Science.gov

Sample records for electric field inactivation

  1. Inactivation of Escherichia coli phage by pulsed electric field treatment and analysis of inactivation mechanism

    NASA Astrophysics Data System (ADS)

    Tanino, Takanori; Yoshida, Tomoki; Sakai, Kazuki; Ohshima, Takayuki

    2013-03-01

    Inactivation of bacteriophage by pulsed electric field (PEF) treatment, one of the effective procedures for bacteria nonthermal inactivation, was studied. Model phage particles Escherichia coli bacteriophages M13mp18 and λ phage, were successfully inactivated by PEF treatment. The survival ratios of both bacteriophages decreased depending on the PEF treatment time when applied peak voltage was 5 or 7 kV, and the survival ratios after 12 min PEF treatment were 10-4 - 10-5. Electrophoresis analyses of biological molecules of inactivated λ phage detected no degradation of total protein and genomic DNA. These results suggested that the factor of phage inactivation by PEF treatment was not based on the degradation of protein or DNA, but on the destruction of phage particle structure. Sensitivity of E. coli phage to PEF treatment was compared with that of E. coli cell. Phage and MV1184 cell were treated with same condition PEF at 5 kV, respectively. After 12 min treatment, the survival ration of λ phage and MV1184 were 4.0 × 10-5 and 1.7 × 10-3, respectively. The survival ratio of phage was lower than that of MV1184. E. coli cell is more tolerant to inactivation with PEF treatment than coli phage.

  2. Effects of pulsed electric fields on inactivation kinetics of Listeria innocua.

    PubMed

    Wouters, P C; Dutreux, N; Smelt, J P; Lelieveld, H L

    1999-12-01

    The effects of pulsed electric field (PEF) treatment and processing factors on the inactivation kinetics of Listeria innocua NCTC 11289 were investigated by using a pilot plant PEF unit with a flow rate of 200 liters/h. The electric field strength, pulse length, number of pulses, and inlet temperature were the most significant process factors influencing the inactivation kinetics. Product factors (pH and conductivity) also influenced the inactivation kinetics. In phosphate buffer at pH 4.0 and 0.5 S/m at 40 degrees C, a 3. 0-V/microm PEF treatment at an inlet temperature of 40 degrees C resulted in > or = 6.3 log inactivation of strain NCTC 11289 at 49.5 degrees C. A synergistic effect between temperature and PEF inactivation was also observed. The inactivation obtained with PEF was compared to the inactivation obtained with heat. We found that heat inactivation was less effective than PEF inactivation under similar time and temperature conditions. L. innocua cells which were incubated for a prolonged time in the stationary phase were more resistant to the PEF treatment, indicating that the physiological state of the microorganism plays a role in inactivation by PEF. Sublethal injury of cells was observed after PEF treatment, and the injury was more severe when the level of treatment was increased. Overall, our results indicate that it may be possible to use PEF in future applications in order to produce safe products. PMID:10583990

  3. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing.

    PubMed

    Buckow, Roman; Semrau, Julius; Sui, Qian; Wan, Jason; Knoerzer, Kai

    2012-01-01

    A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory-scale pulsed electric field (PEF) treatment chamber with co-field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80 °C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol(-1). The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5-12% enzyme inactivation may be related to other electro-chemical effects occurring during PEF treatments.

  4. Inactivation of Lactobacillus plantarum in apple cider using radio frequency electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency electric fields (RFEF) processing is effective at inactivating Gram negative bacteria in fruit juices at moderately low temperatures, but has yet to be shown to be effective at reducing Gram positive bacteria. Lactobacillus plantarum ATCC 49445, a Gram positive bacterium, was inocula...

  5. Inactivation of Saccharomyces cerevisiae suspended in orange juice using high-intensity pulsed electric fields.

    PubMed

    Elez-Martínez, Pedro; Escolà-Hernández, Joan; Soliva-Fortuny, Robert C; Martín-Belloso, Olga

    2004-11-01

    Saccharomyces cerevisiae is often associated with the spoilage of fruit juices. The purpose of this study was to evaluate the effect of high-intensity pulsed electric field (HIPEF) treatment on the survival of S. cerevisiae suspended in orange juice. Commercial heat-sterilized orange juice was inoculated with S. cerevisiae (CECT 1319) (10(8) CFU/ml) and then treated by HIPEFs. The effects of HIPEF parameters (electric field strength, treatment time, pulse polarity, frequency, and pulse width) were evaluated and compared to those of heat pasteurization (90 degrees C/min). In all of the HIPEF experiments, the temperature was kept below 39 degrees C. S. cerevisiae cell damage induced by HIPEF treatment was observed by electron microscopy. HIPEF treatment was effective for the inactivation of S. cerevisiae in orange juice at pasteurization levels. A maximum inactivation of a 5.1-log (CFU per milliliter) reduction was achieved after exposure of S. cerevisiae to HIPEFs for 1,000 micros (4-micros pulse width) at 35 kV/cm and 200 Hz in bipolar mode. Inactivation increased as both the field strength and treatment time increased. For the same electric field strength and treatment time, inactivation decreased when the frequency and pulse width were increased. Electric pulses applied in the bipolar mode were more effective than those in the monopolar mode for destroying S. cerevisiae. HIPEF processing inactivated S. cerevisiae in orange juice, and the extent of inactivation was similar to that obtained during thermal pasteurization. HIPEF treatments caused membrane damage and had a profound effect on the intracellular organization of S. cerevisiae.

  6. Inactivation of spores using pulsed electric field in a pressurized flow system

    SciTech Connect

    Choi, Jaegu; Wang Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; Lin Xiaofei; Sato, Hiroshi; Seta, Harumichi; Matsubara, Hitoshi; Saeki, Takeshi

    2008-11-01

    Pulsed electric field (PEF) inactivation is a very effective method to kill bacteria in liquid while avoiding thermal damage. However, only a limited inactivation effect on spores has been reported to date and the possible mechanisms are still unclear. Therefore, a study of inactivation of spores using PEF in a pressurized flow system is reported in this paper. PEF with a maximum magnitude higher than 110 kV/cm and a pulse width of 100 ns has been applied to a carefully designed treatment chamber through which a suspension fluid of 0.5 MPa continuously flows. Using the proposed PEF inactivation method, maximum 6.7 log reductions were achieved for B. subtilis spores that were investigated. These reductions were much greater than those obtained by a heat inactivation approach. Through frequency analysis using the frequency components of the applied pulses and the frequency response of the equivalent circuit of the spore, it was found that most voltage is applied to the outside of the core in the lower frequency and to the inside in the upper frequency. Also, transmission electron microscope micrographs of B. subtilis spores were taken in order to verify the effect of the PEF treatment.

  7. Microbiological implications of electric field effects. II. Inactivation of yeast cells and repair of their cell envelope.

    PubMed

    Jacob, H E; Förster, W; Berg, H

    1981-01-01

    The inactivation of yeast cells in different growth phases by an electric field pulse was investigated. Cells of Saccharomyces cerevisiae in the logarithmic growth phase were found to be much more sensitive with respect to an electric discharge than those in the stationary phase. The influence of the electric field pulse characteristics on the inactivation as well as possible secondary effects were studied. The polyene antibiotic perhydrohexafungin (PHF) is used as a tool to sense defects in the yeast cell envelope brought about by electric field action. The repair kinetics of these defects was followed after the impulse. At least two repair stages can be distinguished, a fast one in the second range and a slower one which takes place after plating the cells on a nutrient medium. The obtained results are discussed in connection with current theories of reversible dielectric breakdown in biological membrane systems. PMID:7023081

  8. Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature.

    PubMed

    Spilimbergo, Sara; Dehghani, Fariba; Bertucco, Alberto; Foster, Neil R

    2003-04-01

    The common methods for inactivation of bacteria involve heating or exposure to toxic chemicals. These methods are not suitable for heat-sensitive materials, food, and pharmaceutical products. Recently, a complete inactivation of many microorganisms was achieved with high-pressure carbon dioxide at ambient temperature and in the absence of organic solvent and irradiation. The inactivation of spores with CO(2) required long residence time and high temperatures, such as 60 degrees C. In this study the synergistic effect of pulsed electric field (PEF) in combination with high-pressure CO(2) for inactivation was investigated. The bacteria Escherichia coli, Staphylococcus aureus, and Bacillus cereus were suspended in glycerol solution and treated in the first step with PEF (up to 25 KV/cm) and then with high-pressure CO(2) not higher than 40 degrees C and 200 bar. The inactivation efficiency was determined by counting the colony formation units of control and sample. Samples of the cells subjected to PEF treatment alone and in combination with CO(2) treatment were examined by scanning electron microscopy to determine the effect of the processes on the cell wall. Experimental results indicate that the viability decreased with increasing electrical field strength and number of pulses. A further batch treatment with supercritical CO(2) lead to complete inactivation of bacterial species and decreased the count of the spores by at least three orders of magnitude, the inactivation being enhanced by an increase of contact time between CO(2) and the sample. A synergistic effect between the pulsed electric field and the high-pressure CO(2) was evident in all the species treated. The new low temperature process is an alternative for pasteurization of thermally labile compounds such as protein and plasma and minimizes denaturation of important nutrient compounds in the liquid media.

  9. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity.

    PubMed

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-05

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.

  10. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity

    NASA Astrophysics Data System (ADS)

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-01

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.

  11. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity

    PubMed Central

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-01

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment. PMID:26728251

  12. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity.

    PubMed

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-01

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment. PMID:26728251

  13. Effect of pulsed electric fields on microbial inactivation and physico-chemical properties of whole porcine blood.

    PubMed

    Boulaaba, Annika; Egen, Nathalie; Klein, Günter

    2014-04-01

    The objective of this study was to determine the lethal effectiveness of pulsed electric fields on the inactivation of the porcine blood endogenous microflora. Furthermore, the impact of pulsed electric field application on physico-chemical and sensory properties in this medium should be proved. Blood samples from a commercial abattoir in Germany were processed by a continuous pilot plant-pulsed electric field system at electric field strength of 11 kV/cm for treatment times of 163 and 209 µs. The applied pulse frequencies of 134 and 175 Hz correspond to an energy input of 91 and 114 kJ/kg, respectively. In these conditions, the effectiveness of pulsed electric field processing on microbial inactivation was limited: 1.35 log10 CFU/mL reduction of total aerobic plate count (p < 0.05), 1.0 log10 CFU/mL for Pseudomonas spp. (p < 0.05), 0.97 and 0.66 log10 CFU/mL reduction for Enterobacteriaceae and sulfite-reducing anaerobic bacteria, respectively. However, the storage experiment (14 days at +3 ) showed a significant reduced growth of total aerobic plate count (p < 0.05) and Pseudomonas spp. (p < 0.05) in the pulsed electric field-treated blood samples. Pulsed electric field processing leads to a complete hemolysis of the red blood cells, in addition significant decreased L* (lightness), a* (redness) and b* (yellowness) values (p < 0.0001) were observed. Furthermore, changes in the sensory attributes color (changed from red to dark brown) and odor (changed from fresh to musty and tangy) were noticed. PMID:23751540

  14. A combined treatment of UV-light and radio frequency electric field for the inactivation of Escherichia coli K-12 in apple juice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency electric fields (RFEF) and UV-light treatments have been reported to inactivate bacteria in liquid foods. However, information on the efficacy of bacterial inactivation by combined treatments of RFEF and UV-light technologies is limited. In this study, we investigated the relationshi...

  15. Radio Frequency Electric Fields Inactivation of Lactobacillus plantarum in Apple Cider

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency electric fields (RFEF) nonthermal processing has recently been shown to be effective at reducing Escherichia coli in fruit juices. While considerable effort and progress have been made in studying the effect of RFEF processing on this gram negative bacteria, there is a total lack of...

  16. Inactivation of Escherichia coli in a tropical fruit smoothie by a combination of heat and pulsed electric fields.

    PubMed

    Walkling-Ribeiro, M; Noci, F; Cronin, D A; Lyng, J G; Morgan, D J

    2008-10-01

    Moderate heat in combination with pulsed electric fields (PEF) was investigated as a potential alternative to thermal pasteurization of a tropical fruit smoothie based on pineapple, banana, and coconut milk, inoculated with Escherichia coli K12. The smoothie was heated from 25 degrees C to either 45 or 55 degrees C over 60 s and subsequently cooled to 10 degrees C. PEF was applied at electric field strengths of 24 and 34 kV/cm with specific energy inputs of 350, 500, and 650 kJ/L. Both processing technologies were combined using heat (45 or 55 degrees C) and the most effective set of PEF conditions. Bacterial inactivation was estimated on standard and NaCl-supplemented tryptone soy agar (TSA) to enumerate sublethally injured cells. By increasing the temperature from 45 to 55 degrees C, a higher reduction in E. coli numbers (1 compared with 1.7 log(10) colony forming units {CFU} per milliliter, P < 0.05) was achieved. Similarly, as the field strength was increased during stand-alone PEF treatment from 24 to 34 kV/cm, a greater number of E. coli cells were inactivated (2.8 compared with 4.2 log(10) CFU/mL, P < 0.05). An increase in heating temperature from 45 to 55 degrees C during a combined heat/PEF hurdle approach induced a higher inactivation (5.1 compared with 6.9 log(10) CFU/mL, respectively [P < 0.05]) with the latter value comparable to the bacterial reduction of 6.3 log(10) CFU/mL (P> or = 0.05) achieved by thermal pasteurization (72 degrees C, 15 s). A reversed hurdle processing sequence did not affect bacterial inactivation (P> or = 0.05). No differences were observed (P> or = 0.05) between the bacterial counts estimated on nonselective and selective TSA, suggesting that sublethal cell injury did not occur during single PEF treatments or combined heat/PEF treatments. PMID:19019120

  17. Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms.

    PubMed

    Timmermans, R A H; Nierop Groot, M N; Nederhoff, A L; van Boekel, M A J S; Matser, A M; Mastwijk, H C

    2014-03-01

    Pulsed electrical field (PEF) technology can be used for the inactivation of micro-organisms and therefore for preservation of food products. It is a mild technology compared to thermal pasteurization because a lower temperature is used during processing, leading to a better retention of the quality. In this study, pathogenic and spoilage micro-organisms relevant in refrigerated fruit juices were studied to determine the impact of process parameters and juice composition on the effectiveness of the PEF process to inactivate the micro-organisms. Experiments were performed using a continuous-flow PEF system at an electrical field strength of 20 kV/cm with variable frequencies to evaluate the inactivation of Salmonella Panama, Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae in apple, orange and watermelon juices. Kinetic data showed that under the same conditions, S. cerevisiae was the most sensitive micro-organism, followed by S. Panama and E. coli, which displayed comparable inactivation kinetics. L. monocytogenes was the most resistant micro-organism towards the treatment conditions tested. A synergistic effect between temperature and electric pulses was observed at inlet temperatures above 35 °C, hence less energy for inactivation was required at higher temperatures. Different juice matrices resulted in a different degree of inactivation, predominantly determined by pH. The survival curves were nonlinear and could satisfactorily be modeled with the Weibull model.

  18. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study.

    PubMed

    Lee, Gun Joon; Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun; Lee, Dong-Un

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk. PMID:26877640

  19. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study

    PubMed Central

    Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk. PMID:26877640

  20. Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses.

    PubMed

    Guyot, Stéphane; Ferret, Eric; Boehm, Jean-Baptiste; Gervais, Patrick

    2007-01-25

    The effects of electric field (EF) treatments on Saccharomyces cerevisiae viability were investigated using a PG200 electroporator (Hoefer Scientific Instrument, San Fransisco, CA, USA) with specific attention to induced thermal effects on cell death. Lethal electric fields (1.5 kV cm(-1) for 5 s) were shown to cause heat variations in the cell suspension medium (water+glycerol), while corresponding classical thermal treatments at equivalent temperatures had no effect on the cells viability. Variations of the electrical conductivity of the intra- and extracellular matrix caused by ions and solutes transfer across the membrane were shown to be involved in the observed heating. The results permitted to build a theoretical model for the temperature variations induced by electric fields. Using this model and the electrical conductivity of the different media, a plausible explanation of the cell death induced by low-intensity electric fields with long-duration pulses has been proposed. Indeed, cell mortality could in part be caused by direct and indirect effects of electric fields. Direct effects are related to well known electromechanical phenomena, whereas indirect effects are related to secondary thermal stress caused by plasma membrane thermoporation. This thermoporation was attributed to electrical conductivity variations and the corresponding intracellular heating.

  1. Inactivation kinetics of pulsed electric field-resistant strains of Listeria monocytogenes and Staphylococcus aureus in media of different pH.

    PubMed

    Saldaña, G; Puértolas, E; Condón, S; Alvarez, I; Raso, J

    2010-06-01

    A study of the effect of pulsed electric fields (PEF) on the inactivation of Listeria monocytogenes STCC 5672 and Staphylococcus aureus STCC 4459 in McIlvaine buffer covering a range from pH 3.5 to 7.0 was conducted. Mathematical models based on the Weibull distribution were developed to describe the influence of the electric field strength, treatment time and pH of the treatment medium on the lethality of both Gram positive pathogenic bacteria after PEF treatments. Both microorganisms were more sensitive to PEF in media of low pH, although the influence of the pH on the PEF resistance was more significant in S. aureus. In the best cases scenario, the highest inactivation levels achieved were 3.3 and 6.1 log(10) cycles for L. monocytogenes and S. aureus respectively in pH 3.5 after 500 micros of 35 kV/cm. Based on these results and those observed in literature, L. monocytogenes STCC 5672 at any pH investigated has been shown as one of the most PEF resistant microorganism. Therefore, this microorganism should be considered as a possible target microorganism to define process criterion for PEF pasteurization. PMID:20417406

  2. A combined treatment of UV-light and radio frequency electric field for the inactivation of Escherichia coli K-12 in apple juice.

    PubMed

    Ukuku, Dike O; Geveke, David J

    2010-03-31

    Radio frequency electric fields (RFEF) and UV-light treatments have been reported to inactivate bacteria in liquid foods. However, information on the efficacy of bacterial inactivation by combined treatments of RFEF and UV-light technologies is limited. In this study, we investigated the relationship between cell injury and inactivation of Escherichia coli K-12 in apple juice treated with a combination of RFEF and UV-light. Apple juice purchased from a wholesale distributor was inoculated with E. coli K-12 at 7.8 log CFU/ml, processed with a laboratory scale RFEF unit at 20 kHz, 15 kV/cm for 170 micros at a flow rate of 540 ml/min followed by UV-light treatment (254 nm) for 12s at 25, 30 and 40 degrees C. Treated samples were analyzed for leakage of UV-substances as a function of membrane damage and were plated (0.1 ml) on Sorbitol MacConkey Agar (SMAC) and Trypticase Soy Agar (TSA) plates to determine the viability loss and percent injury. At 40 degrees C, UV-light treatment alone caused 5.8 log reduction of E. coli in apple juice while RFEF caused only 2.8 log reduction. A combination of the two processing treatments did not increase cell injury or leakage of intracellular bacterial UV-substances more than that from the UV-light treatment. Similarly, the viability loss determined was not significantly (P<0.05) different than UV-light treatment alone. However, the UV-substances determined in apple juice treated with RFEF was significantly (P>0.05) different than UV-light treated samples. The results of this study suggest that RFEF treatment causes more injury to the bacterial cells leading to more leakage of intracellular UV-substances than cells treated with UV-light alone. Also, the effect of the two processing treatment combination on bacterial inactivation was not additive.

  3. Inactivation of E. coli O157:H7 and nonpathogenic E. coli in strawberry juice by pulsed electric field, sodium benzoate, potassium sorbate, and citric acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Current regulations require that juice processors effect a 5 log CFU/ml reduction of a target pathogen prior to distributing products. Whereas thermal pasteurization reduces the sensory characteristics of juice by altering flavor components, pulsed electric field (PEF) treatment may ...

  4. Electric Field Imaging Project

    NASA Technical Reports Server (NTRS)

    Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward

    2016-01-01

    NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.

  5. Inactivation of bacteria by electric current in the presence of carbon nanotubes embedded within a polymeric membrane.

    PubMed

    Zhu, Anna; Liu, Harris K; Long, Feng; Su, Erzheng; Klibanov, Alexander M

    2015-01-01

    Uniform conductive composite membranes were prepared using a phase inversion method by blending carboxyl-functionalized multi-walled carbon nanotubes (CNTs) with a polysulfone polymer. At 6 % of the embedded CNTs, the membrane pore size measured by transmission electron microscopy (TEM) was approximately 50 nm. Electric current in the presence of the composite membranes markedly inactivated the model pathogenic bacteria Escherichia coli and Staphylococcus aureus, with the extent of bacterial inactivation rising when the current was increased. Over 99.999 % inactivation of both bacteria was observed in deionized water after 40 min at 5 mA direct current (DC); importantly, no appreciable inactivation occurred in the absence of either the electric field or the CNTs within the membranes under otherwise the same conditions. A much lower, although still pronounced, inactivation was seen with alternating current (AC) in a 25 mM NaCl aqueous solution.

  6. Inactivation of bacteria by electric current in the presence of carbon nanotubes embedded within a polymeric membrane.

    PubMed

    Zhu, Anna; Liu, Harris K; Long, Feng; Su, Erzheng; Klibanov, Alexander M

    2015-01-01

    Uniform conductive composite membranes were prepared using a phase inversion method by blending carboxyl-functionalized multi-walled carbon nanotubes (CNTs) with a polysulfone polymer. At 6 % of the embedded CNTs, the membrane pore size measured by transmission electron microscopy (TEM) was approximately 50 nm. Electric current in the presence of the composite membranes markedly inactivated the model pathogenic bacteria Escherichia coli and Staphylococcus aureus, with the extent of bacterial inactivation rising when the current was increased. Over 99.999 % inactivation of both bacteria was observed in deionized water after 40 min at 5 mA direct current (DC); importantly, no appreciable inactivation occurred in the absence of either the electric field or the CNTs within the membranes under otherwise the same conditions. A much lower, although still pronounced, inactivation was seen with alternating current (AC) in a 25 mM NaCl aqueous solution. PMID:25342266

  7. Nonthermal processing by radio frequency electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency electric fields (RFEF) processing is relatively new and has been shown to inactivate bacteria in apple juice, orange juice and apple cider at moderately low temperatures. Key equipment components of the process include a radio frequency power supply and a treatment chamber that is ca...

  8. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  9. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph A. (Inventor); Eppich, Henry M. (Inventor)

    2003-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  10. Effect of electric currents on bacterial detachment and inactivation.

    PubMed

    Hong, Seok Hoon; Jeong, Joonseon; Shim, Soojin; Kang, Heekyoung; Kwon, Sunghoon; Ahn, Kyung Hyun; Yoon, Jeyong

    2008-06-01

    Since biofilms show strong resistance to conventional disinfectants and antimicrobials, control of initial bacterial adhesion is generally accepted as one of the most effective strategies for preventing biofilm formation. Although electrical methods have been widely studied, the specific properties of cathodic, anodic, and block currents that influence the bacterial detachment and inactivation remained largely unclear. This study investigated the specific role of electric currents in the detachment and inactivation of bacteria adhered to an electrode surface. A real-time bacterial adhesion observation and control system was employed that consisted of Pseudomonas aeruginosa PAO1 (PAO1) with green fluorescent protein as the indicator microorganism and a flow cell reactor mounted on a fluorescent microscope. The results suggest that the bacteria that remained on the electrode surface after application of a cathodic current were alive, although the extent of detachment was significant. In contrast, when an anodic current was applied, the bacteria that remained on the surface became inactive with time, although bacterial detachment was not significant. Further, under these conditions, active bacterial motions were observed, which weakened the binding between the electrode surface and bacteria. This phenomenon of bacterial motion on the surface can be used to maximize bacterial detachment by manipulation of the shear rate. These findings specific for each application of a cathodic or anodic electric current could successfully explain the effectiveness of block current application in controlling bacterial adhesion. PMID:18080346

  11. Distillation under electric fields

    SciTech Connect

    Shah, V.M.; Blankenship, K.D.; Tsouris, C.

    1997-11-01

    Distillation Is the most common separation process used in the chemical and petroleum industry. Major limitations in the applicability and efficiency of distillation come from thermodynamic equilibria, that is, vapor-liquid equilibria (VLE), and heat and mass transfer rates. In this work, electric fields are used to manipulate the VLE of mixtures. VLE experiments are performed for various binary mixtures in the presence of electric fields on the order of a few kilovolts per centimeter. The results show that the VLE is changed by electric fields, with changes in the separation factor as high as 10% being observed. Batch distillation experiments are also carried out for binary mixtures of 2-propanol and water with and without an applied electric field. Results show enhanced distillation rates and separation efficiency in the presence of an electric field but decreased separation enhancement when the electric current is increased. The latter phenomenon is caused by the formation at the surface of the liquid mixture of microdroplets that are entrained by the vapor. These observations suggest that there should be an electric field strength for each system for which the separation enhancement is maximum.

  12. Electrically silent magnetic fields.

    PubMed Central

    Roth, B J; Wikswo, J P

    1986-01-01

    There has been a significant controversy over the past decade regarding the relative information content of bioelectric and biomagnetic signals. In this paper we present a new, theoretical example of an electrically-silent magnetic field, based on a bidomain model of a cylindrical strand of tissue generalized to include off-diagonal components in the conductivity tensors. The physical interpretation of the off-diagonal components is explained, and analytic expressions for the electrical potential and the magnetic field are found. These expressions show that information not obtainable from electrical potential measurements can be obtained from measurements of the magnetic field in systems with conductivity tensors more complicated than those previously examined. PMID:3779008

  13. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  14. Comparative effects of ohmic, induction cooker, and electric stove heating on soymilk trypsin inhibitor inactivation.

    PubMed

    Lu, Lu; Zhao, Luping; Zhang, Caimeng; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-03-01

    During thermal treatment of soymilk, a rapid incorporation of Kunitz trypsin inhibitor (KTI) into protein aggregates by covalent (disulfide bond, SS) and/or noncovalent interactions with other proteins is responsible for its fast inactivation of trypsin inhibitor activity (TIA). In contrast, the slow cleavage of a single Bowman-Birk inhibitor (BBI) peptide bond is responsible for its slow inactivation of TIA and chymotrypsin inhibitor activity (CIA). In this study, the effects of Ohmic heating (220 V, 50 Hz) on soymilk TIA and CIA inactivation were examined and compared to induction cooker and electric stove heating with similar thermal histories. It was found that: (1) TIA and CIA inactivation was slower from 0 to 3 min, and faster after 3 min as compared to induction cooker and electric stove. (2) The thiol (SH) loss rate was slower from 0 to 3 min, and similar to induction cooker and electric stove after 3 min. (3) Ohmic heating slightly increased protein aggregate formation. (4) In addition to the cleavage of one BBI peptide bond, an additional reaction might occur to enhance BBI inactivation. (5) Ohmic heating was more energy-efficient for TIA and CIA inactivation. (6) TIA and CIA inactivation was accelerated with increasing electric voltage (110, 165, and 220 V) of Ohmic heating. It is likely that the enhanced inactivation of TIA by Ohmic heating is due to its combined electrochemical and thermal effects. PMID:25678063

  15. Comparative effects of ohmic, induction cooker, and electric stove heating on soymilk trypsin inhibitor inactivation.

    PubMed

    Lu, Lu; Zhao, Luping; Zhang, Caimeng; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-03-01

    During thermal treatment of soymilk, a rapid incorporation of Kunitz trypsin inhibitor (KTI) into protein aggregates by covalent (disulfide bond, SS) and/or noncovalent interactions with other proteins is responsible for its fast inactivation of trypsin inhibitor activity (TIA). In contrast, the slow cleavage of a single Bowman-Birk inhibitor (BBI) peptide bond is responsible for its slow inactivation of TIA and chymotrypsin inhibitor activity (CIA). In this study, the effects of Ohmic heating (220 V, 50 Hz) on soymilk TIA and CIA inactivation were examined and compared to induction cooker and electric stove heating with similar thermal histories. It was found that: (1) TIA and CIA inactivation was slower from 0 to 3 min, and faster after 3 min as compared to induction cooker and electric stove. (2) The thiol (SH) loss rate was slower from 0 to 3 min, and similar to induction cooker and electric stove after 3 min. (3) Ohmic heating slightly increased protein aggregate formation. (4) In addition to the cleavage of one BBI peptide bond, an additional reaction might occur to enhance BBI inactivation. (5) Ohmic heating was more energy-efficient for TIA and CIA inactivation. (6) TIA and CIA inactivation was accelerated with increasing electric voltage (110, 165, and 220 V) of Ohmic heating. It is likely that the enhanced inactivation of TIA by Ohmic heating is due to its combined electrochemical and thermal effects.

  16. Relationship between Sublethal Injury and Inactivation of Yeast Cells by the Combination of Sorbic Acid and Pulsed Electric Fields▿

    PubMed Central

    Somolinos, M.; García, D.; Condón, S.; Mañas, P.; Pagán, R.

    2007-01-01

    The objective of this study was to investigate the occurrence of sublethal injury after the pulsed-electric-field (PEF) treatment of two yeasts, Dekkera bruxellensis and Saccharomyces cerevisiae, as well as the relation of sublethal injury to the inactivating effect of the combination of PEF and sorbic acid. PEF caused sublethal injury in both yeasts: more than 90% of surviving D. bruxellensis cells and 99% of surviving S. cerevisiae cells were sublethally injured after 50 pulses at 12 kV/cm in buffer at pHs of both 7.0 and 4.0. The proportion of sublethally injured cells reached a maximum after 50 pulses at 12.0 kV/cm (S. cerevisiae) or 16.5 kV/cm (D. bruxellensis), and it kept constant or progressively decreased at greater electric field strengths and with longer PEF treatments. Sublethally PEF-injured cells showed sensitivity to the presence of sorbic acid at a concentration of 2,000 ppm. A synergistic inactivating effect of the combination of PEF and sorbic acid was observed. Survivors of the PEF treatment were progressively inactivated in the presence of 2,000 ppm of sorbic acid at pH 3.8, with the combined treatments achieving more than log10 5 cycles of dead cells under the conditions investigated. This study has demonstrated the occurrence of sublethal injury after exposure to PEF, so yeast inactivation by PEF is not an all-or-nothing event. The combination of PEF and sorbic acid has proven to be an effective method to achieve a higher level of yeast inactivation. This work contributes to the knowledge of the mechanism of microbial inactivation by PEF, and it may be useful for improving food preservation by PEF technology. PMID:17468278

  17. Sodium benzoate, potassium sorbate, and citric acid induce sublethal injury and enhance pulsed electric field inactivation of E. coli O157:H7 and nonpathogenic surrogate E. coli in strawberry juice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current FDA regulations require that juice processors effect a 5 log CFU/ml reduction of a target pathogen prior to distributing products. Whereas thermal pasteurization reduces the sensory characteristics of juice by altering flavor components, pulsed electric field (PEF) treatment can be conducte...

  18. Overview - Electric fields. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Cauffman, D. P.

    1979-01-01

    The electric fields session is designed to review progress in observation, theory, and modeling of magnetospheric electric fields, and to expose important new results. The present report comments on the state and prospects of electric field research, with particular emphasis on relevance to quantitative modeling of the magnetospheric processes. Attention is given to underlying theories and models. Modeling philosophy is discussed relative to explanatory models and representative models. Modeling of magnetospheric electric fields, while in its infancy, is developing rapidly on many fronts employing a variety of approaches. The general topic of magnetospheric electric fields is becoming of prime importance in understanding space plasmas.

  19. Magnetospheric electric fields and currents

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Zanetti, L. J.

    1987-01-01

    The progress made in the years 1983-1986 in understanding the character and operation of magnetospheric electric fields and electric currents is discussed, with emphasis placed on the connection with the interior regions. Special attention is given to determinations of global electric-field configurations, measurements of the response of magnetospheric particle populations to the electric-field configurations, and observations of the magnetospheric currents at high altitude and during northward IMF. Global simulations of current distributions are discussed, and the sources of global electric fields and currents are examined. The topics discussed in the area of impulsive and small-scale phenomena include substorm current systems, impulsive electric fields and associated currents, and field-aligned electrodynamics. A key finding of these studies is that the electric fields and currents are interrelated and cannot be viewed as separate entities.

  20. High electrical field effects on cell membranes.

    PubMed

    Pliquett, U; Joshi, R P; Sridhara, V; Schoenbach, K H

    2007-05-01

    Electrical charging of lipid membranes causes electroporation with sharp membrane conductance increases. Several recent observations, especially at very high field strength, are not compatible with the simple electroporation picture. Here we present several relevant experiments on cell electrical responses to very high external voltages. We hypothesize that, not only are aqueous pores created within the lipid membranes, but that nanoscale membrane fragmentation occurs, possibly with micelle formation. This effect would produce conductivity increases beyond simple electroporation and display a relatively fast turn-off with external voltage. In addition, material loss can be expected at the anode side of cells, in agreement with published experimental reports at high fields. Our hypothesis is qualitatively supported by molecular dynamics simulations. Finally, such cellular responses might temporarily inactivate voltage-gated and ion-pump activity, while not necessarily causing cell death. This hypothesis also supports observations on electrofusion.

  1. Electric Field Containerless Processing Technology

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Rhim, W. K.

    1985-01-01

    The objective of this task is to develop the science and technology base required to design and construct a high temperature electric field positioning module that could be used by materials scientists to conduct containerless science experiments in a low gravity environment. Containerless science modules that employ electric fields to position and manipulate samples offer several advantages over acoustic or electromagnetic systems. The electric field system will operate not only at atmospheric pressures but also in a vacuum, in contrast to the acoustic modules which can only operate in atmosphere where the acoustic forces are sufficient. The electric field technique puts minimum energy into the sample, whereas the electromagnetic system can deposit energy into the sample through eddy current heat as well as physical mixing in the sample. Two types of electric field modules have been constructed and tested to date. One employs a charged sample and uses electrostatic forces to position and control the sample. The second type of module induces electrical polarization of the sample and electric field gradients to position and control the sample.

  2. Introducing electric fields

    NASA Astrophysics Data System (ADS)

    Roche, John

    2016-09-01

    The clear introduction of basic concepts and definitions is crucial for teaching any topic in physics. I have always found it difficult to teach fields. While searching for better explanations I hit on an approach of reading foundational texts and electromagnetic textbooks in ten year lots, ranging from 1840 to the present. By combining this with modern techniques of textual interpretation I attempt to clarify three introductory concepts: how the field is defined; the principle of superposition and the role of the electrostatic field in a circuit.

  3. Revisiting the Corotation Electric Field

    NASA Astrophysics Data System (ADS)

    Rothwell, P. L.

    2001-05-01

    The rotation of the Earth's dipole magnetic field produces a corotation electric field in the nonrotating frame of reference. A quick calculation implies that this field might arise from the relative motion of an observer in the nonrotating frame and the motion of rotating magnetic field lines. However, upon applying Faraday's Law one finds that total time rate of change of the magnetic field as seen in the nonrotating frame is zero due to the azimuthal symmetry of the dipole. Therefore, classical EM theory(1) predicts a zero corotation electric field in the nonrotating frame for a vacuum. This conundrum has been traditionally treated in the following manner(2,3). 1) Start with a vacuum state with no conductors and plasma present. The transformation between E (the electric field in the nonrotating frame) and E' (the electric field in the rotating frame)implies that in the rotating frame E' is nonzero while E = 0. 2) In the presence of a thin conducting spherical shell (the ionosphere) polarization charges form in the shell due to the magnetic force on the electrons. A polarization electric field Ep is created such that in the idealized case the shell has a uniform electric potential. This Ep has a component along the magnetic field lines outside the shell. 3) Plasma will polarize along B, thus canceling the parallel component of Ep which allows the potential on the shell to be mapped along the magnetic field lines setting E' = 0. From the transformation equation E is now nonzero. This is the electric field required in the nonrotating frame for the plasma to corotate with the dipole. The presence of the corotation electric field is not a local result, but a nonlocal effect that requires the presence of an ionosphere and a conducting plasma. (1) W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, 1956. (2) H. Alfven and C.-G. Falthammar, Cosmical Electrodynamics, 2nd ed., Oxford Press, 1963. (3) E.W.Hones and J.E.Bergeson, J. Geophys

  4. THOR Electric Field Instrument - EFI

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yuri; Bale, Stuart D.; Bonnell, John W.; Lindqvist, Per-Arne; Phal, Yamuna; Rothkaehl, Hanna; Soucek, Jan; Vaivads, Andris; Åhlen, Lennart

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Electric Field Instrument (EFI) will measure the vector electric field from 0 to 200 kHz. EFI consists of two sets of sensors: Spin-plane Double Probes (EFI-SDP) providing high sensitivity DC electric field in the spacecraft spin plane (2D), and the High-Frequency Antenna (EFI-HFA) providing 3D electric field at frequencies above ~1 kHz. EFI-SDP consists of 4 biased spherical probes extended on 50 m long wire booms, 90 degrees apart in the spin plane, giving a 100 m baseline for each of the two spin-plane electric field components. EFI-HFA consists of 6 x 1.25 m long monopoles, forming 3 dipolar antennas crossed at 90 degrees to each other. In addition to the sensors, EFI contains HFA and SDP pre-amplifiers, as well as bias electronics boards (BEBs) hosted in the man electronics box of the Field and Wave processor (FWP). As THOR spacecraft has a sun-pointing spin axis, EFI-SDP measures the electric field in the plane approximately orthogonal to the sun using long wire booms. The sun-pointing attitude greatly reduces errors due to wake effects and asymmetric photoelectron clouds, enabling the highly accurate in comparison to earlier missions ±0.1 mV/m near-DC electric field measurements. Interferometry using the electric field probes can be used to infer wavelengths and scale sizes at the smallest scales in the plasma. EFI also measures the floating potential of the satellite, which can be used to estimate the plasma density at very high time resolution (up to a few hundred Hz). The sun-pointing attitude greatly reduces changes in the illuminated area, and hence the associated spin-dependent errors. In combination with densities derived from the observed plasma frequency emission line, EFI monitors the plasma density from DC to a few hundred Hz. EFI measurements characterize electric field and density variations associated with kinetic scale plasma

  5. Electric fields and quantum wormholes

    NASA Astrophysics Data System (ADS)

    Engelhardt, Dalit; Freivogel, Ben; Iqbal, Nabil

    2015-09-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a "quantum wormhole." We demonstrate within low-energy effective field theory that there is a precise sense in which electric fields can also thread such quantum wormholes. We define a nonperturbative "wormhole susceptibility" that measures the ease of passing an electric field through any sort of wormhole. The susceptibility of a quantum wormhole is suppressed by powers of the U (1 ) gauge coupling relative to that for a classical wormhole but can be made numerically equal with a sufficiently large amount of entangled matter.

  6. Microstickies agglomeration by electric field.

    PubMed

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied. PMID:27332828

  7. Linear electric field mass spectrometry

    SciTech Connect

    McComas, D.J.; Nordholt, J.E.

    1991-03-29

    A mass spectrometer is described having a low weight and low power requirement, for use in space. It can be used to analyze the ionized particles in the region of the spacecraft on which it is mounted. High mass resolution measurements are made by timing ions moving through a gridless cylindrically sysmetric linear electric field.

  8. Linear electric field mass spectrometry

    DOEpatents

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  9. Linear electric field mass spectrometry

    DOEpatents

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.

  10. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  11. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  12. Electric field-assisted biosorption.

    PubMed

    Riordan, C R; Bustard, M T; Hughes, P; Reid, C N; McHale, A P

    2004-03-01

    A bisorption process using electric fields to facilitate contact between a sorbate and non-living biomass is described. The latter is enclosed within a semi-permeable membrane together with an electrode. The counter electrode is placed in the sorbate solution and an established potential across the electrodes facilitates electrokinetic movement of the sorbate to the biosorbant material. PMID:15127798

  13. Apparatuses and methods for generating electric fields

    DOEpatents

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  14. GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD

    EPA Science Inventory

    Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...

  15. Electric field distribution of electron emitter surfaces

    NASA Astrophysics Data System (ADS)

    Tagawa, M.; Takenobu, S.; Ohmae, N.; Umeno, M.

    1987-03-01

    The electric field distribution of a tungsten field emitter surface and a LaB6 thermionic emitter surface has been studied. The computer simulation of electric field distribution on the emitter surface was carried out with a charge simulation method. The electric field distribution of the LaB6 thermionic emitter was experimentally evaluated by the Schottky plot. Two independent equations are necessary for obtaining local electric field and work function; the Fowler-Nordheim equation and the equation of total energy distribution of emitted electron being used to evaluate the electric field distribution of the tungsten field emitter. The experimental results agreed with the computer simulation.

  16. Pulsed electric field increases reproduction.

    PubMed

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  17. Pulsed electric field increases reproduction.

    PubMed

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated. PMID:26651869

  18. a Mean-Field Version of the Ssb Model for X-Chromosome Inactivation

    NASA Astrophysics Data System (ADS)

    Gaeta, Giuseppe

    Nicodemi and Prisco recently proposed a model for X-chromosome inactivation in mammals, explaining this phenomenon in terms of a spontaneous symmetry-breaking mechanism [{\\it Phys. Rev. Lett.} 99 (2007), 108104]. Here we provide a mean-field version of their model.

  19. Contrasting students' understanding of electric field and electric force

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro; Zavala, Genaro

    2013-01-01

    Students may have greater difficulties in understanding electric interactions because they have less day to day experience with them than with mechanics. There may also be differences in understanding of different electric concepts like electric force and field. This study presents the results of students' responses to two sequences of superposition principle isomorphic questions in which the only difference was that in one of the sequences, the electric force was used and in the other, the electric field. We administered one of the sequences to 249 students at a large private Mexican university after covering electrostatics in an Electricity and Magnetism class. The students' answers, reasoning and drawings were analyzed. We found that students who took the force sequence were better able to correctly answer the questions using the superposition principle than those students with the field sequence. The analysis of the students' reasoning and drawings helped us to examine their understanding of electric field and the use of electric field lines.

  20. Mean-Field Theory of the Symmetry Breaking Model for X Chromosome Inactivation

    NASA Astrophysics Data System (ADS)

    Scialdone, A.; Barbieri, M.; Pallotti, D.; Nicodemi, M.

    X Chromosome Inactivation (XCI) is the process in mammal femalecells whereby one of the X chromosomes is silenced to compensate dosage with respect to males. It is still mysterious how precisely one X chromosome is randomly chosen for inactivation. We discuss here a mean-field theory of the Symmetry Breaking (SB) model of XCI, a Statistical Mechanics model introduced to explain that process. The SB model poses that a single regulatory factor, an aggregate of molecules, is produced which acts to preserve from inactivation one of the X's. The model illustrates a physical mechanism, originating from a thermodynamic phase transition, for the self-assembling of such a single super-molecular aggregate which can spontaneously break the binding symmetry of equivalent targets. This results in a sharp, yet stochastic, regulatory mechanism of XCI. In particular, we focus here on how the model can predict the effects of genetic deletions.

  1. Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process

    NASA Astrophysics Data System (ADS)

    Xin, Qing; Li, Zhongjian; Lei, Lecheng; Yang, Bin

    2016-09-01

    Pulsed plasma discharge was employed to inactivate bacteria in the injection water for an oil field. The effects of water conductivity and initial concentration of bacteria on elimination efficiency were investigated in the batch and continuous flow modes. It was demonstrated that Fe2+ contained in injection water could enhance the elimination efficiency greatly. The addition of reducing agent glutathione (GSH) indicated that active radicals generated by pulsed plasma discharges played an important role in the inactivation of bacteria. Moreover, it was found that the microbial inactivation process for both batch and continuous flow mode well fitted the model based on the Weibull's survival function. supported by Zhejiang Province Welfare Technology Applied Research Project of China (No. 2014C31137), National Natural Science Foundation of China (Nos. 21436007 and U1462201), and the Fundamental Research Funds for the Central Universities of China (No. 2015QNA4032)

  2. Electric Field Effect in Intrinsic Josephson Junctions

    NASA Astrophysics Data System (ADS)

    Koyama, T.

    The electric field effect in intrinsic Josephson junction stacks (IJJ's) is investigated on the basis of the capacitively-coupled IJJ model. We clarify the current-voltage characteristics of the IJJ's in the presence of an external electric field. It is predicted that the IJJ's show a dynamical transition to the voltage state as the external electric field is increased.

  3. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-lun; Onuki, Akira

    1999-01-01

    The study of the interface in a charge-free, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In this paper, the flat interface of a marginally polar binary fluid mixture is stressed by a perpendicular alternating electric field and the resulting instability is characterized by the critical electric field E(sub c) and the pattern observed. The character of the surface dynamics at the onset of instability is found to be strongly dependent on the frequency f of the field applied. The plot of E(sub c) vs. f for a fixed temperature shows a sigmoidal shape, whose low and high frequency limits are well described by a power-law relationship, E(sub c) = epsilon(exp zeta) with zeta = 0.35 and zeta = 0.08, respectively. The low-limit exponent compares well with the value zeta = 4 for a system of conducting and non-conducting fluids. On the other hand, the high-limit exponent coincides with what was first predicted by Onuki. The instability manifests itself as the conducting phase penetrates the non-conducting phase. As the frequency increases, the shape of the pattern changes from an array of bifurcating strings to an array of column-like (or rod-like) protrusions, each of which spans the space between the plane interface and one of the electrodes. For an extremely high frequency, the disturbance quickly grows into a parabolic cone pointing toward the upper plate. As a result, the interface itself changes its shape from that of a plane to that of a high sloping pyramid.

  4. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-Lun; Onuki, Akira

    1996-01-01

    The study of the interface in a charge-free, nonpolar, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In zero gravity, the interface is unstable at all long wavelengths in the presence of a field applied across it. It is conjectured that this will cause the binary fluid to break up into domains small enough to be outside the instability condition. The resulting pattern formation, and the effects on the critical properties as the domains approach the correlation length are of acute interest. With direct observation, laser light scattering, and interferometry, the phenomena can be probed to gain further understanding of interfacial instabilities and the pattern formation which results, and dimensional crossover in critical systems as the critical fluctuations in a particular direction are suppressed by external forces.

  5. Pair-production in inhomogeneous electric fields

    SciTech Connect

    Xue Shesheng

    2008-01-03

    This is a preliminary study on the rate of electron-positron pair production in spatially inhomogeneous electric fields. We study the rate in the Sauter field and compare it to the rate in the homogeneous field.

  6. Electric Dipole Moment Experiment Systematic from Electric Field Discharge Current

    NASA Astrophysics Data System (ADS)

    Feinberg, B.; Gould, Harvey

    2014-09-01

    A magnetic field, in the direction of the electric field and synchronous with the electric field reversal, will mimic an EDM signal. One might expect a discharge across the electric field plates to produce magnetic fields with only small or vanishing components parallel to the electric field, minimizing its systematic effect. Our experimental model, using simulated discharge currents, found otherwise: the discharge current may be at an angle to the normal, and thus generate a normal magnetic field. Comparison of data from the experimental model with the results from calculations will be presented, along with estimates of the time-averaged normal magnetic field seen by atoms in an electron EDM experiment using a fountain of laser-cooled francium, as a function of discharge current.

  7. Electric Mars: The first survey of Martian parallel electric fields.

    NASA Astrophysics Data System (ADS)

    Collinson, G.; Mitchell, D. L.; Glocer, A.; Grebowsky, J. M.; Peterson, W. K.; Connerney, J. E. P.; Andersson, L.; Espley, J. R.; Mazelle, C. X.; Savaud, J. A.; Fedorov, A.; Ma, Y.; Bougher, S. W.; Lillis, R. J.; Ergun, R. E.; Jakosky, B. M.

