Sample records for electric field simultaneously

  1. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields.

    PubMed

    Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji

    2016-10-03

    Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually limited to a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which could manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for the manipulation of multi-physics fields.

  2. Current densities in a pregnant woman model induced by simultaneous ELF electric and magnetic field exposure

    NASA Astrophysics Data System (ADS)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2008-01-01

    The pregnant woman model SILVY was studied to ascertain to what extent the electric current densities induced by 50 Hz homogeneous electric and magnetic fields increase in the case of simultaneous exposure. By vectorial addition of the electric current densities, it could be shown that under worst case conditions the basic restrictions recommended by ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines are exceeded within the central nervous system (CNS) of the mother, whereas in sole field exposure they are not. However, within the foetus the induced current densities do not comply with basic restrictions, either from single reference-level electric fields or from simultaneous exposure to electric and magnetic fields. Basic limits were considerably exceeded.

  3. Simultaneous electric-field measurements on nearby balloons.

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.

    1972-01-01

    Electric-field payloads were flown simultaneously on two balloons from Great Whale River, Canada, on September 21, 1971, to provide data at two points in the upper atmosphere that differed in altitude by more than one atmospheric density scale height and in horizontal position by 30-140 km. The altitude dependences in the two sets of data prove conclusively that the vertical electric field at balloon altitudes stems from fair-weather atmospheric electricity sources and that the horizontal fields are mapped down ionospheric fields, since the weather-associated horizontal fields were smaller than 2 mV/m.

  4. Plasmonic metasurface cavity for simultaneous enhancement of optical electric and magnetic fields in deep subwavelength volume.

    PubMed

    Hong, Jongwoo; Kim, Sun-Je; Kim, Inki; Yun, Hansik; Mun, Sang-Eun; Rho, Junsuk; Lee, Byoungho

    2018-05-14

    It has been hard to achieve simultaneous plasmonic enhancement of nanoscale light-matter interactions in terms of both electric and magnetic manners with easily reproducible fabrication method and systematic theoretical design rule. In this paper, a novel concept of a flat nanofocusing device is proposed for simultaneously squeezing both electric and magnetic fields in deep-subwavelength volume (~λ 3 /538) in a large area. Based on the funneled unit cell structures and surface plasmon-assisted coherent interactions between them, the array of rectangular nanocavity connected to a tapered nanoantenna, plasmonic metasurface cavity, is constructed by periodic arrangement of the unit cell. The average enhancement factors of electric and magnetic field intensities reach about 60 and 22 in nanocavities, respectively. The proposed outstanding performance of the device is verified numerically and experimentally. We expect that this work would expand methodologies involving optical near-field manipulations in large areas and related potential applications including nanophotonic sensors, nonlinear responses, and quantum interactions.

  5. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    NASA Technical Reports Server (NTRS)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  6. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  7. Measuring Effects Of Lightning On Power And Telephone Lines

    NASA Technical Reports Server (NTRS)

    Jafferis, William; Thompson, E. M.; Medelius, P.; Rubinstein, M.; Tzeng, A.

    1992-01-01

    Spherical antenna senses both horizontal and vertical fields simultaneously. Measures "fast" components of electric field used in conjunction with other equipment, including antenna measuring "slow" vertical component of electric field; microphone that senses thunder; cameras making visual records, which locate lightning; magnetic-field sensor; optical sensors; and instruments measuring speed and direction of wind.

  8. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques.

    PubMed

    Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-04-05

    Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS 2 ) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS 2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics.

  9. A Magnetic Field Response Recorder: A New Tool for Measurement Acquisition

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2006-01-01

    A magnetic field response recorder was developed to facilitate a measurement acquisition method that uses magnetic fields to power and to interrogate all sensors. Sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic field responses when electrically activated by oscillating magnetic fields. When electrically activated, the sensor's magnetic field response attributes (frequency, amplitude and bandwidth) correspond to the one or more physical states that each sensor measures. The response recorder makes it possible to simultaneously measure two unrelated physical properties using this class of sensors. The recorder is programmable allowing it to analyze one or more response attributes simultaneously. A single sensor design will be used to demonstrate that the acquisition method and the sensor example can be used to for all phases of a component's life from manufacturing to damage that can destroy it.

  10. Horizontal electric fields from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Thomson, E. M.; Medelius, P. J.; Rubinstein, M.; Uman, M. A.; Johnson, J.

    1988-01-01

    An experiment to measure simultaneously the wideband horizontal and vertical electric fields from lightning return strokes is described. Typical wave shapes of the measured horizontal and vertical fields are presented, and the horizontal fields are characterized. The measured horizontal fields are compared with calculated horizontal fields obtained by applying the wavetilt formula to the vertical fields. The limitations and sources of error in the measurement technique are discussed.

  11. Nonideal ultrathin mantle cloak for electrically large conducting cylinders.

    PubMed

    Liu, Shuo; Zhang, Hao Chi; Xu, He-Xiu; Cui, Tie Jun

    2014-09-01

    Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.

  12. Quasi-simultaneous Measurements of Ionic Currents by Vibrating Probe and pH Distribution by Ion-selective Microelectrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, H.S.; Lamaka, S.V.; Taryba, M.

    2011-01-01

    This work reports a new methodology to measure quasi-simultaneously the local electric fields and the distribution of specific ions in a solution via selective microelectrodes. The field produced by the net electric current was detected using the scanning vibrating electrode technique (SVET) with quasi-simultaneous measurements of pH with an ion-selective microelectrode (pH-SME). The measurements were performed in a validation cell providing a 48 ?m diameter Pt wire cross section as a source of electric current. A time lag between acquiring each current density and pH data-point was 1.5 s due to the response time of pH-SME. The quasi-simultaneous SVET-pH measurementsmore » that correlate electrochemical oxidation-reduction processes with acid-base chemical equilibria are reported for the first time. No cross-talk between the vibrating microelectrode and the ion-selective microelectrode could be detected under given experimental conditions.« less

  13. Electric emissions from electrical appliances.

    PubMed

    Leitgeb, N; Cech, R; Schröttner, J

    2008-01-01

    Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intracorporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration.

  14. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions andmore » hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.« less

  15. Stripe formation in an immiscible polymer blend under electric and shear-flow fields

    NASA Astrophysics Data System (ADS)

    Na, Yang-Ho; Shibuya, Tetsunori; Ujiie, Seiji; Nagaya, Tomoyuki; Orihara, Hiroshi

    2008-04-01

    We found a stripe formation in an emulsion of a liquid crystalline polymer (LCP) and a machine oil (OIL) in electric and shear fields. Through the simultaneous measurement with a confocal scanning laser microscope and a rheometer, it was clearly shown that the formation of stripes, which are periodically arrayed, leads to the increase of the shear stress. The droplets, which are one component of the emulsion, start to be connected at low electric fields and then change into the stripes with the increase of electric field. Finally, a three-dimensional network is formed at high electric fields. The period and fluctuation of the stripe structure were also investigated in detail.

  16. Soap-film flow induced by electric fields in asymmetric frames

    NASA Astrophysics Data System (ADS)

    Mollaei, S.; Nasiri, M.; Soltanmohammadi, N.; Shirsavar, R.; Ramos, A.; Amjadi, A.

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  17. Soap-film flow induced by electric fields in asymmetric frames.

    PubMed

    Mollaei, S; Nasiri, M; Soltanmohammadi, N; Shirsavar, R; Ramos, A; Amjadi, A

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  18. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOEpatents

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  19. Achieving bifunctional cloak via combination of passive and active schemes

    NASA Astrophysics Data System (ADS)

    Lan, Chuwen; Bi, Ke; Gao, Zehua; Li, Bo; Zhou, Ji

    2016-11-01

    In this study, a simple and delicate approach to realizing manipulation of multi-physics field simultaneously through combination of passive and active schemes is proposed. In the design, one physical field is manipulated with passive scheme while the other with active scheme. As a proof of this concept, a bifunctional device is designed and fabricated to behave as electric and thermal invisibility cloak simultaneously. It is found that the experimental results are consistent with the simulated ones well, confirming the feasibility of our method. Furthermore, the proposed method could also be extended to other multi-physics fields, which might lead to potential applications in thermal, electric, and acoustic areas.

  20. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  1. Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions

    NASA Technical Reports Server (NTRS)

    Weimer, D. R.; Goertz, C. K.; Gurnett, D. A.; Maynard, N. C.; Burch, J. L.

    1985-01-01

    Nearly simultaneous measurements of auroral zone electric fields are obtained by the Dynamics Explorer spacecraft at altitudes below 900 km and above 4,500 km during magnetic conjunctions. The measured electric fields are usually perpendicular to the magnetic field lines. The north-south meridional electric fields are projected to a common altitude by a mapping function which accounts for the convergence of the magnetic field lines. When plotted as a function of invariant latitude, graphs of the projected electric fields measured by both DE-1 and DE-2 show that the large-scale electric field is the same at both altitudes, as expected. Superimposed on the large-scale fields, however, are small-scale features with wavelengths less than 100 km which are larger in magnitude at the higher altitude. Fourier transforms of the electric fields show that the magnitudes depend on wavelength. Outside of the auroral zone the electric field spectrums are nearly identical. But within the auroral zone the high and low altitude electric fields have a ratio which increases with the reciprocal of the wavelength. The small-scale electric field variations are associated with field-aligned currents. These currents are measured with both a plasma instrument and magnetometer on DE-1.

  2. Direct comparison between satellite electric field measurements and the visual aurora

    NASA Technical Reports Server (NTRS)

    Swift, D. W.; Gurnett, D. A.

    1973-01-01

    Electric field data from two passes of the Injun 5 satellite, one corresponding to magnetically quiet conditions and one corresponding to substorm conditions, are compared with simultaneous all-sky-camera data from College, Alaska. In each case, a significant deviation of the electric field from the expected V x B field (where V is the satellite velocity) was evident and a distinct electric field reversal could be identified. In the region of substantial electric field equatorward of the electric field reversal a diffuse auroral arc was observed during the magnetically quiet pass and auroral patches were observed during the substorm pass. The motion of the auroral patches was consistent with the general direction and magnitude of the E x B drift computed from the satellite electric field measurements. In the substorm case the electric field reversal occurred very near a discrete auroral arc at the poleward side of the diffuse arcs and patches. Comparison of the quiet time and substorm cases suggests that the convection electric field penetrates deeper into the magnetosphere during a substorm.

  3. Method and apparatus for atomization and spraying of molten metals

    DOEpatents

    Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.

    1990-01-01

    A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current.

  4. Method and apparatus for atomization and spraying of molten metals

    DOEpatents

    Hobson, D.O.; Alexeff, I.; Sikka, V.K.

    1988-07-19

    A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current. 11 figs.

  5. Effect of ac electric field on the dynamics of a vesicle under shear flow in the small deformation regime

    NASA Astrophysics Data System (ADS)

    Sinha, Kumari Priti; Thaokar, Rochish M.

    2018-03-01

    Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.

  6. The detection of the electric field vertical distribution underneath thundercloud: Principle and applications

    NASA Technical Reports Server (NTRS)

    Soula, Serge; Chauzy, Serge

    1991-01-01

    During the Florida 89 experiment at Kennedy Space Center, a new system was used in order to obtain the vertical distribution of the electric field underneath thunderstorms. It consists of a standard shutter field mill at ground level and five other field sensors suspended from a cable fastened to a tethered balloon located at an altitude of about 1000 meters. It also includes a reception station for telemetered information transmitted by sensors, a processing system in order to store data, and real time display on a screen to show the simultaneous field variations at each level along with the instantaneous electric field profile. The first results obtained show the great importance of the electric field vertical distribution. The field detected at a height of 600m reaches 65 kV/m while that at the surface does not exceed 5 kV/m. The field intensity in altitude is a better criterion for determining the right moment to launch a rocket devoted to flash triggering. Using Gauss's law, the simultaneous field variations at several levels are used in order to evaluate charge densities. Average values close to 1nC.m(-3) are calculated in layers up to 600 m. The calculation of different average charge densities leads to the characterization of the layer between cloud and ground just before the leader propagation in the case of cloud to ground flash.

  7. Preliminary Findings from the One-Year Electric Field Study in the North Slope of Alaska (OYES-NSA), Atmospheric Radiation Measurement (ARM) Field Campaign

    NASA Astrophysics Data System (ADS)

    Lavigne, T.; Liu, C.

    2017-12-01

    Previous studies focusing on the comparison of the measured electric field to the physical properties of global electrified clouds have been conducted almost exclusively in the Southern Hemisphere. The One-Year Electric Field Study-North Slope of Alaska (OYES-NSA) aims to establish a long-running collection of this valuable electric field data in the Northern Hemisphere. Presented here is the six-month preliminary data and results of the OYES-NSA Atmospheric Radiation Mission (ARM) field campaign. The local electric field measured in Barrow, Alaska using two CS110 reciprocating shutter field meters, has been compared to simultaneous measurements from the ARM Ka-Band zenith radar, to better understand the influence and contribution of different types of clouds on the local electric field. The fair-weather electric field measured in Barrow has also been analyzed and compared to the climatology of electric field at Vostok Station, Antarctica. The combination of the electric field dataset in the Northern Hemisphere, alongside the local Ka cloud radar, global Precipitation Feature (PF) database, and quasi-global lightning activity (55oN-55oS), allows for advances in the physical understanding of the local electric field, as well as the Global Electric Circuit (GEC).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Meng-Lin; Peng, J. S.; Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw

    We studied the digestive ripening of thiol-capped gold nanoparticles under simultaneous action of electric field and reflux heating in a silicone oil bath at 130 °C, using transmission electron microscopy. Observation revealed that a polydispersed gold nanoparticle system reached the state of nearly monodispersity under the action of an electric field and the thiol-capped gold nanoparticles carried negative charges. The electric field caused the increase of the particle size for the nearly monodispersed gold nanoparticle system. The self-assembly of the nearly monodisperse gold nanoparticles under the action of an electric field of a high field intensity was observed. The gold nanoparticlesmore » tended to form self-assembled nanostructures of six-fold symmetry. This study provides a new route for system engineering to control the particle size of metallic nanoparticles by electric field and digestive ripening.« less

  9. Trajectory of Charged Particle in Combined Electric and Magnetic Fields Using Interactive Spreadsheets

    ERIC Educational Resources Information Center

    Tambade, Popat S.

    2011-01-01

    The objective of this article is to graphically illustrate to the students the physical phenomenon of motion of charged particle under the action of simultaneous electric and magnetic fields by simulating particle motion on a computer. Differential equations of motions are solved analytically and path of particle in three-dimensional space are…

  10. Hy-wire and fast electric field change measurements near an isolated thunderstorm, appendix C

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Levine, D. M.

    1983-01-01

    Electric field measurements near an isolated thunderstorm at 6.4 km distance are presented from both a tethered balloon experiment called Hy-wire and also from ground based fast and slow electric field change systems. Simultaneous measurements were made of the electric fields during several lightning flashes at the beginning of the storm which the data clearly indicate were cloud-to-ground flashes. In addition to providing a comparison between the Hy-wire technique for measuring electric fields and more traditional methods, these data are interesting because the lightning flashes occurred prior to changes in the dc electric field, although Hy-wire measured changes in the dc field of up to 750 V/m in the direction opposite to the fair weather field a short time later. Also, the dc electric field was observed to decay back to its preflash value after each flash. The data suggest that Hy-wire was at the field reversal distance from this storm and suggest the charge realignment was taking place in the cloud with a time constant on the order of 20 seconds.

  11. Horizontal electric fields from lightning return strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, E.M.; Uman, M.A.; Johnson, J.

    1985-01-01

    Measurements are presented of simultaneous horizontal and vertical electric fields from both close and distant lightning return strokes. The data were obtained during summer 1984 at the Kennedy Space Center, Florida, using an electrically isolated spherical antenna having a system bandwidth of 3 Hz to 5 MHz. Lightning signals were obtained from flashes at distances from a few to 100 kilometers. Since the horizontal electric field is in part determined by the local ground conductivity, that parameter was measured as a function of depth. The horizontal fields from lightning return strokes had typically 1/50 the peak amplitude of the verticalmore » fields and waveshapes which were consistant with available theory, as expressed by the ''wavetilt'' formula.« less

  12. Lunar electrical conductivity, permeability,and temperature from Apollo magnetometer experiments

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate and electrical conductivity profile for the moon, and those profiles were used to calculate the lunar temperature for an assumed lunar material of olivine. Simultaneous measurements by magnetometers on the lunar surface and in orbit around the moon were use to construct a whole-moon hysteresis curve, from which the global lunar magnetic permeability is determined. Total iron abundance (sum of iron in the ferromagnetic and paramagnetic states) was calculated for two assumed compositional models of the lunar interior. Other lunar models with an iron core and with a shallow iron-rich layer also discussed in light of the measured global lunar permeability. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Velocities and thicknesses of the earth's magnetopause and bow shock were also estimated from simultaneous magnetometer measurements.

  13. Transient Torque Method: A Fast and Nonintrusive Technique to Simultaneously Determine Viscosity and Electrical Conductivity of Semiconducting and Metallic Melts

    NASA Technical Reports Server (NTRS)

    Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.; Zhu, S.

    2004-01-01

    A transient torque method was developed to rapidly and simultaneously determine the viscosity and electrical conductivity of liquid metals and molten semiconductors. The experimental setup of the transient torque method is similar to that of the oscillation cup method. The melt sample is sealed inside a fused silica ampoule, and the ampoule is suspended by a long quartz fiber to form a torsional oscillation system. A rotating magnetic field is used to induce a rotating flow in the conductive melt, which causes the ampoule to rotate around its vertical axis. A sensitive angular detector is used to measure the deflection angle of the ampoule. Based on the transient behavior of the deflection angle as the rotating magnetic field is applied, the electrical conductivity and viscosity of the melt can be obtained simultaneously by numerically fitting the data to a set of governing equations. The transient torque viscometer was applied successfully to measure the viscosity and electrical conductivity of high purity mercury at 53.4 C. The results were in excellent agreement with published data. The method is nonintrusive; capable of rapid measurement of the viscosity of toxic, high vapor pressure melts at elevated temperatures. In addition, the transient torque viscometer can also be operated as an oscillation cup viscometer to measure just the viscosity of the melt or as a rotating magnetic field method to determine the electrical conductivity of a melt or a solid if desired.

  14. Lightning-generated whistler waves observed by probes on the Communication/Navigation Outage Forecast System satellite at low latitudes

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-06-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning-related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401-867 km). Lightning-generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  15. Lightning-Generated Whistler Waves Observed by Probes On The Communication/Navigation Outage Forecast System Satellite at Low Latitudes

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-01-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning ]related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401.867 km). Lightning ]generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  16. Probing dynamic behavior of electric fields and band diagrams in complex semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Turkulets, Yury; Shalish, Ilan

    2018-01-01

    Modern bandgap engineered electronic devices are typically made of multi-semiconductor multi-layer heterostructures that pose a major challenge to silicon-era characterization methods. As a result, contemporary bandgap engineering relies mostly on simulated band structures that are hardly ever verified experimentally. Here, we present a method that experimentally evaluates bandgap, band offsets, and electric fields, in complex multi-semiconductor layered structures, and it does so simultaneously in all the layers. The method uses a modest optical photocurrent spectroscopy setup at ambient conditions. The results are analyzed using a simple model for electro-absorption. As an example, we apply the method to a typical GaN high electron mobility transistor structure. Measurements under various external electric fields allow us to experimentally construct band diagrams, not only at equilibrium but also under any other working conditions of the device. The electric fields are then used to obtain the charge carrier density and mobility in the quantum well as a function of the gate voltage over the entire range of operating conditions of the device. The principles exemplified here may serve as guidelines for the development of methods for simultaneous characterization of all the layers in complex, multi-semiconductor structures.

  17. Voltage sweep ion mobility spectrometry.

    PubMed

    Davis, Eric J; Williams, Michael D; Siems, William F; Hill, Herbert H

    2011-02-15

    Ion mobility spectrometry (IMS) is a rapid, gas-phase separation technique that exhibits excellent separation of ions as a standalone instrument. However, IMS cannot achieve optimal separation power with both small and large ions simultaneously. Similar to the general elution problem in chromatography, fast ions are well resolved using a low electric field (50-150 V/cm), whereas slow drifting molecules are best separated using a higher electric field (250-500 V/cm). While using a low electric field, IMS systems tend to suffer from low ion transmission and low signal-to-noise ratios. Through the use a novel voltage algorithm, some of these effects can be alleviated. The electric field was swept from low to high while monitoring a specific drift time, and the resulting data were processed to create a 'voltage-sweep' spectrum. If an optimal drift time is calculated for each voltage and scanned simultaneously, a spectrum may be obtained with optimal separation throughout the mobility range. This increased the resolving power up to the theoretical maximum for every peak in the spectrum and extended the peak capacity of the IMS system, while maintaining accurate drift time measurements. These advantages may be extended to any IMS, requiring only a change in software.

  18. Optical properties in GaAs/AlGaAs semiparabolic quantum wells by the finite difference method: Combined effects of electric field and magnetic field

    NASA Astrophysics Data System (ADS)

    Yan, Ru-Yu; Tang, Jian; Zhang, Zhi-Hai; Yuan, Jian-Hui

    2018-05-01

    In the present work, the optical properties of GaAs/AlGaAs semiparabolic quantum wells (QWs) are studied under the effect of applied electric field and magnetic field by using the compact-density-matrix method. The energy eigenvalues and their corresponding eigenfunctions of the system are calculated by using the differential method. Simultaneously, the nonlinear optical rectification (OR) and optical absorption coefficients (OACs) are investigated, which are modulated by the applied electric field and magnetic field. It is found that the position and the magnitude of the resonant peaks of the nonlinear OR and OACs can depend strongly on the applied electric field, magnetic field and confined potential frequencies. This gives a new way to control the device applications based on the intersubband transitions of electrons in this system.

  19. Vacuum electrolysis of quartz

    DOEpatents

    King, James Claude

    1976-01-13

    The disclosure is directed to a method for processing quartz used in fabricating crystal resonators such that transient frequency change of resonators exposed to pulse irradiation is virtually eliminated. The method involves heating the crystal quartz in a hydrogen-free atmosphere while simultaneously applying an electric field in the Z-axis direction of the crystal. The electric field is maintained during the cool-down phase of the process.

  20. Consolidation of Partially Stabilized ZrO2 in the Presence of a Noncontacting Electric Field

    NASA Astrophysics Data System (ADS)

    Majidi, Hasti; van Benthem, Klaus

    2015-05-01

    Electric field-assisted sintering techniques demonstrate accelerated densification at lower temperatures than the conventional sintering methods. However, it is still debated whether the applied field and/or resulting currents are responsible for the densification enhancement. To distinguish the effects of an applied field from current flow, in situ scanning transmission electron microscopy experiments with soft agglomerates of partially stabilized yttria-doped zirconia particles are carried out. A new microelectromechanical system-based sample support is used to heat particle agglomerates while simultaneously exposing them to an externally applied noncontacting electric field. Under isothermal condition at 900 °C , an electric field strength of 500 V /cm shows a sudden threefold enhancement in the shrinkage of the agglomerates. The applied electrostatic potential lowers the activation energy for point defect formation within the space charge zone and therefore promotes consolidation. Obtaining similar magnitudes of shrinkage in the absence of any electric field requires a higher temperature and longer time.

  1. Electrical measurements in the atmosphere and the Ionosphere over an active thunderstorm. II - Direct current electric fields and conductivity

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Kelley, M. C.; Siefring, C. L.; Hale, L. C.; Mitchell, J. D.

    1985-01-01

    On August 9, 1981, a series of three rockets was launched over an air mass thunderstorm off the eastern seaboard of Virginia while simultaneous stratospheric and ground-based electric field measurements were made. The conductivity was substantially lower at most altitudes than the conductivity profiles used by theoretical models. Direct current electric fields over 80 mV/m were measured as far away as 96 km from the storm in the stratosphere at 23 km altitude. No dc electric fields above 75 km altitude could be identified with the thunderstorm, in agreement with theory. However, vertical current densities over 120 pA/sq m were seen well above the classical 'electrosphere' (at 50 or 60 km). Frequent dc shifts in the electric field following lightning transients were seen by both balloon and rocket payloads. These dc shifts are clearly identifiable with either cloud-to-ground (increases) or intercloud (decreases) lightning flashes.

  2. Automated characterization and assembly of individual nanowires for device fabrication.

    PubMed

    Yu, Kaiyan; Yi, Jingang; Shan, Jerry W

    2018-05-15

    The automated sorting and positioning of nanowires and nanotubes is essential to enabling the scalable manufacturing of nanodevices for a variety of applications. However, two fundamental challenges still remain: (i) automated placement of individual nanostructures in precise locations, and (ii) the characterization and sorting of highly variable nanomaterials to construct well-controlled nanodevices. Here, we propose and demonstrate an integrated, electric-field based method for the simultaneous automated characterization, manipulation, and assembly of nanowires (ACMAN) with selectable electrical conductivities into nanodevices. We combine contactless and solution-based electro-orientation spectroscopy and electrophoresis-based motion-control, planning and manipulation strategies to simultaneously characterize and manipulate multiple individual nanowires. These nanowires can be selected according to their electrical characteristics and precisely positioned at different locations in a low-conductivity liquid to form functional nanodevices with desired electrical properties. We validate the ACMAN design by assembling field-effect transistors (FETs) with silicon nanowires of selected electrical conductivities. The design scheme provides a key enabling technology for the scalable, automated sorting and assembly of nanowires and nanotubes to build functional nanodevices.

  3. Graphene quantum dot (GQD)-induced photovoltaic and photoelectric memory elements in a pentacene/GQD field effect transistor as a probe of functional interface

    NASA Astrophysics Data System (ADS)

    Kim, Youngjun; Cho, Seongeun; Kim, Hyeran; Seo, Soonjoo; Lee, Hyun Uk; Lee, Jouhahn; Ko, Hyungduk; Chang, Mincheol; Park, Byoungnam

    2017-09-01

    Electric field-induced charge trapping and exciton dissociation were demonstrated at a penatcene/grapheme quantum dot (GQD) interface using a bottom contact bi-layer field effect transistor (FET) as an electrical nano-probe. Large threshold voltage shift in a pentacene/GQD FET in the dark arises from field-induced carrier trapping in the GQD layer or GQD-induced trap states at the pentacene/GQD interface. As the gate electric field increases, hysteresis characterized by the threshold voltage shift depending on the direction of the gate voltage scan becomes stronger due to carrier trapping associated with the presence of a GQD layer. Upon illumination, exciton dissociation and gate electric field-induced charge trapping simultaneously contribute to increase the threshold voltage window, which can potentially be exploited for photoelectric memory and/or photovoltaic devices through interface engineering.

  4. 76 FR 34145 - Safety Zone, Barrier Testing Operations, Chicago Sanitary and Ship Canal, Romeoville, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Michigan and creates an electric field in the water by pulsing low voltage DC current through steel cables... the U.S. Army Corps of Engineers' simultaneous operation of electric barriers IIA and IIB. Under 5 U.S... selected an electric barrier because it is a non-lethal deterrent with a proven history, which does not...

  5. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.

    1981-01-01

    Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.

  6. Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures.

    PubMed

    Jung, Inhwa; Dikin, Dmitriy A; Piner, Richard D; Ruoff, Rodney S

    2008-12-01

    Step-by-step controllable thermal reduction of individual graphene oxide sheets, incorporated into multiterminal field effect devices, was carried out at low temperatures (125-240 degrees C) with simultaneous electrical measurements. Symmetric hysteresis-free ambipolar (electron- and hole-type) gate dependences were observed as soon as the first measurable resistance was reached. The conductivity of each of the fabricated devices depended on the level of reduction (was increased more than 10(6) times as reduction progressed), strength of the external electrical field, density of the transport current, and temperature.

  7. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy.

    PubMed

    Bagnall, Kevin R; Moore, Elizabeth A; Badescu, Stefan C; Zhang, Lenan; Wang, Evelyn N

    2017-11-01

    As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E 2 (high), A 1 longitudinal optical (LO), and E 2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to demonstrate its viability, this technique is applicable to any solid-state material with a suitable Raman response and will likely enable new measurement capabilities in a wide variety of scientific and engineering applications.

  8. Simultaneous measurement of temperature, stress, and electric field in GaN HEMTs with micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bagnall, Kevin R.; Moore, Elizabeth A.; Badescu, Stefan C.; Zhang, Lenan; Wang, Evelyn N.

    2017-11-01

    As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E2 (high), A1 longitudinal optical (LO), and E2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to demonstrate its viability, this technique is applicable to any solid-state material with a suitable Raman response and will likely enable new measurement capabilities in a wide variety of scientific and engineering applications.

  9. Electro-aerodynamic field aided needleless electrospinning.

    PubMed

    Yan, Guilong; Niu, Haitao; Zhou, Hua; Wang, Hongxia; Shao, Hao; Zhao, Xueting; Lin, Tong

    2018-06-08

    Auxiliary fields have been used to enhance the performance of needle electrospinning. However, much less has been reported on how auxiliary fields affect needleless electrospinning. Herein, we report a novel needleless electrospinning technique that consists of an aerodynamic field and a second electric field. The second electric field is generated by setting two grounded inductive electrodes near the spinneret. The two auxiliary fields have to be applied simultaneously to ensure working of the electrospinning process. A synergistic effect was observed between inductive electrode and airflow. The aerodynamic-electric auxiliary field was found to significantly increase fiber production rate (4.5 g h -1 ), by 350% in comparison to the setup without auxiliary field (1.0 g h -1 ), whereas it had little effect on fiber diameter. The auxiliary fields allow running needleless electrospinning at an applied voltage equivalent to that in needle electrospinning (e.g. 10-30 kV). The finite element analyses of electric field and airflow field verify that the inductive electrodes increase electric field strength near the spinneret, and the airflow assists in fiber deposition. This novel needleless electrospinning may be useful for development of high-efficiency, low energy-consumption nanofiber production systems.

  10. Electro-aerodynamic field aided needleless electrospinning

    NASA Astrophysics Data System (ADS)

    Yan, Guilong; Niu, Haitao; Zhou, Hua; Wang, Hongxia; Shao, Hao; Zhao, Xueting; Lin, Tong

    2018-06-01

    Auxiliary fields have been used to enhance the performance of needle electrospinning. However, much less has been reported on how auxiliary fields affect needleless electrospinning. Herein, we report a novel needleless electrospinning technique that consists of an aerodynamic field and a second electric field. The second electric field is generated by setting two grounded inductive electrodes near the spinneret. The two auxiliary fields have to be applied simultaneously to ensure working of the electrospinning process. A synergistic effect was observed between inductive electrode and airflow. The aerodynamic-electric auxiliary field was found to significantly increase fiber production rate (4.5 g h‑1), by 350% in comparison to the setup without auxiliary field (1.0 g h‑1), whereas it had little effect on fiber diameter. The auxiliary fields allow running needleless electrospinning at an applied voltage equivalent to that in needle electrospinning (e.g. 10–30 kV). The finite element analyses of electric field and airflow field verify that the inductive electrodes increase electric field strength near the spinneret, and the airflow assists in fiber deposition. This novel needleless electrospinning may be useful for development of high-efficiency, low energy-consumption nanofiber production systems.

  11. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    NASA Astrophysics Data System (ADS)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  12. Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model

    NASA Astrophysics Data System (ADS)

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-08-01

    Neural activity can be modulated by applying a polarizing low-frequency (Lt100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5-25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson's harmonic F-test, with 45/132 stimulated seizures in four animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in three of four animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording.

  13. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    NASA Astrophysics Data System (ADS)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  14. Nuclear relaxation in an electric field enables the determination of isotropic magnetic shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbacz, Piotr, E-mail: pgarbacz@chem.uw.edu.pl

    2016-08-14

    It is shown that in contrast to the case of nuclear relaxation in a magnetic field B, simultaneous application of the magnetic field B and an additional electric field E causes transverse relaxation of a spin-1/2 nucleus with the rate proportional to the square of the isotropic part of the magnetic shielding tensor. This effect can contribute noticeably to the transverse relaxation rate of heavy nuclei in molecules that possess permanent electric dipole moments. Relativistic quantum mechanical computations indicate that for {sup 205}Tl nucleus in a Pt-Tl bonded complex, Pt(CN){sub 5}Tl, the transverse relaxation rate induced by the electric fieldmore » is of the order of 1 s{sup −1} at E = 5 kV/mm and B = 10 T.« less

  15. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.

    PubMed

    Chao, Kan; Chen, Bo; Wu, Jiankang

    2010-12-01

    The formation of an electric double layer and electroosmosis are important theoretic foundations associated with microfluidic systems. Field-modulated electroosmotic flows in microchannels can be obtained by applying modulating electric fields in a direction perpendicular to a channel wall. This paper presents a systematic numerical analysis of modulated electroosmotic flows in a microchannel with discrete electrodes on the basis of the Poisson equation of electric fields in a liquid-solid coupled domain, the Navier-Stokes equation of liquid flow, and the Nernst-Planck equation of ion transport. These equations are nonlinearly coupled and are simultaneously solved numerically for the electroosmotic flow velocity, electric potential, and ion concentrations in the microchannel. A number of numerical examples of modulated electroosmotic flows in microchannels with discrete electrodes are presented, including single electrodes, symmetric/asymmetric double electrodes, and triple electrodes. Numerical results indicate that chaotic circulation flows, micro-vortices, and effective fluid mixing can be realized in microchannels by applying modulating electric fields with various electrode configurations. The interaction of a modulating field with an applied field along the channel is also discussed.

  16. THREE-DIMENSIONAL NON-VACUUM PULSAR OUTER-GAP MODEL: LOCALIZED ACCELERATION ELECTRIC FIELD IN THE HIGHER ALTITUDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Kouichi

    2015-01-10

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leadingmore » to typical double-peak light curves, which are commonly observed from many high-energy pulsars.« less

  17. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    PubMed

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  18. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viezzer, E., E-mail: eleonora.viezzer@ipp.mpg.de, E-mail: eviezzer@us.es; Department of Atomic, Molecular, and Nuclear Physics, University of Seville, Avda. Reina Mercedes, 41012 Seville; Dux, R.

    2016-11-15

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D{sub α}. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  19. Controlled morphology and optical properties of n-type porous silicon: effect of magnetic field and electrode-assisted LEF.

    PubMed

    Antunez, Edgar E; Campos, Jose; Basurto, Miguel A; Agarwal, Vivechana

    2014-01-01

    Fabrication of photoluminescent n-type porous silicon (nPS), using electrode-assisted lateral electric field accompanied with a perpendicular magnetic field, is reported. The results have been compared with the porous structures fabricated by means of conventional anodization and electrode-assisted lateral electric field without magnetic field. The lateral electric field (LEF) applied across the silicon substrate leads to the formation of structural gradient in terms of density, dimension, and depth of the etched pores. Apart from the pore shape tunability, the simultaneous application of LEF and magnetic field (MF) contributes to a reduction of the dimension of the pores and promotes relatively more defined pore tips as well as a decreased side-branching in the pore walls of the macroporous structure. Additionally, when using magnetic field-assisted etching, within a certain range of LEF, an enhancement of the photoluminescence (PL) response was obtained.

  20. Controlled morphology and optical properties of n-type porous silicon: effect of magnetic field and electrode-assisted LEF

    PubMed Central

    2014-01-01

    Fabrication of photoluminescent n-type porous silicon (nPS), using electrode-assisted lateral electric field accompanied with a perpendicular magnetic field, is reported. The results have been compared with the porous structures fabricated by means of conventional anodization and electrode-assisted lateral electric field without magnetic field. The lateral electric field (LEF) applied across the silicon substrate leads to the formation of structural gradient in terms of density, dimension, and depth of the etched pores. Apart from the pore shape tunability, the simultaneous application of LEF and magnetic field (MF) contributes to a reduction of the dimension of the pores and promotes relatively more defined pore tips as well as a decreased side-branching in the pore walls of the macroporous structure. Additionally, when using magnetic field-assisted etching, within a certain range of LEF, an enhancement of the photoluminescence (PL) response was obtained. PMID:25313298

  1. A Dual Mode Pulsed Electro-Magnetic Cell Stimulator Produces Acceleration of Myogenic Differentiation

    PubMed Central

    Leon-Salas, Walter D.; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-01-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/−40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models. PMID:23445453

  2. A dual mode pulsed electro-magnetic cell stimulator produces acceleration of myogenic differentiation.

    PubMed

    Leon-Salas, Walter D; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-04-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/- 40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models.

  3. Aligned Immobilization of Proteins Using AC Electric Fields.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2016-03-01

    Protein molecules are aligned and immobilized from solution by AC electric fields. In a single-step experiment, the enhanced green fluorescent proteins are immobilized on the surface as well as at the edges of planar nanoelectrodes. Alignment is found to follow the molecules' geometrical shape with their longitudinal axes parallel to the electric field. Simultaneous dielectrophoretic attraction and AC electroosmotic flow are identified as the dominant forces causing protein movement and alignment. Molecular orientation is determined by fluorescence microscopy based on polarized excitation of the proteins' chromophores. The chromophores' orientation with respect to the whole molecule supports X-ray crystal data. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An integrated multi-source energy harvester based on vibration and magnetic field energy

    NASA Astrophysics Data System (ADS)

    Hu, Zhengwen; Qiu, Jing; Wang, Xian; Gao, Yuan; Liu, Xin; Chang, Qijie; Long, Yibing; He, Xingduo

    2018-05-01

    In this paper, an integrated multi-source energy harvester (IMSEH) employing a special shaped cantilever beam and a piezoelectric transducer to convert vibration and magnetic field energy into electrical energy is presented. The electric output performance of the proposed IMSEH has been investigated. Compared to a traditional multi-source energy harvester (MSEH) or single source energy harvester (SSEH), the proposed IMSEH can simultaneously harvest vibration and magnetic field energy with an integrated structure and the electric output is greatly improved. When other conditions keep identical, the IMSEH can obtain high voltage of 12.8V. Remarkably, the proposed IMSEHs have great potential for its application in wireless sensor network.

  5. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com

    2016-08-15

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less

  6. Temperature Modulation of Electric Fields in Biological Matter

    PubMed Central

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    Pulsed electric fields (PEF) have become an important minimally invasive surgical technology for various applications including genetic engineering, electrochemotherapy and tissue ablation. This study explores the hypothesis that temperature dependent electrical parameters of tissue can be used to modulate the outcome of PEF protocols, providing a new means for controlling and optimizing this minimally invasive surgical procedure. This study investigates two different applications of cooling temperatures applied during PEF. The first case utilizes an electrode which simultaneously delivers pulsed electric fields and cooling temperatures. The subsequent results demonstrate that changes in electrical properties due to temperature produced by this configuration can substantially magnify and confine the electric fields in the cooled regions while almost eliminating electric fields in surrounding regions. This method can be used to increase precision in the PEF procedure, and eliminate muscle contractions and damage to adjacent tissues. The second configuration considered introduces a third probe that is not electrically active and only applies cooling boundary conditions. This second study demonstrates that in this probe configuration the temperature induced changes in electrical properties of tissue substantially reduce the electric fields in the cooled regions. This novel treatment can potentially be used to protect sensitive tissues from the effect of the PEF. Perhaps the most important conclusion of this investigation is that temperature is a powerful and accessible mechanism to modulate and control electric fields in biological tissues and can therefore be used to optimize and control PEF treatments. PMID:21695144

  7. Characteristics of DC electric fields in transient plasma sheet events

    NASA Astrophysics Data System (ADS)

    Laakso, H. E.; Escoubet, C. P.; Masson, A.

    2015-12-01

    We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.

  8. Cryosurgery with pulsed electric fields.

    PubMed

    Daniels, Charlotte S; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to ablate cells in the high subzero freezing region of a cryosurgical lesion.

  9. Electromagnetic sounding of the moon using Apollo 16 and Lunokhod 2 surface magnetometer observations /preliminary results/

    NASA Technical Reports Server (NTRS)

    Vanian, L. L.; Vnutchokova, T. A.; Fainberg, E. B.; Eroschenko, E. A.; Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    A technique of deep electromagnetic sounding of the moon using simultaneous magnetic-field measurements at two lunar surface sites is described. The method, used with the assumption that deep electrical conductivity is a function only of lunar radius, has the advantage of allowing calculation of the external driving field from two surface-site measurements only and therefore does not require data from a lunar orbiting satellite. A transient-response calculation is presented for the example of a magnetic-field discontinuity, measured simultaneously by Apollo 16 and Lunokhod 2 surface magnetometers.

  10. Electromagnetic Sounding of the Moon Using Apollo 16 and Lunokhod 2 Surface Magnetometer Observations (Preliminary Results)

    NASA Technical Reports Server (NTRS)

    Vanyan, L. L.; Vnutchokova, T. A.; Fainberg, E. B.; Eroschenko, E. A.; Dyal, P.; Parkin, C. W.; Parkin, C. W.

    1977-01-01

    A new technique of deep electromagnetic sounding of the Moon using simultaneous magnetic field measurements at two lunar surface sites is described. The method, used with the assumption that deep electrical conductivity is a function only of lunar radius, has the advantage of allowing calculation of the external driving field from two surface site measurements only, and therefore does not require data from a lunar orbiting satellite. A transient response calculation is presented for the example of a magnetic field discontinuity of February 13, 1973, measured simultaneously by Apollo 16 and Lunokhod 2 surface magnetometers.

  11. Direct nanoscale imaging of evolving electric field domains in quantum structures.

    PubMed

    Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan

    2014-11-28

    The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary--the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.

  12. Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures

    PubMed Central

    Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan

    2014-01-01

    The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary – the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region. PMID:25431158

  13. Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures

    NASA Astrophysics Data System (ADS)

    Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan

    2014-11-01

    The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary - the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.

  14. Electrical detection of single viruses

    NASA Astrophysics Data System (ADS)

    Patolsky, Fernando; Zheng, Gengfeng; Hayden, Oliver; Lakadamyali, Melike; Zhuang, Xiaowei; Lieber, Charles M.

    2004-09-01

    We report direct, real-time electrical detection of single virus particles with high selectivity by using nanowire field effect transistors. Measurements made with nanowire arrays modified with antibodies for influenza A showed discrete conductance changes characteristic of binding and unbinding in the presence of influenza A but not paramyxovirus or adenovirus. Simultaneous electrical and optical measurements using fluorescently labeled influenza A were used to demonstrate conclusively that the conductance changes correspond to binding/unbinding of single viruses at the surface of nanowire devices. pH-dependent studies further show that the detection mechanism is caused by a field effect, and that the nanowire devices can be used to determine rapidly isoelectric points and variations in receptor-virus binding kinetics for different conditions. Lastly, studies of nanowire devices modified with antibodies specific for either influenza or adenovirus show that multiple viruses can be selectively detected in parallel. The possibility of large-scale integration of these nanowire devices suggests potential for simultaneous detection of a large number of distinct viral threats at the single virus level.

  15. Coupled multiferroic domain switching in the canted conical spin spiral system Mn2GeO4

    NASA Astrophysics Data System (ADS)

    Honda, T.; White, J. S.; Harris, A. B.; Chapon, L. C.; Fennell, A.; Roessli, B.; Zaharko, O.; Murakami, Y.; Kenzelmann, M.; Kimura, T.

    2017-06-01

    Despite remarkable progress in developing multifunctional materials, spin-driven ferroelectrics featuring both spontaneous magnetization and electric polarization are still rare. Among such ferromagnetic ferroelectrics are conical spin spiral magnets with a simultaneous reversal of magnetization and electric polarization that is still little understood. Such materials can feature various multiferroic domains that complicates their study. Here we study the multiferroic domains in ferromagnetic ferroelectric Mn2GeO4 using neutron diffraction, and show that it features a double-Q conical magnetic structure that, apart from trivial 180o commensurate magnetic domains, can be described by ferromagnetic and ferroelectric domains only. We show unconventional magnetoelectric couplings such as the magnetic-field-driven reversal of ferroelectric polarization with no change of spin-helicity, and present a phenomenological theory that successfully explains the magnetoelectric coupling. Our measurements establish Mn2GeO4 as a conceptually simple multiferroic in which the magnetic-field-driven flop of conical spin spirals leads to the simultaneous reversal of magnetization and electric polarization.

  16. Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model

    PubMed Central

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-01-01

    Neural activity can be modulated by applying a polarizing low frequency (≪ 100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5–25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson’s harmonic F-test, with 45/132 stimulated seizures in 4 animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in 3 of 4 animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording. PMID:19602730

  17. Electron acceleration in a secondary magnetic island formed during magnetic reconnection with a guide field

    NASA Astrophysics Data System (ADS)

    Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui

    2017-05-01

    Secondary magnetic islands may be generated in the vicinity of an X line during magnetic reconnection. In this paper, by performing two-dimensional (2-D) particle-in-cell simulations, we investigate the role of a secondary magnetic island in electron acceleration during magnetic reconnection with a guide field. The electron motions are found to be adiabatic, and we analyze the contributions of the parallel electric field and Fermi and betatron mechanisms to electron acceleration in the secondary island during the evolution of magnetic reconnection. When the secondary island is formed, electrons are accelerated by the parallel electric field due to the existence of the reconnection electric field in the electron current sheet. Electrons can be accelerated by both the parallel electric field and Fermi mechanism when the secondary island begins to merge with the primary magnetic island, which is formed simultaneously with the appearance of X lines. With the increase in the guide field, the contributions of the Fermi mechanism to electron acceleration become less and less important. When the guide field is sufficiently large, the contribution of the Fermi mechanism is almost negligible.

  18. Laboratory studies of aerosol electrification and experimental evidence for electrical breakdown at different scales.

    NASA Astrophysics Data System (ADS)

    Alois, Stefano; Merrison, Jonathan; Iversen, Jens Jacob; Sesterhenn, Joern

    2017-04-01

    Contact electrification between different particles size/material can lead to electric field generation high enough to produce electrical breakdown. Experimental studies of solid aerosol contact electrification (Alois et al., 2016) has shown various electrical breakdown phenomena; these range from field emission at the contact site (nm-scale) limiting particle surface charge concentration, to visible electrical discharges (cm-scale) observed both with the use of an electrometer and high-speed camera. In these experiments micron-size particles are injected into a low-pressure chamber, where they are deviated by an applied electric field. A laser Doppler velocimeter allows the simultaneous determination of particle size and charge of single grains. Results have shown an almost constant surface charge concentration, which is likely to be due to charge limitation by field emission at the contact site between particle and injector. In a second measurement technique, the electrically isolated injector tube (i.e. a Faraday cage) is connected to an oscilloscope and synchronised to a high speed camera filming the injection. Here the electrification of a large cloud of particles can be quantified and discharging effects studied. This study advances our understanding on the physical processes leading to electrification and electrical breakdown mechanisms.

  19. Simultaneous π / 2 rotation of two spin species of different gyromagnetic ratios

    DOE PAGES

    Chu, Ping -Han; Peng, Jen -Chieh

    2015-06-05

    Here, we examine the characteristics of the π/2 pulse for simultaneously rotating two spin species of different gyromagnetic ratios with the same sign. For a π/2 pulse using a rotating magnetic field, we derive an equation relating the frequency and strength of the pulse to the gyromagnetic ratios of the two particles and the strength of the constant holding field. For a π/2 pulse using a linear oscillatory magnetic field, we obtain the solutions numerically, and compare them with the solutions for the rotating π/2 pulse. Application of this analysis to the specific case of rotating neutrons and 3He atomsmore » simultaneously with a π/2 pulse, proposed for a neutron electric dipole moment experiment, is also presented.« less

  20. Electric field assisted sintering to improve the performance of nanostructured dye sensitized solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Shojaeifar, Mohsen; Mohajerani, Ezeddin; Fathollahi, Mohammadreza

    2018-01-01

    Herein, we report the application of electric field assisted sintering (EFAS) procedure in dye sensitized solar cells (DSSCs). The EFAS process improved DSSC performance by enhancing optical and electrical characteristics simultaneously. The EFAS procedure is shown to be capable of reducing the TiO2 nanoparticle aggregation leading to the higher surface area for dye molecules adsorbates. Lower nanoparticle aggregation can be evidently observed by field emission scanning electron microscopy imaging. By applying an external electric field, the current density and conversion efficiency improved significantly about 30% and 45%, respectively. UV-Visible spectra of the desorbed dye molecules on the porous nanoparticles bedding confirm a higher amount of dye loading in the presence of an external electric field. Correspondingly, comprehensive J-V characteristics modeling reveals the enhancement of the diffusion coefficient by EFAS process. The proposed method can be applied to improve the efficiency of the mesostructured hybrid perovskite solar cells, photodetectors, and quantum dot-sensitized solar cells, as well as reduction of the surface area loss in all porous media.

  1. University of Florida lightning research at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Uman, Martin A.; Thomson, Ewen M.

    1987-01-01

    A variety of basic and applied research programs are being conducted at the Kennedy Space Center. As an example of this research, the paper describes the University of Florida program to characterize the electric and magnetic fields of lightning and the coupling of those fields to utility power lines. Specifically, detailed consideration is given to the measurements of horizontal and vertical electric fields made during the previous three summers at KSC and the simultaneous measurements of the voltages on a 500 m test line made during the past two summers at KSC. Theory to support these measurements is also presented.

  2. Increasing the switching speed of liquid crystal devices with magnetic nanorods

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Yu.; Baptist, J. R.; Thompson, J.; Hunter, T.; Lim, J. H.; Gi Min, Seong; Wiley, J. B.; Malkinski, L. M.; Glushchenko, A.; Celinski, Z.

    2012-10-01

    Liquid crystal (LC)/magnetic nanorods colloids were fabricated and tested using a magneto-optical setup. These thermotropic ferronematics do not show any signs of macroscopic aggregation, exhibit enhanced magnetic sensitivity, and faster time response in the simultaneous presence of crossed electric and magnetic fields. Magnetic nanorods increase an effective magnetic anisotropy of the colloid and decrease magnetic Freedericksz threshold. Applying a magnetic field along the direction perpendicular to the applied electric field leads to a decrease of the time OFF by a factor of 6 for pure liquid crystals, and by a factor of 9—for ferronematics.

  3. Multi-point Measurements of Relativistic Electrons in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Li, X.; Selesnick, R.; Baker, D. N.; Blake, J. B.; Schiller, Q.; Blum, L. W.; Zhao, H.; Jaynes, A. N.; Kanekal, S.

    2014-12-01

    We take an advantage of five different DC electric field measurements in the plasma sheet available from the EFW double probe experiment, EDI electron drift instrument, CODIF and HIA ion spectrometers, and PEACE electron spectrometer on the four Cluster spacecraft. The calibrated observations of the three spectrometers are used to determine the proton and electron velocity moments. The velocity moments can be used to estimate the proton and electron drift velocity and furthermore the DC electric field, assuming that the electron and proton velocity perpendicular to the magnetic field is dominated by the ExB drift motion. Naturally when ions and electrons do not perform a proper drift motion, which can happen in the plasma sheet, the estimated DC electric field from ion and electron motion is not correct. However, surprisingly often the DC electric fields estimated from electron and ion motions are identical suggesting that this field is a real DC electric field around the measurement point. As the measurement techniques are so different, it is quite plausible that when two different measurements yield the same DC electric field, it is the correct field. All five measurements of the DC electric field are usually not simultaneously available, especially on Cluster 2 where CODIF and HIA are not operational, or on Cluster 4 where EDI is off. In this presentation we investigate DC electric field in various transient plasma sheet events such as dipolarization events and BBF's and how the five measurements agree or disagree. There are plenty of important issues that are considered, e.g., (1) what kind of DC electric fields exist in such events and what are their spatial scales, (2) do electrons and ions perform ExB drift motions in these events, and (3) how well the instruments have been calibrated.

  4. The Bloch equation with terms induced by an electric field

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2018-01-01

    The Bloch equation of the nuclear magnetization of spin-1/2 nuclei in molecules, which have permanent electric dipole moments μe that are placed simultaneously in a magnetic field B and an electric field E, is derived. It is shown that if the principal components of the nuclear magnetic shielding tensor σ and the dipole moment μe are known, then the measurement of the transverse component to the magnetic field B of the nuclear magnetization, which is induced by the application of the electric field oscillating at the half of the spin precession frequency, allows determining the orientation of the dipole moment μe with respect to the principal axis system of the symmetric part of the tensor σ. Four-component relativistic density functional theory computations, which have been performed for several molecules containing heavy nuclei, i.e., 207Pb, 205Tl, 199Hg, 195Pt, and 125Te, indicate that coefficients of the relaxation matrix perturbed by the electric field E are in favorable cases of the order of 1000 pm2 V-2 T-2. Therefore, the spin dynamics is perturbed at experimentally observable levels for the strengths of electric and magnetic fields E = 5 kV/mm and B = 10 T, respectively.

  5. Micro-resonator-based electric field sensors with long durations of sensitivity

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.

