

  15. Light-field-driven currents in graphene.

    PubMed

    Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B; Hommelhoff, Peter

    2017-10-12

    The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10 -15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10 -18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in graphene take place on a hitherto unexplored timescale, faster than electron-electron scattering (tens of femtoseconds) and electron-phonon scattering (hundreds of femtoseconds). We expect these results to have direct ramifications for band-structure tomography and light-field-driven petahertz electronics.

  16. Control of microtubule trajectory within an electric field by altering surface charge density

    PubMed Central

    Isozaki, Naoto; Ando, Suguru; Nakahara, Tasuku; Shintaku, Hirofumi; Kotera, Hidetoshi; Meyhöfer, Edgar; Yokokawa, Ryuji

    2015-01-01

    One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins. PMID:25567007

  17. Control of microtubule trajectory within an electric field by altering surface charge density.

    PubMed

    Isozaki, Naoto; Ando, Suguru; Nakahara, Tasuku; Shintaku, Hirofumi; Kotera, Hidetoshi; Meyhöfer, Edgar; Yokokawa, Ryuji

    2015-01-08

    One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins.

  18. Electrically driving large magnetic Reynolds number flows on the Madison plasma dynamo experiment

    NASA Astrophysics Data System (ADS)

    Weisberg, David; Wallace, John; Peterson, Ethan; Endrezzi, Douglass; Forest, Cary B.; Desangles, Victor

    2015-11-01

    Electrically-driven plasma flows, predicted to excite a large-scale dynamo instability, have been generated in the Madison plasma dynamo experiment (MPDX), at the Wisconsin Plasma Astrophysics Laboratory. Numerical simulations show that certain topologies of these simply-connected flows may be optimal for creating a plasma dynamo and predict critical thresholds as low as Rmcrit =μ0 σLV = 250 . MPDX plasmas are shown to exceed this critical Rm , generating large (L = 1 . 4 m), warm (Te > 10 eV), unmagnetized (MA > 1) plasmas where Rm < 600 . Plasma flow is driven using ten thermally emissive LaB6 cathodes which generate a J × B torque in Helium plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies will be presented: edge-localized drive using the multi-cusp boundary field, and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force (χ ~ 1 / (ντin)), and measurements of velocity shear compare favorably to Braginskii transport theory. Volumetric flow drive is shown to produce stronger velocity shear, and is characterized by the radial potential gradient as determined by global charge balance.

  19. Effect of parallel electric fields on the ponderomotive stabilization of MHD instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Hershkowitz, N.

    The contribution of the wave electric field component E/sub parallel/, parallel to the magnetic field, to the ponderomotive stabilization of curvature driven instabilities is evaluated and compared to the transverse component contribution. For the experimental density range, in which the stability is primarily determined by the m = 1 magnetosonic wave, this contribution is found to be the dominant and stabilizing when the electron temperature is neglected. For sufficiently high electron temperatures the dominant fast wave is found to be axially evanescent. In the same limit, E/sub parallel/ becomes radially oscillating. It is concluded that the increased electron temperature nearmore » the plasma surface reduces the magnitude of ponderomotive effects.« less

  20. Direct observation of λ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique

    NASA Astrophysics Data System (ADS)

    Fengyun, Yang; Kaige, Wang; Dan, Sun; Wei, Zhao; Hai-qing, Wang; Xin, He; Gui-ren, Wang; Jin-tao, Bai

    2016-07-01

    The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value; (ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules. Project supported by the National Natural Science Foundation of China (Grant No. 61378083), the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), the Major Research Plan of National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01).

  1. Understanding the spin-driven polarizations in Bi MO3 (M = 3 d transition metals) multiferroics

    NASA Astrophysics Data System (ADS)

    Kc, Santosh; Lee, Jun Hee; Cooper, Valentino R.

    Bismuth ferrite (BiFeO3) , a promising multiferroic, stabilizes in a perovskite type rhombohedral crystal structure (space group R3c) at room temperature. Recently, it has been reported that in its ground state it possess a huge spin-driven polarization. To probe the underlying mechanism of this large spin-phonon response, we examine these couplings within other Bi based 3 d transition metal oxides Bi MO3 (M = Ti, V, Cr, Mn, Fe, Co, Ni) using density functional theory. Our results demonstrate that this large spin-driven polarization is a consequence of symmetry breaking due to competition between ferroelectric distortions and anti-ferrodistortive octahedral rotations. Furthermore, we find a strong dependence of these enhanced spin-driven polarizations on the crystal structure; with the rhombohedral phase having the largest spin-induced atomic distortions along [111]. These results give us significant insights into the magneto-electric coupling in these materials which is essential to the magnetic and electric field control of electric polarization and magnetization in multiferroic based devices. Research is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and the Office of Science Early Career Research Program (V.R.C) and used computational resources at NERSC.

  2. Piston-Driven Fluid Ejectors In Silicon Mems

    DOEpatents

    Galambos, Paul C.; Benavides, Gilbert L.; Jokiel, Jr., Bernhard; Jakubczak II, Jerome F.

    2005-05-03

    A surface-micromachined fluid-ejection apparatus is disclosed which utilizes a piston to provide for the ejection of jets or drops of a fluid (e.g. for ink-jet printing). The piston, which is located at least partially inside a fluid reservoir, is moveable into a cylindrical fluid-ejection chamber connected to the reservoir by a microelectromechanical (MEM) actuator which is located outside the reservoir. In this way, the reservoir and fluid-ejection chamber can be maintained as electric-field-free regions thereby allowing the apparatus to be used with fluids that are electrically conductive or which may react or break down in the presence of a high electric field. The MEM actuator can comprise either an electrostatic actuator or a thermal actuator.

  3. Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions.

    PubMed

    Gekelman, W; De Haas, T; Daughton, W; Van Compernolle, B; Intrator, T; Vincena, S

    2016-06-10

    The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.

  4. Ferroelastically and magnetically co-coupled resistive switching in Nd0.5Sr0.5MnO3/PMN-PT(011) multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Ming; Xu, Xiao-Ke; Ni, Hao; Qi, Ya-Ping; Li, Xiao-Min; Gao, Ju

    2018-03-01

    The phase separation, i.e., the competition between coexisting multi-phases, can be adjusted by external stimuli, such as magnetic field, electric field, current, light, and strain. Here, a multiferroic heterostructure composed of a charge-ordered Nd0.5Sr0.5MnO3 thin film and a ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal is fabricated to investigate the lattice strain and magnetic field co-control of phase separation in resistive switching. The stable and nonvolatile resistance tuning is realized at room temperature using the electric-field-induced reversible ferroelastic strain effect, which can be enhanced by 84% under the magnetic field. Moreover, the magnetoresistance can be effectively tuned by the electrically driven ferroelastic strain. These findings reveal that the ferroelastic strain and the magnetic field strongly correlate with each other and are mediated by phase separation. Our work provides an approach to design strain-engineered multifunctional memory devices based on complex oxides by introducing an extra magnetic field stimulus.

  5. Numerical Study of Current Driven Instabilities and Anomalous Electron Transport in Hall-effect Thrusters

    NASA Astrophysics Data System (ADS)

    Tran, Jonathan

    Plasma turbulence and the resulting anomalous electron transport due to azimuthal current driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive models for the observed anomalous transport. A theory for anomalous electron transport and current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension particle in cell simulation implemented in the Thermophysics Universal Research Framework developed by the Air Force Research Lab, we show collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field and the plasma density. These high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility many orders of magnitude larger than what is expected from classical electron-neutral momentum collisions in the low neutral density regime. We further adapt the previous study by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of resolving this instability with a modified hybrid simulation with the hope of integration with established hybrid Hall-effect thruster simulations.

  6. Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model

    PubMed Central

    Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A.; Cifra, Michal

    2014-01-01

    The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells—a strategy used in novel methods for cancer treatment. PMID:24497952

  7. Determination of the electric field strength of filamentary DBDs by CARS-based four-wave mixing

    NASA Astrophysics Data System (ADS)

    Böhm, P.; Kettlitz, M.; Brandenburg, R.; Höft, H.; Czarnetzki, U.

    2016-10-01

    It is demonstrated that a four-wave mixing technique based on coherent anti-Stokes Raman spectroscopy (CARS) can determine the electric field strength of a pulsed-driven filamentary dielectric barrier discharge (DBD) of 1 mm gap, using hydrogen as a tracer medium in nitrogen at atmospheric pressure. The measurements are presented for a hydrogen admixture of 10%, but even 5% H2 admixture delivers sufficient infrared signals. The lasers do not affect the discharge by photoionization or by other radiation-induced processes. The absolute values of the electric field strength can be determined by the calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. This procedure also enables the determination of the applied breakdown voltage. The alteration of the electric field is observed during the internal polarity reversal and the breakdown process. One advantage of the CARS technique over emission-based methods is that it can be used independently of emission, e.g. in the pre-phase and in between two consecutive discharges, where no emission occurs at all.

  8. Investigation on magnetoacoustic signal generation with magnetic induction and its application to electrical conductivity reconstruction.

    PubMed

    Ma, Qingyu; He, Bin

    2007-08-21

    A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction.

  9. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    NASA Technical Reports Server (NTRS)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  10. Experimental investigation of SDBD plasma actuator driven by AC high voltage with a superimposed positive pulse bias voltage

    NASA Astrophysics Data System (ADS)

    Qi, Xiao-Hua; Yan, Hui-Jie; Yang, Liang; Hua, Yue; Ren, Chun-Sheng

    2017-08-01

    In this work, a driven voltage consisting of AC high voltage with a superimposed positive pulse bias voltage ("AC+ Positive pulse bias" voltage) is adopted to study the performance of a surface dielectric barrier discharge plasma actuator under atmospheric conditions. To compare the performance of the actuator driven by single-AC voltage and "AC+ Positive pulse bias" voltage, the actuator-induced thrust force and power consumption are measured as a function of the applied AC voltage, and the measured results indicate that the thrust force can be promoted significantly after superimposing the positive pulse bias voltage. The physical mechanism behind the thrust force changes is analyzed by measuring the optical properties, electrical characteristics, and surface potential distribution. Experimental results indicate that the glow-like discharge in the AC voltage half-cycle, next to the cycle where a bias voltage pulse has been applied, is enhanced after applying the positive pulse bias voltage, and this perhaps is the main reason for the thrust force increase. Moreover, surface potential measurement results reveal that the spatial electric field formed by the surface charge accumulation after positive pulse discharge can significantly affect the applied external electric field, and this perhaps can be responsible for the experimental phenomenon that the decrease of thrust force is delayed by pulse bias voltage action after the filament discharge occurs in the glow-like discharge region. The schlieren images further verify that the actuator-induced airflow velocity increases with the positive pulse voltage.

  11. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

    DOE PAGES

    Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; ...

    2016-02-03

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, whichmore » is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.« less

  12. Electron-ion hybrid instability experiment upgrades to the Auburn Linear Experiment for Instability Studies.

    PubMed

    DuBois, A M; Arnold, I; Thomas, E; Tejero, E; Amatucci, W E

    2013-04-01

    The Auburn Linear EXperiment for Instability Studies (ALEXIS) is a laboratory plasma physics experiment used to study spatially inhomogeneous flows in a magnetized cylindrical plasma column that are driven by crossed electric (E) and magnetic (B) fields. ALEXIS was recently upgraded to include a small, secondary plasma source for a new dual source, interpenetrating plasma experiment. Using two plasma sources allows for highly localized electric fields to be made at the boundary of the two plasmas, inducing strong E × B velocity shear in the plasma, which can give rise to a regime of instabilities that have not previously been studied in ALEXIS. The dual plasma configuration makes it possible to have independent control over the velocity shear and the density gradient. This paper discusses the recent addition of the secondary plasma source to ALEXIS, as well as the plasma diagnostics used to measure electric fields and electron densities.

  13. Frequency dependent polarisation switching in h-ErMnO3

    NASA Astrophysics Data System (ADS)

    Ruff, Alexander; Li, Ziyu; Loidl, Alois; Schaab, Jakob; Fiebig, Manfred; Cano, Andres; Yan, Zewu; Bourret, Edith; Glaum, Julia; Meier, Dennis; Krohns, Stephan

    2018-04-01

    We report an electric-field poling study of the geometrically-driven improper ferroelectric h-ErMnO3. From a detailed dielectric analysis, we deduce the temperature and the frequency dependent range for which single-crystalline h-ErMnO3 exhibits purely intrinsic dielectric behaviour, i.e., free from the extrinsic so-called Maxwell-Wagner polarisations that arise, for example, from surface barrier layers. In this regime, ferroelectric hysteresis loops as a function of frequency, temperature, and applied electric fields are measured, revealing the theoretically predicted saturation polarisation on the order of 5-6 μC/cm2. Special emphasis is put on frequency dependent polarisation switching, which is explained in terms of domain-wall movement similar to proper ferroelectrics. Controlling the domain walls via electric fields brings us an important step closer to their utilization in domain-wall-based electronics.

  14. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L.; Urrutia, J. M.

    2016-08-15

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that ofmore » the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.« less

  15. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B.E.; Biewer, T.M.; Chattopadhyay, P.K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R.N. Dexter, D. W. Kerst, T.W. Lovell et.al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current- driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces energy transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electric field and themore » electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself.« less

  16. Controllable rotating behavior of individual dielectric microrod in a rotating electric field.

    PubMed

    Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Chen, Xiaoming

    2017-06-01

    We report herein controllable rotating behavior of an individual dielectric microrod driven by a background rotating electric field. By disposing or removing structured floating microelectrode, the rigid rod suspended in electrolyte solution accordingly exhibits cofield or antifield rotating motion. In the absence of the ideally polarizable metal surface, the dielectric rod rotates opposite to propagation of electric field, with the measured rotating rate much larger than predicted by Maxwell-Wager interfacial polarization theory incorporating surface conduction of fixed bond charge. Surprisingly, with floating electrode embedded, a novel kind of cofield rotation mode occurs in the presence of induced double-layer polarization, due to the action of hydrodynamic torque from rotating induced-charge electroosmosis. This method of achieving switchable spin modes of dielectric particles would direct implications in constructing flexible electrokinetic framework for analyzing 3D profile of on-chip biomicrofluidic samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Theoretical study on the laser-driven ion-beam trace probe in toroidal devices with large poloidal magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.

    2018-03-01

    Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

  18. A simple model for estimating a magnetic field in laser-driven coils

    DOE PAGES

    Fiksel, Gennady; Fox, William; Gao, Lan; ...

    2016-09-26

    Magnetic field generation by laser-driven coils is a promising way of magnetizing plasma in laboratory high-energy-density plasma experiments. A typical configuration consists of two electrodes—one electrode is irradiated with a high-intensity laser beam and another electrode collects charged particles from the expanding plasma. The two electrodes are separated by a narrow gap forming a capacitor-like configuration and are connected with a conducting wire-coil. The charge-separation in the expanding plasma builds up a potential difference between the electrodes that drives the electrical current in the coil. A magnetic field of tens to hundreds of Teslas generated inside the coil has beenmore » reported. This paper presents a simple model that estimates the magnetic field using simple assumptions. Lastly, the results are compared with the published experimental data.« less

  19. Towards multicaloric effect with ferroelectrics

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Guangzu; Li, Qi; Bellaiche, Laurent; Scott, James F.; Dkhil, Brahim; Wang, Qing

    2016-12-01

    Utilizing thermal changes in solid-state materials strategically offers caloric-based alternatives to replace current vapor-compression technology. To make full use of multiple forms of the entropy and achieve higher efficiency for designs of cooling devices, the multicaloric effect appears as a cutting-edge concept encouraging researchers to search for multicaloric materials with outstanding caloric properties. Here we report the multicaloric effect in BaTi O3 single crystals driven simultaneously by mechanical and electric fields and described via a thermodynamic phenomenological model. It is found that the multicaloric behavior is mainly dominated by the mechanical field rather than the electric field, since the paraelectric-to-ferroelectric transition is more sensitive to mechanical field than to electric field. The use of uniaxial stress competes favorably with pressure due to its much higher caloric strength and negligible elastic thermal change. It is revealed that multicaloric response can be significantly larger than just the sum of mechanocaloric and electrocaloric effects in temperature regions far above the Curie temperature but cannot exceed this limit near the Curie temperature. Our results also show the advantage of the multicaloric effect over the mechanically mediated electrocaloric effect or electrically mediated mechanocaloric effect. Our findings therefore highlight the importance of ferroelectric materials to develop multicaloric cooling.

  20. Transition from steady to periodic liquid-metal magnetohydrodynamic flow in a sliding electrical contact

    NASA Astrophysics Data System (ADS)

    Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1993-09-01

    In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.

  1. REEXAMINATION OF INDUCTION HEATING OF PRIMITIVE BODIES IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menzel, Raymond L.; Roberge, Wayne G., E-mail: menzer@rpi.edu, E-mail: roberw@rpi.edu

    2013-10-20

    We reexamine the unipolar induction mechanism for heating asteroids originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, induction heating is caused by the 'motional electric field' that appears in the frame of an asteroid immersed in a fully ionized, magnetized solar wind and drives currents through its interior. However, we point out that classical induction heating contains a subtle conceptual error, in consequence of which the electric field inside the asteroid was calculated incorrectly. The problem is that the motional electric field used by Sonett et al. is the electric field in themore » freely streaming plasma far from the asteroid; in fact, the motional field vanishes at the asteroid surface for realistic assumptions about the plasma density. In this paper we revisit and improve the induction heating scenario by (1) correcting the conceptual error by self-consistently calculating the electric field in and around the boundary layer at the asteroid-plasma interface; (2) considering weakly ionized plasmas consistent with current ideas about protoplanetary disks; and (3) considering more realistic scenarios that do not require a fully ionized, powerful T Tauri wind in the disk midplane. We present exemplary solutions for two highly idealized flows that show that the interior electric field can either vanish or be comparable to the fields predicted by classical induction depending on the flow geometry. We term the heating driven by these flows 'electrodynamic heating', calculate its upper limits, and compare them to heating produced by short-lived radionuclides.« less

  2. New Heating Mechanism of Asteroids in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Menzel, Raymond L.; Roberge, W. G.

    2013-10-01

    Heating of asteroids in the early solar system has been mainly attributed to two mechanisms: the decay of short-lived radionuclides and the unipolar induction mechanism originally proposed in a classic series of papers by Sonett and collaborators. As originally conceived, unipolar induction heating is the result of the dissipation of current inside the body driven by a “motional electric field”, which appears in the asteroid’s reference frame when it is immersed in a fully-ionized, magnetized T-Tauri solar wind. However we point out a subtle conceptual error in the way that the electric field is calculated. Strictly speaking, the motional electric field used by Sonett et al. is the electric field in the free-streaming plasma far from the asteroid. For realistic assumptions about the plasma density in protoplanetary disks, the interaction between the plasma and asteroid cause the formation of a shear layer, in which the motional electric field decreases and even vanishes at the asteroid surface. We reexamine and improve the induction heating mechanism by: (1) correcting this conceptual error by using non-ideal multifluid MHD to self consistently calculate the velocity, magnetic, and electric fields in and around the shear layer; and (2) considering more realistic environments and scenarios that are consistent with current theories about protoplanetary disks. We present solutions for two highly idealized flows, which demonstrate that the electric field inside the asteroid is actually produced by magnetic field gradients in the shear layer, and can either vanish or be comparable to the fields predicted by Sonett et al. depending on the flow geometry. We term this new mechanism “electrodynamic heating”, calculate its possible upper limits, and compare them to heating generated by the decay of short-lived radionuclides.

  3. Demonstration of the role of turbulence-driven poloidal flow generation in the L-H transition

    NASA Astrophysics Data System (ADS)

    Yu, C. X.; Xu, Y. H.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.; Wan, B. N.; Wan, Y. X.

    2000-05-01

    This paper presents the evidence for the role of turbulence-driven poloidal flow generation in the L-H transition induced by a turbulent heating pulse on the HT-6M tokamak. It is found that the poloidal flow υθ plays a key role in developing the electric field Er and triggering the transition. The acceleration of υθ across the transition is clearly correlated with the enhancement of the Reynolds stress gradient.

  4. Accurate position estimation methods based on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.

  5. Recent progress of the Laser-driven Ion-beam Trace Probe

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang

    2017-10-01

    The Laser-driven Ion-beam Trace Probe (LITP) is a new method to diagnose the poloidal magnetic field and radial electric field in tokamaks. Recently significant progresses have been made as follows. 1) The experimental system has been set up on the PKU Plasma Test (PPT) linear device and begun to validate the principle of LITP, including the ion source, the ion detector and the poloidal magnetic field cable. Preliminary experimental results matched the theoretical prediction well. 2) The reconstruction principle has been improved including the nonlinear effect. 3) Tomography methods have been applied in the reconstruction codes. Now the laser-driven ion-beam accelerator has been setup on the PPT device, and further test of LITP will start soon. After that a prototype of LITP system will be designed and setup on the HL-2A tokamak device. This work was supported by the CHINA MOST under 2012YQ030142, ITER-CHINA program 2015GB120001 and National Natural Science Foundation of China under 11575014 and 11375053.

  6. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1990-07-17

    Methods and systems are disclosed for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a packing'' are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets. 2 figs.

  7. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1990-01-01

    Methods and systems for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a "packing" are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets.

  8. An MHD Simulation of Solar Active Region 11158 Driven with a Time-dependent Electric Field Determined from HMI Vector Magnetic Field Measurement Data

    NASA Astrophysics Data System (ADS)

    Hayashi, Keiji; Feng, Xueshang; Xiong, Ming; Jiang, Chaowei

    2018-03-01

    For realistic magnetohydrodynamics (MHD) simulation of the solar active region (AR), two types of capabilities are required. The first is the capability to calculate the bottom-boundary electric field vector, with which the observed magnetic field can be reconstructed through the induction equation. The second is a proper boundary treatment to limit the size of the sub-Alfvénic simulation region. We developed (1) a practical inversion method to yield the solar-surface electric field vector from the temporal evolution of the three components of magnetic field data maps, and (2) a characteristic-based free boundary treatment for the top and side sub-Alfvénic boundary surfaces. We simulate the temporal evolution of AR 11158 over 16 hr for testing, using Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetic field observation data and our time-dependent three-dimensional MHD simulation with these two features. Despite several assumptions in calculating the electric field and compromises for mitigating computational difficulties at the very low beta regime, several features of the AR were reasonably retrieved, such as twisting field structures, energy accumulation comparable to an X-class flare, and sudden changes at the time of the X-flare. The present MHD model can be a first step toward more realistic modeling of AR in the future.

  9. Heat currents in electronic junctions driven by telegraph noise

    NASA Astrophysics Data System (ADS)

    Entin-Wohlman, O.; Chowdhury, D.; Aharony, A.; Dattagupta, S.

    2017-11-01

    The energy and charge fluxes carried by electrons in a two-terminal junction subjected to a random telegraph noise, produced by a single electronic defect, are analyzed. The telegraph processes are imitated by the action of a stochastic electric field that acts on the electrons in the junction. Upon averaging over all random events of the telegraph process, it is found that this electric field supplies, on the average, energy to the electronic reservoirs, which is distributed unequally between them: the stronger is the coupling of the reservoir with the junction, the more energy it gains. Thus the noisy environment can lead to a temperature gradient across an unbiased junction.

  10. Inversion of ferrimagnetic magnetization by ferroelectric switching via a novel magnetoelectric coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Yakui; Lin, Lingfang; Dagotto, Elbio

    2016-07-12

    Although several multiferroic materials or heterostructures have been extensively studied, finding strong magnetoelectric couplings for the electric field control of the magnetization remains challenging. Here, a novel interfacial magnetoelectric coupling based on three components (ferroelectric dipole, magnetic moment, and antiferromagnetic order) is analytically formulated. As an extension of carrier-mediated magnetoelectricity, the new coupling is shown to induce an electric-magnetic hysteresis loop. In addition, realizations employing BiFeO 3 bilayers grown along the [111] axis are proposed. Without involving magnetic phase transitions, the magnetization orientation can be switched by the carrier modulation driven by the field effect, as confirmed using first-principles calculations.

  11. Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.

    PubMed

    Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht

    2013-09-21

    The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential.

  12. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect

    PubMed Central

    Liang, Dong; DeGrave, John P.; Stolt, Matthew J.; Tokura, Yoshinori; Jin, Song

    2015-01-01

    Skyrmions hold promise for next-generation magnetic storage as their nanoscale dimensions may enable high information storage density and their low threshold for current-driven motion may enable ultra-low energy consumption. Skyrmion-hosting nanowires not only serve as a natural platform for magnetic racetrack memory devices but also stabilize skyrmions. Here we use the topological Hall effect (THE) to study phase stability and current-driven dynamics of skyrmions in MnSi nanowires. THE is observed in an extended magnetic field-temperature window (15–30 K), suggesting stabilization of skyrmions in nanowires compared with the bulk. Furthermore, we show in nanowires that under the high current density of 108–109 A m−2, the THE decreases with increasing current densities, which demonstrates the current-driven motion of skyrmions generating the emergent electric field in the extended skyrmion phase region. These results open up the exploration of skyrmions in nanowires for fundamental physics and magnetic storage technologies. PMID:26400204

  13. Bio-amplifier with Driven Shield Inputs to Reduce Electrical Noise and its Application to Laboratory Teaching of Electrophysiology

    PubMed Central

    Matsuzaka, Yoshiya; Ichihara, Toshiaki; Abe, Toshihiko; Mushiake, Hajime

    2012-01-01

    We describe a custom-designed bio-amplifier and its use in teaching neurophysiology to undergraduate students. The amplifier has the following features: 1) differential amplification with driven shield inputs, which makes it workable even in electrically unshielded environments, 2) high input impedance to allow recordings of small signals through high signal source impedance, 3) dual fixed frequency bandpass filters (1–340Hz for surface EMG, EEG, local field potential etc and 320Hz – 3.4kHz for neuronal action potential recording) and independent gain controllers (up to x107,000) to allow the recording of different signals from the same source (e.g., local field potential and spiking activity of neurons), and 4) printed circuit board technology for easy replication with consistent quality. We compared its performance with a commercial amplifier in an electrically noisy environment. Even without any electrostatic shield, it recorded clear electromyographic activity with little interference from other electric appliances. In contrast, the commercial amplifier’s performance severely deteriorated under the same condition. We used this amplifier to build a computer-controlled stimulation and measurement system for electroencephalographic recordings by undergraduate students. The students successfully recorded various sensory evoked potentials with clarity that otherwise would have required costly instruments. This amplifier is a low-cost yet reliable instrument for electro-physiological recording both in education and research. PMID:23504543

  14. Electric-field driven insulator-metal transition and tunable magnetoresistance in ZnO thin film

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Chen, Shanshan; Chen, Xiangyang; Ye, Zhizhen; Zhu, Liping

    2018-04-01

    Electrical control of the multistate phase in semiconductors offers the promise of nonvolatile functionality in the future semiconductor spintronics. Here, by applying an external electric field, we have observed a gate-induced insulator-metal transition (MIT) with the temperature dependence of resistivity in ZnO thin films. Due to a high-density carrier accumulation, we have shown the ability to inverse change magnetoresistance in ZnO by ionic liquid gating from 10% to -2.5%. The evolution of photoluminescence under gate voltage was also consistent with the MIT, which is due to the reduction of dislocation. Our in-situ gate-controlled photoluminescence, insulator-metal transition, and the conversion of magnetoresistance open up opportunities in searching for quantum materials and ZnO based photoelectric devices.