    2015-12-01

    We present the results of the first survey of parallel electric fields at Mars, using electron measurements from the MAVEN Solar Wind Electron Analyzer (SWEA), and the Magnetometer (MAG). We discuss three fields: (1) The first upper limit on the strength of the "Polar Wind" ambipolar electric field; (2) The "trans-terminator" field, a newly discovered electric force accelerating ions on closed field lines from day to nightside, and (3) possible signatures of very high strength electrostatic mirroring during the passage of a Coronal Mass Ejection.

  8. Charged Hadron Properties in Background Electric Fields

    SciTech Connect

    William Detmold, Brian C. Tiburzi, Andre Walker-Loud

    2010-02-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields.

  9. Effect of thermal and radio frequency electric fields treatments on Escherichia coli bacteria in apple juice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need for a non-thermal intervention technology that can achieve microbial safety without altering nutritional quality of liquid foods led to the development of the radio frequency electric fields (RFEF) process. However, insight into the mechanism of bacterial inactivation by this technology is ...

  10. Electric double layer of anisotropic dielectric colloids under electric fields

    NASA Astrophysics Data System (ADS)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  11. Involvement of radical species in inactivation of Vibrio parahaemolyticus in saline solutions by direct-current electric treatment.

    PubMed

    Urano, Hiromi; Ishikawa, Hiroshi; Fukuzaki, Satoshi

    2006-11-01

    The effect of pulsed low-direct-current (DC) electric treatment on the viability of Vibrio parahaemolyticus in artificial seawater and 3.0% (w/v) NaCl solution was studied as a function of available chlorine (AC) concentration. The amount of AC generated during the DC electric treatment increased in proportion to the amount of passed DC. The survival fraction of V. parahaemolyticus cells decreased depending on AC concentration. When the generated AC components were completely reduced in the presence of sufficient sodium thiosulfate, no inactivation of V. parahaemolyticus in the NaCl solution was observed during the DC electric treatment. Based on the AC concentration, the inactivation efficacies of the DC electric treatment of the seawater and NaCl solution were approximately 4-fold and 30-fold that of the exogenous addition of sodium hypochlorite, respectively. Fluorometric analysis using 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid showed that the generation of highly reactive radical species such as hydroxyl radical in the seawater and NaCl solution occurred during the DC electric treatment. The amount of generated radical species depended on the amount of passed DC. It is concluded that pulsed low-DC electric treatment of saline solutions exerts superior inactivation efficacy against V. parahaemolyticus to sodium hypochlorite owing to the generation of radical species. PMID:17189175

  12. Electric Field Analysis of Breast Tumor Cells

    PubMed Central

    Sree, V. Gowri; Udayakumar, K.; Sundararajan, R.

    2011-01-01

    An attractive alternative treatment for malignant tumors that are refractive to conventional therapies, such as surgery, radiation, and chemotherapy, is electrical-pulse-mediated drug delivery. Electric field distribution of tissue/tumor is important for effective treatment of tissues. This paper deals with the electric field distribution study of a tissue model using MAXWELL 3D Simulator. Our results indicate that tumor tissue had lower electric field strength compared to normal cells, which makes them susceptible to electrical-pulse-mediated drug delivery. This difference could be due to the altered properties of tumor cells compared to normal cells, and our results corroborate this. PMID:22295214

  13. Entanglement generation by electric field background

    SciTech Connect

    Ebadi, Zahra Mirza, Behrouz

    2014-12-15

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

  14. Entropic clocks in the service of electrical signaling: 'Ball and chain' mechanisms for ion channel inactivation and clustering.

    PubMed

    Zandany, Nitzan; Lewin, Limor; Nirenberg, Valerie; Orr, Irit; Yifrach, Ofer

    2015-09-14

    Electrical signaling in the nervous system relies on action potential generation, propagation and transmission. Such processes are dynamic in nature and rely on precisely timed events associated with voltage-dependent ion channel conformational transitions between their primary open, closed and inactivated states and clustering at unique membrane sites. In voltage-dependent potassium (Kv) channels, fast inactivation and clustering processes rely on entropic clock chains as described by 'ball and chain' mechanisms, suggesting important roles for such chains in electrical signaling. Here, we consider evidence supporting the proposed 'ball and chain' mechanisms for Kv channel fast inactivation and clustering associated with intrinsically disordered N- and C-terminal regions of the protein, respectively. Based on this comparison, we delineate the requirements that argue for such a process and establish the thermodynamic signature of a 'ball and chain' mechanism. Finally, we demonstrate how 'chain'-level alternative splicing of the Kv channel gene modulates the entropic clock-based 'ball and chain' inactivation and clustering channel functions underlying changes in electrical signaling. As such, the Kv channel model system exemplifies how linkage between alternative splicing and intrinsic disorder enables functional diversity.

  15. Electric field soundings through thunderstorms

    NASA Technical Reports Server (NTRS)

    Marshall, Thomas C.; Rust, W. D.

    1991-01-01

    Twelve balloon soundings of the electric field in thunderstorms are reported. The maximum magnitude of E in the storms averaged 96 +/-28 kV/m, with the largest being 146 kV/m. The maximum was usually observed between vertically adjacent regions of opposite charge. Using a 1D approximation to Gauss' law, four to ten charge regions in the storms are inferred. The magnitude of the density in the charge regions varied between 0.2 and 13 nC/cu m. The vertical extent of the charge regions ranged from 130 to 2100 m. None of the present 12 storms had charge distributions that fit the long-accepted model of Simpson et al. (1937, 1941) of a lower positive charge, a main negative charge, and an upper positive charge. In addition to regions similar to the Simpson model, the present storms had screening layers at the upper and lower cloud boundaries and extra charge regions, usually in the lower part of the cloud.

  16. Electric fields in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.

    1975-01-01

    F-region drift velocities, measured by incoherent-scatter radar were analyzed in terms of diurnal, seasonal, magnetic activity, and solar cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days and the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component.

  17. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  18. Parallel electric fields from ionospheric winds

    NASA Technical Reports Server (NTRS)

    Nakada, M. P.

    1987-01-01

    The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced.

  19. Horizontal electric fields from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Thomson, E. M.; Medelius, P. J.; Rubinstein, M.; Uman, M. A.; Johnson, J.

    1988-01-01

    An experiment to measure simultaneously the wideband horizontal and vertical electric fields from lightning return strokes is described. Typical wave shapes of the measured horizontal and vertical fields are presented, and the horizontal fields are characterized. The measured horizontal fields are compared with calculated horizontal fields obtained by applying the wavetilt formula to the vertical fields. The limitations and sources of error in the measurement technique are discussed.

  20. Nanomechanical electric and electromagnetic field sensor

    SciTech Connect

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  1. Interaction Between Flames and Electric Fields Studied

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  2. Electric fields in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1987-01-01

    Middle atmospheric electrodynamics is characterized by discussing the present understanding of the background electrical conductivity and the sources for electric fields and currents within the medium. Results of recent research that contradicts the historical view of the region are presented. Of principal interest to the present direction of the field is the attempt to quantize the low and high altitude electric generators such as thunderstorms or ionospheric convection. It is noted that the many-fold increase in available electric parameter data from within the middle atmosphere has been a great stimulus to recent research; however, these measurements have tended to raise more questions than they give answers.

  3. Molecular dynamics in high electric fields

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Cune, L. C.

    2016-06-01

    Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called "dipolons"); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  4. Electric field replaces gravity in laboratory

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    For several years experiments in physical laboratories and in the fitotron have shown that one can replace gravitational field with electrical fields for plants. First obvious experiments in strong electrical fields in the MV/m regi on show that any materials and living plants respond immediately to Coulomb forces. Such fields are found in nature during thunderstorms. One has to be very careful in handling such strong fields for safety reasons. The fair weather global electrical field is about 20,000 times weaker. The coulomb forces are proportional to the square of the field strength and are thus 400 milion times weaker for a field of the order of 100 V/m.Yet it was found that some plants respond to such "weak" fields. We must remember that the electrical field is a factor of 10 38 times stronger than gravitational interaction. In plants we have dissociated in water mineral salts and the ions are subject to such ernormous forces. It was shown and published that the positive charges in the air in fields of the order of 3kV/m enhance lettuce growth by a factor of four relative to fields about 30 times weaker (100V/m). Reversal of the field polarity reverses the direction of plant growth and retards the plant's growth. Such fields overpower the gravitropism in the laboratory. More so horizontal electrical field is othogonal to gravity, now the fields do not see each other. Lettuce now growth horizontally ignoring the gravitational field. We can thus select the plants whose electrotropism even in the laboratory overwhelms gravity. This is important for the long space flights that we must grow vegetarian food for the crew. The successful harvesting of wheat in orbit does not contradict our experimental findings because wheat is not electrotropic like all plants from the grass family. The results of fitotron experiments with kV/m electrical fields are richly illustrated with colour digital photographs. We also subjected the candle flame to very strong horizontal

  5. Synergistic antibacterial effects of treatments with low temperature plasma jet and pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Zhuang, Jie; von Woedtke, Thomas; Kolb, Juergen F.; Zhang, Jue; Fang, Jing; Weltmann, Klaus-Dieter

    2014-09-01

    Inactivation of Staphylococcus aureus by a non-thermal argon operated plasma jet and by microsecond pulsed electric fields (PEF) was investigated. The different methods were either applied by themselves or in combination with each other. Treatments with plasma alone or pulsed electric fields alone were found to result in significant but not complete inactivation. A 2-log reduction was observed for the longest plasma exposure time of 3 min or for the application of 300 consecutive electric field pulses with 100-μs duration and 15-kV/cm amplitude. For the combined treatment with non-thermal plasma and pulsed electric fields, significant synergistic antibacterial effects were observed when samples were treated with plasma first. However, only an additive or at most a slight synergistic effect was observed when samples were first treated with pulsed electric fields instead. The acidification of the bacteria suspension after plasma treatment is likely responsible for the support of subsequent reaction mechanisms that are induced by exposures to pulsed electric fields and is hence the reason for the observed synergy.

  6. Dipole relaxation in an electric field

    NASA Astrophysics Data System (ADS)

    Neumann, Richard M.

    1980-07-01

    From Boltzmann's equation, S=k lnΩ, an expression for the orientational entropy, S of a rigid rod (electric dipole) is derived. The free energy of the dipole in an electric field is then calculated as a function of both the dipole's average orientation and the field strength. Application of the equilibrium criterion to the free energy yields the field dependence of the entropy of the dipole. Irreversible thermodynamics is used to derive the general form of the equation of motion of the dipole's average orientation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium.

  7. Collapse of DNA under Alternating Electric Fields

    PubMed Central

    Zhou, Chunda; Riehn, Robert

    2016-01-01

    Recent studies have shown that double-stranded DNA can collapse in presence of a strong electric field. Here we provide an in-depth study of the collapse of DNA under weak confinement in microchannels as a function of buffer strength, driving frequency, applied electric field strength, and molecule size. We find that the critical electric field at which DNA molecules collapse (10s of kV/cm) is strongly dependent on driving frequency dependent (100 … 800 Hz) and molecular size (20 … 160 kbp), and weakly dependent on the ionic strength (8 … 60 mM). We argue that an apparent stretching at very high electric fields is an artifact of the finite frame time of video microscopy. PACS numbers: 87.14.gk, 36.20.Ey, 82.35.Lr, 82.35.Rs PMID:26274209

  8. Collapse of DNA under alternating electric fields

    NASA Astrophysics Data System (ADS)

    Zhou, Chunda; Riehn, Robert

    2015-07-01

    Recent studies have shown that double-stranded DNA can collapse in the presence of a strong electric field. Here we provide an in-depth study of the collapse of DNA under weak confinement in microchannels as a function of buffer strength, driving frequency, applied electric-field strength, and molecule size. We find that the critical electric field at which DNA molecules collapse (tens of kV/m) is strongly dependent on driving frequency (100-800 Hz) and molecular size (20-160 kbp), and weakly dependent on the ionic strength (8-60 mM). We argue that an apparent stretching at very high electric fields is an artifact of the finite frame time of video microscopy.

  9. Turbulent electric fields in the nightside magnetosphere

    NASA Astrophysics Data System (ADS)

    Maynard, N. C.; Heppner, J. P.; Aggson, T. L.

    1982-03-01

    Electric field measurements from the long-wire double-probe instrument (baseline of 179 m) on ISEE 1 have shown the magnetospheric electric field on auroral L shells to be extremely turbulent during periods of magnetic activity. During intense activity these turbulent electric fields can penetrate to very low L values. The variational component of the electric field is typically larger than the DC value. Measurements are presented at frequencies up to 14 Hz. Magnitudes of over 40 m V/m (zero to peak) have been observed with spectral power levels in the 1-10 Hz range greater than m squareV/sq m Hz. The spectral shape of the most intense events was generally flatter than that predicted by two-dimensional hydromagnetic cascading of energy, which argues that the source of this turbulence must be driving the plasma near these frequencies. This in turn suggests that the instability is in the low-energy plasma.

  10. Electric field induced hydrogenation of silicene.

    PubMed

    Wu, Weichang; Ao, Zhimin; Wang, Tao; Li, Changming; Li, Sean

    2014-08-21

    An alternative approach for hydrogenation of silicene is proposed through applying an external electric field in order to reduce the reaction energy barrier based on density functional theory calculations. It is found that a positive perpendicular electric field F can act as a catalyst to reduce the energy barrier of H2 dissociative adsorption on silicene, which facilitates the hydrogenation of silicene. In addition, it is found that the barrier decreases as F increases, and when F is above 0.05 a.u. (1 a.u. = 5.14 × 10(11) V m(-1)), the barrier is quite low and hydrogenation of silicene can take place efficiently at room temperature. The catalytic effect of the electric field on hydrogenation of silicene is induced by the redistribution of atomic charge under the electric field, which would change the chemical activity of silicene significantly.

  11. Considering effects of nanosecond pulsed electric fields on proteins.

    PubMed

    Beebe, Stephen J

    2015-06-01

    Most, if not all, effects of intense, pulsed electric fields are analyzed in terms of electrical charging of plasma membranes and/or subcellular membranes. However, not all cell responses from nanosecond pulsed electric fields (nsPEFs) are fully explained by poration of cell membranes. Observations that nsPEFs induce a Ca2-dependent dissipation of the mitochondria membrane potential (ΔΨm), which is enhanced when high frequency components are present in fast rise-fall waveforms, are not compatible with a poration event. Ca(2+) is shown to have little or no effect on propidium iodide uptake as a measure of plasma membrane poration and consequently intracellular membranes. Since most if not all Ca(2+)-regulated events are mediated by proteins, actions of nsPEFs on a protein(s) that regulate and/or affect the mitochondria membrane potential are possible. To show that nsPEFs can directly affect proteins, nsPEFs non-thermally inactivated the catalytic (phosphotransferase) activity of the catalytic subunit of the cAMP-dependent protein kinase, which is the prototype of the protein kinase superfamily that share a common catalytic mechanism and whose functions are highly dependent on their structure. These studies present indirect and direct evidences that nsPEFs can affect proteins and their functions, at least in part, by affecting their structure.

  12. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  13. Electric field measurements with stratospheric balloons

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.

    1989-01-01

    Electric fields and currents in the middle atmosphere are important elements of the modern picture of this region. Balloon instruments, reaching the level of the stratosphere, were used extensively for the experimental work. The research has shown good progress, both in the MAP period and in the years before and after. The knowledge was increased about, e.g., the upper atmosphere potential, the electric properties of the medium itself and about the coupling with magnetospheric (ionospheric) fields and currents. Also various measurements have brought about a discussion of the possible existence of hitherto unknown sources. Throughout the MAP period the work on a possible definition of an electric index has continued.

  14. Crystal growth under external electric fields

    SciTech Connect

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  15. Electric field induced spin-polarized current

    DOEpatents

    Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

    2006-05-02

    A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

  16. Biological effects of electric fields: EPRI's role

    SciTech Connect

    Kavet, R.

    1982-07-01

    Since 1973 the Electric Power Research Institute (EPRI) has supported research to evaluate the biological effects which may result from exposure to electric fields produced by AC overhead transmission lines; more recently, EPRI has also begun DC research. Through 1981 EPRI will have expended $8.7M on these efforts. Ongoing AC projects are studying a variety of lifeforms exposed to electric fields; these include humans, miniature swine, rats, honeybees, chick embryos, and crops. The status of these projects is discussed. The DC program has not as yet produced data. These studies will add to the current data base so as to enable a more complete assessment of health risks which may be associated with exposure to electric fields at power frequencies.

  17. Stability of Spherical Vesicles in Electric Fields

    PubMed Central

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  18. Rotationally Vibrating Electric-Field Mill

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  19. Computer Simulation of Electric Field Lines.

    ERIC Educational Resources Information Center

    Kirkup, L.

    1985-01-01

    Describes a computer program which plots electric field line plots. Includes program listing, sample diagrams produced on a BBC model B microcomputer (which could be produced on other microcomputers by modifying the program), and a discussion of the properties of field lines. (JN)

  20. Magnetoexciton in nanotube under external electric field

    NASA Astrophysics Data System (ADS)

    Garcia Russi, L. F.; Paredes Gutiérrez, H.; Santos, Y. F.; Mikhailov, I. D.

    2016-08-01

    We study the Aharonov-Bohm oscillation of the energy levels of an electron-hole pair confined in a narrow nanotube in the presence of the magnetic field applied along the symmetry axis. We show that the electric field applied at the same direction makes the oscillation more pronounced.

  1. Electric field measurements from Halley, Antarctica

    NASA Astrophysics Data System (ADS)

    Nicoll, Keri; Harrison, R. Giles

    2016-04-01

    Antarctica is a unique location for the study of atmospheric electricity. Not only is it one of the most pollutant free places on Earth, but its proximity to the south magnetic pole means that it is an ideal location to study the effects of solar variability on the atmospheric electric field. This is due to the reduced shielding effect of the geomagnetic field at the poles which leads to a greater flux of incoming Galactic Cosmic Rays (GCRs) as well as an increased probability of energetic particle precipitation from SEPs and relativistic electrons. To investigate such effects, two electric field mills of different design were installed at the British Antarctic Survey Halley base in February 2015 (75. 58 degrees south, 26.66 degrees west). Halley is situated on the Brunt Ice Shelf in the south east of the Weddell Sea and has snow cover all year round. Preliminary analysis has focused on selection of fair weather criteria using wind speed and visibility measurements which are vital to assess the effects of falling snow, blowing snow and freezing fog on the electric field measurements. When the effects of such adverse weather conditions are removed clear evidence of the characteristic Carnegie Curve diurnal cycle exists in the Halley electric field measurements (with a mean value of 50V/m and showing a 40% peak to peak variation in comparison to the 34% variation in the Carnegie data). Since the Carnegie Curve represents the variation in thunderstorm activity across the Earth, its presence in the Halley data confirms the presence of the global atmospheric electric circuit signal at Halley. The work presented here will discuss the details of the Halley electric field dataset, including the variability in the fair weather measurements, with a particular focus on magnetic field fluctuations.

  2. Stratospheric electric field measurements with transmediterranean balloons

    NASA Astrophysics Data System (ADS)

    de La Morena, B. A.; Alberca, L. F.; Curto, J. J.; Holzworth, R. H.

    1993-01-01

    The horizontal component of the stratospheric electric field was measured using a balloon in the ODISEA Campaign of Transmediterranean Balloon Program. The balloon flew between Trapani (Sicily) and El Arenosillo (Huelva, Spain) along the 39 deg N parallel at a height between 34 and 24 km. The high values found for the field on fair-weather and its quasi-turbulent variation, both in amplitude and direction, are difficult to explain with the classical electric field source. A new source, first described by Holzworth (1989), is considered as possibly causing them.

  3. Equatorial electric fields: a numerical model

    SciTech Connect

    Bonelli, E.

    1985-01-01

    Tidal winds in the ionospheric F region cause polarization charges to build up by blowing the ions perpendicular to the geomagnetic field. The intensity of the electric field so created is inversely related to the E-region Pedersen conductivity. The reason for this is that the E region can short-out F region electric fields through currents flowing along the magnetic field lines. The E region also has a dynamo of its own, whose electric fields map into the F region through the magnetic field lines. The total electric field in the F region due to both these dynamos causes a plasma drift, affecting the interaction between neutrals and ions, and this closes the cycle. The problem just stated is dealt with in a model similar to that of Heelis et al. (1974). The author's model is a step closer to self-consistency than the latter, since the F region is allowed to move in accordance with the calculated vertical plasma drift. In the F region, the electron density is assumed to be a simple Chapman layer and the neutral density and temperature are obtained from Jacchia (1977). The E region is treated as a thin layer, for which the conductivities are height integrated. In his calculations, the author studies the effects on the plasma drift of individual parameters such as the Pedersen conductivity of the F region, the phase of the (1,2) tide in the E region, the motion of the F-peak, etc.

  4. Efficacy of a piglet-specific commercial inactivated vaccine against Porcine circovirus type 2 in clinical field trials

    PubMed Central

    Han, Kiwon; Seo, Hwi Won; Oh, Yeonsu; Park, Changhoon; Kang, Ikjae; Jang, Hyun; Chae, Chanhee

    2013-01-01

    The efficacy of a piglet-specific inactivated Porcine circovirus type 2 (PCV2) vaccine was evaluated with clinical field trials, as recommended by the Republic of Korea’s Animal, Plant & Fisheries Quarantine & Inspection Agency. Three farms were selected on the basis of their history of postweaning multisystemic wasting syndrome. On each farm 60, 1-week-old pigs were randomly allocated to 1 of 2 treatment groups: vaccination at 1 and 3 wk of age or no vaccination. The 2-dose schedule of vaccination with inactivated PCV2 vaccine improved the average daily weight gain from birth to 16 wk of age, the PCV2 load in the blood, and the frequency and severity of lymph node lesions. Inactivated PCV2 vaccine seems to be very effective in controlling PCV2 infection under field conditions. PMID:24101803

  5. Microwave electric field sensing with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  6. Electric field induced deformation of sessile drops

    NASA Astrophysics Data System (ADS)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  7. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1995-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  8. Electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1995-01-31

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  9. Microfluidic Screening of Electric Fields for Electroporation

    NASA Astrophysics Data System (ADS)

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-02-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes.

  10. Microfluidic Screening of Electric Fields for Electroporation

    PubMed Central

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-01-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes. PMID:26893024

  11. Membrane Damage and Viability Loss of Escherichia coli K-12 in Apple Juice Treated with Radio Frequency Electric Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The need for a nonthermal intervention technology that can achieve microbial safety without altering nutritional quality of liquid foods led to the development of radio frequency electric fields (RFEF) process. In order to understand the mechanism of inactivation of bacteria by RFEF, apple juice pur...

  12. A bioluminescence ATP assay for estimating surface hydrophobicity and membrane damage of Escherichia coli cells treated with pulsed electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulse Electric Field (PEF) treatments, a non-thermal process have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (AJ, pH 3.8) purchased from a wholesale ...

  13. Modeling of Nanoparticle-Mediated Electric Field Enhancement Inside Biological Cells Exposed to AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Tiwari, Pawan K.; Kang, Sung Kil; Kim, Gon Jun; Choi, Jun; Mohamed, A.-A. H.; Lee, Jae Koo

    2009-08-01

    We present in this article the effect of alternating electric field at kilohertz (kHz) and megahertz (MHz) frequencies on the biological cells in presence and absence of nanoparticles. The induced electric field strength distribution in the region around cell membrane and nucleus envelope display different behavior at kHz and MHz frequencies. The attachment of gold nanoparticles (GNPs), especially gold nanowires around the surface of nucleus induce enhanced electric field strengths. The induced field strengths are dependent on the length of nanowire and create varying field regions when the length of nanowire is increased from 2 to 4 µm. The varying nanowire length increased the induced field strengths inside nucleoplasm and region adjacent to the nucleus in the cytoplasm. We investigated a process of electrostatic disruption of nucleus membrane when the induced electric field strength across the nucleus exceeds its tensile strength.

  14. Decontamination of collagen biomatrices with combined pulsed electric field and nisin treatment.

    PubMed

    Griffiths, Sarah; Maclean, Michelle; Macgregor, Scott J; Anderson, John G; Helen Grant, M

    2011-02-01

    Pulsed electric field (PEF) treatment has been proposed as a decontamination method for labile matrices used in tissue engineering applications. Through the application of PEF, a non-thermal treatment that causes bacterial inactivation through the irreversible rupture of microbial cell membranes, inactivation is achieved without loss of scaffold structure and function. However, some microorganisms are less susceptible to PEF treatment. This study shows that treatment with PEF and nisin, a food preservative bacteriocin, has a synergistic effect on the inactivation of Staphylococcus epidermidis in collagen gels. Almost complete inactivation of a 10(3) -10(4) CFU/mL S. epidermidis population was achieved when treated with a combination of PEF and 500 IU/mL nisin, with results demonstrating a 3.4 log(10) reduction, compared with 0.66 log(10) reduction with PEF alone. Nisin, at concentrations up to 3000 IU/mL, had no discernable toxicity to mammalian 3T3 cells when added to the culture medium or incorporated into the collagen gels. This combined decontamination method, involving PEF plus nisin, may provide a non-destructive process for inactivation of PEF-resistant bacteria in labile tissue engineering scaffolds. PMID:21210508

  15. Decontamination of collagen biomatrices with combined pulsed electric field and nisin treatment.

    PubMed

    Griffiths, Sarah; Maclean, Michelle; Macgregor, Scott J; Anderson, John G; Helen Grant, M

    2011-02-01

    Pulsed electric field (PEF) treatment has been proposed as a decontamination method for labile matrices used in tissue engineering applications. Through the application of PEF, a non-thermal treatment that causes bacterial inactivation through the irreversible rupture of microbial cell membranes, inactivation is achieved without loss of scaffold structure and function. However, some microorganisms are less susceptible to PEF treatment. This study shows that treatment with PEF and nisin, a food preservative bacteriocin, has a synergistic effect on the inactivation of Staphylococcus epidermidis in collagen gels. Almost complete inactivation of a 10(3) -10(4) CFU/mL S. epidermidis population was achieved when treated with a combination of PEF and 500 IU/mL nisin, with results demonstrating a 3.4 log(10) reduction, compared with 0.66 log(10) reduction with PEF alone. Nisin, at concentrations up to 3000 IU/mL, had no discernable toxicity to mammalian 3T3 cells when added to the culture medium or incorporated into the collagen gels. This combined decontamination method, involving PEF plus nisin, may provide a non-destructive process for inactivation of PEF-resistant bacteria in labile tissue engineering scaffolds.

  16. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  17. Field-aligned currents and large scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1980-01-01

    D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.

  18. A controlled field trial of the effectiveness of acetone-dried and inactivated and heat-phenol-inactivated typhoid vaccines in Yugoslavia*

    PubMed Central

    1964-01-01

    In 1954-60 a Yugoslav Typhoid Commission showed in the first controlled field trial of typhoid vaccines, carried out in Osijek, Yugoslavia, that heat-phenol-inactivated typhoid vaccine gave a relatively high and long-lasting immunity. However, this liquid vaccine preparation was unstable and laboratory potency tests were inconclusive, and it was therefore decided that stable, dried, heat-killed, phenol-preserved vaccine be tested together with an acetone-inactivated and -dried vaccine in controlled field trials, supported in part by the World Health Organization, in Yugoslavia and British Guiana. This is report on the controlled trials organized in two Yugoslav towns, Bitola and Priština. Three comparable groups were formed by random allocation of vaccines among 45 497 volunteers in the two towns. In each town one group received heat-phenol vaccine, the second group acetone-dried vaccine and the third (control) group tetanus toxoid. Two doses were given four weeks apart in the spring of 1960 and the vaccinated persons were followed up for 2 1/2 years. The effectiveness of the vaccines was measured by comparing typhoid morbidity rates in the three groups. It was found during an outbreak of typhoid fever in Priština two years after primary vaccination that both the acetone-dried and the heat-phenol vaccines were effective, the former being superior. PMID:14196811

  19. Electric Field Effects in RUS Measurements

    SciTech Connect

    Darling, Timothy W; Ten Cate, James A; Allured, Bradley; Carpenter, Michael A

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  20. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers in plasmas are briefly described, including applied potential drops, currents, contact potentials, and plasma expansions. Some dynamical features of the double layers are discussed. These features, as seen in simulations, laboratory experiments, and theory, indicate that double layers and the currents through them undergo slow oscillations which are determined by the ion transit time across an effective length of the system in which double layers form. It is shown that a localized potential dip forms at the low potential end of a double layer, which interrupts the electron current through it according to the Langmuir criterion, whenever the ion flux into the double is disrupted. The generation of electric fields perpendicular to the ambient magnetic field by contact potentials is also discussed. Two different situations were considered; in one, a low-density hot plasma is sandwiched between high-density cold plasmas, while in the other a high-density current sheet permeates a low-density background plasma. Perpendicular electric fields develop near the contact surfaces. In the case of the current sheet, the creation of parallel electric fields and the formation of double layers are also discussed when the current sheet thickness is varied. Finally, the generation of electric fields and double layers in an expanding plasma is discussed.

  1. Airborne biological particles and electric fields

    NASA Astrophysics Data System (ADS)

    Benninghoff, William S.; Benninghoff, Anne S.

    1982-01-01

    In November and December 1977 at McMurdo Station in Antarctica we investigated the kinds, numbers, and deposition of airborne particles larger than 2 μm while measuring electric field gradient at 2.5 m above the ground. Elementary collecting devices were used: Staplex Hi-Volume and Roto-rod samplers, Tauber (static sedimentation) traps, petrolatum-coated microscope slides, and snow (melted and filtered). The electric fields were measured by a rotating dipole (Stanford Radioscience Laboratory field mill number 2). During periods of blowing snow and dust the electric field gradient was + 500 to + 2500 V/m, and Tauber traps with grounded covers collected 2 or more times as much snow and dust as the ones with ungrounded covers. During falling snow the electric field gradient was -1000 to -1500 V/m, and the ungrounded traps collected almost twice as much snow and dust as those grounded. These observations suggest that under the prevailing weather conditions in polar regions the probable net effect is deposition of greater quantities of dust, including diaspores and minute organisms, on wet, grounded surfaces. This hypothesis needs examination for its use in explanation of biological distribution patterns.

  2. Parallel electric fields from ionospheric winds

    SciTech Connect

    Nakada, M.P. )

    1987-10-01

    The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced. These appear to be sufficient to heat the electrons which reduces the conductivity and produces further increases in parallel electric fields and temperatures. Calculations indicate that high enough temperatures for optical emission can be produced in less than 0.3 s. Some properties of auroras that might be produced by dynamo winds are examined; one property is a time delay in brightening at higher and lower altitudes.

  3. Electric field stimulated growth of Zn whiskers

    NASA Astrophysics Data System (ADS)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  4. DC Electric Fields at the Magnetopause

    NASA Astrophysics Data System (ADS)

    Laakso, H. E.; Escoubet, C. P.; Masson, A.

    2014-12-01

    In order to understand the transfer of energy, momentum and mass through the magnetopause one needs to know several plasma and field parameters including the DC electric field which is known to be challenging to measure in tenuous plasma regions, e.g. in the inner side of the magnetopause where the density drops below 1/cc. However, each of the Cluster spacecraft carries five different experiments that can provide information about DC electric fields, i.e. double probe antenna (EFW) and electron drift meter (EDI) as well as electron and ion spectrometers (PEACE, CIS-HIA, CIS-CODIF). Each technique is very different and has its own strengths and limitations. Therefore it is important to compare all available measurements before making a judgement on DC electric field variation at the magnetopause; note that only very rarely all five measurements are available at the same time. Although the full-resolution observations in the Cluster archive are calibrated, they can still contain various errors. However, when two experiments show the same field, it is quite likely that this is the right field because the different measurements are based on so complimentary techniques and the field varies so much when the spacecraft moves from the magnetosheath through the magnetopause into the magnetosphere, or vice versa. In this presentation we present several cases of the magnetopause crossings and how the different measurements agree and disagree around the magnetopause region.

  5. Large-scale electric fields in post-flare loops

    NASA Technical Reports Server (NTRS)

    Hinata, Satoshi

    1987-01-01

    As the electrical conductivity along the magnetic field in the solar atmosphere is large, parallel electric fields have been neglected in most investigations. The importance of such fields is demonstrated for post-flare loops, and a model for them is introduced which takes into account the effect of parallel electric fields. The electric field calculated from the model is consistent with the electric field observed by Foukal et al. (1983).

  6. Critical electric field strengths of onion tissues treated by pulsed electric fields.

    PubMed

    Asavasanti, Suvaluk; Ersus, Seda; Ristenpart, William; Stroeve, Pieter; Barrett, Diane M

    2010-09-01

    The impact of pulsed electric fields (PEF) on cellular integrity and texture of Ranchero and Sabroso onions (Allium cepa L.) was investigated. Electrical properties, ion leakage rate, texture, and amount of enzymatically formed pyruvate were measured before and after PEF treatment for a range of applied field strengths and number of pulses. Critical electric field strengths or thresholds (E(c)) necessary to initiate membrane rupture were different because dissimilar properties were measured. Measurement of electrical characteristics was the most sensitive method and was used to detect the early stage of plasma membrane breakdown, while pyruvate formation by the enzyme alliinase was used to identify tonoplast membrane breakdown. Our results for 100-μs pulses indicate that breakdown of the plasma membrane occurs above E(c)= 67 V/cm for 10 pulses, but breakdown of the tonoplast membrane is above either E(c)= 200 V/cm for 10 pulses or 133 V/cm for 100 pulses. This disparity in field strength suggests there may be 2 critical electrical field strengths: a lower field strength for plasma membrane breakdown and a higher field strength for tonoplast membrane breakdown. Both critical electric field strengths depended on the number of pulses applied. Application of a single pulse at an electric field up to 333 V/cm had no observable effect on any measured properties, while significant differences were observed for n≥10. The minimum electric field strength required to cause a measurable property change decreased with the number of pulses. The results also suggest that PEF treatment may be more efficient if a higher electric field strength is applied for a fewer pulses.

  7. Health of workers exposed to electric fields.

    PubMed

    Broadbent, D E; Broadbent, M H; Male, J C; Jones, M R

    1985-02-01

    The results of health questionnaire interviews with 390 electrical power transmission and distribution workers, together with long term estimates of their exposure to 50 Hz electric fields, and short term measurements of the actual exposure for 287 of them are reported. Twenty eight workers received measurable exposures, averaging about 30 kVm-1h over the two week measurement period. Estimated exposure rates were considerably greater, but showed fair correlation with the measurements. Although the general level of health was higher than we have found in manual workers in other industries, there were significant differences in the health measures between different categories of job, different parts of the country, and in association with factors such as overtime, working alone, or frequently changing shift. After allowing for the effects of job and location, however, we found no significant correlations of health with either measured or estimated exposure to electric fields. PMID:3970875

  8. Efficacy study and field application of an inactivated new type gosling viral enteritis virus vaccine for domestic geese.

    PubMed

    Chen, S; Ma, G P; Wang, M S; Cheng, A C; Zhu, D K; Luo, Q H; Jia, R Y; Liu, F; Chen, X Y; Han, X F; Bo, Y; Zhou, D C

    2011-04-01

    New type gosling viral enteritis virus (NGVEV) caused a serious disease in naive juvenile goslings. In the described studies the performance of 2 vaccines was analyzed: a vaccine containing adjuvanted inactivated NGVEV and a vaccine containing adjuvanted inactivated NGVEV and recombinant goose IL-2. Breeder geese were subcutaneously vaccinated at the beginning of the egg production period with the vaccines. Breeder geese sham vaccinated with PBS served as control. The cellular and humoral immune responses of the vaccinated breeder geese, as well as the presence of maternally derived antibody to NGVEV, were investigated by ELISA, virus neutralization test, and lymphocyte proliferation assay, respectively. A significantly higher immunogenicity (P < 0.05) was induced by the inactivated NGVEV-recombinant goose IL-2 adjuvant vaccine compared with the inactivated NGVEV vaccine. The offspring of the vaccinated birds were challenged with virulent NGVEV (100 50% lethal dose) and the protective efficacy of the vaccines was determined. Furthermore, in a field trial the efficacy of the inactivated NGVEV vaccine was recorded from years 2003 to 2007. No clinical signs or abnormal health status were observed in the vaccinated breeder geese and the progeny. After a single application, >80% protection was shown in the progeny of geese vaccinated against NGVEV challenge for approximately 5 mo. The extensive field trials further demonstrated that vaccination of breeder geese with the inactivated NGVEV vaccine could be a safe and efficacious means to control NGVE disease. Moreover, the level of maternally derived NGVEV antibody titer in the egg yolk reflected the level of NGVEV antibodies in the breeder geese, suggesting that the egg yolk could be used to monitor the vaccination efficacy in commercial goose breeder flocks.

  9. Swarm Equatorial Electric Field Inversion Chain

    NASA Astrophysics Data System (ADS)

    Alken, Patrick; Maus, Stefan; Vigneron, Pierre; Sirol, Olivier; Hulot, Gauthier

    2014-05-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays a crucial role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF for both climatological and near real-time studies. The Swarm satellite mission offers a unique opportunity to estimate the equatorial electric field from measurements of the geomagnetic field. Due to the near-polar orbits of each satellite, the on-board magnetometers record a full profile in latitude of the ionospheric current signatures at satellite altitude. These latitudinal magnetic profiles are then modeled using a first principles approach with empirical climatological inputs specifying the state of the ionosphere, in order to recover the EEF. We will present preliminary estimates of the EEF using the first Swarm geomagnetic field measurements, and compare them with independently measured electric fields from the JULIA ground-based radar in Peru.

  10. Field-aligned currents and ionospheric electric fields

    NASA Technical Reports Server (NTRS)

    Yasuhara, F.; Akasofu, S.-I.

    1977-01-01

    It is shown that the observed distribution of the ionospheric electric field can be deduced from an equation combining Ohm's law with the current continuity equation by using the 'observed' distribution of field-aligned currents as the boundary condition for two models of the ionosphere. The first model has one conductive annular ring representing the quiet-time auroral precipitation belt; the second has two conductive annular rings that simulate the discrete and diffuse auroral regions. An analysis is performed to determine how well the electric-field distribution can be reproduced. The results indicate that the first model reproduces the Sq(p)-type distribution, the second model reproduces reasonably well a substorm-type potential and ionospheric current patterns together with the Harang discontinuity, and that the distribution of field-aligned currents is the same for both models.

  11. Tikekar superdense stars in electric fields

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  12. Electric fields in Scanning Electron Microscopy simulations

    NASA Astrophysics Data System (ADS)

    Arat, K. T.; Bolten, J.; Klimpel, T.; Unal, N.

    2016-03-01

    The electric field distribution and charging effects in Scanning Electron Microscopy (SEM) were studied by extending a Monte-Carlo based SEM simulator by a fast and accurate multigrid (MG) based 3D electric field solver. The main focus is on enabling short simulation times with maintaining sufficient accuracy, so that SEM simulation can be used in practical applications. The implementation demonstrates a gain in computation speed, when compared to a Gauss-Seidel based reference solver is roughly factor of 40, with negligible differences in the result (~10-6 𝑉). In addition, the simulations were compared with experimental SEM measurements using also complex 3D sample, showing that i) the modelling of e-fields improves the simulation accuracy, and ii) multigrid method provide a significant benefit in terms of simulation time.

  13. Influence of electric field on cellular migration

    NASA Astrophysics Data System (ADS)

    Guido, Isabella; Bodenschatz, Eberhard

    Cells have the ability to detect continuous current electric fields (EFs) and respond to them with a directed migratory movement. Dictyostelium discoideum (D.d.) cells, a key model organism for the study of eukaryotic chemotaxis, orient and migrate toward the cathode under the influence of an EF. The underlying sensing mechanism and whether it is shared by the chemotactic response pathway remains unknown. Whereas genes and proteins that mediate the electric sensing as well as that define the migration direction have been previously investigated in D.d. cells, a deeper knowledge about the cellular kinematic effects caused by the EF is still lacking. Here we show that besides triggering a directional bias the electric field influences the cellular kinematics by accelerating the movement of cells along their path. We found that the migratory velocity of the cells in an EF increases linearly with the exposure time. Through the analysis of the PI3K and Phg2 distribution in the cytosol and of the cellular adherence to the substrate we aim at elucidating whereas this speed up effect in the electric field is due to either a molecular signalling or the interaction with the substrate. This work is part of the MaxSynBio Consortium which is jointly funded by the Federal Ministry of Education and Research of Germany and the Max Planck Society.

  14. Inactivation kinetics of Cryptosporidium parvum oocysts in a swine waste lagoon and spray field.

    PubMed

    Jenkins, Michael B; Liotta, Janice L; Bowman, Dwight D

    2013-04-01

    Because of outbreaks of cryptosporidiosis in humans, some Cryptosporidium spp. have become a public health concern. Commercial swine operations can be a source of this protozoan parasite. Although the species distribution of Cryptosporidium is likely dominated by Cryptosporidium suis , a fraction may be comprised of other Cryptosporidium species infectious to humans such as Cryptosporidium parvum . To better understand the survival dynamics of Cryptosporidium spp., oocysts associated with swine operations, 2 experiments were performed to determine die-off rates of C. parvum oocysts in a swine waste lagoon (2009 and 2010) and its spray field (2010 and 2011). Sentinel chambers containing a lagoon effluent suspension of C. parvum oocysts were submerged in the lagoon, and triplicate chambers were removed over time; oocysts were extracted and assayed for viability. For comparative purposes, inactivation rates of Ascaris suum eggs contained in sentinel chambers were also determined. For 2 spray field experiments, air-dried and sieved surface soil was placed in sentinel chambers, hydrated, and inoculated with a lagoon effluent suspension of C. parvum oocysts. Sentinel chambers and control oocysts in PBS contained in microcentrifuge tubes were buried 1.5 cm below the soil surface in 3 blocks. Triplicate chambers and controls were removed over time; oocysts were extracted and assayed for viability. Based on the first order decay equation, days to reach 99% die-off (T(99)) were determined. T(99)-values determined for the 2 lagoon experiments were 13.1 and 20.1 wk, respectively. A T(99)-value for C. parvum in the spray field was significantly longer at 38.0 wk than the control oocysts in PBS at 29.0 wk. The waste lagoon and spray field system of manure management at this large-scale farrowing operation appeared to reduce the load of C. parvum oocysts before they can be hydrologically transported off the operation and reduces their likelihood of contaminating surface waters

  15. Lunar Electric Fields: Observations and Implications

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Delory, G. T.; Stubbs, T. J.; Farrell, W. M.; Vondrak, R. R.

    2006-12-01

    Alhough the Moon is typically thought of as having a relatively dormant environment, it is in fact very electrically active. The lunar surface, not protected by any substantial atmosphere, is directly exposed to solar UV and X-rays as well as solar wind plasma and energetic particles. This creates a complex electrodynamic environment, with the surface typically charging positive in sunlight and negative in shadow, and surface potentials varying over orders of magnitude in response to changing solar illumination and plasma conditions. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging also drives dust electrification and horizontal and vertical dust transport. We present a survey of the lunar electric field environment, utilizing both newly interpreted Lunar Prospector (LP) orbital observations and older Apollo surface observations, and comparing to theoretical predictions. We focus in particular on time periods when the most significant surface charging was observed by LP - namely plasmasheet crossings (when the Moon is in the Earth's magnetosphere) and space weather events. During these time periods, kV-scale potentials are observed, and enhanced surface electric fields can be expected to drive significant horizontal and vertical dust transport. Both dust and electric fields can have serious effects on habitability and operation of machinery, so understanding the coupled dust-plasma-electric field system around the Moon is critically important for planning exploration efforts, in situ resource utilization, and scientific observations on the lunar surface. Furthermore, from a pure science perspective, this represents an excellent opportunity to study fundamental surface-plasma interactions.

  16. Conically shaped drops in electric fields

    NASA Astrophysics Data System (ADS)

    Stone, Howard A.; Brenner, Michael P.; Lister, John R.

    1996-11-01

    When an electric field is applied to a dielectric liquid containing a suspended immiscible fluid drop, the drop deforms into a prolate ellipsoidal shape. Above a critical field strength the drop develops conical ends, as first observed by Zeleny [Phys. Rev. 10, 1 (1917)] and Wilson & Taylor [Proc. Camb. Phil. Soc. 22, 728 (1925)] for, respectively, the case of conducting drops and soap films in air. The case of two dielectric liquids was studied recently using a slender drop approximation by Li, Halsey & Lobkovsky [Europhys. Lett 27, 575 (1994)]. In this presentation we further develop the slender body approximation to obtain coupled ordinary differential equations for the electric field and the drop shape. Analytical formulae are derived which approximately give the cone angle as a function of the dielectric constant ratio between the two fluids, and the minimum applied electric field at which conical tips first form as a function of the dielectric constant ratio. Finally, drops shapes are calculated numerically and compared with the common prolate shape assumption.

  17. Lightning Location Using Electric Field Change Meters

    NASA Astrophysics Data System (ADS)

    Bitzer, P. M.; Christian, H.; Burchfield, J.

    2010-12-01

    Briefly introduced last year, the Huntsville Alabama Field Change Array (HAFCA) is a collection of electric field change meters deployed in and around Huntsville. Armed with accurate GPS timing, the array is able to sample electric field changes due to lightning strokes simultaneously at several locations. For the first time, different components of the lightning flash can be located in three dimensions using only electric field change records. In particular, this research will show spacetime locations throughout entire lightning strokes, from preliminary breakdown pulses to the return stroke and later processes that may be related to charge neutralization. To find the spacetime locations, standard time of arrival methods will be used: finding the parameters that best fit the model using the Marquardt method. However, we will also discuss using Markov Chain Monte Carlo methods which yield a better estimation of errors. With this information, we will discuss selected cases from the array to date. In particular, we will discuss the inter-comparison of HAFCA with two other well known lightning location arrays, NLDN and NALMA. Specifically, we will explore the relationship between the first LMA pulse in a lightning stroke and the locations of preliminary breakdown pulses and the implications on lightning initiation. Further, the return stroke locations will be shown to agree reasonably well with NLDN locations. We will also locate compact intracloud discharges (CIDs) and compare with NLDN locations.

  18. Method of electric field flow fractionation wherein the polarity of the electric field is periodically reversed

    DOEpatents

    Stevens, Fred J.

    1992-01-01

    A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.

  19. Parametric excitation of magnetization by electric field

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan; Tiberkevich, Vasil; Slavin, Andrei; Barsukov, Igor; Krivorotov, Ilya

    Manipulation of magnetization by electric field is of primary importance for development of low-power spintronic devices. We present the first experimental demonstration of parametric generation of magnetic oscillations by electric field. We realize the parametric generation in CoFeB/MgO/SAF nanoscale magnetic tunnel junctions (MTJs). The magnetization of the free layer is perpendicular to the sample plane while the magnetizations of the synthetic antiferromagnet (SAF) lie in the plane. We apply microwave voltage to the MTJ at 2 f, where f is the ferromagnetic resonance frequency of the free layer. In this configuration, the oscillations can only be driven parametrically via voltage-controlled magnetic anisotropy (VCMA) whereby electric field across the MgO barrier modulates the free layer anisotropy. The parametrically driven oscillations are detected via microwave voltage from the MTJ near f and show resonant character, observed only in a narrow range of drive frequencies near 2 f. The excitation also exhibits a well-pronounced threshold drive voltage of approximately 0.1 Volts. Our work demonstrates a low threshold for parametric excitation of magnetization by VCMA that holds promise for the development of energy-efficient nanoscale spin wave devices.