    2017-05-01

    In this paper, we present a new fabrication method for the whispering gallery mode (WGM) micro-sphere based electric field sensor that which allows for longer time periods of sensitivity. Recently, a WGM-based photonic electric field sensor was proposed using a coupled dielectric microsphere-beam. The external electric field imposes an electrtrostriction force on the dielectric beam, deflecting it. The beam, in turn compresses the sphere causing a shift in its WGM. As part of the fabrication process, the PDMS micro-beams and the spheres are curied at high-temperature (100oC) and subsequently poled by exposing to strong external electric field ( 8 MV/m) for two hours. The poling process allows for the deposition of surface charges thereby increasing the electrostriction effect. This methodology is called curing-then-poling (CTP). Although the sensors do become sufficiently sensitive to electric field, they start de-poling after a short period (within 10 minutes) after poling, hence losing sensitivity. In an attempt to mitigate this problem and to lock the polarization for a longer period, we use an alternate methodology whereby the beam is poled and cured simultaneously (curing-while-poling or CWP). The new fabrication method allows for the retention of polarization (and hence, sensitivity to electric field) longer ( 1500 minutes). An analysis is carried out along with preliminary experiments. Results show that electric fields as small as 100 V/m can be detected with a 300 μm diameter sphere sensor a day after poling.

  6. Mechanical Enhancement of Sensitivity in Natural Rubber Using Electrolytic Polymerization Aided by a Magnetic Field and MCF for Application in Haptic Sensors

    PubMed Central

    Shimada, Kunio; Saga, Norihiko

    2016-01-01

    Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics. PMID:27649210

  7. Mechanical Enhancement of Sensitivity in Natural Rubber Using Electrolytic Polymerization Aided by a Magnetic Field and MCF for Application in Haptic Sensors.

    PubMed

    Shimada, Kunio; Saga, Norihiko

    2016-09-18

    Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics.

  8. Transient Torque Method: A Fast and Non-Intrusive Technique to Simultaneously Determine Viscosity and Electrical Conductivity of Semiconducting and Metallic Melts

    NASA Technical Reports Server (NTRS)

    Li, C.; Ban, H.; Lin, B.; Scripa, R. N.; Su, C.; Lehoczky, S. L.; Zhu, S.

    2003-01-01

    A transient torque method was developed to rapidly and simultaneously determine the viscosity and electrical conductivity of semiconducting or metallic melts. The experimental setup is similar to that for the oscillation cup technique. The melt sample is sealed inside a fused silica ampoule, and the ampoule is suspended by a long quartz fiber to form a torsional oscillation system. A rotating magnetic field is used to induce a rotating flow in the conductive melt, which causes the ampoule to rotate along its axis. A sensitive angular detector is used to measure the deflection angle of the ampoule. Based on the transient behavior of the deflection angle as the rotating magnetic field is applied, the electrical conductivity and viscosity of the melt can be obtained simultaneously by numerically fitting the data to a set of governing equations. The transient torque viscometer was applied successfully to measure the viscosity and electrical conductivity of high purity mercury at 53.4 C. The results were in excellent agreement with the published data. The main advantage of the technique is that the measurement can be completed in one or two minutes, as opposed to the one or two-hour measurement time required by the oscillation cup technique. The method is non-intrusive; capable of rapid measurement of the viscosity of toxic, high vapor pressure melts at elevated temperatures. In addition, the transient torque viscometer can also be operated as an oscillation cup viscometer if desired.

  9. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  10. Magnetospheric electric fields and auroral oval

    NASA Technical Reports Server (NTRS)

    Laakso, Harri; Pedersen, Arne; Craven, John D.; Frank, L. A.

    1992-01-01

    DC electric field variations in a synchronous orbit (GEOS 2) during four substorms in the time sector 19 to 01 LT were investigated. Simultaneously, the imaging photometer on board DE 1 provided auroral images that are also utilized. Substorm onset is defined here as a sudden appearance of large electric fields. During the growth phase, the orientation of the electric field begins to oscillate some 30 min prior to onset. About 10 min before the onset GEOS 2 starts moving into a more tenuous plasma, probably due to a thinning of the current sheet. The onset is followed by a period of 10 to 15 min during which large electric fields occur. This interval can be divided into two intervals. During the first interval, which lasts 4 to 8 min, very large fields of 8 to 20 mV/m are observed, while the second interval contains relatively large fields (2 to 5 mV/m). A few min after the onset, the spacecraft returns to a plasma region of higher electron fluxes which are usually larger than before substorm. Some 30 min after onset, enhanced activity, lasting about 10 min, appears in the electric field. One of the events selected offers a good opportunity to study the formation and development of the Westward Traveling Surge (WST). During the traversal of the leading edge of the WTS (approximately 8 min) a stable wave mode at 5.7 mHz is detected.

  11. New topics in coherent anti-stokes raman scattering gas-phase diagnostics : femtosecond rotational CARS and electric-field measurements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lempert, Walter R.; Barnat, Edward V.; Kearney, Sean Patrick

    2010-07-01

    We discuss two recent diagnostic-development efforts in our laboratory: femtosecond pure-rotational Coherent anti-Stokes Raman scattering (CARS) for thermometry and species detection in nitrogen and air, and nanosecond vibrational CARS measurements of electric fields in air. Transient pure-rotational fs-CARS data show the evolution of the rotational Raman polarization in nitrogen and air over the first 20 ps after impulsive pump/Stokes excitation. The Raman-resonant signal strength at long time delays is large, and we additionally observe large time separation between the fs-CARS signatures of nitrogen and oxygen, so that the pure-rotational approach to fs-CARS has promise for simultaneous species and temperature measurementsmore » with suppressed nonresonant background. Nanosecond vibrational CARS of nitrogen for electric-field measurements is also demonstrated. In the presence of an electric field, a dipole is induced in the otherwise nonpolar nitrogen molecule, which can be probed with the introduction of strong collinear pump and Stokes fields, resulting in CARS signal radiation in the infrared. The electric-field diagnostic is demonstrated in air, where the strength of the coherent infrared emission and sensitivity our field measurements is quantified, and the scaling of the infrared signal with field strength is verified.« less

  12. Cryosurgery with Pulsed Electric Fields

    PubMed Central

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to ablate cells in the high subzero freezing region of a cryosurgical lesion. PMID:22087224

  13. A system for mapping sources of VHF and electric field pulses from in-cloud lightning at KSC

    NASA Technical Reports Server (NTRS)

    Thomson, Ewen M.; Medelius, Pedro J.

    1991-01-01

    The literature concerning VHF radiation and wideband electric fields from in-cloud lightning is reviewed. VHF location systems give impressive radio images of lightning in clouds with high spatial and temporal resolution. Using systems based on long and short baseline time-or-arrival and interferometry, workers have detected VHF sources that move at speeds of 10(exp 5) to 10(exp 8) m/s. The more slowly moving sources appear to be associated with channel formation but the physical basis for the higher speeds is not clear. In contrast, wideband electric fields are directly related to physical parameters such as current and tortuosity. A long baseline system is described to measure simultaneously VHF radiation and wideband electric fields at five stations at Kennedy Space Center. All signals are detected over remote, isolated ground planes with fiber optics for data transmission. The modification of this system to map rapidly varying dE/dt pulses is discussed.

  14. Optofluidic lens with tunable focal length and asphericity

    PubMed Central

    Mishra, Kartikeya; Murade, Chandrashekhar; Carreel, Bruno; Roghair, Ivo; Oh, Jung Min; Manukyan, Gor; van den Ende, Dirk; Mugele, Frieder

    2014-01-01

    Adaptive micro-lenses enable the design of very compact optical systems with tunable imaging properties. Conventional adaptive micro-lenses suffer from substantial spherical aberration that compromises the optical performance of the system. Here, we introduce a novel concept of liquid micro-lenses with superior imaging performance that allows for simultaneous and independent tuning of both focal length and asphericity. This is achieved by varying both hydrostatic pressures and electric fields to control the shape of the refracting interface between an electrically conductive lens fluid and a non-conductive ambient fluid. Continuous variation from spherical interfaces at zero electric field to hyperbolic ones with variable ellipticity for finite fields gives access to lenses with positive, zero, and negative spherical aberration (while the focal length can be tuned via the hydrostatic pressure). PMID:25224851

  15. Magnetic and electric bulge-test instrument for the determination of coupling mechanical properties of functional free-standing films and flexible electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zejun; Li, Faxin; Pei, Yongmao, E-mail: peiym@pku.edu.cn, E-mail: fangdn@pku.edu.cn

    2014-06-15

    For the first time a novel multi-field bulge-test instrument which enables measurements of the biaxial mechanical properties and electro-magnetic-mechanical coupling effect of free-standing films in external magnetic/electric fields was proposed. The oil pressure was designed with two ranges, 0–1 MPa for elastic small deformation and 0–7 MPa for plastic/damage large deformation. A magnetic field that was horizontal and uniform in the film plane was supplied by a hollow cylindrical magnet. The magnitude could be changed from 0 to 10 000 Oe by adjusting the position of the testing film. Meanwhile, an electric field applied on the film was provided by amore » voltage source (Maximum voltage: 1000 V; Maximum current: 1 A). Various signals related to deformation, mechanical loading, magnetic field, and electric field could be measured simultaneously without mutual interference, which was confirmed by the coincidence of the measured P-H curves for titanium (Ti)/nickel (Ni) specimens with/without external fields. A hardening phenomenon under magnetic/electric fields was observed for Ni and lead zirconate titanate specimens. The multi-field bulge-test instrument will provide a powerful research tool to study the deformation mechanism of functional films and flexible electronics in the coupling field.« less

  16. Characterization of Acousto-Electric Cluster and Array Levitation and its Application to Evaporation

    NASA Technical Reports Server (NTRS)

    Robert E. Apfel; Zheng, Yibing

    2000-01-01

    An acousto-electric levitator has been developed to study the behavior of liquid drop and solid particle clusters and arrays. Unlike an ordinary acoustic levitator that uses only a standing acoustic wave to levitate a single drop or particle, this device uses an extra electric static field and the acoustic field simultaneously to generate and levitate charged drops in two-dimensional arrays in air without any contact to a solid surface. This cluster and array generation (CAG) instrument enables us to steadily position drops and arrays to study the behavior of multiple drop and particle systems such as spray and aerosol systems relevant to the energy, environmental, and material sciences.

  17. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    PubMed Central

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-01-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844

  18. Probing electric and magnetic fields with a Moiré deflectometer

    NASA Astrophysics Data System (ADS)

    Lansonneur, P.; Bräunig, P.; Demetrio, A.; Müller, S. R.; Nedelec, P.; Oberthaler, M. K.

    2017-08-01

    A new contact-free approach for measuring simultaneously electric and magnetic field is reported, which considers the use of a low energy ion source, a set of three transmission gratings and a position sensitive detector. Recently tested with antiprotons (Aghion et al., 2014) [1] at the CERN Antiproton Decelerator facility, this paper extends the proof of principle of a moiré deflectometer (Oberthaler et al., 1996) [2] for distinguishing electric from magnetic fields and opens the route to precision measurements when one is not limited by the ion source intensity. The apparatus presented, whose resolution is mainly limited by the shot noise is able to measure fields as low as 9 mVm-1 Hz-1/2 for electric component and 100 μG Hz-1/2 for the magnetic component. Scaled to 100 nm pitch for the gratings, accessible with current state-of-the-art technology [3], the moiré fieldmeter would be able to measure fields as low as 22 μVm-1 Hz-1/2 and 0.2 μG Hz-1/2.

  19. A model for particle confinement in a toroidal plasma subject to strong radial electric fields

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1977-01-01

    The approach adopted in the NASA Lewis Bumpy Torus experiment is to confine and heat a toroidal plasma by the simultaneous application of strong dc magnetic fields and electric fields. Strong radial electric fields (about 1 kV/cm) are imposed by biasing the plasma with up to 12 negative electrode rings which surround its minor circumference. The plasma containment is consistent with a balance of two processes: a radial infusion of ions in those sectors not containing electrode rings, resulting from the radially inward electric fields; and ion losses to the electrode rings, each of which acts as a sink and draws ions out the plasma in the manner of a Langmuir probe in the ion saturation regime. The highest density on axis which has been observed so far in this steady-state plasma is 6.2 trillion particles per cu cm, for which the particle containment time is 2.5 msec. The deuterium ion kinetic temperature for these conditions was in the range of 360 to 520 eV.

  20. Effects of convection electric field on upwelling and escape of ionospheric O(+)

    NASA Technical Reports Server (NTRS)

    Cladis, J. B.; Chiu, Yam T.; Peterson, William K.

    1992-01-01

    A Monte Carlo code is used to explore the full effects of the convection electric field on distributions of upflowing O(+) ions from the cusp/cleft ionosphere. Trajectories of individual ions/neutrals are computed as they undergo multiple charge-exchange collisions. In the ion state, the trajectories are computed in realistic models of the magnetic field and the convection, corotation, and ambipolar electric fields. The effects of ion-ion collisions are included, and the trajectories are computed with and without simultaneous stochastic heating perpendicular to the magnetic field by a realistic model of broadband, low frequency waves. In the neutral state, ballistic trajectories in the gravitational field are computed. The initial conditions of the ions, in addition to ambipolar electric field and the number densities and temperatures of O(+), H(+), and electrons as a function of height in the cusp/cleft region were obtained from the results of Gombosi and Killeen (1987), who used a hydrodynamic code to simulate the time-dependent frictional-heating effects in a magnetic tube during its motion though the convection throat. The distribution of the ion fluxes as a function of height are constructed from the case histories.

  1. Performance optimization in electric field gradient focusing.

    PubMed

    Sun, Xuefei; Farnsworth, Paul B; Tolley, H Dennis; Warnick, Karl F; Woolley, Adam T; Lee, Milton L

    2009-01-02

    Electric field gradient focusing (EFGF) is a technique used to simultaneously separate and concentrate biomacromolecules, such as proteins, based on the opposing forces of an electric field gradient and a hydrodynamic flow. Recently, we reported EFGF devices fabricated completely from copolymers functionalized with poly(ethylene glycol), which display excellent resistance to protein adsorption. However, the previous devices did not provide the predicted linear electric field gradient and stable current. To improve performance, Tris-HCl buffer that was previously doped in the hydrogel was replaced with a phosphate buffer containing a salt (i.e., potassium chloride, KCl) with high mobility ions. The new devices exhibited stable current, good reproducibility, and a linear electric field distribution in agreement with the shaped gradient region design due to improved ion transport in the hydrogel. The field gradient was calculated based on theory to be approximately 5.76 V/cm(2) for R-phycoerythrin when the applied voltage was 500 V. The effect of EFGF separation channel dimensions was also investigated; a narrower focused band was achieved in a smaller diameter channel. The relationship between the bandwidth and channel diameter is consistent with theory. Three model proteins were resolved in an EFGF channel of this design. The improved device demonstrated 14,000-fold concentration of a protein sample (from 2 ng/mL to 27 microg/mL).

  2. A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, Part I: Design and model evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Pikridas, Michael; Spielman, Steven R.

    This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less

  3. A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, Part I: Design and model evaluation

    DOE PAGES

    Wang, Jian; Pikridas, Michael; Spielman, Steven R.; ...

    2017-06-01

    This study discusses, a fast integrated mobility spectrometer (FIMS) was previously developed to characterize submicron aerosol size distributions at a frequency of 1 Hz and with high size resolution and counting statistics. However, the dynamic size range of the FIMS was limited to one decade in particle electrical mobility. It was proposed that the FIMS dynamic size range can be greatly increased by using a spatially varying electric field. This electric field creates regions with drastically different field strengths in the separator, such that particles of a wide diameter range can be simultaneously classified and subsequently measured. A FIMS incorporatingmore » this spatially varying electric field is developed. This paper describes the theoretical frame work and numerical simulations of the FIMS with extended dynamic size range, including the spatially varying electric field, particle trajectories, activation of separated particles in the condenser, and the transfer function, transmission efficiency, and mobility resolution. The influences of the particle Brownian motion on FIMS transfer function and mobility resolution are examined. The simulation results indicate that the FIMS incorporating the spatially varying electric field is capable of measuring aerosol size distribution from 8 to 600 nm with high time resolution. As a result, the experimental characterization of the FIMS is presented in an accompanying paper.« less

  4. Voltages induced on a power distribution line by overhead cloud lightning

    NASA Technical Reports Server (NTRS)

    Yacoub, Ziad; Rubinstein, Marcos; Uman, Martin A.; Thomson, Ewen M.; Medelius, Pedro J.

    1991-01-01

    Voltages induced by overhead cloud lightning on a 448 m open circuited power distribution line and the corresponding north-south component of the lightning magnetic field were simultaneously measured at the NASA Kennedy Space Center during the summer of 1986. The incident electric field was calculated from the measured magnetic field. The electric field was then used as an input to the computer program, EMPLIN, that calculated the voltages at the two ends of the power line. EMPLIN models the frequency domain field/power coupling theory found, for example, in Ianoz et al. The direction of the source, which is also one of the inputs to EMPLIN, was crudely determined from a three station time delay technique. The authors found reasonably good agreement between calculated and measured waveforms.

  5. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift.

    PubMed

    She, Alan; Zhang, Shuyan; Shian, Samuel; Clarke, David R; Capasso, Federico

    2018-02-01

    Focal adjustment and zooming are universal features of cameras and advanced optical systems. Such tuning is usually performed longitudinally along the optical axis by mechanical or electrical control of focal length. However, the recent advent of ultrathin planar lenses based on metasurfaces (metalenses), which opens the door to future drastic miniaturization of mobile devices such as cell phones and wearable displays, mandates fundamentally different forms of tuning based on lateral motion rather than longitudinal motion. Theory shows that the strain field of a metalens substrate can be directly mapped into the outgoing optical wavefront to achieve large diffraction-limited focal length tuning and control of aberrations. We demonstrate electrically tunable large-area metalenses controlled by artificial muscles capable of simultaneously performing focal length tuning (>100%) as well as on-the-fly astigmatism and image shift corrections, which until now were only possible in electron optics. The device thickness is only 30 μm. Our results demonstrate the possibility of future optical microscopes that fully operate electronically, as well as compact optical systems that use the principles of adaptive optics to correct many orders of aberrations simultaneously.

  6. Magnetic field and electric current structure in the chromosphere

    NASA Technical Reports Server (NTRS)

    Dravins, D.

    1974-01-01

    The three-dimensional vector magnetic field structure in the chromosphere above an active region is deduced by using high-resolution H-alpha filtergrams together with a simultaneous digital magnetogram. An analog model of the field is made with 400 metal wires representing field lines that outline the H-alpha structure. The height extent of the field is determined from vertical field-gradient observations around sunspots, from observed fibril heights, and from an assumption that the sources of the field are largely local. The computed electric currents (typically 10 mA/sq m) are found to flow in patterns not similar to observed features and not parallel to magnetic fields. Force structures correspond to observed solar features; the dynamics to be expected include: downward motion in bipolar areas in the lower chromosphere, an outflow of the outer chromosphere into the corona with radially outward flow above bipolar plage regions, and motion of arch filament systems.

  7. Lunar magnetic permeability, magnetic fields, and electrical conductivity temperature

    NASA Technical Reports Server (NTRS)

    Parkin, C. W.

    1978-01-01

    In the time period 1969-1972 a total of five magnetometers were deployed on the lunar surface during four Apollo missions. Data from these instruments, along with simultaneous measurements from other experiments on the moon and in lunar orbit, were used to study properties of the lunar interior and the lunar environment. The principal scientific results from analyses of the magnetic field data are discussed. The results are presented in the following main categories: (1) lunar electrical conductivity, temperature, and structure; (2) lunar magnetic permeability, iron abundance, and core size limits; (3) the local remnant magnetic fields, their interaction with the solar wind, and a thermoelectric generator model for their origin. Relevant publications and presented papers are listed.

  8. Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae.

    PubMed

    Crary, F J; Clarke, J T; Dougherty, M K; Hanlon, P G; Hansen, K C; Steinberg, J T; Barraclough, B L; Coates, A J; Gérard, J-C; Grodent, D; Kurth, W S; Mitchell, D G; Rymer, A M; Young, D T

    2005-02-17

    The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.

  9. Simultaneous influence of Stark effect and excessive line broadening on the Hα line

    NASA Astrophysics Data System (ADS)

    Cvetanović, Nikola; Ivković, Saša S.; Obradović, Bratislav M.; Kuraica, Milorad M.

    2017-12-01

    The aim of this paper is to study the combined influence of the Stark effect and the excessive Doppler broadening on the Balmer alpha line in hydrogen discharges. Since this line is a good candidate for measuring electric field in various types of discharges with different gas compositions, a simple method for field measurement based on polarization spectroscopy is developed, that includes all the excitation mechanisms. To simultaneously test the flexibility of the fitting procedure and investigate the excessive broadening, we applied the fitting procedure on line profiles obtained at a range of conditions from two different discharges. The range of pressures and voltages was examined in an abnormal glow and in dielectric barrier discharge operating with hydrogen gas. The model fitting function was able to respond and follow the change in the line profile caused by the change of conditions. This procedure can therefore be recommended for electric field measurement. Contribution to the "Topical Issue: Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  10. Compatibility of photomultiplier tube operation with SQUIDs for a neutron EDM experiment

    NASA Astrophysics Data System (ADS)

    Libersky, Matthew; nEDM Collaboration

    2013-10-01

    An experiment at the Spallation Neutron Source at Oak Ridge National Laboratory with the goal of reducing the experimental limit on the electric dipole moment (EDM) of the neutron will measure the precession frequencies of neutrons when a strong electric field is applied parallel and anti-parallel to a weak magnetic field. A difference in these frequencies would indicate a nonzero neutron EDM. To correct for drifts of the magnetic field in the measurement volume, polarized 3He will be used as a co-magnetometer. In one of the two methods built into the apparatus, superconducting quantum interference devices (SQUIDs) will be used to read out the 3He magnetization. Photomultiplier tubes will be used concurrently to measure scintillation light from neutron capture by 3He. However, the simultaneous noise-sensitive magnetic field measurement by the SQUIDs makes conventional PMT operation problematic due to the alternating current involved in generating the high voltages needed. Tests were carried out at Los Alamos National Laboratory to study the compatibility of simultaneous SQUID and PMT operation, using a custom battery-powered high-voltage power supply developed by Meyer and Smith (NIM A 647.1) to operate the PMT. The results of these tests will be presented.

  11. Topology optimized gold nanostrips for enhanced near-infrared photon upconversion

    NASA Astrophysics Data System (ADS)

    Vester-Petersen, Joakim; Christiansen, Rasmus E.; Julsgaard, Brian; Balling, Peter; Sigmund, Ole; Madsen, Søren P.

    2017-09-01

    This letter presents a topology optimization study of metal nanostructures optimized for electric-field enhancement in the infrared spectrum. Coupling of such nanostructures with suitable ions allows for an increased photon-upconversion yield, with one application being an increased solar-cell efficiency by exploiting the long-wavelength part of the solar spectrum. In this work, topology optimization is used to design a periodic array of two-dimensional gold nanostrips for electric-field enhancements in a thin film doped with upconverting erbium ions. The infrared absorption band of erbium is utilized by simultaneously optimizing for two polarizations, up to three wavelengths, and three incident angles. Geometric robustness towards manufacturing variations is implemented considering three different design realizations simultaneously in the optimization. The polarization-averaged field enhancement for each design is evaluated over an 80 nm wavelength range and a ±15-degree incident angle span. The highest polarization-averaged field enhancement is 42.2 varying by maximally 2% under ±5 nm near-uniform design perturbations at three different wavelengths (1480 nm, 1520 nm, and 1560 nm). The proposed method is generally applicable to many optical systems and is therefore not limited to enhancing photon upconversion.

  12. Electric Field and Current Transport Mechanisms in Schottky CdTe X-ray Detectors under Perturbing Optical Radiation

    PubMed Central

    Cola, Adriano; Farella, Isabella

    2013-01-01

    Schottky CdTe X-ray detectors exhibit excellent spectroscopic performance but suffer from instabilities. Hence it is of extreme relevance to investigate their electrical properties. A systematic study of the electric field distribution and the current flowing in such detectors under optical perturbations is presented here. The detector response is explored by varying experimental parameters, such as voltage, temperature, and radiation wavelength. The strongest perturbation is observed under 850 nm irradiation, bulk carrier recombination becoming effective there. Cathode and anode irradiations evidence the crucial role of the contacts, the cathode being Ohmic and the anode blocking. In particular, under irradiation of the cathode, charge injection occurs and peculiar kinks, typical of trap filling, are observed both in the current-voltage characteristic and during transients. The simultaneous access to the electric field and the current highlights the correlation between free and fixed charges, and unveils carrier transport/collection mechanisms otherwise hidden. PMID:23881140

  13. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields

    PubMed Central

    Sadek, Samir H.; Pimenta, Francisco; Pinho, Fernando T.

    2017-01-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. PMID:27990654

  14. Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Hashimoto, Kumiko K.

    2016-12-01

    The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.

  15. Transmission of the Magnetospheric Electric Fields to the Low Latitude Ionosphere during Storm and Substorms

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Hashimoto, K. K.; Ebihara, Y.; Tanaka, T.; Tomizawa, I.; Nagatsuma, T.

    2016-12-01

    The solar wind energy is transmitted to the low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter-electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night-sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents also develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC) and ULF pulsations, which appear simultaneously at high latitude and equator within the temporal resolution of 10 sec. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both the day- and night-sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.

  16. Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer

    NASA Astrophysics Data System (ADS)

    Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and antenna impedance measurement of the wire-probe antennas along the orbit. We utilize the results obtained using the SWCAL function when we calibrate the spectra and waveforms obtained by the PWE.[Figure not available: see fulltext.

  17. Electrical Behavior of Copper Mine Tailings During EKR with Modified Electric Fields.

    PubMed

    Rojo, Adrian; Hansen, Henrik K; Monárdez, Omara; Jorquera, Carlos; Santis, Paulina; Inostroza, Paula

    2017-03-01

    Electro-kinetic remediation (EKR) with sinusoidal electric field obtained simultaneously with DC/AC voltage reduce the polarization of the EKR with DC voltage. The DC voltage value defines the presence of a periodic polarity reversal of the cell and the electrical charge for electro-kinetic transport. In this case, the AC frequency favors the breaking of polarization conditions resulting from the EKR with DC voltage. However, with high frequencies a negative effect occurs where the tailings behave as a filter circuit, discriminating frequencies of an electric signal. The goal of this work is to analyse the electrical behaviour of tailings in EKR experiments. The conditions selected were: DC/AC voltages: 10/15 and 20/25 V (peak values), and AC voltage frequencies 50-2000 Hz. When the AC frequency reaches 2000 Hz, the copper removal tends to zero, indicating that the tailing behaves as a high-pass filter in which the DC voltage was filtered out.

  18. Focal-plane electric field sensing with pupil-plane holograms

    NASA Astrophysics Data System (ADS)

    Por, Emiel H.; Keller, Christoph U.

    2016-07-01

    The direct detection and spectral characterization of exoplanets requires a coronagraph to suppress the diffracted star light. Amplitude and phase aberrations in the optical train fill the dark zone of the coronagraph with quasi-static speckles that limit the achievable contrast. Focal-plane electric field sensing, such as phase diversity introduced by a deformable mirror (DM), is a powerful tool to minimize this residual star light. The residual electric field can be estimated by sequentially applying phase probes on the DM to inject star light with a well-known amplitude and phase into the dark zone and analyzing the resulting intensity images. The DM can then be used to add light with the same amplitude but opposite phase to destructively interfere with this residual star light. Using a static phase-only pupil-plane element we create holographic copies of the point spread function (PSF), each superimposed with a certain pupil-plane phase probe. We therefore obtain all intensity images simultaneously while still retaining a central, unaltered science PSF. The electric field sensing method only makes use of the holographic copies, allowing for correction of the residual electric field while retaining the central PSF for uninterrupted science data collection. In this paper we demonstrate the feasibility of this method with numerical simulations.

  19. Features of Upward Positive Leaders Initiated From Towers in Natural Cloud-to-Ground Lightning Based on Simultaneous High-Speed Videos, Measured Currents, and Electric Fields

    NASA Astrophysics Data System (ADS)

    Visacro, Silverio; Guimaraes, Miguel; Murta Vale, Maria Helena

    2017-12-01

    Original simultaneous records of currents, close electric field, and high-speed videos of natural negative cloud-to-ground lightning striking the tower of Morro do Cachimbo Station are used to reveal typical features of upward positive leaders before the attachment, including their initiation and mode of propagation. According to the results, upward positive leaders initiate some hundreds of microseconds prior to the return stroke, while a continuous uprising current of about 4 A and superimposed pulses of a few tens amperes flow along the tower. Upon leader initiation, the electric field measured 50 m away from the tower at ground level is about 60 kV/m. The corresponding average field roughly estimated 0.5 m above the tower top is higher than 0.55 MV/m. As in laboratory experiments, the common propagation mode of upward positive leaders is developing continuously, without steps, from their initiation. Unlike downward negative leaders, upward positive leaders typically do not branch off, though they can bifurcate under the effect of a downward negative leader's secondary branch approaching their lateral surface. The upward positive leader's estimated average two-dimensional propagation speed, in the range of 0.06 × 106 to 0.16 × 106 m/s, has the same order of magnitude as that of downward negative leaders. Apparently, the speed tends to increase just before attachment.

  20. Search for a nematic phase in the quasi-two-dimensional antiferromagnet CuCrO2 by NMR in an electric field

    NASA Astrophysics Data System (ADS)

    Sakhratov, Yu. A.; Kweon, J. J.; Choi, E. S.; Zhou, H. D.; Svistov, L. E.; Reyes, A. P.

    2018-03-01

    The magnetic phase diagram of CuCrO2 was studied with an alternative method of simultaneous Cu NMR and electric polarization techniques with the primary goal of demonstrating that, regardless of cooling history of the sample, the magnetic phase with specific helmet-shaped NMR spectra associated with interplanar disorder possesses electric polarization. Our result unequivocally confirms the assumption of Sakhratov et al. [Phys. Rev. B 94, 094410 (2016), 10.1103/PhysRevB.94.094410] that the high-field low-temperature phase is in fact a three-dimensional (3D) polar phase characterized by a 3D magnetic order with tensor order parameter. In comparison with the results obtained in pulsed fields, a modified phase diagram is introduced defining the upper boundary of the first-order transition from the 3D spiral to the 3D polar phase.

  1. High-performance gas sensors with temperature measurement

    PubMed Central

    Zhang, Yong; Li, Shengtao; Zhang, Jingyuan; Pan, Zhigang; Min, Daomin; Li, Xin; Song, Xiaoping; Liu, Junhua

    2013-01-01

    There are a number of gas ionization sensors using carbon nanotubes as cathode or anode. Unfortunately, their applications are greatly limited by their multi-valued sensitivity, one output value corresponding to several measured concentration values. Here we describe a triple-electrode structure featuring two electric fields with opposite directions, which enable us to overcome the multi-valued sensitivity problem at 1 atm in a wide range of gas concentrations. We used a carbon nanotube array as the first electrode, and the two electric fields between the upper and the lower interelectrode gaps were designed to extract positive ions generated in the upper gap, hence significantly reduced positive ion bombardment on the nanotube electrode, which allowed us to maintain a high electric field near the nanotube tips, leading to a single-valued sensitivity and a long nanotube life. We have demonstrated detection of various gases and simultaneously monitoring temperature, and a potential for applications. PMID:23405281

  2. Rational modulation of neuronal processing with applied electric fields.

    PubMed

    Bikson, Marom; Radman, Thomas; Datta, Abhishek

    2006-01-01

    Traditional approaches to electrical stimulation, using trains of supra-threshold pulses to trigger action potentials, may be replaced or augmented by using 'rational' sub-threshold stimulation protocols that incorporate knowledge of single neuron geometry, inhomogeneous tissue properties, and nervous system information coding. Sub-threshold stimulation, at intensities (well) below those sufficient to trigger action potentials, may none-the-less exert a profound effect on brain function through modulation of concomitant neuronal activity. For example, small DC fields may coherently polarize a network of neurons and thus modulate the simultaneous processing of afferent synaptic input as well as resulting changes in synaptic plasticity. Through 'activity-dependent plasticity', sub-threshold fields may allow specific targeting of pathological networks and are thus particularly suitable to overcome the poor anatomical focus of noninvasive (transcranial) electrical stimulation. Additional approaches to improve targeting in transcranial stimulation using novel electrode configurations are also introduced.

  3. Oscillator strength and quantum-confined Stark effect of excitons in a thin PbS quantum disk

    NASA Astrophysics Data System (ADS)

    Oukerroum, A.; El-Yadri, M.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.; Sadoqi, M.; Long, G.

    2018-01-01

    In this paper, we report a study of the effect of a lateral electric field on a quantum-confined exciton in a thin PbS quantum disk. Our approach was performed in the framework of the effective mass theory and adiabatic approximation. The ground state energy and the stark shift were determined by using a variational method with an adequate trial wavefunction, by investigating a 2D oscillator strength under simultaneous consideration of the geometrical confinement and the electric field strength. Our results showed a strong dependence of the exciton binding and the Stark shift on the disk dimensions in both axial and longitudinal directions. On the other hand, our results also showed that the Stark shift’s dependence on the electric field is not purely quadratic but the linear contribution is also important and cannot be neglected, especially when the confinement gets weaker.

  4. Towards multicaloric effect with ferroelectrics

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Guangzu; Li, Qi; Bellaiche, Laurent; Scott, James F.; Dkhil, Brahim; Wang, Qing

    2016-12-01

    Utilizing thermal changes in solid-state materials strategically offers caloric-based alternatives to replace current vapor-compression technology. To make full use of multiple forms of the entropy and achieve higher efficiency for designs of cooling devices, the multicaloric effect appears as a cutting-edge concept encouraging researchers to search for multicaloric materials with outstanding caloric properties. Here we report the multicaloric effect in BaTi O3 single crystals driven simultaneously by mechanical and electric fields and described via a thermodynamic phenomenological model. It is found that the multicaloric behavior is mainly dominated by the mechanical field rather than the electric field, since the paraelectric-to-ferroelectric transition is more sensitive to mechanical field than to electric field. The use of uniaxial stress competes favorably with pressure due to its much higher caloric strength and negligible elastic thermal change. It is revealed that multicaloric response can be significantly larger than just the sum of mechanocaloric and electrocaloric effects in temperature regions far above the Curie temperature but cannot exceed this limit near the Curie temperature. Our results also show the advantage of the multicaloric effect over the mechanically mediated electrocaloric effect or electrically mediated mechanocaloric effect. Our findings therefore highlight the importance of ferroelectric materials to develop multicaloric cooling.

  5. Electric-field induced spin accumulation in the Landau level states of topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Siu, Zhuo Bin; Chowdhury, Debashree; Basu, Banasri; Jalil, Mansoor B. A.

    2017-08-01

    A topological insulator (TI) thin film differs from the more typically studied thick TI system in that the former has both a top and a bottom surface where the states localized at both surfaces can couple to one other across the finite thickness. An out-of-plane magnetic field leads to the formation of discrete Landau level states in the system, whereas an in-plane magnetization breaks the angular momentum symmetry of the system. In this work, we study the spin accumulation induced by the application of an in-plane electric field to the TI thin film system where the Landau level states and inter-surface coupling are simultaneously present. We show, via Kubo formula calculations, that the in-plane spin accumulation perpendicular to the magnetization due to the electric field vanishes for a TI thin film with symmetric top and bottom surfaces. A finite in-plane spin accumulation perpendicular to both the electric field and magnetization emerges upon applying either a differential magnetization coupling or a potential difference between the two film surfaces. This spin accumulation results from the breaking of the antisymmetry of the spin accumulation around the k-space equal-energy contours.

  6. Stopping electric field extension in a modified nanostructure based on SOI technology - A comprehensive numerical study

    NASA Astrophysics Data System (ADS)

    Anvarifard, Mohammad K.; Orouji, Ali A.

    2017-11-01

    This article has related a particular knowledge in order to reduce short channel effects (SCEs) in nano-devices based on silicon-on-insulator (SOI) MOSFETs. The device under study has been designed in 22 nm node technology with embedding Si3N4 extra oxide as a stopping layer of electric field and a useful heatsink for transferring generated heat. Two important subjects (DC characteristics and RF characteristics) have been investigated, simultaneously. Stopping electric field extension and enhancement of channel thermal conduction are introduced as an entrance gateway for this work so that improve the electrical characteristics, eventually. The inserted extra oxide made by the Si3N4 material has a vital impact on the modification of the electrical and thermal features in the proposed device. An immense comparison between the proposed SOI and conventional SOI showed that the proposed structure has higher electrical and thermal proficiency than the conventional structure in terms of main parameters such as short channel effects (SCEs), leakage current, floating body effect (FBE), self-heating effect (SHE), voltage gain, ratio of On-current to Off- current, transconductance, output conductance, minimum noise figure and power gain.

  7. Strong coupling in electromechanical computation

    NASA Astrophysics Data System (ADS)

    Füzi, János

    2000-06-01

    A method is presented to carry out simultaneously electromagnetic field and force computation, electrical circuit analysis and mechanical computation to simulate the dynamic operation of electromagnetic actuators. The equation system is solved by a predictor-corrector scheme containing a Powell error minimization algorithm which ensures that every differential equation (coil current, field strength rate, flux rate, speed of the keeper) is fulfilled within the same time step.

  8. Study of self-generated electric field at shock front by broadband proton probing and soft X-ray emission

    NASA Astrophysics Data System (ADS)

    Hua, Rui; Sio, Hong; Wilks, Scott; McGuffey, Christopher; Bailly-Grandvaux, Mathieu; Heeter, Bob; Beg, Farhat; Collins, Gilbert; Ping, Yuan; MIT Collaboration; LLNL Collaboration; UCSD Collaboration

    2017-10-01

    Self-generated electric fields arise from gradients in the electron pressure at shock fronts. We report observations of such E-fields from experiments conducted on OMEGA EP. In the experiments, strong shock waves were generated in low density gas under a quasi-planar geometry and diagnosed by broadband proton radiography. The broad proton spectrum allows energy-dependent measurements of deflection from which one can quantitatively constrain the electrical potential and field thickness. Three UV beams delivering up to 6.4 kJ energy in 2ns were used for shock generation and a short laser pulse of energy up to 850 J, 10 ps duration, was used to accelerate the broadband proton beam for point-projection radiography. Observations show the existence of electric fields with potential 300 V at the front of a Mach 9 shock in helium gas. A Mach 16 shock is also studied, from which both the field thickness and electric potential are reproduced. Simultaneous spatially resolved soft-x-ray spectroscopy provided additional measurements of shock velocity, particle velocity and thermal emission. This work was performed under DOE contract DE-AC52-07NA27 344 with support from OFES Early Career program and LLNL LDRD program. This work has been partially supported by the University of California Office of the President Lab Fee Grant Number LFR-17-449059.

  9. Interhemispheric Poynting Flux Associated with Postsunset Equatorial Plasma Depletions as Observed by Swarm

    NASA Astrophysics Data System (ADS)

    Rodriguez-Zuluaga, J.; Stolle, C.; Park, J.

    2017-12-01

    By using simultaneous measurements of electric and magnetic fields gathered by the Swarm constellation, the direction of both Poynting flux and field-aligned currents (FACs) associated with topside equatorial plasma depletions (EPDs) is derived. Contrary to expectations, FACs are found to flow at the walls of EPDs from one magnetic hemisphere to the other rather than flowing away from and towards the dip equator, as has been suggested so far. In turn, an interhemispheric Poynting flux is observed to flow into the E region of the hemisphere with larger ionospheric conductivity when eastward polarisation electric field is present across the depletion. However, also westward electric field is often observed but without a change in the FACs orientation, that would preserve the direction of the Poynting flux. The interhemispheric flows show seasonal, longitudinal and local time dependence. Empirical models are used to substantiate the conclusions of this study. After these new findings, the question about the location of a generator and load in terms of electromagnetic energy flow remains open.

  10. Synaptic Effects of Electric Fields

    NASA Astrophysics Data System (ADS)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits. Moreover, stimulation polarity has asymmetric effects on synaptic strength making it easier to enhance ongoing plasticity. These results suggest that the susceptibility of brain networks to an electric field depends on the state of synaptic activity. Combining a training task, which activates specific circuits, with TES may lead to functionally-specific effects. Given the simplicity of TES and the complexity of brain function, understanding the mechanisms leading to specificity is fundamental to the rational advancement of TES.

  11. Analytical and numerical investigations of bubble behavior in electric fields

    NASA Astrophysics Data System (ADS)

    Vorreiter, Janelle Orae

    The behavior of gas bubbles in liquids is important in a wide range of applications. This study is motivated by a desire to understand the motion of bubbles in the absence of gravity, as in many aerospace applications. Phase-change devices, cryogenic tanks and life-support systems are some of the applications where bubbles exist in space environments. One of the main difficulties in employing devices with bubbles in zero gravity environments is the absence of a buoyancy force. The use of an electric field is found to be an effective means of replacing the buoyancy force, improving the control of bubbles in space environments. In this study, analytical and numerical investigations of bubble behavior under the influence of electric fields are performed. The problem is a difficult one in that the physics of the liquid and the electric field need to be considered simultaneously to model the dynamics of the bubble. Simplifications are required to reduce the problem to a tractable form. In this work, for the liquid and the electric field, assumptions are made which reduce the problem to one requiring only the solution of potentials in the domain of interest. Analytical models are developed using a perturbation analysis applicable for small deviations from a spherical shape. Numerical investigations are performed using a boundary integral code. A number of configurations are found to be successful in promoting bubble motion by varying properties of the electric fields. In one configuration, the natural frequencies of a bubble are excited using time-varying electric and pressure fields. The applied electric field is spatially uniform with frequencies corresponding to shape modes of the bubble. The resulting bubble velocity is related to the strength of the electric field as well as the characteristics of the applied fields. In another configuration, static non-uniform fields are used to encourage bubble motion. The resulting motion is related to the degree of non-uniformity of the applied field. Several geometries are investigated to study the relationship between electrode geometry and bubble behavior.

  12. Electromagnetism of Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  13. Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Höfer, B.; Zhang, J.; Wildmann, J.; Zallo, E.; Trotta, R.; Ding, F.; Rastelli, A.; Schmidt, O. G.

    2017-04-01

    Independent tuning of emission energy and decay time of neutral excitons confined in single self-assembled In(Ga)As/GaAs quantum dots is achieved by simultaneously employing vertical electric fields and lateral biaxial strain fields. By locking the emission energy via a closed-loop feedback on the piezoelectric actuator used to control the strain in the quantum dot, we continuously decrease the decay time of an exciton from 1.4 to 0.7 ns. Both perturbations are fully electrically controlled and their combination offers a promising route to engineer the indistinguishability of photons emitted from spatially separated single photon sources.

  14. Effect of simultaneously induced environmental stimuli on electrical signalling and gas exchange in maize plants.

    PubMed

    Vuralhan-Eckert, Jasmin; Lautner, Silke; Fromm, Jörg

    2018-04-01

    Electrical signalling in response to environmental stimuli is a well-known phenomenon in higher plants. For example, in maize, different stimuli, such as wounding or re-irrigation after drought, incite characteristic electrical signals which have quite particular effects on gas exchange. What is less well understood is how plants (specifically maize) respond when two different environmental stimuli are applied simultaneously. To explore this, a three-stage experiment was designed. In the first stage, drought conditions were simulated by decreasing the soil water content to 30-40 % of field capacity. In these conditions, and in contrast to well-watered plants, the maize exhibited only 60-70% of the original level of stomatal conductance and 50-60 % of the original photosynthesis rate. In the second stage of the experiment the plants were re-irrigated and heat stimulated separately. Re-irrigation led to specific electrical signals followed by a gradual increase of gas exchange. In contrast, after heat stimulation of a leaf an electrical signal was evoked that reduced the net CO 2 -uptake rate as well as stomatal conductance. In the third stage, to elucidate how plants process simultaneous re-irrigation and heat stimulation, the drought-stressed maize plants were re-watered and heat-stimulated at the same time. Results showed a two phase response. In the first phase there was a rapid decrease in both the CO 2 uptake rate and the stomatal conductance, while in the second phase each of these parameters increased gradually. Thus, the results strongly support the view that the responses from both stimuli were combined, indicating that maize plants can process simultaneously applied stimuli. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. A TDR-Based Soil Moisture Monitoring System with Simultaneous Measurement of Soil Temperature and Electrical Conductivity

    PubMed Central

    Skierucha, Wojciech; Wilczek, Andrzej; Szypłowska, Agnieszka; Sławiński, Cezary; Lamorski, Krzysztof

    2012-01-01

    Elements of design and a field application of a TDR-based soil moisture and electrical conductivity monitoring system are described with detailed presentation of the time delay units with a resolution of 10 ps. Other issues discussed include the temperature correction of the applied time delay units, battery supply characteristics and the measurement results from one of the installed ground measurement stations in the Polesie National Park in Poland. PMID:23202009

  16. Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments.

    PubMed

    Xiao, Wendan; Li, Dan; Ye, Xuezhu; Xu, Haizhou; Yao, Guihua; Wang, Jingwen; Zhang, Qi; Hu, Jing; Gao, Na

    2017-02-01

    The combined use of organic amendment-assisted phytoextraction and electrokinetic remediation to decontaminate Cd-polluted soil was demonstrated in a laboratory-scale experiment. The plant species selected was the hyperaccumulator Sedum alfredii. Prior to the pot experiment, the loamy soil was treated with 15 g kg -1 of pig manure compost, 10 g kg -1 of humic acid, or 5 mmol kg -1 of EDTA, and untreated soil without application of any amendment was the control. Two conditions were applied to each treatment: no voltage (without an electrical field) and a direct current (DC) electrical field (1 V cm -1 with switching polarity every day). Results indicated that Cd concentrations in S. alfredii were significantly (p < 0.05) increased by application of the electrical field and soil amendments (pig manure compost, humic acid, and EDTA). By switching the polarity of the DC electrical field, significant pH variation from anode to cathode can be avoided, and no significant impact was observed on shoot biomass production. Electrical field application increased DTPA-extractable Cd in soils and the Cd accumulation in shoots by 6.06-15.64 and 24.53-52.31%, respectively. The addition of pig manure compost and humic acid enhanced shoot Cd accumulation by 1.54- to 1.92- and 1.38- to 1.64-fold because of their simultaneous enhancement of Cd concentration in shoots and biomass production. However, no enhancement of Cd accumulation was found in the EDTA treatment, which can be ascribed to the inhibition of plant growth caused by EDTA. In conclusion, pig manure compost or humic acid addition in combination with the application of a switched-polarity DC electrical field could significantly enhance Cd phytoextraction by hyperaccumulator S. alfredii.

  17. Observations of Pc5 micropulsation-related electric field oscillations in equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Reddy, C. A.; Ravindran, Sudha; Viswanathan, K. S.; Murthy, B. V. Krishna; Rao, D. R. K.; Araki, T.

    1994-01-01

    A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5 deg N, 77 deg E, 0.5 deg N dip angle) recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (A(sub p) = 161). Simultaneous 100-n T-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6 deg N gm) and at Narsarsuaq, Greenland (70.6 deg N gm). Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730-1900 IST (1200-1330 UT), the amplitude of the electric field oscillation in the equatorial electrojet (EEJ) is 0.1-0.25 mV/m and it increases with height, while it is about 1.0 mV/m in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brofelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the assoicated ionospheric electric field penetrating from high latitudes to the magnetic equator.

  18. A network thermodynamic method for numerical solution of the Nernst-Planck and Poisson equation system with application to ionic transport through membranes.

    PubMed

    Horno, J; González-Caballero, F; González-Fernández, C F

    1990-01-01

    Simple techniques of network thermodynamics are used to obtain the numerical solution of the Nernst-Planck and Poisson equation system. A network model for a particular physical situation, namely ionic transport through a thin membrane with simultaneous diffusion, convection and electric current, is proposed. Concentration and electric field profiles across the membrane, as well as diffusion potential, have been simulated using the electric circuit simulation program, SPICE. The method is quite general and extremely efficient, permitting treatments of multi-ion systems whatever the boundary and experimental conditions may be.

  19. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo

    PubMed Central

    Hirai, Yasuharu; Nishino, Eri

    2015-01-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. PMID:25761950

  20. Simultaneous recording of fluorescence and electrical signals by photometric patch electrode in deep brain regions in vivo.

    PubMed

    Hirai, Yasuharu; Nishino, Eri; Ohmori, Harunori

    2015-06-01

    Despite its widespread use, high-resolution imaging with multiphoton microscopy to record neuronal signals in vivo is limited to the surface of brain tissue because of limited light penetration. Moreover, most imaging studies do not simultaneously record electrical neural activity, which is, however, crucial to understanding brain function. Accordingly, we developed a photometric patch electrode (PME) to overcome the depth limitation of optical measurements and also enable the simultaneous recording of neural electrical responses in deep brain regions. The PME recoding system uses a patch electrode to excite a fluorescent dye and to measure the fluorescence signal as a light guide, to record electrical signal, and to apply chemicals to the recorded cells locally. The optical signal was analyzed by either a spectrometer of high light sensitivity or a photomultiplier tube depending on the kinetics of the responses. We used the PME in Oregon Green BAPTA-1 AM-loaded avian auditory nuclei in vivo to monitor calcium signals and electrical responses. We demonstrated distinct response patterns in three different nuclei of the ascending auditory pathway. On acoustic stimulation, a robust calcium fluorescence response occurred in auditory cortex (field L) neurons that outlasted the electrical response. In the auditory midbrain (inferior colliculus), both responses were transient. In the brain-stem cochlear nucleus magnocellularis, calcium response seemed to be effectively suppressed by the activity of metabotropic glutamate receptors. In conclusion, the PME provides a powerful tool to study brain function in vivo at a tissue depth inaccessible to conventional imaging devices. Copyright © 2015 the American Physiological Society.

  1. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice.

    PubMed

    Park, Dong-Wook; Ness, Jared P; Brodnick, Sarah K; Esquibel, Corinne; Novello, Joseph; Atry, Farid; Baek, Dong-Hyun; Kim, Hyungsoo; Bong, Jihye; Swanson, Kyle I; Suminski, Aaron J; Otto, Kevin J; Pashaie, Ramin; Williams, Justin C; Ma, Zhenqiang

    2018-01-23

    Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 μC/cm 2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.

  2. Evidence of Ubiquitous Large-Amplitude Alfven waves in the Global Field-Aligned Current System

    NASA Astrophysics Data System (ADS)

    Pakhotin, I.; Mann, I.; Lysak, R. L.; Knudsen, D. J.; Burchill, J. K.; Gjerloev, J. W.; Rae, J.; Forsyth, C.; Murphy, K. R.; Miles, D.; Ozeke, L.; Balasis, G.

    2017-12-01

    Large-amplitude non-stationarities have been observed during an analysis of a quiescent field-aligned current system crossing using the multi-satellite Swarm constellation. Using simultaneous electric and magnetic field measurements it has been determined that these non-stationarities, reaching tens to hundreds of nanoteslas, are Alfvenic in nature. Evidence suggests that these large-amplitude Alfven waves are a ubiquitous, fundamentally inherent feature of and exist in a continuum with larger-scale field-aligned currents, and both can be explained using the same physical paradigm of reflected Alfven waves.

  3. Frequency and Voltage Dependence of the Dielectrophoretic Trapping of Short Lengths of DNA and dCTP in a Nanopipette

    PubMed Central

    Ying, Liming; White, Samuel S.; Bruckbauer, Andreas; Meadows, Lisa; Korchev, Yuri E.; Klenerman, David

    2004-01-01

    The study of the properties of DNA under high electric fields is of both fundamental and practical interest. We have exploited the high electric fields produced locally in the tip of a nanopipette to probe the motion of double- and single-stranded 40-mer DNA, a 1-kb single-stranded DNA, and a single-nucleotide triphosphate (dCTP) just inside and outside the pipette tip at different frequencies and amplitudes of applied voltages. We used dual laser excitation and dual color detection to simultaneously follow two fluorophore-labeled DNA sequences with millisecond time resolution, significantly faster than studies to date. A strong trapping effect was observed during the negative half cycle for all DNA samples and also the dCTP. This effect was maximum below 1 Hz and decreased with higher frequency. We assign this trapping to strong dielectrophoresis due to the high electric field and electric field gradient in the pipette tip. Dielectrophoresis in electrodeless tapered nanostructures has potential applications for controlled mixing and manipulation of short lengths of DNA and other biomolecules, opening new possibilities in miniaturized biological analysis. PMID:14747337

  4. The Role of Storm Time Electrodynamics in Suppressing the Equatorial Plasma Bubble Development in the Recovery Phase of a Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Sripathi, S.; Banola, S.; Emperumal, K.; Suneel Kumar, B.; Radicella, Sandro M.

    2018-03-01

    We investigate the role of storm time electrodynamics in suppressing the equatorial plasma bubble (EPB) development using multi-instruments over India during a moderate geomagnetic storm that occurred on 2 October 2013 where Dst minimum reached -80 nT. This storm produced unique signatures in the equatorial ionosphere such that equatorial electrojet strength showed signatures of an abrupt increase of its strength to 150 nT and occurrence of episodes of counter electrojet events. During the main phase of the storm, the interplanetary magnetic field Bz is well correlated with the variations in the equatorial electrojet/counter electrojet suggesting the role of undershielding/overshielding electric fields of magnetospheric origin. Further, observations showed the presence of strong F3 layers at multiple times at multiple stations due to undershielding electric field. Interestingly, we observed simultaneous presence of F3 layers and suppression of EPBs in the dusk sector during the recovery phase. While strong EPBs were observed before and after the day of the geomagnetic storm, suppression of the EPBs on the storm day during "spread F season" is intriguing. Our further analysis using low-latitude station, Hyderabad, during the time of prereversal enhancement suggests that intense Esb layers were observed on the storm day but were absent/weak on quiet days. Based on these results, we suggest that the altitude/latitude variation of disturbance dynamo electric fields/disturbance winds may be responsible for simultaneous detection of F3 layers, occurrence of low-latitude Es layers, and suppression of EPBs during the storm day along the sunset terminator.