  15. A compact model for electroosmotic flows in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2002-09-01

    A compact model to compute flow rate and pressure in microfluidic devices is presented. The microfluidic flow can be driven by either an applied electric field or a combined electric field and pressure gradient. A step change in the ζ-potential on a channel wall is treated by a pressure source in the compact model. The pressure source is obtained from the pressure Poisson equation and conservation of mass principle. In the proposed compact model, the complex fluidic network is simplified by an electrical circuit. The compact model can predict the flow rate, pressure distribution and other basic characteristics in microfluidic channels quickly with good accuracy when compared to detailed numerical simulation. Using the compact model, fluidic mixing and dispersion control are studied in a complex microfluidic network.

  16. Photovoltaic effect and photopolarization in Pb [(Mg1/3Nb2/3) 0.68Ti0.32] O3 crystal

    NASA Astrophysics Data System (ADS)

    Makhort, A. S.; Chevrier, F.; Kundys, D.; Doudin, B.; Kundys, B.

    2018-01-01

    Ferroelectric materials are an alternative to semiconductor-based photovoltaics and offer the advantage of above bandgap photovoltage generation. However, there are few known compounds, and photovoltaic efficiencies remain low. Here, we report the discovery of a photovoltaic effect in undoped lead magnesium niobate-lead titanate crystal and a significant improvement in the photovoltaic response under suitable electric fields and temperatures. The photovoltaic effect is maximum near the electric-field-driven ferroelectric dipole reorientation, and increases threefold near the Curie temperature (Tc). Moreover, at ferroelectric saturation, the photovoltaic response exhibits clear remanent and transient effects. The transient-remanent combinations together with electric and thermal tuning possibilities indicate photoferroelectric crystals as emerging elements for photovoltaics and optoelectronics, relevant to all-optical information storage and beyond.

  17. Temporally resolved proton radiography of rapidly varying electric and magnetic fields in laser-driven capacitor coil targets

    NASA Astrophysics Data System (ADS)

    Morace, A.; Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Alpinaniz, J.; Brabetz, C.; Schaumann, G.; Volpe, L.

    2017-02-01

    Understanding the dynamics of rapidly varying electromagnetic fields in intense short pulse laser plasma interactions is of key importance to understand the mechanisms at the basis of a wide variety of physical processes, from high energy density physics and fusion science to the development of ultrafast laser plasma devices to control laser-generated particle beams. Target normal sheath accelerated (TNSA) proton radiography represents an ideal tool to diagnose ultrafast electromagnetic phenomena, providing 2D spatially and temporally resolved radiographs with temporal resolution varying from 2-3 ps to few tens of ps. In this work we introduce the proton radiography technique and its application to diagnose the spatial and temporal evolution of electromagnetic fields in laser-driven capacitor coil targets.

  18. Hawking radiation and nonequilibrium quantum critical current noise.

    PubMed

    Sonner, Julian; Green, A G

    2012-08-31

    The dynamical scaling of quantum critical systems in thermal equilibrium may be inherited in the driven steady state, leading to universal out-of-equilibrium behavior. This attractive notion has been demonstrated in just a few cases. We demonstrate how holography-a mapping between the quantum critical system and a gravity dual-provides an illuminating perspective and new results. Nontrivial out-of-equilibrium universality is particularly apparent in current noise, which is dual to Hawking radiation in the gravitational system. We calculate this in a two-dimensional system driven by a strong in-plane electric field and deduce a universal scaling function interpolating between previously established equilibrium and far-from-equilibrium current noise. Since this applies at all fields, out-of-equilibrium experiments no longer require very high fields for comparison with theory.

  19. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.

    2018-04-01

    We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.

  20. Nonequilibrium steady states and resonant tunneling in time-periodically driven systems with interactions

    NASA Astrophysics Data System (ADS)

    Qin, Tao; Hofstetter, Walter

    2018-03-01

    Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.

  1. Performance Improvement of Diagonal Type MHD Generator by Modification of PTO Electrode Configuration

    NASA Astrophysics Data System (ADS)

    Takahashi, Toru; Fujino, Takayasu; Ishikawa, Motoo

    Time dependent three-dimensional numerical analysis is carried out in order to clarify causes of voltage loss occurring near power takeoff regions and to suggest how to reduce the voltage loss for the scramjet engine driven MHD generator which was developed under the hypersonic vehicle electric power system program in USA. The numerical results under the experimental condition show that the local positive electric field is induced near the power takeoff electrodes. The phenomenon is due to the electric field loss by the high electric current through the weakly ionized plasma with low temperature and also by the low electromotive force near the power takeoff electrodes. When the configuration of power takeoff electrodes is modified, the current density near the power takeoff electrodes becomes small and the electromotive force becomes strong. The electric power output under the optimum electrode configuration of power takeoff is improved by 22 percent, compared with the value under the experimental condition.

  2. Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3

    PubMed Central

    Preciado, Edwin; Schülein, Florian J.R.; Nguyen, Ariana E.; Barroso, David; Isarraraz, Miguel; von Son, Gretel; Lu, I-Hsi; Michailow, Wladislaw; Möller, Benjamin; Klee, Velveth; Mann, John; Wixforth, Achim; Bartels, Ludwig; Krenner, Hubert J.

    2015-01-01

    Lithium niobate is the archetypical ferroelectric material and the substrate of choice for numerous applications including surface acoustic wave radio frequencies devices and integrated optics. It offers a unique combination of substantial piezoelectric and birefringent properties, yet its lack of optical activity and semiconducting transport hamper application in optoelectronics. Here we fabricate and characterize a hybrid MoS2/LiNbO3 acousto-electric device via a scalable route that uses millimetre-scale direct chemical vapour deposition of MoS2 followed by lithographic definition of a field-effect transistor structure on top. The prototypical device exhibits electrical characteristics competitive with MoS2 devices on silicon. Surface acoustic waves excited on the substrate can manipulate and probe the electrical transport in the monolayer device in a contact-free manner. We realize both a sound-driven battery and an acoustic photodetector. Our findings open directions to non-invasive investigation of electrical properties of monolayer films. PMID:26493867

  3. Characterization of Nanoparticles by Capillary Electrophoresis and Trapping of Nanoparticles in Microfluidics Device

    DTIC Science & Technology

    2009-08-01

    tubular mode driven by electroosmotic flow and the inherent electrophoretic mobility of the analytes under the influence of an applied electric field...could be due to unlabeled beads. Figure 3 (C and D) also shows electropherogram of a neutral electroosmotic flow (EOF) marker dye BODIPY and...internal turbulent mixing . The current microfabricated electromagnets cannot produce sufficient fields to trap the NPs against a large flow forces

  4. Understanding the conductive channel evolution in Na:WO(3-x)-based planar devices.

    PubMed

    Shang, Dashan; Li, Peining; Wang, Tao; Carria, Egidio; Sun, Jirong; Shen, Baogen; Taubner, Thomas; Valov, Ilia; Waser, Rainer; Wuttig, Matthias

    2015-04-14

    An ion migration process in a solid electrolyte is important for ion-based functional devices, such as fuel cells, batteries, electrochromics, gas sensors, and resistive switching systems. In this study, a planar sandwich structure is prepared by depositing tungsten oxide (WO(3-x)) films on a soda-lime glass substrate, from which Na(+) diffuses into the WO(3-x) films during the deposition. The entire process of Na(+) migration driven by an alternating electric field is visualized in the Na-doped WO(3-x) films in the form of conductive channel by in situ optical imaging combined with infrared spectroscopy and near-field imaging techniques. A reversible change of geometry between a parabolic and a bar channel is observed with the resistance change of the devices. The peculiar channel evolution is interpreted by a thermal-stress-induced mechanical deformation of the films and an asymmetric Na(+) mobility between the parabolic and the bar channels. These results exemplify a typical ion migration process driven by an alternating electric field in a solid electrolyte with a low ion mobility and are expected to be beneficial to improve the controllability of the ion migration in ion-based functional devices, such as resistive switching devices.

  5. Nonlinear response of a harmonic diatomic molecule: Algebraic nonperturbative calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recamier, Jose; Mochan, W. Luis; Maytorena, Jesus A.

    2005-08-15

    Even harmonic molecules display a nonlinear behavior when driven by an inhomogeneous field. We calculate the response of single harmonic molecules to a monochromatic time and space dependent electric field E(r,t) of frequency {omega} employing exact algebraic methods. We evaluate the responses at the fundamental frequency {omega} and at successive harmonics 2{omega}, 3{omega}, etc., as a function of the intensity and of the frequency of the field and compare the results with those of first and second order perturbation theory.

  6. Combined electroosmotically and pressure driven flow in soft nanofluidics.

    PubMed

    Matin, Meisam Habibi; Ohshima, Hiroyuki

    2015-12-15

    The present study is devoted to the analysis of mixed electroosmotic and pressure driven flows through a soft charged nanochannel considering boundary slip and constant charge density on the walls of the slit channel. The sources of the fluid flow are the pressure gradient along the channel axis and the electrokinetic effects that trigger an electroosmotic flow under the influence of a uniformly applied electric field. The polyelectrolyte layer (PEL) is denoted as a fixed charge layer (FCL) and the electrolyte ions can be present both inside and outside the PEL i.e., the PEL-electrolyte interface acts as a semi-penetrable membrane. The Poisson-Boltzmann equation is solved assuming the Debye-Hückel linearization for the low electric potential to provide us with analytical closed form solutions for the conservation equations. The conservation equations are solved to obtain the electric potential and velocity distributions in terms of governing dimensionless parameters. The results for the dimensionless electric potential, the dimensionless velocity and Poiseuille number are presented graphically and discussed in detail. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Mechanical Signature of Heat Generated in a Current-Driven Ferromagnetic Resonance System

    NASA Astrophysics Data System (ADS)

    Cho, Sung Un; Jo, Myunglae; Park, Seondo; Lee, Jae-Hyun; Yang, Chanuk; Kang, Seokwon; Park, Yun Daniel

    2017-07-01

    In a current-driven ferromagnetic resonance (FMR) system, heat generated by time-dependent magnetoresistance effects, caused by magnetization precession, cannot be overlooked. Here, we describe the generated heat by magnetization motion under electric current in a freestanding nanoelectromechanical resonator fashioned from a permalloy (Py )/Pt bilayer. By piezoresistive transduction of Pt, the mechanical mode is electrically detected at room temperature and the internal heat in Py excluding thermoelectric effects is quantified as a shift of the mechanical resonance. We find that the measured spectral shifts correspond to the FMR, which is further verified from the spin-torque FMR measurement. Furthermore, the angular dependence of the mechanical reaction on an applied magnetic field reveals that the full accounting of FMR heat dissipation requires the time-dependent magnetoresistance effect.

  8. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  9. A charge-driven molecular water pump.

    PubMed

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.

  10. Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport

    NASA Astrophysics Data System (ADS)

    Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.

    2018-04-01

    Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.

  11. Nanoscale rotary motors driven by electron tunneling.

    PubMed

    Wang, Boyang; Vuković, Lela; Král, Petr

    2008-10-31

    We examine by semiclassical molecular dynamics simulations the possibility of driving nanoscale rotary motors by electron tunneling. The model systems studied have a carbon nanotube shaft with covalently attached "isolating" molecular stalks ending with "conducting" blades. Periodic charging and discharging of the blades at two metallic electrodes maintains an electric dipole on the blades that is rotated by an external electric field. Our simulations demonstrate that these molecular motors can be efficient under load and in the presence of noise and defects.

  12. 2d axisymmetric "beam-bulk" modelling of the generation of runaway electrons by streamers.

    NASA Astrophysics Data System (ADS)

    Chanrion, Olivier; Bonaventura, Zdenek; Bourdon, Anne; Neubert, Torsten

    2017-04-01

    We present results from a 2d axisymmetric numerical model of streamers based on a "beam-bulk" approach which describes cold electrons with a fluid model and high energy electrons with a particle model. The interest is motivated by the generation of runaway electrons by streamers which may participate in the recently observed TGFs and which challenge the modelling. Runaway electrons are known to be generated from streamers when the electric field in its negative tip is of sufficient magnitude. After overtaking the streamer tip, runaways can affect the streamer propagation ahead and may produce high energy photons through the bremsstrahlung process. In conventional model of streamers, the evolution of the streamer discharge is mostly governed by cold electrons. By including runaway electrons, we model their production, their impact on the discharge propagation and can address their role in TGFs. Results of streamer propagation in leader electric field show that the runaway electrons accelerate the streamers, reduce the electric field in its tip and enlarge its radius by pre-ionizing the gas ahead. We observed that if we increase the electric field, the discharge is getting more diffuse, with a pattern driven by the increase in runaway induced ionisation.

  13. Dual motor drive vehicle speed synchronization and coordination control strategy

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing

    2018-04-01

    Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.

  14. Non-destructive reversible resistive switching in Cr doped Mott insulator Ca2RuO4: Interface vs bulk effects

    NASA Astrophysics Data System (ADS)

    Shen, Shida; Williamson, Morgan; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    2017-12-01

    A non-destructive reversible resistive switching is demonstrated in single crystals of Cr-doped Mott insulator Ca2RuO4. An applied electrical bias was shown to reduce the DC resistance of the crystal by as much as 75%. The original resistance of the sample could be restored by applying an electrical bias of opposite polarity. We have studied this resistive switching as a function of the bias strength, applied magnetic field, and temperature. A combination of 2-, 3-, and 4-probe measurements provide a means to distinguish between bulk and interfacial contributions to the switching and suggests that the switching is mostly an interfacial effect. The switching was tentatively attributed to electric-field driven lattice distortions which accompany the impurity-induced Mott transition. This field effect was confirmed by temperature-dependent resistivity measurements which show that the activation energy of this material can be tuned by an applied DC electrical bias. The observed resistance switching can potentially be used for building non-volatile memory devices like resistive random access memory.

  15. Reversible electric-field manipulation of the adsorption morphology and magnetic anisotropy of small Fe and Co clusters on graphene

    NASA Astrophysics Data System (ADS)

    Tanveer, M.; Dorantes-Dávila, J.; Pastor, G. M.

    2017-12-01

    First-principles electronic calculations show how the adsorption morphology, orbital magnetism, and magnetic anisotropy energy (MAE) of small CoN and FeN clusters (N ≤3 ) on graphene (G) can be reversibly controlled under the action of an external electric field (EF). A variety of cluster-specific and EF-induced effects are revealed, including (i) perpendicular or canted adsorption configurations of the dimers and trimers, (ii) significant morphology-dependent permanent dipole moments and electric susceptibilities, (iii) EF-induced reversible transitions among the different metastable adsorption morphologies of Fe3 and Co3 on graphene, (iv) qualitative changes in the MAE landscape driven by structural changes, (v) colossal values of the magnetic anisotropy Δ E ≃45 meV per atom in Co2/G , (vi) EF-induced spin-reorientation transitions in Co3/G , and (vii) reversibly tunable coercive field and blocking temperatures, which in some cases allow a barrierless magnetization reversal of the cluster. These remarkable electric and magnetic fingerprints open new possibilities of characterizing and exploiting the size- and structural-dependent properties of magnetic nanostructures at surfaces.

  16. Experimental Study and Optimization of Thermoelectricity-Driven Autonomous Sensors for the Chimney of a Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Astrain, D.; Martínez, A.; Aranguren, P.

    2014-06-01

    In the work discussed in this paper a thermoelectric generator was developed to harness waste heat from the exhaust gas of a boiler in a biomass power plant and thus generate electric power to operate a flowmeter installed in the chimney, to make it autonomous. The main objective was to conduct an experimental study to optimize a previous design obtained after computational work based on a simulation model for thermoelectric generators. First, several places inside and outside the chimney were considered as sites for the thermoelectricity-driven autonomous sensor. Second, the thermoelectric generator was built and tested to assess the effect of the cold-side heat exchanger on the electric power, power consumption by the flowmeter, and transmission frequency. These tests provided the best configuration for the heat exchanger, which met the transmission requirements for different working conditions. The final design is able to transmit every second and requires neither batteries nor electric wires. It is a promising application in the field of thermoelectric generation.

  17. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  18. Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean

    NASA Astrophysics Data System (ADS)

    Hartkorn, Oliver; Saur, Joachim

    2017-11-01

    We investigate whether induction within Callisto's electrically conductive ionosphere can explain observed magnetic fields which have previously been interpreted as evidence of induction in a saline, electrically conductive subsurface ocean. Callisto's ionosphere is subject to the flow of time-periodic magnetized plasma of Jupiter's magnetosphere, which induces electric fields and electric currents in Callisto's electrically conductive ionosphere. We develop a simple analytic model for a first quantitative understanding of the effects of induction in Callisto's ionosphere caused by the interaction with a time-variable magnetic field environment. With this model, we also investigate how the associated ionospheric currents close in the ambient magnetospheric plasma. Based on our model, we find that the anisotropic nature of Callisto's ionospheric conductivity generates an enhancement effect on ionospheric loop currents which are driven by the time-variable magnetic field. This effect is similar to the Cowling channel effect known from Earth's ionosphere. Subsequently, we numerically calculate the expected induced magnetic fields due to Jupiter's time-variable magnetic field in an anisotropic conductive ionosphere and compare our results with the Galileo C-3 and C-9 flybys. We find that induction within Callisto's ionosphere is responsible for a significant part of the observed magnetic fields. Ionospheric induction creates induced magnetic fields to some extent similar as expected from a subsurface water ocean. Depending on currently unknown properties such as Callisto's nightside ionosphere, the existence of layers of "dirty ice" and the details of the plasma interaction, a water ocean might be located much deeper than previously thought or might not exist at all.

  19. Electrolyte transport in neutral polymer gels embedded with charged inclusions

    NASA Astrophysics Data System (ADS)

    Hill, Reghan

    2005-11-01

    Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.

  20. A self-assembled nanoscale robotic arm controlled by electric fields

    NASA Astrophysics Data System (ADS)

    Kopperger, Enzo; List, Jonathan; Madhira, Sushi; Rothfischer, Florian; Lamb, Don C.; Simmel, Friedrich C.

    2018-01-01

    The use of dynamic, self-assembled DNA nanostructures in the context of nanorobotics requires fast and reliable actuation mechanisms. We therefore created a 55-nanometer–by–55-nanometer DNA-based molecular platform with an integrated robotic arm of length 25 nanometers, which can be extended to more than 400 nanometers and actuated with externally applied electrical fields. Precise, computer-controlled switching of the arm between arbitrary positions on the platform can be achieved within milliseconds, as demonstrated with single-pair Förster resonance energy transfer experiments and fluorescence microscopy. The arm can be used for electrically driven transport of molecules or nanoparticles over tens of nanometers, which is useful for the control of photonic and plasmonic processes. Application of piconewton forces by the robot arm is demonstrated in force-induced DNA duplex melting experiments.

  1. Assessing field-scale biogeophysical signatures of bioremediation over a mature crude oil spill

    USGS Publications Warehouse

    Slater, Lee; Ntarlagiannis, Dimitrios; Atekwana, Estella; Mewafy, Farag; Revil, Andre; Skold, Magnus; Gorby, Yuri; Day-Lewis, Frederick D.; Lane, John W.; Trost, Jared J.; Werkema, Dale D.; Delin, Geoffrey N.; Herkelrath, William N.; Rectanus, H.V.; Sirabian, R.

    2011-01-01

    We conducted electrical geophysical measurements at the National Crude Oil Spill Fate and Natural Attenuation Research Site (Bemidji, MN). Borehole and surface self-potential measurements do not show evidence for the existence of a biogeobattery mechanism in response to the redox gradient resulting from biodegradation of oil. The relatively small self potentials recorded are instead consistent with an electrodiffusion mechanism driven by differences in the mobility of charge carriers associated with biodegradation byproducts. Complex resistivity measurements reveal elevated electrical conductivity and interfacial polarization at the water table where oil contamination is present, extending into the unsaturated zone. This finding implies that the effect of microbial cell growth/attachment, biofilm formation, and mineral weathering accompanying hydrocarbon biodegradation on complex interfacial conductivity imparts a sufficiently large electrical signal to be measured using field-scale geophysical techniques.

  2. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less

  3. Toward a terahertz-driven electron gun

    PubMed Central

    Huang, W. Ronny; Nanni, Emilio A.; Ravi, Koustuban; Hong, Kyung-Han; Fallahi, Arya; Wong, Liang Jie; Keathley, Phillip D.; Zapata, Luis E.; Kärtner, Franz X.

    2015-01-01

    Femtosecond electron bunches with keV energies and eV energy spread are needed by condensed matter physicists to resolve state transitions in carbon nanotubes, molecular structures, organic salts, and charge density wave materials. These semirelativistic electron sources are not only of interest for ultrafast electron diffraction, but also for electron energy-loss spectroscopy and as a seed for x-ray FELs. Thus far, the output energy spread (hence pulse duration) of ultrafast electron guns has been limited by the achievable electric field at the surface of the emitter, which is 10 MV/m for DC guns and 200 MV/m for RF guns. A single-cycle THz electron gun provides a unique opportunity to not only achieve GV/m surface electric fields but also with relatively low THz pulse energies, since a single-cycle transform-limited waveform is the most efficient way to achieve intense electric fields. Here, electron bunches of 50 fC from a flat copper photocathode are accelerated from rest to tens of eV by a microjoule THz pulse with peak electric field of 72 MV/m at 1 kHz repetition rate. We show that scaling to the readily-available GV/m THz field regime would translate to monoenergetic electron beams of ~100 keV. PMID:26486697

  4. Discussion on optical response of liquid-crystal BPIII driven by an inclined electric field.

    NASA Astrophysics Data System (ADS)

    Chen, Hui-Yu; Wang, Yen-Wen

    Three blue phases exist between the chiral nematic and the liquid phase. Compared with the electro-optical properties of BPI and BPII, BPIII is a fast response photonic device with no residual birefringence, and less hysteresis effect when an in-plane electric field is applied. However, the in-the-plane field is not uniform and then the electro-optical properties is more complicate than that we can image. This is a key point for further application of BP. In this paper, a grating-like vertical electric field is used to induce the two different optical phenomena of BPIII. As the electric field is turned on, the light transmittance rapidly increases to a stable value (<0.5 ms, Kerr effect). If the applied voltage is a dc, the transmittance will remind in this stable value. However, when the applied voltage is ac, the transmittance will oscillate with the frequency. The change in transmittance will be obvious in a low frequency. From our observation, we have known that the oscillation of the transmittance is not caused by the ion effect. It is induced by reorientation of the induced optical axis (flexoeletric effect). Thus, we can control the applied frequency and the amplitude to modulate the contribution of Kerr effect and flexoelectric effect. MOST 105-2112-M-005-010.

  5. Turbulence in Electrically Conducting Fluids Driven by Rotating and Travelling Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Stiller, Jörg; Koal, Kristina; Blackburn, Hugh M.

    The turbulent flow driven by rotating and travelling magnetic fields in a closed cylinder is investigated by means of direct numerical simulations (DNS) and large eddy simulations (LES). Our model is based on the low-induction, low-frequency approximation and employs a spectral-element/Fourier method for discretisation. The spectral vanishing viscosity (SVV) technique was adopted for the LES. The study provides first insights into the developed turbulent flow. In the RMF case, Taylor-Görtler vortices remain the dominant turbulence mechanism, as already in the transitional regime. In contrast to previous predictions we found no evidence that the vortices are confined closer to the wall for higher forcing. In the TMF more than 50 percent of the kinetic energy is bound to the turbulent fluctuations, which renders this field an interesting candidate for mixing applications.

  6. Thermal Electron Contributions to Current-Driven Instabilities: SCIFER Observations in the 1400-km Cleft Ion Fountain and Their Implications to Thermal Ion Energization

    NASA Technical Reports Server (NTRS)

    Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.

  7. Lower Hybrid Solitary Structures

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.

    2011-01-01

    Lower hybrid solitary structures (LHSS) have been observed by sounding rockets in the auroral ionosphere for over a decade and a half. LHSS are spatial structures embedded in space plasmas containing ambient whistler mode hiss. They are characterized by a density depletion of a few percent to several tens of percent in which electric fields near, both above and below, the lower hybrid resonance are more intense than the background fields by a factor of three to five. LHSS have dimensions across the magnetic field of a few to many thermal ion gyroradii, usually 10-100 meters and a density profile that is Gaussian and consistent with cylindrical symmetry. Along the magnetic field the dimensions are estimated to be several kilometers to several hundred kilometers. Electric field interferometry reveals that the phase fronts of LHSS electric fields rotate azimuthally within the density depletions; right-hand above the lower hybrid resonance and left-hand below the lower hybrid resonance [Pincon et al., 1997; Schuck et al., 1998; Bonnell et al., 1998; Tjulin et al., 2003; Schuck et al., 2003]. The description of this phenomena was driven by the observations the Cornell University sounding rocket program headed by the late Paul Kintner.