  20. Spin generation by strong inhomogeneous electric fields

    NASA Astrophysics Data System (ADS)

    Finkler, Ilya; Engel, Hans-Andreas; Rashba, Emmanuel; Halperin, Bertrand

    2007-03-01

    Motivated by recent experiments [1], we propose a model with extrinsic spin-orbit interaction, where an inhomogeneous electric field E in the x-y plane can give rise, through nonlinear effects, to a spin polarization with non-zero sz, away from the sample boundaries. The field E induces a spin current js^z= z x(αjc+βE), where jc=σE is the charge current, and the two terms represent,respectively, the skew scattering and side-jump contributions. [2]. The coefficients α and β are assumed to be E- independent, but conductivity σ is field dependent. We find the spin density sz by solving the equation for spin diffusion and relaxation with a source term ∇.js^z. For sufficiently low fields, jc is linear in E, and the source term vanishes, implying that sz=0 away from the edges. However, for large fields, σ varies with E. Solving the diffusion equation in a T-shaped geometry, where the electric current propagates along the main channel, we find spin accumulation near the entrance of the side channel, similar to experimental findings [1]. Also, we present a toy model where spin accumulation away from the boundary results from a nonlinear and anisotropic conductivity. [1] V. Sih, et al, Phys. Rev. Lett. 97, 096605 (2006). [2] H.-A. Engel, B.I. Halperin, E.I.Rashba, Phys. Rev. Lett. 95, 166605 (2005).

  1. Biofouling prevention with pulsed electric fields

    SciTech Connect

    Abou-Ghazala, A.; Schoenbach, K.H.

    2000-02-01

    Temporary immobilization of aquatic nuisance species through application of short electric pulses has been explored as a method to prevent biofouling in cooling water systems where untreated lake, river, or sea water is used. In laboratory experiments, electrical pulses with amplitudes on the order of kilovolts/centimeter and submicrosecond duration were found to be most effective in stunning time in a temporal range from minutes to hours. The temporary immobilization is assumed to be caused by reversible membrane breakdown. This assumption is supported by results of measurements of the energy required for stunning. Based on the data obtained in laboratory experiments, field experiments in a tidal water environment have been performed. The flow velocity was such that the residence time of the aquatic nuisance species in the system was approximately half a minute. The results showed that the pulsed electric field method provides full protection against biofouling when pulses of 0.77 {micro}s width and 6 kV/cm amplitude are applied to the water at the inlet of such a cooling water system. Even at amplitudes of 1 kV/cm, the protection is still in the 90% range, at an energy expenditure of 1 kWh for the treatment of 60,000 gallons of water.

  2. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    , layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.

  3. Simple circuit to improve electric field homogeneity in contour-clamped homogeneous electric field chambers.

    PubMed

    Herrera, José A; Canino, Carlos A; López-Cánovas, Lilia; Gigato, Regnar; Riverón, Ana Maria

    2003-04-01

    We redesigned contour-clamped homogeneous electric field (CHEF) circuitry to eliminate crossover distortion, to set identical potentials at electrodes of each equipotential pair and to drive pairs with transistors in emitter follower stages. An equipotential pair comprised the two electrodes set at the same potential to provide electric field homogeneity inside of the hexagonal array. The new circuitry consisted of two identical circuits, each having a resistor ladder, diodes and transistors. Both circuits were interconnected by diodes that controlled the current flow to electrodes when the array was energized in the 'A' or 'B' direction of the electric field. The total number of transistors was two-thirds of the total number of electrodes. Average voltage deviation from potentials expected at electrodes to achieve a homogeneous electric field was 0.06 V, whereas 0.44 V was obtained with another circuit that used transistors in push-pull stages. The new voltage clamp unit is cheap, generated homogeneous electric field, and gave reproducible and undistorted DNA band patterns.

  4. Simple circuit to improve electric field homogeneity in contour-clamped homogeneous electric field chambers.

    PubMed

    Herrera, José A; Canino, Carlos A; López-Cánovas, Lilia; Gigato, Regnar; Riverón, Ana Maria

    2003-04-01

    We redesigned contour-clamped homogeneous electric field (CHEF) circuitry to eliminate crossover distortion, to set identical potentials at electrodes of each equipotential pair and to drive pairs with transistors in emitter follower stages. An equipotential pair comprised the two electrodes set at the same potential to provide electric field homogeneity inside of the hexagonal array. The new circuitry consisted of two identical circuits, each having a resistor ladder, diodes and transistors. Both circuits were interconnected by diodes that controlled the current flow to electrodes when the array was energized in the 'A' or 'B' direction of the electric field. The total number of transistors was two-thirds of the total number of electrodes. Average voltage deviation from potentials expected at electrodes to achieve a homogeneous electric field was 0.06 V, whereas 0.44 V was obtained with another circuit that used transistors in push-pull stages. The new voltage clamp unit is cheap, generated homogeneous electric field, and gave reproducible and undistorted DNA band patterns. PMID:12707904

  5. Sterilization of liquid foods by pulsed electric fields-an innovative ultra-high temperature process.

    PubMed

    Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm(-1)), skim milk (0.3% fat; 5.3 mS cm(-1)) and fresh prepared carrot juice (7.73 mS cm(-1)). The combination of moderate preheating (70-90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105-140°C (measured above the PEF chamber) within 92.2-368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h(-1), a frequency of 150 Hz and an energy input of 226.5 kJ kg(-1), resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg(-1) resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields.

  6. Sterilization of liquid foods by pulsed electric fields-an innovative ultra-high temperature process.

    PubMed

    Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm(-1)), skim milk (0.3% fat; 5.3 mS cm(-1)) and fresh prepared carrot juice (7.73 mS cm(-1)). The combination of moderate preheating (70-90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105-140°C (measured above the PEF chamber) within 92.2-368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h(-1), a frequency of 150 Hz and an energy input of 226.5 kJ kg(-1), resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg(-1) resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields

  7. Rocket borne instrument to measure electric fields inside electrified clouds

    NASA Technical Reports Server (NTRS)

    Ruhnke, L. H.

    1973-01-01

    Simple electric field measuring system is mounted on small rocket and consists of two voltage probes, one extending from nose and other on tail fin. Electric field through which rocket passes is determined by potential difference between probes.

  8. Convection electric fields and polar thermospheric winds.

    NASA Technical Reports Server (NTRS)

    Fedder, J. A.; Banks, P. M.

    1972-01-01

    Use of the qualitative ideas of convection electric fields over the earth's polar regions to demonstrate the importance of ion drag in establishing a thermospheric wind system. Recent measurements indicate that uniform electric fields of 10 to 40 mV/m are a regular feature of the polar-cap ionosphere. Calculations of the neutral thermospheric wind, using these measured fields in a simple ionospheric model, have been made. The time scale for motion of the neutral gas ranges from less than 1 hour at F-region heights to about 2 hours in the dynamo region of the ionosphere. It has been found that the viscosity of the atmosphere is important in determining the winds in the dynamo region. Results are given that show ion-temperature enhancements of hundreds of degrees that are due to ion-neutral frictional effects. In addition, the total deposition rate of convection energy in the polar thermosphere is shown to be of the same order of magnitude as that due to absorption of solar EUV radiation. The implications of these results for the dynamics and energetics of the thermosphere are discussed.

  9. On electric fields produced by steady currents

    NASA Astrophysics Data System (ADS)

    Zapolsky, Harold S.

    1988-12-01

    It is well known that an electric (as well as a magnetic) field exists in a reference frame moving relative to a dc circuit that appears to be electrically neutral in its own rest frame. The source of this field is customarily treated as a continuous charge density, which appears in the moving frame as a consequence of the fact that charge and current densities are separate components of a four-vector, which become mixed under the operation of a Lorentz transformation. It is possible to analyze this situation in a different way, by considering the superposed Lienard-Wiechert fields of a large number of moving point charges in the limit that their spacing becomes infinitesimal. While this analysis is not as simple as the standard one, it does expose some interesting physics that is masked by the standard treatment. It is also a useful approach in resolving a paradox that appears to occur when charge and current densities are treated as static objects.

  10. Hydrogel Actuation by Electric Field Driven Effects

    NASA Astrophysics Data System (ADS)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  11. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  12. Electric field induced Lyman-α emission of a hydrogen beam for electric field measurements

    SciTech Connect

    Chérigier-Kovacic, L. Doveil, F.; Ström, P.; Lejeune, A.

    2015-06-15

    Electric field induced Lyman-α emission is a new way of measuring weak electric fields in vacuum and in a plasma. It is based on the emission of Lyman-α radiation (121.6 nm) by a low-energy metastable H atom beam due to Stark-quenching of the 2s level induced by the field. In this paper, we describe the technique in detail. Test measurements have been performed in vacuum between two plates polarized at a controlled voltage. The intensity of emitted radiation, proportional to the square of the field modulus, has been recorded by a lock-in technique, which gives an excellent signal to noise ratio. These measurements provide an in situ calibration that can be used to obtain the absolute value of the electric field. A diagnostic of this type can help to address a long standing challenge in plasma physics, namely, the problem of measuring electric fields without disturbing the equilibrium of the system that is being studied.

  13. Impact of electric fields on honey bees

    SciTech Connect

    Bindokas, V.P.

    1985-01-01

    Biological effects in honey bee colonies under a 765-kV, 60-Hz transmission line (electric (E) field = 7 kV/m) were confirmed using controlled dosimetry and treatment reversal to replicate findings within the same season. Hives in the same environment but shielded from E field are normal, suggesting effects are caused by interaction of E field with the hive. Bees flying through the ambient E field are not demonstrably affected. Different thresholds and severity of effects were found in colonies exposed to 7, 5.5, 4.1, 1.8, and 0.65 to 0.85 kV/m at incremental distances from the line. Most colonies exposed at 7 kV/m failed in 8 weeks and failed to overwinter at greater than or equal to4.1 kV/m. Data suggest the limit of a biological effects corridor lies between 15 and 27 m (4.1 and 1.8 kV/m) beyond the outer phase of the transmission line. Mechanisms to explain colony disturbance fall into two categories, direct perception of enhanced in-hive E fields, and perception of shock from induced currents. The same effects induced in colonies with total-hive E-field exposure can be reproduced with shock or E-field exposure of worker bees in extended hive entranceways (= porches). Full-scale experiments demonstrate bee exposure to E fields including 100 kV/m under moisture-free conditions within a non-conductive porch causes no detectable effect on colony behavior. Exposure of bees on a conductive (e.g. wet) substrate produces been disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. Thresholds for effects caused by step-potential-induced currents are: 275-350 nA - disturbance of single bees; 600 nA - onset of abnormal propolization; and 900 nA - sting.

  14. Electric field control of Skyrmions in magnetic nanodisks

    NASA Astrophysics Data System (ADS)

    Nakatani, Y.; Hayashi, M.; Kanai, S.; Fukami, S.; Ohno, H.

    2016-04-01

    The control of magnetic Skyrmions confined in a nanometer scale disk using electric field pulses is studied by micromagnetic simulation. A stable Skyrmion can be created and annihilated by an electric field pulse depending on the polarity of the electric field. Moreover, the core direction of the Skyrmion can be switched using the same electric field pulses. Such creation and annihilation of Skyrmions, and its core switching do not require any magnetic field and precise control of the pulse length. This unconventional manipulation of magnetic texture using electric field pulses allows a robust way of controlling magnetic Skyrmions in nanodiscs, a path toward building ultralow power memory devices.

  15. Electric field effects on droplet burning

    NASA Astrophysics Data System (ADS)

    Patyal, Advitya; Kyritsis, Dimitrios; Matalon, Moshe

    2015-11-01

    The effects of an externally applied electric field are studied on the burning characteristics of a spherically symmetric fuel drop including the structure, mass burning rate and extinction characteristics of the diffusion flame. A reduced three-step chemical kinetic mechanism that reflects the chemi-ionization process for general hydrocarbon fuels has been proposed to capture the production and destruction of ions inside the flame zone. Due to the imposed symmetry, the effect of the ionic wind is simply to modify the pressure field. Our study thus focuses exclusively on the effects of Ohmic heating and kinetic effects on the burning process. Two distinguished limits of weak and strong field are identified, highlighting the relative strength of the internal charge barrier compared to the externally applied field, and numerically simulated. For both limits, significantly different charged species distributions are observed. An increase in the mass burning rate is noticed with increasing field in either limit with negligible change in the flame temperature. Increasing external voltages pushes the flame away from the droplet and causes a strengthening of the flame with a reduction in the extinction Damkhöler number.

  16. Soil Identification using Field Electrical Resistivity Method

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Rosli, S.; Chitral, W. D.; Fauziah, A.; Azhar, A. T. S.; Aziman, M.; Ismail, B.

    2015-06-01

    Geotechnical site investigation with particular reference to soil identification was important in civil engineering works since it reports the soil condition in order to relate the design and construction of the proposed works. In the past, electrical resistivity method (ERM) has widely being used in soil characterization but experienced several black boxes which related to its results and interpretations. Hence, this study performed a field electrical resistivity method (ERM) using ABEM SAS (4000) at two different types of soils (Gravelly SAND and Silty SAND) in order to discover the behavior of electrical resistivity values (ERV) with type of soils studied. Soil basic physical properties was determine thru density (p), moisture content (w) and particle size distribution (d) in order to verify the ERV obtained from each type of soil investigated. It was found that the ERV of Gravelly SAND (278 Ωm & 285 Ωm) was slightly higher than SiltySAND (223 Ωm & 199 Ωm) due to the uncertainties nature of soils. This finding has showed that the results obtained from ERM need to be interpreted based on strong supported findings such as using direct test from soil laboratory data. Furthermore, this study was able to prove that the ERM can be established as an alternative tool in soil identification provided it was being verified thru other relevance information such as using geotechnical properties.

  17. Assembly of LIGA using Electric Fields

    SciTech Connect

    FEDDEMA, JOHN T.; WARNE, LARRY K.; JOHNSON, WILLIAM A.; OGDEN, ALLISON J.; ARMOUR, DAVID L.

    2002-04-01

    The goal of this project was to develop a device that uses electric fields to grasp and possibly levitate LIGA parts. This non-contact form of grasping would solve many of the problems associated with grasping parts that are only a few microns in dimensions. Scaling laws show that for parts this size, electrostatic and electromagnetic forces are dominant over gravitational forces. This is why micro-parts often stick to mechanical tweezers. If these forces can be controlled under feedback control, the parts could be levitated, possibly even rotated in air. In this project, we designed, fabricated, and tested several grippers that use electrostatic and electromagnetic fields to grasp and release metal LIGA parts. The eventual use of this tool will be to assemble metal and non-metal LIGA parts into small electromechanical systems.

  18. Electric fields and double layers in plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Various mechanisms for driving double layers (DLs) in plasmas are described, including applied potential drops, currents, contact potentials, and plasma expansions. Somne dynamic features of the DLs are discussed; and it is demonstrated that DLs and the currents through them undergo slow oscillations, determined by the ion transit time across an effective length of the system in which the DLs form. It is shown that a localized potential dip forms at the low potential end of a DL, which interrupts the electron current through it according to the Langmuir criterion whenever the ion flux into the DL is disrupted. Also considered is the generation of electric fields perpendicular to the ambient magnetic field by contact potentials.

  19. Dielectric fluid in inhomogeneous pulsed electric field.

    PubMed

    Shneider, M N; Pekker, M

    2013-04-01

    We consider the dynamics of a compressible fluid under the influence of electrostrictive ponderomotive forces in strong inhomogeneous nonstationary electric fields. It is shown that if the fronts of the voltage rise at a sharp, needlelike electrode are rather steep (less than or about nanoseconds), the region of negative pressure arises, which can reach values at which the fluid loses its continuity with the formation of cavitation ruptures. If the voltage on the electrode is not large enough or the front is flatter, the cavitation in the liquid does not occur. However, a sudden shutdown of the field results in a reverse flow of liquid from the electrode, which leads to appearance of negative pressure, and, possibly, cavitation.

  20. DH(*) in chiral smectics under electric field.

    PubMed

    Meyer, C; Rabette, C; Gisse, P; Antonova, K; Dozov, I

    2016-07-01

    The behavior of double helices (DH(*) formed in the temperature interval N(*) -SmA(*) in compounds of non-chiral liquid crystals doped with chiral molecules was investigated. Two different systems presenting left-handed and right-handed chirality were studied. A statistics of the handedness of the DH(*) revealed a correlation with the mixture chirality, as predicted theoretically in C. Meyer, Yu. A. Nastishin, M. Kleman, Phys. Rev. E 82, 031704 (2010). By applying a gradually increasing AC electric field, one can observe the shrinking of the cylinder circumscribing the DH(*) . This shrink is accompanied by a reduction of the DH(*) 's pitch. This effect was similar to the one produced by the decrease of temperature in the absence of the field. PMID:27465656

  1. The impact of space electric field research on atmospheric studies

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1974-01-01

    Space measurements of electric fields have provided instrumentation for measuring atmospheric parameters and a better basis for understanding the electrical coupling between the magnetosphere and the atmosphere. Applications of an incoherent scatter radar (developed for ionospheric electric field research) to the measurement of atmospheric winds and turbulence and of Langmuir double probes (also developed for space research) for measurement of atmospheric electric fields are described. The increased knowledge of magnetospheric electric fields has focused attention on the electrical coupling between the magnetosphere and the atmosphere with conclusions that should considerably modify previous physical concepts in both domains.

  2. Extracting Nucleon Magnetic Moments and Electric Polarizabilities from Lattice QCD in Background Electric Fields

    SciTech Connect

    William Detmold; Tiburzi, Brian C.; Walker-Loud, Andre

    2010-03-01

    Nucleon properties are investigated in background electric fields. As the magnetic moments of baryons affect their relativistic propagation in constant electric fields, electric polarizabilities cannot be determined without knowledge of magnetic moments. We devise combinations of baryon two-point functions in external electric fields to isolate both observables. Using an ensemble of anisotropic gauge configurations with dynamical clover fermions, we demonstrate how magnetic moments and electric polarizabilities can be determined from lattice QCD simulations in background electric fields. We obtain results for both the neutron and proton. Our study is currently limited to electrically neutral sea quarks.

  3. A Gravitational Experiment Involving Inhomogeneous Electric Fields

    SciTech Connect

    Datta, T.; Yin Ming; Vargas, Jose

    2004-02-04

    Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kaehler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic

  4. A Gravitational Experiment Involving Inhomogeneous Electric Fields

    NASA Astrophysics Data System (ADS)

    Datta, T.; Yin, Ming; Vargas, Jose

    2004-02-01

    Unification of gravitation with other forms of interactions, particularly with electromagnetism, will have tremendous impacts on technology and our understanding of nature. The economic impact of such an achievement will also be unprecedented and far more extensive than the impact experienced in the past century due to the unification of electricity with magnetism and optics. Theoretical unification of gravitation with electromagnetism using classical differential geometry has been pursued since the late nineteen twenties, when Einstein and Cartan used teleparallelism for the task. Recently, Vargas and Torr have followed the same line of research with more powerful mathematics in a more general geometric framework, which allows for the presence of other interactions. Their approach also uses Kähler generalization of Cartan's exterior calculus, which constitutes a language appropriate for both classical and quantum physics. Given the compelling nature of teleparallelism (path-independent equality of vectors at a distance) and the problems still existing with energy-momentum in general relativity, it is important to seek experimental evidence for such expectations. Such experimental programs are likely to provide quantitative guidance to the further development of current and future theories. We too, have undertaken an experimental search for potential electrically induced gravitational (EIG) effects. This presentation describes some of the practical concerns that relates to our investigation of electrical influences on laboratory size test masses. Preliminary results, appear to indicate a correlation between the application of a spatially inhomogeneous electric field and the appearance of an additional force on the test mass. If confirmed, the presence of such a force will be consistent with the predictions of Vargas-Torr. More importantly, proven results will shed new light and clearer understanding of the interactions between gravitational and electromagnetic

  5. Inhibition of brain tumor cell proliferation by alternating electric fields

    SciTech Connect

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi E-mail: radioyoon@korea.ac.kr; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun E-mail: radioyoon@korea.ac.kr; Koh, Eui Kwan

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  6. Saturation of the Electric Field Transmitted to the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.

    2010-01-01

    We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.

  7. Nonlinear response of electric fields at a neutral point

    NASA Astrophysics Data System (ADS)

    Berkovsky, Mikhail; Dufty, James W.; Calisti, Annette; Stamm, Roland; Talin, Bernard

    1995-05-01

    The complex dynamics of electric fields at a neutral point in a plasma is studied via a model of noninteracting ``quasiparticles.'' The simplicity of the model allows the reduction of the many-body problem to an effective single-particle analysis-all properties of interest can be reduced to quadratures. Still, the final calculations to extract a quantitative or even qualitative understanding of the field dynamics can be difficult. Attention here is focused on the dynamics of the conditional electric field: the field value at time t for a given initial value of the field. In addition to the relevant linear response function (electric field time correlation function), this property provides the complete nonlinear response of the electric field to arbitrary initial field perturbations. The static properties (distribution of electric fields and field time derivatives) and the electric field time correlation function have been known for some time for this model. We compare these results and the present result for the conditional electric field with molecular dynamics simulations including interactions. The comparisons suggest that the model provides a quantitative representation of electric field dynamics in real plasmas, except at strong coupling. The exact theoretical results are compared also with those obtained by modeling the electric field as a stochastic variable obeying a kangaroo process. The latter can be constructed to yield both the exact stationary distribution and the exact electric field time correlation function. However, we find that the conditional field is never well approximated by this process. An alternative representation of the joint distribution for electric fields, consistent with the exact stationary distribution, field correlation function, and conditional electric field, is suggested.

  8. What Are Electric and Magnetic Fields? (EMF)

    MedlinePlus

    ... Puzzles Riddles Songs Activities Be a Scientist Coloring Science ... Electricity is an essential part of our lives. Electricity powers all sorts of things around us, from computers to refrigerators Use of electric power is something ...

  9. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  10. Patchy particle packing under electric fields.

    PubMed

    Song, Pengcheng; Wang, Yufeng; Wang, Yu; Hollingsworth, Andrew D; Weck, Marcus; Pine, David J; Ward, Michael D

    2015-03-01

    Colloidal particles equipped with two, three, or four negatively charged patches, which endow the particles with 2-fold, 3-fold, or tetrahedral symmetries, form 1D chains, 2D layers, and 3D packings when polarized by an AC electric field. Two-patch particles, with two patches on opposite sides of the particle (2-fold symmetry) pack into the cmm plane group and 3D packings with I4mm space group symmetry, in contrast to uncharged spherical or ellipsoidal colloids that typically crystallize into a face-centered ABC layer packing. Three-patch particles (3-fold symmetry) form chains having a 21 screw axis symmetry, but these chains pair in a manner such that each individual chain has one-fold symmetry but the pair has 21 screw axis symmetry, in an arrangement that aligns the patches that would favor Coulombic interactions along the chain. Surprisingly, some chain pairs form unanticipated double-helix regions that result from mutual twisting of the chains about each other, illustrating a kind of polymorphism that may be associated with nucleation from short chain pairs. Larger 2D domains of the three-patch particles crystallize in the p6m plane group with alignment (with respect to the field) and packing densities that suggest random disorder in the domains, whereas four-patch particles form 2D domains in which close-packed rows are aligned with the field.

  11. Patchy particle packing under electric fields.

    PubMed

    Song, Pengcheng; Wang, Yufeng; Wang, Yu; Hollingsworth, Andrew D; Weck, Marcus; Pine, David J; Ward, Michael D

    2015-03-01

    Colloidal particles equipped with two, three, or four negatively charged patches, which endow the particles with 2-fold, 3-fold, or tetrahedral symmetries, form 1D chains, 2D layers, and 3D packings when polarized by an AC electric field. Two-patch particles, with two patches on opposite sides of the particle (2-fold symmetry) pack into the cmm plane group and 3D packings with I4mm space group symmetry, in contrast to uncharged spherical or ellipsoidal colloids that typically crystallize into a face-centered ABC layer packing. Three-patch particles (3-fold symmetry) form chains having a 21 screw axis symmetry, but these chains pair in a manner such that each individual chain has one-fold symmetry but the pair has 21 screw axis symmetry, in an arrangement that aligns the patches that would favor Coulombic interactions along the chain. Surprisingly, some chain pairs form unanticipated double-helix regions that result from mutual twisting of the chains about each other, illustrating a kind of polymorphism that may be associated with nucleation from short chain pairs. Larger 2D domains of the three-patch particles crystallize in the p6m plane group with alignment (with respect to the field) and packing densities that suggest random disorder in the domains, whereas four-patch particles form 2D domains in which close-packed rows are aligned with the field. PMID:25692316

  12. Liquid methanol under a static electric field

    SciTech Connect

    Cassone, Giuseppe; Giaquinta, Paolo V.; Saija, Franz; Saitta, A. Marco

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  13. Electrical integrity of oxides in a radiation field

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1996-04-01

    In the absence of an applied electric field, irradiation generally produces a decrease in the permanent (beam-off) electrical conductivity of ceramic insulators. However, in the past 6 years several research groups have reported a phenomenon known as radiation induced electrical degradation (RIED), which produces significant permanent increases in the electrical conductivity of ceramic insulators irradiated with an applied electric field. RIED has been reported to occur at temperatures between 420 and 800 K with applied electric fields as low as 20 V/mm.

  14. Electropumping of water with rotating electric fields

    NASA Astrophysics Data System (ADS)

    De Luca, Sergio; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.

    2013-04-01

    Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.

  15. Enhancement of air filtration using electric fields.

    PubMed

    Nelson, G O; Bergman, W; Miller, H H; Taylor, R D; Richards, C P; Biermann, A H

    1978-06-01

    Although polarized electrostatic air filters are efficient air filtrating devices, their main disadvantages are difficulty in collecting conductive particles or in operating at relative humidities above 70%. We describe here a new filter design that eliminates these problems. A nonconductive media, normally a glass fiber mat, is placed between two insulated conductive screens. As the voltage across the screens is increased, the penetration of particles decreases exponentially. Increasing the electric field from 0 to 10 kV/cm will decrease the mass penetration from 60% to less than 10% of a polydispersed 0.8 micrometer ammd(sigma g = 2.0) sodium chloride aerosol. The experimental effects of face velocity, particle charge and size, packing density, fiber size, and screen insulation mirror the theoretical effects of these variables on particle penetration. PMID:685827

  16. Difficulties in Learning the Concept of Electric Field.

    ERIC Educational Resources Information Center

    Furio, C.; Guisasola, J.

    1998-01-01

    Analyzes students' main difficulties in learning the concept of electric field. Briefly describes the main conceptual profiles within which electric interactions can be interpreted and concludes that most students have difficulty using the idea of electric field. Contains 28 references. (DDR)

  17. Field enhanced photocatalytic inactivation of Escherichia coli using immobilized titanium dioxide nanotube arrays

    NASA Astrophysics Data System (ADS)

    Huber, Jeffrey M.

    A batch reactor device utilizing photocatalysis and a flow reactor combining photocatalysis and photoelectrocatalysis were developed for bacterial disinfection in lab-synthesized and natural waters. The batch reactor provided a 90% decrease in initial concentration (~1 x 103 CFU/mL) after 60 minutes when subjected to incident light at 100 mW/cm2 and continuous mixing via aeration. A combination of photocatalysis and photoelectrocatalysis in the flow reactor provided complete inactivation of contaminated waters with flow rates of 50 mL/min. Both devices consisted of immobilized titanium dioxide nanotube arrays as the catalyzing medium. The flow reactor used an applied bias of up to 6 V without noticeable water splitting. Light intensity, applied voltage, and background electrolytes and concentration were all found to impact the device performance. Complete inactivation of E. coli W3110 (800 CFU/mL) occurred in 15 seconds in the flow reactor irradiated at 25 mW/cm2 with an applied voltage of 4 V in a 100 ppm NaCl solution. Disinfection in natural water was inhibited by the presence of inorganic ions and other constituents that are commonly found in natural water. To simulate natural scenarios in which a point-of-use device might be employed, testing was conducted in a natural environment using source water from Emigration Creek in Salt Lake City, Utah. A higher voltage of 6 V was required to reach 100% inactivation in natural surface water. The nanotube flow through disinfection chamber shows promise as a personal point-of use device for E. coli inactivation.

  18. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    NASA Astrophysics Data System (ADS)

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-01

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 μm, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  19. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    SciTech Connect

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  20. Role of random electric fields in relaxors

    PubMed Central

    Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang; Ganesh, Panchapakesan; Gehring, Peter M.

    2014-01-01

    PbZr1–xTixO3 (PZT) and Pb(Mg1/3Nb2/3)1–xTixO3 (PMN-xPT) are complex lead-oxide perovskites that display exceptional piezoelectric properties for pseudorhombohedral compositions near a tetragonal phase boundary. In PZT these compositions are ferroelectrics, but in PMN-xPT they are relaxors because the dielectric permittivity is frequency dependent and exhibits non-Arrhenius behavior. We show that the nanoscale structure unique to PMN-xPT and other lead-oxide perovskite relaxors is absent in PZT and correlates with a greater than 100% enhancement of the longitudinal piezoelectric coefficient in PMN-xPT relative to that in PZT. By comparing dielectric, structural, lattice dynamical, and piezoelectric measurements on PZT and PMN-xPT, two nearly identical compounds that represent weak and strong random electric field limits, we show that quenched (static) random fields establish the relaxor phase and identify the order parameter. PMID:24449912

  1. Behavior of pulsed electric field injured Escherichia coli O157:H7 cells in apple juice amended with pyruvate and catalase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulse Electric Field (PEF) treatment has been used to inactivate bacteria in liquid foods. However, information on the behavior of PEF injured Escherichia coli bacteria in media during storage at 5 and 23C are limited. In this study, we investigated the fate of E. coli O157:H7 cells at 6.8 log CFU/m...

  2. The Influence of Electric Field and Confinement on Cell Motility

    PubMed Central

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C.

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D. PMID:23555674

  3. The influence of electric field and confinement on cell motility.

    PubMed

    Huang, Yu-Ja; Samorajski, Justin; Kreimer, Rachel; Searson, Peter C

    2013-01-01

    The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.

  4. Pulsed electric field processing of egg products: a review.

    PubMed

    Yogesh, K

    2016-02-01

    Thermal processing ensures safety and enhances the shelf-life of most of the food products. It alters the structural-chemical composition, modifies heat labile components, as well as affects the functional properties of food products. This has driven the development of non-thermal food processing techniques, primarily for extending the shelf-life of different food products. These techniques are currently also being evaluated for their effects on product processing, quality and other safety parameters. Pulsed electric field (PEF) is an example of non-thermal technique which can be applied for a variety of purpose in the food processing industry. PEF can be used for antimicrobial treatment of various food products to improve the storability or food safety, for extraction and recovery of some high-value compounds from a food matrix or for stabilization of various food products through inactivation of some enzymes or catalysts. Research on the application of PEF to control spoilage or pathogenic microorganisms in different egg products is being currently focused. It has been reported that PEF effectively reduces the activity of various microorganisms in a variety of egg products. However, the PEF treatment also alters the structural and functional properties to some extent and there is a high degree of variability between different studies. In addition to integrating findings, the present review also provides several explanations for the inconsistency in findings between different studies related to PEF processing of egg products. Several specific recommendations for future research directions on PEF processing are well discussed in this review. PMID:27162373

  5. Production of plasma with variable, radial electric fields

    NASA Technical Reports Server (NTRS)

    Kustom, B.; Merlino, R. L.; Dangelo, N.

    1984-01-01

    A device is described suitable for plasma wave experiments requiring relatively large, variable, radial electric fields perpendicular to a static magnetic field. By separately adjusting the potentials of two independent, coaxial discharge plasmas, the authors produced plasmas with a radial electric field E sub r less than approximately 5 V/cm.

  6. Flow-Driven Cell Migration under External Electric Fields

    NASA Astrophysics Data System (ADS)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2015-12-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and they can migrate toward a cathode or an anode, depending on the cell type. In this Letter, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent.

  7. Measurements of the vertical atmospheric electric field and of the electrical conductivity with stratospheric balloons

    NASA Technical Reports Server (NTRS)

    Iversen, I. B.; Madsen, M. M.; Dangelo, N.

    1985-01-01

    Measurements of the atmospheric (vertical) electric field with balloons in the stratosphere are reported. The atmospheric electrical conductivity is also measured and the current density inferred. The average vertical current shows the expected variation with universal time and is also seen to be influenced by external (magnetospheric) electric fields.

  8. Electric field induced bacterial flocculation of Enteroaggregative Escherichia coli 042

    SciTech Connect

    Kumar, Aloke; Mortensen, Ninell P; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2011-01-01

    A response of the aggregation dynamics of enteroaggregative Escherichia coli under low magnitude steady and oscillating electric fields is presented. The presence of uniform electric fields hampered microbial adhesion and biofilm formation on a transverse glass surface, but instead promoted the formation of flocs. Extremely heterogeneous distribution of live and dead cells was observed among the flocs. Moreover, floc formation was largely observed to be independent of the frequency of alternating electric fields.

  9. Use of a sentinel system for field measurements of Cryptosporidium parvum oocyst inactivation in soil and animal waste.

    PubMed

    Jenkins, M B; Walker, M J; Bowman, D D; Anthony, L C; Ghiorse, W C

    1999-05-01

    A small-volume sentinel chamber was developed to assess the effects of environmental stresses on survival of sucrose-Percoll-purified Cryptosporidium parvum oocysts in soil and animal wastes. Chambers were tested for their ability to equilibrate with external chemical and moisture conditions. Sentinel oocysts were then exposed to stresses of the external environment that affected their viability (potential infectivity), as indicated by results of a dye permeability assay. Preliminary laboratory experiments indicated that temperatures between 35 and 50 degrees C and decreases in soil water potential (-0.003 to -3.20 MPa) increased oocyst inactivation rates. The effects of two common animal waste management practices on oocyst survival were investigated on three dairy farms in Delaware County, N.Y., within the New York City watershed: (i) piling wastes from dairy youngstock (including neonatal calves) and (ii) spreading wastes as a soil amendment on an agricultural field. Sentinel containers filled with air-dried and sieved (2-mm mesh) youngstock waste or field soil were wetted and inoculated with 2 million oocysts in an aqueous suspension and then placed in waste piles on two different farms and in soil within a cropped field on one farm. Controls consisted of purified oocysts in either phosphate-buffered saline or distilled water contained in sealed microcentrifuge tubes. Two microdata loggers recorded the ambient temperature at each field site. Sentinel experiments were conducted during the fall and winter (1996 to 1997) and winter (1998). Sentinel containers and controls were removed at 2- to 4-week intervals, and oocysts were extracted and tested by the dye permeability assay. The proportions of potentially infective oocysts exposed to the soil and waste pile material decreased more rapidly than their counterpart controls exposed to buffer or water, indicating that factors other than temperature affected oocyst inactivation in the waste piles and soil. The

  10. Use of a Sentinel System for Field Measurements of Cryptosporidium parvum Oocyst Inactivation in Soil and Animal Waste

    PubMed Central

    Jenkins, M. B.; Walker, M. J.; Bowman, D. D.; Anthony, L. C.; Ghiorse, W. C.

    1999-01-01

    A small-volume sentinel chamber was developed to assess the effects of environmental stresses on survival of sucrose-Percoll-purified Cryptosporidium parvum oocysts in soil and animal wastes. Chambers were tested for their ability to equilibrate with external chemical and moisture conditions. Sentinel oocysts were then exposed to stresses of the external environment that affected their viability (potential infectivity), as indicated by results of a dye permeability assay. Preliminary laboratory experiments indicated that temperatures between 35 and 50°C and decreases in soil water potential (−0.003 to −3.20 MPa) increased oocyst inactivation rates. The effects of two common animal waste management practices on oocyst survival were investigated on three dairy farms in Delaware County, N.Y., within the New York City watershed: (i) piling wastes from dairy youngstock (including neonatal calves) and (ii) spreading wastes as a soil amendment on an agricultural field. Sentinel containers filled with air-dried and sieved (2-mm mesh) youngstock waste or field soil were wetted and inoculated with 2 million oocysts in an aqueous suspension and then placed in waste piles on two different farms and in soil within a cropped field on one farm. Controls consisted of purified oocysts in either phosphate-buffered saline or distilled water contained in sealed microcentrifuge tubes. Two microdata loggers recorded the ambient temperature at each field site. Sentinel experiments were conducted during the fall and winter (1996 to 1997) and winter (1998). Sentinel containers and controls were removed at 2- to 4-week intervals, and oocysts were extracted and tested by the dye permeability assay. The proportions of potentially infective oocysts exposed to the soil and waste pile material decreased more rapidly than their counterpart controls exposed to buffer or water, indicating that factors other than temperature affected oocyst inactivation in the waste piles and soil. The effect

  11. Electric field measurements at subcritical, oblique bow shock crossings

    NASA Technical Reports Server (NTRS)

    Wygant, J. R.; Bensadoun, M.; Mozer, F. S.

    1987-01-01

    ISEE-1 electric field measurements at three oblique, subcritical dispersive bow shock crossings are presented. The potential drops across the shock due to the large spatial scale normal component of the electric field were found to vary between 340 and 520 V. The measurements provide the first observations in a space plasma of the oscillations in the normal component of the electric field connected with the whistler precursor phase standing at a collisionless shock. Intense, rapidly varying electric fields with peak amplitudes ranging up to 100 mV/m were observed at the magnetic ramp of the shock in the high time resolution data.

  12. Spectral studies of the sources of ionospheric electric fields

    NASA Technical Reports Server (NTRS)

    Earle, G. D.; Kelley, M. C.

    1987-01-01

    Spectral analyses (applying the Fourier analysis methods) were performed on three incoherent scatter radar data sets (obtained at Jicamarca, Peru; Chatanika, Alaska; and Arecibo, Puerto Rico) with the aim of investigating the origin of ionospheric electric fields in the frequency range of 0.01-2 cycles/h. In quiet times, atmospheric gravity waves appeared to be the most likely source of the ionospheric electric field. This hypothesis was tested by a direct simultaneous comparison of measurements of gravity waves in the mesosphere and of electric fields in the thermosphere during very quiet conditions. The results indicated that a gravity wave source is a plausible candidate for the electric field fluctuations.

  13. Linear electric field time-of-flight ion mass spectrometer

    DOEpatents

    Funsten, Herbert O.; Feldman, William C.

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  14. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  15. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  16. Acanthamoeba Migration in an Electric Field

    PubMed Central

    Rudell, Jolene Chang; Gao, Jing; Sun, Yuxin; Sun, Yaohui; Chodosh, James; Schwab, Ivan; Zhao, Min

    2013-01-01

    Purpose. We investigated the in vitro response of Acanthamoeba trophozoites to electric fields (EFs). Methods. Acanthamoeba castellanii were exposed to varying strengths of an EF. During EF exposure, cell migration was monitored using an inverted microscope equipped with a CCD camera and the SimplePCI 5.3 imaging system to capture time-lapse images. The migration of A. castellanii trophozoites was analyzed and quantified with ImageJ software. For analysis of cell migration in a three-dimensional culture system, Acanthamoeba trophozoites were cultured in agar, exposed to an EF, digitally video recorded, and analyzed at various Z focal planes. Results. Acanthamoeba trophozoites move at random in the absence of an EF, but move directionally in response to an EF. Directedness in the absence of an EF is 0.08 ± 0.01, while in 1200 mV/mm EF, directedness is significantly higher at −0.65 ± 0.01 (P < 0.001). We find that the trophozoite migration response is voltage-dependent, with higher directionality with higher voltage application. Acanthamoeba move directionally in a three-dimensional (3D) agar system as well when exposed to an EF. Conclusions. Acanthamoeba trophozoites move directionally in response to an EF in a two-dimensional and 3D culture system. Acanthamoeba trophozoite migration is also voltage-dependent, with increased directionality with increasing voltage. This may provide new treatment modalities for Acanthamoeba keratitis. PMID:23716626

  17. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.

  18. Pulsed electric field assisted assembly of polyaniline.

    PubMed

    Kumar, Arun; Kazmer, David O; Barry, Carol M F; Mead, Joey L

    2012-08-24

    Assembling conducting polyaniline (PANi) on pre-patterned nano-structures by a high rate, commercially viable route offers an opportunity for manufacturing devices with nanoscale features. In this work we report for the first time the use of pulsed electric field to assist electrophoresis for the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 s, assembly resolution of 100 nm). Moreover, the area coverage increases with the increase in number of pulses. A similar trend was observed with the deposition height and the increase in deposition height followed a linear trend with a correlation coefficient of 0.95. When the experimental mass deposited was compared with Hamaker's theoretical model, the two were found to be very close. The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process.

  19. Measuring electric fields from surface contaminants with neutral atoms

    SciTech Connect

    Obrecht, J. M.; Wild, R. J.; Cornell, E. A.

    2007-06-15

    In this paper we demonstrate a technique of utilizing magnetically trapped neutral {sup 87}Rb atoms to measure the magnitude and direction of stray electric fields emanating from surface contaminants. We apply an alternating external electric field that adds to (or subtracts from) the stray field in such a way as to resonantly drive the trapped atoms into a mechanical dipole oscillation. The growth rate of the oscillation's amplitude provides information about the magnitude and sign of the stray field gradient. Using this measurement technique, we are able to reconstruct the vector electric field produced by surface contaminants. In addition, we can accurately measure the electric fields generated from adsorbed atoms purposely placed onto the surface and account for their systematic effects, which can plague a precision surface-force measurement. We show that baking the substrate can reduce the electric fields emanating from adsorbate and that the mechanism for reduction is likely surface diffusion, not desorption.

  20. Surface electric fields for North America during historical geomagnetic storms

    USGS Publications Warehouse

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  1. Surface electric fields for North America during historical geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Wei, Lisa H.; Homeier, Nicole; Gannon, Jennifer L.

    2013-08-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 "Quebec" storm and the 2003 "Halloween" storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  2. Measurement of electric fields and estimation of dielectric susceptibility

    NASA Astrophysics Data System (ADS)

    Nogi, Yasuyuki; Suzuki, Kiyomitsu; Ohkuma, Yasunori

    2013-05-01

    We describe a method of measuring the spatial structures of electric fields produced by charge distributions such as those on strip electrodes, small disk electrodes, and long double-plate electrodes. An electric-field sensor with high sensitivity to ac fields is fabricated for the measurement using a thin copper sheet. The reliability of the sensor is confirmed using a parallel-plate capacitor. The electric fields are oscillated at a frequency of 300 kHz to operate the electric-field sensor successfully. The structures of the measured fields coincide well with those of theoretical fields derived from Coulomb's law. When a dielectric is inserted in an electric field, polarization charges appear on the surface of the dielectric and modify the electric field in empty space. We measure the modified field and confirm the well-known linear relation between the polarization of a dielectric and the electric field. Dielectric susceptibilities are estimated from the linear relation for four types of dielectric.

  3. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  4. Role of electrical field in quantum Hall effect of graphene

    NASA Astrophysics Data System (ADS)

    Luo, Ji

    2013-01-01

    The ballistic motion of carriers of graphene in an orthogonal electromagnetic field is investigated to explain quantum Hall effect of graphene under experimental conditions. With the electrical field, all electronic eigen-states have the same expectation value of the velocity operator, or classically, all carriers move in cycloid-like curves with the same average velocity. This velocity is the origin of the Hall conductance and its magnitude is just appropriate so that the quantized Hall conductance is exactly independent of the external field. Electrical field changes each Landau level into a bundle of energies. Hall conductance plateaus occur in small fields as bundle gaps exist and are destroyed in intermediate fields as bundles overlap. As the electrical field tends to the critical point, all bundles have the same width, and bundle gaps increase to infinity rapidly. As a result, saturation of the Hall conductance may be observed. Electrical field thus demonstrates nonlinear effects on the Hall conductance.

  5. Temperature modulation of electric fields in biological matter.

    PubMed

    Daniels, Charlotte S; Rubinsky, Boris

    2011-01-01

    Pulsed electric fields (PEF) have become an important minimally invasive surgical technology for various applications including genetic engineering, electrochemotherapy and tissue ablation. This study explores the hypothesis that temperature dependent electrical parameters of tissue can be used to modulate the outcome of PEF protocols, providing a new means for controlling and optimizing this minimally invasive surgical procedure. This study investigates two different applications of cooling temperatures applied during PEF. The first case utilizes an electrode which simultaneously delivers pulsed electric fields and cooling temperatures. The subsequent results demonstrate that changes in electrical properties due to temperature produced by this configuration can substantially magnify and confine the electric fields in the cooled regions while almost eliminating electric fields in surrounding regions. This method can be used to increase precision in the PEF procedure, and eliminate muscle contractions and damage to adjacent tissues. The second configuration considered introduces a third probe that is not electrically active and only applies cooling boundary conditions. This second study demonstrates that in this probe configuration the temperature induced changes in electrical properties of tissue substantially reduce the electric fields in the cooled regions. This novel treatment can potentially be used to protect sensitive tissues from the effect of the PEF. Perhaps the most important conclusion of this investigation is that temperature is a powerful and accessible mechanism to modulate and control electric fields in biological tissues and can therefore be used to optimize and control PEF treatments.

  6. Inner Magnetospheric Electric Fields Derived from IMAGE EUV

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Adrian, M. L.

    2007-01-01

    The local and global patterns of plasmaspheric plasma transport reflect the influence of electric fields imposed by all sources in the inner magnetosphere. Image sequences of thermal plasma G:istribution obtained from the IMAGE Mission Extreme Ultraviolet Imager can be used to derive plasma motions and, using a magnetic field model, the corresponding electric fields. These motions and fields directly reflect the dynamic coupling of injected plasmasheet plasma and the ionosphere, in addition to solar wind and atmospheric drivers. What is being learned about the morphology of inner magnetospheric electric fields during storm and quite conditions from this new empirical tool will be presented and discussed.

  7. Simultaneous electric-field measurements on nearby balloons.

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1972-01-01

    Electric-field payloads were flown simultaneously on two balloons from Great Whale River, Canada, on September 21, 1971, to provide data at two points in the upper atmosphere that differed in altitude by more than one atmospheric density scale height and in horizontal position by 30-140 km. The altitude dependences in the two sets of data prove conclusively that the vertical electric field at balloon altitudes stems from fair-weather atmospheric electricity sources and that the horizontal fields are mapped down ionospheric fields, since the weather-associated horizontal fields were smaller than 2 mV/m.

  8. Exposure assessment for power frequency electric and magnetic fields.

    PubMed

    Bracken, T D

    1993-04-01

    Over the past decade considerable data have been collected on electric and magnetic fields in occupational environments. These data have taken the form of area measurements, source characterizations, and personal exposure measurements. Occupational EMF levels are highly variable in space and time. Exposures associated with these fields exhibit similar large variations during a day, between days, and between individuals within a group. The distribution of exposure measures is skewed over several decades with only a few values occurring at the maximum field levels. The skewness of exposure measures implies that large sample sizes may be required for assessments and that multiple statistical descriptors are preferred to describe individual and group exposures. Except for the relatively few occupational settings where high voltage sources are prevalent, electric fields encountered in the workplace are probably similar to residential exposures. Consequently, high electric field exposures are essentially limited to utility environments and occupations. Within the electric utility industry, it is definitely possible to identify occupations with high electric field exposures relative to those of office workers or other groups. The highly exposed utility occupations are linemen, substation operators, and utility electricians. The distribution of electric field exposures in the utility worker population is very skewed even within a given occupation. As with electric fields, magnetic fields in the workplace appear to be comparable with residential levels, unless a clearly defined high-current source is present. Since high-current sources are more prevalent than high-voltage sources, environments with relatively high magnetic field exposures encompass a more diverse set of occupations than do those with high electric fields. Within the electric utility industry, it is possible to identify occupational environments with high magnetic field exposure relative to the office

  9. Electric and magnetic fields measured during a sudden impulse

    NASA Technical Reports Server (NTRS)

    Schutz, S.; Adams, G. J.; Mozer, F. S.