  5. Pseudo Landau levels and quantum oscillations in strained Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.

    2018-05-01

    The crystal lattice deformation in Weyl materials where the two chiralities are separated in momentum space leads to the appearance of gauge pseudo-fields. We investigated the pseudo-magnetic field induced quantum oscillations in strained Weyl semimetal (WSM). In contrast to all previous works on this problem, we use here a more general tilted Hamiltonian. Such Hamiltonian, seems to be is more suitable for a strained WSMs. We have shown that a pseudo-magnetic field induced magnetization of strained WSM is nonzero due to the fact that electric field (gradient of the deformation potential) is induced simultaneously with the pseudo-magnetic field. This related with fact that the pseudo Landau levels (LLs) in strained WSM are differ in vicinities of different WPs due to the presence of tilt in spectrum. Such violation of the equivalence between Weyl points (WPs) leads to modulation of quantum oscillations. We also showed that magnetization magnitude can be changed by application of an external electric field. In particular, it can be reduced to zero. The possibility of controlling of the magnetization by an electric field is interesting both from a fundamental point of view (a new type of magneto-electric effect) and application point of view (additional possibility to control diamagnetism of deformed WSMs). Finally, a coexistence of type-I and type-II Weyl fermions is possible in the system under investigation. Such phase is absolutely new for physics of topological systems.

  6. The magnetic field of gastrointestinal smooth muscle activity

    NASA Astrophysics Data System (ADS)

    Bradshaw, Alan; Ladipo, Jk; Richards, William; Wikswo, John

    1997-11-01

    The gastrointestinal (GI) tract controls the absorption and transport of ingested materials. Its function is determined largely by the electrical activity of the smooth muscle that lines the GI tract. GI electrical activity consists of an omnipresent slowly oscillating wave known as the basic electrical rhythm (BER) that modulates a higher-frequency spiking activity associated with muscle contraction. The BER has been shown to be a reliable indicator of intestinal viability, and thus, recording of smooth muscle activity may have clinical value. The BER is difficult to measure with cutaneous electrodes because layers of low-conductivity fat between the GI tract and the abdominal surface attenuate the potential. On the other hand, the magnetic field associated with GI electrical activity is mostly unaffected by intervening fat layers. We recorded the magnetic fields from GI activity in 12 volunteers using a multichannel Superconducting QUantum Interference Device (SQUID) magnetometer. Characteristics typical of gastric and intestinal BER were apparent in the data. Channels near the epigastrium recorded gastric BER, and channels in intestinal areas recorded small bowel BER. These results suggest that a single multichannel SQUID magnetometer is able to measure gastrointestinal electrical activity from multiple locations around the abdomen simultaneously.

  7. Current density in a model of a human body with a conductive implant exposed to ELF electric and magnetic fields.

    PubMed

    Valic, Blaz; Gajsek, Peter; Miklavcic, Damijan

    2009-10-01

    A numerical model of a human body with an intramedullary nail in the femur was built to evaluate the effects of the implant on the current density distribution in extremely low frequency electric and magnetic fields. The intramedullary nail was chosen because it is one of the longest high conductive implants used in the human body. As such it is expected to alter the electric and magnetic fields significantly. The exposure was a simultaneous combination of inferior to superior electric field and posterior to anterior magnetic field both alternating at 50 Hz with the values corresponding to the ICNIRP reference levels: 5000 V m(-1) for electric field and 100 microT for magnetic flux density. The calculated current density distribution inside the model was compared to the ICNIRP basic restrictions for general public (2 mA m(-2)). The results show that the implant significantly increases the current density up to 9.5 mA m(-2) in the region where it is in contact with soft tissue in the model with the implant in comparison to 0.9 mA m(-2) in the model without the implant. As demonstrated the ICNIRP basic restrictions are exceeded in a limited volume of the tissue in spite of the compliance with the ICNIRP reference levels for general public, meaning that the existing safety limits do not necessarily protect implanted persons to the same extent as they protect people without implants.

  8. Electro-optically Induced and Manipulated Terahertz Waves from Fe-doped InGaAs Surfaces

    NASA Astrophysics Data System (ADS)

    Hatem, O.

    2018-03-01

    We demonstrate the presence of dual simultaneous nonlinear mechanisms: field-induced optical rectification (FIOR) and field-induced surge current (FISC) for the generation of terahertz (THz) pulses from p-type and n-type Fe:In0.53Ga0.47As surfaces upon excitation with femtosecond laser pulses centered at 800 nm wavelength. Experimental investigations of the dependence of the generated THz waves on the incident angular optical polarization, optical irradiance, and the direction and magnitude of applied electric DC fields give confirming results to the proposed THz generation mechanisms. Applying external DC electric fields in the plane of the incident optical field shows efficient capability in manipulating the direction and phase of the generated THz waves, and controlling the refractive index of Fe:In0.53Ga0.47As material in the THz range, in addition to enhancing the emitted THz power up to two orders of magnitude. The fast and reliable response of Fe:In0.53Ga0.47As to the changes in the direction and magnitude of the optical and electrical fields suggests its use in amplitude and phase modulators, and ultrafast optoelectronic systems.

  9. Dual mode ion mobility spectrometer and method for ion mobility spectrometry

    DOEpatents

    Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2007-08-21

    Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

  10. Improving uniformity of atmospheric-pressure dielectric barrier discharges using dual frequency excitation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.

    2018-01-01

    This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.

  11. Experimental investigation into the coupling effects of magnetic field, temperature and pressure on electrical resistivity of non-oriented silicon steel sheet

    NASA Astrophysics Data System (ADS)

    Xiao, Lijun; Yu, Guodong; Zou, Jibin; Xu, Yongxiang

    2018-05-01

    In order to analyze the performance of magnetic device which operate at high temperature and high pressure, such as submersible motor, oil well transformer, the electrical resistivity of non-oriented silicon steel sheets is necessary for precise analysis. But the reports of the examination of the measuring method suitable for high temperature up to 180 °C and high pressure up to 140 MPa are few. In this paper, a measurement system based on four-probe method and Archimedes spiral shape measurement specimens is proposed. The measurement system is suitable for measuring the electrical resistivity of unconventional specimens under high temperature and high pressure and can simultaneously consider the influence of the magnetic field on the electrical resistivity. It can be seen that the electrical resistivity of the non-oriented silicon steel sheets will fluctuate instantaneously when the magnetic field perpendicular to the conductive path of the specimens is loaded or removed. The amplitude and direction of the fluctuation are not constant. Without considering the effects of fluctuations, the electrical resistivity of the non-oriented silicon steel sheets is the same when the magnetic field is loaded or removed. And the influence of temperature on the electrical resistivity of the non-oriented silicon steel sheet is still the greatest even though the temperature and the pressure are coupled together. The measurement results also show that the electrical resistivity varies linearly with temperature, so the temperature coefficient of resistivity is given in the paper.

  12. Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems.

    PubMed

    Wen, Feng; Huang, Xueliang

    2017-02-08

    The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working simultaneously.

  13. Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems

    PubMed Central

    Wen, Feng; Huang, Xueliang

    2017-01-01

    The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working simultaneously. PMID:28208709

  14. Double-sided anodic titania nanotube arrays: a lopsided growth process.

    PubMed

    Sun, Lidong; Zhang, Sam; Sun, Xiao Wei; Wang, Xiaoyan; Cai, Yanli

    2010-12-07

    In the past decade, the pore diameter of anodic titania nanotubes was reported to be influenced by a number of factors in organic electrolyte, for example, applied potential, working distance, water content, and temperature. All these were closely related to potential drop in the organic electrolyte. In this work, the essential role of electric field originating from the potential drop was directly revealed for the first time using a simple two-electrode anodizing method. Anodic titania nanotube arrays were grown simultaneously at both sides of a titanium foil, with tube length being longer at the front side than that at the back side. This lopsided growth was attributed to the higher ionic flux induced by electric field at the front side. Accordingly, the nanotube length was further tailored to be comparable at both sides by modulating the electric field. These results are promising to be used in parallel configuration dye-sensitized solar cells, water splitting, and gas sensors, as a result of high surface area produced by the double-sided architecture.

  15. Micromixer utilizing electrokinetic instability-induced shedding effect.

    PubMed

    Tai, Chang-Hsien; Yang, Ruey-Jen; Huang, Min-Zhong; Liu, Chia-Wei; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2006-12-01

    This paper presents a T-shaped micromixer featuring 45 degrees parallelogram barriers (PBs) within the mixing channel. The presented device obtains a rapid mixing of two sample fluids with conductivity ratio of 10:1 (sample concentration:running buffer concentration) by means of the electrokinetic instability-induced shedding effects which are produced when a direct current (DC) electric field of an appropriate intensity is applied. The presented device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electrical field intensity and the extent to which the PBs obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 91% at a cross-section located 2.3 mm downstream of the T-junction when the barriers obstruct 4/5 of the channel width and an electrical field of 300 V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems.

  16. A unified engineering model of the first stroke in downward negative lightning

    NASA Astrophysics Data System (ADS)

    Nag, Amitabh; Rakov, Vladimir A.

    2016-03-01

    Each stroke in a negative cloud-to-ground lightning flash is composed of downward leader and upward return stroke processes, which are usually modeled individually. The first stroke leader is stepped and starts with preliminary breakdown (PB) which is often viewed as a separate process. We present the first unified engineering model for computing the electric field produced by a sequence of PB, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively charged channel extends downward in a stepped fashion during both the PB and leader stages. Each step involves a current wave that propagates upward along the newly formed channel section. Once the leader attaches to ground, an upward propagating return stroke neutralizes the charge deposited along the channel. Model-predicted electric fields are in reasonably good agreement with simultaneous measurements at both near (hundreds of meters, electrostatic field component is dominant) and far (tens of kilometers, radiation field component is dominant) distances from the lightning channel. Relations between the features of computed electric field waveforms and model input parameters are examined. It appears that peak currents associated with PB pulses are similar to return stroke peak currents, and the observed variation of electric radiation field peaks produced by leader steps at different heights above ground is influenced by the ground corona space charge.

  17. Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field

    PubMed Central

    Grimaldi, Piercesare; Schweers, Nicole

    2013-01-01

    Recent studies have demonstrated that strong neural modulations can be evoked with optogenetic stimulation in macaque motor cortex without observing any evoked movements (Han et al., 2009, 2011; Diester et al., 2011). It remains unclear why such perturbations do not generate movements and if conditions exist under which they may evoke movements. In this study, we examine the effects of five optogenetic constructs in the macaque frontal eye field and use electrical microstimulation to assess whether optical perturbation of the local network leads to observable motor changes during optical, electrical, and combined stimulation. We report a significant increase in the probability of evoking saccadic eye movements when low current electrical stimulation is coupled to optical stimulation compared with when electrical stimulation is used alone. Experiments combining channelrhodopsin 2 (ChR2) and electrical stimulation with simultaneous fMRI revealed no discernible fMRI activity at the electrode tip with optical stimulation but strong activity with electrical stimulation. Our findings suggest that stimulation with current ChR2 optogenetic constructs generates subthreshold activity that contributes to the initiation of movements but, in most cases, is not sufficient to evoke a motor response. PMID:24133271

  18. Improvement of a device for detection and characterization of certain atmospheric pollutants. Final report. Perfectionnement d'un appareillage de detection et de caracterisation de certains pollutants atmospheriques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesseyre, Y.

    The study allowed development of an original measuring system for mobility, involving simultaneously a repulsive electrical field and a continuous gas flow. It made it possible to define a model to calculate ionic transparency of grates, taking into account electrical fields below and above them, ion mobility, speed of gas flow and geometric transparency. Calculation of the electrical field proceeded in a plane-plane system, taking into account the space load and diffusion; a graphic method was developed to determine the field, thus avoiding numerical integration of the diffusion equation. The tracings of the mobility spectra obtained in different gases mademore » it possible to determine characteristic discrete mobility values comparable to those observed by other more sophisticated systems for measuring mobilities, such as the flight time systems. Detection of pollutants in weak concentration in dry air was shown. However, the presence of water vapor in the air forms agglomerates around the ions formed, reducing resolution of the system and making it less applicable under normal atmospheric conditions.« less

  19. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI.

    PubMed

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S

    2015-05-07

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  20. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI

    NASA Astrophysics Data System (ADS)

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.

    2015-05-01

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  1. A Simultaneous Discovery: The Case of Johannes Stark and Antonino Lo Surdo

    NASA Astrophysics Data System (ADS)

    Leone, Matteo; Paoletti, Alessandro; Robotti, Nadia

    2004-09-01

    In 1913 the German physicist Johannes Stark (1874 1957) and the Italian physicist Antonino Lo Surdo (1880 1949)discovered virtually simultaneously and independently that hydrogen spectral lines are split into components by an external electric field. Both of their discoveries ensued from studies on the same phenomenon, the Doppler effect in canal rays, but they arose in different theoretical contexts. Stark had been working within the context of the emerging quantum theory, following a research program aimed at studying the effect of an electric field on spectral lines. Lo Surdo had been working within the context of the classical theory, and his was an accidental discovery. Both discoveries, however, played important roles in the history of physics: Stark’s discovery contributed to the establishment of both the old and the new quantum theories; Lo Surdo’s discovery led Antonio Garbasso (1871 1933)to introduce research on the quantum theory into Italian physics. Ironically, soon after their discoveries, both Stark and Lo Surdo rejected developments in modern physics and allied themselves with the political and racial programs of Hitler and Mussolini.

  2. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    NASA Astrophysics Data System (ADS)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  3. Transfer of electrical space charge from corona between ground and thundercloud: Measurements and modeling

    NASA Technical Reports Server (NTRS)

    Soula, Serge

    1994-01-01

    The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.

  4. A magneto-electro-optical effect in a plasmonic nanowire material

    PubMed Central

    Valente, João; Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.

    2015-01-01

    Electro- and magneto-optical phenomena play key roles in photonic technology enabling light modulators, optical data storage, sensors and numerous spectroscopic techniques. Optical effects, linear and quadratic in external electric and magnetic field are widely known and comprehensively studied. However, optical phenomena that depend on the simultaneous application of external electric and magnetic fields in conventional media are barely detectable and technologically insignificant. Here we report that a large reciprocal magneto-electro-optical effect can be observed in metamaterials. In an artificial chevron nanowire structure fabricated on an elastic nano-membrane, the Lorentz force drives reversible transmission changes on application of a fraction of a volt when the structure is placed in a fraction-of-tesla magnetic field. We show that magneto-electro-optical modulation can be driven to hundreds of thousands of cycles per second promising applications in magneto-electro-optical modulators and field sensors at nano-tesla levels. PMID:25906761

  5. Precise measurement of electric potential, field, and charge density profiles across a biased GaAs p-n tunnel junction by in situ phase-shifting electron holography

    NASA Astrophysics Data System (ADS)

    Anada, Satoshi; Yamamoto, Kazuo; Sasaki, Hirokazu; Shibata, Naoya; Hori, Yujin; Kinugawa, Kouhei; Imamura, Akihiro; Hirayama, Tsukasa

    2017-12-01

    We combined an in situ biasing technique with phase-shifting electron holography, which can simultaneously achieve a high precision and high spatial resolution, to measure the electric potential, field, and charge density profiles across a GaAs p-n tunnel junction. A thin-film specimen was prepared by thinning one part of a bulk specimen using a cryo focused ion beam (FIB) system. We obtained precise electric potential profiles and successfully converted them into smooth electric field and charge density profiles without any fitting simulations. From the relationship between the applied voltage and measured height of the potential step across the p-n junction, the built-in potential of the p-n junction was determined to be 1.55 ± 0.02 V. The electric field profiles showed that the unbiased p-n junction had a depletion layer with a width of 24 ± 1 nm; the width increased to 26 ± 1 nm under a reverse bias of -0.3 V and decreased to 22 ± 1 nm under a forward bias of 0.5 V. Moreover, the charge density profiles indicated the presence of passivated dopants and/or trapped carriers even in the internal active layer of the specimen, with little damage introduced by FIB milling.

  6. Analyte concentration at the tip of a nanopipette.

    PubMed

    Calander, Nils

    2009-10-15

    Concentration of molecules within the tips of nanopipettes when applying a DC voltage is herein investigated using finite-element simulations. The ion concentrations and fluxes due to diffusion, electro-migration, and electro-osmotic flow, and the electric potential are determined by the simultaneous solution of the Nernst-Planck, Poisson, and Navier-Stokes equations within the water solution containing sodium and chloride ions and negatively charged molecules. The electric potential within the pipette glass wall is at the same time determined by the Poisson equation together with appropriate boundary conditions and accounts for a field effect through the wall. Fixed negative surface charge on both the internal and external glass surfaces of the nanopipette is included together with the field effect through the glass wall to account for the electric double layer and the electro-osmosis. The inclusion of the field effect through the pipette wall is new compared to previous modeling of similar structures and is shown to be crucial for the behavior at the tip. It is demonstrated that the concentration of molecules is a consequence of ionic charge accumulation at the tip screening the electric field, thereby slowing down the electrophoretic motion of the molecules, which is further slowed down or stopped by the oppositely directed electro-osmosis. It is also shown that the trapping is very sensitive to the properties of the molecule, that is, its electrophoretic mobility and diffusion coefficient, the properties of the pipette, the ionic strength of the solution, and the applied electric field.

  7. Impurity-assisted electric control of spin-valley qubits in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Széchenyi, G.; Chirolli, L.; Pályi, A.

    2018-07-01

    We theoretically study a single-electron spin-valley qubit in an electrostatically defined quantum dot in a transition metal dichalcogenide monolayer, focusing on the example of MoS2. Coupling of the qubit basis states for coherent control is challenging, as it requires a simultaneous flip of spin and valley. Here, we show that a tilted magnetic field together with a short-range impurity, such as a vacancy, a substitutional defect, or an adatom, can give rise to a coupling between the qubit basis states. This mechanism renders the in-plane g-factor nonzero, and allows to control the qubit with an in-plane ac electric field, akin to electrically driven spin resonance. We evaluate the dependence of the in-plane g-factor and the electrically induced qubit Rabi frequency on the type and position of the impurity. We reveal highly unconventional features of the coupling mechanism, arising from symmetry-forbidden intervalley scattering, in the case when the impurity is located at a S site. Our results provide design guidelines for electrically controllable qubits in two-dimensional semiconductors.

  8. Possibilities for Estimating Horizontal Electrical Currents in Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Fursyak, Yu. A.; Abramenko, V. I.

    2017-12-01

    Part of the "free" magnetic energy associated with electrical current systems in the active region (AR) is released during solar flares. This proposition is widely accepted and it has stimulated interest in detecting electrical currents in active regions. The vertical component of an electric current in the photosphere can be found by observing the transverse magnetic field. At present, however, there are no direct methods for calculating transverse electric currents based on these observations. These calculations require information on the field vector measured simultaneously at several levels in the photosphere, which has not yet been done with solar instrumentation. In this paper we examine an approach to calculating the structure of the square of the density of a transverse electrical current based on a magnetogram of the vertical component of the magnetic field in the AR. Data obtained with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) for the AR of NOAA AR 11283 are used. It is shown that (1) the observed variations in the magnetic field of a sunspot and the proposed estimate of the density of an annular horizontal current around the spot are consistent with Faraday's law and (2) the resulting estimates of the magnitude of the square of the density of the horizontal current {j}_{\\perp}^2 = (0.002- 0.004) A2/m4 are consistent with previously obtained values of the density of a vertical current in the photosphere. Thus, the proposed estimate is physically significant and this method can be used to estimate the density and structure of transverse electrical currents in the photosphere.

  9. Shaping metallic glasses by electromagnetic pulsing

    PubMed Central

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  10. Feasibility study of short-term earthquake prediction using ionospheric anomalies immediately before large earthquakes

    NASA Astrophysics Data System (ADS)

    Heki, K.; He, L.

    2017-12-01

    We showed that positive and negative electron density anomalies emerge above the fault immediately before they rupture, 40/20/10 minutes before Mw9/8/7 earthquakes (Heki, 2011 GRL; Heki and Enomoto, 2013 JGR; He and Heki 2017 JGR). These signals are stronger for earthquake with larger Mw and under higher background vertical TEC (total electron conetent) (Heki and Enomoto, 2015 JGR). The epicenter, the positive and the negative anomalies align along the local geomagnetic field (He and Heki, 2016 GRL), suggesting electric fields within ionosphere are responsible for making the anomalies (Kuo et al., 2014 JGR; Kelley et al., 2017 JGR). Here we suppose the next Nankai Trough earthquake that may occur within a few tens of years in Southwest Japan, and will discuss if we can recognize its preseismic signatures in TEC by real-time observations with GNSS.During high geomagnetic activities, large-scale traveling ionospheric disturbances (LSTID) often propagate from auroral ovals toward mid-latitude regions, and leave similar signatures to preseismic anomalies. This is a main obstacle to use preseismic TEC changes for practical short-term earthquake prediction. In this presentation, we show that the same anomalies appeared 40 minutes before the mainshock above northern Australia, the geomagnetically conjugate point of the 2011 Tohoku-oki earthquake epicenter. This not only demonstrates that electric fields play a role in making the preseismic TEC anomalies, but also offers a possibility to discriminate preseismic anomalies from those caused by LSTID. By monitoring TEC in the conjugate areas in the two hemisphere, we can recognize anomalies with simultaneous onset as those caused by within-ionosphere electric fields (e.g. preseismic anomalies, night-time MSTID) and anomalies without simultaneous onset as gravity-wave origin disturbances (e.g. LSTID, daytime MSTID).

  11. A glucose concentration and temperature sensor based on long period fiber gratings induced by electric-arc discharge

    NASA Astrophysics Data System (ADS)

    Du, Chao; Wang, Qi

    2017-10-01

    As one of the key parameters in biological and chemical reactions, glucose concentration objectively reflects the characteristics of reactions, so the real-time monitoring of glucose concentration is important in the field of biochemical. Meanwhile, the influence from temperature should be considered. The fiber sensors have been studied extensively for decades due to the advantages of small size, immunity to electromagnetic interference and high sensitivity, which are suitable for the application of biochemical sensing. A long period fiber grating (LPFG) sensor induced by electric-arc discharge has been fabricated and demonstrated for simultaneous measurement of glucose concentration and temperature. The proposed sensor was fabricated by inscribing a sing mode fiber (SMF) with periodic electric-arc discharge technology. During the fabrication process, the electric-arc discharge technology was produced by a commercial fusion splicer, and the period of inscribed LPFG was determined by the movement of translation stages. A serials of periodic geometrical deformations would be formed in SMF after the fabrication, and the discharge intensity and discharge time can be adjusted though the fusion splicer settings screen. The core mode can be coupled into the cladding modes at certain wavelength when they satisfy the phase-matching conditions, and there will be several resonance dips in the transmission spectrum in LPFG. The resonance dips formed by the coupling between cladding modes and core mode have different sensitivity responses, so the simultaneous measurement for multi-parameter can be realized by monitoring the wavelength shifts of the resonance dips. Compared with the LPFG based on conventional SMF, the glucose concentration sensitivity has been obviously enhanced by etching the cladding with hydrofluoric acid solution. Based on the independent measured results, a dual-parameter measurement matrix has been built for signal demodulation. Because of the easy fabrication, low cost, small size and high sensitivity, the sensor is promising to be used for the biochemical sensing field where simultaneous measurement of glucose concentration and temperature is required.

  12. Tip-Enhanced Raman Nanographs: Mapping Topography and Local Electric Fields

    DOE PAGES

    El-Khoury, Patrick Z.; Gong, Yu; Abellan, Patricia; ...

    2015-03-05

    We report tip-enhanced Raman scattering experiments in which topographic and local electric field images are recorded simultaneously. We employ a Raman-active 4,4’-dimercaptostilbene (DMS)-coated gold tip of an atomic force microscope to map the topography and image electric fields localized at nanometric (20 and 5 nm-wide) slits lithographically etched in silver. Bi-modal imaging is feasible by virtue of the recorded scanning probe position-dependent frequency-resolved optical response, which can be sub-divided into two components. The first is a 500-2250 cm-1 Raman-shifted signal, characteristic of DMS. The molecular response reports on topography through intensity contrast in the absence/presence of a plasmonic junction formedmore » between the scanning probe and patterned silver surface. Here, we demonstrate that sub-15 nm spatial resolution is attainable using a 30 nm DMS-coated gold tip. The second response consists of two correlated sub-500 cm-1 signals arising from mirror-like reflections of (i) the incident laser, and (ii) the Raman scattered response of an underlying glass support (at 100-500 cm-1) off the gold tip. We show that both the low-wavenumber signals trace the local electric fields in the vicinity of the nanometric slits.« less

  13. Theoretical analysis of non-linear Joule heating effects over an electro-thermal patterned flow

    NASA Astrophysics Data System (ADS)

    Sanchez, Salvador; Ascanio, Gabriel; Mendez, Federico; Bautista, Oscar

    2017-11-01

    In this work, non-linear Joule heating effects for electro-thermal patterned flows driven inside of a slit microchannel are analyzed. Here, the movement of fluids is controlled by placing electro-thermal forces, which are generated through an imposed longitudinal electric field, E0, and the wall electric potential produced by electrodes inserted along the surface of the microchannel wall, ζ. For this analysis, viscosity and electrical conductivity of fluids are included as known functions, which depend on the temperature; therefore, in order to determine the flow, temperature and electric potential fields together with its simultaneous interactions, the equations of continuity, momentum, energy, charges distribution and electrical current have to be solved in a coupled manner. The main results obtained in the study reveal that with the presence of thermal gradients along of the microchannel, local electro-thermal forces, Fχ, are affected in a sensible manner, and consequently, the flow field is modified substantially, causing the interruption or intensification of recirculations along of the microchannel. This work was supported by the Fondo SEP-CONACYT through research Grants No. 220900 and 20171181 from SIP-IPN. F. Mendez acknowledges support from PAPIIT-UNAM under Contract Number IN112215. S. Sanchez thanks to DGAPA-UNAM for the postdoctoral fellowship.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skordas, E. S., E-mail: eskordas@phys.uoa.gr

    By applying Detrended Fluctuation Analysis (DFA) to the time series of the geomagnetic data recorded at three measuring stations in Japan, Rong et al. in 2012 recently reported that anomalous magnetic field variations were identified well before the occurrence of the disastrous Tohoku M{sub w}9.0 earthquake that occurred on 11 March 2011 in Japan exhibiting increased “non-uniform” scaling behavior. Here, we provide an explanation for the appearance of this increase of “non-uniform” scaling on the following grounds: These magnetic field variations are the ones that accompany the electric field variations termed Seismic Electric Signals (SES) activity which have been repeatedlymore » reported that precede major earthquakes. DFA as well as multifractal DFA reveal that the latter electric field variations exhibit scaling behavior as shown by analyzing SES activities observed before major earthquakes in Greece. Hence, when these variations are superimposed on a background of pseudosinusoidal trend, their long range correlation properties—quantified by DFA—are affected resulting in an increase of the “non-uniform” scaling behavior. The same is expected to hold for the former magnetic field variations. This explanation is strengthened by recent findings showing that the fluctuations of the order parameter of seismicity exhibited an unprecedented minimum almost two months before the Tohoku earthquake occurrence which is characteristic for an almost simultaneous emission of Seismic Electric Signals activity.« less

  15. Nonlinear structures and anomalous transport in partially magnetized E×B plasmas

    DOE PAGES

    Janhunen, Salomon; Smolyakov, Andrei; Chapurin, Oleksandr; ...

    2017-12-29

    Nonlinear dynamics of the electron-cyclotron instability driven by the electron E x B current in a crossed electric and magnetic field is studied. In the nonlinear regime, the instability proceeds by developing a large amplitude coherent wave driven by the energy input from the fundamental cyclotron resonance. Further evolution shows the formation of the long wavelength envelope akin to the modulational instability. Simultaneously, the ion density shows the development of a high-k content responsible for wave focusing and sharp peaks on the periodic cnoidal wave structure. Here, it is shown that the anomalous electron transport (along the direction of themore » applied electric field) is dominated by the long wavelength part of the turbulent spectrum.« less

  16. ``Hiss, clicks and pops'' - The enigmatic sounds of meteors

    NASA Astrophysics Data System (ADS)

    Finnegan, J. A.

    2015-04-01

    The improbability of sounds heard simultaneously with meteors allows the phenomenon to remain on the margins of scientific interest and research. This is unjustified, since these audibly perceived electric field effects indicate complex, inconsistent and still unresolved electric-magnetic coupling and charge dynamics; interacting between the meteor; the ionosphere and mesosphere; stratosphere; troposphere and the surface of the earth. This paper reviews meteor acoustic effects, presents illustrating reports and hypotheses and includes a summary of similar and additional phenomena observed during the 2013 February 15 asteroid fragment disintegration above the Russian district of Chelyabinsk. An augmenting theory involving near ground, non uniform electric field production of Ozone, as a stimulated geo-physical phenomenon to explain some hissing `meteor sounds' is suggested in section 2.2. Unlike previous theories, electric-magnetic field fluctuation rates are not required to occur in the audio frequency range for this process to acoustically emit hissing and intermittent impulsive sounds; removing the requirements of direct conversion, passive human transduction or excited, localised acoustic `emitters'. Links to the Armagh Observatory All-sky meteor cameras, electrophonic meteor research and full construction plans for an extremely low frequency (ELF) receiver are also included.

  17. Lunar electrical conductivity, permeability and temperature from Apollo magnetometer experiments

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. The measured lunar remanent fields range from 3 gammas minimum at the Apollo 15 site to 327 gammas maximum at the Apollo 16 site. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Remanent fields at Apollo 12 and Apollo 16 are increased 16 gammas and 32 gammas, respectively, by a solar plasma bulk pressure increase of 1.5 X 10 to the -7th power dynes/sq cm. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate an electrical conductivity profile for the moon. From nightside magnetometer data in the solar wind it was found that deeper than 170 km into the moon the conductivity rises from .0003 mhos/m to .10 mhos/m at 100 km depth. Recent analysis of data obtained in the geomagnetic tail, in regions free of complicating plasma effects, yields results consistent with nightside values.

  18. Anhydrous octyl-glucoside phase transition from lamellar to isotropic induced by electric and magnetic fields.

    PubMed

    Hashim, Rauzah; Sugimura, Akihiko; Nguan, Hock-Seng; Rahman, Matiur; Zimmermann, Herbert

    2017-02-28

    A static deuterium nuclear magnetic resonance ( 2 HNMR) technique (magnetic field, B = 7.05 T) was employed to monitor the thermotropic lamellar phase of the anhydrous 1:1 mixture sample of octyl-b-D-glucoside (βOG) and that of partially deuterium labelled at the alpha position on the chain, i.e.,βOG-d 2 In the absence of an electric field, the 2 H NMR spectrum of the mixture gives a typical quadrupolar doublet representing the aligned lamellar phase. Upon heating to beyond the clearing temperature at 112 °C, this splitting converts to a single line expected for an isotropic phase. Simultaneous application of magnetic and electric fields (E = 0.4 MV/m) at 85 °C in the lamellar phase, whose direction was set to be parallel or perpendicular to the magnetic field, resulted in the change of the doublet into a single line and this recovers to the initial doublet with time for both experimental geometries. This implies E- and B-field-induced phase transitions from the lamellar to an isotropic phase and a recovery to the lamellar phase again with time. Moreover, these phase transformations are accompanied by a transient current. A similar observation was made in a computational study when an electric field was applied to a water cluster system. Increasing the field strength distorts the water cluster and weakens its hydrogen bonds leading to a structural breakdown beyond a threshold field-strength. Therefore, we suggest the observed field-induced transition is likely due to a structure change of the βOG lamellar assembly caused by the field effect and not due to Joule heating.

  19. Transmission of the convection electric field to the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.

    2003-12-01

    Low latitude magnetometer observations revealed that the partial ring current started to develop within several minutes after the onset of growth of the polar cap potential (PCP), and decayed simultaneously with the decrease in the PCP (Hashimoto, Kikuchi and Ebihara., JGR 2002). The magnetometer observations also indicated that the DP2 ionospheric currents were driven by the convection electric field at mid latitudes as well as at high latitudes. These observational facts suggest that the ionospheric electric field plays a crucial role in driving the convection in the inner magnetosphere. A probable model for the electric field transmission should explain both the convection in the inner magnetosphere and the ionospheric currents at mid latitudes. The instantaneous transmission of the ionospheric electric field and currents from the polar ionosphere to the equator was explained by Kikuchi and Araki (JATP 1979) based on the TM0 mode in the Earth-ionosphere waveguide. In this paper, we attempt to explain the transmission of the convection electric field to the inner magnetosphere by applying the Earth-ionosphere waveguide. However, two issues remained unresolved in the paper by Kikuchi and Araki (1979). One is the excitation of the TM0 mode in the Earth-ionosphere waveguide, and the other is the attenuation under the nighttime ionospheric condition. To examine the excitation of the TM0 mode, we couple the Earth-ionosphere waveguide (transmission line) with a magnetospheric transmission line composed of a pair of field-aligned currents (e.g., R1 FACs). A fraction of the electromagnetic energy carried from the magnetosphere is transmitted into the Earth-ionosphere waveguide, although substantial energy is dissipated in the polar ionosphere intervening between the two transmission lines. The transmitted electromagnetic energy excites the TM0 mode in the Earth-ionosphere waveguide. We then evaluate the attenuation of the TM0 mode by calculating upward flow of energy from the waveguide into the conducting ionosphere and the magnetosphere. It is shown that the attenuation of the TM0 mode is not significant even for the nighttime condition, when compared to the geometrical attenuation due to the finite size of the polar electric field. Furthermore, it is shown that the ionospheric electric field carried by the TM0 mode is transmitted by Alfven waves upward into the inner magnetosphere along the magnetic field lines, supplying energy for the convection in the inner magnetosphere. It should be stressed that the ionosphere never creates electromagnetic energy but acts as a transmission line for the convection electric field. We conclude that the Earth-ionosphere waveguide connected with the magnetospheric transmission line explains both the instantaneous propagation of the electric field and currents in the ionosphere and of the convection electric field into the inner magnetosphere.

  20. Transverse Motion of a Particle with an Oscillating Charge and Variable Mass in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Alisultanov, Z. Z.; Ragimkhanov, G. B.

    2018-03-01

    The problem of motion of a particle with an oscillating electric charge and variable mass in an uniform magnetic field has been solved. Three laws of mass variation have been considered: linear growth, oscillations, and stepwise growth. Analytical expressions for the particle velocity at different time dependences of the particle mass are obtained. It is established that simultaneous consideration of changes in the mass and charge leads to a significant change in the particle trajectory.

  1. Inverted-V events simultaneously observed with the Freja satellite and from the ground

    NASA Astrophysics Data System (ADS)

    Haerendel, G.; Frey, H. U.; Bauer, O. H.; Rieger, E.; Clemmons, J.; Boehm, M. H.; Wallis, D. D.; Lühr, H.

    The paper reports data received from the Freja satellite during two passes over broad auroral arc systems or inverted-V events above Gillam/Manitoba when special wide-angle CCD cameras were operated at this location in addition to the CANOPUS network. Detailed comparisons of the visible structures with modulations of the primary electron fluxes are performed. Motions of this fine structures are interpreted in terms of high-altitude electric fields shielded from the lower ionosphere. Simultaneous readings of current density, accelerating voltage and energy flux, the latter determined both from particle and auroral brightness measurements, are found to be internally consistent. We calculate from these data the effective resistance encountered by the electric currents and find agreement with the kinetic theory of the mirror impedance, if we allow for substantial variations in density and energy of the source electrons in the magnetosphere.

  2. Joint inversion of satellite-detected tidal and magnetospheric signals constrains electrical conductivity and water content of the upper mantle and transition zone.

    PubMed

    Grayver, A V; Munch, F D; Kuvshinov, A V; Khan, A; Sabaka, T J; Tøffner-Clausen, L

    2017-06-28

    We present a new global electrical conductivity model of Earth's mantle. The model was derived by using a novel methodology, which is based on inverting satellite magnetic field measurements from different sources simultaneously. Specifically, we estimated responses of magnetospheric origin and ocean tidal magnetic signals from the most recent Swarm and CHAMP data. The challenging task of properly accounting for the ocean effect in the data was addressed through full three-dimensional solution of Maxwell's equations. We show that simultaneous inversion of magnetospheric and tidal magnetic signals results in a model with much improved resolution. Comparison with laboratory-based conductivity profiles shows that obtained models are compatible with a pyrolytic composition and a water content of 0.01 wt% and 0.1 wt% in the upper mantle and transition zone, respectively.

  3. Negative bias-and-temperature stress-assisted activation of oxygen-vacancy hole traps in 4H-silicon carbide metal-oxide-semiconductor field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettisserry, D. P., E-mail: deva@umd.edu, E-mail: neil@umd.edu; Goldsman, N., E-mail: deva@umd.edu, E-mail: neil@umd.edu; Akturk, A.

    We use hybrid-functional density functional theory-based Charge Transition Levels (CTLs) to study the electrical activity of near-interfacial oxygen vacancies located in the oxide side of 4H-Silicon Carbide (4H-SiC) power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). Based on the “amorphousness” of their local atomic environment, oxygen vacancies are shown to introduce their CTLs either within (permanently electrically active) or outside of (electrically inactive) the 4H-SiC bandgap. The “permanently electrically active” centers are likely to cause threshold voltage (V{sub th}) instability at room temperature. On the other hand, we show that the “electrically inactive” defects could be transformed into various “electrically active” configurations undermore » simultaneous application of negative bias and high temperature stresses. Based on this observation, we present a model for plausible oxygen vacancy defects that could be responsible for the recently observed excessive worsening of V{sub th} instability in 4H-SiC power MOSFETs under high temperature-and-gate bias stress. This model could also explain the recent electrically detected magnetic resonance observations in 4H-SiC MOSFETs.« less

  4. Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells

    PubMed Central

    Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M. Melvin David; Yi, Junsin; Anderson, Wayne A.; Kim, Dong-Wook

    2015-01-01

    Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell. PMID:25787933

  5. Transparent conductor-embedding nanocones for selective emitters: optical and electrical improvements of Si solar cells.

    PubMed

    Kim, Joondong; Yun, Ju-Hyung; Kim, Hyunyub; Cho, Yunae; Park, Hyeong-Ho; Kumar, M Melvin David; Yi, Junsin; Anderson, Wayne A; Kim, Dong-Wook

    2015-03-19

    Periodical nanocone-arrays were employed in an emitter region for high efficient Si solar cells. Conventional wet-etching process was performed to form the nanocone-arrays for a large area, which spontaneously provides the graded doping features for a selective emitter. This enables to lower the electrical contact resistance and enhances the carrier collection due to the high electric field distribution through a nanocone. Optically, the convex-shaped nanocones efficiently reduce light-reflection and the incident light is effectively focused into Si via nanocone structure, resulting in an extremely improved the carrier collection performances. This nanocone-arrayed selective emitter simultaneously satisfies optical and electrical improvement. We report the record high efficiency of 16.3% for the periodically nanoscale patterned emitter Si solar cell.

  6. Low Pressure Experimental Simulation of Electrical Discharges Above and Inside a Cloud

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1996-01-01

    A low pressure laboratory experiment to generate sporadic electrical discharges in either a particulate dielectric or air, representing a competing path of preferred electrical breakdown, was investigated. At high pressures, discharges occurred inside the dielectric particulate; at low pressures, discharges occurred outside the dielectric particulate; at a transition pressure regime, which depends on conductivity of the dielectric particulate, discharges were simultaneously generated in both particulate dielectric and air. Unique use of a particulate dielectric was critical for sporadic discharges at lower pressures which were not identical in character to discharges without the particulate dielectric. Application of these experimental results to the field of atmospheric electricity and simulation of the above-cloud type discharges that have recently been documented, called jets and sprites, are discussed.

  7. Plasmonic-Field Interactions at Nanoparticle Interfaces for Infrared Thermal-Shielding Applications Based on Transparent Oxide Semiconductors.

    PubMed

    Matsui, Hiroaki; Furuta, Shinya; Hasebe, Takayuki; Tabata, Hitoshi

    2016-05-11

    This paper describes infrared plasmonic responses in three-dimensional (3D) assembled films of In2O3:Sn nanoparticles (NPs). The introduction of surface modifications to NPs can facilitate the production of electric-field interactions between NPs due to the creation of narrow crevices in the NP interfaces. In particular, the electric-field interactions along the in-plane and out-of-plane directions in the 3D assembled NP films allow for resonant splitting of plasmon excitations to the quadrupole and dipole modes, thereby realizing selective high reflections in the near- and mid-infrared range, respectively. The origins of these plasmonic properties were revealed from electric-field distributions calculated by electrodynamic simulations that agreed well with experimental results. The interparticle gaps and their derived plasmon couplings play an important role in producing high reflective performances in assembled NP films. These 3D assemblies of NPs can be further extended to produce large-size flexible films with high infrared reflectance, which simultaneously exhibit microwave transmittance essential for telecommunications. This study provides important insights for harnessing infrared optical responses using plasmonic technology for the fabrication of infrared thermal-shielding applications.

  8. Convolutional virtual electric field for image segmentation using active contours.

    PubMed

    Wang, Yuanquan; Zhu, Ce; Zhang, Jiawan; Jian, Yuden

    2014-01-01

    Gradient vector flow (GVF) is an effective external force for active contours; however, it suffers from heavy computation load. The virtual electric field (VEF) model, which can be implemented in real time using fast Fourier transform (FFT), has been proposed later as a remedy for the GVF model. In this work, we present an extension of the VEF model, which is referred to as CONvolutional Virtual Electric Field, CONVEF for short. This proposed CONVEF model takes the VEF model as a convolution operation and employs a modified distance in the convolution kernel. The CONVEF model is also closely related to the vector field convolution (VFC) model. Compared with the GVF, VEF and VFC models, the CONVEF model possesses not only some desirable properties of these models, such as enlarged capture range, u-shape concavity convergence, subject contour convergence and initialization insensitivity, but also some other interesting properties such as G-shape concavity convergence, neighboring objects separation, and noise suppression and simultaneously weak edge preserving. Meanwhile, the CONVEF model can also be implemented in real-time by using FFT. Experimental results illustrate these advantages of the CONVEF model on both synthetic and natural images.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inhester, B.; Untiedt, J.; Segatz, M.

    From two-dimensional ground magnetic and ionospheric electric field observations it should in principle be possible to estimate the two-dimensional distribution of the ionospheric conductance. The authors have developed a method to directly deduce the Hall conductance distribution {Sigma}{sub H} from ground magnetic and ionospheric electric field observations based upon some assumption for the ratio of the Hall to the Pedersen conductivity. In general, the solutions are shown not to be unique because for a specific solution the value of {Sigma}{sub H} on certain parts of the boundary of the two-dimensional domain has to be specified. However, in many situations, especiallymore » in the presence of strong and isolated field-aligned currents, these boundary values become less influential, and the solution can be shown to be practically unique over a large area of the domain. In some cases, a rather restrictive relation between the electric field and the equivalent height-integrated current density is shown to hold that could be used to cross-check the quality of the observations. As a specific example, they apply their formalism to the observation of a Harang discontinuity obtained in northern Scandinavia simultaneously by the STARE coherent radar system and the IMS Scandinavian Magnetometer Array.« less

  10. Stark effect spectrophone for continuous absorption spectra monitoring. [a technique for gas analysis

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J. (Inventor)

    1981-01-01

    A Stark effect spectrophone using a pulsed or continuous wave laser having a beam with one or more absorption lines of a constituent of an unknown gas is described. The laser beam is directed through windows of a closed cell while the unknown gas to be modified flows continuously through the cell between electric field plates disposed in the cell on opposite sides of the beam path through the cell. When the beam is pulsed, energy absorbed by the gas increases at each point along the beam path according to the spectral lines of the constituents of the gas for the particular field strengths at those points. The pressure measurement at each point during each pulse of energy yields a plot of absorption as a function of electric field for simultaneous detection of the gas constituents. Provision for signal averaging and modulation is included.

  11. Electric fields and current densities under small Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Deaver, Lance E.; Krider, E. P.

    1991-01-01

    Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.

  12. The Polar Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.

    1995-01-01

    The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s(exp -1).

  13. Periodically microstructured composite films made by electric- and magnetic-directed colloidal assembly

    PubMed Central

    Demirörs, Ahmet Faik; Courty, Diana; Libanori, Rafael; Studart, André R.

    2016-01-01

    Living organisms often combine soft and hard anisotropic building blocks to fabricate composite materials with complex microstructures and outstanding mechanical properties. An optimum design and assembly of the anisotropic components reinforces the material in specific directions and sites to best accommodate multidirectional external loads. Here, we fabricate composite films with periodic modulation of the soft–hard microstructure by simultaneously using electric and magnetic fields. We exploit forefront directed-assembly approaches to realize highly demanded material microstructural designs and showcase a unique example of how one can bridge colloidal sciences and composite technology to fabricate next-generation advanced structural materials. In the proof-of-concept experiments, electric fields are used to dictate the position of the anisotropic particles through dielectrophoresis, whereas a rotating magnetic field is used to control the orientation of the particles. By using such unprecedented control over the colloidal assembly process, we managed to fabricate ordered composite microstructures with up to 2.3-fold enhancement in wear resistance and unusual site-specific hardness that can be locally modulated by a factor of up to 2.5. PMID:27071113

  14. Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells.

    PubMed

    Pankiewicz, Urszula; Sujka, Monika; Kowalski, Radosław; Mazurek, Artur; Włodarczyk-Stasiak, Marzena; Jamroz, Jerzy

    2017-04-15

    The cultures of Saccharomyces cerevisiae were treated with pulsed electric fields (PEF) in order to obtain a maximum accumulation of selenium and zinc ions (simultaneously) in the biomass. The following concentrations: 100μgSe/ml and 150μgZn/ml medium were assumed to be optimal for the maximum accumulation of these ions, that is 43.07mg/gd.m. for selenium and 14.48mg/gd.m. for zinc, in the cultures treated with PEF. At optimal PEF parameters: electric field strength of 3kV/cm and pulse width of 10μs after the treatment of 20-h culture for 10min, the maximum accumulation of both ions in the yeast cells was observed. Application of PEF caused the increase of ions accumulation by 65% for selenium and 100% for zinc. Optimization of PEF parameters led to the further rise in the both ions accumulation resulting in over 2-fold and 2.5-fold higher concentration of selenium and zinc. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal

    PubMed Central

    Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka

    2016-01-01

    Summary An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches. PMID:27826514

  16. Electric field induced structural colour tuning of a silver/titanium dioxide nanoparticle one-dimensional photonic crystal.

    PubMed

    Aluicio-Sarduy, Eduardo; Callegari, Simone; Figueroa Del Valle, Diana Gisell; Desii, Andrea; Kriegel, Ilka; Scotognella, Francesco

    2016-01-01

    An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied electric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric function (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/titanium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic switches.

  17. Van Allen Probes observations of magnetic field dipolarization and its associated O + flux variations in the inner magnetosphere at L<6.6: Dipolarization in Inner Magnetosphere

    DOE PAGES

    Nosé, M.; Keika, K.; Kletzing, C. A.; ...

    2016-07-20

    Here we investigate the magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L=4.5–6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its time scale is approximately 5 min; (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close to the O + gyrofrequency; (3) ion fluxes at 20–50 keV are simultaneously enhanced with largermore » magnitudes for O + than for H +; (4) after a few minutes of the dipolarization, the flux enhancement at 0.1–5keV appears with a clear energy-dispersion signature only for O +; and (5) the energy-dispersed O + flux enhancement appears in directions parallel or antiparallel to the magnetic field. From these characteristics, we discuss possible mechanisms that can provide selective acceleration to O + ions at >20keV. We conclude that O + ions at L = 5.4–6.6 undergo nonadiabatic local acceleration caused by oscillating electric field associated with the magnetic fluctuations and/or adiabatic convective transport from the plasma sheet to the inner magnetosphere by the impulsive electric field. At L = 4.5–5.4, however, only the former acceleration is plausible. Finally, we also conclude that the field-aligned energy-dispersed O + ions at 0.1–5 keV originate from the ionosphere and are extracted nearly simultaneously to the onset of the dipolarization.« less

  18. Van Allen Probes observations of magnetic field dipolarization and its associated O + flux variations in the inner magnetosphere at L<6.6: Dipolarization in Inner Magnetosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosé, M.; Keika, K.; Kletzing, C. A.

    Here we investigate the magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L=4.5–6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its time scale is approximately 5 min; (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close to the O + gyrofrequency; (3) ion fluxes at 20–50 keV are simultaneously enhanced with largermore » magnitudes for O + than for H +; (4) after a few minutes of the dipolarization, the flux enhancement at 0.1–5keV appears with a clear energy-dispersion signature only for O +; and (5) the energy-dispersed O + flux enhancement appears in directions parallel or antiparallel to the magnetic field. From these characteristics, we discuss possible mechanisms that can provide selective acceleration to O + ions at >20keV. We conclude that O + ions at L = 5.4–6.6 undergo nonadiabatic local acceleration caused by oscillating electric field associated with the magnetic fluctuations and/or adiabatic convective transport from the plasma sheet to the inner magnetosphere by the impulsive electric field. At L = 4.5–5.4, however, only the former acceleration is plausible. Finally, we also conclude that the field-aligned energy-dispersed O + ions at 0.1–5 keV originate from the ionosphere and are extracted nearly simultaneously to the onset of the dipolarization.« less

  19. Van Allen Probes Observations of Magnetic Field Dipolarization and Its Associated O+ Flux Variations in the Inner Magnetosphere at L 6.6

    NASA Technical Reports Server (NTRS)

    Nose, M.; Keika, K.; Kletzing, C. A.; Spence, H. E.; Smith, C. W.; MacDowall, R. J.; Reeves, G. D.; Larsen, B. A.; Mitchell, D. G.

    2016-01-01

    We investigate the magnetic field dipolarization in the inner magnetosphere and its associated ion flux variations, using the magnetic field and energetic ion flux data acquired by the Van Allen Probes. From a study of 74 events that appeared at L= 4.5-6.6 between 1 October 2012 and 31 October 2013, we reveal the following characteristics of the dipolarization in the inner magnetosphere: (1) its time scale is approximately 5 min; (2) it is accompanied by strong magnetic fluctuations that have a dominant frequency close to the O+ gyrofrequency; (3) ion fluxes at 20-50 keV are simultaneously enhanced with larger magnitudes for O+ than for H+; (4) after a few minutes of the dipolarization, the flux enhancement at 0.1-5 keV appears with a clear energy-dispersion signature only for O+; and (5) the energy-dispersed O+ flux enhancement appears in directions parallel or antiparallel to the magnetic field. From these characteristics, we discuss possible mechanisms that can provide selective acceleration to O+ ions at > 20 keV. We conclude that O+ ions at L= 5.4-6.6 undergo nonadiabatic local acceleration caused by oscillating electric field associated with the magnetic fluctuations and/or adiabatic convective transport from the plasma sheet to the inner magnetosphere by the impulsive electric field. At L= 4.5-5.4, however, only the former acceleration is plausible. We also conclude that the field-aligned energy-dispersed O+ ions at 0.1-5 keV originate from the ionosphere and are extracted nearly simultaneously to the onset of the dipolarization.

  20. On the behavior of return stroke current and the remotely detected electric field change waveform

    NASA Astrophysics Data System (ADS)

    Shao, Xuan-Min; Lay, Erin; Jacobson, Abram R.

    2012-04-01

    After accumulating a large number of remotely recorded negative return stroke electric field change waveforms, a subtle but persistent kink was found following the main return stroke peak by several microseconds. To understand the corresponding return stroke current properties behind the kink and the general return stroke radiation waveform, we analyze strokes occurring in triggered lightning flashes for which have been measured both the channel base current and simultaneous remote electric radiation field. In this study, the channel base current is assumed to propagate along the return stroke channel in a dispersive and lossy manner. The measured channel base current is band-pass filtered, and the higher-frequency component is assumed to attenuate faster than the lower-frequency component. The radiation electric field is computed for such a current behavior and is then propagated to distant sensors. It is found that such a return stroke model is capable of very closely reproducing the measured electric waveforms at multiple stations for the triggered return strokes, and such a model is considered applicable to the common behavior of the natural return stroke as well. On the basis of the analysis, a number of other observables are derived. The time-evolving current dispersion and attenuation compare well with previously reported optical observations. The observable speed tends to agree with optical and VHF observations. Line charge density that is removed or deposited by the return stroke is derived, and the implication of the charge density distribution on leader channel decay is discussed.

  1. Application of Wave Distribution Function Method to the ERG/PWE Data

    NASA Astrophysics Data System (ADS)

    Ota, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Matsuoka, A.; Hikishima, M.; Kasaba, Y.; Ozaki, M.; Yagitani, S.; Tsuchiya, F.; Kumamoto, A.