  8. Passive injection control for microfluidic systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  9. Device, system and method for a sensing electrical circuit

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    The invention relates to a driven ground electrical circuit. A driven ground is a current-measuring ground termination to an electrical circuit with the current measured as a vector with amplification. The driven ground module may include an electric potential source V.sub.S driving an electric current through an impedance (load Z) to a driven ground. Voltage from the source V.sub.S excites the minus terminal of an operational amplifier inside the driven ground which, in turn, may react by generating an equal and opposite voltage to drive the net potential to approximately zero (effectively ground). A driven ground may also be a means of passing information via the current passing through one grounded circuit to another electronic circuit as input. It may ground one circuit, amplify the information carried in its current and pass this information on as input to the next circuit.

  10. Externally-Driven Onset of Localized Magnetic Reconnection in a Magnetotail Configuration

    NASA Astrophysics Data System (ADS)

    Pritchett, P. L.; Lu, S.

    2017-12-01

    In observations of the nightside auroral arcs and ionospheric currents, the onset or breakup phase of a substorm is sharply defined in time and is highly localized in space. Attempts to understand this localization in terms of the onset of localized magnetic reconnection have generally been unsuccessful. Thus, a y-localized driving convection electric field Ey applied at the lobe boundaries spreads out before it reaches the equatorial plane and results only in 2-D reconnection. In this work, the response of a magnetotail equilibrium containing a dipole magnetic field and plasma sheet regions to the imposition of a longitudinally-limited, high-latitude driving electric field is investigated using 3-D particle-in-cell simulations. The initial response involves a reduction in the equatorial Bz field that is then followed by the development of a dawn-dusk asymmetric current sheet relative to the meridian plane of the driving field. The key feature is the presence of a dusk-side Hall electric field Ez that drives magnetic flux dawnward and thus further reduces the Bz field on the duskward side. The net result is that Bz is driven through zero in a localized region on the duskward side, leading to the onset of localized reconnection and the emergence of magnetic flux ropes. The cross-tail extent of the reconnection expands but remains limited to ˜30di, where di is the ion inertia length. The dissipation E' \\cdot J is peaked along the finite X line, with a load region (negative E' \\cdot J) forming tailward of this region. The particle energy spectra in the downtail region show shoulders for the ions in the energy range ˜3-8Eth (Eth is the initial thermal energy) and extended tails for the electrons in the range ˜10-20Eth. These results demonstrate the ability of a high-latitude disturbance that may be connected to dayside flow channels [Nishimura et al., 2014] to initiate localized magnetic reconnection in the magnetotail.

  11. Reconfigurable Full-Page Braille Displays

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas

    1994-01-01

    Electrically actuated braille display cells of proposed type arrayed together to form full-page braille displays. Like other braille display cells, these provide changeable patterns of bumps driven by digitally recorded text stored on magnetic tapes or in solid-state electronic memories. Proposed cells contain electrorheological fluid. Viscosity of such fluid increases in strong electrostatic field.

  12. Electrohydrodynamically driven large-area liquid ion sources

    DOEpatents

    Pregenzer, Arian L.

    1988-01-01

    A large-area liquid ion source comprises means for generating, over a large area of the surface of a liquid, an electric field of a strength sufficient to induce emission of ions from a large area of said liquid. Large areas in this context are those distinct from emitting areas in unidimensional emitters.

  13. Enhanced mixing in polyacrylamide gels containing embedded silica nanoparticles as internal electroosmotic pumps.

    PubMed

    Matos, Marvi A; White, Lee R; Tilton, Robert D

    2008-02-15

    Many biosensors, including those based on sensing agents immobilized inside hydrogels, suffer from slow response dynamics due to mass transfer limitations. Here we present an internal pumping strategy to promote convective mixing inside crosslinked polymer gels. This is envisioned as a potential tool to enhance biosensor response dynamics. The method is based on electroosmotic flows driven by non-uniform, oscillating electric fields applied across a polyacrylamide gel that has been doped with charged colloidal silica inclusions. Evidence for enhanced mixing was obtained from florescence recovery after photobleaching (FRAP) measurements with fluorescein tracer dyes dissolved in the gel. Mixing rates in silica-laden gels under the action of the applied electric fields were more than an order of magnitude faster than either diffusion or electrophoretically driven mixing in gels that did not contain silica. The mixing enhancement was due in comparable parts to the electroosmotic pumping and to the increase in gel swelling caused by the presence of the silica inclusions. The latter had the effect of increasing tracer mobility in the silica-laden gels.

  14. Induced charge electroosmosis micropumps using arrays of Janus micropillars.

    PubMed

    Paustian, Joel S; Pascall, Andrew J; Wilson, Neil M; Squires, Todd M

    2014-09-07

    We report on a microfluidic AC-driven electrokinetic pump that uses Induced Charge Electro-Osmosis (ICEO) to generate on-chip pressures. ICEO flows occur when a bulk electric field polarizes a metal object to induce double layer formation, then drives electroosmotic flow. A microfabricated array of metal-dielectric Janus micropillars breaks the symmetry of ICEO flow, so that an AC electric field applied across the array drives ICEO flow along the length of the pump. When pumping against an external load, a pressure gradient forms along the pump length. The design was analyzed theoretically with the reciprocal theorem. The analysis reveals a maximum pressure and flow rate that depend on the ICEO slip velocity and micropillar geometry. We then fabricate and test the pump, validating our design concept by demonstrating non-local pressure driven flow using local ICEO slip flows. We varied the voltage, frequency, and electrolyte composition, measuring pump pressures of 15-150 Pa. We use the pump to drive flows through a high-resistance microfluidic channel. We conclude by discussing optimization routes suggested by our theoretical analysis to enhance the pump pressure.

  15. Fine scale structure in the current sheet and electrostatic fields during driven magnetic reconnection on the VTF experiment.

    NASA Astrophysics Data System (ADS)

    Fox, William

    2005-10-01

    We have conducted a series of experiments in the VTF reconnection experiment[1] to measure with high resolution the current channel and electric structures that form in response to driven reconnection. Preliminary measurements have revealed that the current sheet is not symmetric across the X-line, contradicting an assumption fundamental to nearly every reconnection theory. Importantly, effects related to this asymmetry can account for momentum balance for the electrons at the X-line (i.e. fulfillment of the generalized Ohm's law) via convective inertia (m n v.∇v||). Measurements of strong in-plane electric field structures (E˜ 1 kV/m) near the X-point reveal a mechanism to efficiently heat ions, as has been recently observed by laser induced fluorescence (LIF) measurements of the ion distribution function[2].This work was supported by a DoE Fusion Energy Sciences Fellowship.[1] J. Egedal, et. al. (2001), Rev. Sci. Instrum. 71, 3351 [2] A. Stark, W. Fox, J.Egedal, O. Grulke, T. Klinger, (2005), submitted to Phys. Rev. Lett.

  16. Motion of Knots in DNA Stretched by Elongational Fields

    NASA Astrophysics Data System (ADS)

    Klotz, Alexander R.; Soh, Beatrice W.; Doyle, Patrick S.

    2018-05-01

    Knots in DNA occur in biological systems, serve as a model system for polymer entanglement, and affect the efficacy of modern genomics technologies. We study the motion of complex knots in DNA by stretching molecules with a divergent electric field that provides an elongational force. We demonstrate that the motion of knots is nonisotropic and driven towards the closest end of the molecule. We show for the first time experimentally that knots can go from a mobile to a jammed state by varying an applied strain rate, and that this jamming is reversible. We measure the mobility of knots as a function of strain rate, demonstrating the conditions under which knots can be driven towards the ends of the molecule and untied.

  17. Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Wolde, Seyoum; Lao, Yan-Feng; Unil Perera, A. G.; Zhang, Y. H.; Wang, T. M.; Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S.

    2017-06-01

    We report experimental results showing how the noise in a Quantum-Dot Infrared photodetector (QDIP) and Quantum Dot-in-a-well (DWELL) varies with the electric field and temperature. At lower temperatures (below ˜100 K), the noise current of both types of detectors is dominated by generation-recombination (G-R) noise which is consistent with a mechanism of fluctuations driven by the electric field and thermal noise. The noise gain, capture probability, and carrier life time for bound-to-continuum or quasi-bound transitions in DWELL and QDIP structures are discussed. The capture probability of DWELL is found to be more than two times higher than the corresponding QDIP. Based on the analysis, structural parameters such as the numbers of active layers, the surface density of QDs, and the carrier capture or relaxation rate, type of material, and electric field are some of the optimization parameters identified to improve the gain of devices.

  18. Electric fields and vector potentials of thin cylindrical antennas

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1990-09-01

    The vector potential and electric field generated by the current in a center-driven or parasitic dipole antenna that extends from z = -h to z = h are investigated for each of the several components of the current. These include sin k(h - absolute value of z), sin k (absolute value of z) - sin kh, cos kz - cos kh, and cos kz/2 - cos kh/2. Of special interest are the interactions among the variously spaced elements in parallel nonstaggered arrays. These depend on the mutual vector potentials. It is shown that at a radial distance rho approximately = h and in the range z = -h to h, the vector potentials due to all four components become alike and have an approximately plane-wave form. Simple approximate formulas for the electric fields and vector potentials generated by each of the four distributions are derived and compared with the exact results. The application of the new formulas to large arrays is discussed.

  19. Study of Oscillating Electroosmotic Flows with High Temporal and Spatial Resolution.

    PubMed

    Zhao, Wei; Liu, Xin; Yang, Fang; Wang, Kaige; Bai, Jintao; Qiao, Rui; Wang, Guiren

    2018-02-06

    Near-wall velocity of oscillating electroosmotic flow (OEOF) driven by an AC electric field has been investigated using a laser-induced fluorescence photobleaching anemometer (LIFPA). For the first time, an up to 3 kHz velocity response of OEOF has been successfully measured experimentally, even though the oscillating velocity is as low as 600 nm/s. It is found that the oscillating velocity decays with the forcing frequency f f as f f -0.66 . In the investigated range of electric field intensity (E A ), below 1 kHz, the linear relation between oscillating velocity and E A is also observed. Because the oscillating velocity at high frequency is very small, the contribution of noise to velocity measurement is significant, and it is discussed in this manuscript. The investigation reveals the instantaneous response of OEOF to the temporal change of electric fields, which exists in almost all AC electrokinetic flows. Furthermore, the experimental observations are important for designing OEOF-based micro/nanofluidics systems.

  20. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons.

    PubMed

    Nakatsutsumi, M; Sentoku, Y; Korzhimanov, A; Chen, S N; Buffechoux, S; Kon, A; Atherton, B; Audebert, P; Geissel, M; Hurd, L; Kimmel, M; Rambo, P; Schollmeier, M; Schwarz, J; Starodubtsev, M; Gremillet, L; Kodama, R; Fuchs, J

    2018-01-18

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5  T at laser intensities ~10 21  W cm -2 ) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

  1. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

    DOE PAGES

    Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.; ...

    2018-01-18

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less

  2. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less

  3. A dressed spin qubit in silicon

    DOE PAGES

    Laucht, Arne; Kalra, Rachpon; Simmons, Stephanie; ...

    2016-10-17

    Coherent dressing of a quantum two-level system provides access to a new quantum system with improved properties—a different and easily tunable level splitting, faster control and longer coherence times. In our work we investigate the properties of the dressed, donor-bound electron spin in silicon, and assess its potential as a quantum bit in scalable architectures. The two dressed spin-polariton levels constitute a quantum bit that can be coherently driven with an oscillating magnetic field, an oscillating electric field, frequency modulation of the driving field or a simple detuning pulse. We measure coherence times of T* 2p = 2.4 ms andmore » T Hahn 2p = 9 ms, one order of magnitude longer than those of the undressed spin. Moreover, the use of the dressed states enables coherent coupling of the solid-state spins to electric fields and mechanical oscillations.« less

  4. Dead Zone Accretion Flows in Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Turner, Neal; Sano, T.

    2008-01-01

    Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.

  5. Coarse-grained model of conformation-dependent electrophoretic mobility and its influence on DNA dynamics

    NASA Astrophysics Data System (ADS)

    Pandey, Harsh; Underhill, Patrick T.

    2015-11-01

    The electrophoretic mobility of molecules such as λ -DNA depends on the conformation of the molecule. It has been shown that electrohydrodynamic interactions between parts of the molecule lead to a mobility that depends on conformation and can explain some experimental observations. We have developed a new coarse-grained model that incorporates these changes of mobility into a bead-spring chain model. Brownian dynamics simulations have been performed using this model. The model reproduces the cross-stream migration that occurs in capillary electrophoresis when pressure-driven flow is applied parallel or antiparallel to the electric field. The model also reproduces the change of mobility when the molecule is stretched significantly in an extensional field. We find that the conformation-dependent mobility can lead to a new type of unraveling of the molecule in strong fields. This occurs when different parts of the molecule have different mobilities and the electric field is large.

  6. Attosecond control of electron beams at dielectric and absorbing membranes

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Ultrashort electron pulses are crucial for time-resolved electron diffraction and microscopy of the fundamental light-matter interaction. In this work, we study experimentally and theoretically the generation and characterization of attosecond electron pulses by optical-field-driven compression and streaking at dielectric or absorbing interaction elements. The achievable acceleration and deflection gradient depends on the laser-electron angle, the laser's electric and magnetic field directions, and the foil orientation. Electric and magnetic fields have similar contributions to the final effect and both need to be considered. Experiments and theory agree well and reveal the optimum conditions for highly efficient, velocity-matched electron-field interactions in the longitudinal or transverse direction. We find that metallic membranes are optimum for light-electron control at mid-infrared or terahertz wavelengths, but dielectric membranes are excellent in the visible and near-infrared regimes and are therefore ideal for the formation of attosecond electron pulses.

  7. A magneto-electro-optical effect in a plasmonic nanowire material

    PubMed Central

    Valente, João; Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.

    2015-01-01

    Electro- and magneto-optical phenomena play key roles in photonic technology enabling light modulators, optical data storage, sensors and numerous spectroscopic techniques. Optical effects, linear and quadratic in external electric and magnetic field are widely known and comprehensively studied. However, optical phenomena that depend on the simultaneous application of external electric and magnetic fields in conventional media are barely detectable and technologically insignificant. Here we report that a large reciprocal magneto-electro-optical effect can be observed in metamaterials. In an artificial chevron nanowire structure fabricated on an elastic nano-membrane, the Lorentz force drives reversible transmission changes on application of a fraction of a volt when the structure is placed in a fraction-of-tesla magnetic field. We show that magneto-electro-optical modulation can be driven to hundreds of thousands of cycles per second promising applications in magneto-electro-optical modulators and field sensors at nano-tesla levels. PMID:25906761

  8. Analyzing Electric Field Morphology Through Data-Model Comparisons of the GEM IM/S Assessment Challenge Events

    NASA Technical Reports Server (NTRS)

    Liemohn, Michael W.; Ridley, Aaron J.; Kozyra, Janet U.; Gallagher, Dennis L.; Thomsen, Michelle F.; Henderson, Michael G.; Denton, Michael H.; Brandt, Pontus C.; Goldstein, Jerry

    2006-01-01

    The storm-time inner magnetospheric electric field morphology and dynamics are assessed by comparing numerical modeling results of the plasmasphere and ring current with many in situ and remote sensing data sets. Two magnetic storms are analyzed, April 22,2001 and October 21-23,2001, which are the events selected for the Geospace Environment Modeling (GEM) Inner Magnetosphere/Storms (IM/S) Assessment Challenge (IMSAC). The IMSAC seeks to quantify the accuracy of inner magnetospheric models as well as synthesize our understanding of this region. For each storm, the ring current-atmosphere interaction model (RAM) and the dynamic global core plasma model (DGCPM) were run together with various settings for the large-scale convection electric field and the nightside ionospheric conductance. DGCPM plasmaspheric parameters were compared with IMAGE-EUV plasmapause extractions and LANL-MPA plume locations and velocities. RAM parameters were compared with Dst*, LANL-MPA fluxes and moments, IMAGE-MENA images, and IMAGE-HENA images. Both qualitative and quantitative comparisons were made to determine the electric field morphology that allows the model results to best fit the plasma data at various times during these events. The simulations with self-consistent electric fields were, in general, better than those with prescribed field choices. This indicates that the time-dependent modulation of the inner magnetospheric electric fields by the nightside ionosphere is quite significant for accurate determination of these fields (and their effects). It was determined that a shielded Volland-Stern field description driven by the 3-hour Kp index yields accurate results much of the time, but can be quite inconsistent. The modified Mcllwain field description clearly lagged in overall accuracy compared to the other fields, but matched some data sets (like Dst*) quite well. The rankings between the simulations varied depending on the storm and the individual data sets, indicating that each field description did well for some place, time, and energy range during the events, as well as doing less well in other places, times, and energies. Several unresolved issues regarding the storm-time inner magnetospheric electric field are discussed.

  9. Role of hydrodynamic interactions in dynamics of semi-flexible polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Kekre, Rahul

    Experiments have shown that DNA molecules in capillary electrophoresis migrate across field lines if a pressure gradient is applied simultaneously. We suggest that this migration results from an electrically driven flow field around the polyelectrolyte, which generates additional contributions to the center-of-mass velocity if the overall polymer conformation is asymmetric. Numerical simulations and experiments have demonstrated that confined polymers migrate towards the center of the channel in response to both external forces and uniaxial flows. Yet, migration towards the walls has been observed with combinations of external force and flow. In this work, the kinetic theory for an elastic dumbbell developed by Ma and Graham [Phys. Fluids 17, 083103 (2005)] has been extended to account for the effects of an external body force. Further modifications account for counterion screening within a Debye-Huckel approximation for the specific case of applied electric field. The theory qualitatively reproduces results of both experiments for the migration of neutral polymers and polyelectrolytes. The favorable comparison supports the contention [Long et al., Phys. Rev. Lett. 76, 3858 (1996)] that the hydrodynamic interactions in polyelectrolytes decay algebraically, as 1/r 3, rather than exponentially. A coarse-grained polymer model, without explicit charges, is developed and integrated using Brownian-dynamics simulations in analogy with the kinetic theory. The novel feature of the simulations is the inclusion of hydrodynamic interactions induced by the electric field. This model quantitatively captures experimental observations [Zheng and Yeung, Anal. Chem. 75, 3675 (2003)] of DNA migration under combined electric and pressure-driven flow fields in absence of any adjusted parameters. In addition the model predicts dependence of electrophoretic velocity on the instantaneous length of the polyelectrolyte which has been verified by experiments of Lee et. al. [Electrophoresis 31, 2813 (2010)]. The model also predicts phenomenons that are yet to be verified experimentally. These include decrease in diffusivity and increase in radius of gyration of the polyelectrolyte in high electric fields due to internal dispersion. The resulting change in orientation distribution at high electric fields decreases the extent of migration. Preliminary results from microfluidic experiments are presented in this dissertation demonstrating the saturation of migration. This dissertation also includes comparison of results from lattice-Boltzmann and Brownian dynamics simulations of a linear bead-spring model of DNA for two cases; infinite dilution and confinement. We have systematically varied the parameters that may affect the accuracy of the lattice-Boltzmann simulations, including grid resolution, temperature, polymer mass, periodic boundary size and fluid viscosity. For the case of a single chain Lattice-Boltzmann results for the diffusion coefficient and Rouse mode relaxation times were within 1--2% from those obtained from Brownian-dynamics. Results from both methods are also compared for polymer migration in confined flows driven by a uniform shear or pressure gradient. Center-of-mass distribution obtained from Lattice-Boltzmann simulations agrees quantitatively with Brownian-dynamics results, contradicting previously published results. The mobility matrix for a confined polymer was derived by applying Faxen's correction to the flow-field generated by a point force bounded by two parallel plates. This formulation of the mobility matrix is symmetric and positive-definite for all physically accessible configurations of the polymer.

  10. Evidence for Field-parallel Electron Acceleration in Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haerendel, G.

    It is proposed that the coincidence of higher brightness and upward electric current observed by Janvier et al. during a flare indicates electron acceleration by field-parallel potential drops sustained by extremely strong field-aligned currents of the order of 10{sup 4} A m{sup −2}. A consequence of this is the concentration of the currents in sheets with widths of the order of 1 m. The high current density suggests that the field-parallel potential drops are maintained by current-driven anomalous resistivity. The origin of these currents remains a strong challenge for theorists.

  11. Metal-insulator and charge ordering transitions in oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Sujay Kumar

    Strongly correlated oxides are a class of materials wherein interplay of various degrees of freedom results in novel electronic and magnetic phenomena. Vanadium oxides are widely studied correlated materials that exhibit metal-insulator transitions (MIT) in a wide temperature range from 70 K to 380 K. In this Thesis, results from electrical transport measurements on vanadium dioxide (VO2) and vanadium oxide bronze (MxV 2O5) (where M: alkali, alkaline earth, and transition metal cations) are presented and discussed. Although the MIT in VO2 has been studied for more than 50 years, the microscopic origin of the transition is still debated since a slew of external parameters such as light, voltage, and strain are found to significantly alter the transition. Furthermore, recent works on electrically driven switching in VO2 have shown that the role of Joule heating to be a major cause as opposed to electric field. We explore the mechanisms behind the electrically driven switching in single crystalline nanobeams of VO2 through DC and AC transport measurements. The harmonic analysis of the AC measurement data shows that non-uniform Joule heating causes electronic inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2. Surprisingly, field assisted emission mechanisms such as Poole-Frenkel effect is found to be absent and the role of percolation is also identified in the electrically driven transition. This Thesis also provides a new insight into the mechanisms behind the electrolyte gating induced resistance modulation and the suppression of MIT in VO2. We show that the metallic phase of VO2 induced by electrolyte gating is due to an electrochemical process and can be both reversible and irreversible under different conditions. The kinetics of the redox processes increase with temperature; a complete suppression of the transition and the stabilization of the metallic phase are achievable by gating in the rutile metallic phase. First principles calculations show that the destabilization of the insulating phase during the gating arises due to the formation of oxygen vacancies in VO2; the rutile phase is far more amenable to electrochemical reduction as compared to the monoclinic phase, likely due to its higher electrical conductivity. The generation of oxygen vacancies appears thermodynamically favorable if the removed oxygen atoms from VO2 oxidize the anions in the ionic liquid. Finally, electronic properties of single crystalline, individual nanowires of vanadium oxide bronzes (MxVO 2O5) are presented. The intercalation effects of metal cation and the stoichiometry (x) are explored and discussed. These nanowires exhibit thermally and electrically driven charge ordering and metal to insulator transitions. The electrolyte gating measurements show resistance modulations across the phase transition but the effect is not as dramatic as in VO2.

  12. Theory of controlling band-width broadening in terahertz sideband generation in semiconductors by a direct current electric field

    NASA Astrophysics Data System (ADS)

    Liu, Houquan; Zhang, Xingchu

    2017-03-01

    In a semiconductor, optically excited electron-hole pairs, driven by a strong terahertz (THz) field, can recombine to create THz sidebands in the optical spectrum. The sideband spectrum exhibits a "plateau" up to a cutoff frequency of 3.17Up, where Up is the ponderomotive energy. In this letter, we predict that the bandwidth of this sideband spectrum plateau can be broadened by applying an additional direct-current (DC) electric field. We find that if applying a DC field of EDC=0.2ETHz (where EDC and ETHz are the amplitudes of the DC field and THz field, respectively), the sideband spectrum presents three plateaus with 5.8Up, 10.05Up and 16Up being the cutoff frequencies of the first, second and third plateaus, respectively. This bandwidth broadening occurs because the DC field can increase the kinetic energy that an electron-hole pair can gain from the THz field. This effect means that the bandwidth of the sideband spectrum can be controlled flexibly by changing the DC field, thereby facilitating the ultrafast electro-optical applications of THz sideband generation.

  13. Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yen; Lee, Gwo-Bin; Fu, Lung-Ming; Lee, Kuo-Hoong; Yang, Ruey-Jen

    2004-10-01

    This paper presents a new electrokinetically driven active micro-mixer which uses localized capacitance effects to induce zeta potential variations along the surface of silica-based microchannels. The mixer is fabricated by etching bulk flow and shielding electrode channels into glass substrates and then depositing Au/Cr thin films within the latter to form capacitor electrodes, which establish localized zeta potential variations near the electrical double layer (EDL) region of the electroosmotic flow (EOF) within the microchannels. The potential variations induce flow velocity changes within a homogeneous fluid and a rapid mixing effect if an alternating electric field is provided. The current experimental data confirm that the fluid velocity can be actively controlled by using the capacitance effect of the buried shielding electrodes to vary the zeta potential along the channel walls. While compared with commonly used planar electrodes across the microchannels, the buried shielding electrodes prevent current leakage caused by bad bonding and allow direct optical observation during operation. It also shows that the buried shielding electrodes can significantly induce the field effect, resulting in higher variations of zeta potential. Computational fluid dynamic simulations are also used to study the fluid characteristics of the developed active mixers. The numerical and experimental results demonstrate that the developed microfluidic device permits a high degree of control over the fluid flow and an efficient mixing effect. Moreover, the developed device could be used as a pumping device as well. The development of the active electrokinetically driven micro-mixer could be crucial for micro-total-analysis-systems.

  14. Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems

    NASA Astrophysics Data System (ADS)

    Agapitov, O.; Drake, J. F.; Vasko, I.; Mozer, F. S.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G. D.

    2018-03-01

    Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.

  15. Streamer properties and associated x-rays in perturbed air

    NASA Astrophysics Data System (ADS)

    Köhn, C.; Chanrion, O.; Babich, L. P.; Neubert, T.