    1974-01-01

    The electric field in the ionosphere and the magnetic field at the earth's surface in the mid-latitude region were both measured during a sudden impulse. Ionospheric conductivities deduced from this data were consistent with expectations, thus suggesting that the fluctuations in the magnetic field at the earth's surface were caused by overhead ionospheric currents that were driven by an electric field associated with the sudden impulse.

  10. Middle atmospheric electric fields over thunderstorms

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1992-01-01

    This grant has supported a variety of investigations all having to do with the external electrodynamics of thunderstorms. The grant was a continuation of work begun while the PI was at the Aerospace Corporation (under NASA Grant NAS6-3109) and the general line of investigation continues today under NASA Grants NAG5-685 and NAG6-111. This report will briefly identify the subject areas of the research and associated results. The period actually covered by the grant NAG5-604 included the following analysis and flights: (1) analysis of five successful balloon flights in 1980 and 1981 (under the predecessor NASA grant) in the stratosphere over thunderstorms; (2) development and flight of the Hy-wire tethered balloon system for direct measurement of the atmospheric potential to 250 kV (this involved multiple tethered balloon flight periods from 1981 through 1986 from several locations including Wallops Island, VA, Poker Flat and Ft. Greely, AK and Holloman AFB, NM.); (3) balloon flights in the stratosphere over thunderstorms to measure vector electric fields and associated parameters in 1986 (2 flights), 1987 (4 flights), and 1988 (2 flights); and (4) rocket-borne optical lightning flash detectors on two rocket flights (1987 and 1988) (the same detector design that was used for the balloon flights listed under #3). In summary this grant supported 8 stratospheric zero-pressure balloon flights, tethered aerostat flights every year between 1982-1985, instruments on 2 rockets, and analysis of data from 6 stratospheric flights in 1980/81.

  11. Dipole Relaxation in an Electric Field.

    ERIC Educational Resources Information Center

    Neumann, Richard M.

    1980-01-01

    Derives an expression for the orientational entropy of a rigid rod (electric dipole) from Boltzmann's equation. Subsequent application of Newton's second law of motion produces Debye's classical expression for the relaxation of an electric dipole in a viscous medium. (Author/GS)

  12. Reception and learning of electric fields in bees

    PubMed Central

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C.; Menzel, Randolf

    2013-01-01

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication. PMID:23536603

  13. Reception and learning of electric fields in bees.

    PubMed

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C; Menzel, Randolf

    2013-05-22

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.

  14. Inactivation of Microorganisms

    NASA Astrophysics Data System (ADS)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  15. Rocket borne instrument to measure electric fields inside electrified clouds

    NASA Technical Reports Server (NTRS)

    Ruhnke, L. H. (Inventor)

    1973-01-01

    An apparatus for measuring the electric field in the atmosphere which includes a pair of sensors carried on a rocket for sensing the voltages in the atmosphere being measured is described. One of the sensors is an elongated probe with a fine point which causes a corona current to be produced as it passes through the electric field. An electric circuit is coupled between the probe and the other sensor and includes a high ohm resistor which linearizes the relationship between the corona current and the electric field being measured. A relaxation oscillator and transmitter are provided for generating and transmitting an electric signal having a frequency corresponding to the magnitude of the electric field.

  16. Lunar electric fields, surface potential and associated plasma sheaths

    NASA Technical Reports Server (NTRS)

    Freeman, J. W.; Ibrahim, M.

    1975-01-01

    A review is given of studies of the electric-field environment of the moon. Surface electric potentials are reported for the dayside and terminator regions, electron and ion densities in the plasma sheath adjacent to each surface-potential regime are evaluated, and the corresponding Debye lengths are estimated. The electric fields, which are approximated by the surface potential over the Debye length, are shown to be at least three orders of magnitude higher than the pervasive solar-wind electric field and to be confined to within a few tens of meters of the lunar surface.

  17. Fetal exposure to low frequency electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2007-02-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  18. Antihydrogen atom in external electric and magnetic fields

    SciTech Connect

    Labzowsky, L.; Sharipov, V.

    2005-01-01

    A theoretical comparison of the behavior of the antihydrogen (H) and hydrogen (H) atoms in external electric and magnetic fields is made. It is shown that observable differences arise in the spectroscopic properties of H and H atoms in parallel electric and magnetic fields of the order of 475 V/cm and 0.12 T, respectively.

  19. Effects of Radial Electric Fields on ICRF Waves

    SciTech Connect

    C.K. Phillips; J.C. Hosea; M. Ono; J.R. Wilson

    2001-06-18

    Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model.

  20. High School Students' Representations and Understandings of Electric Fields

    ERIC Educational Resources Information Center

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  1. Lower Atmospheric Electric Field due to Cloud Charge Distribution

    NASA Astrophysics Data System (ADS)

    Paul, Suman; Haldar, Dilip kumar; Sundar De, Syam; Ghosh, Abhijit; Hazra, Pranab; Bandyopadhyay, Bijoy

    2016-07-01

    The distributions of electric charge in the electrified clouds introduce important effects in the ionosphere and into the region between the ionosphere and the Earth. The electrical properties of the medium are changed greatly between thundercloud altitudes and the magnetosphere. A model for the penetration of DC thundercloud electric field between the Earth's upper and lower atmosphere has been presented here. The model deals with the electromagnetic responses of the atmosphere simulated through Maxwell's equations together with a time-varying source charge distribution. The modified ellipsoidal-Gaussian profile has been taken for the charge distribution of the electrified cloud. The conductivity profile of the medium is taken to be isotropic below 70 km height and anisotropic above 70 km. The Earth's surface is considered to be perfectly conducting. A general form of equation representing the thundercloud electric field component is deduced. In spite of assumptions for axial symmetry of thundercloud charge distribution considered in the model, the results are obtained giving the electric field variation in the upper atmosphere. The vertical component of the electric field would relate the global electric circuit while the radial component showed the electrical coupling between the lower atmosphere and the ionized Earth's environment. The variations of the values of field components for different heights as well as Maxwell's current have been evaluated. Coupling between the troposphere and the ionosphere is critically dependent on the height variations of electrical conductivity. Field-aligned electron density irregularities in the ionosphere may be investigated through the present analyses.

  2. Characteristics of DC electric fields in transient plasma sheet events

    NASA Astrophysics Data System (ADS)

    Laakso, H. E.; Escoubet, C. P.; Masson, A.

    2015-12-01

    We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.

  3. Microneedle array for measuring wound generated electric fields.

    PubMed

    Mukerjee, E V; Isseroff, R R; Nuccitelli, R; Collins, S D; Smith, R L

    2006-01-01

    A microneedle array has been fabricated and applied to the measurement of transdermal skin potentials in human subjects. Potential changes were recorded in the vicinity of superficial wounds, confirming the generation of a lateral electric field in human skin. The measured electric field decays with distance from the wound edge, and is directed towards the wound. The measurement of endogenous fields in skin is a prelude to the study of the therapeutic efficacy of applied electric fields to chronic non-healing wounds. PMID:17947077

  4. Electric field-mediated processing of polymer blend solutions

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Krause, S.

    1993-01-01

    Multiphase polymer blends in which the minor phases are oriented in a desired direction may demonstrate unique optical, electrical, and mechanical properties. While morphology development in shear fields was studied extensively, little work has focused on effects of electric fields on phase structure. The use of electric fields for blend morphology modulation with particular attention given to solvent casting of blends in d.c. fields was explored. Both homopolymer blends (average phase sizes of several microns) and diblock copolymer/homopolymer blends (average phase sizes of hundreds of Angstroms) were investigated. Summarized are important observations and conclusions.

  5. A dipole probe for electric field measurements in the LVPD

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Awasthi, L. M.; Ravi, G.; Kumar, Sunil; Mattoo, S. K.

    2016-01-01

    This paper describes the design, construction, and calibration of an electric dipole probe and demonstrates its capability by presenting results on the measurement of electric field excited by a ring electrode in the Large Volume Plasma Device (LVPD). It measures the electric field in vacuum and plasma conditions in a frequency range lying between 1-10 \\text{MHz} . The results show that it measures electric field ≥slant 2 mV cm-1 for frequency ≤slant 10 \\text{MHz} . The developed dipole probe works on the principle of amplitude modulation. The probe signal is transmitted through a carrier of 418 MHz, a much higher frequency than the available sources of noise present in the surrounding environment. The amplitude modulation concept of signal transmission is used to make the measurement; it is qualitatively better and less corrupted as it is not affected by the errors introduced by ac pickups. The probe is capable of measuring a variety of electric fields, namely (1) space charge field, (2) time varying field, (3) inductive field and (4) a mixed field containing both space charge and inductive fields. This makes it a useful tool for measuring electric fields in laboratory plasma devices.

  6. Electric-field-induced rotation of Brownian metal nanowires.

    PubMed

    Arcenegui, Juan J; García-Sánchez, Pablo; Morgan, Hywel; Ramos, Antonio

    2013-09-01

    We describe the physical mechanism responsible for the rotation of Brownian metal nanowires suspended in an electrolyte exposed to a rotating electric field. The electric field interacts with the induced charge in the electrical double layer at the metal-electrolyte interface, causing rotation due to the torque on the induced dipole and to the induced-charge electro-osmotic flow around the particle. Experiments demonstrate that the primary driving mechanism is the former of these two. Our analysis contrasts with previous work describing the electrical manipulation of metallic particles with electric fields, which neglected the electrical double layer. Theoretical values for the rotation speed are calculated and good agreement with experiments is found.

  7. Effects of an Electric Field on White Sharks: In Situ Testing of an Electric Deterrent

    PubMed Central

    Huveneers, Charlie; Rogers, Paul J.; Semmens, Jayson M.; Beckmann, Crystal; Kock, Alison A.; Page, Brad; Goldsworthy, Simon D.

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nVcm–1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  8. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    PubMed

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1), using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  9. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    PubMed

    Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1), using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  10. Beyond Orientation: The Impact of Electric Fields on Block Copolymers

    SciTech Connect

    Liedel, Clemens; Boker, A.; Pester, Christian; Ruppel, Markus A; Urban, Volker S

    2012-01-01

    Since the first report on electric field-induced alignment of block copolymers (BCPs) in 1991, electric fields have been shown not only to direct the orientation of BCP nanostructures in bulk, solution, and thin films, but also to reversibly induce order-order transitions, affect the order-disorder transition temperature, and control morphologies' dimensions with nanometer precision. Theoretical and experimental results of the past years in this very interesting field of research are summarized and future perspectives are outlined.

  11. Electric Field-Mediated Processing of Polymers. Appendix 1

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Bowlin, G. L.; Haas, T. W.

    2000-01-01

    Significant opportunities exist for the processing of polymers (homopolymers and blends) using electric fields. We suggest that a broad range of properties can be achieved using a relatively small number of polymers, with electric fields providing the ability to tailor properties via the control of shape, morphology, and orientation. Specific attention is given to electrospinning, but we note that electroaerosol formation and field-modulated film casting represent additional processing options.

  12. Electric field in 3D gravity with torsion

    SciTech Connect

    Blagojevic, M.; Cvetkovic, B.

    2008-08-15

    It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

  13. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields

    PubMed Central

    Sutton, Gregory P.; Clarke, Dominic; Morley, Erica L.; Robert, Daniel

    2016-01-01

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee. PMID:27247399

  14. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields.

    PubMed

    Sutton, Gregory P; Clarke, Dominic; Morley, Erica L; Robert, Daniel

    2016-06-28

    Bumblebees (Bombus terrestris) use information from surrounding electric fields to make foraging decisions. Electroreception in air, a nonconductive medium, is a recently discovered sensory capacity of insects, yet the sensory mechanisms remain elusive. Here, we investigate two putative electric field sensors: antennae and mechanosensory hairs. Examining their mechanical and neural response, we show that electric fields cause deflections in both antennae and hairs. Hairs respond with a greater median velocity, displacement, and angular displacement than antennae. Extracellular recordings from the antennae do not show any electrophysiological correlates to these mechanical deflections. In contrast, hair deflections in response to an electric field elicited neural activity. Mechanical deflections of both hairs and antennae increase with the electric charge carried by the bumblebee. From this evidence, we conclude that sensory hairs are a site of electroreception in the bumblebee.

  15. Electric toothbrushes induce electric current in fixed dental appliances by creating magnetic fields.

    PubMed

    Kameda, Takashi; Ohkuma, Kazuo; Ishii, Nozomu; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto

    2012-01-01

    Magnetic fields can represent a health problem, especially low frequency electromagnetic fields sometimes induced by electric current in metallic objects worn or used in or on the body (as opposed to high frequency electromagnetic fields that produce heat). Electric toothbrushes are widely used because of their convenience, but the electric motors that power them may produce electromagnetic waves. In this study, we showed that electric toothbrushes generate low frequency (1-2000 Hz) magnetic fields and induce electric current in dental appliances (e. g. orthodontic and prosthetic appliances and dental implants). Current induced by electric toothbrushes might be dependent on the quantity and types of metals used, and the shape of the appliances. Furthermore, these induced currents in dental appliances could impact upon human oral health, producing pain and discomfort.

  16. Electric field prediction for a human body-electric machine system.

    PubMed

    Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia

    2004-01-01

    A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.

  17. The hydrogen atom in plasmas with an external electric field

    SciTech Connect

    Bahar, M. K.; Soylu, A.

    2014-09-15

    We numerically solve the Schrödinger equation, using a more general exponential cosine screened Coulomb (MGECSC) potential with an electric field, in order to investigate the screening and weak external electric field effects on the hydrogen atom in plasmas. The MGECSC potential is examined for four different cases, corresponding to different screening parameters of the potential and the external electric field. The influences of the different screening parameters and the weak external electric field on the energy eigenvalues are determined by solving the corresponding equations using the asymptotic iteration method (AIM). It is found that the corresponding energy values shift when a weak external electric field is applied to the hydrogen atom in a plasma. This study shows that a more general exponential cosine screened Coulomb potential allows the influence of an applied, weak, external electric field on the hydrogen atom to be investigated in detail, for both Debye and quantum plasmas simultaneously. This suggests that such a potential would be useful in modeling similar effects in other applications of plasma physics, and that AIM is an appropriate method for solving the Schrödinger equation, the solution of which becomes more complex due to the use of the MGECSC potential with an applied external electric field.

  18. Defining treatment conditions for pulsed electric field pasteurization of apple juice.

    PubMed

    Saldaña, G; Puértolas, E; Monfort, S; Raso, J; Alvarez, I

    2011-11-15

    The influence of temperature and the presence of N(α)-lauroyl ethylester (ethyl lauroyl arginate, LAE) on the inactivation caused by continuous pulsed electric field treatments (PEF) in Escherichia coli O157:H7 suspended in apple juice have been investigated to define treatment conditions applicable at industrial scale that promote an equivalent safety level when compared with thermal processing. In the range of experimental conditions investigated (outlet temperature: 20-40 °C, electric field strength: 20-30 kV, treatment time: 5-125 μs) at outlet temperatures equal or lower than 55±1 °C, the inactivation of E. coli O157:H7 treated in apple juice ranged from 0.4 to 3.6 Log₁₀ cycles reduction and treated in apple juice supplemented with LAE (50 ppm) ranged from 0.9 to 6.7 Log₁₀ cycles reduction. An empirical mathematical model was developed to estimate the treatment time and total specific energy input to obtain 5 Log₁₀ cycles reduction in the population of E. coli O157:H7 suspended in apple juice supplemented with 50 ppm of LAE at different electric field strengths and inlet temperatures. Treatment conditions established for E. coli O157:H7 were validated with other PEF resistant Gram-positive (Listeria monocytogenes, and Staphylococcus aureus) and Gram-negative (Salmonella enterica serovar Typhimurium) strains. When the treatment was applied to the apple juice, a treatment of 25 kV/cm for 63 μs corresponding with an outlet temperature of 65 °C and input energy of 125 kJ/kg was required to achieve more than 5 Log₁₀ cycles in the four strains investigated. The addition of LAE reduced the treatment time required to obtain an equivalent inactivation (>5 Log₁₀ cycles) in the four microorganisms to 38.4 μs, the outlet temperature to 55 °C, and the input energy to 83.2 kJ/kg.

  19. Electron electric-dipole-moment experiment using electric-field quantized slow cesium atoms

    SciTech Connect

    Amini, Jason M.; Munger, Charles T. Jr.; Gould, Harvey

    2007-06-15

    A proof-of-principle electron electric-dipole-moment (e-EDM) experiment using slow cesium atoms, nulled magnetic fields, and electric-field quantization has been performed. With the ambient magnetic fields seen by the atoms reduced to less than 200 pT, an electric field of 6 MV/m lifts the degeneracy between states of unequal |m{sub F}| and, along with the low ({approx_equal}3 m/s) velocity, suppresses the systematic effect from the motional magnetic field. The low velocity and small residual magnetic field have made it possible to induce transitions between states and to perform state preparation, analysis, and detection in regions free of applied static magnetic and electric fields. This experiment demonstrates techniques that may be used to improve the e-EDM limit by two orders of magnitude, but it is not in itself a sensitive e-EDM search, mostly due to limitations of the laser system.

  20. Generation of strong electric fields in an ice film capacitor

    NASA Astrophysics Data System (ADS)

    Shin, Sunghwan; Kim, Youngsoon; Moon, Eui-seong; Lee, Du Hyeong; Kang, Hani; Kang, Heon

    2013-08-01

    We present a capacitor-type device that can generate strong electrostatic field in condensed phase. The device comprises an ice film grown on a cold metal substrate in vacuum, and the film is charged by trapping Cs+ ions on the ice surface with thermodynamic surface energy. Electric field within the charged film was monitored through measuring the film voltage using a Kelvin work function probe and the vibrational Stark effect of acetonitrile using IR spectroscopy. These measurements show that the electric field can be increased to ˜4 × 108 V m-1, higher than that achievable by conventional metal plate capacitors. In addition, the present device may provide several advantages in studying the effects of electric field on molecules in condensed phase, such as the ability to control the sample composition and structure at molecular scale and the spectroscopic monitoring of the sample under electric field.

  1. Galvanotactic behavior of Tetrahymena pyriformis under electric fields

    NASA Astrophysics Data System (ADS)

    Kim, Dal Hyung; Kim, Paul Seung Soo; Lee, Kyoungwoo; Kim, JinSeok; Kim, Min Jun

    2013-12-01

    Tetrahymena pyriformis, a eukaryotic ciliate, swims toward a cathode in straight or cross-shaped microchannels under an applied electric field, a behavioral response called cathodal galvanotaxis. In straight channel experiments, a one-dimensional electric field was applied, and the galvanotactic swimming behavior of Tetrahymena pyriformis was observed and described in detail while the polarity of this field is switched. In most individual cases, the cell would immediately switch its direction toward the cathode; however, exceptional cases have been observed where cells exhibit a turning delay or do not turn after a polarity switch. In cross-channel experiments, feedback control using vision-based tracking was used to steer a cell in the microchannel intersection using a two-dimensional electric field generated by four electrodes placed at four ends of the cross channel. The motivation for this work is to study the swimming behavior of Tetrahymena pyriformis as a microrobot under the control of electric fields.

  2. Electric field induced selective disordering in lamellar block copolymers.

    PubMed

    Ruppel, Markus; Pester, Christian W; Langner, Karol M; Sevink, Geert J A; Schoberth, Heiko G; Schmidt, Kristin; Urban, Volker S; Mays, Jimmy W; Böker, Alexander

    2013-05-28

    External electric fields align nanostructured block copolymers by either rotation of grains or nucleation and growth depending on how strongly the chemically distinct block copolymer components are segregated. In close vicinity to the order-disorder transition, theory and simulations suggest a third mechanism: selective disordering. We present a time-resolved small-angle X-ray scattering study that demonstrates how an electric field can indeed selectively disintegrate ill-aligned lamellae in a lyotropic block copolymer solution, while lamellae with interfaces oriented parallel to the applied field prevail. The present study adds an additional mechanism to the experimentally corroborated suite of mechanistic pathways, by which nanostructured block copolymers can align with an electric field. Our results further unveil the benefit of electric field assisted annealing for mitigating orientational disorder and topological defects in block copolymer mesophases, both in close vicinity to the order-disorder transition and well below it. PMID:23573901

  3. Molecular-scale measurements of electric fields at electrochemical interfaces.

    SciTech Connect

    Hayden, Carl C.; Farrow, Roger L.

    2011-01-01

    Spatially resolved measurements of electric fields at electrochemical interfaces would be a critical step toward further understanding and modeling the detailed structure of electric double layers. The goal of this project was to perform proof-of-principle experiments to demonstrate the use of field-sensitive dyes for optical measurements of fields in electrochemical systems. A confocal microscope was developed that provides sensitive detection of the lifetime and high resolution spectra of excited fluorescence for dyes tethered to electrically conductive surfaces. Excited state lifetimes for the dyes were measured and found to be relatively unquenched when linked to indium tin oxide, but strongly quenched on gold surfaces. However, our fluorescence detection is sufficiently sensitive to measure spectra of submonolayer dye coatings even when the fluorescence was strongly quenched. Further work to create dye labeled interfaces on flat, uniform and durable substrates is necessary to make electric field measurements at interfaces using field sensitive dyes.

  4. [Mechanism of ablation with nanosecond pulsed electric field].

    PubMed

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation. PMID:26822052

  5. Effective action of QED in electric field backgrounds

    SciTech Connect

    Kim, Sang Pyo; Lee, Hyun Kyu; Yoon, Yongsung

    2008-11-15

    We use the evolution operator method to find the one-loop effective action of scalar and spinor QED in electric field backgrounds in terms of the Bogoliubov coefficient between the ingoing and the outgoing vacua. We obtain the exact one-loop effective action for a Sauter-type electric field, E{sub 0}sech{sup 2}(t/{tau}), and show that the imaginary part correctly yields the vacuum persistence. The renormalized effective action shows the general relation between the vacuum persistence and the total mean number of created pairs for the constant and the Sauter-type electric field.

  6. Giant and tunable electric field enhancement in the terahertz regime.

    PubMed

    Lu, Xiaoyuan; Wan, Rengang; Wang, Guoxi; Zhang, Tongyi; Zhang, Wenfu

    2014-11-01

    A novel array of slits design combining the nano-slit grating and dielectric-metal is proposed to obtain giant and tunable electric field enhancement in the terahertz regime. The maximum amplitude of electric field is more than 6000 times larger than that of the incident electric field. It is found that the enhancement depends primarily on the stripe and nano-slits width of grating, as well as the thickness of spacer layer. This property is particularly beneficial for the realization of ultra-sensitive nanoparticles detection and nonlinear optics in the terahertz range, such as the second harmonic generation (SHG).

  7. Transient current electric field profiling of single crystal CVD diamond

    NASA Astrophysics Data System (ADS)

    Isberg, J.; Gabrysch, M.; Tajani, A.; Twitchen, D. J.

    2006-08-01

    The transient current technique (TCT) has been adapted for profiling of the electric field distribution in intrinsic single crystal CVD diamond. It was found that successive hole transits do not appreciably affect the electric field distribution within the sample. Transits of holes can therefore be used to probe the electric field distribution and also the distribution of trapped charge. Electron transits, on the other hand, cause an accumulation of negative charge in the sample. Illumination with blue or green light was shown to lead to accumulation of positive charge. Low concentrations of trapped charge can be detected in diamond using TCT, corresponding to an ionized impurity concentration below N = 1010 cm-3.

  8. Membrane tubulation from giant lipid vesicles in alternating electric fields.

    PubMed

    Antonova, K; Vitkova, V; Meyer, C

    2016-01-01

    We report on the formation of tubular membrane protrusions from giant unilamellar vesicles in alternating electric fields. The construction of the experimental chamber permitted the application of external AC fields with strength of dozens of V/mm and kHz frequency during relatively long time periods (several minutes). Besides the vesicle electrodeformation from quasispherical to prolate ellipsoidal shape, the formation of long tubular membrane protrusions with length of up to several vesicle diameters, arising from the vesicular surface in the field direction, was registered and analyzed. The threshold electric field at which the electro-induced protrusions appeared was lower than the field strengths inducing membrane electroporation. PMID:26871107

  9. The source of the electric field in the nightside magnetosphere

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.

  10. Inactivation of MS2 bacteriophage by streamer corona discharge in water.

    PubMed

    Lee, Changha; Kim, Jaeeun; Yoon, Jeyong

    2011-02-01

    Electrical discharge processes are emerging as water treatment technologies applicable to both the degradation of organic contaminants as well as inactivation of pathogens. Particularly as a disinfection technology, electrical discharge processes do not produce toxic byproducts, and effectively inactivate a wide spectrum of microorganisms by multiple lethal actions generated by the formation of plasma channels. This study demonstrates the inactivation of a virus using the streamer corona discharge process (SCDP) with MS2 phage as a surrogate. A rapid inactivation of MS2 phage (i.e., approximately 4 log inactivation in 5 min) was observed in all experimental runs conducted. Discharge conditions such as applied voltage and storage capacitance significantly affected the inactivation efficiency of MS2 phage, whereas the influence of water quality parameters was minor. In order to elucidate the mechanism of MS2 phage inactivation, potentially lethal factors that can be generated by the SCDP were selected, and their roles in the inactivation of MS2 phage were examined. As a result, effects of UV radiation, chemical oxidants, and pulsed electric fields were found to be insignificant. The shockwave generated upon plasma channel formation appears to be the most important factor responsible for MS2 phage inactivation.

  11. Vertical Electric Field Measurements with Copper Plates by Sounding Balloon

    NASA Astrophysics Data System (ADS)

    Wen, Shao-Chun; Chiu, Cheng-Hsiu; Bing-Chih Chen, Alfred; Hsu, Rue-Ron; Su, Han-Tzong

    2015-04-01

    The vertical electric field plays an important role in driving the circulation of the global electric circuit, and crucial to the formation of the transient luminous events (TLEs). The in-situ measurement of the electric field in the upper atmosphere, especially from cloud top to the bottom of the ionosphere is very challenging but essential. Limited by the flight vehicle, the measurements of the electric field in and above cloud, especiall thundercloud, is rare up to now. A light-weight electric field meter was developed independently and sent to 30 km height by small meteorological balloons successfully. Other than the existing long-spaced, spherical probe design, an improved electric field meter has been built and tested carefully. A new circuit with ultra high input impedance and a high voltage amplifier is implemented to reduce the AC noise induced by the voltage divider. Two copper plates are used to replace the double spherical probes which is spaced by a long fiberglass boom. The in-lab calibration and tests show that this new model is superior to the existing design and very sensitive to the variation of the DC electric field. In this poster, the design and the in-lab tests will be presented, and preliminary results of the flight experiments are also discussed.

  12. Formation of Organized Protein Thin Films with External Electric Field.

    PubMed

    Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M

    2015-10-01

    The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.

  13. Synthesis of zirconium oxynitride in air under DC electric fields

    NASA Astrophysics Data System (ADS)

    Morisaki, Nobuhiro; Yoshida, Hidehiro; Matsui, Koji; Tokunaga, Tomoharu; Sasaki, Katsuhiro; Yamamoto, Takahisa

    2016-08-01

    We synthesized zirconium oxynitride from yttria-stabilized zirconia (YSZ) in air by applying DC electric fields that produced a controlled electric current in the specimen. When YSZ was heated under an applied DC electric field, the electric current of the specimen steeply increased at a critical temperature, called a flash event, during flash sintering. By keeping the electric current of the specimen constant during the flash event and then holding the specimen at the critical temperature, YSZ was transformed into zirconium oxynitride under the optimal conditions of 50 V/cm, 500 mA, and 1000 °C. We confirmed that zirconium oxynitride formed using high-resolution transmission electron microscopy, electron energy-loss spectroscopy, and energy-dispersive spectrometry. To convert oxides to nitrides, reducing conditions are necessary to form excess oxygen vacancies. Our technique produced the strong reducing conditions necessary to form nitrides from the oxides by delivering a controlled electric current to the specimen.

  14. Quality-related enzymes in plant-based products: effects of novel food processing technologies part 2: pulsed electric field processing.

    PubMed

    Terefe, Netsanet Shiferaw; Buckow, Roman; Versteeg, Cornelis

    2015-01-01

    Pulsed electric field (PEF) processing is an effective technique for the preservation of pumpable food products as it inactivates vegetative microbial cells at ambient to moderate temperature without significantly affecting the nutritional and sensorial quality of the product. However, conflicting views are expressed about the effect of PEF on enzymes. In this review, which is part 2 of a series of reviews dealing with the effectiveness of novel food preservation technologies for controlling enzymes, the scientific literature over the last decade on the effect of PEF on plant enzymes is critically reviewed to shed more light on the issue. The existing evidence indicates that PEF can result in substantial inactivation of most enzymes, although a much more intense process is required compared to microbial inactivation. Depending on the processing condition and the origin of the enzyme, up to 97% inactivation of pectin methylesterase, polyphenol oxidase, and peroxidase as well as no inactivation have been reported following PEF treatment. Both electrochemical effects and Ohmic heating appear to contribute to the observed inactivation, although the relative contribution depends on a number of factors including the origin of the enzyme, the design of the PEF treatment chamber, the processing condition, and the composition of the medium.

  15. Inactivation of Aleutian mink disease virus through high temperature exposure in vitro and under field-based composting conditions.

    PubMed

    Hussain, I; Price, G W; Farid, A H

    2014-09-17

    Disposal of manure contaminated with Aleutian mink disease virus (AMDV) is a significant concern to the mink industry. Inactivation of AMDV under field conditions has received limited attention in the scientific literature. We evaluated the thermal inactivation of AMDV in vitro and during composting of mink manure. Spleen homogenate containing AMDV was heated under controlled conditions at 45°C, 55°C, and 65°C for 3 days. Results of the in vitro study identified complete absence of viral replication in mink at 65°C only. Next, manure-mixed AMDV packed in polyester pouches was inserted in different layers of three replicate mink manure compost piles. The virus was retrieved after the compost piles had undergone a heating period and subsequently returned to ambient temperatures. Temperature regimes in the compost piles were categorized as ≥65°C, ≥60-64°C, and ≥55-59°C. Initially, layer-wise composite virus samples were assayed for virus replication in mink. Twenty-one-day post-inoculation (p.i.) plasma tested for AMDV and antibodies indicated infection in 40%, 80%, and 100% of mink inoculated from samples originating from the top, center and bottom layers of the piles, respectively. Subsequently, the virus was extracted from individual pouches in compost layers achieving thermal activity ≥65°C and was tested in mink. No antibodies or virus was detected in plasma taken weekly up to day 21 p.i. PCR data of bone marrow and lymph nodes collected on day 21 p.i. also showed no AMDV. However, mink that received virus from positive control manure indicated infection in their plasma as early as 1 week p.i. PMID:25139658

  16. [Inactivation mechanism of microorganisms by the synergy of silver and light irradiation, and the application in household electrical appliances].

    PubMed

    He, Jinshan; Moriya, Yoshifumi; Oketa, Takemi; Sasabe, Shigeru; Nishida, Hirofumi; Chen, Lesheng; Zhu, Shenmin; Zhang, Di; Omori, Hideki; Cao, Guangyi

    2008-06-01

    The inactivation efficiencies of microorganisms were found to be enhanced by using silver solution together with ultraviolet light (UV-A, 395 nm) irradiation. The inactivation efficiencies were improved remarkably especially in eukaryotic microorganism. To make clear the inactivation mechanism of microorganisms by the combination effect of silver and ultraviolet light irradiation, the resultant solution was characterized by ESR (Electron spin resonance, ESR). Scanning electron microscopy (SEM) and the methnd for measuring enzyme activity of mitochondria for eukarvotic cells were used to conjecture the mechanism, by analysis of the morphological and physiologic changes in eukaryotic cells. It is proposed that silver oxide (Ag20) can be activated by ultraviolet light irradiation and react with water molecules to produce hydroxyl radical (.OH). Hydroxyl radical could damage cell wall of eukaryotic microorganisms, and inactivate the enzyme activity of mitochondria of eukaryotic microorganism cells. Accordingly, eukaryotic microorganism cells would die. In the experiment, Staphylococcus aureus was employed as the representative of prokaryotic microorganisms, and Candida albicans and Trichophyton mentagrophytes as the representative of eukaryotic microorganisms, respectively. Moreover, the results of the technology applied to washing machine were presented and discussed. PMID:18807998

  17. Insurance for electric and magnetic field litigation: Are you covered

    SciTech Connect

    Anderson, E.R.; Stewart, C.A. III

    1993-04-01

    Electrical power generating companies, power transmission companies and large generators and users of electrical power recently felt the sting of a second shock. The first shock came when lawsuits were first filed against companies in the electrical power industry claiming real or imagined damages from electrical and magnetic fields ([open quotes]EMFs[close quotes]). The new and second shock is potentially more devastating because it comes from the [open quotes]safe hands[close quotes] of the insurance industry. Standard-form comprehensive general liability ([open quotes]CGL[close quotes]) insurance policies purchased by nearly every company in the electrical power industry for generations are supposed to cover EMF bodily injury and property damage claims. Not so, say the lawyers for the most prominent insurance company selling insurance coverage to electric utilities, Associated Electric Gas Insurance Services, Ltd. ([open quotes]AEGIS[close quotes]).

  18. ENHANCEMENT OF METHANE CONVERSION USING ELECTRIC FIELDS

    SciTech Connect

    Richard G. Mallinson; Lance L. Lobban

    2000-05-01

    This report summarizes the conditions and results of this multifaceted program. Detailed experimental descriptions and results and discussion can be found in the publications cited in the Appendix. The goal of this project is the development of novel, economical, processes for the conversion of natural gas to more valuable projects such as synthesis gas or direct conversion to methanol, ethylene and other organic oxygenates or higher hydrocarbons. The methodologies of the project are to investigate and develop low temperature electric discharges and electric discharge-enhanced catalysis for carrying out these conversions. With the electric discharge-enhanced conversion, the operating temperatures are expected to be far below those currently required for such processes as oxidative coupling, thereby allowing for a higher degree of catalytic selectivity while maintaining high activity. In the case of low temperature discharges, the conversion is carried out at ambient temperature, trading high temperature thermal energy for electric energy as the driving force for conversion. The low operating temperatures remove thermodynamic constraints on the product distribution due to the non-equilibrium nature of the low temperature plasma. This also removes the requirements of large thermal masses that need very large-scale operation to maximize efficiency that is the characteristic of current technologies, including high temperature plasma processes. This potentially allows much smaller scale processes to be efficient. Additionally, a gas conversion process that is electrically driven provides an internal use for excess power generated by proposed Fischer Tropsch gas-to-liquids processes and can increase their internal thermal efficiency and reduce capital costs. This project has studied three primary types of low temperature plasma reactor and operating conditions. The organization of this program is shown schematically in the report. Typical small scale laboratory reactor

  19. An auroral effect on the fair weather electric field

    NASA Technical Reports Server (NTRS)

    Hale, L. C.; Croskey, C. L.

    1979-01-01

    Evidence is presented for coupling between the upper and lower atmosphere by means of the shorting out of the vertical mesospheric electric field by auroral radiation, which causes a transfer of mesospheric potential to the lower atmosphere. Measurements were made by an electric field antenna which was part of a parachute-borne payload, launched by rocket from near Fairbanks, Alaska. Data obtained from quiet time observations indicate the normal low altitude electric field pattern, with a greater field at high altitudes, while observations at disturbed times show a small field at high altitudes and a greater field at low altitudes. Means for observing this effect at lower latitudes are also suggested. While the data obtained support the proposed mechanism, it is noted that other mechanisms, such as direct modulation by large amounts of solar cosmic rays and aurorally produced charge separation, may also be important.

  20. Electric field measurements during the Condor critical velocity experiment

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Pfaff, R. F.; Haerendel, G.

    1986-01-01

    The instrumentation of the Condor critical velocity Ba experiment (Wescott et al., 1986) for the measurements of the energetic particles and the electric field associated with a Ba explosion is described. The Ba explosion created a complex electric field pulse detected in situ by a single-axis double electric-field probe on a separate spacecraft. The measurements provide evidence of several important links in the critical-velocity chain, and are consistent with two hypotheses. The first hypothesis involves the creation of large polarization electric field due to charge separation; the second hypothesis implies a polarization of the beam by currents flowing across it. The chain of physical processes inferred from the observations is in agreement with most theories for the Alfven process.

  1. Rocket probe electric field measurements in PMSE and NLC regions

    NASA Astrophysics Data System (ADS)

    Bekkeng, J. K.; Pedersen, A.; Moen, J.

    2003-08-01

    Complex AC and DC electric fields are known to be associated with polar mesospheric summer echo (PMSE) density irregularities and noctilucent cloud (NLC) layers. A two-channel prototype electric field instrument based on the double probe technique was developed to measure electric fields on-board a MIDAS (Middle atmosphere Investigation of Dynamics And Structure) sounding rocket. The instrument measures electric field variations up to 4 kHz, with 8 bit resolution. The payload was launched on 2 July 2002 from Andøya Rocket Range (69°N, 16°E) in Norway, in the presence of a PMSE radar backscatter layer located between 82 and 85 km height. The AC measurements in the PMSE region are characterized by spiky waveforms with amplitudes of a few mV/m, and the AC variations were also present in the height region 81-82 km, i.e. below the PMSE and NLC layers.

  2. Communication: Control of chemical reactions using electric field gradients.

    PubMed

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  3. Enhanced Fair-Weather Electric Fields Soon After Sunrise

    NASA Technical Reports Server (NTRS)

    Marshall, T. C.; Rust, W. D.; Stolzenburg, M.; Roeder, W.; Krehbiel, P. R.

    1999-01-01

    The typical fair weather electric field at the ground is between -100 and -300 V/m. At the NASA Kennedy Space Center and US Air Force Cape Canaveral Air Station (KSC) the electric field at the ground sometimes reaches -400 to -1200 V/m within an hour or two after sunrise on days that otherwise seem to be fair weather. We refer to the enhanced negative electric fields as the "sunrise enhancement." To investigate the sunrise enhancement at KSC we measured the electric field (E) in the first few hundred meters above the ground before and during several sunrise enhancements. From these E soundings we can infer the presence of charge layers and determine their thickness and charge density.

  4. Controlling flow direction in nanochannels by electric field strength

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang

    2015-08-01

    Molecular dynamics simulations are conducted to study the flow behavior of CsF solutions in nanochannels under external electric fields E . It is found that the channel surface energy greatly affects the flow behavior. In channels of high surface energy, water molecules, on average, move in the same direction as that of the electric field regardless of the strength of E . In low surface energy channels, however, water transports in the opposite direction to the electric field at weak E and the flow direction is changed when E becomes sufficiently large. The direction change of water flow is attributed to the coupled effects of different water-ion interactions, inhomogeneous water viscosity, and ion distribution changes caused by the electric field. The flow direction change observed in this work may be employed for flow control in complex micro- or nanofluidic systems.

  5. Communication: Control of chemical reactions using electric field gradients

    NASA Astrophysics Data System (ADS)

    Deshmukh, Shivaraj D.; Tsori, Yoav

    2016-05-01

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  6. Field-aligned Electric Field and Currents in the Polar cap

    NASA Astrophysics Data System (ADS)

    Wing, S.; Fairfield, D. H.; Johnson, J.; Ohtani, S.

    2015-12-01

    The Johns Hopkins University Applied Physics Laboratory open-field line particle precipitation model (APL-OPM) model predicts downward field-aligned electric field to maintain charge quasi-neutrality. Previous studies confirmed the existence of such electric fields. However, the present study shows that upward field-aligned electric field can be found within upward field-aligned current (FAC) region. In the upward FAC region, upward electric field that accelerates electron downward is seen with the occurrence rates of 82%-96%. In contrast, the occurrence rates in the downward FAC regions are 3%-11%. Polar rain electrons located in the upward FAC region adjacent to closed field lines often show a ramping up of energy with increasing latitude before reaching a plateau. This plateau may be attributed to the magnetosheath electrons that progressively have higher anti-sunward velocity and lower density with increasing distance from the subsolar point before they asymptotically reach the solar wind values.

  7. On the field-aligned electric field in the polar cap

    NASA Astrophysics Data System (ADS)

    Wing, Simon; Fairfield, Donald H.; Johnson, Jay R.; Ohtani, Shin-I.

    2015-07-01

    The Johns Hopkins University Applied Physics Laboratory open-field line particle precipitation model predicts downward field-aligned electric field to maintain charge quasi-neutrality. Previous studies confirmed the existence of such electric fields. However, the present study shows that upward field-aligned electric field can be found within upward field-aligned current (FAC) region. In the upward FAC region, upward electric field that accelerates electron downward is seen with the occurrence rates of 82%-96%. In contrast, the occurrence rates in the downward FAC regions are 3%-11%. Polar rain electrons located in the upward FAC region adjacent to closed field lines often show a ramping up of energy with increasing latitude before reaching a plateau. This plateau may be attributed to the magnetosheath electrons that progressively have higher antisunward velocity and lower density with increasing distance from the subsolar point before they asymptotically reach the solar wind values.

  8. A New Electric Field in Asymmetric Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Malakit, K.; Shay, M. A.; Cassak, P.; Ruffolo, D. J.

    2013-12-01

    Magnetic reconnection is an important plasma process that drives the dynamics of the plasma in the magnetosphere and plays a crucial role in the interaction between magnetospheric and magnetosheath plasma. It has been shown that when a reconnection occurs in a collisionless plasma, it exhibits the Hall electric field, an in-plane electric field structure pointing toward the X-line. In this work, we show that when the reconnection has asymmetric inflow conditions such as the reconnection at the day-side magnetopause, a new in-plane electric field structure can exist. This electric field points away from the X-line and is distinct from the known Hall electric field. We argue that the origin of the electric field is associated with the physics of finite Larmor radius. A theory and predictions of the electric field properties are presented and backed up by results from fully kinetic particle-in-cell simulations of asymmetric reconnection with various inflow conditions. Under normal day-side reconnection inflow conditions, the electric field is expected to occur on the magnetospheric side of the X-line pointing Earthward. Hence, it has a potential to be used as a signature for satellites, such as the upcoming Magnetospheric Multi-Scale (MMS) mission, to locate the reconnection sites at the day-side magnetopause. This research was supported by the postdoctoral research sponsorship of Mahidol University (KM), NSF grants ATM-0645271 - Career Award (MAS) and AGS-0953463 (PAC), NASA grants NNX08A083G - MMS IDS, NNX11AD69G, and NNX13AD72G (MAS) and NNX10AN08A (PAC), and the Thailand Research Fund (DR).

  9. Effects Of Electric Field On Hydrocarbon-Fueled Flames

    NASA Technical Reports Server (NTRS)

    Yuan, Z.-G.; Hegde, U.

    2003-01-01

    It has been observed that flames are susceptible to electric fields that are much weaker than the breakdown field strength of the flame gases. When an external electric field is imposed on a flame, the ions generated in the flame reaction zone drift in the direction of the electric forces exerted on them. The moving ions collide with the neutral species and change the velocity distribution in the affected region. This is often referred to as ionic wind effect. In addition, the removal of ions from the flame reaction zone can alter the chemical reaction pathway of the flame. On the other hand, the presence of space charges carried by moving ions affects the electric field distribution. As a result, the flame often changes its shape, location and color once an external electric field is applied. The interplay between the flame movement and the change of electric field makes it difficult to determine the flame location for a given configuration of electrodes and fuel source. In normal gravity, the buoyancy-induced flow often complicates the problem and hinders detailed study of the interaction between the flame and the electric field. In this work, the microgravity environment established at the 2.2 Second Drop Tower at the NASA Glenn Research Center is utilized to effectively remove the buoyant acceleration. The interaction between the flame and the electric field is studied in a one-dimensional domain. A specially designed electrode makes flame current measurements possible; thus, the mobility of ions, ion density, and ionic wind effect can be evaluated.

  10. Positioning and stretching of actin filaments by electric fields

    NASA Astrophysics Data System (ADS)

    Wigge, Christoph; Hinssen, Horst; Reiss, Günter; Herth, Simone

    2010-06-01

    The alignment of biological filaments on surfaces offers a high potential for controllable geometries in lab-on-a-chip-structures and micrototal analysis systems. Actin is a polar filamentous protein with a diameter of 7-8 nm that can be manipulated with strong electric fields. It is demonstrated that with the use of microelectrodes or nanoelectrodes and electric fields of 20 kV/m single actin filaments can be manipulated, stretched, and positioned between gold electrodes.

  11. Ionizing gas breakdown waves in strong electric fields.

    NASA Technical Reports Server (NTRS)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  12. Electric field in media with power-law spatial dispersion

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2016-04-01

    In this paper, we consider electric fields in media with power-law spatial dispersion (PLSD). Spatial dispersion means that the absolute permittivity of the media depends on the wave vector. Power-law type of this dispersion is described by derivatives and integrals of non-integer orders. We consider electric fields of point charge and dipole in media with PLSD, infinite charged wire, uniformly charged disk, capacitance of spherical capacitor and multipole expansion for PLSD-media.

  13. Electric and magnetic fields near AM broadcast towers. Final report

    SciTech Connect

    Mantiply, E.; Cleveland, R.F.

    1991-07-01

    The purpose of the study was to obtain actual measurement data in the close-in near field of representative AM broadcast antennas and compare the data to values predicted by a Numerical Electromagnetic Code (NEC) model. Measurements of electric and magnetic fields were made along several radial directions at distances from 1 to 100m from the transmitting towers of eight AM broadcast stations. These stations operated at various frequencies, electrical heights, and power outputs.

  14. Biological electric fields and rate equations for biophotons.

    PubMed

    Alvermann, M; Srivastava, Y N; Swain, J; Widom, A

    2015-04-01

    Biophoton intensities depend upon the squared modulus of the electric field. Hence, we first make some general estimates about the inherent electric fields within various biosystems. Generally, these intensities do not follow a simple exponential decay law. After a brief discussion on the inapplicability of a linear rate equation that leads to strict exponential decay, we study other, nonlinear rate equations that have been successfully used for biosystems along with their physical origins when available.

  15. Effects of high external electric fields on protein conformation

    NASA Astrophysics Data System (ADS)

    Pompa, Pier Paolo; Bramanti, Alessandro; Maruccio, Giuseppe; del Mercato, Loretta Laureana; Chiuri, Rocco; Cingolani, Roberto; Rinaldi, Ross

    2005-06-01

    Resistance of biomolecules to high electric fields is a main concern for nanobioelectronics/nanobiosensing applications, and it is also a relevant issue from a fundamental perspective, to understand the dielectric properties and structural dynamics of proteins. In nanoscale devices, biomolecules may experience electric fields as high as 107 V/m in order to elicit charge transport/transfer. Understanding the effects of such fields on their structural integrity is thus crucial to assess the reliability of biomolecular devices. In this study, we show experimental evidence for the retention of native-like fold pattern by proteins embedded in high electric fields. We have tested the metalloprotein azurin, deposited onto SiO2 substrates in air with proper electrode configuration, by applying high static electric fields (up to 106-107 V/m). The effects on the conformational properties of protein molecules have been determined by means of intrinsic fluorescence measurements. Experimental results indicate that no significant field-induced conformational alteration occurs. This behavior is also discussed and supported by theoretical predictions of the intrinsic intra-protein electric fields. As the general features of such inner fields are not peculiar of azurin, the conclusions presented here should have general validity.

  16. Electric Field Measurements in Non-Equilibrium Electric Discharge Plasmas Using Picosecond Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.