    2017-12-01

    The ERG (Arase) satellite was launched on 20 December 2016 to study acceleration and loss mechanisms of relativistic electrons in the Earth's magnetosphere. The Plasma Wave Experiment (PWE), which is one of the science instruments on board the ERG satellite, measures electric field and magnetic field. The PWE consists of three sub-systems; EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer).The OFA/WFC measures electromagnetic field spectra and raw waveforms in the frequency range from few Hz to 20 kHz. The OFA produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectral matrix), and OFA-COMPLEX (complex spectrum). The OFA-MATRIX measures ensemble averaged complex cross-spectra of two electric field components, and of three magnetic field components. The OFA-COMPLEX measures instantaneous complex spectra of electric and magnetic fields. These data are produced every 8 seconds in the nominal mode, and it can be used for polarization analysis and wave propagation direction finding.In general, spectral matrix composed by cross-spectra of observed signals is used for direction finding, and many algorithms have been proposed. For example, Means method and SVD method can be applied on the assumption that the spectral matrix is consists of a single plane wave, while wave distribution function (WDF) method is applicable even to the data in which multiple numbers of plane waves are simultaneously included. In this presentation, we introduce the results when the WDF method is applied to the ERG/PWE data.

  2. Theory of Carbon Nanotube (CNT)-Based Electron Field Emitters

    PubMed Central

    Bocharov, Grigory S.; Eletskii, Alexander V.

    2013-01-01

    Theoretical problems arising in connection with development and operation of electron field emitters on the basis of carbon nanotubes are reviewed. The physical aspects of electron field emission that underlie the unique emission properties of carbon nanotubes (CNTs) are considered. Physical effects and phenomena affecting the emission characteristics of CNT cathodes are analyzed. Effects given particular attention include: the electric field amplification near a CNT tip with taking into account the shape of the tip, the deviation from the vertical orientation of nanotubes and electrical field-induced alignment of those; electric field screening by neighboring nanotubes; statistical spread of the parameters of the individual CNTs comprising the cathode; the thermal effects resulting in degradation of nanotubes during emission. Simultaneous consideration of the above-listed effects permitted the development of the optimization procedure for CNT array in terms of the maximum reachable emission current density. In accordance with this procedure, the optimum inter-tube distance in the array depends on the region of the external voltage applied. The phenomenon of self-misalignment of nanotubes in an array has been predicted and analyzed in terms of the recent experiments performed. A mechanism of degradation of CNT-based electron field emitters has been analyzed consisting of the bombardment of the emitters by ions formed as a result of electron impact ionization of the residual gas molecules. PMID:28348342

  3. Electrostatics of a Point Charge between Intersecting Planes: Exact Solutions and Method of Images

    ERIC Educational Resources Information Center

    Mei, W. N.; Holloway, A.

    2005-01-01

    In this work, the authors present a commonly used example in electrostatics that could be solved exactly in a conventional manner, yet expressed in a compact form, and simultaneously work out special cases using the method of images. Then, by plotting the potentials and electric fields obtained from these two methods, the authors demonstrate that…

  4. MITHRAS: A Program of Simultaneous Radar Observations of the High-Latitude Auroral Zone.

    DTIC Science & Technology

    1982-11-01

    Latitude * and Time for Chatanika ..... ................. ... 38 111-5 Cross Polar Cap Potential Versus Solar-Wind Energy Parameter...49 vii 9 III-10 Scatter Plot of Pedersen Conductivities as a Function of Average Energy for Two Levels of Total...Precipitated Energy ....... ....... ......... .. 51 -IIl-1 For Initial Time and Steady State, (a) Latitudinal Profile of the Meridional Electric-Field

  5. Optical coating on a corrugated surface to align the polarization of an unpolarized wave without loss

    NASA Astrophysics Data System (ADS)

    Jen, Yi Jun

    2017-12-01

    A multilayer comprising birefringent thin films is devised to present to function as a polarization beam splitter and waveplate simultaneously. By arranging such a multilayer on a right triangle-shaped corrugated surface, a polarizer is realized to align the randomly oscillating electric field of an unpolarized wave into a linear polarized wave without loss.

  6. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    PubMed Central

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  7. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip.

    PubMed

    Issadore, David; Franke, Thomas; Brown, Keith A; Hunt, Thomas P; Westervelt, Robert M

    2009-12-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm(2) in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip's surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications.

  8. Observations of field-aligned currents, waves, and electric fields at substorm onset

    NASA Technical Reports Server (NTRS)

    Smits, D. P.; Hughes, W. J.; Cattell, C. A.; Russell, C. T.

    1986-01-01

    Substorm onsets, identified Pi 2 pulsations observed on the Air Force Geophysics Laboratory Magnetometer Network, are studied using magnetometer and electric field data from ISEE 1 as well as magnetometer data from the geosynchronous satellites GOES 2 and 3. The mid-latitude magnetometer data provides the means of both timing and locating the substorm onset so that the spacecraft locations with respect to the substorm current systems are known. During two intervals, each containing several onsets or intensifications, ISEE 1 observed field-aligned current signatures beginning simultaneously with the mid-latitude Pi 2 pulsation. Close to the earth broadband bursts of wave noise were observed in the electric field data whenever field-aligned currents were detected. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 saw magnetic signatures which appear to be due to conjugate field-aligned currents flowing out of the western end of the westward auroral electrojets. The ISEE 1 signature is of a line current moving westward past the spacecraft. During the other interval, ISEE 1 was in the near-tail region near the midnight meridian. Plasma data confirms that the plasma sheet thinned and subsequently expanded at onset. Electric field data shows that the plasma moved in the opposite direction to the plasma sheet boundary as the boundary expanded which implies that there must have been an abundant source of hot plasma present. The plasma motion was towards the center of the plasma sheet and earthwards and consisted of a series of pulses rather than a steady flow.

  9. Global electrodynamics from superpressure balloons

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; Hu, H.

    1995-01-01

    Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.

  10. Maximum entropy reconstruction of poloidal magnetic field and radial electric field profiles in tokamaks

    NASA Astrophysics Data System (ADS)

    Chen, Yihang; Xiao, Chijie; Yang, Xiaoyi; Wang, Tianbo; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang

    2017-10-01

    The Laser-driven Ion beam trace probe (LITP) is a new diagnostic method for measuring poloidal magnetic field (Bp) and radial electric field (Er) in tokamaks. LITP injects a laser-driven ion beam into the tokamak, and Bp and Er profiles can be reconstructed using tomography methods. A reconstruction code has been developed to validate the LITP theory, and both 2D reconstruction of Bp and simultaneous reconstruction of Bp and Er have been attained. To reconstruct from experimental data with noise, Maximum Entropy and Gaussian-Bayesian tomography methods were applied and improved according to the characteristics of the LITP problem. With these improved methods, a reconstruction error level below 15% has been attained with a data noise level of 10%. These methods will be further tested and applied in the following LITP experiments. Supported by the ITER-CHINA program 2015GB120001, CHINA MOST under 2012YQ030142 and National Natural Science Foundation Abstract of China under 11575014 and 11375053.

  11. Electric Field Observations of Plasma Convection, Shear, Alfven Waves, and other Phenomena Observed on Sounding Rockets in the Cusp and Boundary Layer

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.

    2009-01-01

    On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.

  12. Self-triggering superconducting fault current limiter

    DOEpatents

    Yuan, Xing [Albany, NY; Tekletsadik, Kasegn [Rexford, NY

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  13. Evolution of the electrical resistivity anisotropy during saline tracer tests: insights from geoelectrical milli-fluidic experiments

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.

    2017-12-01

    The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our understanding of transport properties from field-scale time-lapse ERT.

  14. Design of current source for multi-frequency simultaneous electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Han, Bing; Xu, Yanbin; Dong, Feng

    2017-09-01

    Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.

  15. Comparison of electric field exposure monitoring instrumentation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracken, T.D.

    1985-06-01

    Electric field exposure monitoring instrumentation was compared and evaluated during three days of tests performed in 60-Hz electric fields. A conducting vest exposure meter and a small electric field exposure meter (EFEM) located in a shirt pocket, arm band or hard hat were compared in a series of static and dynamic tests. In some tests, the devices were worn simultaneously without interference to provide separate measures of identical exposure. Tests with stationary subjects wearing the instruments were used to measure the effects of grounding, and to establish the meter response in a standard posture for each subject. Dynamic occupational exposuremore » simulations were used to compare accumulated measurements of exposure between instruments and to compare measurements with predicted exposures. The simulations were based on analysis of the work-related behavior of substation electricians and operators. Electrician's tasks at ground level and in a bucket truck were simulated near an energized test line. A simulated substation inspection was performed in a 230 kV substation. The exposure measurements demonstrated an overall consistency between the meters. The vest demonstrated less intersubject variability and less detailed exposure characterization. Measurements with the shirt pocket EFEM were below those made with the vest and with the EFEM in other locations. Insulation provided by shoe soles appeared to be the largest factor in reducing measured exposures during the substation inspection below those predicted from the unperturbed field. Improvements in meter design and additional measurements are suggested. 11 refs., 20 figs., 28 tabs.« less

  16. Enhanced discharge energy density of rGO/PVDF nanocomposites: The role of the heterointerface

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wang, Yaqiong; Qi, Shaojun; Dunn, Steve; Dong, Hanshan; Button, Tim

    2018-05-01

    Recent reports of conductive-filler/polymer composites with large dielectric permittivity (K) make them potential candidates for flexible capacitors. Hence, an interesting question is how these high K composites behave under a strong electric field strength. In this letter, we use in-situ-reduced graphite oxide (rGO)/poly(vinylidene fluoride) (PVDF) nanocomposites as an example to study the energy storage behaviour of high K materials. We show the dielectric behaviour contrasts between weak and strong fields. High K materials inevitably become more lossy with increasing field strength. Simultaneously, we reveal that the in-situ reduction temperature can affect the energy storage performance. Improved energy storage performance is achieved for a nanocomposite reduced at a moderate temperature. When reduced at 160 °C, a device with an rGO volume fraction of 1.5 vol. % displayed a discharge energy density of 0.67 J/cm3 at 50 MV/m. This was 2.9 times greater than pure PVDF. We develop a model to explain this behaviour that proposes a reduced electrical contrast of the rGO/PVDF heterointerface minimising the recombination of localized charge carriers. Our results indicate, simultaneously, the potential and limitation of high K nanocomposites and shed light on the optimisation of the design and fabrication of high discharge energy density flexible capacitors for microelectronic devices.

  17. Stability of Programmable Shunt Valve Settings with Simultaneous Use of the Optune Transducer Array: A Case Report.

    PubMed

    Chan, Andrew K; Birk, Harjus S; Winkler, Ethan A; Viner, Jennifer A; Taylor, Jennie W; McDermott, Michael W

    2016-07-07

    The Optune® transducer array (Novocure Ltd., Haifa, Israel) is an FDA-approved noninvasive regional therapy that aims to inhibit the growth of glioblastoma multiforme (GBM) cells via utilization of alternating electric fields. Some patients with GBM may develop hydrocephalus and benefit from subsequent shunt placement, but special attention must be paid to patients in whom programmable valves are utilized, given the potential effect of the magnetic fields on valve settings. We present the first case report illustrating the stability of programmable shunt valve settings in a neurosurgical patient undergoing therapy with the Optune device. In this study, shunt valve settings were stable over a period of five days despite Optune therapy. This is reassuring for patients with GBM who require simultaneous treatment with both the Optune device and a programmable shunt system.

  18. PYROTRON WITH TRANSLATIONAL CLOSURE FIELDS

    DOEpatents

    Hartwig, E.C.; Cummings, D.B.; Post, R.F.

    1962-01-01

    Circuit means is described for effecting inward transla- ' tory motion of the intensified terminal reflector field regions of a magnetic mirror plasma containment field with a simultaneous intensification of the over-all field configuration. The circuit includes a segmented magnetic field generating solenoid and sequentially actuated switch means to consecutively short-circuit the solenoid segments and place charged capacitor banks in shunt with the segments in an appropriate correlated sequence such that electrical energy is transferred inwardly between adjacent segments from the opposite ends of the solenoid. The resulting magnetic field is effective in both radially and axially adiabatically compressing a plasma in a reaction chamber disposed concentrically within the solenoid. In addition, one half of the circuit may be employed to unidirectionally accelerate plasma. (AEC)

  19. Magnetically-induced electric polarization in an organo-metallic magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapf, W S; Fabris, F W; Balakirev, F F

    2009-01-01

    The coupling between magnetic order and ferroelectricity has been under intense investigation in a wide range of transition metal oxides. The strongest coupling is obtained in so-called magnetically induced multiferroics where ferroelectricity arises directly from magnetic order that breaks inversion symmetry. However, it has been difficult to find non-oxide based materials in which these effects occur. Here we present a study of copper dimethyl sulfoxide dichloride (CDC), an organometallic quantum magnet containing S =1/1 Cu spins, in which a switchable electric polarization arises from field-tuned magnetic order. Fast magnetic field pulses allow us to perform sensitive measurements of the electricmore » polarization and demonstrate that the electric state is present only if the magnetic order is non-collinear. Furthermore, we show that the electric polarization can be switched in a stunning hysteretic fashion. Because the magnetic order in CDC is mediated by large organic molecules, our study shows that magnetoelectric interactions can exist in this important class of materials, opening the road to designing magnetoelectrics and multiferroics using large molecules as building blocks. Further, we demonstrate that CDC undergoes a magnetoelectric quantum phase transition -the first of its kind, where both ferroelectric and magnetic order emerge simultaneously as a function of magnetic field at very low temperatures.« less

  20. A data variance technique for automated despiking of magnetotelluric data with a remote reference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kappler, K.

    2011-02-15

    The magnetotelluric method employs co-located surface measurements of electric and magnetic fields to infer the local electrical structure of the earth. The frequency-dependent 'apparent resistivity' curves can be inaccurate at long periods if input data are contaminated - even when robust remote reference techniques are employed. Data despiking prior to processing can result in significantly more reliable estimates of long period apparent resistivities. This paper outlines a two-step method of automatic identification and replacement for spike-like contamination of magnetotelluric data; based on the simultaneity of natural electric and magnetic field variations at distant sites. This simultaneity is exploited both tomore » identify windows in time when the array data are compromised, and to generate synthetic data that replace observed transient noise spikes. In the first step, windows in data time series containing spikes are identified via intersite comparison of channel 'activity' - such as the variance of differenced data within each window. In the second step, plausible data for replacement of flagged windows is calculated by Wiener filtering coincident data in clean channels. The Wiener filters - which express the time-domain relationship between various array channels - are computed using an uncontaminated segment of array training data. Examples are shown where the algorithm is applied to artificially contaminated data, and to real field data. In both cases all spikes are successfully identified. In the case of implanted artificial noise, the synthetic replacement time series are very similar to the original recording. In all cases, apparent resistivity and phase curves obtained by processing the despiked data are much improved over curves obtained from raw data.« less

  1. An evidence for prompt electric field disturbance driven by changes in the solar wind density under northward IMF Bz condition

    DOE PAGES

    Rout, Diptiranjan; Chakrabarty, D.; Sekar, R.; ...

    2016-05-26

    Before the onset of a geomagnetic storm on 22 January 2012 (Ap = 24), an enhancement in solar wind number density from 10/cm 3 to 22/cm 3 during 0440–0510 UT under northward interplanetary magnetic field (IMF Bz) condition is shown to have enhanced the high-latitude ionospheric convection and also caused variations in the geomagnetic field globally. Some conspicuous changes in ΔX are observed not only at longitudinally separated low-latitude stations over Indian (prenoon), South American (midnight), Japanese (afternoon), Pacific (afternoon) and African (morning) sectors but also at latitudinally separated stations located over high and middle latitudes. The latitudinal variation ofmore » the amplitude of the ΔX during 0440–0510 UT is shown to be consistent with the characteristics of prompt penetration electric field disturbances. Most importantly, the density pulse event caused enhancements in the equatorial electrojet strength and the peak height of the F layer (h mF 2) over the Indian dip equatorial sector. Furthermore, the concomitant enhancements in electrojet current and F layer movement over the dip equator observed during this space weather event suggest a common driver of prompt electric field disturbance at this time. Such simultaneous variations are found to be absent during magnetically quiet days. In the absence of significant change in solar wind velocity and magnetospheric substorm activity, these observations point toward perceptible prompt electric field disturbance over the dip equator driven by the overcompression of the magnetosphere by solar wind density enhancement.« less

  2. Field-aligned currents, convection electric fields, and ULF-ELF waves in the cusp

    NASA Technical Reports Server (NTRS)

    Saflekos, N. A.; Potemra, T. A.; Kintner, P. M., Jr.; Green, J. L.

    1979-01-01

    Nearly simultaneous observations from the Triad and Hawkeye satellites over the Southern Hemisphere, at low altitudes near the noon meridian and close to the usual polar cusp latitudes, show that in and near the polar cusp there exist several relationships between field-aligned currents (FACs), convection electric fields, ULF-ELF magnetic noise, broadband electrostatic noise and interplanetary magnetic fields. The most important findings are (1) the FACs directed into the ionosphere in the noon-to-dusk local time sector and directed away from the ionosphere in the noon-to-dawn local time sector and identified as region-1 permanent FACs (Iijima and Potemra, 1976a) and are located equatorward of the regions of antisunward (westward) convection; (2) the observations are consistent with a two-cell convection pattern symmetric in one case (throat positioned at noon) and asymmetric in another (throat located in a sector on the forenoon side in juxtaposition to the region of strong convection on the afternoon side); and (3) fine-structure FACs are responsible for the generation of ULF-ELF noise in the polar cusp.

  3. Electric Field and Plasma Density Observations of Irregularities and Plasma Instabilities in the Low Latitude Ionosphere Gathered by the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.; Freudenreich, H.; Rowland, D.; Klenzing, J.; Liebrecht, C.

    2012-01-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations gathered on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The talk focuses on occasions where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km as solar activity has increased. In particular, during the equinox periods of 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set: The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second result is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is near or below the F-peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. and are believed to cause scintillations of VHF radiowaves. We interpret these new observations in terms of fundamental plasma instabilities associated with the unstable, nighttime equatorial ionosphere.

  4. Source-drain burnout mechanism of GaAs power MESFETS: Three terminal effects

    NASA Astrophysics Data System (ADS)

    Takamiya, Saburo; Sonoda, Takuji; Yamanouchi, Masahide; Fujioka, Takashi; Kohno, Masaki

    1997-03-01

    Theoretical expressions for thermal and electrical feedback effects are derived. These limit the power capability of a power FET and lead a device to catastrophic breakdown (source-drain burnout) when the loop gain of the former reaches unity. Field emission of thermally excited electrons at the Schottky gate plays the key role in thermal feedback, while holes being impact ionized by the drain current play a similar role in the electrical feedback. Thermal feedback is dominant in a high temperature and low drain voltage area. Electrical feedback is dominant in a high drain voltage and low temperature area. In the first area, a high junction temperature is the main factor causing the thermal runaway of the device. In the second area, the electrcal feedback increases the drain current and the temperature and gives a trigger to the thermal feedback so that it reaches unity more easily. Both effects become significant in proportion to transconductance and gate bias resistance, and cause simultaneous runaway of the gate and drain currents. The expressions of the loop gains clearly indicate the safe operating conditions for a power FET. C-band 4 W (1 chip) and 16 W (4 chip) GaAs MESFETs were used as the experimental samples. With these devices the simultaneous runaway of the gate and the drain currents, apparent dependence of the three teminal breakdown voltage on the gate bias resistance in the region dominated by electrical feedback, the rapid increase of the field emitted current at the critical temperature and clear coincidence between the measured and calculated three terminal gate currents both in the thermal feedback dominant region, etc. are demonstrated. The theory explains the experimental results well.

  5. Simultaneous and coordinated rotational switching of all molecular rotors in a network

    DOE PAGES

    Zhang, Y.; Kersell, H.; Stefak, R.; ...

    2016-05-09

    A range of artificial molecular systems have been created that can exhibit controlled linear and rotational motion. In the development of such systems, a key step is the addition of communication between molecules in a network. Here, we show that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching by applying an electric field from the tip of a scanning tunnelling microscope. Several hundred rotors made from porphyrin-based double-decker complexes can be simultaneously rotated when in a hexagonal rotor network on a Cu(111) surface by applying biases above ±1 V at 80 K. The phenomenon is observedmore » only in a hexagonal rotor network due to the degeneracy of the ground state dipole rotational energy barrier of the system. Defects are essential to increase electric torque on the rotor network and to stabilize the switched rotor domains. At low biases and low initial rotator angles, slight reorientations of individual rotors can occur resulting in the rotator arms pointing in different directions. In conclusion, analysis reveals that the rotator arm directions here are not random, but are coordinated to minimize energy via cross talk among the rotors through dipolar interactions.« less

  6. Low-energy Control of Electrical Turbulence in the Heart

    PubMed Central

    Luther, Stefan; Fenton, Flavio H.; Kornreich, Bruce G.; Squires, Amgad; Bittihn, Philip; Hornung, Daniel; Zabel, Markus; Flanders, James; Gladuli, Andrea; Campoy, Luis; Cherry, Elizabeth M.; Luther, Gisa; Hasenfuss, Gerd; Krinsky, Valentin I.; Pumir, Alain; Gilmour, Robert F.; Bodenschatz, Eberhard

    2011-01-01

    Controlling the complex spatio-temporal dynamics underlying life-threatening cardiac arrhythmias such as fibrillation is extremely difficult due to the nonlinear interaction of excitation waves within a heterogeneous anatomical substrate1–4. Lacking a better strategy, strong, globally resetting electrical shocks remain the only reliable treatment for cardiac fibrillation5–7. Here, we establish the relation between the response of the tissue to an electric field and the spatial distribution of heterogeneities of the scale-free coronary vascular structure. We show that in response to a pulsed electric field E, these heterogeneities serve as nucleation sites for the generation of intramural electrical waves with a source density ρ(E), and a characteristic time τ for tissue depolarization that obeys a power law τ∝Eα. These intramural wave sources permit targeting of electrical turbulence near the cores of the vortices of electrical activity that drive complex fibrillatory dynamics. We show in vitro that simultaneous and direct access to multiple vortex cores results in rapid synchronization of cardiac tissue and therefore efficient termination of fibrillation. Using this novel control strategy, we demonstrate, for the first time, low-energy termination of fibrillation in vivo. Our results give new insights into the mechanisms and dynamics underlying the control of spatio-temporal chaos in heterogeneous excitable media and at the same time provide new research perspectives towards alternative, life-saving low-energy defibrillation techniques. PMID:21753855

  7. Electric-acoustic interactions in the hearing cochlea: single fiber recordings.

    PubMed

    Tillein, J; Hartmann, R; Kral, A

    2015-04-01

    The present study investigates interactions of simultaneous electric and acoustic stimulation in single auditory nerve fibers in normal hearing cats. First, the auditory nerve was accessed with a microelectrode and response areas of single nerve fibers were determined for acoustic stimulation. Second, response thresholds to extracochlear sinusoidal electric stimulation using ball electrodes positioned at the round window were measured. Third, interactions that occurred with combined electric-acoustic stimulation were investigated in two areas: (1) the spectral domain (frequency response areas) and (2) the temporal domain (phase-locking to each stimulus) at moderate stimulus intensities (electric: 6 dB re threshold, acoustic: 20-40 dB re threshold at the characteristic frequency, CF). For fibers responding to both modalities responses to both electric and acoustic stimulation could be clearly identified. CFs, thresholds, and bandwidth (Q10dB) of acoustic responses were not significantly affected by simultaneous electric stimulation. Phase-locking of electric responses decreased in the presence of acoustic stimulation. Indication for electric stimulation of inner hair cells with 125 and 250 Hz were observed. However, these did not disturb the acoustic receptive fields of auditory nerve fibers. There was a trade-off between these responses when the intensities of the stimulation were varied: Relatively more intense stimulation dominated less intense stimulation. The scarcity of interaction between the different stimulus modalities demonstrates the ability of electric-acoustic stimulation to transfer useful information through both stimulation channels at the same time despite cochlear electrophonic effects. Application of 30 Hz electric stimulation resulted in a strong suppression of acoustic activity in the anodic phase of the stimulus. An electric stimulation like this might thus be used to control acoustic responses. This article is part of a Special Issue entitled . Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Multi-point observations of large-amplitude electric fields during substorms obtained by THEMIS

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Kasaba, Y.; Nishimura, Y.; Hori, T.; Takada, T.; Miyashita, Y.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.

    2009-12-01

    Large-amplitude electric fields over 100 mV/m have been observed around the equatorial magnetosphere. These electric fields may contribute to energy transport and particle acceleration in the magnetosphere [e.g., Wygant et al., 2000, 2002], and seem to be related to fast plasma flows with a size of a few Re [Nakamura et al., 2001]. In order to understand their macroscopic characteristics and the effects to magnetic activities, it is important to observe both fields and particles simultaneously at multiple locations within several Re. Five THEMIS probes can frequently provide such chances. In this paper, we show the several events with large-amplitude electric fields during substorms obtained by THEMIS. One of the events is found in 05:50-06:00 UT on 11 March 2008, when TH-D (Xsm=-10.7 Re, Ysm=4.8 Re) and TH-E (Xsm=-10.3 Re, Ysm=5.6 Re) observed intense electric fields. At 05:54 UT, THEMIS GBO-s clearly showed the auroral onset signature. The great intensification was near the SNKQ station, and this structure moved westward with the speed of ~6 km/s. It corresponds to ~200 km/s, as mapped to the TH-D/E location. The footprints of TH-A (Xsm=-6.8 Re, Ysm=-0.4 Re), D, and E were close to the site of the aurora. The location of TH-D was beside that of TH-E, and TH-A was located earthward and eastward from the former two. The enhanced electric fields observed by TH-D and E were associated with magnetic dipolarization and earthward high-speed plasma flow. They were also associated with the depletion of electron density estimated by the spacecraft potential. These features are consistent with the model of plasma bubbles [e.g., Pontius and Wolf, 1990]. The Y components of plasma flows were 200-300 km/s, roughly consistent with the westward auroral motion as mapped to the equatorial magnetosphere. Also, we found that Poynting flux of low frequency was efficient to illuminate the auroral emissions. This fact suggests that electromagnetic energy is transported to the ionosphere. On the other hand, TH-A also observed the large-amplitude electric field greater than TH-D/E. However, TH-A did not detect the high-speed plasma flow nor the depletion of the electron density. In the drift electric field, VxB, estimated from particle and magnetic field observations, TH-D and E detected intense fields, but TH-A found almost zero. This result shows a difference in the role of the electric fields in location of TH-D/E and TH-A. We will show the possible contribution from other factors, such as pressure gradient, current system, and the ionospheric conductivity.

  9. Upward gaze and head deviation with frontal eye field stimulation.

    PubMed

    Kaiboriboon, Kitti; Lüders, Hans O; Miller, Jonathan P; Leigh, R John

    2012-03-01

    Using electrical stimulation to the deep, most caudal part of the right frontal eye field (FEF), we demonstrate a novel pattern of vertical (upward) eye movement that was previously only thought possible by stimulating both frontal eye fields simultaneously. If stimulation was started when the subject looked laterally, the initial eye movement was back to the midline, followed by upward deviation. Our finding challenges current view of topological organisation in the human FEF and may have general implications for concepts of topological organisation of the motor cortex, since sustained stimulation also induced upward head movements as a component of the vertical gaze shift. [Published with video sequences].

  10. NOTE: Impedance magnetocardiogram

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Miyashita, Tsuyoshi; Suzuki, Daisuke; Yokosawa, Koichi; Tsukada, Keiji

    2001-02-01

    We have developed an impedance magnetocardiogram (IMCG) system to detect the change of magnetic field corresponding to changes in blood volume in the heart. A low magnetic field from the electrical activity of the human heart - the so-called magnetocardiogram (MCG) - can be simultaneously detected by using this system. Because the mechanical and electrical functions in the heart can be monitored by non-invasive and non-contact measurements, it is easy to observe the cardiovascular functions from an accurate sensor position. This system uses a technique to demodulate induced current in a subject. A flux-locked circuit of a superconducting quantum interference device has a wide frequency range (above 1 MHz) because a constant current (40 kHz) is fed through the subject. It is shown for the first time that the system could measure IMCG signals at the same time as MCG signals.

  11. Light-Activated Gigahertz Ferroelectric Domain Dynamics

    NASA Astrophysics Data System (ADS)

    Akamatsu, Hirofumi; Yuan, Yakun; Stoica, Vladimir A.; Stone, Greg; Yang, Tiannan; Hong, Zijian; Lei, Shiming; Zhu, Yi; Haislmaier, Ryan C.; Freeland, John W.; Chen, Long-Qing; Wen, Haidan; Gopalan, Venkatraman

    2018-03-01

    Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO3 are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20 ×106 V /m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.

  12. Rapid Microfluidic Mixers Utilizing Dispersion Effect and Interactively Time-Pulsed Injection

    NASA Astrophysics Data System (ADS)

    Leong, Jik-Chang; Tsai, Chien-Hsiung; Chang, Chin-Lung; Lin, Chiu-Feng; Fu, Lung-Ming

    2007-08-01

    In this paper, we present a novel active microfluidic mixer utilizing a dispersion effect in an expansion chamber and applying interactively time-pulsed driving voltages to the respective inlet fluid flows to induce electroosmotic flow velocity variations for developing a rapid mixing effect in a microchannel. Without using any additional equipment to induce flow perturbations, only a single high-voltage power source is required for simultaneously driving and mixing sample fluids, which results in a simple and low-cost system for mixing. The effects of the applied main electrical field, interactive frequency, and expansion ratio on the mixing performance are thoroughly examined experimentally and numerically. The mixing ratio can be as high as 95% within a mixing length of 3000 μm downstream from the secondary T-form when a driving electric field strength of 250 V/cm, a periodic switching frequency of 5 Hz, and the expansion ratio M=1:10 are applied. In addition, the optimization of the driving electric field, switching frequency, expansion ratio, expansion entry length, and expansion chamber length for achieving a maximum mixing ratio is also discussed in this study. The novel method proposed in this study can be used for solving the mixing problem in the field of micro-total-analysis systems in a simple manner.

  13. Temperature and electrical conductivity of the lunar interior from magnetic transient measurements in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients in the geomagnetic tail field, were analyzed to calculate an electrical conductivity profile for the moon: the conductivity increases rapidly with depth from 10 to the minus 9 power mhos/meter at the lunar surface to .0001 mhos/meter at 200 km depth, then less rapidly to .02 mhos/meter at 1000 km depth. A temperature profile is calculated from conductivity: temperature rises rapidly with depth to 1100 K at 200 km depth, then less rapidly to 1800 K at 1000 km depth. Velocities and thicknesses of the earth's magnetopause and bow shock are estimated from simultaneous magnetometer measurements. Average speeds are determined to be about 50 km/sec for the magnetopause and 70 km/sec for the bow shock, although there are large variations in the measurements for any particular boundary crossing.

  14. Particle-vortex symmetric liquid

    NASA Astrophysics Data System (ADS)

    Mulligan, Michael

    2017-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed by Breznay et al. [Proc. Natl. Acad. Sci. USA 113, 280 (2016), 10.1073/pnas.1522435113] to exhibit particle-vortex symmetric electrical response, and the nearby metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82, 5341 (1999), 10.1103/PhysRevLett.82.5341] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically neutral Dirac fermion minimally coupled to a (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not require the introduction of disorder; rather, it results when the Dirac fermions exhibit vanishing Hall effect. The theory predicts approximately equal (diagonal) thermopower and Nernst signal with a deviation parameterized by the measured electrical Hall response at the symmetric point.

  15. Evolution of electronic states in n-type copper oxide superconductor via electric double layer gating

    NASA Astrophysics Data System (ADS)

    Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S.; Takeuchi, Ichiro; Greene, Richard. L.

    2016-05-01

    The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.

  16. Frequency domain and full waveform time domain inversion of ground based magnetometer, electrometer and incoherent scattering radar arrays to image strongly heterogenous 3-D Earth structure, ionospheric structure, and to predict the intensity of GICs in the power grid

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Imamura, N.; Bonner, L. R., IV; Cosgrove, R. B.

    2016-12-01

    Ground-based magnetometer and electrometer arrays provide the means to probe the structure of the Earth's interior, the interactions of space weather with the ionosphere, and to anticipate the intensity of geomagnetically induced currents (GICs) in power grids. We present a local-to-continental scale view of a heterogeneous 3-D crust and mantle as determined from magnetotelluric (MT) observations across arrays of ground-based electric and magnetic field sensors. MT impedance tensors describe the relationship between electric and magnetic fields at a given site, thus implicitly they contain all known information on the 3-D electrical resistivity structure beneath and surrounding that site. By using multivariate transfer functions to project real-time magnetic observatory network data to areas surrounding electric power grids, and by projecting those magnetic fields through MT impedance tensors, the projected magnetic field can be transformed into predictions of electric fields along the path of the transmission lines, an essential element of predicting the intensity of GICs in the grid. Finally, we explore GICs, i.e. Earth-ionosphere coupling directly in the time-domain. We consider the fully coupled EM system, where we allow for a non-stationary ionospheric source field of arbitrary complexity above a 3-D Earth. We solve the simultaneous inverse problem for 3-D Earth conductivity and source field structure directly in the time domain. In the present work, we apply this method to magnetotelluric data obtained from a synchronously operating array of 25 MT stations that collected continuous MT waveform data in the interior of Alaska during the autumn and winter of 2015 under the footprint of the Poker Flat (Alaska) Incoherent Scattering Radar (PFISR). PFISR data yield functionals of the ionospheric electric field and ionospheric conductivity that constrain the MT source field. We show that in this region conventional robust MT processing methods struggle to produce reliable MT response functions at periods much greater than about 2,000 s, a consequence, we believe, of the complexity of the ionospheric source fields in this high latitude setting. This provides impetus for direct waveform inversion methods that dispense with typical parametric assumptions made about the MT source fields.

  17. Simultaneous dynamic characterization of charge and structural motion during ferroelectric switching

    NASA Astrophysics Data System (ADS)

    Kwamen, C.; Rössle, M.; Reinhardt, M.; Leitenberger, W.; Zamponi, F.; Alexe, M.; Bargheer, M.

    2017-10-01

    Monitoring structural changes in ferroelectric thin films during electric field induced polarization switching is important for a full microscopic understanding of the coupled motion of charges, atoms, and domain walls in ferroelectric nanostructures. We combine standard ferroelectric test sequences of switching and nonswitching electrical pulses with time-resolved x-ray diffraction to investigate the structural response of a nanoscale Pb (Zr0.2Ti0.8) O3 ferroelectric oxide capacitor upon charging, discharging, and polarization reversal. We observe that a nonlinear piezoelectric response of the ferroelectric layer develops on a much longer time scale than the R C time constant of the device. The complex atomic motion during the ferroelectric polarization reversal starts with a contraction of the lattice, whereas the expansive piezoelectric response sets in after considerable charge flow due to the applied voltage pulses on the electrodes of the capacitor. Our simultaneous measurements on a working device elucidate and visualize the complex interplay of charge flow and structural motion and challenges theoretical modeling.

  18. The electric field in capacitively coupled RF discharges: a smooth step model that includes thermal and dynamic effects

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter

    2015-12-01

    The electric field in radio-frequency driven capacitively coupled plasmas (RF-CCP) is studied, taking thermal (finite electron temperature) and dynamic (finite electron mass) effects into account. Two dimensionless numbers are introduced, the ratios ε ={λ\\text{D}}/l of the electron Debye length {λ\\text{D}} to the minimum plasma gradient length l (typically the sheath thickness) and η ={ω\\text{RF}}/{ω\\text{pe}} of the RF frequency {ω\\text{RF}} to the electron plasma frequency {ω\\text{pe}} . Assuming both numbers small but finite, an asymptotic expansion of an electron fluid model is carried out up to quadratic order inclusively. An expression for the electric field is obtained which yields (i) the space charge field in the sheath, (ii) the generalized Ohmic and ambipolar field in the plasma, and (iii) a smooth interpolation for the transition in between. The new expression is a direct generalization of the Advanced Algebraic Approximation (AAA) proposed by the same author (2009 J. Phys. D: Appl. Phys. 42 194009), which can be recovered for η \\to 0 , and of the established Step Model (SM) by Godyak (1976 Sov. J. Plasma Phys. 2 78), which corresponds to the simultaneous limits η \\to 0 , ε \\to 0 . A comparison of the hereby proposed Smooth Step Model (SSM) with a numerical solution of the full dynamic problem proves very satisfactory.

  19. Magnetic storm effects in electric power systems and prediction needs

    NASA Technical Reports Server (NTRS)

    Albertson, V. D.; Kappenman, J. G.

    1979-01-01

    Geomagnetic field fluctuations produce spurious currents in electric power systems. These currents enter and exit through points remote from each other. The fundamental period of these currents is on the order of several minutes which is quasi-dc compared to the normal 60 Hz or 50 Hz power system frequency. Nearly all of the power systems problems caused by the geomagnetically induced currents result from the half-cycle saturation of power transformers due to simultaneous ac and dc excitation. The effects produced in power systems are presented, current research activity is discussed, and magnetic storm prediction needs of the power industry are listed.

  20. Transient Torque Technique for Viscosity and Electrical Conductivity Determination of Semiconducting Liquids

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.-H.; Lehoczky, S. L.; Feth, S.; Zhu, S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A novel apparatus based on transient torque technique is constructed in MSFC/NASA. The apparatus uses a 125um diameter quartz fiber as torsion wire. A high sensitive angular detector is implemented to measure the deflection angle of the crucible containing the liquid. A rotating magnetic field (RMF) is used to induce a rotating flow of a conducting or semiconducting melts. By measuring the magnitude and transient behavior of the induced deflection angle, the electrical conductivity and viscosity of the melt can be measured simultaneously. High purity elements namely Hg, Ga, Zn and Te are tested at room temperature and high temperature up to 900 C.

  1. Numerical field evaluation of healthcare workers when bending towards high-field MRI magnets.

    PubMed

    Wang, H; Trakic, A; Liu, F; Crozier, S

    2008-02-01

    In MRI, healthcare workers may be exposed to strong static and dynamic magnetic fields outside of the imager. Body motion through the strong, non-uniform static magnetic field generated by the main superconducting magnet and exposure to gradient-pulsed magnetic fields can result in the induction of electric fields and current densities in the tissue. The interaction of these fields and occupational workers has attracted an increasing awareness. To protect occupational workers from overexposure, the member states of the European Union are required to incorporate the Physical Agents Directive (PAD) 2004/40/EC into their legislation. This study presents numerical evaluations of electric fields and current densities in anatomically equivalent male and female human models (healthcare workers) as they lean towards the bores of three superconducting magnet models (1.5, 4, and 7 T) and x-, y-, and z- gradient coils. The combined effect of the 1.5 T superconducting magnet and the three gradient coils on the body models is compared with the contributions of the magnet and gradient coils in separation. The simulation results indicate that it is possible to induce field quantities of physiological significance, especially when the MRI operator is bending close towards the main magnet and all three gradient coils are switched simultaneously. (c) 2008 Wiley-Liss, Inc.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yong; Yao, Manwen, E-mail: yaomw@tongji.edu.cn; Chen, Jianwen

    The electrical characteristics of SrTiO{sub 3}/Al{sub 2}O{sub 3} (160 nm up/90 nm down) laminated film capacitors using the sol-gel process have been investigated. SrTiO{sub 3} is a promising and extensively studied high-K dielectric material, but its leakage current property is poor. SrTiO{sub 3}/Al{sub 2}O{sub 3} laminated films can effectively suppress the demerits of pure SrTiO{sub 3} films under low electric field, but the leakage current value reaches to 0.1 A/cm{sup 2} at higher electric field (>160 MV/m). In this study, a new approach was applied to reduce the leakage current and improve the dielectric strength of SrTiO{sub 3}/Al{sub 2}O{sub 3} laminated films. Compared tomore » laminated films with Au top electrodes, dielectric strength of laminated films with Al top electrodes improves from 205 MV/m to 322 MV/m, simultaneously the leakage current maintains the same order of magnitude (10{sup −4} A/cm{sup 2}) until the breakdown occurs. The above electrical characteristics are attributed to the anodic oxidation reaction in origin, which can repair the defects of laminated films at higher electric field. The anodic oxidation reactions have been confirmed by the corresponding XPS measurement and the cross sectional HRTEM analysis. This work provides a new approach to fabricate dielectrics with high dielectric strength and low leakage current.« less

  3. A Comparison of Inductive Sensors in the Characterization of Partial Discharges and Electrical Noise Using the Chromatic Technique.

    PubMed

    Ardila-Rey, Jorge Alfredo; Montaña, Johny; de Castro, Bruno Albuquerque; Schurch, Roger; Covolan Ulson, José Alfredo; Muhammad-Sukki, Firdaus; Bani, Nurul Aini

    2018-03-29

    Partial discharges (PDs) are one of the most important classes of ageing processes that occur within electrical insulation. PD detection is a standardized technique to qualify the state of the insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved partial discharge (PRPD) patterns are used to perform the identification of the type of PD source when they are related to a specific degradation process and when the electrical noise level is low compared to the magnitudes of the PD signals. However, in practical applications such as measurements carried out in the field or in industrial environments, several PD sources and large noise signals are usually present simultaneously. In this study, three different inductive sensors have been used to evaluate and compare their performance in the detection and separation of multiple PD sources by applying the chromatic technique to each of the measured signals.

  4. An all-electric single-molecule motor.

    PubMed

    Seldenthuis, Johannes S; Prins, Ferry; Thijssen, Joseph M; van der Zant, Herre S J

    2010-11-23

    Many types of molecular motors have been proposed and synthesized in recent years, displaying different kinds of motion, and fueled by different driving forces such as light, heat, or chemical reactions. We propose a new type of molecular motor based on electric field actuation and electric current detection of the rotational motion of a molecular dipole embedded in a three-terminal single-molecule device. The key aspect of this all-electronic design is the conjugated backbone of the molecule, which simultaneously provides the potential landscape of the rotor orientation and a real-time measure of that orientation through the modulation of the conductivity. Using quantum chemistry calculations, we show that this approach provides full control over the speed and continuity of motion, thereby combining electrical and mechanical control at the molecular level over a wide range of temperatures. Moreover, chemistry can be used to change all key parameters of the device, enabling a variety of new experiments on molecular motors.

  5. The Temporal Resolution of Laser Induced Fluorescence Photobleaching Anemometer

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Wang, Guiren

    2014-11-01

    Recently, in microfluidics, electrokinetic flows are widely used on micromixer designing. However, there is unfortunately no valid velocimeter today that can measure the random velocity fluctuation at high temporal and spatial resolution simultaneously in the complicated flow circumstance. We recently introduced laser induced fluorescence photobleaching anemometer (LIFPA), which has been successfully used in the measurement of velocity field in AC electrically driven microflow. Here, we theoretically study the temporal resolution (TR) of and experimentally verify, LIFPA can have simultaneously ultrahigh temporal (~4 μs) and spatial (~203 nm) resolution and can measure velocity fluctuation up to at least 2 kHz, whose corresponding wave number is about 6 × 106 1/m in an electrokinetically forced unsteady flow in microfluidics. The measurement of LIFPA is also compared with the widely used micro Particle Imaging Velocimetry (μPIV). We found, at the inlet, due to multiple uncertainties, the velocity fluctuations by μPIV exhibits apparently smaller values than that by LIFPA. But at downstreams, where velocity fluctuation is much lower than at the inlet and the uncertainties of complicated electric field on particles becomes smaller, LIFPA and μPIV indicate similar measurement. The work was supported by NSF under grant no. CAREER CBET-0954977 and MRI CBET-1040227, respectively.

  6. Simultaneous Detection of Two Chemicals Using a TE20-Mode Substrate-Integrated Waveguide Resonator

    PubMed Central

    Salim, Ahmed

    2018-01-01

    Microwave resonators working as sensors can detect only a single analyte at a time. To address this issue, a TE20-mode substrate-integrated waveguide (SIW) resonator is exploited, owing to its two distinct regions of high-intensity electric fields, which can be manipulated by loading two chemicals. Two microfluidic channels with unequal fluid-carrying capacities, engraved in a polydimethylsiloxane (PDMS) sheet, can perturb the symmetric electric fields even if loaded with the two extreme cases of dielectric [ethanol (E), deionized water (DI)] and [deionized water, ethanol]. The four layers of the sandwiched structure considered in this study consisted of a top conductive pattern and a bottom ground, both realized on a Rogers RT/Duroid 5880. PDMS-based channels attached with an adhesive serve as the middle layers. The TE20-mode SIW with empty channels resonates at 8.26 GHz and exhibits a −25 dB return loss with an unloaded quality factor of Q ≈ 28. We simultaneously load E and DI and demonstrate the detection of the four possible combinations: [E, DI], [DI, E], [E, E], and [DI, DI]. The performance of our proposed method showed increases in sensitivity (MHz/εr) of 7.5%, 216%, and 1170% compared with three previously existing multichannel microwave chemical sensors. PMID:29518981

  7. Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Masamichi, E-mail: sakai@fms.saitama-u.ac.jp

    2016-06-15

    The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistencymore » of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.« less

  8. Promotion of Myogenic Maturation by Timely Application of Electric Field Along the Topographical Alignment.

    PubMed

    Ko, Ung Hyun; Park, Sukhee; Bang, Hyunseung; Kim, Mina; Shin, Hyunjun; Shin, Jennifer H

    2018-05-01

    Engineered muscular substitutes can restore the impaired muscle functions when integrated properly into the host tissue. To generate functional muscles with sufficient contractility at the site of transplant, the in vitro construction of fully differentiated muscle fibers would be desired. Many previous reports have identified either topographical alignment or electrical stimulation as an effective tool to promote myogenic differentiation. However, optimization of spatial and temporal arrangement of these two physical cues for better differentiation and maturation of skeletal muscles has not been investigated. In this article, we introduce a novel cell culture system that allows simultaneous application of these two independent directional cues at both orthogonal and parallel arrangements. We then show that the parallel arrangement of the aligned topography and the electric field synergistically facilitates better differentiation and maturation of C2C12, generating myotubes with more fused nuclei. Addition of the electric stimulation at the late stage of myogenic differentiation is found to further improve cell fusion to form multinucleate myotubes through a phosphatidylinositol-3-OH-kinase-dependent pathway. As such, we successfully demonstrated that the combined stimulation of topographical and electrical cues could effectively enhance both myogenic differentiation and maturation in a temporal and orientation-dependent manner, providing the basis for therapeutic strategies for regenerative tissue engineering.

  9. Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars

    NASA Astrophysics Data System (ADS)

    Iatcheva, Ilona; Darzhanova, Denitsa; Manilova, Marina

    2018-03-01

    The aim of this work is the modeling of coupled electric and heat processes in a system for spot resistance welding of cross-wire reinforced steel bars. The real system geometry, dependences of material properties on the temperature, and changes of contact resistance and released power during the welding process have been taken into account in the study. The 3D analysis of the coupled AC electric and transient thermal field distributions is carried out using the finite element method. The novel feature is that the processes are modeled for several successive time stages, corresponding to the change of contact area, related contact resistance, and reduction of the released power, occurring simultaneously with the creation of contact between the workpieces. The values of contact resistance and power changes have been determined on the basis of preliminary experimental and theoretical investigations. The obtained results present the electric and temperature field distributions in the system. Special attention has been paid to the temperature evolution at specified observation points and lines in the contact area. The obtained information could be useful for clarification of the complicated nature of interrelated electric, thermal, mechanical, and physicochemical welding processes. Adequate modeling is also an opportunity for proper control and improvement of the system.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, J.E.; Adams, R.; Carlson, A.L.

    Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. The authors use simultaneous 2-D-spatial and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion variation, and sensitivity. A semi-automated line-fitting procedure determines the Stark shiftmore » and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {+-}2--4%. Detailed tests of the fitting procedure confirm that the wavelength shift uncertainties are accurate to better than {+-}20%. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain 3-D space- and time-resolved measurements of the electric and magnetic fields is in progress.« less

  11. Global lunar crust - Electrical conductivity and thermoelectric origin of remanent magnetism

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1977-01-01

    An upper limit is placed on the average crustal conductivity from an investigation of toroidal (V x B) induction in the moon, using ten-minute data intervals of simultaneous lunar orbiting and surface magnetometer data. Crustal conductivity is determined as a function of crust thickness. For an average global crust thickness of about 80 km, the crust surface electrical conductivity is of the order of 1 hundred millionth mho/m. The toroidal-induction results lower the surface-conductivity limit obtained from poloidal-induction results by approximately four orders of magnitude. In addition, a thermoelectric (Seebeck effect) generator model is presented as a magnetic-field source for thermoremanent magnetization of the lunar crust during its solidification and cooling. Magnetic fields from 1000 to 10,000 gammas are calculated for various crater and crustal geometries. Solidified crustal material cooling through the iron Curie temperature in the presence of such ancient lunar fields could have received thermoremanent magnetization consistent with that measured in most returned lunar samples.

  12. Voltage control of ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Liu, Ming

    2016-05-01

    Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME) coupling mechanism: strain/stress, interfacial charge, spin-electromagnetic (EM) coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR) in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin-EM coupling and exchange coupling.

  13. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays

    NASA Astrophysics Data System (ADS)

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-10-01

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems. Electronic supplementary information (ESI) available: Electrical characterization of fabricated n- and p-type nanowires, and influence of Debye screening on PSA sensing. See DOI: 10.1039/c4nr03210a

  14. Electrical characteristics of TIG arcs in argon from non-equilibrium modelling and experiment

    NASA Astrophysics Data System (ADS)

    Baeva, Margarita; Uhrlandt, Dirk; Siewert, Erwan

    2016-09-01

    Electric arcs are widely used in industrial processes so that a thorough understanding of the arc characteristics is highly important to industrial research and development. TIG welding arcs operated with pointed electrodes made of tungsten, doped with cerium oxide, have been studied in order to analyze in detail the electric field and the arc voltage. Newly developed non-equilibrium model of the arc is based on a complete diffusion treatment of particle fluxes, a generalized form of Ohm's law, and boundary conditions accounting for the space-charge sheaths within the magneto-hydrodynamic approach. Experiments have been carried out for electric currents in the range 5-200 A. The electric arc has been initiated between a WC20 cathode and a water-cooled copper plate placed 0.8 mm from each other. The arc length has been continuously increased by 0.1 mm up to 15 mm and the arc voltage has been simultaneously recorded. Modelling and experimental results will be presented and discussed.

  15. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors.

    PubMed

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-11

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this 'electrical activation', the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  16. Highly Structured Plasma Density and Associated Electric and Magnetic Field Irregularities at Sub-Auroral, Middle, and Low Latitudes in the Topside Ionosphere Observed with the DEMETER and DMSP Satellites

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F.; Liebrecht, C; Berthelier, Jean-Jacques; Parrot, M.; Lebreton, Jean-Pierre

    2007-01-01

    Detailed observations of the plasma structure and irregularities that characterize the topside ionosphere at sub-auroral, middle, and low-latitudes are gathered with probes on the DEMETER and DMSP satellites. In particular, we present DEMETER observations near 700 km altitude that reveal: (1) the electric field irregularities and density depletions at mid-latitudes are remarkably similar to those associated with equatorial spread-F at low latitudes; (2) the mid-latitude density structures contain both depletions and enhancements with scale lengths along the spacecraft trajectory that typically vary from 10's to 100's of km; (3) in some cases, ELF magnetic field irregularities are observed in association with the electric field irregularities on the walls of the plasma density structures and appear to be related to finely-structured spatial currents and/or Alfven waves; (4) during severe geomagnetic storms, broad regions of nightside plasma density structures are typically present, in some instances extending from the equator to the subauroral regions; and (5) intense, broadband electric and magnetic field irregularities are observed at sub-auroral latitudes during geomagnetic storm periods that are typically associated with the trough region. Data from successive DEMETER orbits during storm periods in both the daytime and nighttime illustrate how enhancements of both the ambient plasma density, as well as sub-auroral and mid-latitude density structures, correlate and evolve with changes in the Dst. The DEMETER data are compared with near simultaneous observations gathered by the DMSP satellites near 840 km. The observations are related to theories of sub-auroral and mid-latitude plasma density structuring during geomagnetic storms and penetration electric fields and are highly germane to understanding space weather effects regarding disruption of communication and navigation signals in the near-space environment.

  17. Runaway of energetic test ions in a toroidal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eilerman, S., E-mail: eilerman@wisc.edu; Anderson, J. K.; Sarff, J. S.

    2015-02-15

    Ion runaway in the presence of a large-scale, reconnection-driven electric field has been conclusively measured in the Madison Symmetric Torus reversed-field pinch (RFP). Measurements of the acceleration of a beam of fast ions agree well with test particle and Fokker-Planck modeling of the runaway process. However, the runaway mechanism does not explain all measured ion heating in the RFP, particularly previous measurements of strong perpendicular heating. It is likely that multiple energization mechanisms occur simultaneously and with differing significance for magnetically coupled thermal ions and magnetically decoupled tail and beam ions.

  18. Microwave emission and scattering from Earth surface and atmosphere

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Lee, M. C.

    1986-01-01

    Nonlinear Electromagnetic (EM) wave interactions with the upper atmosphere were investigated during the period 15 December 1985 to 15 June 1986. Topics discussed include: the simultaneous excitation of ionospheric density irregularities and Earth's magnetic field fluctuations; the electron acceleration by Langmuir wave turbulence; and the occurrence of artificial spread F. The role of thermal effects in generating ionospheric irregularities by Whistler waves, intense Quasi-DC electric fields, atmospheric gravity waves, and electrojets was investigated. A model was developed to explain the discrete spectrum of the resonant ultralow frequency (ULF) waves that are commonly observed in the magnetosphere.

  19. Feedback between neutral winds and auroral arc electrodynamics

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Walterscheid, R. L.