    2018-01-01

    Streamers are ionization waves in electric discharges. One of the key ingredients of streamer propagation is an ambient gas that serves as a source of free electrons. Here, we explore the dependence of streamer dynamics on different spatial distributions of ambient air molecules. We vary the spatial profile of air parallel and perpendicular to the ambient electric field. We consider local sinusoidal perturbations of 5%-100%, as induced from discharge shock waves. We use a cylindrically symmetric particle-in-cell code to simulate the evolution of bidirectional streamers and compare the electron density, electric field, streamer velocity and electron energy of streamers in uniform air and in perturbed air. In all considered cases, the motion is driven along in decreasing air density and damped along increasing air density. Perturbations of at most 5%-10% change the velocity differences by up to approximately 40%. Perturbations perpendicular to the electric field additionally squeeze or branch streamers. Air variations can thus partly explain the difference of velocities and morphologies of streamer discharges. In cases with large perturbations, electrons gain energies of up to 30 keV compared to 100 eV in uniformly distributed air. For such perturbations parallel to the ambient electric field, we see the spontaneous initiation of a negative streamer; for perpendicular perturbations, x-rays with energies of up to 20 keV are emitted within 0.17 ns.

  16. Impurity-assisted electric control of spin-valley qubits in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Széchenyi, G.; Chirolli, L.; Pályi, A.

    2018-07-01

    We theoretically study a single-electron spin-valley qubit in an electrostatically defined quantum dot in a transition metal dichalcogenide monolayer, focusing on the example of MoS2. Coupling of the qubit basis states for coherent control is challenging, as it requires a simultaneous flip of spin and valley. Here, we show that a tilted magnetic field together with a short-range impurity, such as a vacancy, a substitutional defect, or an adatom, can give rise to a coupling between the qubit basis states. This mechanism renders the in-plane g-factor nonzero, and allows to control the qubit with an in-plane ac electric field, akin to electrically driven spin resonance. We evaluate the dependence of the in-plane g-factor and the electrically induced qubit Rabi frequency on the type and position of the impurity. We reveal highly unconventional features of the coupling mechanism, arising from symmetry-forbidden intervalley scattering, in the case when the impurity is located at a S site. Our results provide design guidelines for electrically controllable qubits in two-dimensional semiconductors.

  17. Perovskite nickelates as electric-field sensors in salt water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications(1-4). The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO35-7. This prototypical strongly correlated quantum material is stable in salt water, doesmore » not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures« less

  18. Perovskite nickelates as electric-field sensors in salt water

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2018-01-01

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.

  19. Particle-in-Cell Simulation of Collisionless Driven Reconnection with Open Boundaries

    NASA Technical Reports Server (NTRS)

    Kimas, Alex; Hesse, Michael; Zenitani, Seiji; Kuznetsova, Maria

    2010-01-01

    First results are discussed from an ongoing study of driven collisionless reconnection using a 2 1/2-dimensional electromagnetic particle-in-cell simulation model with open inflow and outflow boundaries. An extended electron diffusion region (EEDR) is defined as that region surrounding a reconnecting neutral line in which the out-of-plane nonideal electric field is positive. It is shown that the boundaries of this region in the directions of the outflow jets are at the positions where the electrons make the transition from unfrozen meandering motion in the current sheet to outward drifting with the magnetic field in the outflow jets; a turning length scale is defined to mark these positions, The initial width of the EEDR in the inflow directions is comparable to the electron bounce width. Later. as shoulders develop to form a two-scale structure. thc EEDR width expands to the ion bounce width scale. The inner portion of the EEDR or the electron diffusion region proper remains at the electron bounce width. Two methods are introduced for predicting the reconnection electric field using the dimensions of the EEDR. These results are interpreted as further evidence that the EEDR is the region that is relevant to understanding the electron role in the neutral line vicinity.

  20. Search for a Permanent Electric Dipole Moment on MERCURY-199 Atoms as a Test of Time Reversal Symmetry

    NASA Astrophysics Data System (ADS)

    Jacobs, James Patrick

    Optically pumped atomic oscillators driven with a modulated light source have been used to measure the Permanent Electric Dipole Moment (PEDM) of the ^{199}Hg atom. A nonzero PEDM on the ground state of ^{199} Hg would be a direct violation of time reversal symmetry. The measurement was obtained by searching for a relative shift in the resonance frequency of the processing nuclear magnetic moments when an externally applied electric field was reversed relative to an externally applied magnetic field. The null result, d(^{199} Hg) = (.3 +/- 5.7 +/- 5.0) times 10 ^{-28} ecdotcm, represents nearly a factor of 15 improvement over previous ^{199}Hg measurements, and a factor of 25 improvement in statistical uncertainty. When combined with theoretical calculations, the result sets stringent limits on possible sources of time reversal symmetry violation in atomic systems.

  1. Rydberg Dipole Antennas

    NASA Astrophysics Data System (ADS)

    Stack, Daniel; Rodenburg, Bradon; Pappas, Stephen; Su, Wangshen; St. John, Marc; Kunz, Paul; Simon, Matt; Gordon, Joshua; Holloway, Christopher

    2017-04-01

    Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. A useful tool to address this problem are highly-excited (Rydberg) neutral atoms which have very large electric-dipole moments and many dipole-allowed transitions in the range of 1-500 GHz. Using Rydberg states, it is possible to sensitively probe the electric field in this frequency range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This atom-light interaction can be modeled by the classical description of a harmonically bound electron. The classical damped, driven, coupled-oscillators model yields significant insights into the deep connections between classical and quantum physics. We will present a detailed experimental analysis of the noise processes in making such measurements in the laboratory and discuss the prospects for building a practical atomic microwave receiver.

  2. Electrically and spatially controllable PDLC phase gratings for diffraction and modulation of laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjichristov, Georgi B., E-mail: georgibh@issp.bas.bg; Marinov, Yordan G.; Petrov, Alexander G.

    2016-03-25

    We present a study on electrically- and spatially-controllable laser beam diffraction, electrooptic (EO) phase modulation, as well as amplitude-frequency EO modulation by single-layer microscale polymer-dispersed liquid crystal (PDLC) phase gratings (PDLC SLPGs) of interest for device applications. PDLC SLPGs were produced from nematic liquid crystal (LC) E7 in photo-curable NOA65 polymer. The wedge-formed PDLC SLPGs have a continuously variable thickness (2–25 µm). They contain LC droplets of diameters twice as the layer thickness, with a linear-gradient size distribution along the wedge. By applying alternating-current (AC) electric field, the PDLC SLPGs produce efficient: (i) diffraction splitting of transmitted laser beams; (ii)more » spatial redistribution of diffracted light intensity; (iii) optical phase modulation; (iv) amplitude-frequency modulation, all controllable by the driven AC field and the droplet size gradient.« less

  3. Electrodynamics of ionospheric weather over low latitudes

    NASA Astrophysics Data System (ADS)

    Abdu, Mangalathayil Ali

    2016-12-01

    The dynamic state of the ionosphere at low latitudes is largely controlled by electric fields originating from dynamo actions by atmospheric waves propagating from below and the solar wind-magnetosphere interaction from above. These electric fields cause structuring of the ionosphere in wide ranging spatial and temporal scales that impact on space-based communication and navigation systems constituting an important segment of our technology-based day-to-day lives. The largest of the ionosphere structures, the equatorial ionization anomaly, with global maximum of plasma densities can cause propagation delays on the GNSS signals. The sunset electrodynamics is responsible for the generation of plasma bubble wide spectrum irregularities that can cause scintillation or even disruptions of satellite communication/navigation signals. Driven basically by upward propagating tides, these electric fields can suffer significant modulations from perturbation winds due to gravity waves, planetary/Kelvin waves, and non-migrating tides, as recent observational and modeling results have demonstrated. The changing state of the plasma distribution arising from these highly variable electric fields constitutes an important component of the ionospheric weather disturbances. Another, often dominating, component arises from solar disturbances when coronal mass ejection (CME) interaction with the earth's magnetosphere results in energy transport to low latitudes in the form of storm time prompt penetration electric fields and thermospheric disturbance winds. As a result, drastic modifications can occur in the form of layer restructuring (Es-, F3 layers etc.), large total electron content (TEC) enhancements, equatorial ionization anomaly (EIA) latitudinal expansion/contraction, anomalous polarization electric fields/vertical drifts, enhanced growth/suppression of plasma structuring, etc. A brief review of our current understanding of the ionospheric weather variations and the electrodynamic processes underlying them and some outstanding questions will be presented in this paper.

  4. Superconducting matrix fault current limiter with current-driven trigger mechanism

    DOEpatents

    Yuan; Xing

    2008-04-15

    A modular and scalable Matrix-type Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. An inductor is connected in series with the trigger superconductor in the trigger matrix and physically surrounds the superconductor. The current surge during a fault will generate a trigger magnetic field in the series inductor to cause fast and uniform quenching of the trigger superconductor to significantly reduce burnout risk due to superconductor material non-uniformity.

  5. Theory of electrohydrodynamic instabilities in electrolytic cells

    NASA Technical Reports Server (NTRS)

    Bruinsma, R.; Alexander, S.

    1990-01-01

    The paper develops the theory of the hydrodynamic stability of an electrolytic cell as a function of the imposed electric current. A new electrohydrodynamic instability is encountered when the current is forced to exceed the Nernst limit. The convection is driven by the volume force exerted by the electric field on space charges in the electrolyte. This intrinsic instability is found to be easily masked by extrinsic convection sources such as gravity or stirring. A linear stability analysis is performed and a dimensionless number Le is derived whose value determines the convection pattern.

  6. Oppositely charged colloids out of equilibrium

    NASA Astrophysics Data System (ADS)

    Vissers, T.

    2010-11-01

    Colloids are particles with a size in the range of a few nanometers up to several micrometers. Similar to atomic and molecular systems, they can form gases, liquids, solids, gels and glasses. Colloids can be used as model systems because, unlike molecules, they are sufficiently large to be studied directly with light microscopy and move sufficiently slow to study their dynamics. In this thesis, we study binary systems of polymethylmethacrylate (PMMA) colloidal particles suspended in low-polar solvent mixtures. Since the ions can still partially dissociate, a surface charge builds up which causes electrostatic interactions between the colloids. By carefully tuning the conditions inside the suspension, we make two kinds of particles oppositely charged. To study our samples, we use Confocal Laser Scanning Microscopy (CLSM). The positively and negatively charged particles can be distinguished by a different fluorescent dye. Colloids constantly experience a random motion resulting from random kicks of surrounding solvent molecules. When the attractions between the oppositely charged particles are weak, the particles can attach and detach many times and explore a lot of possible configurations and the system can reach thermodynamic equilibrium. For example, colloidal ‘ionic’ crystals consisting of thousands to millions of particles can form under the right conditions. When the attractions are strong, the system can become kinetically trapped inside a gel-like state. We observe that when the interactions change again, crystals can even emerge again from this gel-like phase. By using local order parameters, we quantitatively study the crystallization of colloidal particles and identify growth defects inside the crystals. We also study the effect of gravity on the growth of ionic crystals by using a rotating stage. We find that sedimentation can completely inhibit crystal growth and plays an important role in crystallization from the gel-like state. The surface potential and charge are studied by electrophoresis. Here, the velocity of the particles is measured while they are moving in an electric field. Using our real-space CLSM setup, we find that for a single-component system, the charge on the particles decreases with increasing volume fraction. Apart from structures that oppositely charged particles form close to thermodynamic equilibrium, we also study pattern formation when the system is driven out of equilibrium by an electric field. When oppositely charged particles are driven in opposite directions, the collisions between them cause particle of the same kind to form lanes. By combining our CLSM experiments with Brownian dynamics computer simulations, we study the structure and the dynamics of the suspension on the single-particle level. We find that the number of particles in a lane increases continuously with the field strength. By studying the dynamics and fluctuations parallel and perpendicular to the electric field direction, we identify the key mechanism of lane-formation. We show that pattern formation can easily become more complicated when we introduce alternating current (AC) fields. In addition to the formation of lanes parallel to the field-axis, bands of like-charged particles can form perpendicular to it. When the particles are sufficiently mobile, the system can be remixed again by changing the frequency. When AC-fields with higher field strengths are used, we show that complex patterns, including rotating instabilities, can emerge. The results in this thesis yield fundamental insight in electrophoresis, crystallization and pattern formation when systems are driven out of equilibrium. The results on lane- and band-formation can be relevant for the design of electronic ink (e-ink), where electrically driven oppositely charged particles are used to change the image on a piece of electronic paper.

  7. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    NASA Astrophysics Data System (ADS)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  8. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  9. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  10. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  11. Coupled nature of evening-time ionospheric electrodynamics

    NASA Astrophysics Data System (ADS)

    Joshi, L. M.; Tsai, L. C.

    2018-04-01

    The F region evening electrodynamics in the equatorial region is characterized by a pre-reversal enhancement (PRE) in the zonal eastward electric field. Although the theoretical mechanisms for PRE are known, its variability, particularly day-to-day variability is not fully resolved. PRE is a large scale phenomenon driven by the F region dynamo after the sunset hours. This paper investigates whether the variability of the E region conductivity (particularly the one associated with the sporadic E, Es) has any influence on the F region dynamo and hence on the PRE of zonal electric field. Interestingly, ionosonde observations have indicated a higher occurrence of the blanketing type Es (Esb) over the low latitude on days with highly suppressed PRE of zonal electric field in comparison with the days with significantly larger PRE. Observational evidences presented in this paper suggests that the formation of the Esb in the evening hours is a sovereign process, not always controlled by the sheared F region vertical electric field of equatorial origin, mapping along the magnetic field line on to the low latitude E region. Model computations of the PRE suppression based on the measured Es densities have further substantiated the observational findings presented in this paper. These results clearly indicate that the low latitude Es has the potential to suppress the PRE of zonal electric field and possibly can play a vital role in explaining the PRE variability, particularly the day-to-day variability. Results have been discussed in light of earlier reports on PRE mechanisms and E-F region coupling processes.

  12. Electric-field-driven phase transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Wu, B.; Zimmers, A.; Aubin, H.; Gosh, R.; Liu, Y.; Lopez, R.

    2011-03-01

    In recent years, various strongly correlated materials have shown sharp switching from insulator to metallic state in their I(V) transport curves. Determining if this is purely an out of equilibrium phenomena (due to the strong electric field applied throughout the sample) or simply a Joule heating issue is still an open question. To address this issue, we have first measured local I(V) curves in vanadium dioxide (VO2) Mott insulator at various temperatures using a conducting AFM setup and determined the voltage threshold of the insulator to metal switching. By lifting the tip above the surface (> 35 nm) , wehavethenmeasuredthepurelyelectrostaticforcebetweenthetipandsamplesurfaceasthevoltagebetweenthesetwowasincreased . Inaverynarrowtemperaturerange (below 360 K) , atipheightrange (below 60 nm) andavoltageappliedrange (above 8 V) , weobservedswitchingintheelectrostaticforce (telegraphicnoisevs . timeandvs . voltage) . ThispurelyelectricfieldeffectshowsthattheswitchingphenomenonisstillpresentevenwithoutJouleheatinginVO 2 .

  13. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes

    NASA Astrophysics Data System (ADS)

    Carlsen, Autumn T.; Briggs, Kyle; Hall, Adam R.; Tabard-Cossa, Vincent

    2017-02-01

    We demonstrate precise positioning of nanopores fabricated by controlled breakdown (CBD) on solid-state membranes by spatially varying the electric field strength with localized membrane thinning. We show 100 × 100 nm2 precision in standard SiN x membranes (30-100 nm thick) after selective thinning by as little as 25% with a helium ion beam. Control over nanopore position is achieved through the strong dependence of the electric field-driven CBD mechanism on membrane thickness. Confinement of pore formation to the thinned region of the membrane is confirmed by TEM imaging and by analysis of DNA translocations. These results enhance the functionality of CBD as a fabrication approach and enable the production of advanced nanopore devices for single-molecule sensing applications.

  14. Plasma ignition and steady state simulations of the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Ohta, M.; Yasumoto, M.; Hatayama, A.; Lettry, J.; Grudiev, A.

    2014-02-01

    The RF heating of the plasma in the Linac4 H- ion source has been simulated using a particle-in-cell Monte Carlo collision method. This model is applied to investigate the plasma formation starting from an initial low electron density of 1012 m-3 and its stabilization at 1018 m-3. The plasma discharge at low electron density is driven by the capacitive coupling with the electric field generated by the antenna, and as the electron density increases the capacitive electric field is shielded by the plasma and induction drives the plasma heating process. Plasma properties such as e-/ion densities and energies, sheath formation, and shielding effect are presented and provide insight to the plasma properties of the hydrogen plasma.

  15. Theoretical analysis of non-linear Joule heating effects over an electro-thermal patterned flow

    NASA Astrophysics Data System (ADS)

    Sanchez, Salvador; Ascanio, Gabriel; Mendez, Federico; Bautista, Oscar

    2017-11-01

    In this work, non-linear Joule heating effects for electro-thermal patterned flows driven inside of a slit microchannel are analyzed. Here, the movement of fluids is controlled by placing electro-thermal forces, which are generated through an imposed longitudinal electric field, E0, and the wall electric potential produced by electrodes inserted along the surface of the microchannel wall, ζ. For this analysis, viscosity and electrical conductivity of fluids are included as known functions, which depend on the temperature; therefore, in order to determine the flow, temperature and electric potential fields together with its simultaneous interactions, the equations of continuity, momentum, energy, charges distribution and electrical current have to be solved in a coupled manner. The main results obtained in the study reveal that with the presence of thermal gradients along of the microchannel, local electro-thermal forces, Fχ, are affected in a sensible manner, and consequently, the flow field is modified substantially, causing the interruption or intensification of recirculations along of the microchannel. This work was supported by the Fondo SEP-CONACYT through research Grants No. 220900 and 20171181 from SIP-IPN. F. Mendez acknowledges support from PAPIIT-UNAM under Contract Number IN112215. S. Sanchez thanks to DGAPA-UNAM for the postdoctoral fellowship.

  16. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.

    PubMed

    Ge, Zhengwei; Wang, Wei; Yang, Chun

    2015-02-09

    This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Local structural behavior of PbZr0.5Ti0.5O3 during electric field application via in situ pair distribution function study

    NASA Astrophysics Data System (ADS)

    Zhao, Changhao; Hou, Dong; Chung, Ching-Chang; Yu, Yingying; Liu, Wenfeng; Li, Shengtao; Jones, Jacob L.

    2017-11-01

    The local structural behavior of PbZr0.5Ti0.5O3 (PZT 50/50) ceramics during application of an electric field was investigated using pair distribution function (PDF) analysis. In situ synchrotron total scattering was conducted, and the PDFs were calculated from the Fourier transform of the total scattering data. The PDF refinement of the zero-field data suggests a local-structure model with [001] Ti-displacement and negligible Zr-displacement. The directional PDFs at different field amplitudes indicate the bond-length distribution of the nearest Pb-B (B = Zr/Ti) pair changes significantly with the field. The radial distribution functions (RDFs) of a model for polarization rotation were calculated. The calculated and the experimental RDFs are consistent. This result suggests the changes in Pb-B bond-length distribution could be dominantly caused by polarization rotation. Peak fitting of the experimental RDFs was also conducted. The peak position trends with increasing field are mostly in agreement with the calculation result of the polarization rotation model. The area ratio of the peaks in the experimental RDFs also changed with field amplitude, indicating that Zr atoms have a detectable displacement driven by the electric field. Our study provides an experimental observation of the behaviors of PZT 50/50 under field at a local scale which supports the polarization rotation mechanism.

  18. Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs

    NASA Astrophysics Data System (ADS)

    Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd

    2018-05-01

    We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.

  19. Optimization of an electrokinetic mixer for microfluidic applications.

    PubMed

    Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P J

    2012-06-01

    This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly.

  20. Optimization of an electrokinetic mixer for microfluidic applications

    PubMed Central

    Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P. J.

    2012-01-01

    This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly. PMID:22712034

  1. Convective Electrokinetic Instability With Conductivity Gradients

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Hua; Lin, Hao; Lele, Sanjiva; Santiago, Juan

    2003-11-01

    Electrokinetic flow instability has been experimentally identified and quantified in a glass T-junction microchannel system with a cross section of 11 um x 155 um. In this system, buffers of different conductivities were electrokinetically driven into a common mixing channel by a DC electric field. A convective instability was observed with a threshold electric field of 0.45 kV/cm for a 10:1 conductivity ratio. A physical model has been developed which consists of a modified Ohmic model formulation for electrolyte solutions and the Navier-Stokes equations with an electric body force term. The model and experiments show that bulk charge accumulation in regions of conductivity gradients is the key mechanism of such instabilities. A linear stability analysis was performed in a convective framework, and Briggs-Bers criteria were applied to determine the nature of instability. The analysis shows the instability is governed by two key parameters: the ratio of molecular diffusion to electroviscous time scale which governs the onset of instability, and the ratio of electroviscous to electroosmotic velocity which governs whether the instability is convective or absolute. The model predicted critical electric field, growth rate, wavelength, and phase speed which were comparable to experimental data.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zuocheng; Feng, Xiao; Wang, Jing

    The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi 2(Se xTe 1-x) 3 TI across the topological quantum critical point (QCP). We find thatmore » the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. However, for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. Finally, the in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.« less

  3. High Latitude Precipitating Energy Flux and Joule Heating During Geomagnetic Storms Determined from AMPERE Field-aligned Currents

    NASA Astrophysics Data System (ADS)

    Robinson, R. M.; Zanetti, L. J.; Anderson, B. J.; Korth, H.; Samara, M.; Michell, R.; Grubbs, G. A., II; Hampton, D. L.; Dropulic, A.

    2016-12-01

    A high latitude conductivity model based on field-aligned currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides the means for complete specification of electric fields and currents at high latitudes. Based on coordinated measurements made by AMPERE and the Poker Flat Incoherent Scatter Radar, the model determines the most likely value of the ionospheric conductance from the direction, magnitude, and magnetic local time of the field-aligned current. A conductance model driven by field-aligned currents ensures spatial and temporal consistency between the calculated electrodynamic parameters. To validate the results, the Pedersen and Hall conductances were used to calculate the energy flux associated with the energetic particle precipitation. When integrated over the entire hemisphere, the total energy flux compares well with the Hemispheric Power Index derived from the OVATION-PRIME model. The conductances were also combined with the field-aligned currents to calculate the self-consistent electric field, which was then used to compute horizontal currents and Joule heating. The magnetic perturbations derived from the currents replicate most of the variations observed in ground-based magnetograms. The model was used to study high latitude particle precipitation, currents, and Joule heating for 24 magnetic storms. In most cases, the total energy input from precipitating particles and Joule heating exhibits a sharply-peaked maximum at the times of local minima in Dst, suggesting a close coupling between the ring current and the high latitude currents driven by the Region 2 field-aligned currents. The rapid increase and decrease of the high latitude energy deposition suggests an explosive transfer of energy from the magnetosphere to the ionosphere just prior to storm recovery.

  4. Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J. K., E-mail: jkanders@wisc.edu; Kim, J.; Bonofiglo, P. J.

    2016-05-15

    While reconnection-driven ion heating is common in laboratory and astrophysical plasmas, the underlying mechanisms for converting magnetic to kinetic energy remain not fully understood. Reversed field pinch discharges are often characterized by rapid ion heating during impulsive reconnection, generating an ion distribution with an enhanced bulk temperature, mainly perpendicular to magnetic field. In the Madison Symmetric Torus, a subset of discharges with the strongest reconnection events develop a very anisotropic, high energy tail parallel to magnetic field in addition to bulk perpendicular heating, which produces a fusion neutron flux orders of magnitude higher than that expected from a Maxwellian distribution.more » Here, we demonstrate that two factors in addition to a perpendicular bulk heating mechanism must be considered to explain this distribution. First, ion runaway can occur in the strong parallel-to-B electric field induced by a rapid equilibrium change triggered by reconnection-based relaxation; this effect is particularly strong on perpendicularly heated ions which experience a reduced frictional drag relative to bulk ions. Second, the confinement of ions varies dramatically as a function of velocity. Whereas thermal ions are governed by stochastic diffusion along tearing-altered field lines (and radial diffusion increases with parallel speed), sufficiently energetic ions are well confined, only weakly affected by a stochastic magnetic field. High energy ions traveling mainly in the direction of toroidal plasma current are nearly classically confined, while counter-propagating ions experience an intermediate confinement, greater than that of thermal ions but significantly less than classical expectations. The details of ion confinement tend to reinforce the asymmetric drive of the parallel electric field, resulting in a very asymmetric, anisotropic distribution.« less

  5. A photo-driven dual-frequency addressable optical device of banana-shaped molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna Prasad, S., E-mail: skpras@gmail.com; Lakshmi Madhuri, P.; Hiremath, Uma S.

    We propose a photonic switch employing a blend of host banana-shaped liquid crystalline molecules and guest photoisomerizable calamitic molecules. The material exhibits a change in the sign of the dielectric anisotropy switching from positive to negative, at a certain crossover frequency of the probing field. The consequent change in electric torque can be used to alter the orientation of the molecules between surface-determined and field-driven optical states resulting in a large change in the optical transmission characteristics. Here, we demonstrate the realization of this feature by an unpolarized UV beam, the first of its kind for banana-shaped molecules. The underlyingmore » principle of photoisomerization eliminates the need for a second driving frequency. The device also acts as a reversible conductance switch with an order of magnitude increase of conductivity brought about by light. Possible usage of this for optically driven display devices and image storage applications is suggested.« less

  6. ELF magnetic fields in electric and gasoline-powered vehicles.

    PubMed

    Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R

    2013-02-01

    We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P < 0.0001). Using the data from a previous exposure assessment of residential exposure in eight geographic regions in the United States as a basis for comparison (N = 218), the broadband magnetic fields in electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. Copyright © 2012 Wiley Periodicals, Inc.

  7. Vacuum phonon tunneling.

    PubMed

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  8. Vortices and quasiparticles near the superconductor-insulator transition in thin films.