    This dissertation presents the results of development of a picosecond four wave mixing technique and its use for electric field measurements in nanosecond pulse discharges. This technique is similar to coherent anti-Stokes Raman spectroscopy and is well suited for electric field measurements in high pressure plasmas with high spatial and temporal resolution. The results show that the signal intensity scales proportionally to the square of the electric field, the signal is emitted as a coherent beam, and is polarized parallel to the electric field vector, making possible electric field vector component measurements. The signal is generated when a collinear pair of pump and Stokes beams, which are generated in a stimulated Raman shifting cell (SRS), generate coherent excitation of molecules into a higher energy level, hydrogen for the present work. The coherent excitation mixes with a dipole moment induced by an external electric field. The mixing of these three "waves'" allows the molecules to radiate at their Raman frequency, producing a fourth, signal, wave which is proportional to the square of the electric field. The time resolution of this technique is limited by the coherence decay time of the molecules, which is a few hundred picoseconds.

  17. Static electric field enhancement in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lepetit, Bruno; Lemoine, Didier; Márquez-Mijares, Maykel

    2016-08-01

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  18. Propagation of Magnetic Fields from Electrical Domestic Appliances

    NASA Astrophysics Data System (ADS)

    Orlova, K. N.; Gaidamak, M. A.; Borovikov, I. F.

    2016-08-01

    The article presents a research into propagation of magnetic fields from electrical domestic devices. A safe distance at which magnetic induction does not exceed the background level is determined for each type of devices. It is proved that there are two stages of increasing magnetic induction as the distance from the source increases. At the first stage magnetic induction rises and electromagnetic field is formed. At the second stage exponential decrease of magnetic field induction takes place. Mathematical regularities of propagation of magnetic field from electrical domestic devices are experimentally educed.

  19. Large amplitude middle atmospheric electric fields - Fact or fiction?

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Siefring, C. L.; Pfaff, R. F., Jr.

    1983-01-01

    An analysis of the measurements of large apparent dc fields in the middle atmosphere, previously gathered by two sounding rockets, shows these fields to be spurious. In the case of one of the rockets, the evidence presented suggests that the measured electric fields, aligned with the rocket's velocity vector, may be due to a negatively charged wake. A comparison of measurements made by various electric field booms also suggests that the insulating boom coatings in one experiment may have affected the results obtained. It is recommended that insulating coatings should not be used at mesospheric altitudes, because of the detrimental effects that frictional charging may have.

  20. Migration of amoeba cells in an electric field

    NASA Astrophysics Data System (ADS)

    Guido, Isabella; Bodenschatz, Eberhard

    2015-03-01

    Exogenous and endogenous electric fields play a role in cell physiology as a guiding mechanism for the orientation and migration of cells. Electrotaxis of living cells has been observed for several cell types, e.g. neurons, fibroblasts, leukocytes, neural crest cells, cancer cells. Dictyostelium discoideum (Dd), an intensively investigated chemotactic model organism, also exhibits a strong electrotactic behavior moving toward the cathode under the influence of electric fields. Here we report experiments on the effects of DC electric fields on the directional migration of Dd cells. We apply the electric field to cells seeded into microfluidic devices equipped with agar bridges to avoid any harmful effects of the electric field on the cells (ions formation, pH changes, etc.) and a constant flow to prevent the build-up of chemical gradient that elicits chemotaxis. Our results show that the cells linearly increase their speed over time when a constant electric field is applied for a prolonged duration (2 hours). This novel phenomenon cannot be attributed to mechanotaxis as the drag force of the electroosmotic flow is too small to produce shear forces that can reorient cells. It is independent of the cellular developmental stage and to our knowledge, it was not observed in chemotaxis. This work is supported by MaxSynBio project of the Max Planck Society.

  1. [Study on dewatering of activated sludge under applied electric field].

    PubMed

    Ji, Xue-Yuan; Wang, Yi-Li; Feng, Jing

    2012-12-01

    For an electro-dewatering process of activated sludge (AS), the effect of pH and conductivity of AS, flocculation conditioning and operation factors of horizontal electric field (voltage magnitude, method of applying electric field and distance between plates) were investigated, and the corresponding optimum electro-dewatering conditions were also obtained. The results showed that the best electro-dewatering effect was achieved for AS without change of its pH value (6.93) and conductivity (1.46 mS x cm(-1)). CPAM conditioning could lead to the increase of 30%-40% in the dewatering rate and accelerate the dewatering process, whereas a slight increase in the electro-dewatering rate. The electro-dewatering rate for conditioned AS reached 83.12% during an electric field applied period of 60 minutes, while this rate for original AS could be 75.31% even the electric field applied period extended to 120 minutes. The delay of applying the electric field had an inhibition effect on the AS electro-dewatering rate. Moreover, the optimum conditions for AS electro-dewatering were followed: CPAM dose of 9 g x kg(-1), electric field strength of 600 V x m(-1), distance between the two plates of 40 mm, dehydration time of 60 minutes. Under above optimum conditions the AS electro-dewatering rate could approach to 85.33% and the moisture content in AS decreased from 99.30% to 95.15% accordingly.

  2. Effect of superheat and electric field on saturated film boiling

    NASA Astrophysics Data System (ADS)

    Pandey, Vinod; Biswas, Gautam; Dalal, Amaresh

    2016-05-01

    The objective of this investigation is to study the influence of superheat temperature and applied uniform electric field across the liquid-vapor interface during film boiling using a coupled level set and volume of fluid algorithm. The hydrodynamics of bubble growth, detachment, and its morphological variation with electrohydrodynamic forces are studied considering the medium to be incompressible, viscous, and perfectly dielectric at near critical pressure. The transition in interfacial instability behavior occurs with increase in superheat, the bubble release being periodic both in space and time. Discrete bubble growth occurs at a smaller superheat whereas vapor columns form at the higher superheat values. Destabilization of interfacial motion due to applied electric field results in decrease in bubble separation distance and increase in bubble release rate culminating in enhanced heat transfer rate. A comparison of maximum bubble height owing to application of different intensities of electric field is performed at a smaller superheat. The change in dynamics of bubble growth due to increasing superheat at a high intensity of electric field is studied. The effect of increasing intensity of electric field on the heat transfer rate at different superheats is determined. The boiling characteristic is found to be influenced significantly only above a minimum critical intensity of the electric field.

  3. A novel high-sensitivity electrostatic biased electric field sensor

    NASA Astrophysics Data System (ADS)

    Huang, Jing'ao; Wu, Xiaoming; Wang, Xiaohong; Yan, Xiaojun; Lin, Liwei

    2015-09-01

    In this paper, an electric field sensor (EFS) with high sensitivity is proposed for low-frequency weak-strength ac electric field (E-field) measurements. The EFS is based on a piezoelectric cantilever biased by a strong electrostatic field. The electrostatic bias can enhance the electric field force of a weak ac E-field, thus the cantilever can oscillate in a weak ac E-field and the device sensitivity improves. Theoretical analyses have been established and suggest that a stronger strength of electrostatic field bias would produce a higher sensitivity improvement. In the experiment, a demonstrated sensor consisting of a polyvinylidene fluoride (PVDF) piezoelectric cantilever and a polytetrafluoroethylene (PTFE) electret was built and tested. Instead of extra voltage sources, the PTFE electret was charged to provide the electrostatic field, allowing the EFS a low energy consumption and a simple electric circuit design. The experiment results show good agreement with the simulation. The sensitivity of the cantilever E-field sensor reached 0.84 mV (kV/m)-1 when the surface potential of the electret was  -770 V.

  4. Ponderomotive Force in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.

    2013-01-01

    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  5. Electric Field Screening with Backflow at Pulsar Polar Cap

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Asano, Katsuaki; Terasawa, Toshio

    2016-09-01

    Recent γ-ray observations suggest that particle acceleration occurs at the outer region of the pulsar magnetosphere. The magnetic field lines in the outer acceleration region (OAR) are connected to the neutron star surface (NSS). If copious electron-positron pairs are produced near the NSS, such pairs flow into the OAR and screen the electric field there. To activate the OAR, the electromagnetic cascade due to the electric field near the NSS should be suppressed. However, since a return current is expected along the field lines through the OAR, the outflow extracted from the NSS alone cannot screen the electric field just above the NSS. In this paper, we analytically and numerically study the electric field screening at the NSS, taking into account the effects of the backflowing particles from the OAR. In certain limited cases, the electric field is screened without significant pair cascade if only ultra-relativistic particles (γ \\gg 1) flow back to the NSS. On the other hand, if electron-positron pairs with a significant number density and mildly relativistic temperature, expected to distribute in a wide region of the magnetosphere, flow back to the NSS, these particles adjust the current and charge densities so that the electric field can be screened without pair cascade. We obtain the condition needed for the number density of particles to screen the electric field at the NSS. We also find that in the ion-extracted case from the NSS, bunches of particles are ejected to the outer region quasi-periodically, which is a possible mechanism of observed radio emission.

  6. Controlling dielectrics with the electric field of light.

    PubMed

    Schultze, Martin; Bothschafter, Elisabeth M; Sommer, Annkatrin; Holzner, Simon; Schweinberger, Wolfgang; Fiess, Markus; Hofstetter, Michael; Kienberger, Reinhard; Apalkov, Vadym; Yakovlev, Vladislav S; Stockman, Mark I; Krausz, Ferenc

    2013-01-01

    The control of the electric and optical properties of semiconductors with microwave fields forms the basis of modern electronics, information processing and optical communications. The extension of such control to optical frequencies calls for wideband materials such as dielectrics, which require strong electric fields to alter their physical properties. Few-cycle laser pulses permit damage-free exposure of dielectrics to electric fields of several volts per ångström and significant modifications in their electronic system. Fields of such strength and temporal confinement can turn a dielectric from an insulating state to a conducting state within the optical period. However, to extend electric signal control and processing to light frequencies depends on the feasibility of reversing these effects approximately as fast as they can be induced. Here we study the underlying electron processes with sub-femtosecond solid-state spectroscopy, which reveals the feasibility of manipulating the electronic structure and electric polarizability of a dielectric reversibly with the electric field of light. We irradiate a dielectric (fused silica) with a waveform-controlled near-infrared few-cycle light field of several volts per angström and probe changes in extreme-ultraviolet absorptivity and near-infrared reflectivity on a timescale of approximately a hundred attoseconds to a few femtoseconds. The field-induced changes follow, in a highly nonlinear fashion, the turn-on and turn-off behaviour of the driving field, in agreement with the predictions of a quantum mechanical model. The ultrafast reversibility of the effects implies that the physical properties of a dielectric can be controlled with the electric field of light, offering the potential for petahertz-bandwidth signal manipulation.

  7. Electric field and temperature effects in irradiated MOSFETs

    NASA Astrophysics Data System (ADS)

    Silveira, M. A. G.; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A.; Aguiar, Vitor. A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H.

    2016-07-01

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices

  8. Report on Non-Contact DC Electric Field Sensors

    SciTech Connect

    Miles, R; Bond, T; Meyer, G

    2009-06-16

    This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

  9. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  10. KINETIC ALFVEN TURBULENCE AND PARALLEL ELECTRIC FIELDS IN FLARE LOOPS

    SciTech Connect

    Zhao, J. S.; Wu, D. J.; Lu, J. Y.

    2013-04-20

    This study investigates the spectral structure of the kinetic Alfven turbulence in the low-beta plasmas. We consider a strong turbulence resulting from collisions between counterpropagating wavepackets with equal energy. Our results show that (1) the spectra of the magnetic and electric field fluctuations display a transition at the electron inertial length scale, (2) the turbulence cascades mainly toward the magnetic field direction as the cascade scale is smaller than the electron inertial length, and (3) the parallel electric field increases as the turbulent scale decreases. We also show that the parallel electric field in the solar flare loops can be 10{sup 2}-10{sup 4} times the Dreicer field as the turbulence reaches the electron inertial length scale.

  11. Full 180° Magnetization Reversal with Electric Fields

    PubMed Central

    Wang, J. J.; Hu, J. M.; Ma, J.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Achieving 180° magnetization reversal with an electric field rather than a current or magnetic field is a fundamental challenge and represents a technological breakthrough towards new memory cell designs. Here we propose a mesoscale morphological engineering approach to accomplishing full 180° magnetization reversals with electric fields by utilizing both the in-plane piezostrains and magnetic shape anisotropy of a multiferroic heterostructure. Using phase-field simulations, we examined a patterned single-domain nanomagnet with four-fold magnetic axis on a ferroelectric layer with electric-field-induced uniaxial strains. We demonstrated that the uniaxial piezostrains, if non-collinear to the magnetic easy axis of the nanomagnet at certain angles, induce two successive, deterministic 90° magnetization rotations, thereby leading to full 180° magnetization reversals. PMID:25512070

  12. Reversible electric-field control of magnetization at oxide interfaces.

    PubMed

    Cuellar, F A; Liu, Y H; Salafranca, J; Nemes, N; Iborra, E; Sanchez-Santolino, G; Varela, M; Garcia Hernandez, M; Freeland, J W; Zhernenkov, M; Fitzsimmons, M R; Okamoto, S; Pennycook, S J; Bibes, M; Barthélémy, A; te Velthuis, S G E; Sefrioui, Z; Leon, C; Santamaria, J

    2014-06-23

    Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.

  13. Reversible electric-field control of magnetization at oxide interfaces.

    PubMed

    Cuellar, F A; Liu, Y H; Salafranca, J; Nemes, N; Iborra, E; Sanchez-Santolino, G; Varela, M; Garcia Hernandez, M; Freeland, J W; Zhernenkov, M; Fitzsimmons, M R; Okamoto, S; Pennycook, S J; Bibes, M; Barthélémy, A; te Velthuis, S G E; Sefrioui, Z; Leon, C; Santamaria, J

    2014-01-01

    Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field. PMID:24953219

  14. Consistency restrictions on maximal electric-field strength in quantum field theory.

    PubMed

    Gavrilov, S P; Gitman, D M

    2008-09-26

    Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2, one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.

  15. Rydberg-Stark states in oscillating electric fields

    NASA Astrophysics Data System (ADS)

    Zhelyazkova, V.; Hogan, S. D.

    2015-12-01

    Experimental and theoretical studies of the effects of weak radio-frequency electric fields on Rydberg-Stark states with electric dipole moments as large as 10,000 D are reported. High-resolution laser spectroscopic studies of Rydberg states with principal quantum number n = 52 and 53 were performed in pulsed supersonic beams of metastable helium with the excited atoms detected by pulsed electric field ionisation. Experiments were carried out in the presence of sinusoidally oscillating electric fields with frequencies of 20 MHz, amplitudes of up to 120 mV/cm, and dc offsets of up to 4.4 V/cm. In weak fields, the experimentally recorded spectra are in excellent agreement with the results of calculations carried out using Floquet methods to account for electric dipole couplings in the oscillating fields. This highlights the validity of these techniques for the accurate calculation of the Stark energy level structure in such fields, and the limitations of the calculations in stronger fields where n-mixing and higher order contributions become important.

  16. New Method for Solving Inductive Electric Fields in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  17. Limiting electric fields of HVDC overhead power lines.

    PubMed

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  18. Limiting electric fields of HVDC overhead power lines.

    PubMed

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths. PMID:24573710

  19. Electric field by pick-up ions and electrons

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Behar, Etienne; Nilsson, Hans; Holmstrom, Mats

    2016-04-01

    Observations by the Rosetta Plasma Consortium (RPC) showed increasing distortion of the solar wind flow as Rosetta approached the Sun, i.e., as the density of the newly born ions increased. This indicates azimuthal momentum transfer from the solar wind to the newly born ions because they are displaced by the solar wind electric field up to the ion gyroradius this the solar wind velocity, and conservation of the momentum (center of the mass) makes the solar wind to azimuthally shift by "counter action" of these pick-up ion motions. To understand this azimuthal momentum transfer, it is inevitable to model the electric field by the displacement of these pick-up ions and electrons. Although the E×B drift does not make charge separation when the scale size is larger than the ion gyroradius, ions and electrons move in the opposite direction to each other within the short distance up to a gyroradius, and therefore, the charge separation occurs. Thus, the newly-ionized neutrals (ion-electron pairs) create the electric field in the opposite (shielding) direction to the solar wind electric field (like the ionopause of Venus and Mars). However, such a newly induced "shielding" electric field will simultaneously be weakened by the solar wind electrons because the solar wind is also moved by this shielding electric field to reduce it, in the same way as the plasma oscillation (time scale of about 10-4 s). In other words, the solar wind tries to maintain the solar wind electric field as far as the momentum allows. These two opposite effects must be combined when modelling the azimuthal electric field, and resultant ion/electron motions within a gyroradius, like the case for ROSETTA. Furthermore, the effect of the induced electric field by the pick-up ions and electrons will be different when the newly born ions are created as the result of photo-ionization and of the charge exchange because the electron effect is different between them. In the presentation, we model the

  20. Controlling Growth Orientation of Phthalocyanine Films by Electrical Fields

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Banks, C. E.; Frazier, D. O.; Ila, D.; Muntele, I.; Penn, B. G.; Sharma, A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Organic Phthalocyanine films have many applications ranging from data storage to various non-linear optical devices whose quality is affected by the growth orientation of Phthalocyanine films. Due to the structural and electrical properties of Phthalocyanine molecules, the film growth orientation depends strongly on the substrate surface states. In this presentation, an electrical field up to 4000 V/cm is introduced during film growth. The Phthalocyanine films are synthesized on quartz substrates using thermal evaporation. An intermediate layer is deposited on some substrates for introducing the electrical field. Scanning electron microscopy, x-ray diffraction, and Fourier transform infrared spectroscopy are used for measuring surface morphology, film structure, and optical properties, respectively. The comparison of Phthalocyanine films grown with and without the electrical field reveals different morphology, film density, and growth orientation, which eventually change optical properties of these films. These results suggest that the growth method in the electrical field can be used to synthesized Phthalocyanine films with a preferred crystal orientation as well as propose an interaction mechanism between the substrate surface and the depositing molecules. The details of growth conditions and of the growth model of how the Phthalocyanine molecules grow in the electrical field will be discussed.

  1. Electric Field Driven Self-Assembly of Colloidal Rods

    NASA Astrophysics Data System (ADS)

    Juarez, Jaime; Chaudhary, Kundan; Chen, Qian; Granick, Steve; Lewis, Jennifer

    2012-02-01

    The ability to assemble anisotropic colloidal building blocks into ordered configurations is of both scientific and technological importance. We are studying how electric field-induced interactions guide the self-assembly of these blocks into well aligned microstructures. Specifically, we present observations of the assembly of colloidal silica rods (L/D ˜ 4) within planar electrode cells as a function of different electric field parameters. Results from video microscopy and image analysis demonstrate that aligned microstructures form due to the competition between equilibrium interactions of induced dipoles and non-equilibrium processes (i.e., electro-osmosis). Under the appropriate electric field conditions (˜ kHZ AC fields), aligned colloidal rod fluids form over large areas on the electrode surface. The superposition of a DC electric field to this aligned colloidal rod fluid initiates their condensation into a vertically oriented crystalline phase. Ongoing work is now focused on exploring how temporal changes to electric fields influence colloidal rod dynamics and, hence, the assembly kinetics of aligned colloidal monolayers.

  2. Using Gravitational Analogies to Introduce Elementary Electrical Field Theory Concepts

    ERIC Educational Resources Information Center

    Saeli, Susan; MacIsaac, Dan

    2007-01-01

    Since electrical field concepts are usually unfamiliar, abstract, and difficult to visualize, conceptual analogies from familiar gravitational phenomena are valuable for teaching. Such analogies emphasize the underlying continuity of field concepts in physics and support the spiral development of student understanding. We find the following four…

  3. Mapping transient electric fields with picosecond electron bunches

    PubMed Central

    Chen, Long; Li, Runze; Chen, Jie; Zhu, Pengfei; Liu, Feng; Cao, Jianming; Sheng, Zhengming; Zhang, Jie

    2015-01-01

    Transient electric fields, which are an important but hardly explored parameter of laser plasmas, can now be diagnosed experimentally with combined ultrafast temporal resolution and field sensitivity, using femtosecond to picosecond electron or proton pulses as probes. However, poor spatial resolution poses great challenges to simultaneously recording both the global and local field features. Here, we present a direct 3D measurement of a transient electric field by time-resolved electron schlieren radiography with simultaneous 80-μm spatial and 3.7-ps temporal resolutions, analyzed using an Abel inversion algorithm. The electric field here is built up at the front of an aluminum foil irradiated with a femtosecond laser pulse at 1.9 × 1012 W/cm2, where electrons are emitted at a speed of 4 × 106 m/s, resulting in a unique “peak–valley” transient electric field map with the field strength up to 105 V/m. Furthermore, time-resolved schlieren radiography with charged particle pulses should enable the mapping of various fast-evolving field structures including those found in plasma-based particle accelerators. PMID:26554022

  4. Mapping transient electric fields with picosecond electron bunches.

    PubMed

    Chen, Long; Li, Runze; Chen, Jie; Zhu, Pengfei; Liu, Feng; Cao, Jianming; Sheng, Zhengming; Zhang, Jie

    2015-11-24

    Transient electric fields, which are an important but hardly explored parameter of laser plasmas, can now be diagnosed experimentally with combined ultrafast temporal resolution and field sensitivity, using femtosecond to picosecond electron or proton pulses as probes. However, poor spatial resolution poses great challenges to simultaneously recording both the global and local field features. Here, we present a direct 3D measurement of a transient electric field by time-resolved electron schlieren radiography with simultaneous 80-μm spatial and 3.7-ps temporal resolutions, analyzed using an Abel inversion algorithm. The electric field here is built up at the front of an aluminum foil irradiated with a femtosecond laser pulse at 1.9 × 10(12) W/cm(2), where electrons are emitted at a speed of 4 × 10(6) m/s, resulting in a unique "peak-valley" transient electric field map with the field strength up to 10(5) V/m. Furthermore, time-resolved schlieren radiography with charged particle pulses should enable the mapping of various fast-evolving field structures including those found in plasma-based particle accelerators. PMID:26554022

  5. Schwinger pair production in electric and magnetic fields

    SciTech Connect

    Kim, Sang Pyo; Page, Don N.

    2006-03-15

    Charged particles in static electric and magnetic fields have Landau levels and tunneling states from the vacuum. Using the instanton method of Phys. Rev. D 65, 105002 (2002), we obtain the formulas for the pair-production rate in spinor and scalar QED, which sum over all Landau levels and recover exactly the well-known results. The pair-production rates are calculated for an electric field of finite extent, and for the Sauter potential, both with a constant magnetic field also present, and are shown to have finite-size effects.

  6. Electric field evidence for tailward flow at substorm onset

    NASA Technical Reports Server (NTRS)

    Nishida, A.; Tulunay, Y. K.; Mozer, F. S.; Cattell, C. A.; Hones, E. W., Jr.; Birn, J.

    1983-01-01

    Electric field observations made near the neutral sheet of the magnetotail provide additional support for the view that reconnection occurs in the near-earth region of the tail. Southward turnings of the magnetic field that start at, or shortly after, substorm onsets are accompanied by enhancements in the dawn-to-dusk electric field, resulting in a tailward E x B drift velocity. Both the magnetic and the electric fields in the tailward-flowing plasma are nonuniform and vary with inferred spatial scales of several earth radii in the events examined in this paper. These nonuniformities may be the consequence of the tearing-mode process. The E x B flow was also towards the neutral sheet and away from midnight in the events studied.

  7. Electric field for tuning quantum entanglement in supported clusters.

    PubMed

    Brovko, Oleg O; Farberovich, Oleg V; Stepanyuk, Valeri S

    2014-08-01

    We show that quantum entanglement, nowadays so widely observed and used in a multitude of systems, can be traced in the atomic spins of metal clusters supported on metal surfaces. Most importantly, we show that it can be voluntarily altered with external electric fields. We use a combination of ab initio and model Heisenberg-Dirac-Van Vleck quantum spin Hamiltonian calculations to show, with the example of a prototype system (Mn dimers on Ag(0 0 1) surface), that, in an inherently unentangled system an electric field can 'switch on' the entanglement and significantly change its critical temperature parameter. The physical mechanism allowing such rigorous control of entanglement by an electric field is the field-induced change in the internal magnetic coupling of the supported nanostructure.

  8. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    PubMed Central

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  9. Magnetic response of zigzag nanoribbons under electric fields.

    PubMed

    Culchac, F J; Capaz, Rodrigo B; Costa, A T; Latgé, A

    2014-05-28

    Spin excitations in zigzag graphene nanoribbons are studied when the system is subjected to an electric field in the transversal direction. The magnetic properties and the lifetime of the spin excitations are systematically investigated and compared using a tight-binding electron-electron model treated by a mean-field Hubbard model. The effects of electron-hole asymmetry introduced by next-nearest neighbor hopping are also investigated. We show that by increasing the electric field, the antiferromagnetic correlations between the edges of the nanoribbons are decreased due to a reduction of the magnetic moments. The results show that the spin wave lifetime may be controlled by the intensity of the transversal electric field, indicating that zigzag nanoribbons may be considered great candidates for future spintronic applications.

  10. Regional United States electric field and GIC hazard impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Gannon, J. L.; Balch, C. C.; Trichtchenko, L.

    2013-12-01

    Geomagnetically Induced Currents (GICs) are primarily driven by impulsive geomagnetic disturbances created by the interaction between the Earth's magnetosphere and sharp velocity, density, and magnetic field enhancements in the solar wind. However, the magnitude of the induced electric field response at the ground level, and therefore the resulting hazard to the bulk power system, is determined not only by magnetic drivers, but also by the underlying geology. Convolution techniques are used to calculate surface electric fields beginning from the spectral characteristics of magnetic field drivers and the frequency response of the local geology. Using these techniques, we describe historical scenarios for regions across the United States, and the potential impact of large events on electric power infrastructure.

  11. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    NASA Astrophysics Data System (ADS)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  12. Inversion of the electric field driven by ionic solvation energy

    NASA Astrophysics Data System (ADS)

    Guerrero Garcia, Guillermo; Solis, Francisco; Olvera de La Cruz, Monica

    2014-03-01

    In previous studies, Monte Carlo simulations have suggested the possibility of inverting the electric field near a liquid/liquid interface due to excluded volume effects, ionic size asymmetry, and image charges at high electrolyte concentrations in the absence of ion transfer. In this work, we develop a mean field theory and coarse grained simulations to study the ion transfer between the two immiscible electrolytes in the presence of an electric field. Our calculations suggest a novel mechanism to invert the electric field near confined oil/water interfaces based on differences of the ionic solvation energy in both liquid media. We thank the support of the Office of the Secretary of Defense under the NSSEFF program award number FA9550-10-1-0167.

  13. Effect of electrical field strength applied by PEF processing and storage temperature on the outgrowth of yeasts and moulds naturally present in a fresh fruit smoothie.

    PubMed

    Timmermans, R A H; Nederhoff, A L; Nierop Groot, M N; van Boekel, M A J S; Mastwijk, H C

    2016-08-01

    Pulsed electrical field (PEF) technology offers an alternative to thermal pasteurisation of high-acid fruit juices, by extending the shelf life of food products, while retaining its fresh taste and nutritional value. Substantial research has been performed on the effect of electrical field strength on the inactivation kinetics of spoilage and pathogenic micro-organisms and on the outgrowth of spoilage micro-organisms during shelf life. However, studies on the effect of electrical field strength on the inactivation and outgrowth of surviving populations during shelf life are missing. In this study, we assessed the influence of electrical field strength applied by PEF processing and storage temperature on the outgrowth of surviving yeast and mould populations naturally present in fresh fruit smoothie in time. Therefore, an apple-strawberry-banana smoothie was treated in a continuous-flow PEF system (130L/h), using similar inlet and outlet conditions (preheating temperature 41°C, maximum temperature 58°C) to assure that the amount of energy across the different conditions was kept constant. Smoothies treated with variable electrical field strengths (13.5, 17.0, 20.0 and 24.0kV/cm) were compared to smoothies without treatment for outgrowth of yeasts and moulds. Outgrowth of yeasts and moulds stored at 4°C and 7°C was analysed by plating and visual observation and yeast growth was modelled using the modified logistic growth model (Zwietering model). Results showed that the intensity of the electrical field strength had an influence on the degree of inactivation of yeast cells, resulting in a faster outgrowth over time at lower electrical field strength. Outgrowth of moulds over time was not affected by the intensity of the electrical field strength used. Application of PEF introduces a trade-off between type of spoilage: in untreated smoothie yeasts lead to spoilage after 8days when stored at 4 or 7°C, whereas in PEF treated smoothie yeasts were (partly

  14. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes).

    PubMed

    Leong, Sze Ying; Oey, Indrawati

    2014-03-01

    The objective of this research was to study the enzyme kinetics and thermostability of endogenous ascorbic acid oxidase (AAO) in carrot purée (Daucus carota cv. Nantes) after being treated with pulsed electric field (PEF) processing. Various PEF treatments using electric field strength between 0.2 and 1.2kV/cm and pulsed electrical energy between 1 and 520kJ/kg were conducted. The enzyme kinetics and the kinetics of AAO thermal inactivation (55-70°C) were described using Michaelis-Menten model and first order reaction model, respectively. Overall, the estimated Vmax and KM values were situated in the same order of magnitude as the untreated carrot purée after being exposed to pulsed electrical energy between 1 and 400kJ/kg, but slightly changed at pulsed electrical energy above 500kJ/kg. However, AAO presented different thermostability depending on the electric field strength applied. After PEF treatment at the electric field strength between 0.2 and 0.5kV/cm, AAO became thermolabile (i.e. increase in inactivation rate (k value) at reference temperature) but the temperature dependence of k value (Ea value) for AAO inactivation in carrot purée decreased, indicating that the changes in k values were less temperature dependent. It is obvious that PEF treatment affects the temperature stability of endogenous AAO. The changes in enzyme kinetics and thermostability of AAO in carrot purée could be related to the resulting carrot purée composition, alteration in intracellular environment and the effective concentration of AAO released after being subjected to PEF treatment.

  15. Relationship between ionospheric electric fields and magnetic activity indices

    NASA Astrophysics Data System (ADS)

    Shirapov, D. Sh.

    2012-02-01

    The relations between electric fields in the daytime and nighttime sectors of the polar ionosphere and magnetic activity indices of auroral region (AL) and northern polar cap (PCN) are studied. It is found that the above relations do exist and are described by: a) equations U {pc/(1)} (kV) = 27.62 + 21.43PCN with a correlation coefficient R = 0.87 and U {pc/(1)} (kV) = 4.06 + 49.21PCN - 6.24 PCN2 between the difference in the electric potentials across the polar cap in the daytime sector U {pc/(1)} and PCN and b) regression equation U {pc/(2)} (kV) = 23.33 + 0.08|AL| with R = 0.86 between the difference in the electric potentials across the polar cap in the nighttime sector U {pc/(2)} and |AL|. It is shown that: a) it is possible to use the AL and PCN indices for real-time diagnostics of instantaneous values of the electric fields in the daytime and nighttime sectors of the polar ionosphere in the process of a substorm development; b) at the expansion phase of a substorm, due to calibration of PCN values by the values of the solar wind electric field E sw, the PCN index does not feel the contribution of the western electrojet and, accordingly, the contribution of the nighttime ionospheric electric field U {pc/(2)}, governed by the reconnection in the magnetospheric tail.

  16. Manipulation of red blood cells with electric field

    NASA Astrophysics Data System (ADS)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  17. Electric field of streamers propagating along dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Trienekens, Dirk; Nijdam, Sander; Kroesen, Gerrit; Christen, Thomas; Ebert, Ute

    2015-09-01

    In electric power devices for high voltage, the interface between solid and gaseous insulation is usually the most critical part with respect to electric discharges that may lead to breakdown. For a better understanding of the underlying fundamental physics of these discharges, we investigate the streamer propagation along dielectric surfaces, with focus on the streamer electric fields and surface charges deposited on the dielectric material. In particular, we constructed a setup that enables us to study the electric field of the streamer in situ. A positive high voltage pulse is generated using a push-pull switch and supplied to a needle close to a birefringent BSO (Bismuth Silicon Oxide) crystal, along which the streamers can then propagate. Using a power LED and polarizing optics, we are able to visualize via the Pockels effect the electric field caused by the discharge. With this, we are able to quantitatively study streamer electric fields with good temporal and spatial resolution, and can estimate lifetimes of the deposited charges.

  18. Magnetic field-aligned electric potentials in nonideal plasma flows

    NASA Technical Reports Server (NTRS)

    Schindler, K.; Hesse, M.; Birn, J.

    1991-01-01

    The electric field component parallel to the magnetic field arising from plasma flows which violate the frozen-in field condition of ideal magnetohydrodynamics is discussed. The quantity of interest is the potential U = integral E parallel ds where the integral is extended along field lines. It is shown that U can be directly related to magnetic field properties, expressed by Euler potentials, even when time-dependence is included. These results are applicable to earth's magnetosphere, to solar flares, to aligned-rotator models of compact objects, and to galactic rotation. On the basis of order-of-magnitude estimates, these results support the view that parallel electric fields associated with nonideal plasma flows might play an important role in cosmic particle acceleration.

  19. Water-methanol separation with carbon nanotubes and electric fields

    NASA Astrophysics Data System (ADS)

    Winarto, Affa; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-07-01

    Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing diameter. In contrast, under an electric field, water molecules strongly prefer to occupy the CNTs over methanol molecules, resulting in a separation effect for water. More interestingly, the separation effect for water does not decrease with increasing CNT diameter. Formation of water structures in CNTs induced by an electric field has an important role in the separation of water from methanol.Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing

  20. Laser Assisted Electric Field Monitoring in a Cryogenic Environment

    NASA Astrophysics Data System (ADS)

    Broering, Mark; Abney, Josh; Swank, Christopher; Filippone, Brad; Yao, Weijun; Korsch, Wolfgang; SNS-nEDM Collaboration

    2016-03-01

    The neutron EDM collaboration at the Spallation Neutron Source (ORNL) is using ultra-cold neutrons in liquid helium to improve the nEDM limit by two orders of magnitude. These neutrons will be stored in target cells located in a strong, stable electric field. Local radiation will generate charged particles which build up on the target cell walls reducing field strength and stability. The field fluctuations need to be kept below 1%, making it necessary to study this cell charging behavior, determine its effect on the experiment and find ways to mitigate this. A more compact test setup was designed to study this effect using smaller electrodes and cell. Charged particles are generated by ionizing the helium with a 137Cs source and the electric field is monitored via the electro-optic Kerr effect. Linearly polarized light is passed through the helium. The Kerr effect then introduces an ellipticity to the polarization that is proportional to the electric field squared. This allows an effective means of field monitoring. Nitrogen has a much stronger response to electric fields. This makes liquid nitrogen an ideal candidate for first tests. First results on the liquid nitrogen tests will be presented. This research is supported by DOE Grants: DE-FG02-99ER41101, DE-AC05-00OR22725.

  1. A study of the electric field induced by magnetic clouds

    NASA Astrophysics Data System (ADS)

    Hidalgo, M. A.

    2011-02-01

    Starting from our magnetic field model for magnetic clouds (MCs), which topologically considers them as cylinders with elliptical cross sections, we present a first attempt in the study of the electric field induced by the movements of magnetic clouds in the interplanetary medium and the expansions of their cross sections. These expansions are included in the model assuming linear time dependence in all the components of the plasma current density. In a previous paper we already determined the magnetic field and current density of our MCs model, and in its development we established that to get it physically consistent, the induced electric field has to be independent of time. In the present work we calculate the expressions for the components of this electric field and fit them to the corresponding experimental data determined from the measurements of the plasma velocity and magnetic field components through the expression $\\vec E$ = -$\\vec v$SW × $\\vec B$. To test the model, we have selected three intense and well-defined magnetic clouds observed in July 2000, November 2003, and May 2005. Until now we think it is one of the first attempts to incorporate this induced electric field in the context of analytical models for the study of MCs.

  2. ELF electric and magnetic fields: Pacific Northwest Laboratory studies

    SciTech Connect

    Anderson, L.E.

    1992-06-01

    Studies have been conducted at Battelle, Pacific Northwest Laboratory, to examine extremely-low-frequency (ELF) electromagnetic fields for possible biological effects in animals. Three areas of investigation are reported here: (1) studies on the nervous system, including behavior and neuroendocrine function, (2) experiments on cancer development in animals, and (3) measurements of currents and electric fields induced in animal models by exposure to external magnetic fields. In behavioral experiments, rats have been shown to be responsive to ELF electric field exposure. Furthermore, experimental data indicate that short-term memory may be affected in albino rats exposed to combined ELF and static magnetic fields. Neuroendocrine studies have been conducted to demonstrate an apparent stress-related response in rats exposed to 60-Hz electric fields. Nighttime pineal melatonin levels have been shown to be significantly depressed in animals exposed to either electric or magnetic fields. A number of animal tumor models are currently under investigation to examine possible relationships between ELF exposure and carcinogenesis. Finally, theoretical and experimental measurements have been performed which form the basis for animals and human exposure comparisons.

  3. ELF electric and magnetic fields: Pacific Northwest Laboratory studies

    NASA Astrophysics Data System (ADS)

    Anderson, L. E.

    1992-06-01

    Studies were conducted at Battelle, Pacific Northwest Laboratory, to examine extremely-low-frequency (ELF) electromagnetic fields for possible biological effects in animals. Three areas of investigation are reported here: (1) studies on the nervous system, including behavior and neuroendocrine function; (2) experiments on cancer development in animals; and (3) measurements of currents and electric fields induced in animal models by exposure to external magnetic fields. In behavioral experiments, rats were shown to be responsive to ELF electric field exposure. Furthermore, experimental data indicate that short-term memory may be affected in albino rats exposed to combined ELF and static magnetic fields. Neuroendocrine studies were conducted to demonstrate an apparent stress-related response in rats exposed to 60-Hz electric fields. Nighttime pineal melatonin levels were shown to be significantly depressed in animals exposed to either electric or magnetic fields. A number of animal tumor models are currently under investigation to examine possible relationships between ELF exposure and carcinogenesis. Finally, theoretical and experimental measurements were performed which form the basis for animals and human exposure comparisons.

  4. Average Lorentz self-force from electric field lines

    NASA Astrophysics Data System (ADS)

    Aashish, Sandeep; Haque, Asrarul

    2015-09-01

    We generalize the derivation of electromagnetic fields of a charged particle moving with a constant acceleration Singal (2011 Am. J. Phys. 79 1036) to a variable acceleration (piecewise constants) over a small finite time interval using Coulomb's law, relativistic transformations of electromagnetic fields and Thomson's construction Thomson (1904 Electricity and Matter (New York: Charles Scribners) ch 3). We derive the average Lorentz self-force for a charged particle in arbitrary non-relativistic motion via averaging the fields at retarded time.

  5. Empirical models of storm time equatorial zonal electric fields

    NASA Astrophysics Data System (ADS)

    Fejer, Bela G.; Scherliess, Ludger

    1997-10-01

    Ionospheric plasma drifts often show highly complex and variable signatures during geomagnetically active periods due to the effects of different disturbance processes. We describe initially a methodology for the study of storm time dependent ionospheric electric fields. We present empirical models of equatorial disturbance zonal electric fields obtained using extensive F region vertical plasma drift measurements from the Jicamarca Observatory and auroral electrojet indices. These models determine the plasma drift perturbations due to the combined effects of short-lived prompt penetration and longer lasting disturbance dynamo electric fields. We show that the prompt penetration drifts obtained from a high time resolution empirical model are in excellent agreement with results from the Rice Convection Model for comparable changes in the polar cap potential drop. We also present several case studies comparing observations with results obtained by adding model disturbance drifts and season and solar cycle dependent average quiet time drift patterns. When the disturbance drifts are largely due to changes in magnetospheric convection and to disturbance dynamo effects, the measured and modeled drift velocities are generally in good agreement. However, our results indicate that the equatorial disturbance electric field pattern can be strongly affected by variations in the shielding efficiency, and in the high-latitude potential and energy deposition patterns which are not accounted for in the model. These case studies and earlier results also suggest the possible importance of additional sources of plasmaspheric disturbance electric fields.

  6. Ion flow in a strongly sheared electric field

    SciTech Connect

    Tao, Y.; Conn, R.W.; Schmitz, L.; Tynan, G. )

    1993-02-01

    Ion orbits and equilibrium ion flow in crossed electric and magnetic fields are examined for the case of a strongly nonuniform electric field such as found in edge plasmas of tokamak fusion experiments and in space plasmas. It is shown that the [bold E][times][bold B] drift approximation no longer applies, either to the motion of a single ion or to the collective response of the ion species when the absolute value of the shear parameter, [vert bar][zeta][vert bar], defined as the absolute value of the ratio of the gradient of [bold E][times][bold B] speed to ion gyrofrequency, is order one. It is also found that the ion velocity is strongly dependent on the electric field geometry. The results suggest that the existence of a strongly sheared electric field does not necessarily indicate the existence of strongly sheared plasma flow, and that the spatial shape of the electric field, when [vert bar][zeta][vert bar] is order one, may be a dominant factor in determining the resulting plasma flow speed.

  7. MEFISTO An electric field instrument for BepiColombo/MMO

    NASA Astrophysics Data System (ADS)

    Blomberg, L. G.; Matsumoto, H.; Bougeret, J.-L.; Kojima, H.; Yagitani, S.; Cumnock, J. A.; Eriksson, A. I.; Marklund, G. T.; Wahlund, J.-E.; Bylander, L.; Åhlén, L.; Holtet, J. A.; Ishisaka, K.; Kallio, E.; Kasaba, Y.; Matsuoka, A.; Moncuquet, M.; Mursula, K.; Omura, Y.; Trotignon, J. G.

    2006-01-01

    MEFISTO, together with the companion instrument WPT, are planning the first-ever in situ measurements of the electric field in the magnetosphere of planet Mercury. The instruments have been selected by JAXA for inclusion in the BepiColombo/MMO payload, as part of the Plasma Wave Investigation coordinated by Kyoto University. The magnetosphere of Mercury was discovered by Mariner 10 in 1974 and will be studied further by Messenger starting in 2011. However, neither spacecraft did or will measure the electric field. Electric fields are crucial in the dynamics of a magnetosphere and for the energy and plasma transport between different regions within the magnetosphere as well as between the magnetosphere and the surrounding regions. The MEFISTO instrument will be capable of measuring electric fields from DC to 3 MHz, and will thus also allow diagnostics of waves at all frequencies of relevance to the Hermean magnetosphere. MEFISTO is a double-probe electric field instrument. The double-probe technique has strong heritage and is well proven on missions such as Viking, Polar, and Cluster. For BepiColombo, a newly developed deployment mechanism is planned which reduces the mass by a factor of about 5 compared to conventional mechanisms for 15 m long booms. We describe the basic characteristics of the instrument and briefly discuss the new developments made to tailor the instrument to flight in Mercury orbit.

  8. MEFISTO - an electric field instrument for BepiColombo/MMO

    NASA Astrophysics Data System (ADS)

    Blomberg, L. G.; Mefisto Team

    MEFISTO, together with the companion instrument PANT, are planning the first-ever in-situ measurements of the electric field in the magnetosphere of planet Mercury. The instruments are proposed to JAXA for inclusion in the BepiColombo/MMO payload, as part of the Plasma Wave Investigation co-ordinated by Kyoto University. The magnetosphere of Mercury was discovered by Mariner 10 in 1974, and will be studied further by Messenger starting in 2009. However, neither spacecraft measures the electric field. Electric fields are crucial in the dynamics of a magnetosphere and for the energy and plasma transport between different regions within the magnetosphere as well as between the magnetosphere and the surrounding regions. The instrument will be capable of measuring electric fields from DC to 3 MHz, and will thus also allow diagnostics of waves at all frequencies of relevance to the Hermean magnetosphere. MEFISTO is a double-probe electric field instrument. The double-probe technique has strong heritage and is well proven on missions such as Viking, Freja, and Cluster. For BepiColombo, a newly developed deployment mechanism is planned which reduces the mass by a factor of about 5 compared to conventional mechanisms. We describe the basic characteristics of the instrument and briefly discuss the new developments made to tailor the instrument to flight in Mercury orbit.

  9. Electric field-induced deformation of polydimethylsiloxane polymers

    NASA Astrophysics Data System (ADS)

    Ioppolo, T.; Stubblefield, J.; Ötügen, M. V.

    2012-08-01

    The deformation of polydimethylsiloxane (PDMS) spheres under uniform external electric field was studied experimentally and analytically. In the experiments, ˜1 mm diameter PDMS spheres with base-to-curing-agent mixing ratios of 10:1 and 60:1 were exposed to uniform external electric field with varying magnitudes and poling durations. The spheres elongate along the electric field direction. For a given electric field strength, the sphere deformation is initially a time function but reaches a terminal strain value over a certain time period. This terminal strain value is larger for stronger external electric fields and larger PDMS mixing ratio spheres. At this state, the material is no longer poled and the surface charge distribution remains constant. In the analysis, an expression for the sphere deformation is obtained by modeling the PDMS as a linear elastic solid and solving the Navier equation along with Maxwell's equations for boundary conditions. The analysis takes into account the surface charge distribution and predicts well the experimental trends.

  10. Additional electric field in real trench MOS barrier Schottky diode

    NASA Astrophysics Data System (ADS)

    Mamedov, R. K.; Aslanova, A. R.

    2016-04-01

    In real trench MOS barrier Schottky diode (TMBS diode) additional electric field (AEF) the whole is formed in the near contact region of the semiconductor and its propagation space is limited with the barrier metal and the metallic electrodes of MOS structures. Effective potential barrier height TMBS diode is formed via resulting electric field of superposition AEF and electric field of space charge region (SCR) semiconductor. The dependence of the resulting electric field intensity of the distance towards the inside the semiconductor is nonlinear and characterized by a peak at a certain distance from the interface. The thickness of the SCR in TMBS diode becomes equal to the trench depth. Force and energy parameters of the AEF, and thus resulting electric field in the SCR region, become dependent on the geometric design parameters TMBS diode. The forward I-V characteristic TMBS diode is described by the thermionic emission theory as in conventional flat Scottky diode, and in the reverse bias, current is virtually absent at initial voltage, appears abruptly at a certain critical voltage.

  11. Electric Field Detection in Sawfish and Shovelnose Rays

    PubMed Central

    Wueringer, Barbara E.; Jnr, Lyle Squire; Kajiura, Stephen M.; Tibbetts, Ian R.; Hart, Nathan S.; Collin, Shaun P.

    2012-01-01

    In the aquatic environment, living organisms emit weak dipole electric fields, which spread in the surrounding water. Elasmobranchs detect these dipole electric fields with their highly sensitive electroreceptors, the ampullae of Lorenzini. Freshwater sawfish, Pristis microdon, and two species of shovelnose rays, Glaucostegus typus and Aptychotrema rostrata were tested for their reactions towards weak artificial electric dipole fields. The comparison of sawfishes and shovelnose rays sheds light on the evolution and function of the elongated rostrum (‘saw’) of sawfish, as both groups evolved from a shovelnose ray-like ancestor. Electric stimuli were presented both on the substrate (to mimic benthic prey) and suspended in the water column (to mimic free-swimming prey). Analysis of around 480 behavioural sequences shows that all three species are highly sensitive towards weak electric dipole fields, and initiate behavioural responses at median field strengths between 5.15 and 79.6 nVcm−1. The response behaviours used by sawfish and shovelnose rays depended on the location of the dipoles. The elongation of the sawfish’s rostrum clearly expanded their electroreceptive search area into the water column and enables them to target free-swimming prey. PMID:22848543

  12. Electric field effect in ultrathin black phosphorus

    SciTech Connect

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  13. Electric field absorption and emission as an indicator of active electromagnetic nature of organisms--preliminary report.