    1986-01-01

    The feedback between neutral atmospheric winds and the electrodynamics of a stable, discrete auroral arc is analyzed. The ionospheric current continuity equation and the equation for neutral gas acceleration by ion drag are solved simultaneously, as a function of time. The results show that, in general, the electric field in the ionosphere adjusts to neutral wind acceleration so as to keep auroral field-aligned currents and electron acceleration approximately independent of time. It is thus concluded that the neutral winds that develop as a result of the electrodynamical forcing associated with an arc do not significantly affect the intensity of the arc.

  20. Synergistic effect of electrical and chemical factors on endocytosis in micro-discharge plasma gene transfection

    NASA Astrophysics Data System (ADS)

    Jinno, M.; Ikeda, Y.; Motomura, H.; Isozaki, Y.; Kido, Y.; Satoh, S.

    2017-06-01

    We have developed a new micro-discharge plasma (MDP)-based gene transfection method, which transfers genes into cells with high efficiency and low cytotoxicity; however, the mechanism underlying the method is still unknown. Studies revealed that the N-acetylcysteine-mediated inhibition of reactive oxygen species (ROS) activity completely abolished gene transfer. In this study, we used laser-produced plasma to demonstrate that gene transfer does not occur in the absence of electrical factors. Our results show that both electrical and chemical factors are necessary for gene transfer inside cells by microplasma irradiation. This indicates that plasma-mediated gene transfection utilizes the synergy between electrical and chemical factors. The electric field threshold required for transfection was approximately 1 kV m-1 in our MDP system. This indicates that MDP irradiation supplies sufficient concentrations of ROS, and the stimulation intensity of the electric field determines the transfection efficiency in our system. Gene transfer by plasma irradiation depends mainly on endocytosis, which accounts for at least 80% of the transfer, and clathrin-mediated endocytosis is a dominant endocytosis. In plasma-mediated gene transfection, alterations in electrical and chemical factors can independently regulate plasmid DNA adhesion and triggering of endocytosis, respectively. This implies that plasma characteristics can be adjusted according to target cell requirements, and the transfection process can be optimized with minimum damage to cells and maximum efficiency. This may explain how MDP simultaneously achieves high transfection efficiency with minimal cell damage.

  1. Negative index of refraction in a four-level system with magnetoelectric cross coupling and local field corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, F.

    2011-07-15

    This research focuses on a coherently driven four-level atomic medium with the aim of inducing a negative index of refraction while taking into consideration local field corrections as well as magnetoelectric cross coupling (i.e.,chirality) within the material's response functions. Two control fields are used to render the medium transparent for a probe field which simultaneously couples to an electric and a magnetic dipole transition, thus allowing one to test the permittivity and permeability of the material at the same time. Numerical simulations show that a negative index of refraction with low absorption can be obtained for a range of probemore » detunings while depending on number density and the ratio between the intensities of the control fields.« less

  2. Global scale equatorial ionization anomaly (EIA) response to magnetospheric disturbances based on the May-June 1987 SUNDIAL-coordinated observations

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Walker, G. O.; Reddy, B. M.; de Paula, E. R.; Sobral, J. H. A.; Fejer, B. G.

    1993-07-01

    Equatorial ionization anomaly (EIA) responses to magnetospheric disturbances have been investigated using ionosonde and geomagnetic data sets obtained for different longitude sectors during the 9-day (28 May-7 June) globally-coordinated SUNDIAL 87 campaign. Attention is focused on the EIA response features of the two magnetically most-disturbed days of the campaign window, 29 May and 6 June. Anomalous EIA inhibition and development were simultaneously observed at widely separated (American and Asian) longitude sectors, accompanied respectively by events of morning electrojet reversal and evening partial ring current development. A numerical model of the low-latitude ionosphere has been used to quantify the role that a disturbance electric field could play in the observed EIA response features. The implications of the results on the global low-latitude disturbance electric field pattern is discussed.

  3. Co-dispersion of plasmonic nanorods in thermotropic nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Sheetah, Ghadah; Liu, Qinkun; Smalukh, Ivan

    Colloidal dispersions of plasmonic metal nanoparticles in liquid crystals promise the capability of pre-engineering tunable optical properties of mesostructured metal-dielectric composites. Recently, concentrated dispersions of anisotropic gold, silver, and metal alloy nanoparticles in nematic hosts have been achieved and successfully controlled by low-voltage fields. However, to enable versatile designs of material behavior of the composites, simultaneous co-dispersion of anisotropic particles with different shapes, alignment properties, and compositions are often needed. We achieve such co-dispersions and explore their switching characteristics in response to external stimuli like light and electric fields. We demonstrated that spectral characteristics of co-dispersions of multiple types of anisotropic nanoparticles in a common nematic host provides unprecedented variety of electrically- and optically-tunable material behavior, with a host of potential practical applications in electro-optic devices and displays Ghadah acknowledges support from the King Faisal University (KFU) graduate fellowship.

  4. A chip for catching, separating, and transporting bio-particles with dielectrophoresis.

    PubMed

    Huang, Jung-Tang; Wang, Guo-Chen; Tseng, Kuang-Ming; Fang, Shiuh-Bin

    2008-11-01

    This study aims at developing a 3D device for catching, separating, and transporting bio-particles based on dielectrophoresis (DEP). Target particles can be simultaneously caught and transported using the negative DEP method. In non-uniform electric fields, the levitation height or complex permittivity of certain particle may be different from that of another and this property can facilitate separation of particles. We have designed and constructed a 3D device consisting of two layers of electrodes separated by a channel formed by 50 microm thick photoresist. The electrodes can operate effectively with 10-15 V and 5-7 MHz to catch all particles in the channel, and can move particles after switching the electric field to 5-15 V and 500-1,000 KHz. Hence, particles experienced coupling force of two different directional twDEP forces, and tallied with our estimation to move along the coupling direction.

  5. Macro-/Micro-Controlled 3D Lithium-Ion Batteries via Additive Manufacturing and Electric Field Processing.

    PubMed

    Li, Jie; Liang, Xinhua; Liou, Frank; Park, Jonghyun

    2018-01-30

    This paper presents a new concept for making battery electrodes that can simultaneously control macro-/micro-structures and help address current energy storage technology gaps and future energy storage requirements. Modern batteries are fabricated in the form of laminated structures that are composed of randomly mixed constituent materials. This randomness in conventional methods can provide a possibility of developing new breakthrough processing techniques to build well-organized structures that can improve battery performance. In the proposed processing, an electric field (EF) controls the microstructures of manganese-based electrodes, while additive manufacturing controls macro-3D structures and the integration of both scales. The synergistic control of micro-/macro-structures is a novel concept in energy material processing that has considerable potential for providing unprecedented control of electrode structures, thereby enhancing performance. Electrochemical tests have shown that these new electrodes exhibit superior performance in their specific capacity, areal capacity, and life cycle.

  6. Light-activated Gigahertz Ferroelectric Domain Dynamics

    DOE PAGES

    Akamatsu, Hirofumii; Yuan, Yakun; Stoica, Vladimir A.; ...

    2018-02-26

    Using time- and spatially-resolved hard X-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO 3 are simultaneously captured on sub-nanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photo-induced electric field of up to 20 million volts per meter is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling (DPFM) method is developed that reveals the microscopic origin of these dynamics, leading to GHz polarization andmore » elastic waves travelling in the crystal with sonic speeds and spatially varying frequencies. The advance of spatiotemporal imaging and dynamical modeling tools open opportunities of disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains« less

  7. Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain.

    PubMed

    Li, Qufei; Wanderling, Sherry; Sompornpisut, Pornthep; Perozo, Eduardo

    2014-02-01

    Voltage-gated ion channels respond to transmembrane electric fields through reorientations of the positively charged S4 helix within the voltage-sensing domain (VSD). Despite a wealth of structural and functional data, the details of this conformational change remain controversial. Recent electrophysiological evidence showed that equilibrium between the resting ('down') and activated ('up') conformations of the KvAP VSD from Aeropyrum pernix can be biased through reconstitution in lipids with or without phosphate groups. We investigated the structural transition between these functional states, using site-directed spin-labeling and EPR spectroscopic methods. Solvent accessibility and interhelical distance determinations suggest that KvAP gates through S4 movements involving an ∼3-Å upward tilt and simultaneous ∼2-Å axial shift. This motion leads to large accessibly changes in the intracellular water-filled crevice and supports a new model of gating that combines structural rearrangements and electric-field remodeling.

  8. Enhanced contrast ratio and viewing angle of polymer-stabilized liquid crystal via refractive index matching between liquid crystal and polymer network.

    PubMed

    Lee, Ji-Hoon; Lee, Jung Jin; Lim, Young Jin; Kundu, Sudarshan; Kang, Shin-Woong; Lee, Seung Hee

    2013-11-04

    Long standing electro-optic problems of a polymer-dispersed liquid crystal (PDLC) such as low contrast ratio and transmittances decrease in oblique viewing angle have been challenged with a mixture of dual frequency liquid crystal (DFLC) and reactive mesogen (RM). The DFLC and RM molecules were vertically aligned and then photo-polymerized using a UV light. At scattering state under 50 kHz electric field, DFLC was switched to planar state, giving greater extraordinary refractive index than the normal PDLC cell. Consequently, the scattering intensity and the contrast ratio were increased compared to the conventional PDLC cell. At transparent state under 1 kHz electric field, the extraordinary refractive index of DFLC was simultaneously matched with the refractive index of vertically aligned RM so that the light scattering in oblique viewing angles was minimized, giving rise to high transmittance in all viewing angles.

  9. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983]. We interpret these new observations in terms of fundamental plasma instabilities associated with the unstable, nighttime equatorial ionosphere.

  10. A border-ownership model based on computational electromagnetism.

    PubMed

    Zainal, Zaem Arif; Satoh, Shunji

    2018-03-01

    The mathematical relation between a vector electric field and its corresponding scalar potential field is useful to formulate computational problems of lower/middle-order visual processing, specifically related to the assignment of borders to the side of the object: so-called border ownership (BO). BO coding is a key process for extracting the objects from the background, allowing one to organize a cluttered scene. We propose that the problem is solvable simultaneously by application of a theorem of electromagnetism, i.e., "conservative vector fields have zero rotation, or "curl." We hypothesize that (i) the BO signal is definable as a vector electric field with arrowheads pointing to the inner side of perceived objects, and (ii) its corresponding scalar field carries information related to perceived order in depth of occluding/occluded objects. A simple model was developed based on this computational theory. Model results qualitatively agree with object-side selectivity of BO-coding neurons, and with perceptions of object order. The model update rule can be reproduced as a plausible neural network that presents new interpretations of existing physiological results. Results of this study also suggest that T-junction detectors are unnecessary to calculate depth order. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Rashba and Dresselhaus spin-orbit couplings effects on electromagnetically induced transparency of a lens-shaped quantum dot: External electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Zamani, A.; Setareh, F.; Azargoshasb, T.; Niknam, E.; Mohammadhosseini, E.

    2017-06-01

    In this article the spin of electron as well as simultaneous effects of Rashba and Dresselhaus spin-orbit interactions are considered for a lens-shaped GaAs quantum dot and the influences of applied electric field and Zeeman effect on the electromagnetically induced transparency (EIT) of this system are investigated. To do so, the absorption, refractive index as well as the group velocity of the probe light pulse are presented and discussed. Study of the absorption and refractive index reveals that, at a particular frequency of probe field, absorption diminishes, refractive index becomes unity and so the EIT occurs. Furthermore, the investigation of group velocity show that, around such frequency the probe propagation is sub-luminal, which shifts to super-luminal for higher and lower frequencies. Our results illustrate that the EIT frequency, transparency window and sub(super)-luminal frequency intervals are strongly sensitive to applied fields in the presence of spin-orbit couplings. It is found that, in comparison with the investigations with negligence of spin, the EIT behavior under the effects of applied fields are quite different.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e.,more » a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.« less

  13. Aircraft measurements of the atmospheric electrical global circuit during the period 1971-1984

    NASA Technical Reports Server (NTRS)

    Markson, R.

    1985-01-01

    This report will update an investigation of the global circuit conducted over the last 14 years through aircraft measurements of the variation of ionospheric potential and associated parameters. The data base included electric field, conductivity, and air-earth current density profiles from the tropics (25 deg N) to the Arctic (79 deg N). Almost all of the data have been obtained over the ocean to reduce noise associated with local generators, aerosols, and convection. Recently, two aircraft have been utilized to obtain, for the first time, quasi-periodic sets of simultaneous ionospheric potential (VI) soundings at remote locations and extending over time spans sufficiently long so that the universal time diurnal variation (Carnegie curve) could be observed. In additon, these measurements provided the first detection of the modulation of electric fields in the troposphere caused by the double vortex ionospheric convection pattern. Besides summarizing these measurements and comparing them to similar data obtained by other groups, this report discusses meteorological sources of error and criteria for determining if the global circuit is being measured rather than variations caused by local meteorological processes.

  14. Design of Interactively Time-Pulsed Microfluidic Mixers in Microchips using Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Fu, Lung-Ming; Tsai, Chien-Hsiung

    2007-01-01

    In this paper, we propose a novel technique in which driving voltages are applied interactively to the respective inlet fluid flows of three configurations of a microfluidic device, namely T-shaped, double-T-shaped, and double-cross-shaped configurations, to induce electroosmotic flow (EOF) velocity variations in such a way as to develop a rapid mixing effect in the microchannel. In these configurations a microfluidic mixer apply only one electrokinetic driving force, which drives the sample fluids and simultaneously produces a periodic switching frequency. It requires no other external driving force to induce perturbations to the flow field. The effects of the main applied electric field, the interactive frequency, and the pullback electric field on the mixing performance are thoroughly examined numerically. The optimal interactive frequency range for a given set of micromixer parameters is identified for each type of control mode. The numerical results confirm that micromixers operating at an optimal interactive frequency are capable of delivering a significantly enhanced mixing performance. Furthermore, it is shown that the optimal interactive frequency depends upon the magnitude of the main applied electric field. The interactively pulsed mixers developed in this study have a strong potential for use in lab-on-a-chip systems. They involve a simpler fabrication process than either passive or active on-chip mixers and require less human intervention in operation than their bulky external counterparts.

  15. A pilot study with very low-intensity, intermediate-frequency electric fields in patients with locally advanced and/or metastatic solid tumors.

    PubMed

    Salzberg, Marc; Kirson, Eilon; Palti, Yoram; Rochlitz, Christoph

    2008-07-01

    The transmission of electric fields using insulated electrodes has demonstrated that very low-intensity, properly tuned, intermediate-frequency electric fields, termed tumor-treating fields (TTFields), selectively stunts tumor cell growth and is accompanied by a decrease in tumor angiogenesis. This open, prospective pilot study was designed to evaluate the safety, tolerability, and efficacy profile of TTFields treatment in patients with locally advanced and/or metastatic solid tumors using the NovoTTF100A(TM) device. All 6 patients were heavily pre-treated with several lines of therapy; no additional standard treatment option was available to them. TTFields treatment using continuous NovoTTF-100A lasted a minimum of 14 days and was very well tolerated. No related serious adverse events occurred. Outcomes showed 1 partial response of a treated skin metastasis from a primary breast cancer, 3 cases where tumor growth was arrested during treatment, and 1 case of disease progression. One mesothelioma patient experienced lesion regression near TTFields with simultaneous tumor stability or progression in distal areas. Although the number of patients in this study is small, the lack of therapy toxicity and the efficacy observed in data gathered to date indicate the potential of TTFields as a new treatment modality for solid tumors, definitely warranting further investigation. (c) 2008 S. Karger AG, Basel

  16. Simultaneous localization and calibration for electromagnetic tracking systems.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-06-01

    In clinical environments, field distortion can cause significant electromagnetic tracking errors. Therefore, dynamic calibration of electromagnetic tracking systems is essential to compensate for measurement errors. It is proposed to integrate the motion model of the tracked instrument with redundant EM sensor observations and to apply a simultaneous localization and mapping algorithm in order to accurately estimate the pose of the instrument and create a map of the field distortion in real-time. Experiments were conducted in the presence of ferromagnetic and electrically-conductive field distorting objects and results compared with those of a conventional sensor fusion approach. The proposed method reduced the tracking error from 3.94±1.61 mm to 1.82±0.62 mm in the presence of steel, and from 0.31±0.22 mm to 0.11±0.14 mm in the presence of aluminum. With reduced tracking error and independence from external tracking devices or pre-operative calibrations, the approach is promising for reliable EM navigation in various clinical procedures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals

    NASA Astrophysics Data System (ADS)

    Vasić, Borislav; Zografopoulos, Dimitrios C.; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš

    2017-03-01

    Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.

  18. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals.

    PubMed

    Vasić, Borislav; Zografopoulos, Dimitrios C; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš

    2017-03-24

    Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.

  19. Development of Electric Field and Plasma Wave Investigations for Future Space Weather Missions: ERG, SCOPE, and beyond

    NASA Astrophysics Data System (ADS)

    Kasaba, Y.; Kumamoto, A.; Ono, T.; Misawa, H.; Kojima, H.; Yagitani, S.; Kasahara, Y.; Ishisaka, K.

    2009-04-01

    The electric field and plasma wave investigation is important for the clarification of global plasma dynamics and energetic processes in the planetary Magnetospheric studies. We have several missions which will contribute those objectives. the small-sized radiation belt mission, ERG (Energization and Radiation in Geospace), the cross-scale formation flight mission, SCOPE, the BepiColombo mission to Mercury, and the small-sized and full-scale Jovian mission in future. Those will prevail the universal plasma mechanism and processes in the space laboratory. The main purposes of electric field and plasma wave observation for those missions are: (1) Examination of the theories of high-energy particle acceleration by plasma waves, (2) identification of the origin of electric fields in the magnetosphere associated with cross-scale coupling processes, (3) diagnosis of plasma density, temperature and composition, and (4) investigation of wave-particle interaction and mode conversion processes. Simultaneous observation of plasma waves and energetic particles with high resolution will enable us to investigate the wave-particle interaction based on quasi-linear theory and non-linear models. In this paper, we will summarize the current plan and efforts for those future activities. In order to achieve those objectives, the instrument including sensitive sensors (the long wire / stem antennae, the search-coil / loop antennae) and integrated receiver systems are now in development, including the direct identification of nonlinear wave-particle interactions associated will be tried by Wave-particle Correlator. And, as applications of those development, we will mention to the space interferometer and the radar sounder technologies.

  20. Dielectric constant tunability at microwave frequencies and pyroelectric behavior of lead-free submicrometer-structured (Bi0.5Na0.5)1-xBaxTiO3 ferroelectric ceramics.

    PubMed

    Martínez, Félix L; Hinojosa, Juan; Doménech, Ginés; Fernández-Luque, Francisco J; Zapata, Juan; Ruiz, Ramon; Pardo, Lorena

    2013-08-01

    In this article, we show that the dielectric constant of lead-free ferroelectric ceramics based on the solid solution (1-x)(Bi(0.5)Na(0.5))TiO(3)-xBaTiO(3), with compositions at or near the morphotropic phase boundary (MPB), can be tuned by a local applied electric field. Two compositions have been studied, one at the MPB, with x = 0.06 (BNBT6), and another one nearer the BNT side of the phase diagram, with x = 0.04 (BNBT4). The tunability of the dielectric constant is measured at microwave frequencies between 100 MHz and 3 GHz by a nonresonant method and simultaneously applying a dc electric field. As expected, the tunability is higher for the composition at the MPB (BNBT6), reaching a maximum value of 60% for an electric field of 900 V/cm, compared with the composition below this boundary (BNBT4), which saturates at 40% for an electric field of 640 V/cm. The high tunability in both cases is attributed to the fine grain and high density of the samples, which have a submicrometer homogeneous grain structure with grain size of the order of a few hundred nanometers. Such properties make these ceramics attractive for microwave tunable devices. Finally, we have tested these ceramics for their application as infrared pyroelectric detectors and we have found that the pyroelectric figure of merit is comparable to traditional lead-containing pyroelectrics.

  1. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    PubMed

    Nakayama, Shinsuke; Sawamura, Kenta; Mohri, Kaneo; Uchiyama, Tsuyoshi

    2011-01-01

    This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI) sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT) level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  2. Formation of 2D nanoparticles with block structure in simultaneous electric explosion of conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryzhevich, Dmitrij S., E-mail: kryzhev@ispms.ru, E-mail: kost@ispms.ru; Zolnikov, Konstantin P., E-mail: kryzhev@ispms.ru, E-mail: kost@ispms.ru; Abdrashitov, Andrei V.

    2014-11-14

    A molecular dynamics simulation of nanoparticle formation in simultaneous electric explosion of conductors is performed. Interatomic interaction is described using potentials calculated in the framework of the embedded atom method. High-rate heating results in failure of the conductors with the formation of nanoparticles. The influence of the heating rate, temperature distribution over the specimen cross-section and the distance between simultaneously exploded conductors on the structure of formed nanoparticles is studied. The calculation results show that the electric explosion of conductors allows the formation of nanoparticles with block structure.

  3. A Novel Acousto-Electric Levitator for Studies of Drop and Particle Clusters and Arrays

    NASA Technical Reports Server (NTRS)

    Tian, Yuren; Apfel, Robert E.; Zheng, Yibing

    1999-01-01

    A novel and compact instrumentation for studying the behavior of drop sprays and of clusters of drops now permits fundamental research into the behavior of reacting and non-reacting fluid and solid species. The new capability is made possible by simultaneous acousto-electric levitation and charging of "seed" droplets (10-30 microns in diameter) which come together in 2-D clusters (with up to 300 droplets). These clusters are interesting in their own right because of their crystalline and quasi-crystalline forms, which depend on the acoustic and electric field parameters. By varying the electric and acoustic field intensities, one can cause a cluster of droplets to condense into larger drops (e.g. 50-300 microns) which, because of their charge, form uniformly spaced 2-D arrays of monodispersed drops (e.g. 30-40 array drops in preliminary experiments). One or more layers of these 2-D arrays can form in the acoustic standing wave. Such a configuration permits a wide range of fundamental studies of drop evaporation, combustion, and nucleation. The drops can be single or multicomponent. Therefore, fundamental materials studies can also be performed. Using this same Cluster and Array Generation (CAG) instrumentation, it has been also possible in preliminary experiments to demonstrate the clustering and arraying of solid particles, both coated with an electrically conducting layer and uncoated, and both charged and uncharged.

  4. Estimated intensity of the EMP from lightning discharges necessary for elves initiation based on balloon experiment

    NASA Astrophysics Data System (ADS)

    Kondo, S.; Yoshida, A.; Takahashi, Y.; Chikada, S.; Adachi, T.; Sakanoi, T.

    2007-12-01

    Transient optical phenomena in the mesosphere and lower ionosphere called transient luminous events (TLEs) have been investigated extensively since the first discovery in 1989. In the lower ionosphere, elves are generated by the electromagnetic pulses (EMPs) radiated from the intense lightning current. On the ground-based observation, cameras can not always identify the occurrence of elves because elves emission is sometimes reduced significantly by the atmosphere and blocked by clouds. Therefore, it has been difficult to determine the threshold of intensity of EMPs necessary for initiation of elves. We simultaneously carried out optical and sferics measurements for TLEs and lightning discharges using a high altitude balloon launched at Sanriku Balloon Center on the night of August 25 / 26 in 2006. We fixed four CCD cameras on the gondola, each of which had horizontal FOV of ~100 degree. They cover 360 degree in horizontal direction and imaged the TLEs without atmospheric extinction nor blocking by clouds. The frame rate is 30 fps. We installed three dipole antennas at the gondola, which received the vertical and horizontal electric fields radiated from lightning discharges. The frequency range of the VLF receiver is 1-25 kHz. We also make use of VLF sferics data obtained by ground-based antennas located at Tohoku University in Sendai. We picked up six elves from the image data set obtained by the CCD cameras, and examined the maximum amplitudes of the vertical electric field for 22 lightning discharge events including the six elves events observed both at the balloon and at Sendai. It is found that the maximum amplitudes of the vertical electric field in the five elves events are much larger than those in the other lightning events. We estimate the intensity of the radiated electric field necessary for elves. About one elves event, we don't see intense vertical electric field in the balloon data.

  5. Effect of the electric field during annealing of organic light emitting diodes for improving its on/off ratio.

    PubMed

    Sharma, Rahul K; Katiyar, Monica; Rao, I V Kameshwar; Unni, K N Narayanan; Deepak

    2016-01-28

    If an organic light emitting diode is to be used as part of a matrix addressed array, it should exhibit low reverse leakage current. In this paper we present a method to improve the on/off ratio of such a diode by simultaneous application of heat and electric field post device fabrication. A green OLED with excellent current efficiency was seen to be suffering from a poor on/off ratio of 10(2). After examining several combinations of annealing along with the application of a reverse bias voltage, the on/off ratio of the same device could be increased by three orders of magnitude, specifically when the device was annealed at 80 °C under reverse bias (-15 V) followed by slow cooling also under the same bias. Simultaneously, the forward characteristics of the device were relatively unaffected. The reverse leakage in the OLED is mainly due to the injection of minority carriers in the hole transport layer (HTL) and the electron transport layer (ETL), in this case, of holes in tris-(8-hydroxyquinoline)aluminum(Alq3) and electrons in 4,4',4''-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA). Hence, to investigate these layers adjacent to the electrodes, we fabricated their single layer devices. The possibility of bulk traps present adjacent to electrodes providing states for injection was ruled out after estimating the trap density both before and after the reverse biased annealing. The temperature independent current in reverse bias ruled out the possibility of thermionic injection. The origin of the reverse bias current is attributed to the availability of interfacial hole levels in Alq3 at the cathode work function level in the as-fabricated device; the suppression of the same being attributed to the fact that these levels in Alq3 are partly removed after annealing under an electric field.

  6. Radiofrequency Electromagnetic Field Map of Timisoara

    NASA Astrophysics Data System (ADS)

    Stefu, N.; Solyom, I.; Arama, A.

    2015-12-01

    There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.

  7. CdTe X-ray detectors under strong optical irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cola, Adriano; Farella, Isabella

    2014-11-17

    The perturbation behaviour of Ohmic and Schottky CdTe detectors under strong optical pulses is investigated. To this scope, the electric field profiles and the induced charge transients are measured, thus simultaneously addressing fixed and free charges properties, interrelated by one-carrier trapping. The results elucidate the different roles of the contacts and deep levels, both under dark and strong irradiation conditions, and pave the way for the improvement of detector performance control under high X-ray fluxes.

  8. Effects of strong earthquakes in variations of electrical and meteorological parameters of the near-surface atmosphere in Kamchatka region

    NASA Astrophysics Data System (ADS)

    Smirnov, S. E.; Mikhailova, G. A.; Mikhailov, Yu. M.; Kapustina, O. V.

    2017-09-01

    The diurnal variations in electrical (quasistatic electric field and electrical conductivity) and meteorological (temperature, pressure, relative humidity of the atmosphere, and wind speed) parameters, measured simultaneously before strong earthquakes in Kamchatka region (November 15, 2006, M = 8.3; January 13, 2007, M = 8.1; January 30, 2016, M = 7.2), are studied for the first time in detail. It is found that a successively anomalous increase in temperature, despite the negative regular trend in these winter months, was observed in the period of six-seven days before the occurrences of earthquakes. An anomalous temperature increase led to the formation of "winter thunderstorm" conditions in the near-surface atmosphere of Kamchatka region, which was manifested in the appearance of an anomalous, type 2 electrical signal, the amplification of and intensive variations in electrical conductivity, heavy precipitation (snow showers), high relative humidity of air, storm winds, and pressure changes. With the weak flow of natural heat radiation in this season, the observed dynamics of electric and meteorological processes can likely be explained by the appearance of an additional heat source of seismic nature.

  9. System Description and First Application of an FPGA-Based Simultaneous Multi-Frequency Electrical Impedance Tomography

    PubMed Central

    Aguiar Santos, Susana; Robens, Anne; Boehm, Anna; Leonhardt, Steffen; Teichmann, Daniel

    2016-01-01

    A new prototype of a multi-frequency electrical impedance tomography system is presented. The system uses a field-programmable gate array as a main controller and is configured to measure at different frequencies simultaneously through a composite waveform. Both real and imaginary components of the data are computed for each frequency and sent to the personal computer over an ethernet connection, where both time-difference imaging and frequency-difference imaging are reconstructed and visualized. The system has been tested for both time-difference and frequency-difference imaging for diverse sets of frequency pairs in a resistive/capacitive test unit and in self-experiments. To our knowledge, this is the first work that shows preliminary frequency-difference images of in-vivo experiments. Results of time-difference imaging were compared with simulation results and shown that the new prototype performs well at all frequencies in the tested range of 60 kHz–960 kHz. For frequency-difference images, further development of algorithms and an improved normalization process is required to correctly reconstruct and interpreted the resulting images. PMID:27463715

  10. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOEpatents

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.

  11. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOEpatents

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.

  12. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays.

    PubMed

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-11-07

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.

  13. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  14. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    PubMed Central

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-01-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully. PMID:27725695

  15. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    PubMed Central

    Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.

    2015-01-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081

  16. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.

    1985-01-01

    During FY-85, Researchers conducted a field program and analyzed data. The field program incorporated coordinated measurements made with a NASA U2. Results include the following: (1) ground truth measurements of lightning for comparison with those obtained by the U2; (2) analysis of dual-Doppler radar and dual-VHF lightning mapping data from a supercell storm; (3) analysis of synoptic conditions during three simultaneous storm systems on 13 May 1983 when unusually large numbers of positive cloud-to-ground (+CG) flashes occurred; (4) analysis of extremely low frequency (ELF) wave forms; and (5) an assessment of a cloud -ground strike location system using a combination of mobile laboratory and fixed-base TV video data.

  17. Multi-scale modeling of spin transport in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Hemmatiyan, Shayan; Souza, Amaury; Kordt, Pascal; McNellis, Erik; Andrienko, Denis; Sinova, Jairo

    In this work, we present our theoretical framework to simulate simultaneously spin and charge transport in amorphous organic semiconductors. By combining several techniques e.g. molecular dynamics, density functional theory and kinetic Monte Carlo, we are be able to study spin transport in the presence of anisotropy, thermal effects, magnetic and electric field effects in a realistic morphologies of amorphous organic systems. We apply our multi-scale approach to investigate the spin transport in amorphous Alq3 (Tris(8-hydroxyquinolinato)aluminum) and address the underlying spin relaxation mechanism in this system as a function of temperature, bias voltage, magnetic field and sample thickness.

  18. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  19. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1984-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  20. The relationships between high latitude convection reversals and the energetic particle morphology observed by the Atmosphere Explorer

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Winningham, J. D.; Hanson, W. B.; Burch, J. L.

    1980-01-01

    Simultaneous measurements of the auroral zone particle precipitation and the ion convection velocity by Atmosphere Explorer show a consistent difference between the location of the poleward boundary of the auroral particle precipitation and the ion convection reversal. The difference of about 1.5 degrees of invariant latitude is such that some part of the antisunward convection lies wholly within the auroral particle precipitation region. The nature of the convection reversals within the precipitation region suggests that in this region the convection electric field is generated on closed field lines that connect in the magnetosphere to the low latitude boundary layer.

  1. A Comparison of Inductive Sensors in the Characterization of Partial Discharges and Electrical Noise Using the Chromatic Technique

    PubMed Central

    Ardila-Rey, Jorge Alfredo; Montaña, Johny; Schurch, Roger; Covolan Ulson, José Alfredo; Bani, Nurul Aini

    2018-01-01

    Partial discharges (PDs) are one of the most important classes of ageing processes that occur within electrical insulation. PD detection is a standardized technique to qualify the state of the insulation in electric assets such as machines and power cables. Generally, the classical phase-resolved partial discharge (PRPD) patterns are used to perform the identification of the type of PD source when they are related to a specific degradation process and when the electrical noise level is low compared to the magnitudes of the PD signals. However, in practical applications such as measurements carried out in the field or in industrial environments, several PD sources and large noise signals are usually present simultaneously. In this study, three different inductive sensors have been used to evaluate and compare their performance in the detection and separation of multiple PD sources by applying the chromatic technique to each of the measured signals. PMID:29596337

  2. Analysis of Dynamic Avalanche Phenomenon in SOI Lateral High-speed Diode during Reverse Recovery and Development of a Novel Device Structure for Suppressing Dynamic Avalanche

    NASA Astrophysics Data System (ADS)

    Tokura, Norihito; Yamamoto, Takao; Kato, Hisato; Nakagawa, Akio

    We have studied the dynamic avalanche phenomenon in an SOI lateral diode during reverse recovery by using a mixed-mode device simulation. In the study, it has been found that local impact ionization occurs near an anode-side field oxide edge, where a high-density hole current flows and a high electric field appears simultaneously. We propose that a p-type anode extension region (AER) along a trench side wall effectively sweeps out stored carriers beneath an anode p-diffusion layer during reverse recovery, resulting in reduction of the electric field and remarkable suppression of the dynamic avalanche. The AER reduces the total recovery charge and does not cause any increase in the total stored charge under a forward bias operation. This effect is verified experimentally by the fabricated device with AER. Thus, the developed SOI lateral diode is promising as a high-speed and highly rugged free-wheeling diode, which can be integrated into next-generation SOI microinverters.

  3. Feasibility study on measurement of magnetocardiography (MCG) using fluxgate magnetometer

    NASA Astrophysics Data System (ADS)

    Sengottuvel, S.; Sharma, Akash; Biswal, Deepak; Khan, Pathan Fayaz; Swain, Pragyna Parimita; Patel, Rajesh; Gireesan, K.

    2018-04-01

    This paper reports the feasibility of measuring weak magnetic fields generated by the electrical activity of the heart using a portable tri-axial fluxgate magnetometer inside a magnetically shielded room. Measurement of Magnetocardiogram (MCG) signals could be successfully demonstrated from a healthy subject using a novel set-up involving a reference fluxgate sensor which simultaneously measures the magnetic fields associated with the ECG waveform measured on the same subject. The timing information provided by R wave peaks of ECG recorded by the reference sensor is utilized to generate trigger locked average of the sensor output of the measurement fluxgate, and extract MCG signals in all the three orthogonal directions (X, Y and Z) on the anterior thorax. It is expected that such portable room temperature measurements using fluxgate sensor could assist in validating the direction of the equivalent current dipole associated with the electrical activity of the human heart. This is somewhat difficult in conventional MCG measurements using SQUID sensors, which usually furnish only the z component of the magnetic field and its spatial derivatives.

  4. Data-fusion receiver

    DOEpatents

    Gabelmann, Jeffrey M.; Kattner, J. Stephen; Houston, Robert A.

    2006-12-19

    This invention is an ultra-low frequency electromagnetic telemetry receiver which fuses multiple input receive sources to synthesize a decodable message packet from a noise corrupted telemetry message string. Each block of telemetry data to be sent to the surface receiver from a borehole tool is digitally encoded into a data packet prior to transmission. The data packet is modulated onto the ULF EM carrier wave and transmitted from the borehole to the surface and then are simultaneously detected by multiple receive sensors disbursed within the rig environment. The receive sensors include, but are not limited to, electric field and magnetic field sensors. The spacing of the surface receive elements is such that noise generators are unequally coupled to each receive element due to proximity and/or noise generator type (i.e. electric or magnetic field generators). The receiver utilizes a suite of decision metrics to reconstruct the original, non noise-corrupted data packet from the observation matrix via the estimation of individual data frames. The receiver will continue this estimation process until: 1) the message validates, or 2) a preset "confidence threshold" is reached whereby frames within the observation matrix are no longer "trusted".

  5. Small-scale plasma irregularities in the nightside Venus ionosphere

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Curtis, S. A.; Brace, L. H.

    1991-12-01

    The individual volt-ampere curves from the Pioneer Venus Orbiter electron temperature probe showed evidence for small-scale density irregularities, or short-period plasma waves, in regions of the nightside ionosphere where the Orbiter electric field detector observed waves in its 100-Hz channel. A survey of the nightside volt-ampere curves has revealed several hundred examples of such irregularities. The I-V structures correspond to plasma density structure with spatial scale sizes in the range of about 100-2000 m, or alternatively they could be viewed as waves having frequencies extending toward 100 Hz. They are often seen as isolated events, with spatial extent along the orbit frequently less than 80 km. The density irregularities or waves occur in or near prominent gradients in the ambient plasma concentrations both at low altitudes where molecular ions are dominant and at higher altitudes in regions of reduced plasma density where O(+) is the major ion. Electric field 100-Hz bursts occur simultaneously, with the majority of the structured I-V curves providing demonstrative evidence that at least some of the E field signals are produced within the ionosphere.

  6. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic

    NASA Astrophysics Data System (ADS)

    Mundy, Julia A.; Brooks, Charles M.; Holtz, Megan E.; Moyer, Jarrett A.; Das, Hena; Rébola, Alejandro F.; Heron, John T.; Clarkson, James D.; Disseler, Steven M.; Liu, Zhiqi; Farhan, Alan; Held, Rainer; Hovden, Robert; Padgett, Elliot; Mao, Qingyun; Paik, Hanjong; Misra, Rajiv; Kourkoutis, Lena F.; Arenholz, Elke; Scholl, Andreas; Borchers, Julie A.; Ratcliff, William D.; Ramesh, Ramamoorthy; Fennie, Craig J.; Schiffer, Peter; Muller, David A.; Schlom, Darrell G.

    2016-09-01

    Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.

  7. Generation of VLF saucer emissions observed by the Viking satellite

    NASA Astrophysics Data System (ADS)

    Lonnqvist, H.; Andre, M.; Matson, L.; Bahnsen, A.; Blomberg, L. G.; Erlandson, R. E.

    1993-08-01

    Simultaneous observations by the Viking satellite of electric and magnetic fields as well as charged particles have been used to investigate V-shaped wave phenomena. The intensity of these VLF and ELF emissions is V-shaped when shown in a frequency versus time plot. Simultaneous observations of V-shaped so-called VLF saucer emissions, particles and field-aligned currents strongly suggest, for the first time, that upgoing electrons with energies less than a few hundred electron volts can generate these waves. Broadband waves observed inside the saucer generation region, from frequencies much less than the ion cyclotron frequency up to the plasma frequency, may also be generated by these electrons. Viking observations of VLF saucers at altitudes between 4000 km and 13,500 km show that these emissions occur at higher altitudes than discussed in previous reports. The generation regions seem to be more extended at these higher altitudes than what has been reported at lower altitudes by other observers.

  8. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOEpatents

    Hobson, D.O.; Alexeff, I.; Sikka, V.K.

    1987-08-10

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.

  9. Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals

    DOEpatents

    Hobson, David O.; Alexeff, Igor; Sikka, Vinod K.

    1988-01-01

    Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.

  10. Free electron laser

    DOEpatents

    Villa, Francesco

    1990-01-01

    A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

  11. Particle Dynamics at and near the Electron and Ion Diffusion Regions as a Function of Guide Field

    NASA Astrophysics Data System (ADS)

    Giles, Barbara; Burch, James; Phan, Tai; Webster, James; Avanov, Levon; Torbert, Roy; Chen, Li-Jen; Chandler, Michael; Dorelli, John; Ergun, Robert; Fuselier, Stephen; Gershman, Daniel; Lavraud, Benoit; Moore, Thomas; Paterson, William; Pollock, Craig; Russell, Christopher; Saito, Yoshifumi; Strangeway, Robert; Wang, Shan

    2017-04-01

    At the dayside magnetopause, magnetic reconnection often occurs in thin sheets of plasma carrying electrical currents and rotating magnetic fields. Charged particles interact strongly with the magnetic field and simultaneously their motions modify the fields. Researchers are able to simulate the macroscopic interactions between the two plasma domains on both sides of the magnetopause and, for precise results, include individual particle motions to better describe the microscopic scales. Here, observed ion and electron distributions are compared for asymmetric reconnection events with weak-, moderate-, and strong-guide fields. Several of the structures noted have been demonstrated in simulations and others have not been predicted or explained to date. We report on these observations and their persistence. In particular, we highlight counterstreaming low-energy ion distributions that are seen to persist regardless of increasing guide-field. Distributions of this type were first published by Burch and Phan [GRL, 2016] for an 8 Dec 2015 event and by Wang et al. [GRL, 2016] for a 16 Oct 2015 event. Wang et al. showed the distributions were produced by the reflection of magnetosheath ions by the normal electric field at the magnetopause. This report presents further results on the relationship between the counterstreaming ions with electron distributions, which show the ions traversing the magnetosheath, X-line, and in one case the electron stagnation point. We suggest the counterstreaming ions become the source of D-shaped distributions at points where the field line opening is indicated by the electron distributions. In addition, we suggest they become the source of ion crescent distributions that result from acceleration of ions by the reconnection electric field. Burch, J. L., and T. D. Phan (2016), Magnetic reconnection at the dayside magnetopause: Advances with MMS, Geophys. Res. Lett., 43, 8327-8338, doi:10.1002/2016GL069787. Wang, S., et al. (2016), Two-scale ion meandering caused by the polarization electric field during asymmetric reconnection, Geophys. Res. Lett., 43, 7831-7839, doi:10.1002/2016GL069842.

  12. Incident light adjustable solar cell by periodic nanolens architecture

    PubMed Central

    Yun, Ju-Hyung; Lee, Eunsongyi; Park, Hyeong-Ho; Kim, Dong-Wook; Anderson, Wayne A.; Kim, Joondong; Litchinitser, Natalia M.; Zeng, Jinwei; Yi, Junsin; Kumar, M. Melvin David; Sun, Jingbo

    2014-01-01

    Could nanostructures act as lenses to focus incident light for efficient utilization of photovoltaics? Is it possible, in order to avoid serious recombination loss, to realize periodic nanostructures in solar cells without direct etching in a light absorbing semiconductor? Here we propose and demonstrate a promising architecture to shape nanolenses on a planar semiconductor. Optically transparent and electrically conductive nanolenses simultaneously provide the optical benefit of modulating the incident light and the electrical advantage of supporting carrier transportation. A transparent indium-tin-oxide (ITO) nanolens was designed to focus the incident light-spectrum in focal lengths overlapping to a strong electric field region for high carrier collection efficiency. The ITO nanolens effectively broadens near-zero reflection and provides high tolerance to the incident light angles. We present a record high light-conversion efficiency of 16.0% for a periodic nanostructured Si solar cell. PMID:25371099

  13. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation.

    PubMed

    Xin, Zhaowei; Wei, Dong; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2018-02-19

    Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.

  14. Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure.

    PubMed

    Wu, Hong-Wei; Chen, Hua-Jun; Xu, Hua-Feng; Fan, Ren-Hao; Li, Yang

    2018-06-11

    We demonstrate that directional electromagnetic scattering can be realized in an artificial Mie resonant structure that supports electric and magnetic dipole modes simultaneously. The directivity of the far-field radiation pattern can be switched by changing wavelength of the incident light as well as tailoring the geometric parameters of the structure. In addition, we further design a quasiperiodic spoof Mie resonant structure by alternately inserting two materials into the slits. The results show that multi-band directional light scattering is realized by exciting multiple electric and magnetic dipole modes with different frequencies in the quasiperiodic structure. The presented design concept is suitable for microwave to terahertz region and can be applied to various advanced optical devices, such as antenna, metamaterial and metasurface.

  15. Source analysis of MEG activities during sleep (abstract)

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Iramina, K.

    1991-04-01

    The present study focuses on magnetic fields of the brain activities during sleep, in particular on K-complexes, vertex waves, and sleep spindles in human subjects. We analyzed these waveforms based on both topographic EEG (electroencephalographic) maps and magnetic fields measurements, called MEGs (magnetoencephalograms). The components of magnetic fields perpendicular to the surface of the head were measured using a dc SQUID magnetometer with a second derivative gradiometer. In our computer simulation, the head is assumed to be a homogeneous spherical volume conductor, with electric sources of brain activity modeled as current dipoles. Comparison of computer simulations with the measured data, particularly the MEG, suggests that the source of K-complexes can be modeled by two current dipoles. A source for the vertex wave is modeled by a single current dipole which orients along the body axis out of the head. By again measuring the simultaneous MEG and EEG signals, it is possible to uniquely determine the orientation of this dipole, particularly when it is tilted slightly off-axis. In sleep stage 2, fast waves of magnetic fields consistently appeared, but EEG spindles appeared intermittently. The results suggest that there exist sources which are undetectable by electrical measurement but are detectable by magnetic-field measurement. Such source can be described by a pair of opposing dipoles of which directions are oppositely oriented.

  16. Effects of Solar Wind Conditions on the Plasma Wake Within a Polar Crater: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.

    2011-01-01

    As the solar wind sweeps horizontally past a shadowed lunar crater it simultaneously diffuses toward the surface through an ambipolar process, forming a plasma wake (e.g., Figure 1). Importantly, the resulting electric field structure diverts solar wind protons toward the cold crater floor where they may represent a source of surficial hydrogen. We present a handful of two-dimensional kinetic simulations exploring the range of wake structures and surface particle fluxes possible under various background plasma conditions.

  17. Superconducting multi-cell trapped mode deflecting cavity

    DOEpatents

    Lunin, Andrei; Khabiboulline, Timergali; Gonin, Ivan; Yakovlev, Vyacheslav; Zholents, Alexander

    2017-10-10

    A method and system for beam deflection. The method and system for beam deflection comprises a compact superconducting RF cavity further comprising a waveguide comprising an open ended resonator volume configured to operate as a trapped dipole mode; a plurality of cells configured to provide a high operating gradient; at least two pairs of protrusions configured for lowering surface electric and magnetic fields; and a main power coupler positioned to optimize necessary coupling for an operating mode and damping lower dipole modes simultaneously.

  18. MRI-based, wireless determination of the transfer function of a linear implant: Introduction of the transfer matrix.

    PubMed

    Tokaya, Janot P; Raaijmakers, Alexander J E; Luijten, Peter R; van den Berg, Cornelis A T

    2018-04-24

    We introduce the transfer matrix (TM) that makes MR-based wireless determination of transfer functions (TFs) possible. TFs are implant specific measures for RF-safety assessment of linear implants. The TF relates an incident tangential electric field on an implant to a scattered electric field at its tip that generally governs local heating. The TM extends this concept and relates an incident tangential electric field to a current distribution in the implant therewith characterizing the RF response along the entire implant. The TM is exploited to measure TFs with MRI without hardware alterations. A model of rightward and leftward propagating attenuated waves undergoing multiple reflections is used to derive an analytical expression for the TM. This allows parameterization of the TM of generic implants, e.g., (partially) insulated single wires, in a homogeneous medium in a few unknowns that simultaneously describe the TF. These unknowns can be determined with MRI making it possible to measure the TM and, therefore, also the TF. The TM is able to predict an induced current due to an incident electric field and can be accurately parameterized with a limited number of unknowns. Using this description the TF is determined accurately (with a Pearson correlation coefficient R ≥ 0.9 between measurements and simulations) from MRI acquisitions. The TM enables measuring of TFs with MRI of the tested generic implant models. The MR-based method does not need hardware alterations and is wireless hence making TF determination in more realistic scenarios conceivable. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  19. Electrodynamics of the stratosphere using 5000 m3 superpressure balloons

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H.

    Recently the U. S. National Science Foundation and NASA have begun support of a long duration balloon-borne experiment to study electrical properties of the upper atmosphere. This research project titled EMA (Electrodynamics of the Middle Atmopshere) involves the design of a microprocessor controlled payload and the launch of up to eight small superpressure balloons during 1982 through early 1984. The primary payload instrument will measure the vector electric field from DC to 10 kHz and the payloads will include instruments to measure local ionization, electrical conductivity, magnetic field, pressure and temperature fluctuations and to record optical lightning. Measurement of these parameters in the stratosphere from a few balloons simultaneously for periods extending over a few solar rotations will enable us to study (1) electrical coupling between the atmosphere and magnetosphere, (2) global current systems, (3) global response to solar flares and magnetospheric storms and many other outstanding problems. In order to obtain long duration flights, it is necessary to fly in the southern hemisphere where the balloons are expected to circle the globe dozens of times in their lifetimes. Thus the balloons will be out of direct communication with any one ground station most of the time so the telemetry will be relayed via satellite. This severely limits the data rates resulting in the need for on-board data processing. This is accomplished through the use of dual microcomputers for data analysis and for telemetry formatting. This talk will concentrate on a description of our payload design as driven by the scientific requirements. Examples of the types of electric field signatures we expect to be able to distinguish will also be presented.

  20. Hypothesis on the Origin of Chaotic Pulse Train in Dart Leader

    NASA Astrophysics Data System (ADS)

    Pu, Y.; Qie, X.; Sun, Z.; Jiang, R.; Liu, M.; Zhang, H.

    2017-12-01

    The origin of chaotic pulse train (CPT) during the dart leader propagation remains debatable. Based on previous observations, the `chaotic' dart leader is featured by chaotic electric fields, large charge transfer and high energetic radiation. In some cases, the cause of CPT was attributed to the concurrent branches or upward connecting leader. In this presentation, after carefully examining the simultaneous optical, electrical and VHF location data of triggered lightning in SHATLE and some results in other literature, we found the close relationship between the upper luminous leader segment and CPT. It is hypothesized that the CPT originates from the luminous corona zone around the upper leader channel beyond the leader tip. The fast, sufficient supply of negative charge from the cloud can result in a net negative charge layer around the ionized channel surface. Then new diffuse discharge can make a corona zone outside the channel and radiates in a chaotic way. The cloud charge reservoir and the speed of charge transfer, which can be indicated by the speed of the leader, are determinative to the generation of CPT. Using VHF location technique, we also estimated the speed evolution of the leader and link it with electric field change.

  1. Brain plasticity and functionality explored by nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Sacconi, L.; Allegra, L.; Buffelli, M.; Cesare, P.; D'Angelo, E.; Gandolfi, D.; Grasselli, G.; Lotti, J.; Mapelli, J.; Strata, P.; Pavone, F. S.

    2010-02-01

    In combination with fluorescent protein (XFP) expression techniques, two-photon microscopy has become an indispensable tool to image cortical plasticity in living mice. In parallel to its application in imaging, multi-photon absorption has also been used as a tool for the dissection of single neurites with submicrometric precision without causing any visible collateral damage to the surrounding neuronal structures. In this work, multi-photon nanosurgery is applied to dissect single climbing fibers expressing GFP in the cerebellar cortex. The morphological consequences are then characterized with time lapse 3-dimensional two-photon imaging over a period of minutes to days after the procedure. Preliminary investigations show that the laser induced fiber dissection recalls a regenerative process in the fiber itself over a period of days. These results show the possibility of this innovative technique to investigate regenerative processes in adult brain. In parallel with imaging and manipulation technique, non-linear microscopy offers the opportunity to optically record electrical activity in intact neuronal networks. In this work, we combined the advantages of second-harmonic generation (SHG) with a random access (RA) excitation scheme to realize a new microscope (RASH) capable of optically recording fast membrane potential events occurring in a wide-field of view. The RASH microscope, in combination with bulk loading of tissue with FM4-64 dye, was used to simultaneously record electrical activity from clusters of Purkinje cells in acute cerebellar slices. Complex spikes, both synchronous and asynchronous, were optically recorded simultaneously across a given population of neurons. Spontaneous electrical activity was also monitored simultaneously in pairs of neurons, where action potentials were recorded without averaging across trials. These results show the strength of this technique in describing the temporal dynamics of neuronal assemblies, opening promising perspectives in understanding the computations of neuronal networks.

  2. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    NASA Technical Reports Server (NTRS)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  3. Ultrafast electrokinetics.

    PubMed

    Rouhi Youssefi, Mehrnaz; Diez, Francisco Javier

    2016-03-01

    The influence of a high electric field applied on both fluid flow and particle velocities is quantified at large Peclet numbers. The experiments involved simultaneous particle image velocimetry and flow rate measurements. These are conducted in polydimethylsiloxane channels with spherical nonconducting polystyrene particles and DI water as the background flow. The high electric field tests produced up to three orders of magnitude higher electrokinetic velocities than any previous reports. The maximum electroosmotic velocity and electrophoretic velocity measured were 3.55 and 2.3 m/s. Electrophoretic velocities are measured over the range of 100 V/cm < E < 250 000 V/cm. The results are separated according to the different nonlinear theoretical models, including low and high Peclet numbers, and weak and strong concentration polarization. They show good agreement with the models. Such fast velocities could be used for flow separation, mixing, transport, control, and manipulation of suspended particles as well as microthrust generation among other applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Earth Orbit Raise Design for the Artemis Mission

    NASA Technical Reports Server (NTRS)

    Wiffen, Gregory J.; Sweetser, Theodore H.

    2011-01-01

    The Artemis mission is an extension of the Themis mission. The Themis mission1 consisted of five identical spacecraft in varying sized Earth orbits designed to make simultaneous measurements of the Earth's electric and magnetic environment. Themis was designed to observe geomagnetic storms resulting from solar wind's interaction with the Earth's magnetosphere. Themis was meant to answer the age old question of why the Earth's aurora can change rapidly on a global scale. The Themis spacecraft are spin stabilized with 20 meter long electric field booms as well as several shorter magnetometer booms. The goal of the Artemis2 mission extension is to deliver the field and particle measuring capabilities of two of the Themis spacecraft to the vicinity of the Moon. The Artemis mission required transferring two Earth orbiting Themis spacecraft on to two different low energy trans-lunar trajectories ultimately ending in lunar orbit. This paper describes the processes that resulted in successful orbit raise designs for both spacecraft.