    PubMed

    Galitski, Victor M; Refael, G; Fisher, Matthew P A; Senthil, T

    2005-08-12

    We study the low temperature behavior of an amorphous superconducting film driven normal by a perpendicular magnetic-field (B). For this purpose we introduce a new two-fluid formulation consisting of fermionized field-induced vortices and electrically neutralized Bogoliubov quasiparticles (spinons) interacting via a long-ranged statistical interaction. This approach allows us to access a novel non-Fermi-liquid phase, which naturally interpolates between the low B superconductor and the high B normal metal. We discuss the properties of the resulting "vortex metal" phase.

  9. Azimuthal swirl in liquid metal electrodes and batteries

    NASA Astrophysics Data System (ADS)

    Ashour, Rakan; Kelley, Douglas

    2016-11-01

    Liquid metal batteries consist of two molten metals with different electronegativity separated by molten salt. In these batteries, critical performance related factors such as the limiting current density are governed by fluid mixing in the positive electrode. In this work we present experimental results of a swirling flow in a layer of molten lead-bismuth alloy driven by electrical current. Using in-situ ultrasound velocimetery, we show that poloidal circulation appears at low current density, whereas azimuthal swirl becomes dominant at higher current density. The presence of thermal gradients produces buoyant forces, which are found to compete with those produced by current injection. Taking the ratio of the characteristic electromagnetic to buoyant flow velocity, we are able to predict the current density at which the flow becomes electromagnetically driven. Scaling arguments are also used to show that swirl is generated through self-interaction between the electrical current in the electrode with its own magnetic field.

  10. Thermospheric Response to Solar Wind Electric Field Fluctuations

    NASA Astrophysics Data System (ADS)

    Perlongo, N. J.; Ridley, A. J.

    2013-12-01

    The electron density of the thermosphere is of paramount importance for radio communications and drag on low altitude satellites, particularly during geomagnetic storms. Transient enhancements of ion velocities and subsequent density and temperature increases frequently occur as a result of storm-driven solar wind electric field fluctuations. Since the Earth's dipole magnetic field is tilted and offset from the center of the planet, significant asymmetries arise that alter the thermospheric response to energy input based upon the time of day of the disturbance. This study utilizes the Global Ionosphere-Thermosphere Model (GITM) to investigate this phenomenon by enhancing the convective electric field for one hour of the day in 22 different simulations. An additional baseline run was conducted with no IMF perturbation. Furthermore, four configurations of Earth's magnetic field were considered, Internal Geomagnetic Reference Field (IGRF), a perfect dipole, a dipole tilted by 10 degrees, and a tilted and offset dipole. These runs were conducted at equinox when the amount of sunlight falling on the different hemispheres is the same. Two additional runs were conducted at the solstices for comparison. It was found that the most geo-effective times are when the poles are pointed towards the sun. The electron density, neutral density and temperature as well as the winds are explored.

  11. Electric control of magnetization reorientation in FeRh /BaTiO3 mediated by a magnetic phase transition

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj

    2017-10-01

    Employing first-principles calculations we predict magnetization reorientation in FeRh films epitaxially grown on BaTiO3 by reversing the electric polarization or applying the strain effect, which is associated with the recently discovered voltage-induced interfacial magnetic-phase transition by R. O. Cherifi et al. [Nat. Mater. 13, 345 (2014), 10.1038/nmat3870]. We propose that this transition from antiferromagnetic to ferromagnetic phase is the results of the mutual mechanisms of the polarization-reversal-induced volume/strain expansion in the interfacial FeRh layers and the competition between direct and indirect exchange interactions. These mechanisms are mainly driven by the ferroelectrically driven hybridization between Fe and Ti 3 d orbital states at the interface. Such a strong hybridization can further involve Rh 4 d states with large spin-orbit coupling, which, rather than the Fe 3 d orbitals, is responsible for magnetization reorientation at the magnetic-phase transition. These findings point toward the feasibility of electric field control of magnetization switching associated with the magnetic-phase transition in an antiferromagnet structure.

  12. Dark sector impact on gravitational collapse of an electrically charged scalar field

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Rogatko, Marek; Nakonieczny, Łukasz

    2015-11-01

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  13. Sensor probes and phantoms for advanced transcranial magnetic stimulation system developments

    NASA Astrophysics Data System (ADS)

    Meng, Qinglei; Patel, Prashil; Trivedi, Sudhir; Du, Xiaoming; Hong, Elliot; Choa, Fow-Sen

    2015-05-01

    Transcranial magnetic stimulation (TMS) has become one of the most widely used noninvasive method for brain tissue stimulation and has been used as a treatment tool for various neurological and psychiatric disorders including migraine, stroke, Parkinson's disease, dystonia, tinnitus and depression. In the process of developing advanced TMS deep brain stimulation tools, we need first to develop field measurement devices like sensory probes and brain phantoms, which can be used to calibrate the TMS systems. Currently there are commercially available DC magnetic or electric filed measurement sensors, but there is no instrument to measure transient fields. In our study, we used a commercial figure-8 shaped TMS coil to generate transient magnetic field and followed induced field and current. The coil was driven by power amplified signal from a pulse generator with tunable pulse rate, amplitude, and duration. In order to obtain a 3D plot of induced vector electric field, many types of probes were designed to detect single component of electric-field vectors along x, y and z axis in the space around TMS coil. We found that resistor probes has an optimized signal-to-noise ratio (SNR) near 3k ohm but it signal output is too weak compared with other techniques. We also found that inductor probes can have very high output for Curl E measurement, but it is not the E-field distribution we are interested in. Probes with electrical wire wrapped around iron coil can directly measure induced E-field with high sensitivity, which matched computer simulation results.

  14. Asymmetric photon transport in organic semiconductor nanowires through electrically controlled exciton diffusion

    PubMed Central

    Cui, Qiu Hong; Peng, Qian; Luo, Yi; Jiang, Yuqian; Yan, Yongli; Wei, Cong; Shuai, Zhigang; Sun, Cheng; Yao, Jiannian; Zhao, Yong Sheng

    2018-01-01

    The ability to steer the flow of light toward desired propagation directions is critically important for the realization of key functionalities in optical communication and information processing. Although various schemes have been proposed for this purpose, the lack of capability to incorporate an external electric field to effectively tune the light propagation has severely limited the on-chip integration of photonics and electronics. Because of the noninteractive nature of photons, it is only possible to electrically control the flow of light by modifying the refractive index of materials through the electro-optic effect. However, the weak optical effects need to be strongly amplified for practical applications in high-density photonic integrations. We show a new strategy that takes advantage of the strong exciton-photon coupling in active waveguides to effectively manipulate photon transport by controlling the interaction between excitons and the external electric field. Single-crystal organic semiconductor nanowires were used to generate highly stable Frenkel exciton polaritons with strong binding and diffusion abilities. By making use of directional exciton diffusion in an external electric field, we have realized an electrically driven asymmetric photon transport and thus directional light propagation in a single nanowire. With this new concept, we constructed a dual-output single wire–based device to build an electrically controlled single-pole double-throw optical switch with fast temporal response and high switching frequency. Our findings may lead to the innovation of concepts and device architectures for optical information processing. PMID:29556529

  15. Ultrafast rotation of magnetically levitated macroscopic steel spheres

    PubMed Central

    Schuck, Marcel; Steinert, Daniel; Nussbaumer, Thomas; Kolar, Johann W.

    2018-01-01

    Our world is increasingly powered by electricity, which is largely converted to or from mechanical energy using electric motors. Several applications have driven the miniaturization of these machines, resulting in high rotational speeds. Although speeds of several hundred thousand revolutions per minute have been used industrially, we report the realization of an electrical motor reaching 40 million rpm to explore the underlying physical boundaries. Millimeter-scale steel spheres, which are levitated and accelerated by magnetic fields inside a vacuum, are used as a rotor. Circumferential speeds exceeding 1000 m/s and centrifugal accelerations of more than 4 × 108 times gravity were reached. The results open up new research possibilities, such as the testing of materials under extreme centrifugal load, and provide insights into the development of future electric drive systems. PMID:29326976

  16. Ultrafast rotation of magnetically levitated macroscopic steel spheres.

    PubMed

    Schuck, Marcel; Steinert, Daniel; Nussbaumer, Thomas; Kolar, Johann W

    2018-01-01

    Our world is increasingly powered by electricity, which is largely converted to or from mechanical energy using electric motors. Several applications have driven the miniaturization of these machines, resulting in high rotational speeds. Although speeds of several hundred thousand revolutions per minute have been used industrially, we report the realization of an electrical motor reaching 40 million rpm to explore the underlying physical boundaries. Millimeter-scale steel spheres, which are levitated and accelerated by magnetic fields inside a vacuum, are used as a rotor. Circumferential speeds exceeding 1000 m/s and centrifugal accelerations of more than 4 × 10 8 times gravity were reached. The results open up new research possibilities, such as the testing of materials under extreme centrifugal load, and provide insights into the development of future electric drive systems.

  17. Transmission of the convection electric field to the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.

    2003-12-01

    Low latitude magnetometer observations revealed that the partial ring current started to develop within several minutes after the onset of growth of the polar cap potential (PCP), and decayed simultaneously with the decrease in the PCP (Hashimoto, Kikuchi and Ebihara., JGR 2002). The magnetometer observations also indicated that the DP2 ionospheric currents were driven by the convection electric field at mid latitudes as well as at high latitudes. These observational facts suggest that the ionospheric electric field plays a crucial role in driving the convection in the inner magnetosphere. A probable model for the electric field transmission should explain both the convection in the inner magnetosphere and the ionospheric currents at mid latitudes. The instantaneous transmission of the ionospheric electric field and currents from the polar ionosphere to the equator was explained by Kikuchi and Araki (JATP 1979) based on the TM0 mode in the Earth-ionosphere waveguide. In this paper, we attempt to explain the transmission of the convection electric field to the inner magnetosphere by applying the Earth-ionosphere waveguide. However, two issues remained unresolved in the paper by Kikuchi and Araki (1979). One is the excitation of the TM0 mode in the Earth-ionosphere waveguide, and the other is the attenuation under the nighttime ionospheric condition. To examine the excitation of the TM0 mode, we couple the Earth-ionosphere waveguide (transmission line) with a magnetospheric transmission line composed of a pair of field-aligned currents (e.g., R1 FACs). A fraction of the electromagnetic energy carried from the magnetosphere is transmitted into the Earth-ionosphere waveguide, although substantial energy is dissipated in the polar ionosphere intervening between the two transmission lines. The transmitted electromagnetic energy excites the TM0 mode in the Earth-ionosphere waveguide. We then evaluate the attenuation of the TM0 mode by calculating upward flow of energy from the waveguide into the conducting ionosphere and the magnetosphere. It is shown that the attenuation of the TM0 mode is not significant even for the nighttime condition, when compared to the geometrical attenuation due to the finite size of the polar electric field. Furthermore, it is shown that the ionospheric electric field carried by the TM0 mode is transmitted by Alfven waves upward into the inner magnetosphere along the magnetic field lines, supplying energy for the convection in the inner magnetosphere. It should be stressed that the ionosphere never creates electromagnetic energy but acts as a transmission line for the convection electric field. We conclude that the Earth-ionosphere waveguide connected with the magnetospheric transmission line explains both the instantaneous propagation of the electric field and currents in the ionosphere and of the convection electric field into the inner magnetosphere.

  18. Harmonic generation by yeast cells in response to low-frequency electric fields

    NASA Astrophysics Data System (ADS)

    Nawarathna, D.; Claycomb, J. R.; Cardenas, G.; Gardner, J.; Warmflash, D.; Miller, J. H., Jr.; Widger, W. R.

    2006-05-01

    We report on harmonic generation by budding yeast cells (Saccharomyces cerevisiae, 108cells/ml ) in response to sinusoidal electric fields with amplitudes ranging from zero to 5V/cm in the frequency range 10-300Hz . The cell-generated harmonics are found to exhibit strong amplitude and frequency dependence. Sodium metavanadate, an inhibitor of the proton pump known as H+ -ATPase, and glucose, a substrate of H+ -ATPase, are found to increase harmonic production at low amplitudes while reducing it at large amplitudes. This P-type proton pump can be driven by an oscillatory transmembrane potential, and its nonlinear response is believed to be largely responsible for harmonic production at low frequencies in yeast cells. We find that the observed harmonics show dramatic changes with time and in their field and frequency dependence after perturbing the system by adding an inhibitor, substrate, or membrane depolarizer to the cell suspension.

  19. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    NASA Astrophysics Data System (ADS)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  20. Active Colloids in Isotropic and Anisotropic Electrolytes

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be designed by surface-patterned modulated molecular orientation. The surface patterning is produced by photo-alignment. In the presence of an electric field, the spatially varying orientation induces space charges that trigger flows of the LC. The active patterned LC electrolyte converts the electric energy into the LC flows and transport of embedded particles of any type (fluid, solid, gaseous) along a predesigned trajectory, posing no limitation on the electric nature (charge, polarizability) of these particles and interfaces. The patterned LC electrolyte also induces persistent vortices of controllable rotation speed and direction that are quintessential for micro- and nanoscale mixing applications. The thesis also describes transport and placement of colloids by elasticity of a nematic LC with spatially varying molecular orientation. Colloidal particles in nematic environment are subject to the long-range elastic forces originating in the orientational order of the nematic. Gradients of the orientational order create an elastic energy landscape that drives the colloids into locations with preferred type of deformations. As an example, we demonstrate that colloidal spheres with perpendicular surface anchoring are driven into the regions of maximum splay, while spheres with tangential surface anchoring settle into the regions of bend. Elastic forces responsible for preferential placement are measured by exploring overdamped dynamics of the colloids. The results obtained in this thesis open new opportunities for design of materials and devices for micropumping, mixing, lab-on-a-chip and biosensing applications.

  1. High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum

    NASA Technical Reports Server (NTRS)

    Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.

    1995-01-01

    The use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto Fast Flyby mission was evaluated at JPL. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers.

  2. Capillary electrophoresis: Imaging of electroosmotic and pressure driven flow profiles in fused silica capillaries

    NASA Technical Reports Server (NTRS)

    Williams, George O., Jr.

    1996-01-01

    This study is a continuation of the summer of 1994 NASA/ASEE Summer Faculty Fellowship Program. This effort is a portion of the ongoing work by the Biophysics Branch of the Marshall Space Flight Center. The work has focused recently on the separation of macromolecules using capillary electrophoresis (CE). Two primary goals were established for the effort this summer. First, we wanted to use capillary electrophoresis to study the electrohydrodynamics of a sample stream. Secondly, there was a need to develop a methodology for using CE for separation of DNA molecules of various sizes. In order to achieve these goals we needed to establish a procedure for detection of a sample plug under the influence of an electric field Detection of the sample with the microscope and image analysis system would be helpful in studying the electrohydrodynamics of this stream under load. Videotaping this process under the influence of an electric field in real time would also be useful. Imaging and photography of the sample/background electrolyte interface would be vital to this study. Finally, detection and imaging of electroosmotic flow and pressure driven flow must be accomplished.

  3. Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang

    2014-08-01

    We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.

  4. Inventions Utilizing Microfluidics and Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  5. Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials.

    PubMed

    Liu, Hui; Chen, Jun; Fan, Longlong; Ren, Yang; Pan, Zhao; Lalitha, K V; Rödel, Jürgen; Xing, Xianran

    2017-07-07

    High-performance piezoelectric materials constantly attract interest for both technological applications and fundamental research. The understanding of the origin of the high-performance piezoelectric property remains a challenge mainly due to the lack of direct experimental evidence. We perform in situ high-energy x-ray diffraction combined with 2D geometry scattering technology to reveal the underlying mechanism for the perovskite-type lead-based high-performance piezoelectric materials. The direct structural evidence reveals that the electric-field-driven continuous polarization rotation within the monoclinic plane plays a critical role to achieve the giant piezoelectric response. An intrinsic relationship between the crystal structure and piezoelectric performance in perovskite ferroelectrics has been established: A strong tendency of electric-field-driven polarization rotation generates peak piezoelectric performance and vice versa. Furthermore, the monoclinic M_{A} structure is the key feature to superior piezoelectric properties as compared to other structures such as monoclinic M_{B}, rhombohedral, and tetragonal. A high piezoelectric response originates from intrinsic lattice strain, but little from extrinsic domain switching. The present results will facilitate designing high-performance perovskite piezoelectric materials by enhancing the intrinsic lattice contribution with easy and continuous polarization rotation.

  6. Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion.

    PubMed

    Ayari, Anthony; Vincent, Pascal; Perisanu, Sorin; Choueib, May; Gouttenoire, Vincent; Bechelany, Mikhael; Cornu, David; Purcell, Stephen T

    2007-08-01

    We report the observation of self-oscillations in a bottom-up nanoelectromechanical system (NEMS) during field emission driven by a constant applied voltage. An electromechanical model is explored that explains the phenomenon and that can be directly used to develop integrated devices. In this first study, we have already achieved approximately 50% dc/ac (direct to alternating current) conversion. Electrical self-oscillations in NEMS open up a new path for the development of high-speed, autonomous nanoresonators and signal generators and show that field emission (FE) is a powerful tool for building new nanocomponents.

  7. Application of STEM/EELS to Plasmon-Related Effects in Optical Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camden, Jon

    In this project we employed EELS/STEM to understand the near-field enhancements that drive current applications of plasmonic nanostructures. In particular, we explore the connection between optical and electron excitation of plasmon modes in metallic nanostructures: (1) Probing the structural parameters and dielectric properties of multimetallic nanoparticles; (2) Characterization of the near-electric-field enhancements obtained upon excitation of the localized surface plasmon resonance and understand the connection between electron- and photon-driven plasmons; (3) Understanding the behavior of molecules in plasmon-enhanced fields which is essential to emerging applications such as plasmon-assisted catalysis and solar energy harvesting.

  8. Spontaneous Generation of a Sheared Plasma Rotation in a Field-Reversed θ-Pinch Discharge

    NASA Astrophysics Data System (ADS)

    Omelchenko, Y. A.; Karimabadi, H.

    2012-08-01

    By conducting two-dimensional hybrid simulations of an infinitely long field-reversed θ-pinch discharge we discover a new type of plasma rotation, which rapidly develops at the plasma edge in the ion diamagnetic direction due to the self-consistent generation of a Hall-driven radial electric field. This effect is different from the previously identified end-shorting and particle-loss mechanisms. We also demonstrate flutelike perturbations frequently inferred in experiments and show that in the absence of axial contraction effects they may quickly alter the toroidal symmetry of the plasma.

  9. Pinch-off mechanism in double-lateral-gate junctionless transistors fabricated by scanning probe microscope based lithography

    PubMed Central

    Dehzangi, Arash; Abedini, Alam; Abdullah, Ahmad Makarimi; Saion, Elias; Hutagalung, Sabar D; Hamidon, Mohd N; Hassan, Jumiah

    2012-01-01

    Summary A double-lateral-gate p-type junctionless transistor is fabricated on a low-doped (1015) silicon-on-insulator wafer by a lithography technique based on scanning probe microscopy and two steps of wet chemical etching. The experimental transfer characteristics are obtained and compared with the numerical characteristics of the device. The simulation results are used to investigate the pinch-off mechanism, from the flat band to the off state. The study is based on the variation of the carrier density and the electric-field components. The device is a pinch-off transistor, which is normally in the on state and is driven into the off state by the application of a positive gate voltage. We demonstrate that the depletion starts from the bottom corner of the channel facing the gates and expands toward the center and top of the channel. Redistribution of the carriers due to the electric field emanating from the gates creates an electric field perpendicular to the current, toward the bottom of the channel, which provides the electrostatic squeezing of the current. PMID:23365794

  10. Two distinct regions of response drive differential growth in Vigna root electrotropism

    NASA Technical Reports Server (NTRS)

    Wolverton, C.; Mullen, J. L.; Ishikawa, H.; Evans, M. L.

    2000-01-01

    Although exogenous electric fields have been reported to influence the orientation of plant root growth, reports of the ultimate direction of differential growth have been contradictory. Using a high-resolution image analysis approach, the kinetics of electrotropic curvature in Vigna mungo L. roots were investigated. It was found that curvature occurred in the same root toward both the anode and cathode. However, these two responses occurred in two different regions of the root, the central elongation zone (CEZ) and distal elongation zone (DEZ), respectively. These oppositely directed responses could be reproduced individually by a localized electric field application to the region of response. This indicates that both are true responses to the electric field, rather than one being a secondary response to an induced gravitropic stimulation. The individual responses differed in the type of differential growth giving rise to curvature. In the CEZ, curvature was driven by inhibition of elongation, whereas curvature in the DEZ was primarily due to stimulation of elongation. This stimulation of elongation is consistent with the growth response of the DEZ to other environmental stimuli.

  11. Floquet prethermalization in the resonantly driven Hubbard model

    NASA Astrophysics Data System (ADS)

    Herrmann, Andreas; Murakami, Yuta; Eckstein, Martin; Werner, Philipp

    2017-12-01

    We demonstrate the existence of long-lived prethermalized states in the Mott insulating Hubbard model driven by periodic electric fields. These states, which also exist in the resonantly driven case with a large density of photo-induced doublons and holons, are characterized by a nonzero current and an effective temperature of the doublons and holons which depends sensitively on the driving condition. Focusing on the specific case of resonantly driven models whose effective time-independent Hamiltonian in the high-frequency driving limit corresponds to noninteracting fermions, we show that the time evolution of the double occupation can be reproduced by the effective Hamiltonian, and that the prethermalization plateaus at finite driving frequency are controlled by the next-to-leading-order correction in the high-frequency expansion of the effective Hamiltonian. We propose a numerical procedure to determine an effective Hubbard interaction that mimics the correlation effects induced by these higher-order terms.

  12. Singularity-driven second- and third-harmonic generation at {epsilon}-near-zero crossing points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincenti, M. A.; Ceglia, D. de; Ciattoni, A.

    We show an alternative path to efficient second- and third-harmonic generation in proximity of the zero crossing points of the dielectric permittivity in conjunction with low absorption. Under these circumstances, any material, either natural or artificial, will show similar degrees of field enhancement followed by strong harmonic generation, without resorting to any resonant mechanism. The results presented in this paper provide a general demonstration of the potential that the zero-crossing-point condition holds for nonlinear optical phenomena. We investigate a generic Lorentz medium and demonstrate that a singularity-driven enhancement of the electric field may be achieved even in extremely thin layersmore » of material. We also discuss the role of nonlinear surface sources in a realistic scenario where a 20-nm layer of CaF{sub 2} is excited at 21 {mu}m, where {epsilon}{approx} 0. Finally, we show similar behavior in an artificial composite material that includes absorbing dyes in the visible range, provide a general tool for the improvement of harmonic generation using the {epsilon}{approx} 0 condition, and illustrate that this singularity-driven enhancement of the field lowers the thresholds for a plethora of nonlinear optical phenomena.« less

  13. Model of driven and decaying magnetic turbulence in a cylinder.

    PubMed

    Kemel, Koen; Brandenburg, Axel; Ji, Hantao

    2011-11-01

    Using mean-field theory, we compute the evolution of the magnetic field in a cylinder with outer perfectly conducting boundaries and imposed axial magnetic and electric fields. The thus injected magnetic helicity in the system can be redistributed by magnetic helicity fluxes down the gradient of the local current helicity of the small-scale magnetic field. A weak reversal of the axial magnetic field is found to be a consequence of the magnetic helicity flux in the system. Such fluxes are known to alleviate so-called catastrophic quenching of the α effect in astrophysical applications. A stronger field reversal can be obtained if there is also a significant kinetic α effect. Application to the reversed field pinch in plasma confinement devices is discussed.

  14. Particle-in-cell simulations of the lower-hybrid instability driven by an ion-ring distribution

    NASA Astrophysics Data System (ADS)

    Swanekamp, Stephen; Richardson, Steve; Mithaiwala, Manish; Crabtree, Chris

    2013-10-01

    Fully electromagnetic particle-in-cell simulations of the excitation of the lower-hybrid mode in a plasma driven by an ion-ring distribution using the Lsp code are presented. At early times the simulations agree with linear theory. The resulting wave evolution and non-linear plasma and ring-ion heating are compared with theoretical models [Mithaiwala et al. 2010; Crabtree et al., this meeting] and previous simulation results [Winske and Daughton, 2012]. 2D simulations show that when the magnetic field is perpendicular to the wave vector, k, the electrostatic potential fluctuations work in conjunction with the applied magnetic field causing a circular electron E ×B drift around a positively charged center. Similar phenomena are observed in 2D simulations of magnetic-field penetration into a spatially inhomogeneous unmagnetized plasma [Richardson et al., this meeting] where circular paramagnetic vortices are formed. These vortices are altered by the addition of a small, in-plane, component of magnetic field which allows electrons to stream along field lines effectively shorting out one component of the electric field. In this case, the vortex structures are no longer circular but elongated along the direction of the in-plane magnetic field component.

  15. Laser-induced asymmetric faceting and growth of a nano-protrusion on a tungsten tip

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Hirofumi; Zadin, Vahur; Kunze, Karsten; Hafner, Christian; Aabloo, Alvo; Kim, Dong Eon; Kling, Matthias F.; Djurabekova, Flyura; Osterwalder, Jürg; Wuensch, Walter

    2016-12-01

    Irradiation of a sharp tungsten tip by a femtosecond laser and exposed to a strong DC electric field led to reproducible surface modifications. By a combination of field emission microscopy and scanning electron microscopy, we observed asymmetric surface faceting with sub-ten nanometer high steps. The presence of faceted features mainly on the laser-exposed side implies that the surface modification was driven by a laser-induced transient temperature rise on a scale of a couple of picoseconds in the tungsten tip apex. Moreover, we identified the formation of a nano-tip a few nanometers high located at one of the corners of a faceted plateau. The results of simulations emulating the experimental conditions are consistent with the experimental observations. The presented technique would be a new method to fabricate a nano-tip especially for generating coherent electron pulses. The features may also help to explain the origin of enhanced field emission, which leads to vacuum arcs, in high electric field devices such as radio-frequency particle accelerators.