    PubMed

    Skarja, Metod; Jerman, Igor; Ruzic, Romana; Leskovar, Robert T; Jejcic, Luka

    2009-01-01

    Measurements of the response of organisms to the near field exposure show that this response, i.e., its absorption, transmission, and emission (ATE) of the organism, markedly differs from the behavior expected if one treats the organism as a simple dissipative conductive body. The results point to the at least partial active response of the organism. This active electrical response can be attributed at least partially to the response of the endogenous electromagnetic field of organisms, first postulated by Frohlich, and to the material structures that form an inseparable whole with this field. The near electric field influence, both on the organism and of the organism on the sensors, can be established either through the vicinity or through a direct nonconductive contact. This response correlates with the physiological state of an organism. Measurements performed with mealworm beetles indicated that the normal living organisms absorb and use some energy of the near electric field and therefore the transmitted (re-emitted) signal is weaker. The inactivated or the dead organisms are more passive electrical absorbers. PMID:19337899

  14. Relation between mechanical dynamic processes and the accompanying electric fields

    NASA Astrophysics Data System (ADS)

    Bivin, Yu. K.

    2015-06-01

    The dependence of the electric field in the plane of motion of a nylon string on the string velocity is experimentally studied. The shape and number of the charges that accompany the motion of solid bodies, which have various geometric parameters, in air up to transonic velocities are determined. The formation and shape of electric charges of different signs in an initially neutral dielectric rod are investigated during the motion of a deformation pulse of the same sign along the rod.

  15. Effects of a Guide Field on the Larmor Electric Field in Collisionless Asymmetric Reconnection

    NASA Astrophysics Data System (ADS)

    Ruffolo, D. J.; Malakit, K.; Ek-In, S.; Shay, M. A.; Cassak, P.

    2014-12-01

    Recently it has been pointed out that when the inflow conditions of magnetic reconnection are asymmetric, a new in-plane electric field can arise from the physics of finite ion Larmor radius, called the Larmor electric field. It is located next to the Hall electric field structure, making it a potential indicator of proximity to the diffusion region. However, the properties of the Larmor electric field have not previously been explored for the case of a nonzero guide field, which could occur for many reconnection sites, including the day-side magnetopause. In this study, we therefore further explore the properties of the Larmor electric field by adding guide fields with different strengths into our simulations. The results show that the width of the Larmor electric field structure will be smaller, but the strength of the field will be stronger as the guide field increases, consistent with what we expect from the existing theory. Moreover, we show that in the region where the Larmor electric field occurs, there also appears an electron anisotropy. The widths of the electron anisotropy and Larmor electric field structures are found to be similar, suggesting that observing the combination of these two signatures provides a useful indicator of proximity to a reconnection site. Partially supported by a Mahidol University Postdoctoral Fellowship and the Thailand Research Fund. This research was supported by the postdoctoral research sponsorship of Mahidol University (K. M.), the Thailand Research Fund (D. R.), NSF Grants No. ATM-0645271 (M. A. S.) and No. AGS-0953463 (P.A. C.), NASA Grants No. NNX08A083G—MMS IDS, No. NNX11AD69G, and No. NNX13AD72G(M. A. S.).

  16. Understanding Electric Interactions in Suspensions in Gradient AC Electric Fields I:. Experimental

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Qiu, Zhiyong; Tada, Shigeru

    When neutrally buoyant poly alpha olefin particles in corn oil were exposed to a gradient ac electric field generated by a spatially periodic electrode array, these particles experienced the negative dielectrophoresis and instability in all the suspensions of concentration range from 0.01% to 5% (v/v). One critical particle concentration was experimentally determined as 1% (v/v) below which the particles in corn oil were segregated to form island-like structures in the lower electric field regions; and above which, particles only formed straight stripes. The island-like structure was suspended in the lowest electric field area. Specially designed experiments with a suspension of 1.126% (v/v) confirmed that there exists particle instability. Anisotropic properties of electric interactions are responsible for particle instability in all the suspensions of different concentrations and island-like structures were formed only in the dilute suspensions in which the particle instability has enough space to be developed.

  17. Formation of electric dipoles in pea stem tissue due to an electric field

    NASA Astrophysics Data System (ADS)

    Ahmadi, Fatemeh; Farahani, Elham

    2016-07-01

    For examining the effect of an electrical field (DC) on pea seed, we exposed the pea seeds to electric fields with intensities 1, 4 and 7 kV/cm for 30, 230, 430 and 630 seconds. The tests were repeated three times, and each iteration had 5 seeds. Then, the seeds were moved to packaged plates. Finally, microscopic observation of the pea stem tissue showed that the application of a DC electrical field caused a deformation in the pea stem tissue. The results led us to examine the deformation of the tissue theoretically and to address that deformation as an electrostatic problem. In this regard, we modeled the pea stem based on the formation of electric dipoles. Then, theoretically, we calculated the force acting on each xylem section by coding, and the results were consistent with the experimental data.

  18. OBLIQUELY ROTATING PULSARS: SCREENING OF THE INDUCTIVE ELECTRIC FIELD

    SciTech Connect

    Melrose, D. B.; Yuen Rai

    2012-02-01

    Pulsar electrodynamics has been built up by taking ingredients from two models, the vacuum-dipole model, which ignores the magnetosphere but includes the inductive electric field due to the obliquely rotating magnetic dipole, and the corotating-magnetosphere model, which neglects the vacuum inductive electric field and assumes a corotating magnetosphere. We argue that the inductive field can be neglected only if it is screened by a current, J{sub sc}, which we calculate for a rigidly rotating magnetosphere. Screening of the parallel component of the inductive field can be effective, but the perpendicular component cannot be screened in a pulsar magnetosphere. The incompletely screened inductive electric field has not been included in any model for a pulsar magnetosphere, and taking it into account has important implications. One effect is that it implies that the magnetosphere cannot be corotating, and we suggest that drift relative to corotation offers a natural explanation for the drifting of subpulses. A second effect is that this screening of the parallel inductive electric field must break down in the outer magnetosphere, and this offers a natural explanation for the acceleration of the electrons that produce pulsed gamma-ray emission.

  19. Electric currents and voltage drops along auroral field lines

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1983-01-01

    An assessment is presented of the current state of knowledge concerning Birkeland currents and the parallel electric field, with discussions focusing on the Birkeland primary region 1 sheets, the region 2 sheets which parallel them and appear to close in the partial ring current, the cusp currents (which may be correlated with the interplanetary B(y) component), and the Harang filament. The energy required by the parallel electric field and the associated particle acceleration processes appears to be derived from the Birkeland currents, for which evidence is adduced from particles, inverted V spectra, rising ion beams and expanded loss cones. Conics may on the other hand signify acceleration by electrostatic ion cyclotron waves associated with beams accelerated by the parallel electric field.

  20. Modeling Electric Fields of Peripheral Nerve Block Needles.

    NASA Astrophysics Data System (ADS)

    Davis, James Ch.; Anderson, Norman E.; Meisel, Mark W.; Ramirez, Jason G.; Kayser Enneking, F.

    2006-03-01

    Peripheral nerve blocks present an alternative to general anesthesia in certain surgical procedures and a means of acute pain relief through continuous blockades. They have been shown to decrease the incidence of postoperative nausea and vomiting, reduce oral narcotic side effects, and improve sleep quality. Injecting needles, which carry small stimulating currents, are often used to aid in locating the target nerve bundle. With this technique, muscle responses indicate needle proximity to the corresponding nerve bundle. Failure rates in first injection attempts prompted our study of electric field distributions. Finite difference methods were used to solve for the electric fields generated by two widely used needles. Geometric differences in the needles effect variations in their electric field and current distributions. Further investigations may suggest needle modifications that result in a reduction of initial probing failures.

  1. Modeling Electric Fields of Peripheral Nerve Block Needles.

    NASA Astrophysics Data System (ADS)

    Davis, James Ch.; Ramirez, Jason G.

    2005-11-01

    Peripheral nerve blocks present an alternative to general anesthesia in certain surgical procedures and a means of acute pain relief through continuous blockades. They have been shown to decrease the incidence of postoperative nausea and vomiting, reduce oral narcotic side effects, and improve sleep quality. Injecting needles, which carry small stimulating currents, are often used to aid in locating the target nerve bundle. With this technique, muscle responses indicate needle proximity to the corresponding nerve bundle. Failure rates in first injection attempts prompted our study of electric field distributions. Finite difference methods were used to solve for the electric fields generated by two widely used needles. Differences in geometry between needles are seen to effect changes in electric field and current distributions. Further investigations may suggest needle modifications that result in a reduction of initial probing failures.

  2. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    SciTech Connect

    Igor D. Kaganovich

    2002-01-18

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected.

  3. The electric field alignment of ice particles in thunderstorms

    NASA Technical Reports Server (NTRS)

    Weinheimer, Andrew J.; Few, Arthur A.

    1987-01-01

    Electrical and aerodynamic torques on atmospheric ice particles are calculaed in order to assess the degree of alignment of these particles with the electric fields in thunderstorms. In such clouds fields of many tens of kilovolts per meter are commonly measured, and values of 100 to 200 kV/m are not rare. For E = 100 kV/m the calculations indicate that electric field alignment occurs for crystals with major dimensions up to maximum values in the range from 200 microns to 1 mm, depending upon crystal type. Columns are aligned more easily than platelike crystals, except for dendrites which, by virtue of their smaller assumed density, have smaller fall velocities thereby experiencing weaker aerodynamic torques. Thus a substantial degree of alignment is expected for E = 100 kV/m. For E = 10 kV/m only much smaller crystals will be aligned, probably only ones with major dimensions of less than 50 microns or so.

  4. Conductivity and electric field variations with altitude in the stratosphere

    NASA Technical Reports Server (NTRS)

    Holzworth, Robert H.

    1991-01-01

    Data regarding electric field, derived current density, and conductivity are presented for two balloons from the Electrodynamics of the Middle Atmosphere experiment which underwent the longest period of daily altitude variation. The magnetic L values range from 4.3 to 9.5 for the 18 days of Southern Hemisphere statistics, and the average conductivity and vertical electric fields are given. Simultaneous measurements of the average conductivity scale height and the vertical electric-field scale height indicate that vertical current density does not vary with altitude in the 10-28-km range. The measured conductivity varies significantly at a given altitude on a particular day, and some conductivity data sets are similar to other measurements between 10 and 30 km. Comparisons of the measured data to predictions from models of stratospheric conductivity demonstrate significant discrepancies.

  5. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1993-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  6. Quantum spin Hall effect induced by electric field in silicene

    NASA Astrophysics Data System (ADS)

    An, Xing-Tao; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2013-01-01

    We investigate the transport properties in a zigzag silicene nanoribbon in the presence of an external electric field. The staggered sublattice potential and two kinds of Rashba spin-orbit couplings can be induced by the external electric field due to the buckled structure of the silicene. A bulk gap is opened by the staggered potential and gapless edge states appear in the gap by tuning the two kinds of Rashba spin-orbit couplings properly. Furthermore, the gapless edge states are spin-filtered and are insensitive to the non-magnetic disorder. These results prove that the quantum spin Hall effect can be induced by an external electric field in silicene, which may have certain practical significance in applications for future spintronics device.

  7. Method of using an electric field controlled emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1993-11-16

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figures.

  8. Magnetic and electric fields induce directional responses in Steinernema carpocapsae.

    PubMed

    Ilan, Teva; Kim-Shapiro, Daniel B; Bock, Clive H; Shapiro-Ilan, David I

    2013-09-01

    Entomopathogenic nematode species respond directionally to various cues including electrical stimuli. For example, in prior research Steinernema carpocapsae was shown to be attracted to an electrical current that was applied to an agar dish. Thus, we hypothesised that these nematodes may use electromagnetic reception to assist in navigating through the soil and finding a host. In this study we discovered that S. carpocapsae also responds to electrical fields (without current) and to magnetic fields; to our knowledge this is the first report of nematode directional movement in response to a magnetic field. Our research expands on the range of known stimuli that entomopathogenic nematodes respond to. The findings may have implications for foraging behavior.

  9. Dielectronic recombination as a function of electric field strength

    NASA Technical Reports Server (NTRS)

    Reisenfeld, Daniel B.

    1992-01-01

    Dielectronic recombination (DR) is the dominant recombination mechanism at coronal temperatures and densities. We present a procedure for calculating DR rate coefficients as a function of electric field strength and apply this method to carbon ions. We focus on the competing effects of enhancement by plasma microfields and rate decrease through collisional excitation and ionization. We find that, in the case of C(3+), a significant rate enhancement results, leading to a reinterpretation of C IV emission-line intensities in the sun and late-type stars. We further consider how macroscopic electric fields, in particular motional electric fields, can affect DR rate coefficients, demonstrating dramatic rate increases for a number of the carbon ions.

  10. Early MITHRAS results - The electric field response to substorms

    NASA Astrophysics Data System (ADS)

    de La Beaujardiere, O.; Holt, J.; Nielsen, E.

    1983-12-01

    The MITHRAS data base offers a unique opportunity to observe simultaneously the auroral-zone ion convection pattern with three radars, widely separated in longitude. It is attempted to separate local-time versus universal-time effects in a study of the electric field signature associated with substorms. Preliminary results indicate that this signature is similar at a given local time, regardless of the longitude of the station. In the dawn and dusk sectors the electric field is intensified, whereas around noon and midnight the electric field appears to reverse during a substorm. The potential drop across the polar cap can be estimated from the potential across the auroral oval. The radar data agree well with the relationship found by Reiff and co-workers between the solar wind energy parameter epsilon and the cross-tail potential.

  11. Simulations of particle structuring driven by electric fields

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Vlahovska, Petia; Miksis, Michael

    2015-11-01

    Recent experiments (Ouriemi and Vlahovska, 2014) show intriguing surface patterns when a uniform electric field is applied to a droplet covered with colloidal particles. Depending on the particle properties and the electric field intensity, particles organize into an equatorial belt, pole-to-pole chains, or dynamic vortices. Here we present 3D simulations of the collective particle dynamics, which account for electrohydrodynamic flow and dielectrophoresis of particles. In stronger electric fields, particles are expected to undergo Quincke rotation and impose disturbance to the ambient flow. Transition from ribbon-shaped belt to rotating clusters is observed in the presence of the rotation-induced hydrodynamical interactions. Our results provide insight into the various particle assembles discovered in the experiments.

  12. Electric field-induced concentration gradients in planar supported bilayers.

    PubMed Central

    Groves, J T; Boxer, S G

    1995-01-01

    A simple method of generating electric field-induced concentration gradients in planar supported bilayers has been developed. Gradients of charged, fluorescently labeled probes were visualized by epifluorescence microscopy and could be observed at field strengths as low as 1 V/cm. Steady-state concentration gradients can be described by a simple competition between random diffusion and electric field-induced drift. A model based on this principle has been used to determine the diffusion coefficient of the fluorescent probes. This technique achieves a degree of electrical manipulation of supported bilayers that offers a variety of possibilities for the development of new molecular architectures and the study of biological membranes. Images FIGURE 2 FIGURE 4 PMID:8580340

  13. Magnetic and electric fields induce directional responses in Steinernema carpocapsae.

    PubMed

    Ilan, Teva; Kim-Shapiro, Daniel B; Bock, Clive H; Shapiro-Ilan, David I

    2013-09-01

    Entomopathogenic nematode species respond directionally to various cues including electrical stimuli. For example, in prior research Steinernema carpocapsae was shown to be attracted to an electrical current that was applied to an agar dish. Thus, we hypothesised that these nematodes may use electromagnetic reception to assist in navigating through the soil and finding a host. In this study we discovered that S. carpocapsae also responds to electrical fields (without current) and to magnetic fields; to our knowledge this is the first report of nematode directional movement in response to a magnetic field. Our research expands on the range of known stimuli that entomopathogenic nematodes respond to. The findings may have implications for foraging behavior. PMID:23792299

  14. Fourier analysis of polar cap electric field and current distributions

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1984-01-01

    A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.

  15. Advanced materials and device technology for photonic electric field sensors

    NASA Astrophysics Data System (ADS)

    Toney, James E.; Stenger, Vincent E.; Kingsley, Stuart A.; Pollick, Andrea; Sriram, Sri; Taylor, Edward

    2012-10-01

    Photonic methods for electric field sensing have been demonstrated across the electromagnetic spectrum from near-DC to millimeter waves, and at field strengths from microvolts-per-meter to megavolts-per-meter. The advantages of the photonic approach include a high degree of electrical isolation, wide bandwidth, minimum perturbation of the incident field, and the ability to operate in harsh environments. Aerospace applications of this technology span a wide range of frequencies and field strengths. They include, at the high-frequency/high-field end, measurement of high-power electromagnetic pulses, and at the low-frequency/low-field end, in-flight monitoring of electrophysiological signals. The demands of these applications continue to spur the development of novel materials and device structures to achieve increased sensitivity, wider bandwidth, and greater high-field measurement capability. This paper will discuss several new directions in photonic electric field sensing technology for defense applications. The first is the use of crystal ion slicing to prepare high-quality, single-crystal electro-optic thin films on low-dielectricconstant, RF-friendly substrates. The second is the use of two-dimensional photonic crystal structures to enhance the electro-optic response through slow-light propagation effects. The third is the use of ferroelectric relaxor materials with extremely high electro-optic coefficients.

  16. Control of the Electric Field Profile in the Hall Thruster

    SciTech Connect

    A. Fruchtman; N. J. Fisch; Y. Raitses

    2000-10-05

    Control of the electric field profile in the Hall Thruster through the positioning of an additional electrode along the channel is shown theoretically to enhance the efficiency. The reduction of the potential drop near the anode by use of the additional electrode increases the plasma density there, through the increase of the electron and ion transit times, causing the ionization in the vicinity of the anode to increase. The resulting separation of the ionization and acceleration regions increases the propellant and energy utilizations. An abrupt sonic transition is forced to occur at the axial location of the additional electrode, accompanied by the generation of a large (theoretically infinite) electric field. This ability to generate a large electric field at a specific location along the channel, in addition to the ability to specify the electric potential there, allows one further control of the electric field profile in the thruster. In particular, when the electron temperature is high, a large abrupt voltage drop is induced at the vicinity of the additional electrode, a voltage drop that can comprise a significant part of the applied voltage.

  17. Electric Field Effect on Bubble Detachment in Variable Gravity Environment

    NASA Technical Reports Server (NTRS)

    Iacona, Estelle; Herman, Cila; Chang, Shinan

    2003-01-01

    The subject of the present study, the process of bubble detachment from an orifice in a plane surface, shows some resemblance to bubble departure in boiling. Because of the high heat transfer coefficients associated with phase change processes, boiling is utilized in many industrial operations and is an attractive solution to cooling problems in aerospace engineering. In terrestrial conditions, buoyancy is responsible for bubble removal from the surface. In space, the gravity level being orders of magnitude smaller than on earth, bubbles formed during boiling remain attached at the surface. As a result, the amount of heat removed from the heated surface can decrease considerably. The use of electric fields is proposed to control bubble behavior and help bubble removal from the surface on which they form. The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Bubble cycle life were visualized in terrestrial conditions and for several reduced gravity levels. Bubble volume, dimensions and contact angle at detachment were measured and analyzed for different parameters as gravity level and electric field magnitude. Situations were considered with uniform or non-uni form electric field. Results show that these parameters significantly affect bubble behavior, shape, volume and dimensions.

  18. Nanoelectrospray Emitter Arrays Providing Interemitter Electric Field Uniformity

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Marginean, Ioan; Tang, Keqi; Smith, Richard D.

    2008-07-15

    Arrays of electrospray ionization (ESI) emitters have been reported previously as a means of achieving the enhanced ionization efficiencies. A key challenge when working with multiple, closely spaced ESI emitters is overcoming the deleterious effects caused by electrical interference among neighboring emitters. Individual emitters experience different electric fields depending on their relative position in the array, such that it becomes difficult to operate all of the emitters optimally for a given applied potential. In this work, we have developed multi-nanoESI emitters arranged with a circular pattern, which enable the constituent emitters to experience a uniform electric field. The performance of the circular emitter array was compared to a single emitter and to a previously developed linear emitter array, which verified that improved electric field uniformity was achieved with the circular arrangement. The circular arrays were also interfaced with a mass spectrometer via a matching multi-capillary inlet, and the results were compared with those obtained using a single emitter. By minimizing inter-emitter electric field inhomogeneities, much larger arrays having closer emitter spacing should be feasible.

  19. Role of the electric double layer in the ice nucleation of water droplets under an electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Xiong; Li, Xin-Hao; Chen, Min

    2016-09-01

    Figuring out the mechanism of ice nucleation on charged aerosols or in thunderstorms is of fundamental importance in atmospheric science. However, findings on whether the electric field promotes or suppresses heterogeneous ice nucleation are conflicting. In this work, we design an apparatus and test the influence of the electric field on ice nucleation by freezing a series of deionized water droplets resting on solid surfaces with an electric field perpendicular to the substrates. Results show that ice nucleation is obviously promoted under the electric field and is independent of the field direction. Theoretic analyses show that the promotion is due to the reduction of Gibbs free energy which can be partially rationalized by the electric field sustained in the electric double layer at the solid-water interface, with strength about two orders higher than that of the external electric field. Moreover, water-droplet deformation under the electric field is not expected to be the cause of the ice-nucleation promotion.

  20. Sensitivities of germinating spores and carvacrol-adapted vegetative cells and spores of Bacillus cereus to nisin and pulsed-electric-field treatment.

    PubMed

    Pol, I E; van Arendonk, W G; Mastwijk, H C; Krommer, J; Smid, E J; Moezelaar, R

    2001-04-01

    Treatment of Bacillus cereus spores with nisin and/or pulsed-electric-field (PEF) treatment did not lead to direct inactivation of the spores or increased heat sensitivity as a result of sublethal damage. In contrast, germinating spores were found to be sensitive to PEF treatment. Nisin treatment was more efficient than PEF treatment for inactivating germinating spores. PEF resistance was lost after 50 min of germination, and not all germinated spores could be inactivated. Nisin, however, was able to inactivate the germinating spores to the same extent as heat treatment. Resistance to nisin was lost immediately when the germination process started. A decrease in the membrane fluidity of vegetative cells caused by incubation in the presence of carvacrol resulted in a dramatic increase in the sensitivity to nisin. On the other hand, inactivation by PEF treatment or by a combination of nisin and PEF treatments did not change after adaptation to carvacrol. Spores grown in the presence of carvacrol were not susceptible to nisin and/or PEF treatment in any way. PMID:11282623

  1. High-latitude dayside electric field and particle measurements

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Johnstone, A. D.

    1973-01-01

    Two rockets carrying electric field and low energy particle instrumentation were launched near noon at 80 deg magnetic latitude. One flight encountered polar cap conditions only while the other traversed part of the polar cusp. Although weak particle precipitation was measured on both flights, bursts of intense magnetosheath-type electron fluxes were detected on the latter. Strong electric fields such as would result from anti-sunward convection were observed during both flights. The measurements are compared with results obtained by other types of space craft and interpreted in the light of those data.

  2. Lipid Bilayer Vesicle Dynamics in AC Electric Fields

    NASA Astrophysics Data System (ADS)

    McConnell, Lane; Vlahovska, Petia; Miksis, Michael

    2014-11-01

    Vesicles are closed, fluid-filled lipid bilayers which are mechanically similar to biological cells and which undergo shape transitions in the presence of electric fields. Here we model the vesicle membrane as an infinitely thin, capacitive, area-incompressible interface with the surrounding fluids acting as charge-advecting leaky dielectrics. We then implement the boundary integral method to numerically investigate the dynamics of a vesicle in various AC electric field profiles. Our numerical results are then compared with recent small deformation theory and experimental data. We also note our observation of a new theoretical vesicle behavior that has yet to be observed experimentally.

  3. Dynamic electrophoresis of charged colloids in an oscillating electric field.

    PubMed

    Shih, Chunyu; Yamamoto, Ryoichi

    2014-06-01

    The dynamics of charged colloids in an electrolyte solution is studied using direct numerical simulations via the smoothed profile method. We calculated the complex electrophoretic mobility μ(ω) of the charged colloids under an oscillating electric field of frequency ω. We show the existence of three dynamically distinct regimes, determined by the momentum diffusion and ionic diffusion time scales. The present results agree well with approximate theories based on the cell model in dilute suspensions; however, systematic deviations between the simulation results and theoretical predictions are observed as the volume fraction of colloids is increased, similar to the case of constant electric fields.

  4. Drifts of auroral structures and magnetospheric electric fields

    SciTech Connect

    Nakamura, Rumi; Oguti, Takasi )

    1987-10-01

    Drifts of pulsating auroral patches and discrete auroral arc fragments are analyzed on the basis of all-sky TV observations of auroras. The drifts of auroral structures in this study correspond on a gross scale with other measurements of magnetospheric convection. The result strongly suggests that not only auroral patches but also arc fragments, when detached from the main body of the discrete aurora, drift owing to the magnetospheric electric fields. The measurement of the drifts of auroral structures could possibly provide us with a convenient and accurate method to estimate the magnetospheric electric fields.

  5. Visualizing Simulated Electrical Fields from Electroencephalography and Transcranial Electric Brain Stimulation: A Comparative Evaluation

    PubMed Central

    Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik

    2014-01-01

    Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532

  6. Measurements of middle-atmosphere electric fields and associated electrical conductivities

    NASA Technical Reports Server (NTRS)

    Hale, L. C.; Croskey, C. L.; Mitchell, J. D.

    1981-01-01

    A simple antenna for measuring the vertical electric field in the 'middle atmosphere' has been flown on a number of rocket-launched parachute-borne payloads. The data from the first nine such flights, launched under a variety of geophysical conditions, are presented, along with electrical conductivities measured simultaneously. The data include indications of layered peaks of several volts per meter in the mesospheric field at high and low latitudes in situations of relatively low conductivity. During an auroral 'REP' event the electric field reversed direction in the lower stratosphere, accompanied by a substantial enhancement in conductivity. The data generally do not confirm speculations based only on the extension of the thunderstorm circuit from below or the mapping of ionospheric and magnetospheric fields from above, but seem to require, in addition, internal generation processes in the middle atmosphere.

  7. Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Peng; Kong, Gao-Pan; Zhang, Xing; He, Guo-Wei

    2013-09-01

    Using molecular dynamics simulations, we demonstrate pumping of water through a carbon nanotube by applying the combination of a rotating electric field and a rotating magnetic field. The driving force is a Lorentz force generated from the motion of charges in the magnetic field, and the motion is caused by the rotation of the electric field. We find that there exits a linear relationship between the average pumping velocity v and magnetic field strength B, which can be used to control the flux of the continuous unidirectional water flow. This approach is expected to be used in liquid circulation without a pressure gradient.

  8. Influence of an Electric Field on the Propagation of a Photon in a Magnetic field

    NASA Astrophysics Data System (ADS)

    Katkov, V. M.

    2016-07-01

    In this work, a constant and uniform magnetic field is less than the Schwinger critical value. In turn, an additional constant and uniform electric field is taken much smaller than the magnetic field value. The propagation of a photon in this electromagnetic field is investigating. In particular, in the presence of a weak electric field, the root divergence is absent in the photon effective mass near the thresholds of pair creation. The effective mass of a real photon with a preset polarization is considered in the quantum energy region as well as in the quasiclassical one.

  9. Improved approximations for fermion pair production in inhomogeneous electric fields

    SciTech Connect

    Kim, Sang Pyo; Page, Don N.

    2007-02-15

    Reformulating the instantons in a complex plane for tunneling or transmitting states, we calculate the pair-production rate of charged fermions in a spatially localized electric field, illustrated by the Sauter electric field E{sub 0}sech{sup 2}(z/L), and in a temporally localized electric field such as E{sub 0}sech{sup 2}(t/T). The integration of the quadratic part of WKB instanton actions over the frequency and transverse momentum leads to the pair-production rate obtained by the worldline-instanton method, including the prefactor, of Phys. Rev. D 72, 105004 (2005) and 73, 065028 (2006). It is further shown that the WKB instanton action plus the next-to-leading-order contribution in spinor QED equals the WKB instanton action in scalar QED, thus justifying why the WKB instanton in scalar QED can work for the pair production of fermions. Finally we obtain the pair-production rate in a spatially localized electric field together with a constant magnetic field in the same direction.

  10. Electric fields in the solar atmosphere - A review

    NASA Technical Reports Server (NTRS)

    Foukal, P.; Hinata, S.

    1991-01-01

    A review is presented of remote sensing techniques which measure the electric field component transverse to the line of sight and achieve a sensitivity range of 5-10 V/cm. Three models are shown to predict quasistatic, macroscopic values of E(parallel), the electric field component parallel to the magnetic vector, beyond the sensitivity range considered. These processes are: the discharge model of flares; the models of return currents related to flare particle beams; and the models of neutral sheets related to two-ribbon flares and postflare loops. Time dependent electric fields related to MHD and plasma waves, and to plasma disturbance, may allow the detection of both E components (parallel and perpendicular). The uncertainty relating to the emission measures, time scales, volumes, and plasma conditions of these flares and electrified plasma volumes is emphasized. It is pointed out, however, that important information can be obtained by observing electric fields at existing sensitivity levels. By measuring these E-fields, the understanding of flares and related dynamic events can be improved.

  11. Cardiovascular response of rats exposed to 60-Hz electric fields

    SciTech Connect

    Hilton, D.I.; Phillips, R.D.

    1980-01-01

    Recently, it has been reported that exposure to high-strength electric fields can influence electrocardiogram (ECG) patterns, heart rates, and blood pressures in various species of animals. Our studies were designed to evaluate these reported effects and to help clarify some of the disagreement present in the literature. Various cardiovascular variables were measured in Sprague-Dawley rats exposed or sham-exposed to 60-Hz electric fields at 80 to 100 kV/m for periods up to four months. No significant differences in heart rates, ECG patterns, blood pressures, or vascular reactivity were observed between exposed and sham-exposed rats after 8 hours, 40 hours, 1 month, or 4 months of exposure. Our studies cannot be directly compared to the work of other investigators because of differences in animal species and electric-field characteristics. However, our failure to detect any cardiovascular changes may have been the result of (1) eliminating secondary field effects such as shocks, audible noise, corona, and ozone; (2) minimizing steady-state microcurrents between the mouth of the animal and watering devices; and (3) minimizing electric-field-induced vibration of the electrodes and animal cages.

  12. Electric Field Controlled Self-Assembly of Hierarchically Ordered Membranes.

    PubMed

    Velichko, Yuri S; Mantei, Jason R; Bitton, Ronit; Carvajal, Daniel; Shull, Kenneth R; Stupp, Samuel I

    2012-01-25

    Self-assembly in the presence of external forces is an adaptive, directed organization of molecular components under nonequilibrium conditions. While forces may be generated as a result of spontaneous interactions among components of a system, intervention with external forces can significantly alter the final outcome of self-assembly. Superimposing these intrinsic and extrinsic forces provides greater degrees of freedom to control the structure and function of self-assembling materials. In this work we investigate the role of electric fields during the dynamic self-assembly of a negatively charged polyelectrolyte and a positively charged peptide amphiphile in water leading to the formation of an ordered membrane. In the absence of electric fields, contact between the two solutions of oppositely charged molecules triggers the growth of closed membranes with vertically oriented fibrils that encapsulate the polyelectrolyte solution. This process of self-assembly is intrinsically driven by excess osmotic pressure of counterions, and the electric field is found to modify the kinetics of membrane formation, and also its morphology and properties. Depending on the strength and orientation of the field we observe a significant increase or decrease of up to nearly 100% in membrane thickness, as well as the controlled rotation of nanofiber growth direction by 90 degrees, resulting in a significant increase in mechanical stiffness. These results suggest the possibility of using electric fields to control structure in self-assembly processes involving diffusion of oppositely charged molecules. PMID:23166533

  13. Vesicle deformation and poration under strong dc electric fields.

    PubMed

    Sadik, Mohamed M; Li, Jianbo; Shan, Jerry W; Shreiber, David I; Lin, Hao

    2011-06-01

    When subject to applied electric pulses, a lipid membrane exhibits complex responses including electrodeformation and electroporation. In this work, the electrodeformation of giant unilamellar vesicles under strong dc electric fields was investigated. Specifically, the degree of deformation was quantified as a function of the applied field strength and the electrical conductivity ratio of the fluids inside and outside of the vesicles. The vesicles were made from L-α-phosphatidylcholine with diameters ranging from 14 to 30 μm. Experiments were performed with field strengths ranging from 0.9 to 2.0 kV/cm, and intra-to-extra-vesicular conductivity ratios varying between 1.92 and 53.0. With these parametric configurations, the vesicles exhibited prolate elongations along the direction of the electric field. The degree of deformation was, in general, significant. In some cases, the aspect ratio of a deformed vesicle exceeded 10, representing a strong-deformation regime previously not explored. The aspect ratio scaled quadratically with the field strength, and increased asymptotically to a maximum value at high conductivity ratios. Appreciable area and volumetric changes were observed both during and after pulsation, indicating the concurrence of electroporation. A theoretical model is developed to predict these large deformations in the strongly permeabilized limit, and the results are compared with the experimental data. Both agreements and discrepancies are found, and the model limitations and possible extensions are discussed.

  14. Imaging of electric and magnetic fields near plasmonic nanowires

    NASA Astrophysics Data System (ADS)

    Kabakova, I. V.; de Hoogh, A.; van der Wel, R. E. C.; Wulf, M.; Le Feber, B.; Kuipers, L.

    2016-03-01

    Near-field imaging is a powerful tool to investigate the complex structure of light at the nanoscale. Recent advances in near-field imaging have indicated the possibility for the complete reconstruction of both electric and magnetic components of the evanescent field. Here we study the electro-magnetic field structure of surface plasmon polariton waves propagating along subwavelength gold nanowires by performing phase- and polarization-resolved near-field microscopy in collection mode. By applying the optical reciprocity theorem, we describe the signal collected by the probe as an overlap integral of the nanowire’s evanescent field and the probe’s response function. As a result, we find that the probe’s sensitivity to the magnetic field is approximately equal to its sensitivity to the electric field. Through rigorous modeling of the nanowire mode as well as the aperture probe response function, we obtain a good agreement between experimentally measured signals and a numerical model. Our findings provide a better understanding of aperture-based near-field imaging of the nanoscopic plasmonic and photonic structures and are helpful for the interpretation of future near-field experiments.

  15. Imaging of electric and magnetic fields near plasmonic nanowires

    PubMed Central

    Kabakova, I. V.; de Hoogh, A.; van der Wel, R. E. C.; Wulf , M.; le Feber, B.; Kuipers, L.

    2016-01-01

    Near-field imaging is a powerful tool to investigate the complex structure of light at the nanoscale. Recent advances in near-field imaging have indicated the possibility for the complete reconstruction of both electric and magnetic components of the evanescent field. Here we study the electro-magnetic field structure of surface plasmon polariton waves propagating along subwavelength gold nanowires by performing phase- and polarization-resolved near-field microscopy in collection mode. By applying the optical reciprocity theorem, we describe the signal collected by the probe as an overlap integral of the nanowire’s evanescent field and the probe’s response function. As a result, we find that the probe’s sensitivity to the magnetic field is approximately equal to its sensitivity to the electric field. Through rigorous modeling of the nanowire mode as well as the aperture probe response function, we obtain a good agreement between experimentally measured signals and a numerical model. Our findings provide a better understanding of aperture-based near-field imaging of the nanoscopic plasmonic and photonic structures and are helpful for the interpretation of future near-field experiments. PMID:26947124

  16. Probing electric fields within organic transistors by nonlinear optics

    NASA Astrophysics Data System (ADS)

    Miranda, Paulo B.; Motti, Silvia G.; Gomes, Douglas J. C.

    2015-03-01

    Organic field-effect transistors (OFETs) are important building blocks in many organic devices, but further improvements in their performance will require a detailed knowledge of their operation mechanism. Thus mapping the electric fields in OFETs, both in the active organic layer and inside the gate dielectric, will allow a direct comparison with theoretical OFET models and guide advances in device engineering. The nonlinear optical processes of sum-frequency generation (SFG) and second-harmonic generation (SHG) may be used to probe electric fields in OFETs. With a proper choice of pump wavelength, SHG can selectively probe the field component along the OFET channel, inside the organic semiconductor. In contrast, SFG may probe the field within any organic material by selecting a specific molecular vibration and monitoring the field-enhanced SFG signal. Here we investigate OFETs fabricated with a polythiophene derivative (P3HT) on silicon substrates and with the insulating polymer PMMA for the dielectric layer. Both the strength and sign of the electric field in PMMA can be determined, yielding a direct probe of charge accumulation along the OFET channel. An extension of this technique to map the spatial distribution of accumulated charge along the channel will also be discussed. Work funded by FAPESP and CNPq (Brazil).

  17. Non-stationary corona around multi-point system in atmospheric electric field: I. Onset electric field and discharge current

    NASA Astrophysics Data System (ADS)

    Bazelyan, E. M.; Raizer, Yu. P.; Aleksandrov, N. L.

    2014-03-01

    The properties of a non-stationary glow corona maintained near the tips of a multi-point ground system in a time-varying thundercloud electric field have been studied numerically and analytically. Computer and analytical models were developed to simulate the corona discharge initiated from a system of identical vertical conductive electrodes distributed uniformly over a grounded plane surface. The simulation was based on a solution of the electrostatic equation for electric field and continuity equations for light and aerosol ions. The development of individual corona space charge layers from different points and the formation of a united plane layer were considered. The effect of system dimensions and that of the distance between electrodes on the external electric field corresponding to corona onset near the rod tips was investigated. The evolution in time of the corona current was calculated for systems with various numbers of coronating rods in time-varying atmospheric electric field. In the limit of infinite number of coronating rods, reasonable agreement was obtained between numerical calculations and analytical theory considering the effect of surrounding rods on the corona discharge from a given rod in a simplified integral way. Conditions were determined under which the corona properties of a multi-point system are similar to the properties of a plane surface emitting ions into the atmosphere. In this case, the corona current density is governed by the time derivative of the thundercloud electric field and is independent of the ion mobility and of the coronating system dimensions. The total corona space charge injected into the atmosphere per unit area by a given instant is controlled by the thundercloud electric field at this instant and depends on the geometrical parameters of the system only indirectly, through the corona onset atmospheric electric field. This simple model could be used to simulate a corona discharge during thunderstorms at the earth

  18. Mechanical strains and electric fields applied to topologically imprinted elastomers

    NASA Astrophysics Data System (ADS)

    Burridge, D. J.; Mao, Y.; Warner, M.

    2006-08-01

    We analyze and predict the behavior of a chirally imprinted elastomer under a mechanical strain and an electric field, applied along the helical axis. As the strain and/or field increases, the system is deformed from a conical or transverse imprinted state towards an ultimately nematic one. At a critical strain and/or field there is a first-order transition to a low imprinting efficiency state. This transition is accompanied by a discontinuous global rotation of the director toward the axis of the imprinted helix, measured by the cone angle, θ . We show that the threshold electric field required for switching this transition can be conveniently low, provided an appropriate prestrain is imposed. We suggest that these properties may give rise to a “chiral pump.”

  19. Imaging of magnetic and electric fields by electron microscopy.

    PubMed

    Zweck, Josef

    2016-10-12

    Nanostructured materials become more and more a part of our daily life, partly as self-assembled particles or artificially patterned. These nanostructures often possess intrinsic magnetic and/or electric fields which determine (at least partially) their physical properties. Therefore it is important to be able to measure these fields reliably on a nanometre scale. A rather common instrument for the investigation of these fields is the transmission electron microscope as it offers high spatial resolution. The use of an electron microscope to image electric and magnetic fields on a micron down to sub-nanometre scale is treated in detail for transmission electron microscopes (TEM) and scanning transmission electron microscopes (STEM). The formation of contrast is described for the most common imaging modes, the specific advantages and disadvantages of each technique are discussed and examples are given. In addition, the experimental requirements for the use of the techniques described are listed and explained.

  20. Imaging of magnetic and electric fields by electron microscopy

    NASA Astrophysics Data System (ADS)

    Zweck, Josef

    2016-10-01

    Nanostructured materials become more and more a part of our daily life, partly as self-assembled particles or artificially patterned. These nanostructures often possess intrinsic magnetic and/or electric fields which determine (at least partially) their physical properties. Therefore it is important to be able to measure these fields reliably on a nanometre scale. A rather common instrument for the investigation of these fields is the transmission electron microscope as it offers high spatial resolution. The use of an electron microscope to image electric and magnetic fields on a micron down to sub-nanometre scale is treated in detail for transmission electron microscopes (TEM) and scanning transmission electron microscopes (STEM). The formation of contrast is described for the most common imaging modes, the specific advantages and disadvantages of each technique are discussed and examples are given. In addition, the experimental requirements for the use of the techniques described are listed and explained.

  1. Imaging of magnetic and electric fields by electron microscopy.

    PubMed

    Zweck, Josef

    2016-10-12

    Nanostructured materials become more and more a part of our daily life, partly as self-assembled particles or artificially patterned. These nanostructures often possess intrinsic magnetic and/or electric fields which determine (at least partially) their physical properties. Therefore it is important to be able to measure these fields reliably on a nanometre scale. A rather common instrument for the investigation of these fields is the transmission electron microscope as it offers high spatial resolution. The use of an electron microscope to image electric and magnetic fields on a micron down to sub-nanometre scale is treated in detail for transmission electron microscopes (TEM) and scanning transmission electron microscopes (STEM). The formation of contrast is described for the most common imaging modes, the specific advantages and disadvantages of each technique are discussed and examples are given. In addition, the experimental requirements for the use of the techniques described are listed and explained. PMID:27536873

  2. Electric and magnetic fields and tumor progression. Final report

    SciTech Connect

    Keng, P.C.; Grota, L.J.; Michaelson, S.; Lu, S.T.

    1994-12-01

    This laboratory study has rigorously investigated two previously reported biological effects of 60-Hz electric and magnetic fields. The first effect involves nighttime suppression of melatonin synthesis in the pineal glands of rats exposed to high electric fields. The second concerns the increase in colony forming ability of human colon cancer cells exposed to 1.4-G magnetic fields. Neither effect was detected in the present study. A series of published laboratory studies on rats reported that 60-Hz electric fields at various field levels up to 130 kV/m suppress the nighttime synthesis of melatonin, a hormone produced by the pineal gland. Since melatonin is known to modulate the immune system and may inhibit cancer cell activity, changes in physiological levels of melatonin may have significant health consequences. In the repeat experiments, field exposure did not alter nighttime levels of melatonin or enzyme activities in the pineal gland. A small but statistically significant reduction of about 20% in serum melatonin was seen in exposed animals. Pineal melatonin was also unaffected by the presence of red light as a cofactor with field exposure or by time-shifting the daily field exposure period. Another study reported that 60-Hz magnetic fields can affect the colony forming ability of human cancer cells after exposure in a culture medium. In the repeat experiments, field exposure did not alter the colony forming ability of human Colo 205 cells in two different cell concentrations at plating or in two different incubation conditions. Field exposure also did not affect cell cycling in any of the four cell lines tested.

  3. Magnetic field and electric current structure in the chromosphere

    NASA Technical Reports Server (NTRS)

    Dravins, D.

    1974-01-01

    The three-dimensional vector magnetic field structure in the chromosphere above an active region is deduced by using high-resolution H-alpha filtergrams together with a simultaneous digital magnetogram. An analog model of the field is made with 400 metal wires representing field lines that outline the H-alpha structure. The height extent of the field is determined from vertical field-gradient observations around sunspots, from observed fibril heights, and from an assumption that the sources of the field are largely local. The computed electric currents (typically 10 mA/sq m) are found to flow in patterns not similar to observed features and not parallel to magnetic fields. Force structures correspond to observed solar features; the dynamics to be expected include: downward motion in bipolar areas in the lower chromosphere, an outflow of the outer chromosphere into the corona with radially outward flow above bipolar plage regions, and motion of arch filament systems.

  4. Electric field-induced deformation of polyelectrolyte gels

    SciTech Connect

    Adolf, D.; Hance, B.G.

    1995-08-01

    Water-swollen polyelectrolyte gels deform in an electric field. We observed that the sign and magnitude of the deformation is dependent on the nature of the salt bath in which the gel is immersed and electrocuted. These results are compatible with a deformation mechanism based upon creation of ion density gradients by the field which, in turn, creates osmotic pressure gradients within the gel. A consistent interpretation results only if gel mobility is allowed as well as free ion diffusion and migration.

  5. In Situ Nanoscale Electric Field Control of Magnetism by Nanoionics.

    PubMed

    Zhu, Xiaojian; Zhou, Jiantao; Chen, Lin; Guo, Shanshan; Liu, Gang; Li, Run-Wei; Lu, Wei D

    2016-09-01

    Direct, nonvolatile, and reversible control of nanomagnetism in solid-state ferromagnetic thin films is achieved by controlling the chemical composition of the film through field-driven ion redistribution. The electric field-driven de-intercalation/intercalation of lithium ions can result in ≈100% modulation of the magnetization and drives domain wall motion over ≈100 nm. High-speed and multilevel magnetic information storage is further demonstrated.

  6. In Situ Nanoscale Electric Field Control of Magnetism by Nanoionics.

    PubMed

    Zhu, Xiaojian; Zhou, Jiantao; Chen, Lin; Guo, Shanshan; Liu, Gang; Li, Run-Wei; Lu, Wei D

    2016-09-01

    Direct, nonvolatile, and reversible control of nanomagnetism in solid-state ferromagnetic thin films is achieved by controlling the chemical composition of the film through field-driven ion redistribution. The electric field-driven de-intercalation/intercalation of lithium ions can result in ≈100% modulation of the magnetization and drives domain wall motion over ≈100 nm. High-speed and multilevel magnetic information storage is further demonstrated. PMID:27346164

  7. Electric Field Assisted Assembly of Perpendicular Oriented NanorodSuperlattices

    SciTech Connect

    Ryan, Kevin M.; Mastroianni, Alex; Stancil, Kimani A.; Liu,Haitao; Alivisatos, Paul A.

    2006-04-10

    We observe the assembly of CdS nanorod superlattices by thecombination of a DC electric field and solvent evaporation. In eachelectric field (1 V/um) assisted assembly, CdS nanorods (5 x 30 nm)suspended initially in toluene were observed to align perpendicularly tothe substrate. Azimuthal alignment along the nanorod crystal faces andthe presence of stacking faults indicate that both 2D and 3D assemblieswere formed by a process of controlled super crystal growth.

  8. Dynamics of a charged drop in a quadrupole electric field

    NASA Astrophysics Data System (ADS)

    Das, Sudip; Mayya, Y. S.; Thaokar, Rochish

    2015-07-01

    Quadrupole electric fields are commonly employed for confining charged conducting drops in Paul traps for studying Rayleigh instability characteristics. We investigate the effect of these fields on the deformation and stability characteristics of a charged liquid drop, using the axisymmetric boundary integral method (BIM). Different combinations of the amount of charge and strength of the electric field give rise to different equilibrium shapes. Interestingly, unlike in the case of uniform fields, stable oblate equilibrium drop shapes are sustained in quadrupole fields. In a positive endcap configuration of the quadrupole setup a drop carrying a small negative charge displays a transition from oblate to prolate as the field strength increases. On the other hand, for the case of a highly charged drop, a shift in the Rayleigh critical charge is observed in the presence of a weak quadrupole field. The Rayleigh instability displays imperfect transcritical bifurcation characteristics with respect to imposed prolate and oblate perturbations. Results are of significance in i) interpreting deformation and the Rayleigh stability effects using Paul traps with quadrupole fields, ii) designing more efficient quadrupole-field-based technologies for emulsification of water in oil.