  5. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT

    PubMed Central

    Evans, D.M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Arredondo, M.; Katiyar, R.S.; Gregg, J.M.; Scott, J.F.

    2013-01-01

    Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10−7 sm−1. PMID:23443562

  6. Comparative study on luminescence extraction strategies of LED by large-scale fabrication of nanopillar and nanohole structures

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Junmei; Sheikhi, Moheb; Jiang, Jie’an; Yang, Zhenhai; Li, Hongwei; Guo, Shiping; Sheng, Jiang; Sun, Jie; Bo, Baoxue; Ye, Jichun

    2018-06-01

    Light extraction and current injection are two important considerations in the development of high efficiency light-emitting-diodes (LEDs), but usually cannot be satisfied simultaneously in nanostructure patterned devices. In this work, we investigated near-UV LEDs with nanopillar and nanohole patterns to improve light extraction efficiency. Photoluminescence (PL) intensities were enhanced by 8.0 and 4.1 times for nanopillar and nanohole LEDs compared to that of planar LED. Nanopillar LED exhibits higher PL emission than that of the nanohole LED, attributing to a convex shape sidewall for more effective outward light scattering, and reduction of quantum-confined-stark-effect owing to strain relaxation. However, nanopillar LED exhibits lower electroluminescence intensity than the nanohole sample, which calls for further optimization in carrier distributions. Experimental results were further supported by near-field electric field simulations. This work demonstrates the difference in optical and electrical behaviors between the nanopillar and nanohole LEDs, paving the way for detailed understanding on luminescence extraction mechanisms of nanostructure patterned UV emitters.

  7. Coaxial metal-silicide Ni2Si/C54-TiSi2 nanowires.

    PubMed

    Chen, Chih-Yen; Lin, Yu-Kai; Hsu, Chia-Wei; Wang, Chiu-Yen; Chueh, Yu-Lun; Chen, Lih-Juann; Lo, Shen-Chuan; Chou, Li-Jen

    2012-05-09

    One-dimensional metal silicide nanowires are excellent candidates for interconnect and contact materials in future integrated circuits devices. Novel core-shell Ni(2)Si/C54-TiSi(2) nanowires, 2 μm in length, were grown controllably via a solid-liquid-solid growth mechanism. Their interesting ferromagnetic behaviors and excellent electrical properties have been studied in detail. The coercivities (Hcs) of the core-shell Ni(2)Si/C54-TiSi(2) nanowires was determined to be 200 and 50 Oe at 4 and 300 K, respectively, and the resistivity was measured to be as low as 31 μΩ-cm. The shift of the hysteresis loop with the temperature in zero field cooled (ZFC) and field cooled (FC) studies was found. ZFC and FC curves converge near room temperature at 314 K. The favorable ferromagnetic and electrical properties indicate that the unique core-shell nanowires can be used in penetrative ferromagnetic devices at room temperature simultaneously as a future interconnection in integrated circuits.

  8. Simultaneous Effect of Mechanical Tension on Electrical Lifetime of Some Inorganic Composites

    NASA Astrophysics Data System (ADS)

    Özcanli, Y. Lenger; BoydaǦ, F. Ş.; Alekberov, V. A.; Hikmet, I.; Cantürk, M.

    In this work, the simultaneous effect of mechanical tension (σ) and electrical strength (E) on electrical lifetime (τE) for pure low density polyethylene (LDPE)/polypropylene (PP) and composites with different commercial diamond-additive/glass fiber additive percentages is experimentally studied. The role of this effect on degradation mechanisms is investigated. logτE,σ-f(E) and Eσ-f(σ) graphs are drawn, new equations are proposed and determined parameters at constant temperature for pure LDPE and PP, and for optimum composites (LDPE/0.5% diamond, PP/0.5% glass fiber) are listed. The results indicate that the degradation speed decreases more for composites than for pure LDPE and PP. The electrical durability for composites after the simultaneous effect of σ decreases 18-20%, while for pure LDPE and PP, it decreases 50-55%.

  9. Abnormal behavior with hump characteristics in current stressed a-InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Sic; Cho, Yong-Jung; Lee, Yeol-Hyeong; Park, JeongKi; Kim, GeonTae; Kim, Ohyun

    2017-11-01

    We investigated the degradation mechanism of a-InGaZnO TFTs under simultaneous gate and drain bias stress. Gate and drain bias of 20 V were applied simultaneously to induce current stress, and abnormal turn-around behavior in transfer characteristics with a hump phenomenon were identified. Hump characteristics were interpreted in terms of parasitic current path, and the degradation itself was found to be caused dominantly by the electrical field and to be accelerated with current by Joule heating. The mechanism of asymmetrical degradation after current stress was also investigated. By decomposing the curves into two curves and measuring the relaxation behavior of the stressed TFTs, we also found that abnormal turn-around behavior in the transfer characteristics was related to acceptor-like states.

  10. An ECT/ERT dual-modality sensor for oil-water two-phase flow measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pitao; Wang, Huaxiang; Sun, Benyuan

    2014-04-11

    This paper presents a new sensor for ECT/ERT dual-modality system which can simultaneously obtain the permittivity and conductivity of the materials in the pipeline. Quasi-static electromagnetic fields are produced by the inner electrodes array sensor of electrical capacitance tomography (ECT) system. The results of simulation show that the data of permittivity and conductivity can be simultaneously obtained from the same measurement electrode and the fusion of two kinds of data may improve the quality of the reconstructed images. For uniform oil-water mixtures, the performance of designed dual-modality sensor for measuring the various oil fractions has been tested on representative datamore » and the results of experiments show that the designed sensor broadens the measurement range compared to single modality.« less

  11. Separation of charge-regulated polyelectrolytes by pH-assisted diffusiophoresis.

    PubMed

    Hsu, Jyh-Ping; Hsu, Yen-Rei; Shang-Hung, Hsieh; Tseng, Shiojenn

    2017-03-29

    The potential of separating colloidal particles through simultaneous application of a salt gradient and a pH gradient, or pH-assisted diffusiophoresis, is evaluated by considering the case of spherical polyelectrolytes (PEs) having different equilibrium dissociation constants in an aqueous solution with KCl as the background salt. The simulation results gathered reveal that the dependence of the particle velocity on pH is more sensitive than that in pH-assisted electrophoresis, where an electric field and a pH gradient are applied simultaneously. This implies that the separation efficiency of pH-assisted diffusiophoresis can be better than that of pH-assisted electrophoresis. In particular, two types of PE having different equilibrium dissociation constants can be separated effectively by applying the former by enhancing/reducing their diffusiophoretic velocities.

  12. Surface plasmon-enhanced fluorescence on Au nanohole array for prostate-specific antigen detection

    PubMed Central

    Zhang, Qingwen; Wu, Lin; Wong, Ten It; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Liedberg, Bo; Wang, Yi

    2017-01-01

    Localized surface plasmon (LSP) has been widely applied for the enhancement of fluorescence emission for biosensing owing to its potential for strong field enhancement. However, due to its small penetration depth, LSP offers limited fluorescence enhancement over a whole sensor chip and, therefore, insufficient sensitivity for the detection of biomolecules, especially large molecules. We demonstrate the simultaneous excitation of LSP and propagating surface plasmon (PSP) on an Au nanohole array under Kretschmann configuration for the detection of prostate-specific antigen with a sandwich immunoassay. The proposed method combines the advantages of high field enhancement by LSP and large surface area probed by PSP field. The simulated results indicated that a maximum enhancement of electric field intensity up to 1,600 times can be achieved under the simultaneous excitation of LSP and PSP modes. The sandwich assay of PSA carried out on gold nanohole array substrate showed a limit of detection of 140 fM supporting coexcitation of LSP and PSP modes. The limit of detection was approximately sevenfold lower than that when only LSP was resonantly excited on the same substrate. The results of this study demonstrate high fluorescence enhancement through the coexcitation of LSP and PSP modes and pave a way for its implementation as a highly sensitive bioassay. PMID:28392689

  13. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application

    NASA Astrophysics Data System (ADS)

    Kim, Hoejin; Torres, Fernando; Wu, Yanyu; Villagran, Dino; Lin, Yirong; Tseng, Tzu-Liang(Bill

    2017-08-01

    This paper presents a novel process to fabricate piezoelectric films from polyvinylidene fluoride (PVDF) polymer using integrated fused deposition modeling (FDM) 3D printing and corona poling technique. Corona poling is one of many effective poling processes that has received attention to activate PVDF as a piezoelectric responsive material. The corona poling process occurs when a PVDF polymer is exposed to a high electric field created and controlled through an electrically charged needle and a grid electrode under heating environment. FDM 3D printing has seen extensive progress in fabricating thermoplastic materials and structures, including PVDF. However, post processing techniques such as poling is needed to align the dipoles in order to gain piezoelectric properties. To further simplify the piezoelectric sensors and structures fabrication process, this paper proposes an integrated 3D printing process with corona poling to fabricate piezoelectric PVDF sensors without post poling process. This proposed process, named ‘Integrated 3D Printing and Corona poling process’ (IPC), uses the 3D printer’s nozzle and heating bed as anode and cathode, respectively, to create poling electric fields in a controlled heating environment. The nozzle travels along the programmed path with fixed distance between nozzle tip and sample’s top surface. Simultaneously, the electric field between the nozzle and bottom heating pad promotes the alignment of dipole moment of PVDF molecular chains. The crystalline phase transformation and output current generated by printed samples under different electric fields in this process were characterized by a Fourier transform infrared spectroscopy and through fatigue load frame. It is demonstrated that piezoelectric PVDF films with enhanced β-phase percentage can be fabricated using the IPC process. In addition, mechanical properties of printed PVDF was investigated by tensile testing. It is expected to expand the use of additive manufacturing to fabricate piezoelectric PVDF-based devices for applications such as sensing and energy harvesting.

  14. Systems of mechanized and reactive droplets powered by multi-responsive surfactants

    NASA Astrophysics Data System (ADS)

    Yang, Zhijie; Wei, Jingjing; Sobolev, Yaroslav I.; Grzybowski, Bartosz A.

    2018-01-01

    Although ‘active’ surfactants, which are responsive to individual external stimuli such as temperature, electric or magnetic fields, light, redox processes or chemical agents, are well known, it would be interesting to combine several of these properties within one surfactant species. Such multi-responsive surfactants could provide ways of manipulating individual droplets and possibly assembling them into larger systems of dynamic reactors. Here we describe surfactants based on functionalized nanoparticle dimers that combine all of these and several other characteristics. These surfactants and therefore the droplets that they cover are simultaneously addressable by magnetic, optical and electric fields. As a result, the surfactant-covered droplets can be assembled into various hierarchical structures, including dynamic ones, in which light powers the rapid rotation of the droplets. Such rotating droplets can transfer mechanical torques to their non-nearest neighbours, thus acting like systems of mechanical gears. Furthermore, droplets of different types can be merged by applying electric fields and, owing to interfacial jamming, can form complex, non-spherical, ‘patchy’ structures with different surface regions covered with different surfactants. In systems of droplets that carry different chemicals, combinations of multiple stimuli can be used to control the orientations of the droplets, inter-droplet transport, mixing of contents and, ultimately, sequences of chemical reactions. Overall, the multi-responsive active surfactants that we describe provide an unprecedented level of flexibility with which liquid droplets can be manipulated, assembled and reacted.

  15. Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface.

    PubMed

    Hu, Jie; Lang, Tingting; Shi, Guo-Hua

    2017-06-26

    In this paper, a novel kind of sensors for simultaneous measurement of refractive index and temperature based on all-dielectric metasurfaces is proposed. The metasurfaces are constructed by an array of silicon nanoblocks on top of the bulk fused silica substrate. We used three-dimensional full wave electromagnetic field simulation by finite integral method to accurately calculate the transmission spectrum of the metasurfaces. Two transmission dips corresponding to the electric and magnetic resonances are observed. Both dips shift as the ambient refractive index or the temperature changes. Simulation results show that the sensing sensitivities of two dips to the refractive index are 243.44 nm/RIU and 159.43 nm/RIU, respectively, while the sensitivities to the temperature are 50.47 pm/°C and 75.20 pm/°C, respectively. After introducing four holes into each silicon nanoblock, the electromagnetic field overlap in the surrounding medium can be further promoted, and the sensitivities to the refractive index increase to 306.71 nm/RIU and 204.27 nm/RIU, respectively. Our proposed sensors have advantages of polarization insensitive, small size, and low loss, which offer them high potential applications in physical, biological and chemical sensing fields.

  16. Modeling ionospheric pre-reversal enhancement and plasma bubble growth rate using data assimilation

    NASA Astrophysics Data System (ADS)

    Rajesh, P. K.; Lin, C. C. H.; Chen, C. H.; Matsuo, T.

    2017-12-01

    We report that assimilating total electron content (TEC) into a coupled thermosphere-ionosphere model by using the ensemble Kalman filter results in improved specification and forecast of eastward pre-reversal enhancement (PRE) electric field (E-field). Through data assimilation, the ionospheric plasma density, thermospheric winds, temperature and compositions are adjusted simultaneously. The improvement of dusk-side PRE E-field over the prior state is achieved primarily by intensification of eastward neutral wind. The improved E-field promotes a stronger plasma fountain and deepens the equatorial trough. As a result, the horizontal gradients of Pedersen conductivity and eastward wind are increased due to greater zonal electron density gradient and smaller ion drag at dusk, respectively. Such modifications provide preferable conditions and obtain a strengthened PRE magnitude closer to the observation. The adjustment of PRE E-field is enabled through self-consistent thermosphere and ionosphere coupling processes captured in the model. The assimilative outputs are further utilized to calculate the flux tube integrated Rayleigh-Taylor instability growth rate during March 2015 for investigation of global plasma bubble occurrence. Significant improvements in the calculated growth rates could be achieved because of the improved update of zonal electric field in the data assimilation forecast. The results suggest that realistic estimate or prediction of plasma bubble occurrence could be feasible by taking advantage of the data assimilation approach adopted in this work.

  17. Learning the Cardiac Cycle: Simultaneous Observations of Electrical and Mechanical Events.

    ERIC Educational Resources Information Center

    Kenney, Richard Alec; Frey, Mary Anne Bassett

    1980-01-01

    Described is a method for integrating electrical and mechanical events of the cardiac cycle by measuring systolic time intervals, which involves simultaneous recording of the ECG, a phonocardiogram, and the contour of the carotid pulse. Both resting and stress change data are provided as bases for class discussion. (CS)

  18. Multifunctional, three-dimensional tomography for analysis of eletrectrohydrodynamic jetting

    NASA Astrophysics Data System (ADS)

    Nguyen, Xuan Hung; Gim, Yeonghyeon; Ko, Han Seo

    2015-05-01

    A three-dimensional optical tomography technique was developed to reconstruct three-dimensional objects using a set of two-dimensional shadowgraphic images and normal gray images. From three high-speed cameras, which were positioned at an offset angle of 45° between each other, number, size, and location of electrohydrodynamic jets with respect to the nozzle position were analyzed using shadowgraphic tomography employing multiplicative algebraic reconstruction technique (MART). Additionally, a flow field inside a cone-shaped liquid (Taylor cone) induced under an electric field was observed using a simultaneous multiplicative algebraic reconstruction technique (SMART), a tomographic method for reconstructing light intensities of particles, combined with three-dimensional cross-correlation. Various velocity fields of circulating flows inside the cone-shaped liquid caused by various physico-chemical properties of liquid were also investigated.

  19. Enhanced beam coupling modulation using the polarization properties of photorefractive GaAs

    NASA Technical Reports Server (NTRS)

    Partovi, Afshin; Garmire, Elsa M.; Cheng, Li-Jen

    1987-01-01

    Observation is reported of a rotation in the polarization of the two photorefractive recording beams in GaAs for a configuration with the internally generated space-charge field along the line 110 crystallographic orientation. This rotation is a result of simultaneous constructive and destructive beam coupling in each beam for the optical electric field components along the two electrooptically induced principal dielectric axes of the crystal. By turning one of the beams on and off, the intensity of the other beam after the crystal and a polarization analyzer can be modulated by as much as 500 percent. This result is of particular importance for optical information processing applications.

  20. Co-adaptation of Electric Organ Discharges and Chirps in South American Ghost Knifefishes (Apteronotidae)

    PubMed Central

    Petzold, Jacquelyn M.; Marsat, Gary; Smith, G. Troy

    2016-01-01

    Animal communication signals that simultaneously share the same sensory channel are likely to coevolve to maximize the transmission of each signal component. Weakly electric fish continuously produce a weakly electric field that functions in communication. Fish modulate the electric organ discharge (EOD) on short timescales to produce context-specific signals called chirps. EODs and chirps are simultaneously detected by electroreceptors and processed in the electrosensory system. We analyzed these signals, first to explore whether EOD waveform is encoded in the signal received by electroreceptors and then to examine how EODs and chirps interact to influence conspicuousness. Our findings show that gross discrimination of sinusoidal from complex EOD waveforms is feasible for all species, but fine discrimination of waveform may be possible only for species with waveforms of intermediate complexity. The degree of chirp frequency modulation and chirp relative decay strongly influenced chirp conspicuousness, but other chirp parameters were less influential. The frequency difference between the interacting EODs also strongly impacted chirp conspicuousness. Finally, we developed a method for creating hybrid chirp/EOD combinations to independently analyze the impact of chirp species, EOD species, and EOD difference frequency on chirp conspicuousness. All three components and their interactions strongly influenced chirp conspicuousness, which suggests that evolutionary changes in parameters of either chirps or EODs are likely to influence chirp detection. Examining other environmental factors such as noise created by fish movement and species-typical patterns of sociality may enrich our understanding of how interacting EODs affect the detection and discrimination of chirps across species. PMID:27989653

  1. Stimulus encoding and feature extraction by multiple sensory neurons.

    PubMed

    Krahe, Rüdiger; Kreiman, Gabriel; Gabbiani, Fabrizio; Koch, Christof; Metzner, Walter

    2002-03-15

    Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly electric fish. These cells constitute the output neurons of the first central nervous stage of electrosensory processing. Using random amplitude modulations (RAMs) of a mimic of the fish's own electric field within behaviorally relevant frequency bands, we found that pyramidal cells with overlapping receptive fields exhibit strong stimulus-induced correlations. To quantify the encoding of the RAM time course, we estimated the stimuli from simultaneously recorded spike trains and found significant improvements over single spike trains. The quality of stimulus reconstruction, however, was still inferior to the one measured for single primary sensory afferents. In an analysis of feature extraction, we found that spikes of pyramidal cell pairs coinciding within a time window of a few milliseconds performed significantly better at detecting upstrokes and downstrokes of the stimulus compared with isolated spikes and even spike bursts of single cells. Coincident spikes can thus be considered "distributed bursts." Our results suggest that stimulus encoding by primary sensory afferents is transformed into feature extraction at the next processing stage. There, stimulus-induced coincident activity can improve the extraction of behaviorally relevant features from the stimulus.

  2. Nanosecond electric pulses modulate skeletal muscle calcium dynamics and contraction

    NASA Astrophysics Data System (ADS)

    Valdez, Chris; Jirjis, Michael B.; Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.

    2017-02-01

    Irreversible electroporation therapy is utilized to remove cancerous tissues thru the delivery of rapid (250Hz) and high voltage (V) (1,500V/cm) electric pulses across microsecond durations. Clinical research demonstrated that bipolar (BP) high voltage microsecond pulses opposed to monophasic waveforms relieve muscle contraction during electroporation treatment. Our group along with others discovered that nanosecond electric pulses (nsEP) can activate second messenger cascades, induce cytoskeletal rearrangement, and depending on the nsEP duration and frequency, initiate apoptotic pathways. Of high interest across in vivo and in vitro applications, is how nsEP affects muscle physiology, and if nuances exist in comparison to longer duration electroporation applications. To this end, we exposed mature skeletal muscle cells to monopolar (MP) and BP nsEP stimulation across a wide range of electric field amplitudes (1-20 kV/cm). From live confocal microscopy, we simultaneously monitored intracellular calcium dynamics along with nsEP-induced muscle movement on a single cell level. In addition, we also evaluated membrane permeability with Yo-PRO-1 and Propidium Iodide (PI) across various nsEP parameters. The results from our findings suggest that skeletal muscle calcium dynamics, and nsEP-induced contraction exhibit exclusive responses to both MP and BP nsEP exposure. Overall the results suggest in vivo nsEP application may elicit unique physiology and field applications compared to longer pulse duration electroporation.

  3. Modeling and simulations of the double-probe electric field instrument in tenuous and cold streaming plasmas

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Cully, C. M.; Usui, H.; Nakashima, H.

    2013-12-01

    In order to increase accuracy and reliability of in-situ measurements made by scientific spacecraft, it is imperative to develop comprehensive understanding of spacecraft-plasma interactions. In space environments, not only the spacecraft charging but also surrounding plasma disturbances such as caused by the wake formation may interfere directly with in-situ measurements. The self-consistent solutions of such phenomena are necessary to assess their effects on scientific spacecraft systems. As our recent activity, we work on the modeling and simulations of Cluster double-probe instrument in tenuous and cold streaming plasmas [1]. Double-probe electric field sensors are often deployed using wire booms with radii much less than typical Debye lengths of magnetospheric plasmas (millimeters compared to tens of meters). However, in tenuous and cold streaming plasmas seen in the polar cap and lobe regions, the wire booms have a high positive potential due to photoelectron emission and can strongly scatter approaching ions. Consequently, an electrostatic wake formed behind the spacecraft is further enhanced by the presence of the wire booms. We reproduce this process for the case of the Cluster satellite by performing plasma particle-in-cell (PIC) simulations [2], which include the effects of both the spacecraft body and the wire booms in a simultaneous manner, on modern supercomputers. The simulations reveal that the effective thickness of the booms for the Cluster Electric Field and Wave (EFW) instrument is magnified from its real thickness (2.2 millimeters) to several meters, when the spacecraft potential is at 30-40 volts. Such booms enhance the wake electric field magnitude by a factor of about 2 depending on the spacecraft potential, and play a principal role in explaining the in situ Cluster EFW data showing sinusoidal spurious electric fields of about 10 mV/m amplitudes. The boom effects are quantified by comparing PIC simulations with and without wire booms. The paper also reports some recent progress of ongoing PIC simulation research that focuses on spurious electric field generation in subsonic ion flows. Our preliminary simulation results revealed that; (1) there is no apparent wake signature behind the spacecraft in such a condition, but (2) spurious electric field over 1 mV/m amplitude is observed in the direction of the flow vector. The observed field amplitude is sometimes comparable to the convection electric field (a few mV/m) associated with the flow. Our analysis also confirmed that the spurious field is caused by a weakly-asymmetric potential pattern created by the ion flow. We will present the parametric study of such spurious fields for various conditions of plasma flows. [References] [1] Miyake, Y., C. M. Cully, H. Usui, and H. Nakashima (2013), Plasma particle simulations of wake formation behind a spacecraft with thin wire booms, submitted to J. Geophys. Res. [2] Miyake, Y., and H. Usui (2009), New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions, Phys. Plasmas, 16, 062904, doi:10.1063/1.3147922.

  4. Surface evolution in bare bamboo-type metal lines under diffusion and electric field effects

    NASA Astrophysics Data System (ADS)

    Averbuch, Amir; Israeli, Moshe; Nathan, Menachem; Ravve, Igor

    2003-07-01

    Irregularities such as voids and cracks often occur in bamboo-type metal lines of microelectronic interconnects. They increase the resistance of the circuits, and may even lead to a fatal failure. In this work, we analyze numerically the electromigration of an unpassivated bamboo-type line with pre-existing irregularities in its top surface (also called a grain-void interface). The bamboo line is subjected to surface diffusion forces and external electric fields. Under these forces, initial defects may either heal or become worse. The grain-void interface is considered to be one-dimensional, and the physical formulation of an electromigration and diffusion model results in two coupled, fourth order, one-dimensional time-dependent PDEs, with the boundary conditions imposed at the electrode points and at the triple point, which belongs to two neighboring grains and the void. These equations are discretized by finite differences on a regular grid in space, and by a Runge-Kutta integration scheme in time, and solved simultaneously with a static Laplace equation describing the voltage distribution throughout each grain, when the substrate conductivity is neglected. Since the voltage distribution is required only along an interface line, the two-dimensional discretization of the grain interior is not needed, and the static problem is solved by the boundary element method at each time step. The motion of the interface line is studied for different ratios between diffusion and electric field forces, and for different initial configurations of the grain-void interface. We study plain and tilted contour lines, considering positive and negative tilts with respect to the external electric field, a stepped contour with field lines entering or exiting the 'step', and a number of modifications of the classical Mullins problem of thermal grooving. We also consider a two-grain Mullins problem with a normal and tilted boundary between the grains, examining positive and negative tilts.

  5. A Maxwell-Schrödinger solver for quantum optical few-level systems

    NASA Astrophysics Data System (ADS)

    Fleischhaker, Robert; Evers, Jörg

    2011-03-01

    The msprop program presented in this work is capable of solving the Maxwell-Schrödinger equations for one or several laser fields propagating through a medium of quantum optical few-level systems in one spatial dimension and in time. In particular, it allows to numerically treat systems in which a laser field interacts with the medium with both its electric and magnetic component at the same time. The internal dynamics of the few-level system is modeled by a quantum optical master equation which includes coherent processes due to optical transitions driven by the laser fields as well as incoherent processes due to decay and dephasing. The propagation dynamics of the laser fields is treated in slowly varying envelope approximation resulting in a first order wave equation for each laser field envelope function. The program employs an Adams predictor formula second order in time to integrate the quantum optical master equation and a Lax-Wendroff scheme second order in space and time to evolve the wave equations for the fields. The source function in the Lax-Wendroff scheme is specifically adapted to allow taking into account the simultaneous coupling of a laser field to the polarization and the magnetization of the medium. To reduce execution time, a customized data structure is implemented and explained. In three examples the features of the program are demonstrated and the treatment of a system with a phase-dependent cross coupling of the electric and magnetic field component of a laser field is shown. Program summaryProgram title: msprop Catalogue identifier: AEHR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 507 625 No. of bytes in distributed program, including test data, etc.: 10 698 552 Distribution format: tar.gz Programming language: C (C99 standard), Mathematica, bash script, gnuplot script Computer: Tested on x86 architecture Operating system: Unix/Linux environment RAM: Less than 30 MB Classification: 2.5 External routines: Standard C math library, accompanying bash script uses gnuplot, bc (basic calculator), and convert (ImageMagick) Nature of problem: We consider a system of quantum optical few-level atoms exposed to several near-resonant continuous-wave or pulsed laser fields. The complexity of the problem arises from the combination of the coherent and incoherent time evolution of the atoms and its dependence on the spatially varying fields. In systems with a coupling to the electric and magnetic field component the simultaneous treatment of both field components poses an additional challenge. Studying the system dynamics requires solving the quantum optical master equation coupled to the wave equations governing the spatio-temporal dynamics of the fields [1,2]. Solution method: We numerically integrate the equations of motion using a second order Adams predictor method for the time evolution of the atomic density matrix and a second order Lax-Wendroff scheme for iterating the fields in space [3]. For the Lax-Wendroff scheme, the source function is adapted such that a simultaneous coupling to the polarization and the magnetization of the medium can be taken into account. Restrictions: The evolution of the fields is treated in slowly varying envelope approximation [2] such that variations of the fields in space and time must be on a scale larger than the wavelength and the optical cycle. Propagation is restricted to the forward direction and to one dimension. Concerning the description of the atomic system, only a finite number of basis states can be treated and the laser-driven transitions have to be near-resonant such that the rotating-wave approximation can be applied [2]. Unusual features: The program allows the dipole interaction of both the electric and the magnetic component of a laser field to be taken into account at the same time. Thus, a system with a phase-dependent cross coupling of electric and magnetic field component can be treated (see Section 4.2 and [4]). Concerning the implementation of the data structure, it has been optimized for faster memory access. Compared to using standard memory allocation methods, shorter run times are achieved (see Section 3.2). Additional comments: Three examples are given. They each include a readme file, a Mathematica notebook to generate the C-code form of the quantum optical master equation, a parameter file, a bash script which runs the program and converts the numerical data into a movie, two gnuplot scripts, and all files that are produced by running the bash script. Running time: For the first two examples the running time is less than a minute, the third example takes about 12 minutes. On a Pentium 4 (3 GHz) system, a rough estimate can be made with a value of 1 second per million grid points and per field variable.

  6. Neuronix enables continuous, simultaneous neural recording and electrical microstimulation.

    PubMed

    Zhi Yang; Jian Xu; Anh Tuan Nguyen; Tong Wu; Wenfeng Zhao; Wing-Kin Tam

    2016-08-01

    This paper reports a novel neurotechnology (Neuronix) and its validation through experiments. It is a miniature system-on-chip (SoC) that allows recording with simultaneous electrical microstimulation. This function has not been demonstrated before and enables precise, closed-loop neuromodulation. Neuronix represents recent advancement in brain technology and applies to both animal research and clinical applications.

  7. Characteristics of Currents and Electric Fields Associated with the Initial Stage of Upward Lightning

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Nag, A.; Diendorfer, G.; Pichler, H.; Schulz, W.

    2017-12-01

    There is increasing interest in understanding processes associated with the initiation of upward lightning from tall structures. Characterization of such processes is essential for the development of appropriate models. We examine current and electric field waveforms for 15 negative upward flashes occurring in 2007-2009 initiated from the Gaisberg Tower located in Salzburg, Austria. Current was measured at the top of the tower using a 0.25 mΩ shunt. Electric field was measured simultaneously at close (170 m from the tower) and far (79 km from the tower in 2007 and 109 km in 2008-2009) distances. The initial stage (IS) of these flashes comprised of relatively slowly varying "background" current (having durations ranging from 132 to 692 ms), with faster, more impulsive current variations (pulses having durations ranging from 4.7 µs to 22.9 ms) overlaid on this background current. In five of the 15 (33%) flashes, this IS background current was negative while in the other ten (67%) flashes, the current was bipolar (changing between negative and positive values). 150 current pulses occurred during the IS of these 15 flashes, of which 28 (19%) were positive bipolar (positive initial polarity with a negative opposite polarity overshoot), 5 (3.3%) were positive unipolar (positive initial polarity with no opposite polarity overshoot), and 117 (78%) were negative unipolar. No negative bipolar pulses were found. The median peak current and risetime for the 28 bipolar pulses were 0.74 kA and 2.8 µs, respectively, and those for the 122 unipolar pulses were 0.87 kA and 70 µs, respectively. Generally speaking, majority of the pulses occurring at the beginning of the initial stage were lower-amplitude positive bipolar, while higher-amplitude unipolar pulses were more likely to occur at later times. These 150 IS current pulses produced 133 detectable electric field change signatures at the near station and 59 at the far station (all recorded at 79 km in 12 flashes occurring in 2007). We will examine in detail the characteristics of these electric field pulses in order to gain insights into the mechanisms of the underlying processes.

  8. Simulation-Based Validation for Four-Dimensional Multi-Channel Ultrasound Current Source Density Imaging

    PubMed Central

    Wang, Zhaohui; Witte, Russell S.

    2015-01-01

    Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and neurologic disorders, including arrhythmia and epilepsy. PMID:24569247

  9. Investigation of a 129Xe magnetometer for the Neutron Electric Dipole Moment Experiment at TRIUMF

    NASA Astrophysics Data System (ADS)

    Lang, Michael; Nedm At Triumf Collaboration

    2016-03-01

    A non-zero neutron electric dipole moment (nEDM) would signify a previously unknown source of CP (or T) violation. New sources of CP violation are believed to be required to explain the baryon asymmetry of the universe. Employing a newly developed high-density UCN source, an experiment at TRIUMF aims to measure the nEDM to the level of 10-27 e . cm in its initial phase. Precession frequency differences for UCN stored in a bottle subject to parallel and anti-parallel E and B fields signify a permanent nEDM. Magnetic field instability and inhomogeneity, as well as field changes resulting from leakage currents (correlated with E fields) are the dominant systematic effects in nEDM measurements. To address this, passive and active magnetic shielding are in development along with a dual species (129Xe and 199Hg) atomic comagnetometer. Simultaneously introducing both atomic species into the UCN cell, the comagnetometer can mitigate false EDMs. 199Hg precession will be detected by Faraday rotation spectroscopy, and 129Xe precession will measured via two-photon excitation and emission. The present comagnetometer progress will be discussed, with focus on polarized 129Xe production and delivery. Work supported by the Natural Sciences and Engineering Research Council of Canada.

  10. Earthquake clouds and physical mechanism of their formation.

    NASA Astrophysics Data System (ADS)

    Doda, L.; Pulinets, S.

    2006-12-01

    The Lithosphere-Atmosphere-Ionosphere (LAI) coupling model created recently permitted to explain some unknown phenomena observed around the time of strong earthquakes. One of them is formation of special shape clouds, usually presented as the thin linear structures. It was discovered that these clouds are associated with the active tectonic faults or with the tectonic plate borders. They repeat the fault shape but usually are turned in relation to the fault position. Their formation is explained by the anomalous vertical electric field generated in the vicinity of active tectonic structure due to air ionization produced by the radon increased emanation. The new formed ions through the hydration process do not recombine and growth with time due to increased water molecules attachment to the ion. Simultaneously they move up driven by the anomalous electric field and drift in the crossed ExB fields. At the higher altitudes the large ion clusters become the centers of condensation and the cloud formation. Examples for the recent major earthquakes (Sumatra 2004, Kashmir 2005, Java 2006) are presented. The size and the angle of the cloud rotation in relation to the fault position permit to estimate the magnitude of the impending earthquake.

  11. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging

    PubMed Central

    Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A. Douglas; Choma, Michael A.; Cao, Hui

    2015-01-01

    The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946

  12. Physiological and Molecular Genetic Effects of Time-Varying Electromagnetic Fields on Human Neuronal Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2003-01-01

    The present investigation details the development of model systems for growing two- and three-dimensional human neural progenitor cells within a culture medium facilitated by a time-varying electromagnetic field (TVEMF). The cells and culture medium are contained within a two- or three-dimensional culture vessel, and the electromagnetic field is emitted from an electrode or coil. These studies further provide methods to promote neural tissue regeneration by means of culturing the neural cells in either configuration. Grown in two dimensions, neuronal cells extended longitudinally, forming tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time-varying electrical current was conducted. In the three-dimensional aspect, exposure to TVEMF resulted in the development of three-dimensional aggregates, which emulated organized neural tissues. In both experimental configurations, the proliferation rate of the TVEMF cells was 2.5 to 4.0 times the rate of the non-waveform cells. Each of the experimental embodiments resulted in similar molecular genetic changes regarding the growth potential of the tissues as measured by gene chip analyses, which measured more than 10,000 human genes simultaneously.

  13. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging.

    PubMed

    Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A Douglas; Choma, Michael A; Cao, Hui

    2015-02-03

    The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications.

  14. Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling.

    PubMed

    Yi, Di; Liu, Jian; Okamoto, Satoshi; Jagannatha, Suresha; Chen, Yi-Chun; Yu, Pu; Chu, Ying-Hao; Arenholz, Elke; Ramesh, R

    2013-09-20

    We investigate the possibility of controlling the magnetic phase transition of the heterointerface between a half-doped manganite La(0.5)Ca(0.5)MnO(3) and a multiferroic BiFeO(3) (BFO) through magnetoelectric coupling. Using macroscopic magnetometry and element-selective x-ray magnetic circular dichroism at the Mn and Fe L edges, we discover that the ferroelectric polarization of BFO controls simultaneously the magnetization of BFO and La(0.5)Ca(0.5)MnO(3) (LCMO). X-ray absorption spectra at the oxygen K edge and linear dichroism at the Mn L edge suggest that the interfacial coupling is mainly derived from the superexchange between Mn and Fe t(2g) spins. The combination of x-ray absorption spectroscopy and mean-field theory calculations reveals that the d-electron modulation of Mn cations changes the magnetic coupling in LCMO, which controls the enhanced canted moments of interfacial BFO via the interfacial coupling. Our results demonstrate that the competition between ferromagnetic and antiferromagnetic instability can be modulated by an electric field at the heterointerface, providing another pathway for the electrical field control of magnetism.

  15. On traveling-wave field-effect flow control for simultaneous induced-charge electroosmotic pumping and mixing in microfluidics: physical perspectives and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Liu, Weiyu; Ren, Yukun; Tao, Ye; Li, Yanbo; Wu, Qisheng

    2018-05-01

    Since its first proposition at the end of the last century (Schasfoort et al 1999 Science 286 942-5), field-effect flow control at micrometer dimensions has attracted tremendous attention from the microfluidic community. Most previous research on this subject has mainly focused on enhancing the electroosmotic pump flow rate by introducing an additional in-phase counterionic charge across the diffusing screening cloud with external gate electrodes of static DC voltages. However, there is a flaw, namely that AC fields, which suppress undesirable electrochemical reactions, result in zero time-averaged flow. Starting from this point, we present herein a brand new approach to traveling-wave field-effect electroosmosis control from a theoretical point of view, in the context of a smart manipulation tool for the stratified liquid content of miniaturization systems. In the configuration of a traveling-wave flow field-effect transistor (TW-FFET), the field-induced out-of-phase Debye screening charge within the thin double layer originates from the forward propagation of a traveling potential wave along a discrete arrangement of external gating electrode arrays, which interacts actively with the horizontal standing-wave electric field imposed across the source-drain terminal. Since the voltage waves and induced free charge are all sinusoidal functions of the observation time, the net ICEO flow component can survive in a broad frequency range. Due to the action of the background AC electric field on the inhomogeneous counterionic charge induced at the solution/sidewall interface, asymmetric ICEO vortex patterns appear above the traveling-wave gate arrays, giving rise to simultaneous induced-charge electroosmotic pumping and mixing of fluidic samples. A mathematical model is then developed to numerically investigate the feasibility of TW-FFETs in electrokinetic microflow manipulation. A prototyping paradigm of fully electrokinetics-driven microfabricated fluidic networks in a cross shape is theoretically erected, with four sets of gating traveling-fields in perpendicular orientations, from which the resulting liquid mixture is obtainable at any one of the three outlet ports. Supported by mathematical analysis, our physical demonstration of the TW-FFET shows it has great potential to advance fully automated electroconvective sample treatment in modern micro total analytical systems.

  16. A spectacular coronal mass ejection event and associated phenomena

    NASA Astrophysics Data System (ADS)

    Ma, Yuan; Li, Chun-Sheng; Song, Qian

    Based on the data taken from S. G. D. and relevant simultaneous observations of solar radio bursts, gamma-ray emission and geophysical effects on June 15, 1991 the relationships among these phenomena are discussed in this paper. Through the analyses it is considered that proton events and GLE events occurred on June 15 in 1991, which were the geophysic responses caused by CME (V>=750 km/s). Simultaneous observation of the bursts at the centimetric and decimetric wavelengths can obtain the U-shape spectrum of speak fluxes, which is still one of the effective tools for predicting proton events and its production mechanism can be explained by using the acceleration of the direct current field parallel to the magnetic field in the electric current sheet formed in the process of the production of spray prominences. However, the process in which electrons are accelerated up to the high energy state remains to be explained. The whole event of June 15 1991, from the coronal matter ejection (or the spray prominences in active regions) to the production of various geophysic effects, has explained and verified.

  17. Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials

    NASA Astrophysics Data System (ADS)

    Wei, Wenjing; Song, Yilin; Fan, Xinyi; Zhang, Song; Wang, Li; Xu, Shengwei; Wang, Mixia; Cai, Xinxia

    2016-03-01

    Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.

  18. Effects of Lightning in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Sentman, Davis D.; Pasko, Victor P.; Morrill, Jeff S.

    2010-02-01

    AGU Chapman Conference on Effects of Thunderstorms and Lightning in the Upper Atmosphere; University Park, Pennsylvania, 10-14 May 2009; The serendipitous observation in 1989 of electrical discharge in the high atmosphere induced by thundercloud lightning launched a new field of geophysical investigation. From this single unexpected observation sprang a vigorous and fertile new research field that simultaneously encompasses geophysical disciplines that are normally pursued independently, such as meteorology and lightning, plasma and gas discharge physics, atmospheric chemistry, ionospheric physics, and energetic particle physics. Transient electrical discharge in the upper atmosphere spans the full range of altitudes between the tropopause and the ionosphere and takes a variety of forms that carry the whimsical names red sprites, blue jets, gigantic jets, elves (emissions of light and very low frequency perturbations from electromagnetic pulse sources), and sprite halos, collectively known as transient luminous events (TLEs). To date, TLEs have been observed from ground and airborne or spaceborne platforms above thunderstorm systems worldwide, and radio observations made concomitantly with optical observations have shown that they are produced by the transient far fields of thundercloud lightning. TLEs appear to be large-scale (tens of kilometers in dimension), upper atmospheric versions of conventional gas discharge akin to weakly ionized, collision-dominated systems found in laboratory discharge devices (millimeter-centimeter dimensions), with characteristic energies of a few electron volts. The dominant physical processes have been identified as described by the familiar kinetic theory of the photochemistry of the upper atmosphere, but with electric field-driven electron impact ionization playing the role of photolysis or energetic precipitating particle-induced ionization.

  19. Electrical field imaging as a means to predict the loudness of monopolar and tripolar stimuli in cochlear implant patients.

    PubMed

    Berenstein, Carlo K; Vanpoucke, Filiep J; Mulder, Jef J S; Mens, Lucas H M

    2010-12-01

    Tripolar and other electrode configurations that use simultaneous stimulation inside the cochlea have been tested to reduce channel interactions compared to the monopolar stimulation conventionally used in cochlear implant systems. However, these "focused" configurations require increased current levels to achieve sufficient loudness. In this study, we investigate whether highly accurate recordings of the intracochlear electrical field set up by monopolar and tripolar configurations correlate to their effect on loudness. We related the intra-scalar potential distribution to behavioral loudness, by introducing a free parameter (α) which parameterizes the degree to which the potential field peak set up inside the scala tympani is still present at the location of the targeted neural tissue. Loudness balancing was performed on four levels between behavioral threshold and the most comfortable loudness level in a group of 10 experienced Advanced Bionics cochlear implant users. The effect of the amount of focusing on loudness was well explained by α per subject location along the basilar membrane. We found that α was unaffected by presentation level. Moreover, the ratios between the monopolar and tripolar currents, balanced for equal loudness, were approximately the same for all presentation levels. This suggests a linear loudness growth with increasing current level and that the equal peak hypothesis may predict the loudness of threshold as well as at supra-threshold levels. These results suggest that advanced electrical field imaging, complemented with limited psychophysical testing, more specifically at only one presentation level, enables estimation of the loudness growth of complex electrode configurations. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization.

    PubMed

    Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris

    2014-12-01

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.

  1. A versatile LabVIEW and field-programmable gate array-based scanning probe microscope for in operando electronic device characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Young, Justin R.

    Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform themore » various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.« less

  2. Density functional theory calculations establish the experimental evidence of the DX center atomic structure in CdTe.

    PubMed

    Lany, Stephan; Wolf, Herbert; Wichert, Thomas

    2004-06-04

    The In DX center and the DX-like configuration of the Cd host atom in CdTe are investigated using density functional theory. The simultaneous calculation of the atomic structure and the electric field gradient (EFG) allows one to correlate the theoretically predicted structure of the DX center with an experimental observable, namely, the EFG obtained from radioactive 111In/111Cd probe atoms in In doped CdTe. In this way, the experimental identification of the DX center structure is established.

  3. Rapid flow fractionation of particles combining liquid and particulate dielectrophoresis

    NASA Technical Reports Server (NTRS)

    King, Michael R. (Inventor); Lomakin, Oleg (Inventor); Jones, Thomas B. (Inventor); Ahmed, Rajib (Inventor)

    2007-01-01

    Rapid, size-based, deposition of particles from liquid suspension is accomplished using a nonuniform electric field created by coplanar microelectrode strips patterned on an insulating substrate. The scheme uses the dielectrophoretic force both to distribute aqueous liquid containing particles and, simultaneously, to separate the particles. Size-based separation is found within nanoliter droplets formed along the structure after voltage removal. Bioparticles or macromolecules of similar size can also be separated based on subtle differences in dielectric property, by controlling the frequency of the AC current supplied to the electrodes.

  4. Microprocessor implementation of an FFT for ionospheric VLF observations

    NASA Technical Reports Server (NTRS)

    Elvidge, J.; Kintner, P.; Holzworth, R.

    1984-01-01

    A fast Fourier transform algorithm is implemented on a CMOS microprocessor for application to very low-frequency electric fields (less than 10 kHz) sensed on high-altitude scientific balloons. Two FFT's are calculated simultaneously by associating them with conjugate symmetric and conjugate antisymmetric results. One goal of the system was to detect spectral signatures associated with fast time variations present in natural signals such as whistlers and chorus. Although a full evaluation of the system was not possible for operational reasons, a measure of the system's success has been defined and evaluated.

  5. Chiral surface waves for enhanced circular dichroism

    NASA Astrophysics Data System (ADS)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2017-06-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  6. Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.

    PubMed

    Shao, Guang-hao; Song, Xiao-shi; Xu, Fei; Lu, Yan-qing

    2012-08-13

    Optical parametric amplification (OPA) of arbitrarily polarized light is proposed in a multi-section periodically poled Lithium Niobate (PPLN). External electric field is applied on selected sections to induce the polarization rotation of involved lights, thus the quasi-phase matched optical parametric processes exhibit polarization insensitivity under suitable voltage. In addition to the amplified signal wave, an idler wave with the same polarization is generated simultaneously. As an example, a ~10 times OPA showing polarization independency is simulated. Applications of this technology are also discussed.

  7. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; ...

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  8. Self-referenced directional enhanced Raman scattering using plasmon waveguide resonance for surface and bulk sensing

    NASA Astrophysics Data System (ADS)

    Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei

    2018-01-01

    Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.

  9. In vitro analysis of various cell lines responses to electroporative electric pulses by means of electrical impedance spectroscopy.

    PubMed

    García-Sánchez, Tomás; Bragós, Ramon; Mir, Lluis M

    2018-06-07

    This paper reports the comparative analysis, by means of electric impedance spectroscopy measurements, of three different cell lines subjected to electroporative pulses. The multifrequency information is recorded simultaneously at 21 frequency values in the range between 5 kHz and 1.3 MHz using a multisine based measuring approach. The analysis of the pre-electroporation impedance spectra shows how the system is able to detect differences and similarities between the cell lines under analysis. Particularly, a good agreement is found between the average cell diameter and the characteristic frequency (the frequency corresponding to a maximum in the imaginary part of the impedance). The measurements performed during electroporation at three different electric field intensities show how the impedance spectra changes dynamically between the consecutive pulses of a train of 8,100 µs pulses delivered at 1 Hz repetition rate. There are clear differences between the changes in the impedance measured at low and high frequency. The multifrequency information has been fitted to an electrical equivalent model in order to understand the different contributions in the observed impedance changes (mainly separate between membrane permeabilization and the conductivity changes in the extracellular medium). Finally, a ratio of the low and high frequency impedance information is used to estimate the accumulated impedance decay and to compare it to the internalization of a fluorescent permeabilization reporter. The comparison between both techniques at the three electroporation electric field intensities assayed confirms the ability of impedance measurements to detect in a precise way the level of membrane permeabilization. Additionally, this study demonstrates how the real time information obtained thanks to impedance measurements can provide a more precise quantification of the membrane permeabilization extent. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Inertial Currents in Isotropic Plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1993-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MED plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  11. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H. JR.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasma, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, magnetohyrodynamic (MHD) plasma. Solutions are developed by taking the MHD limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  12. Inertial currents in isotropic plasma

    NASA Technical Reports Server (NTRS)

    Heinemann, M.; Erickson, G. M.; Pontius, D. H., Jr.

    1994-01-01

    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.

  13. High-yield transfer printing of metal-insulator-metal nanodiodes.

    PubMed

    Bareiss, Mario; Ante, Frederik; Kälblein, Daniel; Jegert, Gunther; Jirauschek, Christian; Scarpa, Giuseppe; Fabel, Bernhard; Nelson, Edward M; Timp, Gregory; Zschieschang, Ute; Klauk, Hagen; Porod, Wolfgang; Lugli, Paolo

    2012-03-27

    Nanoscale metal-insulator-metal (MIM) diodes represent important devices in the fields of electronic circuits, detectors, communication, and energy, as their cutoff frequencies may extend into the "gap" between the electronic microwave range and the optical long-wave infrared regime. In this paper, we present a nanotransfer printing method, which allows the efficient and simultaneous fabrication of large-scale arrays of MIM nanodiode stacks, thus offering the possibility of low-cost mass production. In previous work, we have demonstrated the successful transfer and electrical characterization of macroscopic structures. Here, we demonstrate for the first time the fabrication of several millions of nanoscale diodes with a single transfer-printing step using a temperature-enhanced process. The electrical characterization of individual MIM nanodiodes was performed using a conductive atomic force microscope (AFM) setup. Our analysis shows that the tunneling current is the dominant conduction mechanism, and the electrical measurement data agree well with experimental data on previously fabricated microscale diodes and numerical simulations. © 2012 American Chemical Society

  14. Correlative analysis of hard and soft x ray observations of solar flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1994-01-01

    We have developed a promising new technique for jointly analyzing BATSE hard X-ray observations of solar flares with simultaneous soft X-ray observations. The technique is based upon a model in which electric currents and associated electric fields are responsible for the respective heating and particle acceleration that occur in solar flares. A useful by-product of this technique is the strength and evolution of the coronal electric field. The latter permits one to derive important flare parameters such as the current density, the number of current filaments composing the loop, and ultimately the hard X-ray spectrum produced by the runaway electrons. We are continuing to explore the technique by applying it to additional flares for which we have joint BATSE/Yohkoh observations. A central assumption of our analysis is the constant of proportionality alpha relating the hard X-ray flux above 50 keV and the rate of electron acceleration. For a thick-target model of hard X-ray production, it can be shown that cv is in fact related to the spectral index and low-energy cutoff of precipitating electrons. The next step in our analysis is to place observational constraints on the latter parameters using the joint BATSE/Yohkoh data.

  15. Differentially Variable Component Analysis (dVCA): Identifying Multiple Evoked Components using Trial-to-Trial Variability

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Shah, Ankoor S.; Truccolo, Wilson; Ding, Ming-Zhou; Bressler, Steven L.; Schroeder, Charles E.

    2003-01-01

    Electric potentials and magnetic fields generated by ensembles of synchronously active neurons in response to external stimuli provide information essential to understanding the processes underlying cognitive and sensorimotor activity. Interpreting recordings of these potentials and fields is difficult as each detector records signals simultaneously generated by various regions throughout the brain. We introduce the differentially Variable Component Analysis (dVCA) algorithm, which relies on trial-to-trial variability in response amplitude and latency to identify multiple components. Using simulations we evaluate the importance of response variability to component identification, the robustness of dVCA to noise, and its ability to characterize single-trial data. Finally, we evaluate the technique using visually evoked field potentials recorded at incremental depths across the layers of cortical area VI, in an awake, behaving macaque monkey.

  16. Experimental evidence of a double layer in a large volume helicon reactor.

    PubMed

    Sutherland, O; Charles, C; Plihon, N; Boswell, R W

    2005-11-11

    The self-consistently generated current-free electric double layer (DL) is shown to scale up with the source tube diameter and appears not to be affected by rf driving frequency and changes in reactor geometry. This Letter presents the first simultaneous measurements of local plasma potential and beam energy as a function of axial position. The DL is shown to be no more than 5 mm thick (20 D lengths) and positioned just downstream of the maximum in the magnetic field gradient. Furthermore, its position relative to the magnetic field is observed to be invariant as the magnetic field is translated axially. Measurements of the potential drop across the DL are presented for pressures down to 0.09 mTorr and the DL strength (phiDL/T(e)) is determined to be between 5 and 7.

  17. Multilevel resistance switching effect in Au/La2/3Ba1/3MnO3/Pt heterostructure manipulated by external fields

    NASA Astrophysics Data System (ADS)

    Wen, Jiahong; Zhao, Xiaoyu; Li, Qian; Zhang, Sheng; Wang, Dunhui; Du, Youwei

    2018-04-01

    Multilevel resistance switching (RS) effect has attracted more and more attention due to its promising potential for the increase of storage density in memory devices. In this work, the transport properties are investigated in an Au/La2/3Ba1/3MnO3 (LBMO)/Pt heterostructure. Taking advantage of the strong interplay among the spin, charge, orbital and lattice of LBMO, the Au/LBMO/Pt device can exhibit bipolar RS effect and magnetoresistance effect simultaneously. Under the coaction of electric field and magnetic field, four different resistance states are achieved in this device. These resistance states show excellent repeatability and retentivity and can be switched between any two states, which suggest the potential applications in the multilevel RS memory devices with enhanced storage density.