  16. Variational electric fields at low latitudes and their relation to spread F and plasma irregularities

    NASA Technical Reports Server (NTRS)

    Holtet, J. A.; Maynard, N. C.; Heppner, J. P.

    1976-01-01

    Recordings from OGO 6 show that electric field irregularities are frequently present between + or - 35 deg geomagnetic latitude in the 2000 - 0600 local time sector. The signatures are very clear, and are easily distinguished from the normal AC background noise, and whistler and emission activity. The spectral appearance of the fields makes it meaningful to distinguish between 3 different types of irregularities: strong irregularities, weak irregularities, and weak irregularities with a rising spectrum. Strong irregularities seem most likely to occur in regions where gradients in ionization are present. Changes in plasma composition, resulting in an increase in the mean ion mass, are also often observed in the irregularity regions. Comparison with ground based ionosondes indicates a connection between strong irregularities and low latitude spread F. A good correlation is also present between strong fields and small scale fluctuations in ionization, delta N/N 1 percent. From the data it appears as if a gradient driven instability is the most likely source of the strong irregularities.

  17. Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrödinger Equation

    PubMed Central

    Zhang, Peng; Lau, Y. Y.

    2016-01-01

    Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field emission, are all included in this single formulation. The transition between different emission processes is analyzed in detail. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide insights into the electron pulse generation and manipulation for many novel applications based on ultrafast laser-induced electron emission. PMID:26818710

  18. Nanoscale Design of Nano-Sized Particles in Shape-Memory Polymer Nanocomposites Driven by Electricity

    PubMed Central

    Lu, Haibao; Huang, Wei Min; Liang, Fei; Yu, Kai

    2013-01-01

    In the last few years, we have witnessed significant progress in developing high performance shape memory polymer (SMP) nanocomposites, in particular, for shape recovery activated by indirect heating in the presence of electricity, magnetism, light, radio frequency, microwave and radiation, etc. In this paper, we critically review recent findings in Joule heating of SMP nanocomposites incorporated with nanosized conductive electromagnetic particles by means of nanoscale control via applying an electro- and/or magnetic field. A few different nanoscale design principles to form one-/two-/three- dimensional conductive networks are discussed. PMID:28788303

  19. Parallel electric fields in extragalactic jets - Double layers and anomalous resistivity in symbiotic relationships

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.

    1986-01-01

    After examining the properties of Coulomb-collision resistivity, anomalous (collective) resistivity, and double layers, a hybrid anomalous-resistivity/double-layer model is introduced. In this model, beam-driven waves on both sides of a double layer provide electrostatic plasma-wave turbulence that greatly reduces the mobility of charged particles. These regions then act to hold open a density cavity within which the double layer resides. In the double layer, electrical energy is dissipated with 100 percent efficiency into high-energy particles, creating conditions optimal for the collective emission of polarized radio waves.

  20. Electrical control of 2D magnetism in bilayer CrI 3

    DOE PAGES

    Huang, Bevin; Clark, Genevieve; Klein, Dahlia R.; ...

    2018-04-23

    Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction. Owing to their unique magnetic properties, the recently reported two-dimensional magnets provide a new system for studying these features. For instance, a bilayer of chromium triiodide (CrI 3) behaves as a layered antiferromagnet with a magnetic field-driven metamagneticmore » transition. Here, we demonstrate electrostatic gate control of magnetism in CrI 3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Here, our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.« less

  1. Electric-Field-Oriented Growth of Long Hair-Like Silica Microfibrils and Derived Functional Monolithic Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya

    We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less

  2. Electric-Field-Oriented Growth of Long Hair-Like Silica Microfibrils and Derived Functional Monolithic Solids

    DOE PAGES

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya; ...

    2017-09-11

    We present a “bottom-up” fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibers or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibers with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular “building blocks” for the field-directed assembly growth of microfibers driven by an electric field of pulsed direct current (dc) with controlled frequency. In principle, this reactive electrofibrilation process that combines an external field with a solid-phase nucleation and growth process has no limitation on reactions (such as the one heremore » that involves sol-gel reaction chemistry) and on materials compositions (such as the example silica oxide), thus will enable bulk production of long microfibers of wide variety of inorganic materials (other oxides or metals). Furthermore, we have fabricated uniquely architectured monolithic solid materials containing aligned microfibers by “wet press” of the in-situ grown microfiber structure in the electric field. The consolidated monolithic slabs (1 cm x 1 cm x 3 mm) have shown anisotropic properties and desirable retention of DNA molecule fragments, thus, could serve as a platform stationary-phase materials for future development of capillary electrochromatography for biomolecule separations.« less

  3. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field.

    PubMed

    Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E

    2017-08-17

    Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO 3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO 3 nanoparticle.

  4. Electrical control of 2D magnetism in bilayer CrI 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Bevin; Clark, Genevieve; Klein, Dahlia R.

    Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction. Owing to their unique magnetic properties, the recently reported two-dimensional magnets provide a new system for studying these features. For instance, a bilayer of chromium triiodide (CrI 3) behaves as a layered antiferromagnet with a magnetic field-driven metamagneticmore » transition. Here, we demonstrate electrostatic gate control of magnetism in CrI 3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Here, our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.« less

  5. A multi-scale and multi-field coupling nonlinear constitutive theory for the layered magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining

    2018-05-01

    The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.

  6. Radial Diffusion Coefficients Using E and B Field Data from the Van Allen Probes: Comparison with the CRRES Study

    NASA Astrophysics Data System (ADS)

    Ali, A.; Elkington, S. R.; Malaspina, D.

    2014-12-01

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and MHD waves. Waves with frequencies in the ULF range are understood to play an important role in loss and acceleration of energetic particles. We are investigating the contributions from perturbations in both the magnetic and the electric fields in driving radial diffusion of charged particles and wish to probe two unanswered questions about ULF wave driven radial transport. First, how important are the fluctuations in the magnetic field compared with the fluctuations in the electric field in driving radial diffusion? Second, how does ULF wave power distribution in azimuth affect radial diffusion? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth but in situ measurements suggest otherwise. We present results from a study using the electric and magnetic field measurements from the Van Allen Probes to estimate the radial diffusion coefficients as a function of L and Kp. During the lifetime of the RBSP mission to date, there has been a dearth of solar activity. This compels us to consider Kp as the only time and activity dependent parameter instead of solar wind velocity and pressure.

  7. Electrical Stressing Induced Monolayer Vacancy Island Growth on TiSe2

    NASA Astrophysics Data System (ADS)

    Zheng, Husong; Valtierra, Salvador; Ofori-Opoku, Nana; Chen, Chuanhui; Sun, Lifei; Yuan, Shuaishuai; Jiao, Liying; Bevan, Kirk H.; Tao, Chenggang

    2018-03-01

    To ensure the practical application of atomically thin transition metal dichalcogenides, it is essential to characterize their structural stability under external stimuli such as electric fields and currents. Using vacancy monolayer islands on TiSe2 surfaces as a model system, for the first time we have observed a shape evolution and growth from triangular to hexagonal driven by scanning tunneling microscopy (STM) electrical stressing. The size of islands shows linear growth with a rate of (3.00 +- 0.05) x 10-3 nm/s, when the STM scanning parameters are held fixed at Vs = 1.0 V and I = 1.8 nA. We further quantified how the growth rate is related to the tunneling current magnitude. Our simulations of monolayer island evolution using phase-field modeling are in good agreement with our experimental observations, and point towards preferential edge atom dissociation under STM scanning driving the observed growth. The results could be potentially important for device applications of ultrathin transition metal dichalcogenides and related 2D materials subject to electrical stressing under device operating conditions.

  8. Evaluating sensitivity of complex electrical methods for monitoring CO2 intrusion into a shallow groundwater system and associated geochemical transformations

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Wu, Y.; Hubbard, S. S.; Birkholzer, J. T.; Daley, T. M.; Pugh, J. D.; Peterson, J.; Trautz, R. C.

    2011-12-01

    A risk factor of CO2 storage in deep geological formations includes its potential to leak into shallow formations and impact groundwater geochemistry and quality. In particular, CO2 decreases groundwater pH, which can potentially mobilize naturally occurring trace metals and ions commonly absorbed to or contained in sediments. Here, geophysical studies (primarily complex electrical method) are being carried out at both laboratory and field scales to evaluate the sensitivity of geophysical methods for monitoring dissolved CO2 distribution and geochemical transformations that may impact water quality. Our research is performed in association with a field test that is exploring the effects of dissolved CO2 intrusion on groundwater geochemistry. Laboratory experiments using site sediments (silica sand and some fraction of clay minerals) and groundwater were initially conducted under field relevant CO2 partial pressures (pCO2). A significant pH drop was observed with inline sensors with concurrent changes in fluid conductivity caused by CO2 dissolution. Electrical resistivity and electrical phase responses correlated well with the CO2 dissolution process at various pCO2. Specifically, resistivity decreased initially at low pCO2 condition resulting from CO2 dissolution followed by a slight rebound because of the transition of bicarbonate into non-dissociated carbonic acid at lower pH slightly reducing the total concentration of dissociated species. Continuous electrical phase decreases were also observed, which are interpreted to be driven by the decrease of surface charge density (due to the decrease of pH, which approaches the PZC of the sediments). In general, laboratory experiments revealed the sensitivity of electrical signals to CO2 intrusion into groundwater formations and can be used to guide field data interpretation. Cross well complex electrical data are currently being collected periodically throughout a field experiment involving the controlled release of dissolved CO2 into groundwater. The objective of the geophysical cross well monitoring effort is to evaluate the sensitivity of complex electrical methods to dissolved CO2 at the field scale. Here, we report on the ability to translate laboratory-based petrophysical information from lab to field scales, and on the potential of field complex electrical methods for remotely monitoring CO2-induced geochemical transformations.

  9. In situ measurements of contributions to the global electrical circuit by a thunderstorm in southeastern Brazil

    USGS Publications Warehouse

    Thomas, J.N.; Holzworth, R.H.; McCarthy, M.P.

    2009-01-01

    The global electrical circuit, which maintains a potential of about 280??kV between the earth and the ionosphere, is thought to be driven mainly by thunderstorms and lightning. However, very few in situ measurements of electrical current above thunderstorms have been successfully obtained. In this paper, we present dc to very low frequency electric fields and atmospheric conductivity measured in the stratosphere (30-35??km altitude) above an active thunderstorm in southeastern Brazil. From these measurements, we estimate the mean quasi-static conduction current during the storm period to be 2.5 ?? 1.25??A. Additionally, we examine the transient conduction currents following a large positive cloud-to-ground (+ CG) lightning flash and typical - CG flashes. We find that the majority of the total current is attributed to the quasi-static thundercloud charge, rather than lightning, which supports the classical Wilson model for the global electrical circuit.

  10. Substorms: The Attempt at Magnetospheric Dynamic Equilibrium between Magnetically-Driven Frontside Reconnection and Particle-Driven Reconnection in a Multiple-Current-Sheet Magnetotail

    NASA Astrophysics Data System (ADS)

    Sofko, G. J.; Hussey, G. C.; McWilliams, K. A.; Reimer, A. S.

    2016-12-01

    We propose a multi-current-sheet model for magnetic substorms. Those storms are normally driven by frontside magnetically-driven reconnection (MDRx), in which the diffusion zone current JD and the electric field E have a "load" relationship JD*E >0, indicating transfer if magnetic energy to the particles in the "reconnection jets". As a result of lobe field line transport over the north and south poles, polar cap particles are subject to parallel energization as they flow upward out of the ionosphere. These particles convectively drift toward the equator and subsequently mirror near the Neutral Sheet (NSh) region, forming an extended westward NSh current sheet which is unstable and "tears up" into multiple current sheets. Each current sheet has very different behaviour at its ends: (a) strong magnetic pressure and weak particle pressure at its tailward end; (b) strong particle pressure and weak magnetic field at its earthward end. Therefore, in each Separation Zone (SZ) between current sheets, a strong eastward magnetic curl develops. The associated eastward SZ current, caused by diamagnetic electron drift, is squeezed by the repulsion of the westward currents tailward and earthward. That current becomes intense enough to act as a diffusion zone for "generator-type" or Particle-driven reconnection (PDRx) for which JD*E<0, indicating that the particles return energy to the magnetic field. The PDRx produces a Dipolarization Front (DF) on the earthward side of the SZ and a Plasmoid (PMD) on the tailward side. Such DF-PMD pairs form successively in time and radial downtail SZ distance. In this way, the magnetosphere attempts to achieve a dynamic equilibrium between magnetic and particle energy.

  11. Role of spin-transfer torques on synchronization and resonance phenomena in stochastic magnetic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Accioly, Artur; Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay; Locatelli, Nicolas

    2016-09-07

    A theoretical study on how synchronization and resonance-like phenomena in superparamagnetic tunnel junctions can be driven by spin-transfer torques is presented. We examine the magnetization of a superparamagnetic free layer that reverses randomly between two well-defined orientations due to thermal fluctuations, acting as a stochastic oscillator. When subject to an external ac forcing, this system can present stochastic resonance and noise-enhanced synchronization. We focus on the roles of the mutually perpendicular damping-like and field-like torques, showing that the response of the system is very different at low and high frequencies. We also demonstrate that the field-like torque can increase themore » efficiency of the current-driven forcing, especially at sub-threshold electric currents. These results can be useful for possible low-power, more energy efficient applications.« less

  12. Radar observations of density gradients, electric fields, and plasma irregularities near polar cap patches in the context of the gradient-drift instability

    NASA Astrophysics Data System (ADS)

    Lamarche, Leslie J.; Makarevich, Roman A.

    2017-03-01

    We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.

  13. Control of bootstrap current in the pedestal region of tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less

  14. Does Solar Wind also Drive Convection in Jupiter's Magnetosphere?

    NASA Astrophysics Data System (ADS)

    Khurana, K. K.

    2001-05-01

    Using a simple model of magnetic field and plasma velocity, Brice and Ioannidis [1970] showed that the corotation electric field exceeds convection electric field throughout the Jovian magnetosphere. Since that time it has been tacitly assumed that Jupiter's magnetosphere is driven from within. If Brice and Ioannidis conjecture is correct then one would not expect major asymmetries in the field and plasma parameters in the middle magnetosphere of Jupiter. Yet, new field and plasma observations from Galileo and simultaneous auroral observations from HST show that there are large dawn/dusk and day/night asymmetries in many magnetospheric parameters. For example, the magnetic observations show that a partial ring current and an associated Region-2 type field-aligned current system exist in the magnetosphere of Jupiter. In the Earth's magnetosphere it is well known that the region-2 current system is created by the asymmetries imposed by a solar wind driven convection. Thus, we are getting first hints that the solar wind driven convection is important in Jupiter's magnetosphere as well. Other in-situ observations also point to dawn-dusk asymmetries imposed by the solar wind. For example, first order anisotropies in the Energetic Particle Detector show that the plasma is close to corotational on the dawn side but lags behind corotation in the dusk sector. Magnetic field data show that the current sheet is thin and highly organized on the dawn side but thick and disturbed on the dusk side. I will discuss the reasons why Brice and Ioannidis calculation may not be valid. I will show that both the magnetic field and plasma velocity estimates used by Brice and Ioannidis were rather excessive. Using more modern estimates of the field and velocity values I show that the solar wind convection can penetrate as deep as 40 RJ on the dawnside. I will present a new model of convection that invokes in addition to a distant neutral line spanning the whole magnetotail, a near-Jupiter neutral line only on the dawnside. I will discuss how the internal and external drivers together set up a convection system and transport plasma and magnetic flux in Jupiter's magnetosphere. I will explore the consequences of this convection system on the flows, current sheet and the Jovian aurorae.

  15. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts.

    PubMed

    Lehmann, D; Strik, W K; Henggeler, B; Koenig, T; Koukkou, M

    1998-06-01

    Prompted reports of recall of spontaneous, conscious experiences were collected in a no-input, no-task, no-response paradigm (30 random prompts to each of 13 healthy volunteers). The mentation reports were classified into visual imagery and abstract thought. Spontaneous 19-channel brain electric activity (EEG) was continuously recorded, viewed as series of momentary spatial distributions (maps) of the brain electric field and segmented into microstates, i.e. into time segments characterized by quasi-stable landscapes of potential distribution maps which showed varying durations in the sub-second range. Microstate segmentation used a data-driven strategy. Different microstates, i.e. different brain electric landscapes must have been generated by activity of different neural assemblies and therefore are hypothesized to constitute different functions. The two types of reported experiences were associated with significantly different microstates (mean duration 121 ms) immediately preceding the prompts; these microstates showed, across subjects, for abstract thought (compared to visual imagery) a shift of the electric gravity center to the left and a clockwise rotation of the field axis. Contrariwise, the microstates 2 s before the prompt did not differ between the two types of experiences. The results support the hypothesis that different microstates of the brain as recognized in its electric field implement different conscious, reportable mind states, i.e. different classes (types) of thoughts (mentations); thus, the microstates might be candidates for the 'atoms of thought'.

  16. Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide

    NASA Astrophysics Data System (ADS)

    Maurer, P.; Prat-Camps, J.; Cirac, J. I.; Hänsch, T. W.; Romero-Isart, O.

    2017-07-01

    We theoretically show that a dipole externally driven by a pulse with a lower-bounded temporal width, and placed inside a cylindrical hollow waveguide, can generate a train of arbitrarily short and focused electromagnetic pulses. The waveguide encloses vacuum with perfect electric conducting walls. A dipole driven by a single short pulse, which is properly engineered to exploit the linear spectral filtering of the cylindrical hollow waveguide, excites longitudinal waveguide modes that are coherently refocused at some particular instances of time, thereby producing arbitrarily short and focused electromagnetic pulses. We numerically show that such ultrafocused pulses persist outside the cylindrical waveguide at distances comparable to its radius.

  17. Linking the micro and macro: L-H transition dynamics and threshold physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malkov, M. A., E-mail: mmalkov@ucsd.edu; Diamond, P. H.; Miki, K.

    2015-03-15

    The links between the microscopic dynamics and macroscopic threshold physics of the L → H transition are elucidated. Emphasis is placed on understanding the physics of power threshold scalings, and especially on understanding the minimum in the power threshold as a function of density P{sub thr} (n). By extending a numerical 1D model to evolve both electron and ion temperatures, including collisional coupling, we find that the decrease in P{sub thr} (n) along the low-density branch is due to the combination of an increase in collisional electron-to-ion energy transfer and an increase in the heating fraction coupled to the ions.more » Both processes strengthen the edge diamagnetic electric field needed to lock in the mean electric field shear for the L→H transition. The increase in P{sub thr} (n) along the high-density branch is due to the increase with ion collisionality of damping of turbulence-driven shear flows. Turbulence driven shear flows are needed to trigger the transition by extracting energy from the turbulence. Thus, we identify the critical transition physics components of the separatrix ion heat flux and the zonal flow excitation. The model reveals a power threshold minimum in density scans as a crossover between the threshold decrease supported by an increase in heat fraction received by ions (directly or indirectly, from electrons) and a threshold increase, supported by the rise in shear flow damping. The electron/ion heating mix emerges as important to the transition, in that it, together with electron-ion coupling, regulates the edge diamagnetic electric field shear. The importance of possible collisionless electron-ion heat transfer processes is explained.« less

  18. Piezoelectric devices for generating low power

    NASA Astrophysics Data System (ADS)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  19. Driving spin transition at interface: Role of adsorption configurations

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao

    2018-01-01

    A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.

  20. An optical levitation system for a physics teaching laboratory

    NASA Astrophysics Data System (ADS)

    Isaksson, Oscar; Karlsteen, Magnus; Rostedt, Mats; Hanstorp, Dag

    2018-02-01

    We describe an experimental system based on optical levitation of an oil droplet. When combined with an applied electric field and a source of ionizing radiation, the setup permits the investigation of physical phenomena such as radiation pressure, light diffraction, the motion of a charged particle in an oscillating electric field, and the interaction of ionizing radiation with matter. The trapping occurs by creating an equilibrium between a radiation pressure force and the force of gravity. We have found that an oil droplet can be trapped for at least nine hours. The system can be used to measure the size and total electric charge on the trapped droplet. The intensity of the light from the trapping laser that is scattered by the droplet is sufficient to allow the droplet to be easily seen with the naked eye, covered by laser alignment goggles. When oscillating under the influence of an ac electric field, the motion of the droplet can be described as that of a driven, damped harmonic oscillator. The magnitude and polarity of the charge can be altered by exposing the droplet to ionizing radiation from a low-activity radioactive source. Our goal was to design a hands-on setup that allows undergraduate and graduate students to observe and better understand fundamental physical processes.

  1. Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis.

    PubMed

    Park, Stella Y; Russo, Christopher J; Branton, Daniel; Stone, Howard A

    2006-05-15

    Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (kappa(-1)) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction.

  2. Eddies in a Bottleneck: An Arbitrary Debye Length Theory for Capillary Electroosmosis

    PubMed Central

    Park, Stella Y.; Russo, Christopher J.; Branton, Daniel; Stone, Howard A.

    2011-01-01

    Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (κ−1) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction. PMID:16376361

  3. Ultrafast magnetization reversal by picosecond electrical pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Wilson, Richard B.; Gorchon, Jon

    The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less

  4. Ultrafast magnetization reversal by picosecond electrical pulses

    DOE PAGES

    Yang, Yang; Wilson, Richard B.; Gorchon, Jon; ...

    2017-11-03

    The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less

  5. Method and system for controlling a permanent magnet machine during fault conditions

    DOEpatents

    Krefta, Ronald John; Walters, James E.; Gunawan, Fani S.

    2004-05-25

    Method and system for controlling a permanent magnet machine driven by an inverter is provided. The method allows for monitoring a signal indicative of a fault condition. The method further allows for generating during the fault condition a respective signal configured to maintain a field weakening current even though electrical power from an energy source is absent during said fault condition. The level of the maintained field-weakening current enables the machine to operate in a safe mode so that the inverter is protected from excess voltage.

  6. A high performance field-reversed configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binderbauer, M. W.; Tajima, T.; Steinhauer, L. C.

    2015-05-15

    Conventional field-reversed configurations (FRCs), high-beta, prolate compact toroids embedded in poloidal magnetic fields, face notable stability and confinement concerns. These can be ameliorated by various control techniques, such as introducing a significant fast ion population. Indeed, adding neutral beam injection into the FRC over the past half-decade has contributed to striking improvements in confinement and stability. Further, the addition of electrically biased plasma guns at the ends, magnetic end plugs, and advanced surface conditioning led to dramatic reductions in turbulence-driven losses and greatly improved stability. Together, these enabled the build-up of a well-confined and dominant fast-ion population. Under such conditions,more » highly reproducible, macroscopically stable hot FRCs (with total plasma temperature of ∼1 keV) with record lifetimes were achieved. These accomplishments point to the prospect of advanced, beam-driven FRCs as an intriguing path toward fusion reactors. This paper reviews key results and presents context for further interpretation.« less

  7. Electrical field: a historical review of its application and contributions in wastewater sludge dewatering.

    PubMed

    Mahmoud, Akrama; Olivier, Jérémy; Vaxelaire, Jean; Hoadley, Andrew F A

    2010-04-01

    Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to identify potential improvements. Also discussed herein is the investigation of the electrical behaviour of a porous medium, with particular emphasis on porous medium conductivity determination. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Coherent manipulation of quantum spin states in a single molecular nanomagnet

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, Wolfgang

    The endeavour of quantum electronics is driven by one of the most ambitious technological goals of today's scientists: the realization of an operational quantum computer (http://qurope.eu). We started to address this goal by the new research field of molecular quantum spintronics. The building blocks are magnetic molecules, i.e. well-defined spin qubits. We will discuss this still largely unexplored field and present our first results: For example, using a molecular spin-transistor, we achieved the electronic read-out of the nuclear spin of an individual metal atom embedded in an SMM. We could show very long spin lifetimes (>10 s). Using the hyperfine Stark effect, which transforms electric fields into local effective magnetic fields, we could not only tune the resonance frequency by several MHz, but also perform coherent quantum manipulations on a single nuclear qubit faster than a μs by means of electrical fields only, establishing the individual addressability of identical nuclear qubits. Using three different microwave frequencies, we could implement a simple four-level Grover algorithm. S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Science 344, 1135 (2014).

  9. Band Gap Distortion in Semiconductors Strongly Driven by Intense Mid-Infrared Laser Fields

    NASA Astrophysics Data System (ADS)

    Kono, J.; Chin, A. H.

    2000-03-01

    Crystalline solids non-resonantly driven by intense time-periodic electric fields are predicted to exhibit unusual band-gap distortion.(e.g., Y. Yacoby, Phys. Rev. 169, 610 (1968); L.C.M. Miranda, Solid State Commun. 45, 783 (1983); J.Z. Kaminski, Acta Physica Polonica A 83, 495(1993).) Such non-perturbative effects have not been observed to date because of the unavoidable sample damage due to the very high intensity required using conventional lasers ( 1 eV photon energy). Here, we report the first clear evidence of laser-induced bandgap shrinkage in semiconductors under intense mid-infrared (MIR) laser fields. The use of long-wavelength light reduces the required intensity and prohibits strong interband absorption, thereby avoiding the damage problem. The significant sub-bandgap absorption persists only during the existence of the MIR laser pulse, indicating the virtual nature of the effect. We show that this particular example of non-perturbative behavior, known as the dynamical Franz-Keldysh effect, occurs when the effective ponderomotive potential energy is comparable to the photon energy of the applied field. This work was supported by ONR, NSF, JST and NEDO.

  10. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei

    2015-09-01

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm2, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  11. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiangyu, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn; Jiang, Tao; Sun, Zhuo

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current.more » The minimum contact area for the TENG to generate field emission is about 9 cm{sup 2}, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.« less

  12. The transverse magnetic field effect on steady-state solutions of the Bursian diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanik, Sourav; Chakrabarti, Nikhil; Ender, A. Ya.