  9. Behavior in Electric Fields of Simple Biological Membranes

    NASA Astrophysics Data System (ADS)

    Honciuc, Maria; Slavnicu, Elena

    The latest studies in biophysics and biochemistry have revealed the major role that liquid crystals (LC) and related phenomena play in biological processes. To account for a number of membrane mechanisms in view of the theoretical model developed by S. J. Singer, studies were carried out on mixtures of fatty acids (arachidic, lauric, butyric) and cholesterol in different weight percentages. Such mixtures may help one understand some mechanisms on which the operation of biological membranes relies. To this end, the way these mixtures behave in an electric field was studied. Electric measurements were conducted from which the average time of electric relaxation (τ) and average electric permittivity (ɛr) were determined. Depending on cholesterol percentage, changes by more than one order of magnitude were found to occur in the electric relaxation time. The ratio between the various fatty acid components did not influence the average time τ in any significant manner. By contrast, the relative electric permittivity ɛr was seen to decrease by at least one order of magnitude with raising the cholesterol percentage. The electric properties of such systems essentially depend on changing the amount of cholesterol in the system.

  10. Field Evaluation of Broadband Electrical Impedance Tomography Measurements

    NASA Astrophysics Data System (ADS)

    Kelter, M.; Huisman, J. A.; Zimmermann, E.; Treichel, A.; Kemna, A.; Vereecken, H.

    2014-12-01

    Laboratory measurements of the complex electrical conductivity in a broad frequency range (i.e. mHz to kHz) using spectral induced polarization (SIP) measurements have shown great promise to characterize important hydrological properties (e.g. hydraulic conductivity) and biogeochemical processes. However, translating these findings to field applications remains challenging, and significant improvements in spectral electrical impedance tomography (EIT) are still required to obtain images of the complex electrical conductivity with sufficient accuracy in the field. The aim of this study is to present recent improvements in the inversion and processing of broadband field EIT measurements, and to evaluate the accuracy and spectral consistency of the obtained images of the real and imaginary part of the electrical conductivity. In a first case study, time-lapse surface EIT measurements were performed during an infiltration experiment to investigate the spectral complex electrical conductivity as a function of water content. State-of-the-art data processing and inversion approaches were used to obtain images of the complex electrical conductivity in a frequency range of 100 mHz to 1 kHz, and integral parameters were obtained using Debye decomposition. Results showed consistent spectral and spatial variation of the phase of the complex electrical conductivity in a broad frequency range, and a complex dependence on water saturation that was reasonably consistent with laboratory EIT measurements. In a second case study, borehole EIT measurements were made in a well-characterized aquifer. These measurements were inverted to obtain broadband images of the complex conductivity after correction for inductive and capacitive coupling using recently developed procedures. The results showed good correspondence with reference laboratory SIP measurements in a broad frequency bandwidth up to 1 kHz only after application of the correction procedures.

  11. Deformation of an elastic capsule in a uniform electric field

    NASA Astrophysics Data System (ADS)

    Karyappa, Rahul B.; Deshmukh, Shivraj. D.; Thaokar, Rochish. M.

    2014-12-01

    The deformation of a thin elastic capsule subjected to a uniform electric field is investigated in the Stokes flow regime. The electrohydrodynamic flow is analyzed using a perfect conductor and a perfect dielectric model for the capsule and the fluid phase, respectively. A theoretical analysis is carried out using an asymptotic expansion in the electric capillary number (Ca) (a ratio of the electric stress to the elastic tension) in the small deformation limit using the finite deformation Hooke's law. The analysis is used to determine the elasticity of polysiloxane capsules suspended in oil, the deformation of which is obtained using videography. The boundary element method is implemented to seek numerical solutions to the hydrodynamic, elastic, and electrostatics equations. The finite deformation Hooke's law, the Mooney-Rivlin, and Skalak's model for elasticity are employed. The effect of electric capillary number, unstressed geometry, and the type of membrane material on the deformation of a capsule is presented in the high Ca number limit using numerical simulation. Capsules synthesized with higher monomer concentration displayed electric stress induced wrinkling process at high electric field strengths. Burst of a capsule is characterized by poration of the polymer membrane, which could be symmetric or asymmetric at the two poles, depending upon the value of the capillary number. The results should be useful in understanding the response of elastic capsules such as red blood cells and polymerized membranes, to an electric field, in applications such as electrodeformation and electroporation. It also provides a theoretical framework for a possible way of determining the elastic parameters of a capsule.

  12. ELF magnetic fields in electric and gasoline-powered vehicles.

    PubMed

    Tell, R A; Sias, G; Smith, J; Sahl, J; Kavet, R

    2013-02-01

    We conducted a pilot study to assess magnetic field levels in electric compared to gasoline-powered vehicles, and established a methodology that would provide valid data for further assessments. The sample consisted of 14 vehicles, all manufactured between January 2000 and April 2009; 6 were gasoline-powered vehicles and 8 were electric vehicles of various types. Of the eight models available, three were represented by a gasoline-powered vehicle and at least one electric vehicle, enabling intra-model comparisons. Vehicles were driven over a 16.3 km test route. Each vehicle was equipped with six EMDEX Lite broadband meters with a 40-1,000 Hz bandwidth programmed to sample every 4 s. Standard statistical testing was based on the fact that the autocorrelation statistic damped quickly with time. For seven electric cars, the geometric mean (GM) of all measurements (N = 18,318) was 0.095 µT with a geometric standard deviation (GSD) of 2.66, compared to 0.051 µT (N = 9,301; GSD = 2.11) for four gasoline-powered cars (P < 0.0001). Using the data from a previous exposure assessment of residential exposure in eight geographic regions in the United States as a basis for comparison (N = 218), the broadband magnetic fields in electric vehicles covered the same range as personal exposure levels recorded in that study. All fields measured in all vehicles were much less than the exposure limits published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute of Electrical and Electronics Engineers (IEEE). Future studies should include larger sample sizes representative of a greater cross-section of electric-type vehicles. PMID:22532300

  13. Endocrinological effects of strong 60-Hz electric fields on rats

    SciTech Connect

    Free, M.J.; Kaune, W.T.; Phillips, R.D.; Cheng, H.C.

    1981-01-01

    Adult male rats were exposed or sham-exposed to 60-Hz electric fields without spark discharges, ozone, or significant levels or other secondary variables. No effects were discharges, ozone, or significant levels of other secondary variables. No effects were observed on body weights or plasma hormone levels after 30 days of exposure at an effective field strength of 68 kV/m. After 120 days of exposure (effective field strength = 64 kV/m), effects were inconsistent, with signficant reductions in body weight and plasma levels of follicle-stimulating hormone and corticosterone occurring in one replicate experiment but not in the other. Plasma testosterone levels were significantly reduced after 120 days of exposure in one experiment, with a similar but not statistically significant reduction in a replicate experiment. Weanling rats, exposed or sham-exposed in electric fields with an effective field strength of 80 kV/m from 20 to 56 days of age, exhibited identical or closely similar growth trends in body and organ weights. Hormone levels in exposed and sham-exposed groups were also similar. However, there was an apparent phase shift between the two groups in the cyclic variations of concentrations of hormones at different stages of development, particularly with respect to follicle-stimulating hormone and corticosterone. We concluded that 60-Hz electric fields may bring about subtle changes in the endocrine system of rats, and that these changes may be related to alterations in episodic rhythms.

  14. C/NOFS Observations of AC Electric Field Fields Associated with Equatorial Spread-F

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Liebrecht, C.

    2009-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set in which to acquire detailed knowledge of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations, primarily gathered within the ELF band (1 Hz to 250 Hz) on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The data will be used to explore the anisotropy/isotropy of the waves, their wavelength and phase velocity, as well as their spectral distributions. When analyzed in conjunction with the driving DC electric fields and detailed plasma number density measurements, the combined data reveal important information concerning the instability mechanisms themselves. We also present high resolution, vector measurements of intense lower hybrid waves that have been detected on numerous occasions by the VEFI burst memory VLF electric field channels.

  15. Electric-Field-Enhanced Jumping-Droplet Condensation

    NASA Astrophysics Data System (ADS)

    Miljkovic, Nenad; Preston, Daniel; Enright, Ryan; Limia, Alexander; Wang, Evelyn

    2013-11-01

    When condensed droplets coalesce on a superhydrophobic surface, the resulting droplet can jump due to the conversion of surface energy into kinetic energy. This frequent out-of-plane droplet jumping has the potential to enhance condensation heat and mass transfer. In this work, we demonstrated that these jumping droplets accumulate positive charge that can be used to further increase condensation heat transfer via electric fields. We studied droplet jumping dynamics on silanized nanostructured copper oxide surfaces. By characterizing the droplet trajectories under various applied external electric fields (0 - 50 V/cm), we show that condensation on superhydrophobic surfaces results in a buildup of negative surface charge (OH-) due to dissociated water ion adsorption on the superhydrophobic coating. Consequently, the opposite charge (H3O +) accumulates on the coalesced jumping droplet. Using this knowledge, we demonstrate electric-field-enhanced jumping droplet condensation whereby an external electric field opposes the droplet vapor flow entrainment towards the condensing surface to increase the droplet removal rate and overall surface heat transfer by 100% when compared to state-of-the-art dropwise condensing surfaces. This work not only shows significant condensation heat transfer enhancement through the passive charging of condensed droplets, but promises a low cost approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification.

  16. Radio-frequency and microwave energies, magnetic and electric fields

    NASA Technical Reports Server (NTRS)

    Michaelson, S. M.

    1975-01-01

    The biological effects of radio frequency, including microwave, radiation are considered. Effects on body temperature, the eye, reproductive systems, internal organs, blood cells, the cardiovascular system, and the central nervous system are included. Generalized effects of electric and magnetic fields are also discussed. Experimentation with animals and clinical studies on humans are cited, and possible mechanisms of the effects observed are suggested.

  17. The spherical probe electric field and wave experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Gustafsson, G.; Aggson, T.; Bostrom, R.; Block, L. P.; Cattell, C.; Decreau, P. M. E.; Egeland, A.; Falthammar, C.-G.; Grard, R. J. L.; Gurnett, D. A.

    1988-01-01

    The experiment is designed to measure the electric field and density fluctuations with sampling rates up to 40,000 samples/sec. The description includes Langmuir sweeps that can be made to determine the electron density and temperature, the study of nonlinear processes that result in acceleration of plasma, and the analysis of large scale phenomena where all four spacecraft are needed.

  18. Nonphysical Results with the Electric-Field Mapping Experiment.

    ERIC Educational Resources Information Center

    Ayars, Eric

    1996-01-01

    Discusses the behavior of the current near the end of the paper in the electric-field mapping experiment and approaches to solving problems associated with this behavior. Presents programs that can be used to model the boundary condition computationally. (JRH)

  19. Pulsed electric field (PEF)research at USDA, ARS, ERRC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article summarizes the effects of pulsed electric fields on the microbiological safety and quality aspects of various liquid food matrices, obtained at USDA, ARS, Eastern Regional Research Center under CRIS Project No. 1935-41420-013-00D, Processing Intervention Technologies for Enhancing the S...

  20. How does an electric field defibrillate cardiac muscle?

    NASA Astrophysics Data System (ADS)

    Pumir, Alain; Krinsky, Valentin I.

    Cardiac fibrillation is caused by an irregular wave propagation. Fibrillation can be eliminated by a strong electric field (5 kV, 20 A, 2 msec). The mechanism of this phenomenon (defibrillation) is not known. The principal difficulty, as shown in experiments and confirmed by classical cable theory, is that the changes in transmembrane potential, e, induced by electric field, decay exponentially with distance from the electrodes. We study wave suppression by an electric field in generic excitable media. In excitable media consisting of separate cells (similar to biological tissues), we have found a suppression of rotating waves and defibrillation induced by strong electric field, contrary to what happens in continuous media. We show that the spatially periodic component of e which arises in cellular media is responsible for defibrillation. We have found that (i) it does not decay with distance; (ii) it can excite quiescent cells and terminate excitation in excited cells; (iii) the coupling between cardiac cells is a crucial parameter affecting the amplitude of the spatially periodic component of e, and the efficiency of defibrillation. New experiments on cardiac muscle are proposed.

  1. Water–methanol separation with carbon nanotubes and electric fields.

    PubMed

    Winarto; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-08-01

    Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water–methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing diameter. In contrast, under an electric field, water molecules strongly prefer to occupy the CNTs over methanol molecules, resulting in a separation effect for water. More interestingly, the separation effect for water does not decrease with increasing CNT diameter. Formation of water structures in CNTs induced by an electric field has an important role in the separation of water from methanol. PMID:26397004

  2. Electric field enhancement in metallic and multilayer dielectric gratings

    SciTech Connect

    Shore, B.W.; Feit, M.D.; Perry, M.D.; Boyd, R.D.; Britten, J.A.; Li, Lifeng

    1995-05-26

    Successful operation of large-scale high-power lasers, such as those in use and planned at LLNL and elsewhere, require optical elements that can withstand extremely high fluences without suffering damage. Of particular concern are gratings used for pulse compression. Laser induced damage to bulk dielectric material originates with coupling of the electric field of the radiation to bound electrons, proceeding through a succession of mechanisms that couple the electron kinetic energy to lattice energy and ultimately to macroscopic structural changes (e.g. fracture, melting, ablation, etc.). The constructive interference that is responsible for the diffractive behavior of a grating or the reflective properties of a multilayer dielectric stack can enhance the electric field above values that would occur in unstructured homogeneous material. The presence of nonuniform electric fields, resulting from diffractive coherence, has the potential to affect damage thresholds We describe aspects of LLNL work directed towards understanding the influence of dielectric structures upon damage, with particular emphasis on electric fields within multilayer dielectric stacks.

  3. Clay-oil droplet suspensions in electric fields

    NASA Astrophysics Data System (ADS)

    Rozynek, Zbigniew; Fossum, Jon Otto; Kjerstad, Knut; Mikkelsen, Alexander; Castberg, Rene

    2012-02-01

    Silicone oil droplets containing synthetic smectite clay submerged in immiscible organic oil have been studied by observing clay particle movement and oil circulation when an electric field is applied. Results show how electric field strength, dielectric and electrorheological properties as well as electrohydrodynamics determine the fluid flow and clay particle formation. In a presence of the DC electric fields the clay particles formed a ribbon-like structure onto the inner surface of the droplet. The structure consists of short chain-like clay elements orienting parallel to the electric field direction. It is suggested that a combination of two phenomena, namely the induced viscous flow (electrohydrodynamic effect) and the polarization of the clay particles (dielectric effect), contribute to the ribbon-like structure formation. -/abstract- References [1] G. Taylor, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 291 (1966) 159--166. [2] J. R. Melcher and G. I. Taylor, Annual Review of Fluid Mechanics 1 (1969) 111--146. [3] H. Sato, N. Kaji, T. Mochizuki, and Y. H. Mori, Physics of Fluids 18 (2006) 127101. [4] D. A. Saville, Annual Review of Fluid Mechanics 29 (1997) 27--64. [5] J. O. Fossum, Y. M'eheust, K. P. S. Parmar, K. D. Knudsen, K. J. Måløy, and D. M. Fonseca Europhysics Letters 74

  4. Cosmic rays as probes of atmospheric electric fields

    NASA Astrophysics Data System (ADS)

    Scholten, O.; Trinh, G. T. N.; Schellart, P.; Ebert, U.; Rutjes, C.; Nelles, A.; Buitink, S.; ter Veen, S.; Horandel, J.; Corstanje, A.; Rachen, J. P.; Thoudam, S.; Falcke, H.; Koehn, C. C.; van den Berg, A. A. M.; de Vries, K. K. D.; Rossetto, L.

    2015-12-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate radio waves which have been detected with LOFAR, a large and dense array of simple antennas primarily developed for radio-astronomy observations.LOFAR has observed air showers under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. For air showers under fair-weather conditions the intensity as well as the polarization of the radio emission can be understood rather accurately from the present models.For air showers measured under thunderstorm conditions we observe large differences in the intensity and polarization patterns from the fair weather models. We will show that the linear as well as the circular polarization of the radio waves carry clear information on the orientation of the electric fields at different heights in the thunderstorm clouds. We will show for the first time that the circular polarization of the radio waves tells about the change of orientation of the fields with altitude. We will show that from the measured data at LOFAR the thunderstorm electric fields can be reconstructed.We thus have established the measurement of radio emission from extensive air showers induced by cosmic rays as a new tool to probe the atmospheric electric fields present in thunderclouds in a non-intrusive way.

  5. Scattering in an external electric field asymptotically constant in time

    SciTech Connect

    Adachi, Tadayoshi; Ishida, Atsuhide

    2011-06-15

    We show the asymptotic completeness for two-body quantum systems in an external electric field asymptotically non-zero constant in time. One of the main ingredients of this paper is to give some propagation estimates for physical propagators generated by time-dependent Hamiltonians which govern the systems under consideration.

  6. Pulsed electric field processing for fruit and vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...

  7. Calibration of Electric Field Induced Energy Level Shifts in Argon

    NASA Astrophysics Data System (ADS)

    Hebner, Greg

    1999-10-01

    Argon is a commonly used gas in a number of discharges. As such it is an ideal candidate for spectroscopic based electric field measurements within the sheath and bulk discharge regions. Recently, measurements demonstrated the use of the Stark induced shifts of high lying energy levels in Argon to make spatially and temporally resolved electric field measurements [1]. However, that method relied on the cross calibration of known and calculable shifts in helium discharges to calibrate, in-situ, the energy level shifts in Argon. This poster shows the use of an atomic beam system to calibrate the electric field induced shift of high lying energy levels directly. In addition, data on very high lying argon levels, up to the 20 F manifold, were obtained. Comparison of our electric field induced energy level shift calibration curves with previous work will be shown. The possibility of using this system to calibrate energy level shifts in other gases of technological interest to the microelectronics and lighting industry will be discussed. [1]. J. B. Kim, K. Kawamura, Y. W. Choi, M. D. Bowden, K. Muraoka and V. Helbig, IEEE Transactions on Plasma Science, 26(5), 1556 (1998). This work was performed at Sandia National Laboratories and supported by the United States Department of Energy (DE-AC04-94AL85000).

  8. Relationship of the interplanetary electric field to the high-latitude ionospheric electric field and currents Observations and model simulation

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Banks, P. M.

    1986-01-01

    The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.

  9. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, K. S.; Moen, J. I.; Pedersen, A.

    2010-10-01

    Cluster data have been examined for quasi-stationary electric field structures and field-aligned currents (FACs) in the vicinity of the dayside cusp region. We have related the measurements to the Region 1/Region 2 (R1/R2) current system and the cusp current system. It has been theoretically proposed that the dayside R1 current may be located on open field lines, and experimental evidence has been shown for R1 currents partially on open field lines. We document that R1 currents may flow entirely on open field lines. The electric field structures are found to occur at plasma density gradients in the cusp. They are associated with strong FACs with current directions that are consistent with the cusp currents. This indicates that the electric field structures are closely coupled to the cusp current system. The electric equipotential structures linking the perpendicular electric fields seen at Cluster altitudes to field-aligned electric fields at lower altitudes fall into one of two categories: S shape or U shape. Both types are found at both the equatorward edge of the cusp ion dispersion and at the equatorward edge of injection events within the cusp. Previous studies in the nightside auroral region attributed the S-shaped potential structures to the boundary transition between the low-density polar cap and the high-density plasma sheet, concluding that the shape of the electric potential structure depends on whether the plasma populations on each side of the structure can support intense currents. This explanation is not applicable for the S-shaped structures observed in the dayside cusp region.

  10. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    NASA Astrophysics Data System (ADS)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  -4.2 kV cm-1  ⩽  E  ⩽  4.2 kV cm-1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  11. The manipulation of magnetic coercive field and orientation of magnetic anisotropy via electric fields

    NASA Astrophysics Data System (ADS)

    Xiang, Jun-Sen; Ye, Jun; Yang, Yun-Long; Xie, Yong; Li, Wei; Chen, Zi-Yu

    2016-08-01

    We report the effects of the electric field on the magnetic coercive field (H c) and uniaxial magnetic anisotropy (UMA) orientation of polycrystalline Ni film grown on an unpoled (0 1 1) [Pb(Mg1/3Nb2/3)O3](1‑x)–[PbTiO3] x (PMN-PT) single crystal substrate. Under various electric fields, normalized magnetic hysteresis loops of Ni films change in width; this represents the change of coercive field (ΔH c). Loop shapes are found to depend on the angle between the magnetic field and the sample, where changes in the shape reveal a small rotation of UMA. All these changes show that the magnetic properties vary periodically with a periodic electric field, by strain-mediated magnetoelectric coupling in the Ni/Ag/PMN-PT/Ag heterostructure. The poled PMN-PT produces strains under electric fields in the range of  ‑4.2 kV cm‑1  ⩽  E  ⩽  4.2 kV cm‑1, then transfers it to Ni films resulting in changes to its H c and UMA. The curves of the in-plane H c and strain, at two mutually orthogonal directions, represent butterfly patterns versus the applied electric field. In addition, the changes observed in both the H c and strain show asymmetric features in two orthogonal directions, which results in a small rotation angle of the UMA of Ni as the electric field decreases. The effective manipulation of magnitude and orientation of magnetic anisotropy via electric fields in ferromagnetic/ferroelectric (FM/FE) heterostructures is an important step towards controlling the magnetic tunnel junctions.

  12. Cholesteric elastomers in external mechanical and electric fields.

    PubMed

    Menzel, Andreas M; Brand, Helmut R

    2007-01-01

    In our studies, we focus on the reaction of cholesteric side-chain liquid single-crystal elastomers (SCLSCEs) to static external mechanical and electric fields. By means of linearized continuum theory, different geometries are investigated: The mechanical forces are oriented in a direction either parallel or perpendicular to the axis of the cholesteric helix such that they lead to a compression or dilation of the elastomer. Whereas only a homogeneous deformation of the system is found for the parallel case, perpendicularly applied mechanical forces cause either twisting or untwisting of the cholesteric helix. This predominantly depends on the direction in which the director of the cholesteric phase is anchored at the boundaries of the elastomer, and on the sign of a material parameter that describes how deformations of the elastomer couple to the relative rotations between the elastomer and the director. It is also this material parameter that leads to an anisotropy of the mechanical reaction of the system to compression and dilation, due to the liquid crystalline order. The effect of an external electric field is studied when applied parallel to the helix axis of a perfect electric insulator. Here an instability arises at a threshold value of the field amplitude, where the latter results from a competition between the effects of the external electric field on the one hand and the influences of the boundaries of the system, the cholesteric order, and the coupling between the director and the polymer network on the other hand. The instability is either homogeneous in space in the directions perpendicular to the external electric field and includes homogeneous shearing, or, for certain values of the material parameters, there arise undulations of the elastomer and the director orientation perpendicular to the direction of the external electric field at onset. This describes a qualitatively new phenomenon not observed in cholesteric systems yet, as these undulations

  13. Penetration of Large Scale Electric Field to Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.

    2015-12-01

    The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI

  14. Cholesteric elastomers in external mechanical and electric fields.

    PubMed

    Menzel, Andreas M; Brand, Helmut R

    2007-01-01

    In our studies, we focus on the reaction of cholesteric side-chain liquid single-crystal elastomers (SCLSCEs) to static external mechanical and electric fields. By means of linearized continuum theory, different geometries are investigated: The mechanical forces are oriented in a direction either parallel or perpendicular to the axis of the cholesteric helix such that they lead to a compression or dilation of the elastomer. Whereas only a homogeneous deformation of the system is found for the parallel case, perpendicularly applied mechanical forces cause either twisting or untwisting of the cholesteric helix. This predominantly depends on the direction in which the director of the cholesteric phase is anchored at the boundaries of the elastomer, and on the sign of a material parameter that describes how deformations of the elastomer couple to the relative rotations between the elastomer and the director. It is also this material parameter that leads to an anisotropy of the mechanical reaction of the system to compression and dilation, due to the liquid crystalline order. The effect of an external electric field is studied when applied parallel to the helix axis of a perfect electric insulator. Here an instability arises at a threshold value of the field amplitude, where the latter results from a competition between the effects of the external electric field on the one hand and the influences of the boundaries of the system, the cholesteric order, and the coupling between the director and the polymer network on the other hand. The instability is either homogeneous in space in the directions perpendicular to the external electric field and includes homogeneous shearing, or, for certain values of the material parameters, there arise undulations of the elastomer and the director orientation perpendicular to the direction of the external electric field at onset. This describes a qualitatively new phenomenon not observed in cholesteric systems yet, as these undulations

  15. Evolution of Auroral Electric Fields Observed By Cluster

    NASA Astrophysics Data System (ADS)

    Marklund, G.; Cluster Auroral Team

    Cluster observations on nightside auroral field lines are used to study the existence and temporal evolution of quasi-static electric field structures on time scales of min- utes. Results are presented for two events characterized by intense and narrow-scale divergent electric fields. These were encountered at the boundary between the Cen- tral Plasma Sheet and the Plasma Sheet Boundary Layer associated with a large-scale plasma density gradient and a downward field-aligned current. The structures main- tain their bipolar shape but increase in magnitude and width between the crossings by the four spacecraft, each separated by a few minutes in a plane perpendicular to the magnetic field. The perpendicular electric potential calculated for the first event in- creased for about 200 s, following closely the increase in the characteristic energy of the upgoing electron beam. At the time of the last satellite crossing the structure had faded, the energy of the beam was much reduced, and the downward current, main- taining a constant total value throughout the Cluster crossings, was distributed over a much wider region than initially. In this way access was given to a wide collection area of return current electrons. For the other event, the electric field increase was accompanied by a deepening of a density cavity superposed on a larger scale density gradient and a downward field-aligned current that remained roughly constant during the crossings. The divergent structures are likely to represent the high-altitude exten- sion of quasi-static positive potential structures developing on a time scale of several hundred seconds which is comparable to the evacuation time for the return current electrons in the E- and lower F-region. The evolving potential structure and associated hole formation represent a growing load in the return current leg of the auroral current circuit with possible direct impact on the aurora.

  16. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    PubMed Central

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M.; Linn, Gary S.; Megevand, Pierre; Thielscher, Axel; Deborah A., Ross; Milham, Michael P.; Mehta, Ashesh D.; Schroeder, Charles E.

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG. PMID:27535462

  17. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates.

    PubMed

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M; Linn, Gary S; Megevand, Pierre; Thielscher, Axel; Deborah A, Ross; Milham, Michael P; Mehta, Ashesh D; Schroeder, Charles E

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG. PMID:27535462

  18. Determinants of the electric field during transcranial direct current stimulation.

    PubMed

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage.

  19. Determinants of the electric field during transcranial direct current stimulation.

    PubMed

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. PMID:25613437

  20. Mechanism for AC Electric Field Deflection of Flames

    NASA Astrophysics Data System (ADS)

    Chemama, Michael; Bishop, Kyle; Cademartiri, Ludovico; Brenner, Michael P.; Whitesides, Georges M.

    2010-11-01

    Effects of electric fields on flames have been observed and studied since the 19th century. It is well known that the presence of an electric field can modify the shape of a burner or candle-like diffusion flame. Most experimental observations and theoretical analyses focused on DC fields. Recent experiments show that a flame can also be bent and even put out by an AC field. To explain how a zero time average cause can give rise to a net effect on the flame we develop a perturbation theory of the combustion equations modified to allow for the presence of the field and completed by Maxwell's equation. Theoretical and numerical analyses of the equations indeed show that the AC field creates a force whose magnitude is comparable to gravity for high enough fields (1e5 V/m). The dependency of this critical field on the frequency and the effect on the flame shape are also obtained and compared to experimental results.

  1. Selection of surrogate bacteria in place of E. coli O157:H7 and Salmonella Typhimurium for pulsed electric field treatment of orange juice.

    PubMed

    Gurtler, Joshua B; Rivera, Rebecca B; Zhang, Howard Q; Geveke, David J

    2010-04-30

    Pulsed electric field (PEF) technology has been used for the inactivation of microorganisms and to prevent flavor loss in liquid foods and beverages in place of thermal pasteurization. When used to pasteurize orange juice, PEF may prevent loss of volatile sensory attributes. Enterohemorrhagic E. coli O157:H7 (EHEC), two strains of Salmonella Typhimurium, and twenty strains of non-pathogenic bacteria were screened for inactivation in orange juice by PEF at 22 and 20kV/cm at 45 and 55 degrees C, respectively. Higher populations of both salmonellae were inactivated (2.81 and 3.54 log CFU/ml) at 55 degrees C, in comparison with the reduction of EHEC (2.22 log). When tested under the same conditions, inactivation of EHEC was slightly greater than that of a non-pathogenic E. coli (NPEC) ATCC 35218 (2.02 log). NPEC was further tested as a surrogate for EHEC by comparing inactivation kinetics at 45, 50 and 55 degrees C at field strengths of between 7.86 and 32.55kV/cm. Statistical comparison of revealed that EHEC and NPEC inactivation curves were homogeneous at outlet temperatures of 45 and 50 degrees C; however, EHEC was slightly more sensitive to PEF than the surrogate NPEC at 55 degrees C. The higher PEF resistance of non-pathogenic E. coli 35218 at 55 degrees C may provide a desirable margin of safety when used in pilot plant challenge studies in place of E. coli O157:H7.

  2. Video-rate terahertz electric-field vector imaging

    SciTech Connect

    Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu; Tachizaki, Takehiro; Yasumatsu, Naoya; Watanabe, Shinichi

    2014-10-13

    We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to be useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.

  3. Mechanisms of endospore inactivation under high pressure.

    PubMed

    Reineke, Kai; Mathys, Alexander; Heinz, Volker; Knorr, Dietrich

    2013-06-01

    It is well known that spore germination and inactivation can be achieved within a broad temperature and pressure range. The existing literature, however, reports contradictory results concerning the effectiveness of different pressure-temperature combinations and the underlying inactivation mechanism(s). Much of the published kinetic data are prone to error as a result of unstable process conditions or an incomplete investigation of the entire inactivation pathway. Here, we review this field of research, and also discuss an inactivation mechanism of at least two steps and propose an inactivation model based on current data. Further, spore resistance properties and matrix interactions are linked to spore inactivation effectiveness.

  4. Structural and electrical properties of electric field assisted spray deposited pea structured ZnO film

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2016-05-01

    Spray deposition of ZnO film was carried out. The uneven growth of ZnO nanostructures is resulted for spray deposited ZnO film. Application of DC voltage (1000V) during spray deposition provides formation of pea like structures with uniform coverage over the substrate. Electric field assisted spray deposition provides increased crystallinity with reduced resistivity and improved mobility of the ZnO film as compared to spray deposited ZnO film without electric field. This with large area deposition makes the process more efficient than other techniques.

  5. Calculations of the Electric Fields in Liquid Solutions

    PubMed Central

    Fried, Stephen D.; Wang, Lee-Ping; Boxer, Steven G.; Ren, Pengyu; Pande, Vijay S.

    2014-01-01

    The electric field created by a condensed phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe non-polar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins. PMID:24304155

  6. Ionization of highly excited helium atoms in an electric field

    SciTech Connect

    van de Water, W.; Mariani, D.R.; Koch, P.M.

    1984-11-01

    We present detailed measurements of ionization of highly excited triplet helium atoms in a static electric field. The atoms were prepared in states with energy E close to the saddle-point threshold E = -2(F(a.u.))/sup 1/2/. The electric field F was sufficiently strong for the states to be characterized by total spin S and absolute value of the magnetic quantum number M/sub L/. For M/sub L/ = 0 states the experiments measured ionization properties of adiabatic states. In another case, Vertical BarM/sub L/Vertical Bar = 2, they predominantly measured those of diabatic states. In both cases the ionization rate was found to be a highly nonmonotonic function of the field strength. The observations are analyzed in terms of a theory of the helium density of states in an electric field. A companion paper (D. A. Harmin, Phys. Rev. A 30, 2413 (1984)) develops in detail the general theory, which uses quantum defects to parametrize the effect of the core interaction. The agreement between measured and calculated ionization curves is good, indicating that the field ionization of a nonhydrogenic atom can now be understood in a detailed, quantitative, and predictive sense.

  7. Interferometric methods for mapping static electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2014-02-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity Equation. Among these approaches, image-plane off-axis electron holography in the transmission electron microscope has acquired a prominent role thanks to its quantitative capabilities and broad range of applicability. After a brief overview of the main ideas and methods behind field mapping, we focus on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p-n junctions in semiconductors, quantized magnetic flux in superconductors and magnetization topographies in nanoparticles and other magnetic materials) and electron-optical geometries (including multiple biprism, amplitude and mixed-type set-ups). We conclude by highlighting the emerging perspectives of (i) three-dimensional field mapping using electron holographic tomography and (ii) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.

  8. Electric fields and chiral magnetic effect in Cu + Au collisions

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Huang, Xu-Guang

    2015-03-01

    The non-central Cu + Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu + Au collisions at 200 GeV and their impacts on the charge-dependent two-particle correlator γq1q2 = < cos ⁡ (ϕ1 +ϕ2 - 2ψRP) > (see main text for definition) which was used for the detection of the chiral magnetic effect (CME). Compared with Au + Au collisions, we find that the in-plane electric fields in Cu + Au collisions can strongly suppress the two-particle correlator or even reverse its sign if the lifetime of the electric fields is long. Combining with the expectation that if γq1q2 is induced by elliptic-flow driven effects we would not see such strong suppression or reversion, our results suggest to use Cu + Au collisions to test CME and understand the mechanisms that underlie γq1q2.

  9. Role of inductive electric fields in substorm development

    NASA Technical Reports Server (NTRS)

    Heikkila, Walter J.

    1992-01-01

    A study discussing and investigating the role of inductive electric fields in substorm development is presented. It is common to use the scalar potential phi to calculate the electrostatic field E(sup ES)-(inverted Delta)(phi). However, vector potential A has not been extensively used to analyze results by the relation for the inductive electric field E(sup IND)-delta A/delta t. Because of the weak dependence in distance (1/r) these potentials show the effect of distant sources, unlike MHD (Magnetohydrodynamic) theory which is strictly local. The two can be separated by the choice of the Coulomb (transverse) gauge. It is proper to consider that the plasma polarizes to counteract the activation of the inductive electric field; this is a matter of cause and effect. However, such polarization produces a curl free electrostatic field and thus cannot alter the electromotive force due to induction. This idea has some interesting consequences for plasma physics, including violations of MHD theory, creation of the substorm current diversion, and a fresh look at dayside merging via plasma transfer events.

  10. Electric field effect on cholesterol–phospholipid complexes

    PubMed Central

    Radhakrishnan, Arun; McConnell, Harden M.

    2000-01-01

    Monolayer mixtures of dihydrocholesterol and phospholipids at the air–water interface are used to model membranes containing cholesterol and phospholipids. Specific, stoichiometric interactions between cholesterol and some but not all phospholipids have been proposed to lead to the formation of condensed complexes. It is reported here that an externally applied electric field of the appropriate sign can destabilize these complexes, resulting in their dissociation. This is demonstrated through the application of an electric field gradient that leads to phase separations in otherwise homogeneous monolayers. This is observed only when the monolayer composition is close to the stoichiometry of the complex. The electric field effect is analyzed with the same mean field thermodynamic model as that used previously to account for pairs of upper miscibility critical points in these mixtures. The concentrations of dihydrocholesterol, phospholipid, and complex vary strongly and sometimes discontinuously in the monolayer membrane in the field gradient. The model is an approximation to a two-dimensional liquid in which molecules freely exchange between free and complexed form so that the chemical potentials are constant throughout the membrane. The calculations are illustrated for a complex of about 15 molecules, composed of 5 cholesterol molecules and 10 phospholipid molecules. PMID:10655486

  11. Estimating of pulsed electric fields using optical measurements.

    SciTech Connect

    Flanagan, Timothy McGuire; Chantler, Gary.

    2013-09-01

    We performed optical electric field measurements ion nanosecond time scales using the electrooptic crystal beta barium borate (BBO). Tests were based on a preliminary bench top design intended to be a proofofprinciple stepping stone towards a modulardesign optical Efield diagnostic that has no metal in the interrogated environment. The long term goal is to field a modular version of the diagnostic in experiments on large scale xray source facilities, or similarly harsh environments.

  12. Analytical model for electromagnetic cascades in rotating electric field

    SciTech Connect

    Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.

    2011-08-15

    Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.

  13. Stimulated oxidation of metals (laser, electric field, etc.): Comparative studies

    NASA Astrophysics Data System (ADS)

    Nánai, László; Füle, Miklós

    2014-11-01

    In this report we demonstrate the importance of metal oxides, e.g. thin films and nanostructures, in modern science and technology. The basic laws of oxide thickness on base of diffusion of specimens versus time in different circumstances (Cabrera-Mott and Wagner laws) under the influence of external fields, e.g. electromagnetic field, static electric and magnetic field, are demonstrated. We give experimental results for various metal oxide layers over a wide range of different metals. Theoretical explanations are provided as well for the most reliable circumstances.

  14. Global ionospheric electric field measurements in April 1978

    NASA Technical Reports Server (NTRS)

    Holzworth, R.; Kishi, A.; Wygant, J.; Mozer, F.; Gonzales, C.; Greenwald, R.; Blanc, M.; Vickrey, J.

    1981-01-01

    This paper presents an introduction to a global campaign of simultaneous quasi-static electric field measurements from radars, balloons, and satellites at various places within the earth's environment for April 8-14, 1978. The 7-day time period encompassed both extended magnetically quiet times as well as two magnetic storms. These storms were related to SSCs that followed solar flares, one of which included a day-long solar proton event. The wide variety of instrumentation and associated operating modes involved in this campaign is described. Sample conjunctions between satellites and ionospheric measurements are shown that demonstrate that field line mapping is valid under certain circumstances. Some of the largest ionospheric electric fields ever reported with greater than 100-km scale size occurred on April 11, and these events are discussed in detail.

  15. Time Evolution of Electric Fields in CDMS Detectors

    SciTech Connect

    Leman, S.W.; Brandt, D.; Brink, P.L.; Cabrera, B.; Chagani, H.; Cherry, M.; Cushman, P.; Do Couto E.Silva, E.; Doughty, T.; Figueroa-Feliciano, E.; Mandic, V.; McCarthy, K.A.; Mirabolfathi, N.; Pyle, M.; Reisetter, A.; Resch, R.; Sadoulet, B.; Serfass, B.; Sundqvist, K.M.; Tomada, A.; Young, B.A.; /Minnesota U.

    2012-06-06

    The Cryogenic Dark Matter Search (CDMS) utilizes large mass, 3-inch diameter x 1-inch thick target masses as particle detectors. The target is instrumented with both phonon and ionization sensors, the later providing a {approx}1 V cm{sup -1} electric field in the detector bulk. Cumulative radiation exposure which creates {approx}200 x 10{sup 6} electron-hole pairs could be sufficient to produce a comparable reverse field in the detector thereby degrading the ionization channel performance, if it was not shielded by image charges on the electrodes. To study this, the existing CDMS detector Monte Carlo has been modified to allow for an event by event evolution of the bulk electric field, in three spatial dimensions. Surprisingly, this simple model is not sufficient to explain the degradation of detector performance. Our most recent results and interpretation are discussed.

  16. Electric field controlled columnar and planar patterning of cholesteric colloids.

    PubMed

    D'Adamo, G; Marenduzzo, D; Micheletti, C; Orlandini, E

    2015-05-01

    We study how dispersions of colloidal particles in a cholesteric liquid crystal behave under a time-dependent electric field. By controlling the amplitude and shape of the applied field wave, we show that the system can be reproducibly driven out of equilibrium through different kinetic pathways and navigated through a glassylike free energy landscape encompassing many competing metastable equilibria. Such states range from simple Saturn rings to complex structures featuring amorphous defect networks, or stacks of disclination loops. A nonequilibrium electric field can also trigger the alignment of particles into columnar arrays, through defect-mediated force impulses, or their repositioning within a plane. Our results are promising in terms of providing new avenues towards controlled patterning and self-assembly of soft colloid-liquid crystal composite materials. PMID:25978263

  17. Alignment of atmospheric mineral dust due to electric field

    NASA Astrophysics Data System (ADS)

    Ulanowski, Z.; Bailey, J.; Lucas, P. W.; Hough, J. H.; Hirst, E.

    2007-12-01

    Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction indicating the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here. It is also possible that the alignment and the electric field modify dust transport.

  18. Numerical simulations of double layers and auroral electric fields

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Thiemann, H.

    1984-01-01

    Recent one-dimensional and two-dimensional numerical simulations of double layers (DLs) in the electric fields of the auroral plasma are reviewed, with reference to observational data. It is found that two-dimensional DLs driven by current sheets of finite thickness have different characteristics, depending on whether the layer thickness is less than or much greater than the ion gyroradius: When thickness is less than ion gyroradius, V-shaped DLs form with nearly equal parallel and perpendicular potential drops; when layer thickness is much greater than ion gyroradius the major parallel potential drop occurs outside the current sheet and the perpendicular electric fields are localized at the edges of the current sheet. It is shown that some features of the simulated fields, such as the amplitudes and scale lengths, are qualitatively similar to those observed in space.

  19. Directing Soft Matter in Water Using Electric Fields.

    PubMed

    van der Asdonk, Pim; Kragt, Stijn; Kouwer, Paul H J

    2016-06-29

    Directing the spatial organization of functional supramolecular and polymeric materials at larger length scales is essential for many biological and molecular optoelectronic applications. Although the application of electrical fields is one of the most powerful approaches to induce spatial control, it is rarely applied experimentally in aqueous solutions, since the low susceptibility of soft and biological materials requires the use of high fields, which leads to parasitic heating and electrochemical degradation. In this work, we demonstrate that we can apply electric fields when we use a mineral liquid crystal as a responsive template. Besides aligning and positioning functional soft matter, we show that the concentration of the liquid crystal template controls the morphology of the assembly. As our setup is very easy to operate and our approach lacks specific molecular interactions, we believe it will be applicable for a wide range of (aqueous) materials. PMID:27269124

  20. Electric field controlled columnar and planar patterning of cholesteric colloids.

    PubMed

    D'Adamo, G; Marenduzzo, D; Micheletti, C; Orlandini, E

    2015-05-01

    We study how dispersions of colloidal particles in a cholesteric liquid crystal behave under a time-dependent electric field. By controlling the amplitude and shape of the applied field wave, we show that the system can be reproducibly driven out of equilibrium through different kinetic pathways and navigated through a glassylike free energy landscape encompassing many competing metastable equilibria. Such states range from simple Saturn rings to complex structures featuring amorphous defect networks, or stacks of disclination loops. A nonequilibrium electric field can also trigger the alignment of particles into columnar arrays, through defect-mediated force impulses, or their repositioning within a plane. Our results are promising in terms of providing new avenues towards controlled patterning and self-assembly of soft colloid-liquid crystal composite materials.

  1. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    NASA Technical Reports Server (NTRS)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  2. Nanosecond pulsed electric fields (nsPEF) induce direct electric field effects and biological effects on human colon carcinoma cells.

    PubMed

    Hall, Emily H; Schoenbach, Karl H; Beebe, Stephen J

    2005-05-01

    Nanosecond pulsed electric fields (nsPEFs) are ultrashort pulses with high electric field intensity (kV/cm) and high power (megawatts), but low energy density (mJ/cc). To determine roles for p53 in response to nsPEFs, HCT116 cells (p53+/+ and p53-/-) were exposed to nsPEF and analyzed for membrane integrity, phosphatidylserine externalization, caspase activation, and cell survival. Decreasing plasma membrane effects were observed in both HCT116p53+/+ and p53-/- cells with decreasing pulse durations and/or decreasing electric fields. However, addition of ethidium homodimer-1 and Annexin-V-FITC post-pulse demonstrated greater fluorescence in p53-/- versus p53+/+ cells, suggesting a postpulse p53-dependent biological effect at the plasma membrane. Caspase activity was significantly higher than nonpulsed cells only in the p53-/- cells. HCT116 cells exhibited greater survival in response to nsPEFs than HL-60 and Jurkat cells, but survival was more evident for HCT116p53+/+ cells than for HCT116p53-/- cells. These results indicate that nsPEF effects on HCT116 cells include (1) apparent direct electric field effects, (2) biological effects that are p53-dependent and p53-independent, (3) actions on mechanisms that originate at the plasma membranes and at intracellular structures, and (4) an apparent p53 protective effect. NsPEF applications provide a means to explore intracellular structures and functions that can reveal mechanisms in health and disease.

  3. Quasistatic electric field structures and field-aligned currents in the polar cusp region

    NASA Astrophysics Data System (ADS)

    Jacobsen, Knut; Moen, Joran; Pedersen, Arne

    2010-05-01

    Quasistatic electric field structures in the vicinity of the cusp have been studied using Cluster data. There are two categories of electric potential structures, S-shaped and U-shaped. In previous studies in the nightside auroral region, the S-shaped potential was uniquely related to the boundary transition between low density and high density plasma regimes, leading to the conclusion that the electric field profile depends on whether the plasma populations on each side of the boundary can support intense field-aligned and Pedersen currents. In this study in the dayside cusp this is not the case, and a different explanation has to be sought. Most electric field structures are associated with the start of the cusp ion dispersion or with injection signatures within the cusp, and the field-aligned currents associated with these structures are found to be consistent with the cusp currents expected for the IMF By polarity at the time. This indicates that the electric field structures are generated by the cusp current system, or modified by the cusp current system to be consistent with the required currents. Furthermore, we provide firm evidence for the dayside Region 1 current to be located on open field lines, which have been postulated but to our knowledge heretofore not experimentally verified.

  4. Electric-field-driven resistive switching in dissipative Hubbard model

    NASA Astrophysics Data System (ADS)

    Li, Jiajun; Aron, Camille; Kotliar, Gabriel; Han, Jong

    Understanding of solids driven out of equilibrium by external fields has been one of the central goals in condensed matter physics for the past century and is relevant to nanotechnology applications such as resistive transitions. We study how strongly correlated electrons on a dissipative lattice evolve from equilibrium when driven by a constant electric field, focusing on the extent of the linear regime and hysteretic non-linear effects at higher fields. We access the non-equilibrium steady states, non-perturbatively in both the field and the electronic interactions, by means of a non-equilibrium dynamical mean-field theory in the Coulomb gauge. The linear response regime is limited by Joule heating effects and breaks down at fields orders of magnitude smaller than the quasi-particle energy scale. For large electronic interactions, strong but experimentally accessible electric fields can induce a resistive switching by driving the strongly correlated metal into a Mott insulator. Hysteretic I- V curves suggest that the non-equilibrium current is carried through a spatially inhomogeneous metal-insulator mixed state.

  5. Electric-field Induced Microdynamics of Charged Rods

    NASA Astrophysics Data System (ADS)

    Kang, Kyongok

    2014-12-01

    Electric-field induced phase/state transitions are observed in AC electric fields with small amplitudes and low frequencies in suspensions of charged fibrous viruses (fd), which are model systems for highly charged rod-like colloids. Texture- and particle-dynamics in these field-induced states, and on crossing transition lines, are explored by image time-correlation and dynamic light scattering, respectively. At relatively low frequencies, starting from a system within the isotropic-nematic coexistence region, a transition from a nematic to a chiral nematic is observed, as well as a dynamical state where nematic domains melt and reform. These transitions are preliminary due to field-induced dissociation/association of condensed ions. At higher frequencies a uniform state is formed that is stabilized by hydrodynamic interactions through field-induced electro-osmotic flow where the rods align along the field direction. There is a point in the field-amplitude versus frequency plane where various transition lines meet. This point can be identified as a “non-equilibrium critical point”, in the sense that a length scale and a time scale diverge on approach of that point. The microscopic dynamics exhibits discontinuities on crossing transition lines that were identified independently by means of image and signal correlation spectroscopy.

  6. Interaction of gravitational waves with magnetic and electric fields

    SciTech Connect

    Barrabes, C.; Hogan, P. A.