  18. Use of electroreception during foraging by the Australian lungfish.

    PubMed

    Watt; Evans; Joss

    1999-11-01

    A diverse range of animals, including elasmobranchs and nonteleost fish, use passive electroreception to locate hidden prey. The Australian lungfish, Neoceratodus forsteri (Krefft 1870), has ampullary organs analogous in form to the electroreceptors of other nonteleost fish. Afferents from these ampullae project to regions in the brain that are known to process electrosensory information in other species, suggesting that N. forsteri possesses an electric sense that may be used during prey location. To explore this hypothesis directly, we first characterized food-locating behaviour in N. forsteri and then conducted an experiment designed to quantify the effects of manipulating electrical and olfactory stimuli from live prey. A small crayfish, Cherax destructor, was housed in a specially constructed chamber hidden beneath the substrate, which prevented emission of chemical, mechanical and visual cues, but allowed transmission of bioelectric fields. Control treatments included presentation of electrically shielded prey, a dead crayfish and an empty chamber. In some treatments, a competing olfactory signal was presented simultaneously at the other end of the test tank to assess the relative salience of this sensory modality. The lungfish responded to the crayfish in the unshielded chamber with accurate and sustained feeding movements, even with a competing olfactory signal. By contrast, the abolition of electrical cues in the three control treatments reduced the accuracy and frequency of feeding movements in the vicinity of the target chamber. These results show that N. forsteri is capable of perceiving the weak electric fields surrounding living animals, and suggest that it uses this information when foraging to locate prey hidden from view. Copyright 1999 The Association for the Study of Animal Behaviour.

  19. Polarization-Directed Surface Plasmon Polariton Launching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.

    The relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges. Additional experiments on single step edges alsomore » show asymmetric PSP launching with respect to polarization, analogous to the trench results. Our combined experimental and computational results allude to the interplay between localized and propagating surface plasmon modes in the trench; strong coupling to the localized modes at the edges correlates to weak coupling to the PSP modes. Simultaneous excitation of the electric fields localized at both edges of the trench results in complex interactions between the right- and left-side PSP modes with Fabry-Perot and cylindrical modes. This results in a trench width-dependent PSP intensity ratio using otherwise identical driving fields. A systematic exploration of polarization directed PSP launching from a series of trench structures reveals an optimal PSP contrast ratio of 4.2 using a 500 nm-wide trench.« less

  20. Multiferroic and magnetoelectric nanocomposites for data processing

    NASA Astrophysics Data System (ADS)

    Kleemann, Wolfgang

    2017-06-01

    Recent progress in preparing and understanding composite magnetoelectrics is highlighted. Apart from optimized standard solutions novel methods of switching magnetism with electric fields and vice versa with focus on magnetoelectric (ME) data processing in multiferroic and magnetoelectric nanocomposites deserve particular interest. First, we report on the patented MERAM, which uses the electric field control of exchange bias in a layered composite via an epitaxial magnetoelectric Cr2O3 layer exchange coupled to a Pt/Co/Pt trilayer. It promises to crucially reduce Joule energy losses in RAM devices. Second, magnetic switching of the electric polarization by a transverse magnetic field in a composite of CoFe2O4 nanopillars embedded in a vertically poled BaTiO3 thick film produces a regular surface polarization pattern with rectangular local symmetry. Its possible use for data processing is discussed. Third, in the relaxor ferroelectric single-phase compound (BiFe0.9Co0.1O3)0.4-(Bi1/2K1/2TiO3)0.6 polar nanoregions emerging from ferrimagnetic Bi(Fe,Co)O3 regions embedded in a Bi1/2K1/2TiO3 relaxor component transform into ferroelectric clusters and simultaneously enable congruent magnetic clusters. The local polarization and magnetization couple with record-high direct and converse magnetoelectric coupling coefficients, α  ≈  1.0  ×  10-5 s m-1. These ‘multiferroic’ clusters are promising for applications in data storage or processing devices.

  1. Non-contact data access with direction identification for industrial differential serial bus

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Li, Xiaoping; Zhang, Hanlu; Yang, Ming; Ye, Yinghao

    2013-06-01

    We propose a non-contact method for accessing data in industrial differential serial bus applications, which could serve as an effective and safe online testing and diagnosing tool. The data stream and the transmission direction are reconstructed simultaneously from the near-field emanations of a twisted pair, eliminating direct contact with the actual conductors, and avoiding damage to the insulation (only the outer sheathing is removed). A non-contact probe with the ability to sense electric and magnetic fields is presented, as are theories for data reconstruction, direction identification, and a circuit implementation. The prototype was built using inexpensive components and then tested on a standard RS-485 industrial serial bus. Experimental results verified the validity of the proposed scheme.

  2. Physical implication of transition voltage in organic nano-floating-gate nonvolatile memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shun; Gao, Xu, E-mail: wangsd@suda.edu.cn, E-mail: gaoxu@suda.edu.cn; Zhong, Ya-Nan

    High-performance pentacene-based organic field-effect transistor nonvolatile memories, using polystyrene as a tunneling dielectric and Au nanoparticles as a nano-floating-gate, show parallelogram-like transfer characteristics with a featured transition point. The transition voltage at the transition point corresponds to a threshold electric field in the tunneling dielectric, over which stored electrons in the nano-floating-gate will start to leak out. The transition voltage can be modulated depending on the bias configuration and device structure. For p-type active layers, optimized transition voltage should be on the negative side of but close to the reading voltage, which can simultaneously achieve a high ON/OFF ratio andmore » good memory retention.« less

  3. Investigation on the mode of AC discharge in H2O affected by temperature

    NASA Astrophysics Data System (ADS)

    Siyuan, DONG; Shaomeng, GUO; Dan, WEN; Xiaoliang, TANG; Gao, QIU

    2018-04-01

    In this paper, some experimental equipment has been set up for kHz frequency AC liquid phase discharge, and the temperature of the deionized water was regulated during discharge. The electrical characteristics and spectra of liquid phase H2O discharge have been investigated. Two discharge modes, high temperature and low temperature, were both found. The results show that there are two mechanisms in liquid phase discharge: the field ionization mechanism and the breakdown mechanism of bubbles, and these two mechanisms are always developed simultaneously; the temperature is the key factor determining the discharge type. At high temperature, the breakdown of bubbles is the main discharge mechanism, and the field ionization mechanism occurs mainly at low temperature.

  4. Combined in-situ and ground-based observations of quasi-periodic radar echoes

    NASA Astrophysics Data System (ADS)

    Pfaff, R.; Kudeki, E.; Larsen, M.; Clemmons, J.; Earle, G.

    A series of combined rocket/radar investigation of the electrodynamics and neutralplasma coupling associated with sporadic-E layers and quasi-periodic backscatter radar echoes has been carried out from launch sites at both Puerto Rico and the Wallops Flight Facility, Virginia (USA) between 1998-2001. The instrumented rockets consisted of main and sub-payloads and were launched while strong quasiperiodic VHF echoes were observed simultaneously with the Univ. of Illinois 50 MHz backscatter radar. The rocket apogee was purposely limited so that the payloads would dwell in the sporadic-E region (90-115 km). The main payload included vector DC and AC electric field detectors, a DC magnetometer, an ion mass spectrometer, an ionization gauge, and spaced-electric field receivers to measure the wavelength and phase velocity of the unstable plasma waves. The sub-payload was instrumented to measure DC and wave electric fields and plasma density. In one case, a separate rocket was launched a few minutes later which released luminous TMA trails to measure the neutral wind, its velocity shear, and embedded neutral structures. In this experiment, the payloads successfully pierced a well-defined, 2-3 km thick metallic sporadic-E layer of approximately 10**5 e/cc near 103 km altitude. In-situ DC electric field measurements revealed ~5mV/m ambient meridional fields above and below the layer with 1-2 mV/m amplitude, large scale structures superimposed. The wavelengths of these structures were approximately 2-4 km and may be related to the seat of the quasiperiodic echoes. Intense (~5 mV/m), higher frequency (shorter scale) broadband waves were also observed in-situ, both above and below the layer, consistent with the VHF backscatter observations during the time of the launch. Neither the large scale nor short scale plasma waves appeared to be distinctly organized by the sporadic-E density layer. The TMA release showed large amplitude (~ 100 m/s) meridional winds near 102-105 km, with the most intense shears directly below these altitudes, where the short scale electric field fluctuations were most intense. We summarize the observations from the different experiments and discuss them in the context of current theories regarding quasi-periodic echoes.

  5. Combined In-situ and Ground-based Observations of Quasi-periodic Radar Echoes

    NASA Astrophysics Data System (ADS)

    Pfaff, R.; Kudeki, E.; Larsen, M.; Clemmons, J.; Earle, G.

    A series of combined rocket/radar investigation of the electrodynamics and neutral- plasma coupling associated with sporadic-E layers and quasi-periodic backscatter radar echoes has been carried out from launch sites at both Puerto Rico and the Wallops Flight Facility, Virginia (USA) between 1998-2001. The instrumented rock- ets consisted of main and sub-payloads and were launched while strong quasi- periodic VHF echoes were observed simultaneously with the Univ. of Illinois 50 MHz backscatter radar. The rocket apogee was purposely limited so that the payloads would dwell in the sporadic-E region (90-115 km). The main payload included vector DC and AC electric field detectors, a DC magnetometer, an ion mass spectrometer, an ioniza- tion gauge, and spaced-electric field receivers to measure the wavelength and phase velocity of the unstable plasma waves. The sub-payload was instrumented to measure DC and wave electric fields and plasma density. In one case, a separate rocket was launched a few minutes later which released luminous TMA trails to measure the neu- tral wind, its velocity shear, and embedded neutral structures. In this experiment, the payloads successfully pierced a well-defined, 2-3 km thick metallic sporadic-E layer of approximately 10**5 e/cc near 103 km altitude. In-situ DC electric field measure- ments revealed ~5mV/m ambient meridional fields above and below the layer with 1-2 mV/m amplitude, large scale structures superimposed. The wavelengths of these structures were approximately 2-4 km and may be related to the seat of the quasi- periodic echoes. Intense (~5 mV/m), higher frequency (shorter scale) broadband waves were also observed in-situ, both above and below the layer, consistent with the VHF backscatter observations during the time of the launch. Neither the large scale nor short scale plasma waves appeared to be distinctly organized by the sporadic-E den- sity layer. The TMA release showed large amplitude (~ 100 m/s) meridional winds near 102-105 km, with the most intense shears directly below these altitudes, where the short scale electric field fluctuations were most intense. We summarize the ob- servations from the different experiments and discuss them in the context of current theories regarding quasi-periodic echoes.

  6. Nanosecond plasma-mediated electrosurgery with elongated electrodes

    NASA Astrophysics Data System (ADS)

    Vankov, Alexander; Palanker, Daniel

    2007-06-01

    Progress in interventional medicine is associated with the development of more delicate and less invasive surgical procedures, which requires more precise and less traumatic, yet affordable, surgical instruments. Previously we reported on the development of the pulsed electron avalanche knife for dissection of soft tissue in liquid media using the 100 ns plasma-mediated electric discharges applied via a 25 μm disk microelectrode. Cavitation bubbles accompanying explosive vaporization of the liquid medium in front of such a pointed electrode produced a series of craters that did not always merge into a continuous cut. In addition, this approach of surface ablation provided a limited depth of cutting. Application of an elongated electrode capable of cutting with its edge rather than just with its pointed apex faces a problem of nonuniformity of the electric field on a nonspherical electrode. In this article we explore dynamics of the plasma-mediated nanosecond discharges in liquid medium in positive and negative polarities and describe the geometry of an electrode that provides a sufficiently uniform electric field along an extended edge of a surgical probe. A highly enhanced and uniform electric field was obtained on very sharp (2.5 μm) exposed edges of a planar electrode insulated on its flat sides. Uniform ionization and simultaneous vaporization was obtained along the whole edge of such a blade with 100 ns pulses at 4-6 kV. A continuous cutting rate of 1 mm/s in the retina and in soft membranes was achieved at a pulse repetition rate of 100 Hz. The collateral damage zone at the edges of incision did not exceed 80 μm. Negative polarity was found advantageous due to the lower rate of electrode erosion and due to better spatial confinement of the plasma-mediated discharge in liquid.

  7. Field induced anomalous spreading, oscillation, ejection, spinning, and breaking of oil droplets on a strongly slipping water surface.

    PubMed

    Kumar, Sunny; Sarma, Bhaskarjyoti; Dasmahapatra, Ahsok Kumar; Dalal, Amaresh; Basu, Dipankar Narayan; Bandyopadhyay, Dipankar

    2017-07-01

    Application of an electric field on an oil droplet floating on the surface of a deionized water bath showed interesting motions such as spreading, oscillation, and ejection. The electric field was generated by connecting a pointed platinum cathode at the top of the oil droplet and a copper anode coated with polymer at the bottom of the water layer. The experimental setup mimicked a conventional electrowetting setup with the exception that the oil was spread on a soft and deformable water isolator. While at relatively lower field intensities we observed spreading of the droplet, at intermediate field intensities the droplet oscillated around the platinum cathode, before ejecting out at a speed as high as ∼5 body lengths per second at even stronger field intensities. The experiments suggested that when the electric field was ramped up abruptly to a particular voltage, any of the spreading, oscillation, or ejection motions of the droplet could be engendered at lower, intermediate and higher field intensities, respectively. However, when the field was ramped up progressively by increasing by a definite amount of voltage per unit time, all three aforementioned motions could be generated simultaneously with the increase in the field intensity. Interestingly, when the aforementioned setup was placed on a magnet, the droplet showed a rotational motion under the influence of the Lorentz force, which was generated because of the coupling of the weak leakage current with the externally applied magnetic field. The spreading, oscillation, ejection, and rotation of the droplet were found to be functions of the oil-water interfacial tension, viscosity, and size of the oil droplet. We developed simple theoretical models to explain the experimental results obtained. Importantly, rotating at a higher speed broke the droplet into a number of smaller ones, owing to the combined influence of the spreading due to the centripetal force and the shear at the oil-water interface. While the oscillatory and rotational motions of the incompressible droplet could be employed as stirrers or impellers inside microfluidic devices for mixing applications, the droplet ejection could be employed for futuristic applications such as payload transport or drug delivery.

  8. Ephemeral Electric Potential and Electric Field Sensor

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2017-01-01

    Systems, methods, and devices of the various embodiments provide for the minimization of the effects of intrinsic and extrinsic leakage electrical currents enabling true measurements of electric potentials and electric fields. In an embodiment, an ephemeral electric potential and electric field sensor system may have at least one electric field sensor and a rotator coupled to the electric field sensor and be configured to rotate the electric field sensor at a quasi-static frequency. In an embodiment, ephemeral electric potential and electric field measurements may be taken by rotating at least one electric field sensor at a quasi-static frequency, receiving electrical potential measurements from the electric field sensor when the electric field sensor is rotating at the quasi-static frequency, and generating and outputting images based at least in part on the received electrical potential measurements.

  9. Numerical study on the electromechanical behavior of dielectric elastomer with the influence of surrounding medium

    NASA Astrophysics Data System (ADS)

    Jia; Lu

    2016-01-01

    The considerable electric-induced shape change, together with the attributes of lightweight, high efficiency, and inexpensive cost, makes dielectric elastomer, a promising soft active material for the realization of actuators in broad applications. Although, a number of prototype devices have been demonstrated in the past few years, the further development of this technology necessitates adequate analytical and numerical tools. Especially, previous theoretical studies always neglect the influence of surrounding medium. Due to the large deformation and nonlinear equations of states involved in dielectric elastomer, finite element method (FEM) is anticipated; however, the few available formulations employ homemade codes, which are inconvenient to implement. The aim of this work is to present a numerical approach with the commercial FEM package COMSOL to investigate the nonlinear response of dielectric elastomer under electric stimulation. The influence of surrounding free space on the electric field is analyzed and the corresponding electric force is taken into account through an electric surface traction on the circumstances edge. By employing Maxwell stress tensor as actuation pressure, the mechanical and electric governing equations for dielectric elastomer are coupled, and then solved simultaneously with the Gent model of stain energy to derive the electric induced large deformation as well as the electromechanical instability. The finite element implementation presented here may provide a powerful computational tool to help design and optimize the engineering applications of dielectric elastomer.

  10. Probing amplitude, phase, and polarization of microwave field distributions in real time

    NASA Astrophysics Data System (ADS)

    King, R. J.; Yen, Y. H.

    1981-11-01

    A coherent (homodyne) detection system is used to map field distributions in real time. A key feature is the use of an electrically modulated (10-kHz) dipole scatterer which is also mechanically spun (150 Hz) to create an amplitude- and phase-modulated backscattered field. The system is monostatic. The backscattered field is coherently detected by mixing with the CW reference. A phase-insensitive detector is used, comprised of two balanced mixers which are fed in quadrature phase by one of the RF inputs followed by a phase quadrature combiner. The resulting amplitude and phase of the 10-kHz output are proportional to the square of the RF field component along the instantaneous axis of the spinning dipole. Both are measured simultaneously and independently in real time. From these, the polarization properties can also be found, so the field is uniquely described. The system's application to scanning the E-field transmitted through lossy, nonhomogeneous and anisotropic media (e.g., wood) is demonstrated. Other applications besides nondestructive testing are microwave vector holography, near-field antenna measurements, and inverse scattering.

  11. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue

    PubMed Central

    Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana

    2012-01-01

    Maintenance of normal myocardial function depends intimately on synchronous tissue contraction driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue, but due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation, and unconstrained (i.e., not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate in concert these three key factors. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modeling studies. We then culture cardiac cells obtained from neonatal rats in porous, channeled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After eight days of culture, constructs grown with the simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23±0.10% vs. 0.14±0.05, 0.13±0.08, or 0.09±0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization than either control group. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. PMID:22170772

  12. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    PubMed Central

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-01-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations. PMID:28218247

  13. Magnetoelectric coupling and electrical properties of inorganic-organic based LSMO - PVDF hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Debnath, Rajesh; Mandal, S. K.; Dey, P.; Nath, A.

    2018-04-01

    We have investigated strain mediated magnetoelectric coupling and ac electrical properties of 0.5La0.7Sr0.3MnO3-0.5 Polyvinylidene Fluoride nanocomposites at room temperature. The sample has been prepared through low temperature pyrophoric chemical process. The detailed study of X-ray diffraction pattern shows simultaneous co-existence of two phases of nanometric grains. Field emission scanning electron micrograph shows the absence of any phase segregation and good chemical homogeneity in composites. The magnetoelectric voltage is measured in both longitudinal and transverse direction at a frequency of 73 Hz. The magnetoelectric coefficient in transverse direction is found to ˜0.17 mV/cmOe and in longitudinal direction it is found to ˜0.08 mV/cmOe. With the application of dc magnetic field the real and imaginary part of impedance are increased where the dielectric constant has been decreased. Nyquist plots have been fitted using two parallel combinations of resistances - constant phase element circuits considering dominant role of grains and grain boundaries resistance in the conduction process of the sample.

  14. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.

    PubMed

    Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva

    2008-11-01

    Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.

  15. Toroidal Ampere-Faraday Equations Solved Simultaneously with CQL3D Fokker-Planck Time-Evolution

    NASA Astrophysics Data System (ADS)

    Harvey, R. W. (Bob); Petrov, Yu. V. (Yuri); Forest, C. B.; La Haye, R. J.

    2017-10-01

    A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). We discuss benchmarking and first applications of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to (1) resistive turn on of applied electron cyclotron current in the DIII-D tokamak giving initial back current adjacent to the direct CD region and having possible NTM stabilization implications, and (2) runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in pellet injection, massive gas injection, or a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we perform full-radius modeling and examine modifications due to the more complete Ampere-Faraday solution. Presently, the implementation relies on a fixed shape eqdsk, and this limitation will be addressed in future work. Research supported by USDOE FES award ER54744.

  16. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-02-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  17. Nano-soldering of magnetically aligned three-dimensional nanowire networks.

    PubMed

    Gao, Fan; Gu, Zhiyong

    2010-03-19

    It is extremely challenging to fabricate 3D integrated nanostructures and hybrid nanoelectronic devices. In this paper, we report a simple and efficient method to simultaneously assemble and solder nanowires into ordered 3D and electrically conductive nanowire networks. Nano-solders such as tin were fabricated onto both ends of multi-segmented nanowires by a template-assisted electrodeposition method. These nanowires were then self-assembled and soldered into large-scale 3D network structures by magnetic field assisted assembly in a liquid medium with a high boiling point. The formation of junctions/interconnects between the nanowires and the scale of the assembly were dependent on the solder reflow temperature and the strength of the magnetic field. The size of the assembled nanowire networks ranged from tens of microns to millimeters. The electrical characteristics of the 3D nanowire networks were measured by regular current-voltage (I-V) measurements using a probe station with micropositioners. Nano-solders, when combined with assembling techniques, can be used to efficiently connect and join nanowires with low contact resistance, which are very well suited for sensor integration as well as nanoelectronic device fabrication.

  18. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: II. The formation of "lightnings"

    NASA Astrophysics Data System (ADS)

    Istomin, Ya. N.; Sob'yanin, D. N.

    2011-10-01

    The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning—a lengthening and simultaneously expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number of electron-positron pairs produced in the lightning in its lifetime reaches 1028. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).

  19. Wavelet transform processing applied to partial discharge evaluation

    NASA Astrophysics Data System (ADS)

    Macedo, E. C. T.; Araújo, D. B.; da Costa, E. G.; Freire, R. C. S.; Lopes, W. T. A.; Torres, I. S. M.; de Souza Neto, J. M. R.; Bhatti, S. A.; Glover, I. A.

    2012-05-01

    Partial Discharge (PD) is characterized by high frequency current pulses that occur in high voltage (HV) electrical equipments originated from gas ionization process when damaged insulation is submitted to high values of electric field [1]. PD monitoring is a useful method of assessing the aging degree of the insulation, manufacturing defects or chemical/mechanical damage. Many sources of noise (e.g. radio transmissions, commutator noise from rotating machines, power electronics switching circuits, corona discharge, etc.) can directly affect the PD estimation. Among the many mathematical techniques that can be applied to de-noise PD signals, the wavelet transform is one of the most powerful. It can simultaneously supply information about the pulse occurrence, time and pulse spectrum, and also de-noise in-field measured PD signals. In this paper is described the application of wavelet transform in the suppression of the main types of noise that can affect the observation and analysis of PD signals in high voltage apparatus. In addition, is presented a study that indicates the appropriated mother-wavelet for this application based on the cross-correlation factor.

  20. Optimization of the magnetic dynamo.

    PubMed

    Willis, Ashley P

    2012-12-21

    In stars and planets, magnetic fields are believed to originate from the motion of electrically conducting fluids in their interior, through a process known as the dynamo mechanism. In this Letter, an optimization procedure is used to simultaneously address two fundamental questions of dynamo theory: "Which velocity field leads to the most magnetic energy growth?" and "How large does the velocity need to be relative to magnetic diffusion?" In general, this requires optimization over the full space of continuous solenoidal velocity fields possible within the geometry. Here the case of a periodic box is considered. Measuring the strength of the flow with the root-mean-square amplitude, an optimal velocity field is shown to exist, but without limitation on the strain rate, optimization is prone to divergence. Measuring the flow in terms of its associated dissipation leads to the identification of a single optimal at the critical magnetic Reynolds number necessary for a dynamo. This magnetic Reynolds number is found to be only 15% higher than that necessary for transient growth of the magnetic field.

  1. Interactions between multiple filaments and bacterial biofilms on the surface of an apple

    NASA Astrophysics Data System (ADS)

    He, CHENG; Maoyuan, XU; Shuhui, PAN; Xinpei, LU; Dawei, LIU

    2018-04-01

    In this paper, the interactions between two dielectric barrier discharge (DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise. The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.

  2. Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel.

    PubMed

    Verdia-Baguena, C; Gomez, V; Cervera, J; Ramirez, P; Mafe, S

    2016-12-21

    We demonstrate the electrical rectification and signal averaging of fluctuating signals using a biological nanostructure in aqueous solution: a single protein ion channel inserted in the lipid bilayer characteristic of cell membranes. The conversion of oscillating, zero time-average potentials into directional currents permits charging of a load capacitor to significant steady-state voltages within a few minutes in the case of the outer membrane porin F (OmpF) protein, a bacterial channel of Escherichia coli. The experiments and simulations show signal averaging effects at a more fundamental level than the traditional cell and tissue scales, which are characterized by ensembles of many ion channels operating simultaneously. The results also suggest signal transduction schemes with bio-electronic interfaces and ionic circuits where soft matter nanodiodes can be coupled to conventional electronic elements.

  3. Electric Switching of Fluorescence Decay in Gold-Silica-Dye Nematic Nanocolloids Mediated by Surface Plasmons.

    PubMed

    Jiang, Li; Mundoor, Haridas; Liu, Qingkun; Smalyukh, Ivan I

    2016-07-26

    Tunable composite materials with interesting physical behavior can be designed through integrating unique optical properties of solid nanostructures with facile responses of soft matter to weak external stimuli, but this approach remains challenged by their poorly controlled coassembly at the mesoscale. Using scalable wet chemical synthesis procedures, we fabricated anisotropic gold-silica-dye colloidal nanostructures and then organized them into the device-scale (demonstrated for square-inch cells) electrically tunable composites by simultaneously invoking molecular and colloidal self-assembly. We show that the ensuing ordered colloidal dispersions of shape-anisotropic nanostructures exhibit tunable fluorescence decay rates and intensity. We characterize how these properties depend on low-voltage fields and polarization of both the excitation and emission light, demonstrating a great potential for the practical realization of an interesting breed of nanostructured composite materials.

  4. Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor.

    PubMed

    Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan

    2017-01-29

    Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect-using electric current shape analysis-for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between "does-not-need-to-be-replaced" and "needs-to-be-replaced" shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification.

  5. Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor

    PubMed Central

    Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan

    2017-01-01

    Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect—using electric current shape analysis—for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between “does-not-need-to-be-replaced” and “needs-to-be-replaced” shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification. PMID:28146057

  6. Soft and wet actuator developed with responsible high-strength gels

    NASA Astrophysics Data System (ADS)

    Harada, S.; Hidema, R.; Furukawa, H.

    2012-04-01

    Novel high-strength gels, named double network gels (DN gels), show a smart response to altering external electric field. It was reported that a plate shape of the DN gel bends toward a positive electrode direction when a static (DC) electric field is applied. Based on this previous result, it has been tried to develop a novel soft and wet actuator, which will be used as an automatically bulging button for cellar phones, or similar small devices. First, a bending experiment of a hung plate-shape DN gel was done, and its electric field response was confirmed. Second, the response of a lying plate-shape DN gels was confirmed in order to check the bulging phenomena. The edge of three plate-shape gels that was arranged radially on a plane surface was lifted 2mm by applying DC 8V. This system is a first step to make a gels button. However the critical problem is that electrolysis occurs simultaneously under electric field. Then, the water sweep out from gels, and gels is shrinking; They cause the separation between aluminum foil working as electrode and gels. That is why, a flexible electrode should be made by gels completely attached to the gels. As a third step, a push button is tried to make by a shape memory gels (SMG). The Young's modulus of the SMG is dramatically changed by temperature. This change in the modulus is applied to control the input-acceptable state and input-not-acceptable states of the button. A novel push button is proposed as a trial, and its user-friendliness is checked by changing the size of the button. The button is deformed by pushing and is back to original shape due to the property of shape memory. We believe the mechanism of this button will be applied to develop new devices especially for visually impaired persons.

  7. Tripolar electric field Structure in guide field magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  8. 77 FR 16494 - Revised Public Utility Filing Requirements for Electric Quarterly Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... greater transparency in wholesale electricity markets through a greater understanding of these complex... simultaneous exchange transactions, which will bolster transparency in wholesale electricity markets by... counterparties in which party A sells an electricity product to party B at one location and party B sells a...

  9. A study of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Patel, V. L.

    1975-01-01

    Twenty-one geomagnetic storm events during 1966 and 1970 were studied by using simultaneous interplanetary magnetic field and plasma parameters. Explorer 33 and 35 field and plasma data were analyzed on large-scale (hourly) and small-scale (3 min.) during the time interval coincident with initial phase of the geomagnetic storms. The solar-ecliptic Bz component turns southward at the end of the initial phase, thus triggering the main phase decrease in Dst geomagnetic field. When the Bz is already negative, its value becomes further negative. The By component also shows large fluctuations along with Bz. When there are no clear changes in the Bz component, the By shows abrupt changes at the main phase onet. On the small-scale behavior of the magnetic field and electric field (E=-VxB) studied in details for the three events, it is found that the field fluctuations in By, Bz and Ey and Ez are present in the initial phase. These fluctuations become larger just before the main phase of the storm begins. In the largescale behavior field remains quiet because the small scale variations are averaged out.

  10. Simultaneous imaging of strain waves and induced magnetization dynamics at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Macia, Ferran; Foerster, Michael; Statuto, Nahuel; Finizio, Simone; Hernandez-Minguez, Alberto; Lendinez, Sergi; Santos, Paulo V.; Fontcuberta, Josep; Hernandez, Joan Manel; Klaui, Mathias; Aballe, Lucia

    The magnetoelastic effect or inverse magnetostriction-the change of magnetic properties by elastic deformation or strain-is often a key coupling mechanism in multiferroic heterostructures and nanocomposites. It has lately attracted considerable interest as a possible approach for controlling magnetization by electric fields (instead of current) in future devices with low power consumption. However, many experiments addressing the magnetoelastic effect are performed at slow speeds, often using materials and conditions which are impractical or too expensive for device integration. Here, we have studied the effect of the dynamic strain accompanying a surface acoustic wave on magnetic nanostructures. We have simultaneously imaged the temporal evolution of both strain waves and magnetization dynamics of nanostructures at the picosecond timescale. Our experimental technique, based on X-ray microscopy, is versatile and provides a pathway to the study of strain-induced effects at the nanoscale.

  11. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  12. 3D plasmonic nanoantennas integrated with MEA biosensors

    NASA Astrophysics Data System (ADS)

    Dipalo, Michele; Messina, Gabriele C.; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; de Angelis, Francesco

    2015-02-01

    Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05578k

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, I.; Krayzman, V.; Woicik, J. C.

    Local structures in cubic perovskite-type (Ba 0.6Bi 0.4)(Ti 0.6Sc 0.4)O 3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-centermore » displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kVmm -1.« less

  14. Effects of Universal Mobile Telecommunications System (UMTS) electromagnetic fields on the blood-brain barrier in vitro.

    PubMed

    Franke, Helmut; Streckert, Joachim; Bitz, Andreas; Goeke, Johannes; Hansen, Volkert; Ringelstein, E Bernd; Nattkämper, Heiner; Galla, Hans-Joachim; Stögbauer, Florian

    2005-09-01

    The extensive use of mobile phone communication has raised public concerns about adverse health effects of radiofrequency (RF) electromagnetic fields (EMFs) in recent years. A central issue in this discussion is the question whether EMFs enhance the permeability of the blood-brain barrier (BBB). Here we report an investigation on the influence of a generic UMTS (Universal Mobile Telecommunications System) signal on barrier tightness, transport processes and the morphology of porcine brain microvascular endothelial cell cultures (PBEC) serving as an in vitro model of the BBB. An exposure device with integrated online monitoring system was developed for simultaneous exposure and measuring of transendothelial electrical resistance (TEER) to determine the tightness of the BBB. PBEC were exposed continuously for up to 84 h at an average electric-field strength of 3.4-34 V/m (maximum 1.8 W/kg) ensuring athermal conditions. We did not find any evidence of RF-field-induced disturbance of the function of the BBB. After and during exposure, the tightness of the BBB quantified by 14C-sucrose and serum albumin permeation as well as by TEER remained unchanged compared to sham-exposed cultures. Permeation of transporter substrates at the BBB as well as the localization and integrity of the tight-junction proteins occludin and ZO1 were not affected either.

  15. Simulated orbits of heavy planetary ions at Mars for different IMF configurations

    NASA Astrophysics Data System (ADS)

    Curry, Shannon; Luhmann, Janet; Livi, Roberto; Hara, Takuya; Dong, Chuanfei; Ma, Yingjuan; McFadden, James; Bougher, Stephen

    2014-11-01

    We present simulated detections of O+, O2+ and CO2+ ions at Mars along a virtual orbit in the Mars space environment. Planetary pick-up ions are formed through the direct interaction of the solar wind with the neutral upper atmosphere, causing the newly created ions to be picked up and accelerated by the background convective electric field. Because previous missions such as Mars Global Surveyor (MGS) and Mars Express (MEX) have not been able to measure the interplanetary magnetic field (IMF) components simultaneously with plasma measurements, the response of heavy planetary pick-up ions to changes in the IMF has not been well characterized. Using a steady-state multi-species MHD model to provide the background electric and magnetic fields, the Mars Test Particle (MTP) simulation can trace each of these particles along field lines in near-Mars space and construct virtual ion detections from a spacecraft orbit. Specifically, we will present energy-time spectrograms and velocity space distributions (VSDs) for a selection of orbits during different IMF configurations and solar cycle conditions. These simulated orbits have broader implications for how to measure ion escape. Using individual particle traces, the origin and trajectories of different ion populations can be analyzed in order to assess how and where they contribute to the total atmospheric escape rate, which is a major objective of the upcoming MAVEN mission.

  16. Optimized multi-electrode stimulation increases focality and intensity at target

    NASA Astrophysics Data System (ADS)

    Dmochowski, Jacek P.; Datta, Abhishek; Bikson, Marom; Su, Yuzhuo; Parra, Lucas C.

    2011-08-01

    Transcranial direct current stimulation (tDCS) provides a non-invasive tool to elicit neuromodulation by delivering current through electrodes placed on the scalp. The present clinical paradigm uses two relatively large electrodes to inject current through the head resulting in electric fields that are broadly distributed over large regions of the brain. In this paper, we present a method that uses multiple small electrodes (i.e. 1.2 cm diameter) and systematically optimize the applied currents to achieve effective and targeted stimulation while ensuring safety of stimulation. We found a fundamental trade-off between achievable intensity (at the target) and focality, and algorithms to optimize both measures are presented. When compared with large pad-electrodes (approximated here by a set of small electrodes covering 25cm2), the proposed approach achieves electric fields which exhibit simultaneously greater focality (80% improvement) and higher target intensity (98% improvement) at cortical targets using the same total current applied. These improvements illustrate the previously unrecognized and non-trivial dependence of the optimal electrode configuration on the desired electric field orientation and the maximum total current (due to safety). Similarly, by exploiting idiosyncratic details of brain anatomy, the optimization approach significantly improves upon prior un-optimized approaches using small electrodes. The analysis also reveals the optimal use of conventional bipolar montages: maximally intense tangential fields are attained with the two electrodes placed at a considerable distance from the target along the direction of the desired field; when radial fields are desired, the maximum-intensity configuration consists of an electrode placed directly over the target with a distant return electrode. To summarize, if a target location and stimulation orientation can be defined by the clinician, then the proposed technique is superior in terms of both focality and intensity as compared to previous solutions and is thus expected to translate into improved patient safety and increased clinical efficacy.

  17. Cryo-delivery Systems for the Co-transmission of Chemical and Electrical Power

    NASA Astrophysics Data System (ADS)

    Grant, Paul M.

    2006-04-01

    We present a novel concept for the simultaneous transport of chemical power in the form of natural gas or hydrogen in a cryogenic state along with the simultaneous transmission of electrical power over via superconductivity. This concept could impact future efforts to tap and deliver methane from distant geographic resources over conventional pipelines with part of the chemical potential energy converted directly to electricity at the wellhead and the remaining gas cooled cryogenically to increase volumetric density and provide the necessary support of a superconducting cable housed within the same packaging. As the fossil reserve becomes depleted, nuclear power plants would be constructed at the former remote wellhead sites to co-generate electricity and cryocooled hydrogen, the latter replacing natural gas and also serving to operate the already installed superconducting electrical service line.

  18. Manipulating particles for micro- and nano-fluidics via floating electrodes and diffusiophoresis

    NASA Astrophysics Data System (ADS)

    Yalcin, Sinan Eren

    The ability to accurately control micro- and nano-particles in a liquid is fundamentally useful for many applications in biology, medicine, pharmacology, tissue engineering, and microelectronics. Therefore, first particle manipulations are experimentally studied using electrodes attached to the bottom of a straight microchannel under an imposed DC or AC electric field. In contrast to a dielectric microchannel possessing a nearly-uniform surface charge, a floating electrode is polarized under the imposed electric field. The purpose is to create a non-uniform distribution of the induced surface charge, with a zero-net-surface charge along the floating electrode's surface. Such a field, in turn, generates an induced-charge electro-osmotic (ICED) flow near the metal strip. The demonstrations by using single and multiple floating electrodes at the bottom of a straight microchannel, with induced DC electric field, include particle enrichment, movement, trapping, reversal of motion, separation, and particle focusing. A flexible strategy for the on-demand control of the particle enrichment and positioning is also proposed and demonstrated by using a locally-controlled floating metal electrode. Then, under an externally imposed AC electric field, the particle deposition onto a floating electrode, which is placed in a closed circular cavity, has been experimentally investigated. In the second part of the study, another particle manipulation method was computationally investigated. The diffusiophoretic and electrodiffusiophoretic motion of a charged spherical particle in a nanopore is subjected to an axial electrolyte concentration gradient. The charged particle experiences electrophoresis because of the imposed electric field and the diffusiophoresis is caused solely by the imposed concentration gradient. Depending on the magnitude and direction of the imposed concentration gradient, the particle's electrophoretic motion can be accelerated, decelerated, and even reversed in a nanopore by the superimposed diffusiophoresis. Based on the results demonstrated in the present study, it is entirely conceivable to extend the development to design devices for the following objectives: (1) to enrich the concentration of, say, DNA or RNA, and to increase their concentrations at a desired location. (2) to act as a filtration device, wherin the filtration can be achieved without blocking the microfluidic channel and without any porous material. (3) to act as a microfluidic valve, where the particles can be locally trapped in any desired location and the direction can be switched as desired. (4) to create nanocomposite material formation or even a thin nanocomposite film formation on the floating electrode. (5) to create a continuous concentration-gradient-generator nanofluidic device that may be obtained for nanoparticle translocation process. This may achieve nanometer-scale spatial accuracy sample sequencing by simultaneously controlling the electric field and concentration gradient.

  19. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.

    1996-12-01

    Current profile control is employed in the Madison Symmetric Torus reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 ms to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% andmore » the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.« less

  20. TRUMP. Transient & S-State Temperature Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  1. Magnetic Field Design for the LANL nEDM Experiment

    NASA Astrophysics Data System (ADS)

    Dadisman, Ryan

    2017-09-01

    A recent UCN source upgrade at LANSCE makes possible an order of magnitude advancement in the measurement of the neutron electric dipole moment by use of the familiar Ramsey method of separated oscillatory fields. A highly uniform B0 magnetic field is required to achieve sufficiently long spin-relaxation times and to suppress the false EDM caused by the geometric phase effect. We identified a multi-gap solenoid as an ideal candidate to simultaneously achieve the uniformity requirements, via optimization of the gap lengths between and current within different sections, and provide plentiful access to the fiducial region. Results from initial tests of the coil when installed in the magnetic shield house enclosing the experiment will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0014622.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  3. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    NASA Astrophysics Data System (ADS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-07-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.

  4. Middle- and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S. M.; Amory-Mazaudier, C.; Fleury, R.

    2016-04-01

    This paper presents a study of the St Patrick's Day storm of 2015, with its ionospheric response at middle and low latitudes. The effects of the storm in each longitudinal sector (Asian, African, American, and Pacific) are characterized using global and regional electron content. At the beginning of the storm, one or two ionospheric positive storm effects are observed depending on the longitudinal zones. After the main phase of the storm, a strong decrease in ionization is observed at all longitudes, lasting several days. The American region exhibits the most remarkable increase in vertical total electron content (vTEC), while in the Asian sector, the largest decrease in vTEC is observed. At low latitudes, using spectral analysis, we were able to separate the effects of the prompt penetration of the magnetospheric convection electric field (PPEF) and of the disturbance dynamo electric field (DDEF) on the basis of ground magnetic data. Concerning the PPEF, Earth's magnetic field oscillations occur simultaneously in the Asian, African, and American sectors, during southward magnetization of the Bz component of the interplanetary magnetic field. Concerning the DDEF, diurnal magnetic oscillations in the horizontal component H of the Earth's magnetic field exhibit a behavior that is opposed to the regular one. These diurnal oscillations are recognized to last several days in all longitudinal sectors. The observational data obtained by all sensors used in the present paper can be interpreted on the basis of existing theoretical models.

  5. Supported plasma sputtering apparatus for high deposition rate over large area

    DOEpatents

    Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils

    1977-01-01

    A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.

  6. Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording

    PubMed Central

    Kang, Hongki; Kim, Jee-Yeon; Choi, Yang-Kyu; Nam, Yoonkey

    2017-01-01

    In this research, a high performance silicon nanowire field-effect transistor (transconductance as high as 34 µS and sensitivity as 84 nS/mV) is extensively studied and directly compared with planar passive microelectrode arrays for neural recording application. Electrical and electrochemical characteristics are carefully characterized in a very well-controlled manner. We especially focused on the signal amplification capability and intrinsic noise of the transistors. A neural recording system using both silicon nanowire field-effect transistor-based active-type microelectrode array and platinum black microelectrode-based passive-type microelectrode array are implemented and compared. An artificial neural spike signal is supplied as input to both arrays through a buffer solution and recorded simultaneously. Recorded signal intensity by the silicon nanowire transistor was precisely determined by an electrical characteristic of the transistor, transconductance. Signal-to-noise ratio was found to be strongly dependent upon the intrinsic 1/f noise of the silicon nanowire transistor. We found how signal strength is determined and how intrinsic noise of the transistor determines signal-to-noise ratio of the recorded neural signals. This study provides in-depth understanding of the overall neural recording mechanism using silicon nanowire transistors and solid design guideline for further improvement and development. PMID:28350370

  7. Simultaneous Stress and Field Control of Sustainable Switching of Ferroelectric Phases

    PubMed Central

    Finkel, P.; Staruch, M.; Amin, A.; Ahart, M.; Lofland, S.E.

    2015-01-01

    In ferroelectrics, manifestation of a strong electromechanical coupling is attributed to both engineered domain morphology and phase transformations. However, realization of large sustainable and reversible strains and polarization rotation has been limited by fatigue, nonlinearity and hysteresis losses. Here, we demonstrate that large strain and polarization rotation can be generated for over 40 × 106 cycles with little fatigue by realization of a reversible ferroelectric-ferroelectric phase transition in [011] cut Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) relaxor ferroelectric single crystal. Direct tuning of this effect through combination of stress and applied electric field, confirmed both macroscopically and microscopically with x-ray and Raman scattering, reveals the local symmetry while sweeping through the transition with a low applied electric field (<0.2 MV/m) under mechanical stress. The observed change in local symmetry as determined by x-ray scattering confirms a proposed polarization rotation mechanism corresponding to a transition between rhombohedral and orthorhombic phases. These results shed more light onto the nature of this reversible transformation between two ferroelectric phases and advance towards the development of a wide range of ferroic and multiferroic devices. PMID:26345729

  8. Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording.

    PubMed

    Kang, Hongki; Kim, Jee-Yeon; Choi, Yang-Kyu; Nam, Yoonkey

    2017-03-28

    In this research, a high performance silicon nanowire field-effect transistor (transconductance as high as 34 µS and sensitivity as 84 nS/mV) is extensively studied and directly compared with planar passive microelectrode arrays for neural recording application. Electrical and electrochemical characteristics are carefully characterized in a very well-controlled manner. We especially focused on the signal amplification capability and intrinsic noise of the transistors. A neural recording system using both silicon nanowire field-effect transistor-based active-type microelectrode array and platinum black microelectrode-based passive-type microelectrode array are implemented and compared. An artificial neural spike signal is supplied as input to both arrays through a buffer solution and recorded simultaneously. Recorded signal intensity by the silicon nanowire transistor was precisely determined by an electrical characteristic of the transistor, transconductance. Signal-to-noise ratio was found to be strongly dependent upon the intrinsic 1/f noise of the silicon nanowire transistor. We found how signal strength is determined and how intrinsic noise of the transistor determines signal-to-noise ratio of the recorded neural signals. This study provides in-depth understanding of the overall neural recording mechanism using silicon nanowire transistors and solid design guideline for further improvement and development.

  9. [Use of magnetic therapy combined with galvanization and tissue electrophoresis in the treatment of trophic ulcers].

    PubMed

    Alekseenko, A V; Gusak, V V; Stoliar, V F; Iftodiĭ, A G; Tarabanchuk, V V; Shcherban, N G; Naumets, A A

    1993-01-01

    The results of treatment of 86 patients with the use of magnetotherapy in combination with galvanization and intratissue electrophoresis are presented. To create an electric field, the "Potok-1" apparatus with a density of current equal to 0.05-0.1 mA/cm2 was employed. Simultaneously, the "MAG-30" apparatus for low-frequency magnetotherapy with induction of 30 mT and area of exposure of 20 cm2 was applied to a trophic ulcer site. The use of magnetogalvanotherapy in the complex of treatment of trophic ulcers of the lower extremities is recommended.

  10. Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutaoka, Takanori, E-mail: tsutaok@hiroshima-u.ac.jp; Fukuyama, Koki; Kinoshita, Hideaki

    2013-12-23

    The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.

  11. Simultaneous Detection of Static and Dynamic Signals by a Flexible Sensor Based on 3D Graphene.

    PubMed

    Xu, Rongqing; Wang, Di; Zhang, Hongchao; Xie, Na; Lu, Shan; Qu, Ke

    2017-05-08

    A flexible acoustic pressure sensor was developed based on the change in electrical resistance of three-dimensional (3D) graphene change under the acoustic waves action. The sensor was constructed by 3D graphene foam (GF) wrapped in flexible polydimethylsiloxane (PDMS). Tuning forks and human physiological tests indicated that the acoustic pressure sensor can sensitively detect the deformation and the acoustic pressure in real time. The results are of significance to the development of graphene-based applications in the field of health monitoring, in vitro diagnostics, advanced therapies, and transient pressure detection.

  12. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue.

    PubMed

    Maidhof, Robert; Tandon, Nina; Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana

    2012-11-01

    Maintenance of normal myocardial function depends intimately on synchronous tissue contraction, driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue but, due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation and unconstrained (i.e. not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate these three key factors in concert. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modelling studies. We then cultured cardiac cells obtained from neonatal rats in porous, channelled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After 8 days of culture, constructs grown with simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23 ± 0.10% vs 0.14 ± 0.05%, 0.13 ± 0.08% or 0.09 ± 0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization compared to control groups. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Constraints on primordial magnetic fields from inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel; Kobayashi, Takeshi, E-mail: drgreen@cita.utoronto.ca, E-mail: takeshi.kobayashi@sissa.it

    2016-03-01

    We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T{sub reh} ∼< 10{sup 2} MeV can magnetic fields of 10{sup −15} G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative timemore » kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples.« less

  14. Simultaneous dynamic optical and electrical properties of endothelial cell attachment on indium tin oxide bioelectrodes.

    PubMed

    Choi, Chang K; English, Anthony E; Kihm, Kenneth D; Margraves, Charles H

    2007-01-01

    This study quantifies the dynamic attachment and spreading of porcine pulmonary artery endothelial cells (PPAECs) on optically thin, indium tin oxide (ITO) biosensors using simultaneous differential interference contrast microscopy (DICM) and electrical microimpedance spectroscopy. A lock-in amplifier circuit monitored the impedance of PPAECs cultivated on the transparent ITO bioelectrodes as a function of frequency between 10 Hz and 100 kHz and as a function of time, while DICM images were simultaneously acquired. A digital image processing algorithm quantified the cell-covered electrode area as a function of time. The results of this study show that the fraction of the cell-covered electrode area is in qualitative agreement with the electrical impedance during the attachment phase following the cell settling on the electrode surface. The possibility of several distinctly different states of electrode coverage and cellular attachment giving rise to similar impedance signals is discussed.

  15. New Science ang technology development about CSES and LAIC coupling mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhao, S.; Zhou, C.; Ren, Z.; Wu, Y.

    2016-12-01

    China CSES satellite will be launched in 2017. There are eight scientific payloads onboard. In order to bring them into full play, some new technologies and science have been developed in data processing and LAIC coupling mechanism. Based on the GPS constellation, the assimilation model of ionosphere on Ne has been developed by using EOF method., where E and F layer have been calculated separately under different coordinate systems. Furthermore, the Hall and Pederson conductivity have been obtained at the altitude of 90-500km. By using the TBB receiver data, the ionospheric tomography technology has been developed by employing the methods of Truncated Singular Value Decomposition, Spherical Function and Empirical Orthogonal Function (EOF). On the basis of beacon receiver data in China, the Ne profiles along the observing links have been built up, and their temporal features have been studied. The full wave propagation model of VLF radio waves has been improved, and the two-dimensional calculating results are displayed to reveal the spatial distribution features of these radio waves. The actual observation on DEMETER satellite of ground transmitters is compared with the 2D theoretical results, and their consistence verifies the reliability of the model. By emitting the high power HF signals into the space, one can disturb and cause the heating phenomena in lower and topside ionosphere. Three heating events have been chosen out in SURA-DEMETER experiments. Based on the Ohmic heating theory, a 3D model has been constructed to simulate the heating process, in which the disturbed amplitudes in Ne are close to the actual observing under different ionospheric state. In the LAIC model related to earthquake research, the DC electric field coupling model has been paid more attention in recent years.Some simultaneous variation phenomena have been obtained around earthquakes. To explain these disturbances, the electric field model is suggested and improved, in which the additional current at the ground surface is considered. It is found that, vertical electric field is more obvious at low latitude and the horizontal electric field does not change with the height at high latitudes. The penetration height of LAI electric field in ionosphere is lower at low latitude than that at high latitude.

  16. Characteristics of NLDN-Reported Radio Frequency Emissions Associated with Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Mailyan, B. G.; Nag, A.; Murphy, M. J.; Briggs, M. S.; Dwyer, J. R.; Cramer, E.; Stanbro, M.; Roberts, O. J.; Rassoul, H.

    2017-12-01

    Electric and magnetic field signals in the radio frequency range associated with Terrestrial Gamma-ray Flashes (TGFs) have become important measurements for studying this high-energy atmospheric phenomenon. These signals can be used to geolocate the source of TGFs, but they also provide insights into the TGF production mechanism, and the relationship between particle fluxes and lightning. In this study, we analyze 32 TGFs detected by the Fermi Gamma-ray Burst Monitor (GBM) occurring in 2014-2016 in conjunction with data from the U.S. National Lightning Detection Network (NLDN). We examine the characteristics of magnetic field waveforms measured by NLDN sensors for 48 pulses occurring within 5 ms of the peak-time of the gamma-ray photon flux. The -3 dB bandwidth of the NLDN sensors are from about 400 Hz to 400 KHz. For 15 (out of 32) TGFs, the associated NLDN pulse occurred almost simultaneously with (that is, within 300 μs of) the TGF. It is possible that these near-simultaneous low frequency magnetic field pulses were produced by relativistic electron beams. The median time interval between the beginning of these near-simultaneous NLDN pulses and the peak-times of the TGF flux is 38 μs. 3 out of 16 ( 19%) of these pulses had negative initial polarity. The absolute value of NLDN-estimated peak currents, which can be viewed as a quantity proportional to the peak magnetic radiation field of these pulses, ranges from 17 kA to 166 kA, with the median being 32 kA. Twelve pulses had peak currents less than 50 kA. Additionally, we will compare the characteristics of GBM-reported gamma-ray signatures of the two categories of TGFs, those with a near-simultaneous NLDN-detected pulse and those with no such pulse (but with other pulses detected by the NLDN occurring within 5 ms of the TGF). Also, one of the TGFs occurred within the coverage region of the Kennedy Space Center Lightning Mapping Array (LMA). We will examine in detail the LMA, NLDN, and NEXRAD radar data for this TGF.

  17. The magnetoactive electret

    NASA Astrophysics Data System (ADS)

    Monkman, G. J.; Sindersberger, D.; Diermeier, A.; Prem, N.

    2017-07-01

    A magnet which adheres to every surface, not only those of ferromagnetic materials, has hitherto been the domain of science fiction. Now for the first time such a novel device exists. The fusion of a permanently magnetized magnetoactive polymer containing hard magnetic particles and an electret enhanced with ferroelectric particles has resulted in the development of a new smart device—the magnetoactive electret. Magnetoactive electrets can be made to exhibit the usual magnetic properties of permanent magnetism together with the electrostatic properties of electrets. This results in simultaneous magnetoadhesion and electroadhesion forces from the same elastomeric element. The biasing field, needed to avoid discontinuities concerned with transition through the zero point in operating curves, is normally provided by means of either a magnetic or an electric field. This novel technology provides both bias options in a single device.

  18. A case study of the cusp electrodynamics by the Aureol-3 satellite - Evidence for FTE signatures?

    NASA Technical Reports Server (NTRS)

    Bosqued, Jean M.; Berthelier, Annick; Berthelier, Jean J.; Escoubet, Christophe P.

    1991-01-01

    Particle and field data from a pass of the Aureol-3 satellite through the polar cusp, several minutes after the southward turning of the IMF, are analyzed in detail. Superposed on the classical cusp, characterized by the typical ion and electron precipitations, several very narrow arcs are detected where large fluxes of electrons and ions, accelerated to 2-4 keV, precipitate simultaneously. These localized arcs correspond to the upward current sheets of a succession in latitude of narrow, alternatively upward and downward field-aligned current sheets. The data suggest that the satellite has crossed the ionospheric footprints of 2 adjacent flux transfer events separated by 100-150 km in latitude. Electric spikes and electromagnetic turbulence are typically associated with the region of downward currents.