    2015-04-15

    A study of steady-states of a planar vacuum diode driven by a cold electron beam (the Bursian diode) under an external transverse magnetic field is presented. The regime of no electrons turned around by a magnetic field only is under the consideration. The emitter electric field is evaluated as a characteristic function for the existence of solutions depending on the diode length, the applied voltage, and the magnetic field strength. At certain conditions, it is shown that a region of non-unique solutions exists in the Bursian diode when the magnetic field is absent. An expression for the maximum current transmittedmore » through the diode is derived. The external magnetic field is put forth to control fast electronic switches based on the Bursian diode.« less

  13. High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu

    2013-06-01

    A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.

  14. Ultrafast Graphene Light Emitters.

    PubMed

    Kim, Young Duck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Bae, Myung-Ho; Kim, Hyungsik; Seo, Dongjea; Choi, Heon-Jin; Kim, Suk Hyun; Nemilentsau, Andrei; Low, Tony; Tan, Cheng; Efetov, Dmitri K; Taniguchi, Takashi; Watanabe, Kenji; Shepard, Kenneth L; Heinz, Tony F; Englund, Dirk; Hone, James

    2018-02-14

    Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications.

  15. Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper

    NASA Astrophysics Data System (ADS)

    Komazaki, Y.; Hirama, H.; Torii, T.

    2015-04-01

    In this work, we describe the synthesis of novel electrically and magnetically dual-driven Janus particles for a handwriting-enabled twisting ball display via the microfluidic technique. One hemisphere of the Janus particles contains a charge control agent, which allows the display color to be controlled by applying a voltage and superparamagnetic nanoparticles, allows handwriting by applying a magnetic field to the display. We fabricated a twisting ball display utilizing these Janus particles and tested the electric color control and handwriting using a magnet. As a result, the display was capable of permitting handwriting with a small magnet in addition to conventional color control using an applied voltage (80 V). Handwriting performance was improved by increasing the concentration of superparamagnetic nanoparticles and was determined to be possible even when 80 V was applied across the electrodes for 4 wt. % superparamagnetic nanoparticles in one hemisphere. This improvement was impossible when the concentration was reduced to 2 wt. % superparamagnetic nanoparticles. The technology presented in our work can be applied to low-cost, lightweight, highly visible, and energy-saving electronic message boards and large whiteboards because the large-size display can be fabricated easily due to its simple structure.

  16. Electric Field and Plasma Density Observations of Irregularities and Plasma Instabilities in the Low Latitude Ionosphere Gathered by the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.

    2012-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. and are believed to cause scintillations of VHF radiowaves. We interpret these new observations in terms of fundamental plasma instabilities associated with the unstable, nighttime equatorial ionosphere.

  17. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  18. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  19. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    PubMed Central

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  20. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  1. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    PubMed

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  2. Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source

    NASA Astrophysics Data System (ADS)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire

    2000-11-01

    We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.

  3. USAF bioenvironmental noise data handbook. Volume 161: A/M32A-86 generator set, diesel engine driven

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-05-01

    The A/M32A-86 generator set is a diesel engine driven source of electrical power used for the starting of aircraft, and for ground maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at normal rated/loaded conditions. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 - 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.

  4. Geometric scalings for the electrostatically driven helical plasma state

    NASA Astrophysics Data System (ADS)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.

    2017-12-01

    A new plasma state has been investigated [Akcay et al., Phys. Plasmas 24, 052503 (2017)], with a uniform applied axial magnetic field in a periodic cylinder of length L = 2 π R , driven by helical electrodes. The drive is single helicity, depending on m θ + k z = m θ - n ζ , where ζ = z / R and k = - n / R . For strong ( m , n ) = ( 1 , 1 ) drive, the state was found to have a strong axial mean current density, with a mean-field safety factor q 0 ( r ) just above the pitch of the electrodes m / n = 1 in the interior. This state has possible applications to DC electrical transformers and tailoring of the current profile in tokamaks. We study two geometric issues of interest for these applications: (i) scaling of properties with the plasma length or aspect ratio and (ii) behavior for different helicities, specifically ( m , n ) = ( 1 , n ) for n > 1 and ( m , n ) = ( 2 , 1 ) .

  5. Investigation of GICs Associated with Large dB/dt Variations in Space

    NASA Astrophysics Data System (ADS)

    Dimitrakoudis, S.; Mann, I. R.; Murphy, K. R.; Rae, J.; Denton, M.; Milling, D. K.

    2016-12-01

    Geomagnetically induced currents (GICs) can be driven in terrestrial electrical power grids as a result of the induced electric fields arising from magnetic field changes driven in the coupled magnetosphere-ionosphere-ground system. Substorms are often hypothesised to be associated with the largest GIC effects on the ground, especially at higher latitudes. However, recent studies have suggested that other dayside phenomena such as sudden impulses and even ULF wave trains might also drive significant GICs. Using data from the CARISMA ground-based magnetometer network we examine the GIC response driven from a variety of magnetospheric processes. In particular we focus on events where large dB/dt is observed in-situ on GOES East and West satellites. Auroras, resulting from magnetospheric substorms, give us a dynamical view of sudden destabilizations in the nightside magnetosphere, of large spatial and temporal extent, that can drive large and potentially damaging geomagnetically induced currents (GICs) in terrestrial power grids. Since ground dB/dt can be used as a GIC proxy, we have surveyed GOES data since 2011 for the largest dB/dT events, and found some to be of the order of hundreds of nT in the span of a few seconds. These are observed in both the nightside and dayside, and, as such, we seek to establish connections to drivers affecting both sides of the terminator; tail activations and substorms on the nightside, large amplitude ULF waves, solar wind sudden impulses, and rapid changes in MIC current systems on the dayside. The short duration of these events, coupled with the use of conjugate satellite measurements and ground magnetometer arrays when possible, allows us to investigate their localization and the latitudinal extent of their effects and to further examine the potential role of non-substorm phenomena in generating GICs which may have adverse impacts in electrical power grids.

  6. First Observation of a Hall Effect in a Dusty Plasma: A Charged Granular Flow with Relevance to Planetary Rings

    NASA Astrophysics Data System (ADS)

    Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel

    2017-11-01

    The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.

  7. Giant lipid vesicles under electric field pulses assessed by non invasive imaging.

    PubMed

    Mauroy, Chloé; Portet, Thomas; Winterhalder, Martin; Bellard, Elisabeth; Blache, Marie-Claire; Teissié, Justin; Zumbusch, Andreas; Rols, Marie-Pierre

    2012-10-01

    We present experimental results regarding the effects of electric pulses on giant unilamellar vesicles (GUVs). We have used phase contrast and coherent anti-Stokes Raman scattering (CARS) microscopy as relevant optical approaches to gain insight into membrane changes under electropermeabilization. No addition of exogenous molecules (lipid analogue, fluorescent dye) was needed. Therefore, experiments were performed on pure lipid systems avoiding possible artefacts linked to their use. Structural membrane changes were assessed by loss of contrast inside the GUVs due to sucrose and glucose mixing. Our observations, performed at the single vesicle level, indicate these changes are under the control of the number of pulses and field intensity. Larger number of pulses enhances membrane alterations. A threshold value of the field intensity must be applied to allow exchange of molecules between GUVs and the external medium. This threshold depends on the size of the vesicles, the larger GUVs being affected at lower electric field strengths than the smaller ones. Our experimental data are well described by a simple model in which molecule entry is driven by direct exchange. The CARS microscopic study of the effect of pulse duration confirms that pulses, in the ms time range, induce loss of lipids and membrane deformations facing the electrodes. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Modeling of Magnetoelastic Nanostructures with a Fully-coupled Mechanical-Micromagnetic Model and Its Applications

    NASA Astrophysics Data System (ADS)

    Liang, Cheng-Yen

    Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes increasingly inaccurate for smaller in-plane nanoscale structures. In this dissertation, a fully-coupled finite element micromagnetic method is developed. The method deals with the micromagnetics, elastodynamics, and piezoelectric effects. The dynamics of magnetization, non-uniform strain distribution, and electric fields are iteratively solved. This more sophisticated modeling technique is critical for guiding the design process of the nanoscale strain-mediated multiferroic elements such as those needed in multiferroic systems. In this dissertation, we will study magnetic property changes (e.g., hysteresis, coercive field, and spin states) due to strain effects in nanostructures. in addition, a multiferroic memory device is studied. The electric-field-driven magnetization switching by applying voltage on patterned electrodes simulation in a nickel memory device is shown in this work. The deterministic control law for the magnetization switching in a nanoring with electric field applied to the patterned electrodes is investigated. Using the patterned electrodes, we show that strain-induced anisotropy is able to be controlled, which changes the magnetization deterministically in a nano-ring.

  9. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  10. Effects of multi-pulsed coaxial helicity injection on dynamics of spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.; Kagei, Y.

    2012-10-01

    The mechanism to rebuild the magnetic fields and to amplify the currents in the high-q spherical torus (ST) by the multi-pulsed coaxial helicity injection is investigated using the resistive nonlinear 3D-MHD simulations. During the driven phase, the dynamics is almost axisymmetric because the magnetic fluctuation level of n=0 mode compared with other higher modes is much larger. The toroidal current It is effectively amplified due to the merging of plasmoid ejected from the gun region with the pre-existing ST in the confinement region. The poloidal flux is not significantly amplified because the current sheet generated by the merging process does not rapidly decay. The negative toroidal flow vt is then induced in the direction of It around the central open flux column (OFC) region by inductive toroidal electric field Et (=-vzBr) because of the plasmoid ejection. The strong poloidal flow vz (=ErBt) is also driven from the gun to confinement region due to the Lorentz force. As the result of vz, the flow vortices associated with the dynamo effect are caused around the upper confinement region. During the decay phase, the closed field lines are regenerated due to the dissipation of magnetic fluctuations. The helical distortion of the OFC becomes small, and then ordered magnetic field structures without flows are built. Just after turning off the external electric field, the poloidal flow from the confinement to gun region is caused by the pressure gradients. The parallel current density λ concentrated in the OFC diffuses to the core region, but does not relax in the direction of the Taylor state due to the pressure gradients.

  11. Absence of Disorder-Driven Metal-Insulator Transitions in Simple Holographic Models

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Lucas, Andrew; Sachdev, Subir; Schalm, Koenraad

    2015-11-01

    We study electrical transport in a strongly coupled strange metal in two spatial dimensions at finite temperature and charge density, holographically dual to the Einstein-Maxwell theory in an asymptotically four-dimensional anti-de Sitter space spacetime, with arbitrary spatial inhomogeneity, up to mild assumptions including emergent isotropy. In condensed matter, these are candidate models for exotic strange metals without long-lived quasiparticles. We prove that the electrical conductivity is bounded from below by a universal minimal conductance: the quantum critical conductivity of a clean, charge-neutral plasma. Beyond nonperturbatively justifying mean-field approximations to disorder, our work demonstrates the practicality of new hydrodynamic insight into holographic transport.

  12. Exploring the energy landscape of resistive switching in antiferromagnetic S r3I r2O7

    NASA Astrophysics Data System (ADS)

    Williamson, Morgan; Shen, Shida; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim

    2018-04-01

    We study the resistive switching triggered by an applied electrical bias in the antiferromagnetic Mott insulator S r3I r2O7 . The switching was previously associated with an electric-field-driven structural transition. Here we use time-resolved measurements to probe the thermal activation behavior of the switching process and acquire information about the energy barrier associated with the transition. We quantify the changes in the energy-barrier height with respect to the applied bias and find a linear decrease of the barrier with increasing bias. Our observations support the potential of antiferromagnetic transition-metal oxides for spintronic applications.

  13. USAF bioenvironmental noise data handbook. Volume 162: MD-4MO generator set

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-05-01

    The MD-4MO generator set is an electric motor-driven source of electrical power used primarily for the starting of aircraft, and for ground maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at a normal rated condition. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference levels, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors.

  14. Investigation of continuous changes in the electric-field-induced electronic state in Bi(1-x)Ca(x)FeO(3-δ).

    PubMed

    Ikeda-Ohno, Atsushi; Lim, Ji Soo; Ohkochi, Takuo; Yang, Chan-Ho; Seidel, Jan

    2014-09-07

    Amongst the most interesting phenomena in correlated oxide systems are the doping-driven competitions between energetically similar ground states found in, e.g., high-Tc superconductors and colossal magnetoresistance manganites. It has recently been reported that doped multiferroics also exhibit this generic concept of phase competition. Here, we employ photoelectron emission microscopy (PEEM) to demonstrate evidence of systematic changes in the electronic structure of Bi(1-x)Ca(x)FeO(3-δ) treated by electrically controlled hole carrier doping, the outcome of which clearly correlates with the local modulation of electronic conductivity observed in the same material.

  15. Compact Superconducting Power Systems for Airborne Applications (Postprint)

    DTIC Science & Technology

    2009-01-01

    rotating machin- ery such as motors and alternators, is to maximize the magnet- ic flux density. This can be achieved by using a higher current...future systems could be driven to much higher power ratios, since the initial machine configuration was a homopolar inductor alternator‡ (HIA). A... Homopolar inductor alternator is an electrically symmetrical synchro- nous generator with a field winding that has a fixed magnetic position in relation to

  16. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonergan, Mark

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been themore » polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.« less

  17. Field-driven ion migration against dead-stop collisional braking

    NASA Astrophysics Data System (ADS)

    Grzesik, J. A.

    1988-02-01

    The steady-state migration of ions, driven by a uniform electric field against full-stop collisions, is investigated in some detail. The required phase-space distribution is obtained very easily from Boltzmann's equation together with explicit recognition of energy conservation and population balance for the stagnant ion pool. We go on to decompose this aggregate solution into ion tiers classified by the number of background impacts previously endured. Such a decomposition permits us to detect the presence of Poisson statistics (as to collision number) lurking within the composite, thermalized Maxwellian, and likewise also a multiple-scattering hierarchy having the maiden, first-flight distribution for its natural kernel. Scattering-sequence accounting, in particular, allows a quantitative (even though unwieldy) distinction to be made between ions of varying residence times. A model of this sort is motivated by the technique of ion implantation through sample immersion within a plasma at higher electric potential. Numerical consequences of the solution obtained here reveal that both ion density and average kinetic energy relax to their terminal values within just a few mean free-path lengths. Such modest scaling of plasma-sheath extent evidently carries a beneficial implication for the technological ease with which surface properties (such as metal corrosion resistance and hardness) remain open to improvement via ion bombardment.

  18. Inducing and manipulating magnetization in 2D zinc–oxide by strain and external voltage

    NASA Astrophysics Data System (ADS)

    Taivansaikhan, P.; Tsevelmaa, T.; Rhim, S. H.; Hong, S. C.; Odkhuu, D.

    2018-04-01

    Two-dimensional (2D) structures that exhibit intriguing magnetic phenomena such as perpendicular magnetic anisotropy and its switchable feature are of great interests in spintronics research. Herein, the density functional theory studies reveal the critical impacts of strain and external gating on vacancy-induced magnetism and its spin direction in a graphene-like single layer of zinc oxide (ZnO). In contrast to the pristine and defective ZnO with an O-vacancy, the presence of a Zn-vacancy induces significant magnetic moments to its first neighboring O and Zn atoms due to the charge deficit. We further predict that the direction of magnetization easy axis reverses from an in-plane to perpendicular orientation under a practically achievable biaxial compressive strain of only ~1–2% or applying an electric field by means of the charge density modulation. This magnetization reversal is mainly driven by the strain- and electric-field-induced changes in the spin–orbit coupled d states of the first-neighbor Zn atom to a Zn-vacancy. These findings open interesting prospects for exploiting strain and electric field engineering to manipulate magnetism and magnetization orientation of 2D materials.

  19. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-01

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  20. Electroosmotic flow of biorheological micropolar fluids through microfluidic channels

    NASA Astrophysics Data System (ADS)

    Chaube, Mithilesh Kumar; Yadav, Ashu; Tripathi, Dharmendra; Bég, O. Anwar

    2018-05-01

    An analytical analysis is presented in this work to assess the influence of micropolar nature of fluids in fully developed flow induced by electrokinetically driven peristaltic pumping through a parallel plate microchannel. The walls of the channel are assumed as sinusoidal wavy to analyze the peristaltic flow nature. We consider that the wavelength of the wall motion is much larger as compared to the channel width to validate the lubrication theory. To simplify the Poisson Boltzmann equation, we also use the Debye-Hückel linearization. We consider governing equation for micropolar fluid in absence of body force and couple effects however external electric field is employed. The solutions for axial velocity, spin velocity, flow rate, pressure rise, and stream functions subjected to given physical boundary conditions are computed. The effects of pertinent parameters like Debye length and Helmholtz-Smoluchowski velocity which characterize the EDL phenomenon and external electric field, coupling number and micropolar parameter which characterize the micropolar fluid behavior, on peristaltic pumping are discussed through the illustrations. The results show that peristaltic pumping may alter by applying external electric fields. This model can be used to design and engineer the peristalsis-lab-on-chip and micro peristaltic syringe pumps for biomedical applications.

  1. Optimization of Photospheric Electric Field Estimates for Accurate Retrieval of Total Magnetic Energy Injection

    NASA Astrophysics Data System (ADS)

    Lumme, E.; Pomoell, J.; Kilpua, E. K. J.

    2017-12-01

    Estimates of the photospheric magnetic, electric, and plasma velocity fields are essential for studying the dynamics of the solar atmosphere, for example through the derivative quantities of Poynting and relative helicity flux and using the fields to obtain the lower boundary condition for data-driven coronal simulations. In this paper we study the performance of a data processing and electric field inversion approach that requires only high-resolution and high-cadence line-of-sight or vector magnetograms, which we obtain from the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO). The approach does not require any photospheric velocity estimates, and the lacking velocity information is compensated for using ad hoc assumptions. We show that the free parameters of these assumptions can be optimized to reproduce the time evolution of the total magnetic energy injection through the photosphere in NOAA AR 11158, when compared to recent state-of-the-art estimates for this active region. However, we find that the relative magnetic helicity injection is reproduced poorly, reaching at best a modest underestimation. We also discuss the effect of some of the data processing details on the results, including the masking of the noise-dominated pixels and the tracking method of the active region, neither of which has received much attention in the literature so far. In most cases the effect of these details is small, but when the optimization of the free parameters of the ad hoc assumptions is considered, a consistent use of the noise mask is required. The results found in this paper imply that the data processing and electric field inversion approach that uses only the photospheric magnetic field information offers a flexible and straightforward way to obtain photospheric magnetic and electric field estimates suitable for practical applications such as coronal modeling studies.

  2. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    PubMed

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  3. Quantum Hall effect in ac driven graphene: From the half-integer to the integer case

    NASA Astrophysics Data System (ADS)

    Ding, Kai-He; Lim, Lih-King; Su, Gang; Weng, Zheng-Yu

    2018-01-01

    We theoretically study the quantum Hall effect (QHE) in graphene with an ac electric field. Based on the tight-binding model, the structure of the half-integer Hall plateaus at σxy=±(n +1 /2 ) 4 e2/h (n is an integer) gets qualitatively changed with the addition of new integer Hall plateaus at σxy=±n (4 e2/h ) starting from the edges of the band center regime towards the band center with an increasing ac field. Beyond a critical field strength, a Hall plateau with σxy=0 can be realized at the band center, hence fully restoring a conventional integer QHE with particle-hole symmetry. Within a low-energy Hamiltonian for Dirac cones merging, we show a very good agreement with the tight-binding calculations for the Hall plateau transitions. We also obtain the band structure for driven graphene ribbons to provide a further understanding on the appearance of the new Hall plateaus, showing a trivial insulator behavior for the σxy=0 state. In the presence of disorder, we numerically study the disorder-induced destruction of the quantum Hall states in a finite driven sample and find that qualitative features known in the undriven disordered case are maintained.

  4. Typical values of the electric drift E × B/B2 in the inner radiation belt and slot region as determined from Van Allen Probe measurements

    NASA Astrophysics Data System (ADS)

    Lejosne, Solène; Mozer, F. S.

    2016-12-01

    The electric drift E × B/B2 plays a fundamental role for the description of plasma flow and particle acceleration. Yet it is not well-known in the inner belt and slot region because of a lack of reliable in situ measurements. In this article, we present an analysis of the electric drifts measured below L 3 by both Van Allen Probes A and B from September 2012 to December 2014. The objective is to determine the typical components of the equatorial electric drift in both radial and azimuthal directions. The dependences of the components on radial distance, magnetic local time, and geographic longitude are examined. The results from Van Allen Probe A agree with Van Allen Probe B. They show, among other things, a typical corotation lag of the order of 5 to 10% below L 2.6, as well as a slight radial transport of the order of 20 m s-1. The magnetic local time dependence of the electric drift is consistent with that of the ionosphere wind dynamo below L 2 and with that of a solar wind-driven convection electric field above L 2. A secondary longitudinal dependence of the electric field is also found. Therefore, this work also demonstrates that the instruments on board Van Allen Probes are able to perform accurate measurements of the electric drift below L 3.

  5. Automated electric valve for electrokinetic separation in a networked microfluidic chip.

    PubMed

    Cui, Huanchun; Huang, Zheng; Dutta, Prashanta; Ivory, Cornelius F

    2007-02-15

    This paper describes an automated electric valve system designed to reduce dispersion and sample loss into a side channel when an electrokinetically mobilized concentration zone passes a T-junction in a networked microfluidic chip. One way to reduce dispersion is to control current streamlines since charged species are driven along them in the absence of electroosmotic flow. Computer simulations demonstrate that dispersion and sample loss can be reduced by applying a constant additional electric field in the side channel to straighten current streamlines in linear electrokinetic flow (zone electrophoresis). This additional electric field was provided by a pair of platinum microelectrodes integrated into the chip in the vicinity of the T-junction. Both simulations and experiments of this electric valve with constant valve voltages were shown to provide unsatisfactory valve performance during nonlinear electrophoresis (isotachophoresis). On the basis of these results, however, an automated electric valve system was developed with improved valve performance. Experiments conducted with this system showed decreased dispersion and increased reproducibility as protein zones isotachophoretically passed the T-junction. Simulations of the automated electric valve offer further support that the desired shape of current streamlines was maintained at the T-junction during isotachophoresis. Valve performance was evaluated at different valve currents based on statistical variance due to dispersion. With the automated control system, two integrated microelectrodes provide an effective way to manipulate current streamlines, thus acting as an electric valve for charged species in electrokinetic separations.

  6. The electric field in capacitively coupled RF discharges: a smooth step model that includes thermal and dynamic effects

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter

    2015-12-01

    The electric field in radio-frequency driven capacitively coupled plasmas (RF-CCP) is studied, taking thermal (finite electron temperature) and dynamic (finite electron mass) effects into account. Two dimensionless numbers are introduced, the ratios ε ={λ\\text{D}}/l of the electron Debye length {λ\\text{D}} to the minimum plasma gradient length l (typically the sheath thickness) and η ={ω\\text{RF}}/{ω\\text{pe}} of the RF frequency {ω\\text{RF}} to the electron plasma frequency {ω\\text{pe}} . Assuming both numbers small but finite, an asymptotic expansion of an electron fluid model is carried out up to quadratic order inclusively. An expression for the electric field is obtained which yields (i) the space charge field in the sheath, (ii) the generalized Ohmic and ambipolar field in the plasma, and (iii) a smooth interpolation for the transition in between. The new expression is a direct generalization of the Advanced Algebraic Approximation (AAA) proposed by the same author (2009 J. Phys. D: Appl. Phys. 42 194009), which can be recovered for η \\to 0 , and of the established Step Model (SM) by Godyak (1976 Sov. J. Plasma Phys. 2 78), which corresponds to the simultaneous limits η \\to 0 , ε \\to 0 . A comparison of the hereby proposed Smooth Step Model (SSM) with a numerical solution of the full dynamic problem proves very satisfactory.

  7. Baseline tests of the Kordesh hybrid passenger vehicle

    NASA Technical Reports Server (NTRS)

    Soltis, R. F.; Bozek, J. M.; Denington, R. J.; Dustin, M. O.

    1978-01-01

    Performance test results are presented for a four-passenger Austin A40 sedan that was converted to a heat-engine-alternator-and battery-powered hybrid. It is propelled by a conventional, gasoline-fueled, heat-engine-driven alternator and a traction pack powering a series-wound, 10 hp direct-current electric drive motor. The 16 hp gasoline engine drives the 7 kilowatt alternator, which provides electrical power to the drive motor or to the 96 volt traction battery through a rectifier. The propulsion battery consists of eight 12 volt batteries connected in series. The electric motor is coupled to a four-speed standard transmission, which drives the rear wheels. Power to the motor is controlled by a three-step foot throttle, which actuates relays that control armature current and field excitation. Conventional hydraulic brakes are used.

  8. Deconstructing field-induced ketene isomerization through Lagrangian descriptors.

    PubMed

    Craven, Galen T; Hernandez, Rigoberto

    2016-02-07

    The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.

  9. Thermoplastic-based conductive composites containing multi-wall carbon nanotubes aligned under the application of external electric fields

    NASA Astrophysics Data System (ADS)

    Osazuwa, Osayuki

    The objective of this thesis is to prepare thermoplastic/multi-wall carbon nanotubes (MWCNTs) and to apply external alternating current (AC) electric fields to achieve enhanced conductivity and dielectric properties. The first part of the thesis focuses on preparing polyolefin-based composites containing welldispersed MWCNTs. MWCNTs are functionalized with a hyperbranched polyethylene (HBPE) using a non-covalent, non-specific functionalization approach and melt compounded with an ethylene-octene copolymer (EOC) matrix. The improved filler dispersion in the functionalized EOC/MWCNT composite results in higher elongation at break compared to the non-functionalized composite. However, the electrical percolation threshold and the ultimate conductivity of the composites are not affected considerably, suggesting that this functionalization approach leaves the inherent properties of the nanotubes intact. EOC/HBPE-functionalized MWCNT composites are further subjected to external AC electric fields (35 -- 212 kV/m), which induce the formation of aligned columnar structures, as evidenced by Scanning Electron Microscopy. Experimentally acquired resistivity data are used to derive correlations between the characteristic insulator-to-conductor transition times of the composites and the electric field strength (E), polymer viscosity (eta) and MWCNT volume fraction (φ). A criterion for the selection of (eta, E, φ) conditions that enable MWCNT assembly under an electric field controlled regime (minimal Brownian motion-driven aggregation effects) is developed. The dielectric properties of the solidified aligned EOC/MWCNT composites are further studied using dielectric spectroscopy. Annealing of the composites at 160 °C results in the formation of interconnected structures, whereas electrification, using AC field of 71 and 212 kV/m induces the formation of aligned columnar structures. The electrified and annealed composites have increased real and imaginary permittivity compared to the as-compounded composite, resulting in improved conductivity and storage capacity. An equivalent circuit model is fitted to the experimentally obtained impedance data in order to correlate the effects of electric field and processing time to the dielectric characteristics of the treated composites. Finally poly(ethylene succinate) (PESu) composites containing well-dispersed MWCNT were prepared by an in-situ polymerization method. Composite electrification results in improvements in the electrical conductivity by up to 12 orders of magnitude, and a retention of high conductivity in the solidified state.