    2010-03-15

    The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.

  7. Wave packet dynamics under effect of a pulsed electric field

    NASA Astrophysics Data System (ADS)

    da Silva, A. R. C. B.; de Moura, F. A. B. F.; Dias, W. S.

    2016-06-01

    We studied the dynamics of an electron in a crystalline one-dimensional model under effect of a time-dependent Gaussian field. The time evolution of an initially Gaussian wave packet it was obtained through the numerical solution of the time-dependent Schrödinger equation. Our analysis consists of computing the electronic centroid as well as the mean square displacement. We observe that the electrical pulse is able to promote a special kind of displacement along the chain. We demonstrated a direct relation between the group velocity of the wave packet and the applied electrical pulses. We compare those numerical calculations with a semi-classical approach.

  8. Trapping of Rb Atoms by ac Electric Fields

    SciTech Connect

    Schlunk, Sophie; Marian, Adela; Geng, Peter; Meijer, Gerard; Schoellkopf, Wieland; Mosk, Allard P.

    2007-06-01

    We demonstrate trapping of an ultracold gas of neutral atoms in a macroscopic ac electric trap. Three-dimensional confinement is obtained by switching between two saddle-point configurations of the electric field. Stable trapping is observed in a narrow range of switching frequencies around 60 Hz. The dynamic confinement of the atoms is directly visualized at different phases of the ac switching cycle. We observe about 10{sup 5} Rb atoms in the 1 mm{sup 3} large and several microkelvins deep trap with a lifetime of approximately 5 s.

  9. Atmospheric Electric Field Measurements at 100 Hz and High Frequency Electric Phenomena

    NASA Astrophysics Data System (ADS)

    Conceição, Ricardo; Gonçalves da Silva, Hugo; Matthews, James; Bennett, Alec; Chubb, John

    2016-04-01

    Spectral response of Atmospheric Electric Potential Gradient (PG), symmetric to the Atmospheric Electric Field, gives important information about phenomena affecting these measurements with characteristic time-scales that appear in the spectra as specific periodicities. This is the case of urban pollution that has a clear weekly dependence and reveals itself on PG measurements by a ~7 day periodicity (Silva et al., 2014). While long-term time-scales (low frequencies) have been exhaustively explored in literature, short-term time-scales (high frequencies), above 1 Hz, have comparatively received much less attention (Anisimov et al., 1999). This is mainly because of the technical difficulties related with the storage of such a huge amount of data (for 100 Hz sampling two days of data uses a ~1 Gb file) and the response degradation of the field-meters at such frequencies. Nevertheless, important Electric Phenomena occurs for frequencies above 1 Hz that are worth pursuing, e.g. the Schumann Resonances have a signature of worldwide thunderstorm activity at frequencies that go from ~8 up to ~40 Hz. To that end the present work shows preliminary results on PG measurements at 100 Hz that took place on two clear-sky days (17th and 18th June 2015) on the South of Portugal, Évora (38.50° N, 7.91° W). The field-mill used is a JCI 131F installed in the University of Évora campus (at 2 m height) with a few trees and two buildings in its surroundings (~50 m away). This device was developed by John Chubb (Chubb, 2014) and manufactured by Chilworth (UK). It was calibrated in December 2013 and recent work by the author (who is honored in this study for his overwhelming contribution to atmospheric electricity) reveals basically a flat spectral response of the device up to frequencies of 100 Hz (Chubb, 2015). This makes this device suitable for the study of High Frequency Electric Phenomena. Anisimov, S.V., et al. (1999). On the generation and evolution of aeroelectric structures

  10. Study of the electric field formation in a multi-cusped magnetic field

    SciTech Connect

    Liu, Hui Yu, Daren; Wu, Huan; Zhao, Yinjian; Ma, Chengyu; Wang, Di; Wei, Haoyu

    2014-09-15

    The multi-cusped field thruster is a kind of electric thruster adopting a cusped magnetic field to achieve a potentially longer lifetime. It is observed in some experiments that the main electric potential drop forms near the exhaust plane, but the formation mechanism of the electric field in this kind of thrusters is not fully clear yet. Based on the analysis of the electron movement, a 2D Particle-in-Cell plus Monte Carlo model is built to reveal the difference of the constraint to electrons between the central leak path and the lateral region of the thruster. Electron trajectories from cathode are analyzed furthermore. It is found that the central leak path inside the discharge channel may play a significant role in the formation of the main electric potential drop near the exhaust plane.

  11. Generation of bactericidal and mutagenic components by pulsed electric field treatment.

    PubMed

    Reyns, Kristien M F A; Diels, Ann M J; Michiels, Chris W

    2004-06-01

    Inactivation of stationary phase Escherichia coli, Salmonella Typhimurium and Listeria innocua (10(8) CFU/ml) by high intensity pulsed electric fields (PEF) was studied in water and different buffers at pH 7.0. The fraction of survivors after PEF treatment with 300 pulses (5 Hz) of 26.7 kV/cm and a pulse width of 2 micros varied between 0.050% and 55%, but was always lower in Tris-HCl buffer than in HEPES-KOH buffer and water. When cell suspensions were stored for 24 h at 25 degrees C after PEF treatment, the survivor fraction further decreased, except for E. coli in water and HEPES-KOH. By following the survival of untreated cells added to water or buffers that were previously PEF treated, this secondary inactivation could be ascribed to the formation of bactericidal components as a result of PEF treatment. Buffers and water containing 10 mM NaCl became bactericidal against all three bacteria upon PEF treatment, and the bactericidal effect could be neutralized by thiosulfate, suggesting that chlorine and/or hypochlorite had been formed. Also in the absence of Cl- ions, PEF treated water and buffers had bactericidal properties, but the specificity of the bactericidal effects against different bacteria differed depending on the buffer used. In the Ames mutagenicity test using His- S. Typhimurium mutant strains, PEF treated Tris buffers containing 10 mM Cl- ions, as well as PEF treated grape juice showed a mutagenic effect. The implications of these findings for the safety of PEF treated foods are discussed. PMID:15135955

  12. Electrical Capacitance of Polyethylene under Application of High DC Electric Field

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hidenobu; Yahagi, Kichinosuke

    1980-02-01

    An increase in the electrical capacitance of polyethylene is detected when a high dc electric field is applied with a variable-frequency oscillator. The increment of capacitance increases in proportion to the square of the applied field and changes reversibly below about 30 MV/m for gold electrodes. This change in capacitance is due to the effect of electromechanical compressive stress. Above 30 MV/m, the capacitance undergoes an irreversible change and the increase in capacitance is discussed in terms of the polarization of trapped electronic space charges injected from the electrode. In the region above about 90 MV/m, where the conduction current obeys Child’s law, the increment of capacitance with field again becomes proportional to the square of the applied field and may be explained by free carrier polarization.

  13. Analysis of Electric Field Induced by ELF Magnetic Field Utilizing Generalized Equivalent Multipole-Moment Method

    NASA Astrophysics Data System (ADS)

    Hamada, Shoji; Yamamoto, Osamu; Kobayashi, Tetsuo

    This paper presents a generalized equivalent multipole-moment method for calculating three-dimensional Laplacian fields in multi-spherical system. The Greengard & Rokhlin's M2M, M2L, and L2L formulae enable the multipole-moment method to calculate the fields in general arrangement of multi-spheres, which involve exclusive and multi-layered spherical arrangement. We applied this method to electric field calculation in biological structures induced by ELF magnetic fields. The induced electric fields in a three eccentric and exclusive spheres system, which models human head with two eyeballs, are calculated under the application of homogeneous and magnetic-dipole fields. The validity of this method is successfully confirmed by comparing the calculated fields with those by the fast-multipole surface-charge-simulation method.

  14. Dynamic Electric Field Maps of Point Charge Moving with Constant Velocity.

    ERIC Educational Resources Information Center

    Jefimenko, Oleg D.

    2000-01-01

    Dynamic field maps and contour curves provide a new way of depicting and analyzing the electric field of uniformly moving point charges. Presents an alternative way of graphically representing the electricity field of a uniformly moving point charge. (CCM)

  15. The Electrical Structure of Terrestrial Dust Devils: Implications of Multiple Vertical Measurements of the Electric Field

    NASA Astrophysics Data System (ADS)

    Delory, G. T.; Farrell, W. M.; Hillard, B.; Renno, N. O.; Smith, P.; Marshall, J. R.; Eatchel, A.

    2002-12-01

    In this work we discuss observations of the electrical structure of dust devils made in the summer of 2001 and 2002 during the Mars Atmosphere and Dust in the Optical and Radio (MATADOR) field campaign outside of Tucson, Arizona. While it has long been known that Terrestrial dust devils can support large electric fields of magnitudes of up to 10 kV/m or more, the fundamental features of the charging mechanism have yet to be fully characterized from an observational perspective. If triboelectric charging is indeed responsible for the generation of significant electric potentials within the dust column, some means of large scale stratification and/or separation of charges is necessary to maintain these fields. To help address this question and elucidate the overall vertical charge distribution of dust devils, we used two field mill instruments to make simultaneous measurements of electric fields both at the surface and 1 meter above the ground. At present, our observations indicate that the dust grains become negatively charged at or very near the air-surface interface. The largest devils recorded (30 m diameter) show a region of enhanced positive electric fields persisting for minutes after the event has passed, indicating the possible presence of a large scale collection of airborne positive charges following the negatively charged dust column. Based on our observations, the key to the charging mechanism appears to reside in the bottom of the saltation layer where the bulk of collisional frictional charging is likely to occur. We discuss the implications of these observations for theories of Terrestrial dust devil electrification and for our understanding of similar processes on Mars.

  16. Sondrestrom radar measurements of the reconnection electric field

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, O.; Lyons, L. R.; Friis-Christensen, E.

    1991-01-01

    The possibility of using Sondrestrom incoherent radar scatter to estimate the rate of solar-wind energy transfer is examined by using plasma-velocity measurements in the separatrix reference frame. The separatrix is the boundary between open and closed field lines, and its orientation is deduced from all-sky images. The radar observations are used to determine the separatrix location and the ionospheric plasma drift. Measurements of the reconnection electric field in the midnight sector for one night are taken, revealing that the field is less than 15 mV/m during the time of local polar-cap extension. During polar-cap contraction the field range is 30-40 mV/m, and these periods correspond to substorm expansive phases. The limitations associated with measuring ionospheric plasma drift, the boundary orientation, and boundary location are enumerated. The measurements in the experimental case demonstrate the possibility of plasma transfer from closed to open field lines.

  17. Tracking electric field exposure levels through radio frequency dosimetry

    SciTech Connect

    Ewing, P.D.; Moore, M.R.; Rochelle, R.W.; Thomas, R.S.; Hess, R.A.; Hoffheins, B.S.

    1991-01-01

    The radio-frequency (rf) dosimeter developed by the Oak Ridge National Laboratory is a portable, pocket-sized cumulative-dose recording device designed to detect and record the strengths and durations of electric fields present in the work areas of naval vessels. The device measures an integrated dose and records the electric fields that exceed the permissible levels set by the American National Standards Institute. Features of the rf dosimeter include a frequency range of 30 MHz to 10 GHz and a three-dimensional sensor. Data obtained with the rf dosimeter will be used to determine the ambient field-strength profile for shipboard personnel over an extended time. Readings are acquired and averaged over a 6-min period corresponding to the rise time of the core body temperature. These values are stored for up to 6 months, after which the data are transferred to a computer via the dosimeter's serial port. The rf dosimeter should increase knowledge of the levels of electric fields to which individuals are exposed. 5 refs., 4 figs.

  18. Microfluidic flow-focusing in ac electric fields.

    PubMed

    Tan, Say Hwa; Semin, Benoît; Baret, Jean-Christophe

    2014-03-21

    We demonstrate the control of droplet sizes by an ac voltage applied across microelectrodes patterned around a flow-focusing junction. The electrodes do not come in contact with the fluids to avoid electrochemical effects. We found several regimes of droplet production in electric fields, controlled by the connection of the chip, the conductivity of the dispersed phase and the frequency of the applied field. A simple electrical modelling of the chip reveals that the effective voltage at the tip of the liquid to be dispersed controls the production mechanism. At low voltages (≲ 600 V), droplets are produced in dripping regime; the droplet size is a function of the ac electric field. The introduction of an effective capillary number that takes into account the Maxwell stress can explain the dependance of droplet size with the applied voltage. At higher voltages (≳ 600 V), jets are observed. The stability of droplet production is a function of the fluid conductivity and applied field frequency reported in a set of flow diagrams. PMID:24401868

  19. Observations of ionospheric electric fields above atmospheric weather systems

    SciTech Connect

    Farrell, W.M.; Aggson, T.L.; Rodgers, E.B.

    1994-10-01

    The authors report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. The authors report here on a set of likely E field candidates for atmosphere-ionosphere causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As they demonstrate, individual events can often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather. 31 refs., 11 figs., 1 tab.

  20. Convection electric field effects on outer radiation belt electron precipitation

    NASA Technical Reports Server (NTRS)

    Gelpi, C.; Benbrook, J. R.; Sheldon, W. R.

    1986-01-01

    A model is presented for the possible diurnal modulation of outer radiation belt electron precipitation by considering the effect of the convection electric field on geomagnetically trapped electrons. The modulation flux is the flux due to electrons in the drift loss cone, i.e., those which drift into the bounce loss cone. The electron flux in the drift loss cone is related to the time allowable for diffusion from the stably trapped population to the drift loss cone for precipitation at a specific geographic location. This time, which is termed the maximum L-shell lifetime, is obtained by computing electron trajectories, using a realistic magnetic field model and a simple model for the electric field. The maximum L-shell lifetimes are taken to be the times between successive entries into the bounce loss cone. Conservation of the first two adiabatic invariants, as electrons are slowly energized by the convection electric field, leads to variations in pitch angle, maximum L-shell lifetimes, and, consequently, to changes in the electron flux in the drift loss cone. These results are compared with observations of precipitating electrons made with sounding rocket payloads.

  1. Electric field induced morphological transitions in polyelectrolyte multilayers.

    PubMed

    Cho, Chungyeon; Jeon, Ju-Won; Lutkenhaus, Jodie; Zacharia, Nicole S

    2013-06-12

    In this work, the morphological transitions in weak polyelectrolyte (PE) multilayers (PEMs) assembled from linear poly(ethylene imine) (LPEI) and poly(acrylic acid) (PAA) upon application of an electric field were studied. Exposure to an electric field results in the creation of a porous structure, which can be ascribed to local changes in pH from the hydrolysis of water and subsequent structural rearrangements of the weak PE constituents. Depending on the duration of application of the field, the porous transition gradually develops into a range of structures and pore sizes. It was discovered that the morphological transition of the LbL films starts at the multilayer-electrode interface and propagates through the film. First an asymmetrical structure forms, consisting of microscaled pores near the electrode and nanoscaled pores near the surface in contact with the electrolyte solution. At longer application of the field the porous structures become microscaled throughout. The results revealed in this study not only demonstrate experimental feasibility for controlling variation in pore size and porosity of multilayer films but also deepens the understanding of the mechanism of the porous transition. In addition, electrical potential is used to release small molecules from the PEMs.

  2. Nonlinear electric field structures in the inner magnetosphere

    DOE PAGES

    Malaspina, D. M.; Andersson, L.; Ergun, R. E.; Wygant, J. R.; Bonnell, J. W.; Kletzing, C.; Reeves, G. D.; Skoug, R. M.; Larsen, B. A.

    2014-08-28

    Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combinedmore » with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.« less

  3. Observations of ionospheric electric fields above atmospheric weather systems

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.

    1994-01-01

    We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.

  4. Reversible Switching of Block Copolymer Nanopatterns by Orthogonal Electric Fields.

    PubMed

    Liedel, Clemens; Lewin, Christian; Tsarkova, Larisa; Böker, Alexander

    2015-12-01

    It is demonstrated that the orientation of striped patterns can be reversibly switched between two perpendicular in-plane orientations upon exposure to electric fields. The results on thin films of symmetric polystyrene-block-poly(2-vinyl pyridine) polymer in the intermediate segregation regime disclose two types of reorientation mechanisms from perpendicular to parallel relative to the electric field orientation. Domains orient via grain rotation and via formation of defects such as stretched undulations and temporal phase transitions. The contribution of additional fields to the structural evolution is also addressed to elucidate the generality of the observed phenomena. In particular solvent effects are considered. This study reveals the stabilization of the meta-stable in-plane oriented lamella due to sequential swelling and quenching of the film. Further, the reorientation behavior of lamella domains blended with selective nanoparticles is addressed, which affect the interfacial tensions of the blocks and hence introduce another internal field to the studied system. Switching the orientation of aligned block copolymer patterns between two orthogonal directions may open new applications of nanomaterials as switchable electric nanowires or optical gratings. PMID:26449286

  5. Electric field induced morphological transitions in polyelectrolyte multilayers.

    PubMed

    Cho, Chungyeon; Jeon, Ju-Won; Lutkenhaus, Jodie; Zacharia, Nicole S

    2013-06-12

    In this work, the morphological transitions in weak polyelectrolyte (PE) multilayers (PEMs) assembled from linear poly(ethylene imine) (LPEI) and poly(acrylic acid) (PAA) upon application of an electric field were studied. Exposure to an electric field results in the creation of a porous structure, which can be ascribed to local changes in pH from the hydrolysis of water and subsequent structural rearrangements of the weak PE constituents. Depending on the duration of application of the field, the porous transition gradually develops into a range of structures and pore sizes. It was discovered that the morphological transition of the LbL films starts at the multilayer-electrode interface and propagates through the film. First an asymmetrical structure forms, consisting of microscaled pores near the electrode and nanoscaled pores near the surface in contact with the electrolyte solution. At longer application of the field the porous structures become microscaled throughout. The results revealed in this study not only demonstrate experimental feasibility for controlling variation in pore size and porosity of multilayer films but also deepens the understanding of the mechanism of the porous transition. In addition, electrical potential is used to release small molecules from the PEMs. PMID:23683121

  6. Electric-field control of magnetism in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Yonggang; Zhang, Sen; Li, Peisen; Chen, Aitian; Li, Dalai; Yang, Lifeng; Rizwan, S.; Liu, Y.; Xiao, Xia; Wu, Yizheng; Jin, Xiaofeng; Han, Xiufeng; Zhang, Huiyun; Zhu, Meihong

    2015-03-01

    We have studied electric-field control of magnetism in different multiferroic heterostructures, composed of ferromagnetic (FM) and ferroelectric (FE) materials such as Co40Fe40B20(CoFeB)/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT) and magnetic tunnel junctions (MTJ) on PMN-PT, etc. A giant electric-field control of magnetization as well as magnetic anisotropy was observed in a CoFeB/PMN-PT structure at room temperature with a maximum relative magnetization change up to 83 percent and a 90° rotation of the easy axis. In MTJ of CoFeB/AlOx/CoFeB grown on PMN-PT, we demonstrate a reversible, continuous magnetization rotation and manipulation of tunneling magnetoresistance at room temperature by electric fields without the assistance of a magnetic field. These results show the interesting new physics and potential applications of the FM/FE multiferroic heterostructures.

  7. Plasma Membrane Voltage Changes during Nanosecond Pulsed Electric Field Exposure

    PubMed Central

    Frey, W.; White, J. A.; Price, R. O.; Blackmore, P. F.; Joshi, R. P.; Nuccitelli, R.; Beebe, S. J.; Schoenbach, K. H.; Kolb, J. F.

    2006-01-01

    The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of ∼100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6–1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/μm penetrates into the interior of the cell and every organelle. PMID:16513782

  8. Plasma membrane voltage changes during nanosecond pulsed electric field exposure.

    PubMed

    Frey, W; White, J A; Price, R O; Blackmore, P F; Joshi, R P; Nuccitelli, R; Beebe, S J; Schoenbach, K H; Kolb, J F

    2006-05-15

    The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of approximately 100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6-1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/mum penetrates into the interior of the cell and every organelle.

  9. Tunable control of antibody immobilization using electric field

    PubMed Central

    Emaminejad, Sam; Javanmard, Mehdi; Gupta, Chaitanya; Chang, Shuai; Davis, Ronald W.; Howe, Roger T.

    2015-01-01

    The controlled immobilization of proteins on solid-state surfaces can play an important role in enhancing the sensitivity of both affinity-based biosensors and probe-free sensing platforms. Typical methods of controlling the orientation of probe proteins on a sensor surface involve surface chemistry-based techniques. Here, we present a method of tunably controlling the immobilization of proteins on a solid-state surface using electric field. We study the ability to orient molecules by immobilizing IgG molecules in microchannels while applying lateral fields. We use atomic force microscopy to both qualitatively and quantitatively study the orientation of antibodies on glass surfaces. We apply this ability for controlled orientation to enhance the performance of affinity-based assays. As a proof of concept, we use fluorescence detection to indirectly verify the modulation of the orientation of proteins bound to the surface. We studied the interaction of fluorescently tagged anti-IgG with surface immobilized IgG controlled by electric field. Our study demonstrates that the use of electric field can result in more than 100% enhancement in signal-to-noise ratio compared with normal physical adsorption. PMID:25650429

  10. Nonlinear electric field structures in the inner magnetosphere

    SciTech Connect

    Malaspina, D. M.; Andersson, L.; Ergun, R. E.; Wygant, J. R.; Bonnell, J. W.; Kletzing, C.; Reeves, G. D.; Skoug, R. M.; Larsen, B. A.

    2014-08-28

    Recent observations by the Van Allen Probes spacecraft have demonstrated that a variety of electric field structures and nonlinear waves frequently occur in the inner terrestrial magnetosphere, including phase space holes, kinetic field-line resonances, nonlinear whistler-mode waves, and several types of double layer. However, it is nuclear whether such structures and waves have a significant impact on the dynamics of the inner magnetosphere, including the radiation belts and ring current. To make progress toward quantifying their importance, this study statistically evaluates the correlation of such structures and waves with plasma boundaries. A strong correlation is found. These statistical results, combined with observations of electric field activity at propagating plasma boundaries, are consistent with the identification of these boundaries as the source of free energy responsible for generating the electric field structures and nonlinear waves of interest. Therefore, the ability of these structures and waves to influence plasma in the inner magnetosphere is governed by the spatial extent and dynamics of macroscopic plasma boundaries in that region.

  11. Electric field effect in superconductor-ferroelectric structures

    NASA Technical Reports Server (NTRS)

    Lemanov, V. V.

    1995-01-01

    Electric field effect (the E-effect) in superconductors has been studied since 1960 when Glover and Sherill published their results on a shift of the critical temperature T(sub c) about 0.1 mK in Sn and In thin films under the action Off the field E=300 kV/cm. Stadler was the first to study the effect or spontaneous polarization of ferroelectric substrate on the electric properties of superconductors. He observed that the reversal of polarization of TGS substrate under action of external electric field in Sn-TGS structures induced the T(sub c) shift in Sn about 1.3 mK. Since in this case the effect is determined not by the electric field but by the spontaneous polarization, we may call this effect the P-effect. High-T(sub c) superconductors opened the new possibilities to study the E- and P-effects due to low charge carrier density, as compared to conventional superconductors, and to anomalously small coherence length. Experiments in this field began in many laboratories but a breakthrough was made where a shift in T(sub c) by 50 mK was observed in YBCO thin films. Much higher effects were observed in subsequent studies. The first experiments on the P-effect in high-T(sub c) superconductors were reported elsewhere. In this report we shall give a short description of study on the P-effect in high-T(sub c) superconductors.

  12. Can Neural Activity Propagate by Endogenous Electrical Field?

    PubMed

    Qiu, Chen; Shivacharan, Rajat S; Zhang, Mingming; Durand, Dominique M

    2015-12-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2-6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5-5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds.

  13. Electric Field Measurements During the Genesis and Rapid Intensification Processes (GRIP) Field Program

    NASA Technical Reports Server (NTRS)

    Bateman, Monte G.; Blakeslee, Richard J.; Mach, Douglas M.

    2010-01-01

    During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. American

  14. Influence of the pulsating electric field on the ECR heating in a nonuniform magnetic field

    SciTech Connect

    Balmashnov, A. A. Umnov, A. M.

    2011-12-15

    According to a computer simulation, the randomized pulsating electric field can strongly influence the ECR plasma heating in a nonuniform magnetic field. It has been found out that the electron energy spectrum is shifted to the high energy region. The obtained effect is intended to be used in the ECR sources for effective X-ray generation.

  15. Analysis of electric field screening by the proximity of two knife-edge field emitters

    NASA Astrophysics Data System (ADS)

    Tang, Wilkin; Shiffler, Don; Cartwright, Keith L.

    2011-08-01

    The electric field of two semi-infinitely wide knife-edge cathodes with arbitrary separation is calculated by using a Schwarz-Christoffel transformation. This geometry could also represent a trench (or scratch) on a flat surface. It is found that the magnitude of the electric field on the knife-edge cathodes depends strongly on the ratio h/a, where h is the height of the knife-edge cathodes and 2a is the distance between the cathodes. When h/a increases, the magnitude of the electric field on the cathode's surface decreases. This shows the screening of one cathode by another cathode; for example, keeping the height fixed and decreasing the distance between the cathodes, the field enhancement on the corner decreases. Analytic approximations for the divergent electric field in the immediate vicinity of the sharp edge are derived for the cases where h /a>>1, and h /a≪1. These results lead to insight on the relationship of the density of field emitter in field emitting arrays and field emission from rough surfaces.

  16. Orientation behavior of retinal photoreceptors in alternating electric fields.

    PubMed

    Radu, M; Ionescu, M; Irimescu, N; Iliescu, K; Pologea-Moraru, R; Kovacs, E

    2005-11-01

    In alternating electric (AC) fields, particles experience polarizing effects that induce dipoles that orient elongated specimens either parallel or perpendicular to the field lines. In this work we studied the behavior of photoreceptor cells' rod outer segments (ROS) in AC fields of different frequencies. We showed that at low frequencies, ROS orient parallel to the field, whereas at higher frequencies they orient perpendicular to the field lines (in the frequency range from 100 Hz to 10 MHz). We found this behavior to be dependent on the physiological state of cells (due to modifications in their electrical properties). To simulate cell damage, the membrane conductivity was changed by treating the cell with gramicidin A, which resulted in a decrease of cytosol conductivity and, consequently, in a change of the orientation behavior of the treated cells. The change of cell orientation with cytosol conductivity is rather sharp, suggesting the potential of the method for accurate evaluation of the cell physiological status. We modeled the interaction between ROS and AC fields approximating the rod cell by a prolate spheroid with a very long axis. The internal compartment of the ellipsoid was considered to be filled with an inhomogeneous medium consisting of alternating layers of membrane and cytoplasm as media modeling the disks. This theoretical model proved to be in good agreement with the experimental results and enabled the derivation (by fitting with the experimental results) of the membrane and cytosol parameters for normal and damaged cells.

  17. Time-resolved electric-field-induced second harmonic

    NASA Astrophysics Data System (ADS)

    Meshulam, Guilia; Berkovic, Garry; Kotler, Zvi

    2001-12-01

    One limitation of using electric field induced second harmonic (EFISH) to determine the molecular first hyperpolarizability (beta) of nonlinear optical molecules lies in the fact that part of the second harmonic signal comes from the second hyperpolarizability (gamma) produced by mixing two optical fields with the DC field. In analyzing EFISH results, the second hyperpolarizability contribution of the studied molecules is generally neglected. We present a modified time resolved EFISH technique that allows us, in a single experiment, to determine separately the beta and the gamma contributions. We study para-nitro aniline dissolved in Glycerol, a highly viscous solvent, and apply the DC field via a high voltage pulse with a fast rise time of approximately 40 nsec. As a result, the orientation of the molecules under the applied electric field is slow relative to the build-up of the field, enabling us to directly measure only the DC induced second harmonic (gamma contribution), at the beginning of the HV pulse. The pure beta contribution is determined from the difference between this signal and the conventional EFISH signal at the plateau of the HV pulse. Our result confirm that the gamma contribution is indeed less than 10% of the total.

  18. Non-stationary corona around multi-point system in atmospheric electric field: II. Altitude and time variation of electric field

    NASA Astrophysics Data System (ADS)

    Bazelyan, E. M.; Raizer, Yu. P.; Aleksandrov, N. L.

    2014-03-01

    The vertical electric field profile during thunderstorms was studied numerically and analytically above the plane ground surface with irregularities that generated ions when the surface electric field was sufficient for ion emission. The computer model of a plane emitting ions into the atmosphere simulated a limiting case of a non-stationary glow corona occurring near the tips of a multi-point ground system in a time-varying thundercloud electric field. The evolution of electric field profiles for various rates of change of thundercloud electric field was analyzed and the peculiarities of electric field measurements during thunderstorms were considered. A computer model was developed to estimate the temporal evolution of electric field above a multi-point coronating system. Conditions under which the electric field evolution above a multi-electrode system is similar to that above a plane emitting surface were determined. The evolution of the surface electric field below coronating points in a multi-electrode system was calculated. Conditions when the surface electric field tends to the thundercloud electric field necessary for corona onset in a multi-point system were obtained.

  19. Redox processes at a nanostructured interface under strong electric fields

    NASA Astrophysics Data System (ADS)

    Steurer, Wolfram; Surnev, Svetlozar; Netzer, Falko P.; Sementa, Luca; Negreiros, Fabio R.; Barcaro, Giovanni; Durante, Nicola; Fortunelli, Alessandro

    2014-08-01

    Manipulation of chemistry and film growth via external electric fields is a longstanding goal in surface science. Numerous systems have been predicted to show such effects but experimental evidence is sparse. Here we demonstrate in a custom-designed UHV apparatus that the application of spatially extended, homogeneous, very high (>1 V nm-1) DC-fields not only changes the system energetics but triggers dynamic processes which become important much before static contributions appreciably modify the potential energy landscape. We take a well characterized ultrathin NiO film on a Ag(100) support as a proof-of-principle test case, and show how it gets reduced to supported Ni clusters under fields exceeding the threshold of +0.9 V nm-1. Using an effective model, we trace the observed interfacial redox process down to a dissociative electron attachment resonant mechanism. The proposed approach can be easily implemented and generally applied to a wide range of interfacial systems, thus opening new opportunities for the manipulation of film growth and reaction processes at solid surfaces under strong external fields.Manipulation of chemistry and film growth via external electric fields is a longstanding goal in surface science. Numerous systems have been predicted to show such effects but experimental evidence is sparse. Here we demonstrate in a custom-designed UHV apparatus that the application of spatially extended, homogeneous, very high (>1 V nm-1) DC-fields not only changes the system energetics but triggers dynamic processes which become important much before static contributions appreciably modify the potential energy landscape. We take a well characterized ultrathin NiO film on a Ag(100) support as a proof-of-principle test case, and show how it gets reduced to supported Ni clusters under fields exceeding the threshold of +0.9 V nm-1. Using an effective model, we trace the observed interfacial redox process down to a dissociative electron attachment resonant

  20. Questions Students Ask: Why Not Bend Light with an Electric Field?

    ERIC Educational Resources Information Center

    Van Heuvelen, Alan

    1983-01-01

    In response to a question, "Why not use a magnetic or electric field to deflect light?," reviews the relation between electric charge and electric/magnetic fields. Discusses the Faraday effect, (describing matter as an intermediary in the rotation of the place of polarization) and other apparent interactions of light with electric/magnetic fields.…

  1. Magnetic field exposure from electric appliances and childhood cancer

    SciTech Connect

    Savitz, D.A.; John, E.M.; Kleckner, R.C. )

    1990-05-01

    The effect on childhood cancer of prolonged exposure to 60-H magnetic fields from electric appliances was examined using interview data from a recently completed case-control study. Exposures of children aged 0-14 years whose incident cancers were diagnosed between 1976 and 1983 and who resided in the Denver, Colorado, Standard Metropolitan Statistical Area were compared with those of controls selected by random digit dialing, matched on age, sex, and telephone exchange area. Parents of 252 cases and 222 controls were interviewed at home about the use of electric appliances by the mother during pregnancy (prenatal exposure) and by the child (postnatal exposure). After adjustment for income, prenatal electric blanket exposure was associated with a small increase in the incidence of childhood cancers (odds ratio (OR) = 1.3, 95% confidence interval (CI) 0.7-2.2) that was more pronounced for leukemia (OR = 1.7, 95% CI 0.8-3.6) and brain cancer (OR = 2.5, 95% CI 1.1-5.5). Postnatal exposure to electric blankets was also weakly associated with childhood cancer (OR = 1.5, 95% CI 0.6-3.4), with a larger but imprecise association with acute lymphocytic leukemia (OR = 1.9, 95% CI 0.6-6.5). Water beds and bedside electric clocks were unrelated to childhood cancer incidence. Results are limited by nonresponse and imprecision resulting from the rarity of appliance use, especially for subgroups of cases. Nonetheless, electric blankets, one of the principal sources of prolonged magnetic field exposure, were weakly associated with childhood cancer and warrant a more thorough evaluation.

  2. Dynamics of Drop Formation in an Electric Field.

    PubMed

    Notz; Basaran

    1999-05-01

    The effect of an electric field on the formation of a drop of an inviscid, perfectly conducting liquid from a capillary which protrudes from the top plate of a parallel-plate capacitor into a surrounding dynamically inactive, insulating gas is studied computationally. This free boundary problem which is comprised of the surface Bernoulli equation for the transient drop shape and the Laplace equation for the velocity potential inside the drop and the electrostatic potential outside the drop is solved by a method of lines incorporating the finite element method for spatial discretization. The finite element algorithm employed relies on judicious use of remeshing and element addition to a two-region adaptive mesh to accommodate large domain deformations, and allows the computations to proceed until the thickness of the neck connecting an about to form drop to the rest of the liquid in the capillary is less than 0.1% of the capillary radius. The accuracy of the computations is demonstrated by showing that in the absence of an electric field predictions made with the new algorithm are in excellent agreement with boundary integral calculations (Schulkes, R. M. S. M. J. Fluid Mech. 278, 83 (1994)) and experimental measurements on water drops (Zhang, X., and Basaran, O. A. Phys. Fluids 7(6), 1184 (1995)). In the presence of an electric field, the algorithm predicts that as the strength of the applied field increases, the mode of drop formation changes from simple dripping to jetting to so-called microdripping, in accordance with experimental observations (Cloupeau, M., and Prunet-Foch, B. J. Aerosol Sci. 25(6), 1021 (1994); Zhang, X., and Basaran, O. A. J. Fluid Mech. 326, 239 (1996)). Computational predictions of the primary drop volume and drop length at breakup are reported over a wide range of values of the ratios of electrical, gravitational, and inertial forces to surface tension force. In contrast to previously mentioned cases where both the flow rate in the tube

  3. Wave rectification in plasma sheaths surrounding electric field antennas

    NASA Technical Reports Server (NTRS)

    Boehm, M. H.; Carlson, C. W.; Mcfadden, J. P.; Clemmons, J. H.; Ergun, R. E.; Mozer, F. S.

    1994-01-01

    Combined measurements of Langmuir or broadband whistler wave intensity and lower-frequency electric field waveforms, all at 10-microsecond time resolution, were made on several recent sounding rockets in the auroral ionosphere. It is found that Langmuir and whistler waves are partically rectified in the plasma sheaths surrounding the payload and the spheres used as antennas. This sheath rectification occurs whenever the high frequency (HF) potential across the sheath becomes of the same order as the electron temperature or higher, for wave frequencies near or above the ion plasma frequency. This rectification can introduce false low-frequency waves into measurements of electric field spectra when strong high-frequency waves are present. Second harmonic signals are also generated, although at much lower levels. The effect occurs in many different plasma conditions, primarily producing false waves at frequencies that are low enough for the antenna coupling to the plasma to be resistive.

  4. Decay of H atoms excited in small electric fields

    SciTech Connect

    Van Zyl, B.; Van Zyl, B.K.; Westerveld, W.B.

    1988-06-01

    The branching ratios for radiative decay of H atoms excited in small electric fields (0--5 Vcm) have been calculated for the nl states up to n = 6. A simple computational procedure was employed, allowing only for Stark-effect mixing of levels with the same values of the quantum numbers (n,j,m/sub j/). The results are compared with more detailed calculations available for 3l-state decay made using the density-matrix formalism, and new calculations of this type reported here for 4l-state decay. In conjunction with theory, this allowed the domain of validity of the simple computational procedure to be established as a function of n. The results show that the branching ratios depend quite strongly on electric-field magnitude, pointing to the need to exercise caution in measurements of H emissions, and in application of the available data to other problems.

  5. Electric control of spin in monolayer WSe₂ field effect transistors.

    PubMed

    Gong, Kui; Zhang, Lei; Liu, Dongping; Liu, Lei; Zhu, Yu; Zhao, Yonghong; Guo, Hong

    2014-10-31

    We report first-principles theoretical investigations of quantum transport in a monolayer WSe2 field effect transistor (FET). Due to strong spin-orbit interaction (SOI) and the atomic structure of the two-dimensional lattice, monolayer WSe2 has an electronic structure that exhibits Zeeman-like up-down spin texture near the K and K' points of the Brillouin zone. In a FET, the gate electric field induces an extra, externally tunable SOI that re-orients the spins into a Rashba-like texture thereby realizing electric control of the spin. The conductance of FET is modulated by the spin texture, namely by if the spin orientation of the carrier after the gated channel region, matches or miss-matches that of the FET drain electrode. The carrier current I(τ, s) in the FET is labelled by both the valley index and spin index, realizing valleytronics and spintronics in the same device. PMID:25287881

  6. Comparison of electric field exposure measurement methods under power lines.

    PubMed

    Korpinen, Leena; Kuisti, Harri; Tarao, Hiroo; Pääkkönen, Rauno; Elovaara, Jarmo

    2014-01-01

    The object of the study was to investigate extremely low frequency (ELF) electric field exposure measurement methods under power lines. The authors compared two different methods under power lines: in Method A, the sensor was placed on a tripod; and Method B required the measurer to hold the meter horizontally so that the distance from him/her was at least 1.5 m. The study includes 20 measurements in three places under 400 kV power lines. The authors used two commercial three-axis meters, EFA-3 and EFA-300. In statistical analyses, they did not find significant differences between Methods A and B. However, in the future, it is important to take into account that measurement methods can, in some cases, influence ELF electric field measurement results, and it is important to report the methods used so that it is possible to repeat the measurements.

  7. Evidence for Subauroral Electric Fields from IMAGE EUV

    NASA Technical Reports Server (NTRS)

    Six, N. Frank (Technical Monitor); Gallagher, D.; Adrian, M.; Goldstein, J.; Sandel, B.

    2002-01-01

    The IMAGE Mission Extreme Ultraviolet Imager routinely provides global snapshots of the plasmasphere from high latitude. In these 10-minute images, intensity edges have been identified with the plasmapause and other strong gradients in plasmaspheric density. In addition to the classic sunward directed convection tail and its entrainment in corotation during storm-time recovery, the plasmapause boundary reveals a wide variety of structures thought to result from penetration of the solar wind induced convection electric field to subauroral latitudes. The so-called shoulder feature has most prominently been discussed in the context of under shielding in response to changes in the convection electric field strength. It is not yet clear whether all of the observed surface structures on the plasmasphere can be explained in this manner. The types of structures observed and their frequency of occurrence will be presented. A statistical view of these structures and associated solar wind conditions will also be presented.

  8. Simulations of auroral plasma processes - Electric fields, waves and particles

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Thiemann, H.; Schunk, R. W.

    1987-01-01

    Plasma processes driven by current sheets of finite thicknesses in an ambient magnetized plasma are studied using a 2 1/2 dimensional particle-in-cell code, and similarities are found between simulated plasma processes and those observed in the auroral plasma. Current sheets are shown to be bounded by large perpendicular electric fields occurring near their edges above the conducting boundary. Shaped potential structures form when the current sheets are narrow, and when the current sheets are wide, potential structures develop a significant parallel potential drop such that the electrons are accelerated upwards. Downward parallel electric fields of variable strength are noted in the downward current region, and double layer formation is seen in both narrow and wide current sheets. High frequency oscillations near the electron plasma frequency and its harmonic are seen, and low frequency waves are observed.

  9. Shielding ultracold dipolar molecular collisions with electric fields

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Bohn, John

    2016-05-01

    The prospect for shielding ultracold dipolar molecules from inelastic and reactive collisions is investigated. Molecules placed in their first rotationally excited states are found to exhibit effective long-range repulsion for applied electric fields above a certain critical value. This repulsion can safely allow the molecules to scatter while reducing the risk of inelastic or chemically reactive collisions. Several molecular species of molecules of experimental interest such as NaRb, NaK, RbSr, SrF, BaF, and YO, are considered and all are shown to exhibit orders of magnitude suppression in quenching rates in a sufficiently strong laboratory electric field. We acknowledge the financial support of the COPOMOL project (ANR-13-IS04-0004) from Agence Nationale de la Recherche and the ARO MURI Grant No. W911NF-12-1-0476.

  10. Shielding 2Σ ultracold dipolar molecular collisions with electric fields

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Bohn, John L.

    2016-01-01

    The prospects for shielding ultracold, paramagnetic, dipolar molecules from inelastic and chemical collisions are investigated. Molecules placed in their first rotationally excited states are found to exhibit effective long-range repulsion for applied electric fields above a certain critical value, as previously shown for nonparamagnetic molecules. This repulsion can safely allow the molecules to scatter while reducing the risk of inelastic or chemically reactive collisions. Several molecular species of 2Σ molecules of experimental interest—RbSr, SrF, BaF, and YO—are considered, and all are shown to exhibit orders of magnitude suppression in quenching rates in a sufficiently strong laboratory electric field. It is further shown that, for these molecules described by Hund's coupling case (b), electronic and nuclear spins play the role of spectator with respect to the shielding.

  11. Satellite Studies of Ionospheric Electric Fields and Neutral Winds

    NASA Technical Reports Server (NTRS)

    Fejer, Bela G.

    2002-01-01

    We have studied mid- and low-latitude electrodynamic and neutral thermospheric dynamic processes using measurements on board the AE-E, DE-2, and UARS (Upper Atmosphere Research Satellite) satellites, and global convection and general circulation models. These studies have determined the morphology of the equatorial zonal electric fields, the response of equatorial plasma irregularities to magnetospheric disturbances, and the time dependent response of the mid- and low latitude electric fields to magnetospheric disturbances. We have also used extensive F region zonal and meridional wind data obtained by Wind Imaging Interferometer (WINDII) instrument on board the UARS to study the latitudinal dependence of daytime disturbance winds during magnetically disturbed periods and the general characteristics of the global thermospheric disturbance wind system during geomagnetically active periods. This project has supported the PhD thesis research of John Emmert.

  12. Poloidal rotation in tokamaks with large electric field gradients

    SciTech Connect

    Hinton, F.L.; Kim, Y.

    1995-01-01

    The ion poloidal flow velocity near the plasma edge in a tokamak has been calculated by extending neoclassical theory to include orbit squeezing, which is the reduction of the ion banana widths due to radial electric field shear. The pressure gradient-driven ion parallel flow is reduced by orbit squeezing, and then no longer cancels the diamagnetic flow in its contribution to poloidal flow. This allows the poloidal flow velocity to be a significant fraction of the ion diamagnetic velocity, which can be much larger than the standard neoclassical value (proportional to the ion temperature gradient). Equations for determining the poloidal flow and radial electric field profiles self-consistently are given. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  13. Electric and magnetic fields from two-dimensional anisotropic bisyncytia.

    PubMed Central

    Sepulveda, N G; Wikswo, J P

    1987-01-01

    Cardiac tissue can be considered macroscopically as a bidomain, anisotropic conductor in which simple depolarization wavefronts produce complex current distributions. Since such distributions may be difficult to measure using electrical techniques, we have developed a mathematical model to determine the feasibility of magnetic localization of these currents. By applying the finite element method to an idealized two-dimensional bisyncytium with anisotropic conductivities, we have calculated the intracellular and extracellular potentials, the current distributions, and the magnetic fields for a circular depolarization wavefront. The calculated magnetic field 1 mm from the tissue is well within the sensitivity of a SQUID magnetometer. Our results show that complex bisyncytial current patterns can be studied magnetically, and these studies should provide valuable insight regarding the electrical anisotropy of cardiac tissue. PMID:3580484

  14. Nonlinear dependence of complex plasma parameters on applied electric field

    SciTech Connect

    Sodha, M. S.; Mishra, S. K.; Misra, Shikha

    2011-02-15

    This paper presents an analysis of the effect of an applied static or alternating electric field on the electron density and temperature, charge on the particles, the electron collision frequency, the electronic conductivity, and the coefficient of electron diffusion in a complex plasma (i) when not illuminated by light, which can cause photoelectric emission from the particles, and (ii) when so illuminated. A parametric analysis based on computations for some typical sets of parameters has also been made. The significance of this work to (i) the disappearance of a polar mesospheric summer echoes structure by radio wave and (ii) magneto-hydrodynamic (MHD) power generation has also been indicated. The time dependence of the various parameters after the application of the electric field has also been discussed.

  15. Microsecond-scale electric field pulses in cloud lightning discharges

    NASA Technical Reports Server (NTRS)

    Villanueva, Y.; Rakov, V. A.; Uman, M. A.; Brook, M.

    1994-01-01

    From wideband electric field records acquired using a 12-bit digitizing system with a 500-ns sampling interval, microsecond-scale pulses in different stages of cloud flashes in Florida and New Mexico are analyzed. Pulse occurrence statistics and waveshape characteristics are presented. The larger pulses tend to occur early in the flash, confirming the results of Bils et al. (1988) and in contrast with the three-stage representation of cloud-discharge electric fields suggested by Kitagawa and Brook (1960). Possible explanations for the discrepancy are discussed. The tendency for the larger pulses to occur early in the cloud flash suggests that they are related to the initial in-cloud channel formation processes and contradicts the common view found in the atmospheric radio-noise literature that the main sources of VLF/LF electromagnetic radiation in cloud flashes are the K processes which occur in the final, or J type, part of the cloud discharge.

  16. Rational modulation of neuronal processing with applied electric fields.

    PubMed

    Bikson, Marom; Radman, Thomas; Datta, Abhishek

    2006-01-01

    Traditional approaches to electrical stimulation, using trains of supra-threshold pulses to trigger action potentials, may be replaced or augmented by using 'rational' sub-threshold stimulation protocols that incorporate knowledge of single neuron geometry, inhomogeneous tissue properties, and nervous system information coding. Sub-threshold stimulation, at intensities (well) below those sufficient to trigger action potentials, may none-the-less exert a profound effect on brain function through modulation of concomitant neuronal activity. For example, small DC fields may coherently polarize a network of neurons and thus modulate the simultaneous processing of afferent synaptic input as well as resulting changes in synaptic plasticity. Through 'activity-dependent plasticity', sub-threshold fields may allow specific targeting of pathological networks and are thus particularly suitable to overcome the poor anatomical focus of noninvasive (transcranial) electrical stimulation. Additional approaches to improve targeting in transcranial stimulation using novel electrode configurations are also introduced.

  17. Electric field stimulation setup for photoemission electron microscopes.

    PubMed

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  18. Electric field stimulation setup for photoemission electron microscopes

    SciTech Connect

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-15

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg{sub 0.66}Nb{sub 0.33})O{sub 3}-PbTiO{sub 3} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/PMN-PT artificial multiferroic nanostructures.

  19. Electric field stimulation setup for photoemission electron microscopes.

    PubMed

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures. PMID:26329198

  20. Electric field stimulation setup for photoemission electron microscopes

    NASA Astrophysics Data System (ADS)

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg0.66Nb0.33)O3-PbTiO3 and La0.7Sr0.3MnO3/PMN-PT artificial multiferroic nanostructures.