  19. Spatial Analysis of Slowly Oscillating Electric Activity in the Gut of Mice Using Low Impedance Arrayed Microelectrodes

    PubMed Central

    Taniguchi, Mizuki; Kajioka, Shunichi; Shozib, Habibul B.; Sawamura, Kenta; Nakayama, Shinsuke

    2013-01-01

    Smooth and elaborate gut motility is based on cellular cooperation, including smooth muscle, enteric neurons and special interstitial cells acting as pacemaker cells. Therefore, spatial characterization of electric activity in tissues containing these electric excitable cells is required for a precise understanding of gut motility. Furthermore, tools to evaluate spatial electric activity in a small area would be useful for the investigation of model animals. We thus employed a microelectrode array (MEA) system to simultaneously measure a set of 8×8 field potentials in a square area of ∼1 mm2. The size of each recording electrode was 50×50 µm2, however the surface area was increased by fixing platinum black particles. The impedance of microelectrode was sufficiently low to apply a high-pass filter of 0.1 Hz. Mapping of spectral power, and auto-correlation and cross-correlation parameters characterized the spatial properties of spontaneous electric activity in the ileum of wild-type (WT) and W/Wv mice, the latter serving as a model of impaired network of pacemaking interstitial cells. Namely, electric activities measured varied in both size and cooperativity in W/Wv mice, despite the small area. In the ileum of WT mice, procedures suppressing the excitability of smooth muscle and neurons altered the propagation of spontaneous electric activity, but had little change in the period of oscillations. In conclusion, MEA with low impedance electrodes enables to measure slowly oscillating electric activity, and is useful to evaluate both histological and functional changes in the spatio-temporal property of gut electric activity. PMID:24124480

  20. Surface magnetometer experiments - Internal lunar properties

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Daily, W. D.; Parkin, C. W.

    1973-01-01

    Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are respectively 38, 103 (maximum), 3, and 327 gamma (maximum). Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites are compressed and that the scale size of the Apollo 16 remanent field is 5 less than or equal to L less than 100 km. The global eddy current fields, induced by magnetic step transients in the solar wind, have been analyzed to calculate an electrical conductivity profile. From nightside data it has been found that deeper than 170 km into the moon, the conductivity rises from .0003 mho/m to .01 mho/m at 1000 km depth. Analysis of dayside transient data using a spherically symmetric two-layer model yields a homogeneous conducting core with a radius equal to 0.9 lunar radius and a conductivity of .001 mho/m, surrounded by a nonconducting shell of thickness equal to 0.1 lunar radius.

  1. THOR Field and Wave Processor - FWP

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Rothkaehl, Hanna; Balikhin, Michael; Zaslavsky, Arnaud; Nakamura, Rumi; Khotyaintsev, Yuri; Uhlir, Ludek; Lan, Radek; Yearby, Keith; Morawski, Marek; Winkler, Marek

    2016-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first mission ever flown in space dedicated to plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer and search-coil magnetometer (SCM) and perform data digitization and on-board processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The feasibility of making highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation complemented by a thorough electromagnetic cleanliness program will further improve on this heritage. Taking advantage of the capabilities of modern electronics, FWP will provide simultaneous synchronized waveform and spectral data products at high time resolution from the numerous THOR sensors, taking advantage of the large telemetry bandwidth of THOR. FWP will also implement a plasma a resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will be interfaced with the particle instrument data processing unit (PPU) via a dedicated digital link which will enable performing on board correlation between waves and particles, quantifying the transfer of energy between waves and particles. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.

  2. Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant Douglas (Inventor); Woodard, Stanley E. (Inventor)

    2012-01-01

    A wireless electrical device includes an electrically unconnected electrical conductor and at least one electrically unconnected electrode spaced apart from the electrical conductor. The electrical conductor is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. Each electrode is at a location lying within the magnetic field response so-generated and is constructed such that a linear movement of electric charges is generated in each electrode due to the magnetic field response so-generated.

  3. 46 CFR 113.35-7 - Electric engine order telegraph systems; operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transmitter handle automatically connects that transmitter electrically to the engineroom indicator and simultaneously disconnects electrically all other transmitters. The reply pointers of all transmitters must... manually operated transfer switch which will disconnect the system in the unattended navigating bridge must...

  4. Static electric fields modify the locomotory behaviour of cockroaches.

    PubMed

    Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L

    2011-06-15

    Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.

  5. Analysis of eletrectrohydrodynamic jetting using multifunctional and three-dimensional tomography

    NASA Astrophysics Data System (ADS)

    Ko, Han Seo; Nguyen, Xuan Hung; Lee, Soo-Hong; Kim, Young Hyun

    2013-11-01

    Three-dimensional optical tomography technique was developed to reconstruct three-dimensional flow fields using a set of two-dimensional shadowgraphic images and normal gray images. From three high speed cameras, which were positioned at an offset angle of 45° relative to one another, number, size and location of electrohydrodynamic jets with respect to the nozzle position were analyzed using shadowgraphic tomography employing a multiplicative algebraic reconstruction technique (MART). Additionally, a flow field inside cone-shaped liquid (Taylor cone) which was induced under electric field was also observed using a simultaneous multiplicative algebraic reconstruction technique (SMART) for reconstructing intensities of particle light and combining with a three-dimensional cross correlation. Various velocity fields of a circulating flow inside the cone-shaped liquid due to different physico-chemical properties of liquid and applied voltages were also investigated. This work supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. S-2011-0023457).

  6. Coincident Observation of Lightning using Spaceborne Spectrophotometer and Ground-Level Electromagnetic Sensors

    NASA Technical Reports Server (NTRS)

    Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong; hide

    2012-01-01

    The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.

  7. Nonlinear interaction of an intense radio wave with ionospheric D/E layer plasma

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Agarwal, Sujeet Kumar

    2018-05-01

    This paper considers the nonlinear interaction of an intense electromagnetic wave with the D/E layer plasma in the ionosphere. A simultaneous solution of the electromagnetic wave equation and the equations describing the kinetics of D/E layer plasma is obtained; the phenomenon of ohmic heating of electrons by the electric field of the wave causes enhanced collision frequency and ionization of neutral species. Electron temperature dependent recombination of electrons with ions, electron attachment to O 2 molecules, and detachment of electrons from O2 - ions has also been taken into account. The dependence of the plasma parameters on the square of the electric vector of the wave E0 2 has been evaluated for three ionospheric heights (viz., 90, 100, and 110 km) corresponding to the mid-latitude mid-day ionosphere and discussed; these results are used to investigate the horizontal propagation of an intense radio wave at these heights.

  8. Medium wave exposure characterisation using exposure quotients.

    PubMed

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Pinar, Iván

    2010-06-01

    One of the aspects considered in the International Commission on Non-Ionizing Radiation Protection guidelines is that, in situations of simultaneous exposure to fields of different frequencies, exposure quotients for thermal and electrical stimulation effects should be examined. The aim of the present work was to analyse the electromagnetic radiation levels and exposure quotients for exposure to multiple-frequency sources in the vicinity of medium wave radio broadcasting antennas. The measurements were made with a spectrum analyser and a monopole antenna. Kriging interpolation was used to prepare contour maps and to estimate the levels in the towns and villages of the zone. The results showed that the exposure quotient criterion based on electrical stimulation effects to be more stringent than those based on thermal effects or power density levels. Improvement of dosimetry evaluations requires the spectral components of the radiation to be quantified, followed by application of the criteria for exposure to multiple-frequency sources.

  9. Hydrogen and electricity production in a light-assisted microbial photoelectrochemical cell with CaFe2O4 photocathode

    NASA Astrophysics Data System (ADS)

    Chen, Qing-Yun; Zhang, Kai; Liu, Jian-Shan; Wang, Yun-Hai

    2017-04-01

    A microbial photoelectrochemical cell (MPEC) was designed with a p-type CaFe2O4 semiconductor as the photoelectrode for simultaneous hydrogen and electricity production under light illumination. The CaFe2O4 photoelectrode was synthesized by the sol-gel method and well characterized by x-ray diffraction, field emission scanning electron microscope, and UV-Vis-NIR spectrophotometer. The linear sweep voltammogram of the CaFe2O4 photoelectrode presented the cathodic photocurrent output. For the MPEC, with an external resistance of 2000 Ω, the maximum power density of 143 mW was obtained. Furthermore, with an external resistance of 100 Ω, the maximum hydrogen production rate of 6.7 μL·cm-2 could be achieved. The MPEC with CaFe2O4 photocathode was compared to MPEC with other photocathodes as well as photocatalytic water splitting technology.

  10. Thermoelectric detection and imaging of propagating graphene plasmons.

    PubMed

    Lundeberg, Mark B; Gao, Yuanda; Woessner, Achim; Tan, Cheng; Alonso-González, Pablo; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Hillenbrand, Rainer; Koppens, Frank H L

    2017-02-01

    Controlling, detecting and generating propagating plasmons by all-electrical means is at the heart of on-chip nano-optical processing. Graphene carries long-lived plasmons that are extremely confined and controllable by electrostatic fields; however, electrical detection of propagating plasmons in graphene has not yet been realized. Here, we present an all-graphene mid-infrared plasmon detector operating at room temperature, where a single graphene sheet serves simultaneously as the plasmonic medium and detector. Rather than achieving detection via added optoelectronic materials, as is typically done in other plasmonic systems, our device converts the natural decay product of the plasmon-electronic heat-directly into a voltage through the thermoelectric effect. We employ two local gates to fully tune the thermoelectric and plasmonic behaviour of the graphene. High-resolution real-space photocurrent maps are used to investigate the plasmon propagation and interference, decay, thermal diffusion, and thermoelectric generation.

  11. Stackable differential mobility analyzer for aerosol measurement

    DOEpatents

    Cheng, Meng-Dawn [Oak Ridge, TN; Chen, Da-Ren [Creve Coeur, MO

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  12. Self-assembly with orthogonal-imposed stimuli to impart structure and confer magnetic function to electrodeposited hydrogels.

    PubMed

    Li, Ying; Liu, Yi; Gao, Tieren; Zhang, Boce; Song, Yingying; Terrell, Jessica L; Barber, Nathan; Bentley, William E; Takeuchi, Ichiro; Payne, Gregory F; Wang, Qin

    2015-05-20

    A magnetic nanocomposite film with the capability of reversibly collecting functionalized magnetic particles was fabricated by simultaneously imposing two orthogonal stimuli (electrical and magnetic). We demonstrate that cathodic codeposition of chitosan and Fe3O4 nanoparticles while simultaneously applying a magnetic field during codeposition can (i) organize structure, (ii) confer magnetic properties, and (iii) yield magnetic films that can perform reversible collection/assembly functions. The magnetic field triggered the self-assembly of Fe3O4 nanoparticles into hierarchical "chains" and "fibers" in the chitosan film. For controlled magnetic properties, the Fe3O4-chitosan film was electrodeposited in the presence of various strength magnetic fields and different deposition times. The magnetic properties of the resulting films should enable broad applications in complex devices. As a proof of concept, we demonstrate the reversible capture and release of green fluorescent protein (EGFP)-conjugated magnetic microparticles by the magnetic chitosan film. Moreover, antibody-functionalized magnetic microparticles were applied to capture cells from a sample, and these cells were collected, analyzed, and released by the magnetic chitosan film, paving the way for applications such as reusable biosensor interfaces (e.g., for pathogen detection). To our knowledge, this is the first report to apply a magnetic field during the electrodeposition of a hydrogel to generate magnetic soft matter. Importantly, the simple, rapid, and reagentless fabrication methodologies demonstrated here are valuable features for creating a magnetic device interface.

  13. Electric charging influence in holograms of total internal reflection, recorded in a very thin chalcogenide film

    NASA Astrophysics Data System (ADS)

    Vlaeva, I.; Petkov, K.; Tasseva, J.; Todorov, R.; Yovcheva, T.; Sainov, S.

    2010-12-01

    We report the results of electric field influence on holographic recording in very thin chalcogenide glass films. The total internal reflection prism recording technique (Stetson's scheme) is applied for holographic recording. The main advantage of this scheme is the possibility of holographic recording in micro- and nanometer thick photosensitive materials. In the present work, 30 nm, 50 nm and 1.0 µm thick films are used. In the 1.0 µm thick film two slanted gratings are simultaneously recorded. In this recording geometry only one reconstructed beam is observed. The corona charging influence on the diffraction efficiency of the recorded gratings is investigated. A negative voltage of 5 kV is applied to the corona electrode (needle) prior to the holographic recording. The observed diffraction efficiency of charged samples is always higher in comparison with uncharged samples. The reconstructed beam intensity is monitored with a red (635 nm) semiconductor laser. The possible reason is an additional refractive index modulation due to the increase in polarization, caused by the electric charging.

  14. Electric Field Sensor for Lightning Early Warning System

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Mohammed, R.; Sabu, S.; Joby, N. E.

    2017-12-01

    Electric field mills are used popularly for atmospheric electric field measurements. Atmospheric Electric Field variation is the primary signature for Lightning Early Warning systems. There is a characteristic change in the atmospheric electric field before lightning during a thundercloud formation.A voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. A varactor based mini electric field measurement system is developed, to detect any change in the atmospheric electric field and to issue lightning early warning system. Since this is a low-cost device, this can be used for developing countries which are facing adversities. A network of these devices can help in forming a spatial map of electric field variations over a region, and this can be used for more improved atmospheric electricity studies in developing countries.

  15. Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution.

    PubMed

    Bangera, Nitin B; Schomer, Donald L; Dehghani, Nima; Ulbert, Istvan; Cash, Sydney; Papavasiliou, Steve; Eisenberg, Solomon R; Dale, Anders M; Halgren, Eric

    2010-12-01

    Forward solutions with different levels of complexity are employed for localization of current generators, which are responsible for the electric and magnetic fields measured from the human brain. The influence of brain anisotropy on the forward solution is poorly understood. The goal of this study is to validate an anisotropic model for the intracranial electric forward solution by comparing with the directly measured 'gold standard'. Dipolar sources are created at known locations in the brain and intracranial electroencephalogram (EEG) is recorded simultaneously. Isotropic models with increasing level of complexity are generated along with anisotropic models based on Diffusion tensor imaging (DTI). A Finite Element Method based forward solution is calculated and validated using the measured data. Major findings are (1) An anisotropic model with a linear scaling between the eigenvalues of the electrical conductivity tensor and water self-diffusion tensor in brain tissue is validated. The greatest improvement was obtained when the stimulation site is close to a region of high anisotropy. The model with a global anisotropic ratio of 10:1 between the eigenvalues (parallel: tangential to the fiber direction) has the worst performance of all the anisotropic models. (2) Inclusion of cerebrospinal fluid as well as brain anisotropy in the forward model is necessary for an accurate description of the electric field inside the skull. The results indicate that an anisotropic model based on the DTI can be constructed non-invasively and shows an improved performance when compared to the isotropic models for the calculation of the intracranial EEG forward solution.

  16. Apparatuses and methods for generating electric fields

    DOEpatents

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  17. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.

    PubMed

    Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke

    2017-07-06

    We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.

  18. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields.

    PubMed

    Garcia-Cossio, Eliana; Witkowski, Matthias; Robinson, Stephen E; Cohen, Leonardo G; Birbaumer, Niels; Soekadar, Surjo R

    2016-10-15

    Transcranial direct current stimulation (tDCS) can influence cognitive, affective or motor brain functions. Whereas previous imaging studies demonstrated widespread tDCS effects on brain metabolism, direct impact of tDCS on electric or magnetic source activity in task-related brain areas could not be confirmed due to the difficulty to record such activity simultaneously during tDCS. The aim of this proof-of-principal study was to demonstrate the feasibility of whole-head source localization and reconstruction of neuromagnetic brain activity during tDCS and to confirm the direct effect of tDCS on ongoing neuromagnetic activity in task-related brain areas. Here we show for the first time that tDCS has an immediate impact on slow cortical magnetic fields (SCF, 0-4Hz) of task-related areas that are identical with brain regions previously described in metabolic neuroimaging studies. 14 healthy volunteers performed a choice reaction time (RT) task while whole-head magnetoencephalography (MEG) was recorded. Task-related source-activity of SCFs was calculated using synthetic aperture magnetometry (SAM) in absence of stimulation and while anodal, cathodal or sham tDCS was delivered over the right primary motor cortex (M1). Source reconstruction revealed task-related SCF modulations in brain regions that precisely matched prior metabolic neuroimaging studies. Anodal and cathodal tDCS had a polarity-dependent impact on RT and SCF in primary sensorimotor and medial centro-parietal cortices. Combining tDCS and whole-head MEG is a powerful approach to investigate the direct effects of transcranial electric currents on ongoing neuromagnetic source activity, brain function and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields

    PubMed Central

    Garcia-Cossio, Eliana; Witkowski, Matthias; Robinson, Stephen E.; Cohen, Leonardo G.; Birbaumer, Niels; Soekadar, Surjo R.

    2016-01-01

    Transcranial direct current stimulation (tDCS) can influence cognitive, affective or motor brain functions. Whereas previous imaging studies demonstrated widespread tDCS effects on brain metabolism, direct impact of tDCS on electric or magnetic source activity in task-related brain areas could not be confirmed due to the difficulty to record such activity simultaneously during tDCS. The aim of this proof-of-principal study was to demonstrate the feasibility of whole-head source localization and reconstruction of neuromagnetic brain activity during tDCS and to confirm the direct effect of tDCS on ongoing neuromagnetic activity in task-related brain areas. Here we show for the first time that tDCS has an immediate impact on slow cortical magnetic fields (SCF, 0–4 Hz) of task-related areas that are identical with brain regions previously described in metabolic neuroimaging studies. 14 healthy volunteers performed a choice reaction time (RT) task while whole-head magnetoencephalography (MEG) was recorded. Task-related source-activity of SCFs was calculated using synthetic aperture magnetometry (SAM) in absence of stimulation and while anodal, cathodal or sham tDCS was delivered over the right primary motor cortex (M1). Source reconstruction revealed task-related SCF modulations in brain regions that precisely matched prior metabolic neuroimaging studies. Anodal and cathodal tDCS had a polarity-dependent impact on RT and SCF in primary sensorimotor and medial centro-parietal cortices. Combining tDCS and whole-head MEG is a powerful approach to investigate the direct effects of transcranial electric currents on ongoing neuromagnetic source activity, brain function and behavior. PMID:26455796

  20. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  1. Hot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices

    NASA Astrophysics Data System (ADS)

    Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav

    2017-03-01

    Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.

  2. Cluster electric current density measurements within a magnetic flux rope in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.

    2003-01-01

    On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.

  3. Saturation of the Electric Field Transmitted to the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James A.

    2010-01-01

    We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.

  4. Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis.

    PubMed

    Whitmore, Nathan W; Lin, Shih-Chieh

    2016-05-15

    Local field potentials (LFPs) are commonly thought to reflect the aggregate dynamics in local neural circuits around recording electrodes. However, we show that when LFPs are recorded in awake behaving animals against a distal reference on the skull as commonly practiced, LFPs are significantly contaminated by non-local and non-neural sources arising from the reference electrode and from movement-related noise. In a data set with simultaneously recorded LFPs and electroencephalograms (EEGs) across multiple brain regions while rats perform an auditory oddball task, we used independent component analysis (ICA) to identify signals arising from electrical reference and from volume-conducted noise based on their distributed spatial pattern across multiple electrodes and distinct power spectral features. These sources of distal electrical signals collectively accounted for 23-77% of total variance in unprocessed LFPs, as well as most of the gamma oscillation responses to the target stimulus in EEGs. Gamma oscillation power was concentrated in volume-conducted noise and was tightly coupled with the onset of licking behavior, suggesting a likely origin of muscle activity associated with body movement or orofacial movement. The removal of distal signal contamination also selectively reduced correlations of LFP/EEG signals between distant brain regions but not within the same region. Finally, the removal of contamination from distal electrical signals preserved an event-related potential (ERP) response to auditory stimuli in the frontal cortex and also increased the coupling between the frontal ERP amplitude and neuronal activity in the basal forebrain, supporting the conclusion that removing distal electrical signals unmasked local activity within LFPs. Together, these results highlight the significant contamination of LFPs by distal electrical signals and caution against the straightforward interpretation of unprocessed LFPs. Our results provide a principled approach to identify and remove such contamination to unmask local LFPs. Published by Elsevier Inc.

  5. Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis

    PubMed Central

    Whitmore, Nathan W.; Lin, Shih-Chieh

    2016-01-01

    Local field potentials (LFPs) are commonly thought to reflect the aggregate dynamics in local neural circuits around recording electrodes. However, we show that when LFPs are recorded in awake behaving animals against a distal reference on the skull as commonly practiced, LFPs are significantly contaminated by non-local and non-neural sources arising from the reference electrode and from movement-related noise. In a data set with simultaneously recorded LFPs and electroencephalograms (EEGs) across multiple brain regions while rats perform an auditory oddball task, we used independent component analysis (ICA) to identify signals arising from electrical reference and from volume-conducted noise based on their distributed spatial pattern across multiple electrodes and distinct power spectral features. These sources of distal electrical signals collectively accounted for 23–77% of total variance in unprocessed LFPs, as well as most of the gamma oscillation responses to the target stimulus in EEGs. Gamma oscillation power was concentrated in volume-conducted noise and was tightly coupled with the onset of licking behavior, suggesting a likely origin of muscle activity associated with body movement or orofacial movement. The removal of distal signal contamination also selectively reduced correlations of LFP/EEG signals between distant brain regions but not within the same region. Finally, the removal of contamination from distal electrical signals preserved an event-related potential (ERP) response to auditory stimuli in the frontal cortex and also increased the coupling between the frontal ERP amplitude and neuronal activity in the basal forebrain, supporting the conclusion that removing distal electrical signals unmasked local activity within LFPs. Together, these results highlight the significant contamination of LFPs by distal electrical signals and caution against the straightforward interpretation of unprocessed LFPs. Our results provide a principled approach to identify and remove such contamination to unmask local LFPs. PMID:26899209

  6. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: II. The formation of 'lightnings'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Istomin, Ya. N., E-mail: istomin@lpi.ru; Sob'yanin, D. N., E-mail: sobyanin@lpi.ru

    2011-10-15

    The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning-a lengthening and simultaneously expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number ofmore » electron-positron pairs produced in the lightning in its lifetime reaches 10{sup 28}. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).« less

  7. Nonlinear theory for axisymmetric self-similar two-dimensional oscillations of electrons in cold plasma with constant proton background

    NASA Astrophysics Data System (ADS)

    Osherovich, V. A.; Fainberg, J.

    2018-01-01

    We consider simultaneous oscillations of electrons moving both along the axis of symmetry and also in the direction perpendicular to the axis. We derive a system of three nonlinear ordinary differential equations which describe self-similar oscillations of cold electrons in a constant proton density background (np = n0 = constant). These three equations represent an exact class of solutions. For weak nonlinear conditions, the frequency spectra of electric field oscillations exhibit split frequency behavior at the Langmuir frequency ωp0 and its harmonics, as well as presence of difference frequencies at low spectral values. For strong nonlinear conditions, the spectra contain peaks at frequencies with values ωp0(n +m √{2 }) , where n and m are integer numbers (positive and negative). We predict that both spectral types (weak and strong) should be observed in plasmas where axial symmetry may exist. To illustrate possible applications of our theory, we present a spectrum of electric field oscillations observed in situ in the solar wind by the WAVES experiment on the Wind spacecraft during the passage of a type III solar radio burst.

  8. Testing Solar Flare Models with BATSE

    NASA Astrophysics Data System (ADS)

    Zarro, Dominic M.

    1995-07-01

    We propose to use high-sensitivity Burst and Transient Source Experiment (BATSE) hard X-ray observations to test the thick-target and electric field acceleration models of solar flares. We will compare the predictions made by these models with hard X-ray spectral observations obtained with BATSE and simultaneous soft X-ray Ca XIX emission observed with the Yohkoh Bragg Crystal Spectrometer (BCS). The increased sensitivities of the BATSE and BCS (relative to previous detectors) permits a renewed study of the relationship between heating and dynamical motions during the crucial rise phase of flares. With these observations, we will: (1) investigate the ability of the thick-target model to explain the temporal evolution of hard X-ray emission relative to the soft X-ray blueshift during the earliest stages of the impulsive phase; and (2) search for evidence of electric-field acceleration as implied by temporal correlations between hard X-ray spectral breaks and the Ca XIX blueshift. The proposed study will utilize hard X-ray lightcurve and spectral measurements in the 10-100 keV energy range obtained with the BATSE Large Area Detectors (LAD). The DISCLA and CONT data will be the primary data products used in this analysis.

  9. Preparation and flash sintering of MgTiO3 nanopowders obtained by the polyacrylamide gel method

    NASA Astrophysics Data System (ADS)

    Su, Xinghua; Bai, Ge; Zhang, Jing; Zhou, Jie; Jia, Yongjie

    2018-06-01

    Using a polyacrylamide gel method, phase pure and well-dispersed MgTiO3 nanopowders were prepared at 800 °C for 2 h. It was found that a high mole ratio of monomers to precursors resulted in low formation temperature of MgTiO3, due to the highly mixing homogeneity and smaller particle sizes of precursors. Sintering behaviors of MgTiO3 nanopowders under DC electric field from 500 to 800 V/cm were investigated. Nearly full dense MgTiO3 ceramics can be prepared in 30 s. An abrupt and simultaneous increase in current density and power dissipation were observed in sintering process, which are characteristics of flash sintering. The power dissipation for the flash sintering was found to be 82 mW/mm3. The densities and average grain sizes of samples increase with the increase of the electrical field strength. It was suggested that Joule heating was the main mechanism of flash sintering of MgTiO3 ceramics. Our work provides a useful route for the fabrication of dense MgTiO3 ceramics at low temperature in short time.

  10. Polarization selective phase-change nanomodulator

    PubMed Central

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-01-01

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. This architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements. PMID:25346427

  11. Concurrent DNA Preconcentration and Separation in Bipolar Electrode-Based Microfluidic Device

    PubMed Central

    Song, Hongjun; Wang, Yi; Garson, Charles; Pant, Kapil

    2015-01-01

    This paper presents a bipolar electrode (BPE) device in a microfluidic dual-channel design for concurrent preconcentration and separation of composite DNA containing samples. The novelty of the present effort relies on the combination of BPE-induced ion concentration polarization (ICP) and end-labeled free-solution electrophoresis (ELFSE). The ion concentration polarization effect arising from the faradaic reaction on the BPE is utilized to exert opposing electrophoretic and electroosmotic forces on the DNA samples. Meanwhile, end-labeled free-solution electrophoresis alters the mass-charge ratio to enable simultaneous DNA separation in free solution. The microfluidic device was fabricated using standard and soft lithography techniques to form gold-on-glass electrode capped with a PDMS microfluidic channel. Experimental testing with various DNA samples was carried out over a range of applied electric field. Concentration ratios up to 285× within 5 minutes for a 102-mer DNA, and concurrent preconcentration and free-solution separation of binary mixture of free and bound 102-mer DNA within 6 minutes was demonstrated. The effect of applied electric field was also interrogated with respect to pertinent performance metrics of preconcentration and separation. PMID:26005497

  12. Wannier-Mott Excitons in Nanoscale Molecular Ices

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Muñoz Caro, G. M.; Aparicio, S.; Jiménez-Escobar, A.; Lasne, J.; Rosu-Finsen, A.; McCoustra, M. R. S.; Cassidy, A. M.; Field, D.

    2017-10-01

    The absorption of light to create Wannier-Mott excitons is a fundamental feature dictating the optical and photovoltaic properties of low band gap, high permittivity semiconductors. Such excitons, with an electron-hole separation an order of magnitude greater than lattice dimensions, are largely limited to these semiconductors but here we find evidence of Wannier-Mott exciton formation in solid carbon monoxide (CO) with a band gap of >8 eV and a low electrical permittivity. This is established through the observation that a change of a few degrees K in deposition temperature can shift the electronic absorption spectra of solid CO by several hundred wave numbers, coupled with the recent discovery that deposition of CO leads to the spontaneous formation of electric fields within the film. These so-called spontelectric fields, here approaching 4 ×107 V m-1 , are strongly temperature dependent. We find that a simple electrostatic model reproduces the observed temperature dependent spectral shifts based on the Stark effect on a hole and electron residing several nm apart, identifying the presence of Wannier-Mott excitons. The spontelectric effect in CO simultaneously explains the long-standing enigma of the sensitivity of vacuum ultraviolet spectra to the deposition temperature.

  13. Polarization selective phase-change nanomodulator

    DOE PAGES

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-10-27

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume ofmore » only 0.002 µm 3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.« less

  14. A modified Stillinger-Weber potential for TlBr and its polymorphic extension

    DOE PAGES

    Zhou, Xiaowang; Foster, Michael E.; Jones, Reese E.; ...

    2015-04-30

    TlBr is promising for g- and x- radiation detection, but suffers from rapid performance degradation under the operating external electric fields. To enable molecular dynamics (MD) studies of this degradation, we have developed a Stillinger-Weber type of TlBr interatomic potential. During this process, we have also addressed two problems of wider interests. First, the conventional Stillinger-Weber potential format is only applicable for tetrahedral structures (e.g., diamond-cubic, zinc-blende, or wurtzite). Here we have modified the analytical functions of the Stillinger-Weber potential so that it can now be used for other crystal structures. Second, past modifications of interatomic potentials cannot always bemore » applied by a broad community because any new analytical functions of the potential would require corresponding changes in the molecular dynamics codes. Here we have developed a polymorphic potential model that simultaneously incorporates Stillinger-Weber, Tersoff, embedded-atom method, and any variations (i.e., modified functions) of these potentials. As a result, we have implemented this polymorphic model in MD code LAMMPS, and demonstrated that our TlBr potential enables stable MD simulations under external electric fields.« less

  15. One-step production of multilayered microparticles by tri-axial electro-flow focusing

    NASA Astrophysics Data System (ADS)

    Si, Ting; Feng, Hanxin; Li, Yang; Luo, Xisheng; Xu, Ronald

    2014-03-01

    Microencapsulation of drugs and imaging agents in the same carrier is of great significance for simultaneous detection and treatment of diseases. In this work, we have developed a tri-axial electro-flow focusing (TEFF) device using three needles with a novel concentric arrangement to one-step form multilayered microparticles. The TEFF process can be characterized as a multi-fluidic compound cone-jet configuration in the core of a high-speed coflowing gas stream under an axial electric field. The tri-axial liquid jet eventually breaks up into multilayered droplets. To validate the method, the effect of main process parameters on characteristics of the cone and the jet has been studied experimentally. The applied electric field can dramatically promote the stability of the compound cone and enhance the atomization of compound liquid jets. Microparticles with both three-layer, double-layer and single-layer structures have been obtained. The results show that the TEFF technique has great benefits in fabricating multilayered microparticles at smaller scales. This method will be able to one-step encapsulate multiple therapeutic and imaging agents for biomedical applications such as multi-modal imaging, drug delivery and biomedicine.

  16. Plasma currents and anisotropy in the tail-dipole transition region

    NASA Astrophysics Data System (ADS)

    Artemyev, A.; Zhang, X. J.; Angelopoulos, V.; Runov, A.

    2017-12-01

    Using conjugated THEMIS and Van Allen Probes observations in the nightside magnetosphere, we examine statistically plasma and magnetic field characteristics at multiple locations simultaneously across the 3-10 RE region (i.e., across the tail-dipole transition region, whose location depends on tail flux loading and the strength of global convection). We find that the spatial distributions of ion and electron anisotropies vary significantly but systematically with radial distance and geomagnetic activity. For low Kp (<2), ions are transversely anisotropic near Earth but isotropic in the tail, whereas electrons are isotropic closer to Earth but field-aligned in tail. For large Kp (>4), the anisotropy profiles for ions and electrons reverse: ions are isotropic closer to the Earth and field-aligned in the tail, whereas electrons are transversely anisotropic closer to Earth but isotropic in the tail. Using the measured plasma anisotropy radial profiles we estimate the currents from curvature drifts and compare them with diamagnetic currents. We also discuss the implications of the observed plasma anisotropies for the presence and spatial distribution of field-aligned electric fields.

  17. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  18. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... automatically available as an alternate source of electrical energy to allow continued engine operation if any... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components that draw electrical energy from the same source. (c) The design of the engine ignition system must...

  19. Method of boundary testing of the electric circuits and its application for calculating electric tolerances. [electric equipment tests

    NASA Technical Reports Server (NTRS)

    Redkina, N. P.

    1974-01-01

    Boundary testing of electric circuits includes preliminary and limiting tests. Preliminary tests permit determination of the critical parameters causing the greatest deviation of the output parameter of the system. The boundary tests offer the possibility of determining the limits of the fitness of the system with simultaneous variation of its critical parameters.

  20. Simultaneous recording of electrical activity and the underlying ionic currents in NG108-15 cells cultured on gold substrate.

    PubMed

    Acosta-García, Ma Cristina; Morales-Reyes, Israel; Jiménez-Anguiano, Anabel; Batina, Nikola; Castellanos, N P; Godínez-Fernández, R

    2018-02-01

    This paper shows the simultaneous recording of electrical activity and the underlying ionic currents by using a gold substrate to culture NG108-15 cells. Cells grown on two different substrates (plastic Petri dishes and gold substrates) were characterized quantitatively through scanning electron microscopy (SEM) as well as qualitatively by optical and atomic force microscopy (AFM). No significant differences were observed between the surface area of cells cultured on gold substrates and Petri dishes, as indicated by measurements performed on SEM images. We also evaluated the electrophysiological compatibility of the cells through standard patch-clamp experiments by analyzing features such as the resting potential, membrane resistance, ionic currents, etc. Cells grown on both substrates showed no significant differences in their dependency on voltage, as well as in the magnitude of the Na+ and K+ current density; however, cells cultured on the gold substrate showed a lower membrane capacitance when compared to those grown on Petri dishes. By using two separate patch-clamp amplifiers, we were able to record the membrane current with the conventional patch-clamp technique and through the gold substrate simultaneously. Furthermore, the proposed technique allowed us to obtain simultaneous recordings of the electrical activity (such as action potentials firing) and the underlying membrane ionic currents. The excellent conductivity of gold makes it possible to overcome important difficulties found in conventional electrophysiological experiments such as those presented by the resistance of the electrolytic bath solution. We conclude that the technique here presented constitutes a solution to the problem of the simultaneous recording of electrical activity and the underlying ionic currents, which for decades, had been solved only partially.

  1. Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission

    NASA Technical Reports Server (NTRS)

    Kaeppler, S. R.; Kletzing, C. A.; Bounds, S. R.; Gjerloev, J. W.; Anderson, B. J.; Korth, H.; LaBelle, J. W.; Dombrowski, M. P.; Lessard, M.; Pfaff, R. F.; hide

    2012-01-01

    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine if it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves.

  2. Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission

    NASA Technical Reports Server (NTRS)

    Kaeppler, S. R.; Kletzing, C. A.; Bounds, S. R.; Gjerloev, J. W.; Anderson, B. J.; Korth, H.; LaBelle, J. W.; Dombrowski, M. P.; Lessard, M.; Pfaff, R. F.; hide

    2011-01-01

    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves.

  3. Local structure in BaTi O 3 - BiSc O 3 dipole glasses

    DOE PAGES

    Levin, I.; Krayzman, V.; Woicik, J. C.; ...

    2016-03-14

    Local structures in cubic perovskite-type (Ba 0.6Bi 0.4)(Ti 0.6Sc 0.4)O 3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-centermore » displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kVmm -1.« less

  4. Novel Self-driven Microbial Nutrient Recovery Cell with Simultaneous Wastewater Purification

    PubMed Central

    Chen, Xi; Sun, Dongya; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia

    2015-01-01

    Conventional wastewater purification technologies consume large amounts of energy, while the abundant chemical energy and nutrient resources contained in sewage are wasted in such treatment processes. A microbial nutrient recovery cell (MNRC) has been developed to take advantage of the energy contained in wastewater, in order to simultaneously purify wastewater and recover nutrient ions. When wastewater was circulated between the anode and cathode chambers of the MNRC, the organics (COD) were removed by bacteria while ammonium and phosphate (NH4+-N and PO43−-P) were recovered by the electrical field that was produced using in situ energy in the wastewater without additional energy input. The removal efficiencies from wastewater were >82% for COD, >96% for NH4+-N, and >64% for PO43−-P in all the operational cycles. Simultaneously, the concentrations of NH4+ and PO43− in the recovery chamber increased to more than 1.5 and 2.2 times, respectively, compared with the initial concentrations in wastewater. The MNRC provides proof-of-concept as a sustainable, self-driven approach to efficient wastewater purification and nutrient recovery in a comprehensive bioelectrochemical system. PMID:26503712

  5. Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks.

    PubMed

    Shih, Wei-Chuan; Santos, Greggy M; Zhao, Fusheng; Zenasni, Oussama; Arnob, Md Masud Parvez

    2016-07-13

    Near-infrared (NIR) absorption spectroscopy provides molecular and chemical information based on overtones and combination bands of the fundamental vibrational modes in the infrared wavelengths. However, the sensitivity of NIR absorption measurement is limited by the generally weak absorption and the relatively poor detector performance compared to other wavelength ranges. To overcome these barriers, we have developed a novel technique to simultaneously obtain chemical and refractive index sensing in 1-2.5 μm NIR wavelength range on nanoporous gold (NPG) disks, which feature high-density plasmonic hot-spots of localized electric field enhancement. For the first time, surface-enhanced near-infrared absorption (SENIRA) spectroscopy has been demonstrated for high sensitivity chemical detection. With a self-assembled monolayer (SAM) of octadecanethiol (ODT), an enhancement factor (EF) of up to ∼10(4) has been demonstrated for the first C-H combination band at 2400 nm using NPG disk with 600 nm diameter. Together with localized surface plasmon resonance (LSPR) extinction spectroscopy, simultaneous sensing of sample refractive index has been achieved for the first time. The performance of this technique has been evaluated using various hydrocarbon compounds and crude oil samples.

  6. Laser-driven electron acceleration in a plasma channel with an additional electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Li-Hong; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn; Liu, Jie, E-mail: liu-jie@iapcm.ac.cn

    2016-05-15

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the lasermore » pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.« less

  7. Dynamic interaction of CO/H 2O mixtures with gold nanocrystals: Real-time imaging and local chemical probing

    NASA Astrophysics Data System (ADS)

    Visart de Bocarmé, Thierry; Chau, Thoi-Dai; Kruse, Norbert

    2006-09-01

    The dynamic interaction of pure gold nanocrystals ("tips") with H 2O/CO gas mixtures was studied by means of video-field ion microscopy (FIM). While imaging with nano-scale resolution selected areas of the equivalent of ˜200 atomic Au sites were analysed for their chemical composition using short field pulses and injecting respective ions into a time-of-flight mass spectrometer (pulsed field desorption mass spectrometry, PFDMS). At room temperature the exposure of a clean Au sample to water gas at 10 -4 Pa, in the presence of an electric field of ˜10 V/nm, led to water adsorption and formation of bright patterns in FIM. Additional exposure to CO gas at 5 × 10 -3 Pa led to the removal of the water layer. This was associated with the occurrence of bright wave fronts which ignited simultaneously in several regions of the Au surface with no preference for a certain crystallographic surface plane. In some cases wave fronts were seen to collide resulting in more complicated patterns such as concentric rings. Surface areas free of water appeared with low brightness. The phenomena were completely reversible. PFDMS demonstrated water ions to be responsible for image formation. Surface hydroxyl was also detected mass spectrometrically and respective ion intensities decreased during the titration with CO. The results suggest that gold nanocrystals, in the absence of oxidic support materials, may be active in the reaction between water and CO at temperatures as low as 300 K and in the presence of an electric field of ˜10 V/nm.

  8. Measurement and potential barrier evolution analysis of cold field emission in fracture fabricated Si nanogap

    NASA Astrophysics Data System (ADS)

    Banerjee, Amit; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    Cold field emission characteristics of a fracture fabricated Si nanogap (˜100 nm) were investigated with an ascending electric field (voltage) sweep. The nanogap was formed by controlled fracture of a free-standing silicon micro-beam along <111> direction by a microelectromechanical device, which results in flat, smooth, and conformal electrode pairs. This facilitates simultaneous large area emission, which gives rise to a significant current at low bias voltage, which usually remains indiscernible in nanogaps of this size. The measured emission current-voltage (I-V) characteristics clearly depict two distinct regimes: a linear (I ∝ V) regime at low bias voltage and a nonlinear [ln(I/V 2) ∝ V -1] regime at high bias voltage, separated by a transition point. We propose that the linear regime is owed to direct tunneling of electrons, whereas the nonlinear regime is due to Fowler-Nordheim type emission. This proposition essentially implies that the tunneling potential barrier gradually evolved from a rectangular shape to a triangular shape with increasing field (V). This type of evolution is usually observed in molecular size gaps. We have attempted to correlate the I-V curves acquired through the experiments with the electric field induced barrier shape evolution by numerical calculations involving standard quantum mechanics. The observed linear regime at low bias voltage (<5 V) in a relatively large size gap (˜100 nm) is attributed to the fabrication method adopted in this study. The reported study and the fabricated device are significant for developing a futuristic thermotunneling refrigerator that will find a wide range of application in nanoelectronic devices.

  9. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    PubMed Central

    Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.

    2012-01-01

    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706

  10. Parity-time symmetry-breaking mechanism of dynamic Mott transitions in dissipative systems

    DOE PAGES

    Tripathi, Vikram; Galda, Alexey; Barman, Himadri; ...

    2016-07-05

    Here, we describe the critical behavior of the electric field-driven (dynamic) Mott insulator-to-metal transitions in dissipative Fermi and Bose systems in terms of non-Hermitian Hamiltonians invariant under simultaneous parity (P) and time-reversal (T) operations. The dynamic Mott transition is identified as a PT symmetry-breaking phase transition, with the Mott insulating state corresponding to the regime of unbroken PT symmetry with a real energy spectrum. We also established that the imaginary part of the Hamiltonian arises from the combined effects of the driving field and inherent dissipation. We derive the renormalization and collapse of the Mott gap at the dielectric breakdownmore » and describe the resulting critical behavior of transport characteristics. The critical exponent we obtained is in an excellent agreement with experimental findings.« less

  11. Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills

    NASA Astrophysics Data System (ADS)

    Lucas, G.; Thayer, J. P.; Deierling, W.

    2016-12-01

    Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.

  12. Effect of chemical composition on the electrical conductivity of gneiss at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Dai, Lidong; Sun, Wenqing; Li, Heping; Hu, Haiying; Wu, Lei; Jiang, Jianjun

    2018-03-01

    The electrical conductivity of gneiss samples with different chemical compositions (WA = Na2O + K2O + CaO = 7.12, 7.27 and 7.64 % weight percent) was measured using a complex impedance spectroscopic technique at 623-1073 K and 1.5 GPa and a frequency range of 10-1 to 106 Hz. Simultaneously, a pressure effect on the electrical conductivity was also determined for the WA = 7.12 % gneiss. The results indicated that the gneiss conductivities markedly increase with total alkali and calcium ion content. The sample conductivity and temperature conform to an Arrhenius relationship within a certain temperature range. The influence of pressure on gneiss conductivity is weaker than temperature, although conductivity still increases with pressure. According to various ranges of activation enthalpy (0.35-0.52 and 0.76-0.87 eV) at 1.5 GPa, two main conduction mechanisms are suggested that dominate the electrical conductivity of gneiss: impurity conduction in the lower-temperature region and ionic conduction (charge carriers are K+, Na+ and Ca2+) in the higher-temperature region. The electrical conductivity of gneiss with various chemical compositions cannot be used to interpret the high conductivity anomalies in the Dabie-Sulu ultrahigh-pressure metamorphic belt. However, the conductivity-depth profiles for gneiss may provide an important constraint on the interpretation of field magnetotelluric conductivity results in the regional metamorphic belt.

  13. Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murawski, J.; Graupner, T.; Milde, P., E-mail: peter.milde@tu-dresden.de

    Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.

  14. Hypothesis on how to measure electromagnetic hypersensitivity.

    PubMed

    Tuengler, Andreas; von Klitzing, Lebrecht

    2013-09-01

    Electromagnetic hypersensitivity (EHS) is an ill-defined term to describe the fact that people who experience health symptoms in the vicinity of electromagnetic fields (EMFs) regard them as causal for their complaints. Up to now most scientists assume a psychological cause for the suffering of electromagnetic hypersensitive individuals. This paper addresses reasons why most provocation studies could not find any association between EMF exposure and EHS and presents a hypothesis on diagnosis and differentiation of this condition. Simultaneous recordings of heart rate variability, microcirculation and electric skin potentials are used for classification of EHS. Thus, it could be possible to distinguish "genuine" electromagnetic hypersensitive individuals from those who suffer from other conditions.

  15. Fabrication, Polarization of Electrospun Polyvinylidene Fluoride Electret Fibers and Effect on Capturing Nanoscale Solid Aerosols †

    PubMed Central

    Lolla, Dinesh; Lolla, Manideep; Abutaleb, Ahmed; Shin, Hyeon U.; Reneker, Darrell H.; Chase, George G.

    2016-01-01

    Electrospun polyvinylidene fluoride (PVDF) fiber mats with average fiber diameters (≈200 nm, ≈2000 nm) were fabricated by controlled electrospinning conditions. These fiber mats were polarized using a custom-made device to enhance the formation of the electret β-phase ferroelectric property of the fibers by simultaneous uniaxial stretching of the fiber mat and heating the mat to the Curie temperature of the PVDF polymer in a strong electric field of 2.5 kV/cm. Scanning electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and Brunauer-Emmett-Teller (BET) surface area analyses were performed to characterize both the internal and external morphologies of the fiber mat samples to study polarization-associated changes. MATLAB simulations revealed the changes in the paths of the electric fields and the magnetic flux inside the polarization field with inclusion of the ferroelectric fiber mats. Both polarized and unpolarized fiber mats were challenged as filters against NaCl particles with average particle diameters of about 150 nm using a TSI 8130 to study capture efficiencies and relative pressure drops. Twelve filter experiments were conducted on each sample at one month time intervals between experiments to evaluate the reduction of the polarization enhancement over time. The results showed negligible polarization loss for the 200-nm fiber sample. The polarized mats had the highest filter efficiencies and lowest pressure drops. PMID:28773798

  16. Multiple ionospheric perturbations during the Saint Patrick's Day storm 2015 in the European-African sector

    NASA Astrophysics Data System (ADS)

    Borries, Claudia; Mahrous, Ayman M.; Ellahouny, Nada M.; Badeke, Ronny

    2016-11-01

    Strong ionospheric perturbations were generated by the intense geomagnetic storm on 17 March 2015. In this article, we are studying perturbations in the European-African sector observed in the total electron content (TEC). Focal points are wavelike phenomena considered as large-scale traveling ionospheric disturbances (LSTIDs). In the European-African sector, the storm produced three different types of LSTIDs: (1) a concurrent TEC perturbation at all latitudes simultaneously; (2) one LSTID propagating toward the equator, having very large wave parameters (wavelength: ≈3600 km, period: ≈120 min, and speed: ≈500 m/s); and (3) several LSTIDs propagating toward the equator with typical wave parameters (wavelength: ≈2100 km, period: ≈60 min, and speed ≈600 m/s). The third type of LSTIDs is considered to be exited as most LSTIDs either due to variations in the Joule heating or variations in the Lorentz force, whereas the first two perturbation types are rather unusual in their appearance. They occurred during the partial recovery phase when the geomagnetic perturbations were minor and the interplanetary magnetic field turned northward. A westward prompt penetration electric field is considered to excite the first perturbation signature, which indicates a sudden TEC depletion. For the second LSTID type, variations in the Lorentz force because of perturbed electric fields and a minor particle precipitation effect are extracted as possible excitation mechanisms.

  17. New cellular automaton designed to simulate geometration in gel electrophoresis

    NASA Astrophysics Data System (ADS)

    Krawczyk, M. J.; Kułakowski, K.; Maksymowicz, A. Z.

    2002-08-01

    We propose a new kind of cellular automaton to simulate transportation of molecules of DNA through agarose gel. Two processes are taken into account: reptation at strong electric field E, described in the particle model, and geometration, i.e. subsequent hookings and releases of long molecules at and from gel fibres. The automaton rules are deterministic and they are designed to describe both processes within one unified approach. Thermal fluctuations are not taken into account. The number of simultaneous hookings is limited by the molecule length. The features of the automaton are: (i) the size of the cell neighbourhood for the automaton rule varies dynamically, from nearest neighbors to the entire molecule; (ii) the length of the time step is determined at each step according to dynamic rules. Calculations are made up to N=244 reptons in a molecule. Two subsequent stages of the motion are found. Firstly, an initial set of random configurations of molecules is transformed into a more ordered phase, where most molecules are elongated along the applied field direction. After some transient time, the mobility μ reaches a constant value. Then, it varies with N as 1/ N for long molecules. The band dispersion varies with time t approximately as Nt1/2. Our results indicate that the well-known plateau of the mobility μ vs. N does not hold at large electric fields.

  18. Weak stability of the plasma-vacuum interface problem

    NASA Astrophysics Data System (ADS)

    Catania, Davide; D'Abbicco, Marcello; Secchi, Paolo

    2016-09-01

    We consider the free boundary problem for the two-dimensional plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region, the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the Maxwell system for the electric and the magnetic fields. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. We study the linear stability of rectilinear plasma-vacuum interfaces by computing the Kreiss-Lopatinskiĭ determinant of an associated linearized boundary value problem. Apart from possible resonances, we obtain that the piecewise constant plasma-vacuum interfaces are always weakly linearly stable, independently of the size of tangential velocity, magnetic and electric fields on both sides of the characteristic discontinuity. We also prove that solutions to the linearized problem obey an energy estimate with a loss of regularity with respect to the source terms, both in the interior domain and on the boundary, due to the failure of the uniform Kreiss-Lopatinskiĭ condition, as the Kreiss-Lopatinskiĭ determinant associated with this linearized boundary value problem has roots on the boundary of the frequency space. In the proof of the a priori estimates, a crucial part is played by the construction of symmetrizers for a reduced differential system, which has poles at which the Kreiss-Lopatinskiĭ condition may fail simultaneously.

  19. Effects of Nitrogen and Hydrogen Codoping on the Electrical Performance and Reliability of InGaZnO Thin-Film Transistors.

    PubMed

    Abliz, Ablat; Gao, Qingguo; Wan, Da; Liu, Xingqiang; Xu, Lei; Liu, Chuansheng; Jiang, Changzhong; Li, Xuefei; Chen, Huipeng; Guo, Tailiang; Li, Jinchai; Liao, Lei

    2017-03-29

    Despite intensive research on improvement in electrical performances of ZnO-based thin-film transistors (TFTs), the instability issues have limited their applications for complementary electronics. Herein, we have investigated the effect of nitrogen and hydrogen (N/H) codoping on the electrical performance and reliability of amorphous InGaZnO (α-IGZO) TFTs. The performance and bias stress stability of α-IGZO device were simultaneously improved by N/H plasma treatment with a high field-effect mobility of 45.3 cm 2 /(V s) and small shifts of threshold voltage (V th ). On the basis of X-ray photoelectron spectroscopy analysis, the improved electrical performances of α-IGZO TFT should be attributed to the appropriate amount of N/H codoping, which could not only control the V th and carrier concentration efficiently, but also passivate the defects such as oxygen vacancy due to the formation of stable Zn-N and N-H bonds. Meanwhile, low-frequency noise analysis indicates that the average trap density near the α-IGZO/SiO 2 interface is reduced by the nitrogen and hydrogen plasma treatment. This method could provide a step toward the development of α-IGZO TFTs for potential applications in next-generation high-definition optoelectronic displays.

  20. Impact of local environmental conditions on atmospheric electrical potential gradient measurements

    NASA Astrophysics Data System (ADS)

    Buzás, Attila; Barta, Veronika; Steinbach, Péter; Bór, József

    2017-04-01

    The atmospheric electrical potential gradient (PG) is a fundamental parameter of the global electric circuit (GEC) which comprises all large scale quasi-static electrical processes occurring in between the surface of the Earth and the lower ionosphere. The observation of PG near the Earth's surface plays a pivotal role in surveying our atmospheric electrical environment. The PG shows high variability in different temporal and spatial scales and it is especially sensitive to local effects. Therefore, obtaining a PG value which represents the general state of the GEC over a larger area rather than various effects due to measuring site-specific local factors is a challenging task. PG measurements are going on in the Széchenyi István Geophysical Observatory (NCK, 47°38' N, 16°43' E) of the Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences near Nagycenk, Hungary since 1961. PG sensors are set up in NCK in an open area surrounded by buildings and trees within 20 m distance. The effect of the changing vegetation on the long-term trend observed in the PG variation at NCK has been subject of debates [1,2,3]. In order to examine the possible bias in the measured PG values due to the relatively close buildings and trees at NCK, two sets of simultaneous PG measurements from two EFM-100 field mills were compared. One field mill was kept at a fixed location while the other was moved to grid points covering the open area around the fixed field mill. The measurement was done in fair weather conditions in summer and was repeated during the winter. The poster demonstrates the performance of this method in surveying the effect of various objects and the state of vegetation on the measured PG values by comparing the measured PG differences to those obtained from electrostatic models calculated by the finite element method using the FEMM 4.2 software package. [1] F. Märcz and R. G. Harrison, 2003, Annales Gephysicae, 21: 2193-2200 [2] F. Märcz and R. G. Harrison, 2005, Annales Gephysicae, 23: 1987-1995 [3] E. Williams, R. Markson and S. Heckman, 2005, Geophysical Research Letters, vol. 32

Top