  10. Design of pressure-driven microfluidic networks using electric circuit analogy.

    PubMed

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  11. A theoretical investigation on the parametric instability excited by X-mode polarized electromagnetic wave at Tromsø

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Cannon, Patrick; Zhou, Chen; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu

    2016-04-01

    Recent ionospheric modification experiments performed at Tromsø, Norway, have indicated that X-mode pump wave is capable of stimulating high-frequency enhanced plasma lines, which manifests the excitation of parametric instability. This paper investigates theoretically how the observation can be explained by the excitation of parametric instability driven by X-mode pump wave. The threshold of the parametric instability has been calculated for several recent experimental observations at Tromsø, illustrating that our derived equations for the excitation of parametric instability for X-mode heating can explain the experimental observations. According to our theoretical calculation, a minimum fraction of pump wave electric field needs to be directed along the geomagnetic field direction in order for the parametric instability threshold to be met. A full-wave finite difference time domain simulation has been performed to demonstrate that a small parallel component of pump wave electric field can be achieved during X-mode heating in the presence of inhomogeneous plasma.

  12. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  13. Modifications to the edge current profile with auxiliary edge current drive and improved confinement in a reversed-field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, B. E.; Biewer, T. M.; Chattopadhyay, P. K.

    2000-09-01

    Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R. N. Dexter, D. W. Kerst, T. W. Lovell et al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current-driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces fluctuations and transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electricmore » field and the electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself. (c) 2000 American Institute of Physics.« less

  14. Amplification due to two-stream instability of self-electric and magnetic fields of an ion beam propagating in background plasma

    NASA Astrophysics Data System (ADS)

    Tokluoglu, Erinc K.; Kaganovich, Igor D.; Carlsson, Johan A.; Hara, Kentaro; Startsev, Edward A.

    2018-05-01

    Propagation of charged particle beams in background plasma as a method of space charge neutralization has been shown to achieve a high degree of charge and current neutralization and therefore enables nearly ballistic propagation and focusing of charged particle beams. Correspondingly, the use of plasmas for propagation of charged particle beams has important applications for transport and focusing of intense particle beams in inertial fusion and high energy density laboratory plasma physics. However, the streaming of beam ions through a background plasma can lead to the development of two-stream instability between the beam ions and the plasma electrons. The beam electric and magnetic fields enhanced by the two-stream instability can lead to defocusing of the ion beam. Using particle-in-cell simulations, we study the scaling of the instability-driven self-electromagnetic fields and consequent defocusing forces with the background plasma density and beam ion mass. We identify plasma parameters where the defocusing forces can be reduced.

  15. Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.

    PubMed

    Claudepierre, S G; Toffoletto, F R; Wiltberger, M

    2016-01-01

    We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.

  16. Fibronectin module FN(III)9 adsorption at contrasting solid model surfaces studied by atomistic molecular dynamics.

    PubMed

    Kubiak-Ossowska, Karina; Mulheran, Paul A; Nowak, Wieslaw

    2014-08-21

    The mechanism of human fibronectin adhesion synergy region (known as integrin binding region) in repeat 9 (FN(III)9) domain adsorption at pH 7 onto various and contrasting model surfaces has been studied using atomistic molecular dynamics simulations. We use an ionic model to mimic mica surface charge density but without a long-range electric field above the surface, a silica model with a long-range electric field similar to that found experimentally, and an Au {111} model with no partial charges or electric field. A detailed description of the adsorption processes and the contrasts between the various model surfaces is provided. In the case of our model silica surface with a long-range electrostatic field, the adsorption is rapid and primarily driven by electrostatics. Because it is negatively charged (-1e), FN(III)9 readily adsorbs to a positively charged surface. However, due to its partial charge distribution, FN(III)9 can also adsorb to the negatively charged mica model because of the absence of a long-range repulsive electric field. The protein dipole moment dictates its contrasting orientation at these surfaces, and the anchoring residues have opposite charges to the surface. Adsorption on the model Au {111} surface is possible, but less specific, and various protein regions might be involved in the interactions with the surface. Despite strongly influencing the protein mobility, adsorption at these model surfaces does not require wholesale FN(III)9 conformational changes, which suggests that the biological activity of the adsorbed protein might be preserved.

  17. Developing a compact toroid injector in the ThermoElectric driven Liquid metal plasma facing Structures device

    NASA Astrophysics Data System (ADS)

    Christenson, Michael; Szott, Matthew; Kalathiparambil, Kishor; Sovinec, Carl; Ruzic, David

    2016-10-01

    The ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) device at the University of Illinois is a theta-pinched, plasma-material interaction test stand used to simulate extreme events in the edge and divertor regions of a tokamak plasma. Previous measurements of the electron and ion temperatures have shown that the isotropic heat load on target ranges between 0.1 and 0.2 MJ m-2 over a pulse lasting 0.2 ms. While this compares well to the heat loads from Type 1 ELMs in larger toroidal devices, it is still much less than the energy deposition from Type 1 ELMs expected in ITER, which are in excess of 1 MJ m-2. To this end, a compact toroid (CT) injector has been proposed as a modification to the existing TELS device. By using an externally applied bias field to force reconnection at the muzzle of the coaxial plasma accelerator source that drives ionization, NIMROD MHD simulations have shown a peak magnetic flux of 3.5 mWb is reached 0.025 ms into the pulse - more than sufficient to form a CT. Early calorimetry and magnetic field measurements indicate that a new plasma structure has been formed in the magnetized coaxial plasma source. This work presents the current results of CT generation with respect to the bias field strength as well as the coaxial source geometry. DOE OFES DE-SC0008587, DE-SC0008658, DE-FG02-99ER54515.

  18. Volumetric HiLo microscopy employing an electrically tunable lens.

    PubMed

    Philipp, Katrin; Smolarski, André; Koukourakis, Nektarios; Fischer, Andreas; Stürmer, Moritz; Wallrabe, Ulrike; Czarske, Jürgen W

    2016-06-27

    Electrically tunable lenses exhibit strong potential for fast motion-free axial scanning in a variety of microscopes. However, they also lead to a degradation of the achievable resolution because of aberrations and misalignment between illumination and detection optics that are induced by the scan itself. Additionally, the typically nonlinear relation between actuation voltage and axial displacement leads to over- or under-sampled frame acquisition in most microscopic techniques because of their static depth-of-field. To overcome these limitations, we present an Adaptive-Lens-High-and-Low-frequency (AL-HiLo) microscope that enables volumetric measurements employing an electrically tunable lens. By using speckle-patterned illumination, we ensure stability against aberrations of the electrically tunable lens. Its depth-of-field can be adjusted a-posteriori and hence enables to create flexible scans, which compensates for irregular axial measurement positions. The adaptive HiLo microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 μm and sub-micron lateral resolution over the full scanning range. Proof of concept measurements at home-built specimens as well as zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are shown.

  19. Particle Segregation in a Flowing Suspension Subject to High-Gradient Strong Electric Fields

    NASA Technical Reports Server (NTRS)

    Acrivos, Andreas; Qiu, Zhiyong; Khusid, Boris; Markarian, Nikolai

    2002-01-01

    The widespread use of electro-hydrodynamic devices and processes emphasizes a critical need for developing a comprehensive predictive theory capable of improving our fundamental understanding of the behavior of a suspension subject to an AC electric field and shear, and of facilitating the design and optimization of such devices. The currently favored approach to the qualitative interpretation of the AC field driven manipulation of suspensions is based on a model which considers only the force exerted on a single particle by an external field and neglects the field-induced and hydrodynamic interparticle interactions both being inversely proportional to the interparticle distance raised to the power three. On the other hand, the purpose of the field-induced separation is to concentrate particles in certain regions of a device. This clearly raises the fundamental question regarding the extent to which we can neglect these slow decaying electrical and hydrodynamic collective interactions and rely on the predictions of a single-particle model. Another important issue that still remains open is how to characterize the polarization of a particle exposed to a strong electric field. The presentation will address both these questions. Experiments were conducted in a parallel-plate channel in which a 10(exp -3) (v/v) suspension of heavy, positively polarized Al2O3 spheres was exposed to an AC field under conditions such that the field lines were arranged in the channel cross-section perpendicular to the streamlines of the main flow. To reduce the effects of the gravitational settling of the particles, the channel was slowly rotated (4 rpm) around a horizontal axis. Following the application of a high-gradient strong AC field (approx. kV/mm), the particles were found to move towards both the high-voltage (HV) and grounded (GR) electrodes and to form 'bristles' along their edges.

  20. Advances in Electrically Driven Thermal Management

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2017-01-01

    Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.

  1. Modeling Geomagnetically Induced Currents From Magnetometer Measurements: Spatial Scale Assessed With Reference Measurements

    NASA Astrophysics Data System (ADS)

    Butala, Mark D.; Kazerooni, Maryam; Makela, Jonathan J.; Kamalabadi, Farzad; Gannon, Jennifer L.; Zhu, Hao; Overbye, Thomas J.

    2017-10-01

    Solar-driven disturbances generate geomagnetically induced currents (GICs) that can result in power grid instability and, in the most extreme cases, even failure. Magnetometers provide direct measurements of the geomagnetic disturbance (GMD) effect on the surface magnetic field and GIC response can be determined from the power grid topology and engineering parameters. This paper considers this chain of models: transforming surface magnetic field disturbance to induced surface electric field through an electromagnetic transfer function and, then, induced surface electric field to GIC using the PowerWorld simulator to model a realistic power grid topology. Comparisons are made to transformer neutral current reference measurements provided by the American Transmission Company. Three GMD intervals are studied, with the Kp index reaching 8- on 2 October 2013, 7 on 1 June 2013, and 6- on 9 October 2013. Ultimately, modeled to measured GIC correlations are analyzed as a function of magnetometer to GIC sensor distance. Results indicate that modeling fidelity during the three studied GMD intervals is strongly dependent on both magnetometer to substation transformer baseline distance and GMD intensity.

  2. Associating ground magnetometer observations with current or voltage generators

    NASA Astrophysics Data System (ADS)

    Hartinger, M. D.; Xu, Z.; Clauer, C. R.; Yu, Y.; Weimer, D. R.; Kim, H.; Pilipenko, V.; Welling, D. T.; Behlke, R.; Willer, A. N.

    2017-07-01

    A circuit analogy for magnetosphere-ionosphere current systems has two extremes for drivers of ionospheric currents: ionospheric electric fields/voltages constant while current/conductivity vary—the "voltage generator"—and current constant while electric field/conductivity vary—the "current generator." Statistical studies of ground magnetometer observations associated with dayside Transient High Latitude Current Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm: some studies associate THLCS with voltage generators, others with current generators. We argue that most of this contradiction arises from two assumptions used to interpret ground magnetometer observations: (1) measurements made at fixed position relative to the THLCS field-aligned current and (2) negligible auroral precipitation contributions to ionospheric conductivity. We use observations and simulations to illustrate how these two assumptions substantially alter expectations for magnetic perturbations associated with either a current or a voltage generator. Our results demonstrate that before interpreting ground magnetometer observations of THLCS in the context of current/voltage generators, the location of a ground magnetometer station relative to the THLCS field-aligned current and the location of any auroral zone conductivity enhancements need to be taken into account.

  3. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    A neutral polymer phase system consisting of 7.5 percent dextran 40/4.5 percent PEG 6, 0.11 M Na phosphate, 5 percent fetal bovine serum (FBS), pH 7.5, was developed which has a high phase droplet electrophoretic mobility and retains cell viability over many hours. In this and related systems, the drop mobility was a linear function of drop size, at least in the range 4-30 micron diameter. Applications of and electric field of 4.5 v/cm to a system containing 10 percent v/v bottom phase cleared the system more than two orders of magnitude faster than in the absence of the field. At higher bottom phase concentrations a secondary phenomenon intervened in the field driven separations which resulted in an increase in turbidity after clearing had commenced. The increase was associated with a dilution of the phase system in the chamber. The effect depended on the presence of the electric field. It may be due to electroosmotic flow of buffer through the Amicon membranes into the sample chamber and flow of phase system out into the rinse stream. Strategies to eliminate this problem are proposed.

  4. Squirming motion of baby skyrmions in nematic fluids.

    PubMed

    Ackerman, Paul J; Boyle, Timothy; Smalyukh, Ivan I

    2017-09-22

    Skyrmions are topologically protected continuous field configurations that cannot be smoothly transformed to a uniform state. They behave like particles and give origins to the field of skyrmionics that promises racetrack memory and other technological applications. Unraveling the non-equilibrium behavior of such topological solitons is a challenge. We realize skyrmions in a chiral liquid crystal and, using numerical modeling and polarized video microscopy, demonstrate electrically driven squirming motion. We reveal the intricate details of non-equilibrium topology-preserving textural changes driving this behavior. Direction of the skyrmion's motion is robustly controlled in a plane orthogonal to the applied field and can be reversed by varying frequency. Our findings may spur a paradigm of soliton dynamics in soft matter, with a rich interplay between topology, chirality, and orientational viscoelasticity.A skyrmion is a topological object originally introduced to model elementary particles and a baby skyrmion is its two-dimensional counterpart which can be realized as a defect in liquid crystals. Here the authors show that an electric field can drive uniform motion of baby skyrmions in liquid crystals.

  5. Polarity-sensitive transient patterned state in a twisted nematic liquid crystal driven by very low frequency fields.

    PubMed

    Krishnamurthy, K S; Kumar, Pramoda; Kumar, M Vijay

    2013-02-01

    We report, for a rodlike nematic liquid crystal with small positive dielectric and conductivity anisotropies, and in the 90°-twisted configuration, low frequency (<2 Hz) square wave electric field generated Carr-Helfrich director modulation appearing transiently over a few seconds at each polarity reversal and vanishing almost completely under steady field conditions. Significantly, the instability is polarity sensitive, with the maximum distortion localized in the vicinity of the negative electrode, rather than in the midplane of the layer. This is revealed by the wave vector alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Besides the Carr-Helfrich mechanism, quadrupolar flexoelectric polarization arising under electric field gradient is strongly indicated as being involved in the development of the transient periodic order. Similar transient instability is also observed in other nematic compounds with varying combinations of dielectric and conductivity anisotropies, showing its general nature. The study also deals with various characteristics of the electro-optic effect that emerge from the temporal variation of optical response for different driving voltages, frequencies, and temperatures.

  6. 75 FR 11164 - Pine Prairie Energy Center, LLC; Notice of Intent to Prepare an Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ...) electric motor driven compressors in lieu of four previously authorized, as yet unbuilt, 4,700 hp natural gas engine driven compressors; and Two additional 5,750 hp electric motor drive compressor units. In... Energy Center, LLC; Notice of Intent to Prepare an Environmental Assessment for the Proposed Electric...

  7. Design, economic and system considerations of large wind-driven generators

    NASA Technical Reports Server (NTRS)

    Jorgensen, G. E.; Lotker, M.; Meier, R. C.; Brierley, D.

    1976-01-01

    The increased search for alternative energy sources has lead to renewed interest and studies of large wind-driven generators. This paper presents the results and considerations of such an investigation. The paper emphasizes the concept selection of wind-driven generators, system optimization, control system design, safety aspects, economic viability on electric utility systems and potential electric system interfacing problems.

  8. Runaway of energetic test ions in a toroidal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eilerman, S., E-mail: eilerman@wisc.edu; Anderson, J. K.; Sarff, J. S.

    2015-02-15

    Ion runaway in the presence of a large-scale, reconnection-driven electric field has been conclusively measured in the Madison Symmetric Torus reversed-field pinch (RFP). Measurements of the acceleration of a beam of fast ions agree well with test particle and Fokker-Planck modeling of the runaway process. However, the runaway mechanism does not explain all measured ion heating in the RFP, particularly previous measurements of strong perpendicular heating. It is likely that multiple energization mechanisms occur simultaneously and with differing significance for magnetically coupled thermal ions and magnetically decoupled tail and beam ions.

  9. Auroral vortex street formed by the magnetosphere-ionosphere coupling instability

    NASA Astrophysics Data System (ADS)

    Hiraki, Y.

    2015-02-01

    By performing three-dimensional magnetohydrodynamic simulations including Alfvén eigenmode perturbations most unstable to the ionospheric feedback effects, we examined the auroral vortex street that often appears just before substorm onset. We found that an initially placed arc splits, intensifies, and rapidly deforms into a vortex street. We also found that there is a critical convection electric field for growth of the Alfvén eigenmodes. The vortex street is shown to be a consequence of coupling between the magnetospheric Alfvén waves carrying field-aligned currents and the ionospheric density waves driven by Pedersen/Hall currents.

  10. Elimination of image flicker in a fringe-field switching liquid crystal display by applying a bipolar voltage wave.

    PubMed

    Oh, Seung-Won; Park, Jun-Hee; Lee, Ji-Hoon; Yoon, Tae-Hoon

    2015-09-07

    Recently, low-frequency driving of liquid crystal display (LCD) panels to minimize power consumption has drawn much attention. In the case in which an LCD panel is driven by a fringe-field at a low frequency, the image flickering phenomenon occurs when the sign of the applied electric field is reversed. We investigated image flickering induced by the flexoelectric effect in a fringe-field switching (FFS) liquid crystal cell in terms of the transmittance difference between frames and the ripple phenomenon. Experimental results show that image flicker due to transmittance difference can be eliminated completely and that the ripple phenomena can be reduced significantly by applying a bipolar voltage wave to the FFS cell.

  11. Factors affecting particle collection by electro-osmosis in microfluidic systems.

    PubMed

    Mohtar, Mohd Nazim; Hoettges, Kai F; Hughes, Michael P

    2014-02-01

    Alternating-current electro-osmosis, a phenomenon of fluid transport due to the interaction between an electrical double layer and a tangential electric field, has been used both for inducing fluid movement and for the concentration of particles suspended in the fluid. This offers many advantages over other phenomena used to trap particles, such as placing particles at an electrode centre rather than an edge; benefits of scale, where electrodes hundreds of micrometers across can trap particles from the molecules to cells at the same rate; and a trapping volume limited by the vortex height, a phenomenon thus far unstudied. In this paper, the collection of particles due to alternating-current electro-osmosis driven collection is examined for a range of particle concentrations, inter-electrode gap widths, chamber heights and media viscosity and density. A model of collection behaviour is described where particle collection over time is governed by two processes, one driven by the vortices and the other by sedimentation, allowing the determination of the maximum height of vortex-driven collection, but also indicates how trapping is limited by high particle concentrations and fluid velocities. The results also indicate that viscosity, rather than density, is a significant governing factor in determining the trapping behaviour of particles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Negative index of refraction in a four-level system with magnetoelectric cross coupling and local field corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, F.

    2011-07-15

    This research focuses on a coherently driven four-level atomic medium with the aim of inducing a negative index of refraction while taking into consideration local field corrections as well as magnetoelectric cross coupling (i.e.,chirality) within the material's response functions. Two control fields are used to render the medium transparent for a probe field which simultaneously couples to an electric and a magnetic dipole transition, thus allowing one to test the permittivity and permeability of the material at the same time. Numerical simulations show that a negative index of refraction with low absorption can be obtained for a range of probemore » detunings while depending on number density and the ratio between the intensities of the control fields.« less

  13. Entanglement entropy and entanglement spectrum of Bi1-xSbx (111) bilayers.

    PubMed

    Brzezińska, Marta; Bieniek, Maciej; Woźniak, Tomasz; Potasz, Paweł; Wójs, Arkadiusz

    2018-02-14

    We study topological properties of Bi$_{1-x}$Sb$_{x}$ bilayers in the (111) plane using entanglement measures. Electronic structures are investigated within multi-orbital tight-binding model and structural stability is confirmed through first-principles calculations. Topologically non-trivial nature of bismuth bilayer is proved by the presence of spectral flow in the entanglement spectrum. We consider topological phase transitions driven by a composition change x, an applied external electric field in Bi bilayer and strain in Sb bilayer. Composition- and strain-induced phase transitions reveal a finite discontinuity in the entanglement entropy. This quantity remains a continuous function of the electric field strength, but shows a finite discontinuity in the first derivative. We relate the difference in behavior of the entanglement entropy to the breaking of inversion symmetry in the last case. © 2018 IOP Publishing Ltd.

  14. Entanglement entropy and entanglement spectrum of Bi1-x Sb x (1 1 1) bilayers.

    PubMed

    Brzezińska, Marta; Bieniek, Maciej; Woźniak, Tomasz; Potasz, Paweł; Wójs, Arkadiusz

    2018-02-28

    We study topological properties of Bi 1-x Sb x bilayers in the (1 1 1) plane using entanglement measures. Electronic structures are investigated within multi-orbital tight-binding model and structural stability is confirmed through first-principles calculations. The topologically non-trivial nature of the bismuth bilayer is proved by the presence of spectral flow in the entanglement spectrum. We consider topological phase transitions driven by a composition change x, an applied external electric field in Bi bilayers and strain in Sb bilayers. Composition- and strain-induced phase transitions reveal a finite discontinuity in the entanglement entropy. This quantity remains a continuous function of the electric field strength, but shows a finite discontinuity in the first derivative. We relate the difference in behavior of the entanglement entropy to the breaking of inversion symmetry in the last case.

  15. Multiple caloric effects in (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 ferroelectric ceramic

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2015-07-01

    Multiple caloric effects have been investigated for Fe-doped bulk (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 (BCZTO-Fe) ferroelectric ceramic. Indirect predictions were made using Maxwell's relations in conjunction with data from experimental observations. It was revealed that bulk BCZTO-Fe has huge untapped potential for solid-state refrigeration. A peak electrocaloric effect of 0.45 K (347 K) was predicted for 0-3 kV.mm-1 electric field, significantly higher than other BCZTO based materials. A maximum elastocaloric cooling of 1.4 K (298 K) was achieved for applied stress of 0-200 MPa. Finally, an unforeseen component of electric field driven caloric effect has been reported as inverse piezocaloric effect, with a maximum temperature change of 0.28 K (298 K).

  16. Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires

    NASA Astrophysics Data System (ADS)

    Du, Haifeng; Liang, Dong; Jin, Chiming; Kong, Lingyao; Stolt, Matthew J.; Ning, Wei; Yang, Jiyong; Xing, Ying; Wang, Jian; Che, Renchao; Zang, Jiadong; Jin, Song; Zhang, Yuheng; Tian, Mingliang

    2015-07-01

    Magnetic skyrmions are topologically stable whirlpool-like spin textures that offer great promise as information carriers for future spintronic devices. To enable such applications, particular attention has been focused on the properties of skyrmions in highly confined geometries such as one-dimensional nanowires. Hitherto, it is still experimentally unclear what happens when the width of the nanowire is comparable to that of a single skyrmion. Here, we achieve this by measuring the magnetoresistance in ultra-narrow MnSi nanowires. We observe quantized jumps in magnetoresistance versus magnetic field curves. By tracking the size dependence of the jump number, we infer that skyrmions are assembled into cluster states with a tunable number of skyrmions, in agreement with the Monte Carlo simulations. Our results enable an electric reading of the number of skyrmions in the cluster states, thus laying a solid foundation to realize skyrmion-based memory devices.

  17. Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock.

    PubMed

    Chen, L-J; Wang, S; Wilson, L B; Schwartz, S; Bessho, N; Moore, T; Gershman, D; Giles, B; Malaspina, D; Wilder, F D; Ergun, R E; Hesse, M; Lai, H; Russell, C; Strangeway, R; Torbert, R B; F-Vinas, A; Burch, J; Lee, S; Pollock, C; Dorelli, J; Paterson, W; Ahmadi, N; Goodrich, K; Lavraud, B; Le Contel, O; Khotyaintsev, Yu V; Lindqvist, P-A; Boardsen, S; Wei, H; Le, A; Avanov, L

    2018-06-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  18. Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wang, S.; Wilson, L. B.; Schwartz, S.; Bessho, N.; Moore, T.; Gershman, D.; Giles, B.; Malaspina, D.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C.; Strangeway, R.; Torbert, R. B.; F.-Vinas, A.; Burch, J.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W.; Ahmadi, N.; Goodrich, K.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L.

    2018-06-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  19. Magnetically driven jets and winds: Exact solutions

    NASA Technical Reports Server (NTRS)

    Contopoulos, J.; Lovelace, R. V. E.

    1994-01-01

    We present a general class of self-similar solutions of the full set of MHD equations that include matter flow, electromagnetic fields, pressure, and gravity. The solutions represent axisymmetric, time-independent, nonrelativistic, ideal, magnetohydrodynamic, collimated outflows (jet and winds) from magnetized accretion disks around compact objects. The magnetic field extracts angular momentum from the disk, accelerates the outflows perpedicular to the disk, and provides collimation at large distances. The terminal outflow velocities are of the order of or greater than the rotational velocity of the disk at the base of the flow. When a nonzero electric current flows along the jet, the outflow radius oscillates with axial distance, whereas when the total electric current is zero (with the return current flowing across the jet's cross section), the outflow radius increase to a maximum and then decreases. The method can also be applied to relativistic outflows.

  20. Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.

    2018-05-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

Top