Nanomechanical electric and electromagnetic field sensor
Datskos, Panagiotis George; Lavrik, Nickolay
2015-03-24
The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.
Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.
Niu, D; Zhu, F; Qiu, R; Niu, Q
2016-01-01
High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.
What Are Electromagnetic Fields?
... Alt+0 Navigation Alt+1 Content Alt+2 Electromagnetic fields (EMF) Menu EMF Home About electromagnetic fields ... Standards EMF publications & information resources Meetings What are electromagnetic fields? Definitions and sources Electric fields are created ...
Covariant electromagnetic field lines
NASA Astrophysics Data System (ADS)
Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.
2017-08-01
Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.
Żak, Arkadiusz
2014-01-01
One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557
Kameda, Takashi; Ohkuma, Kazuo; Ishii, Nozomu; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto
2012-01-01
Magnetic fields can represent a health problem, especially low frequency electromagnetic fields sometimes induced by electric current in metallic objects worn or used in or on the body (as opposed to high frequency electromagnetic fields that produce heat). Electric toothbrushes are widely used because of their convenience, but the electric motors that power them may produce electromagnetic waves. In this study, we showed that electric toothbrushes generate low frequency (1-2000 Hz) magnetic fields and induce electric current in dental appliances (e. g. orthodontic and prosthetic appliances and dental implants). Current induced by electric toothbrushes might be dependent on the quantity and types of metals used, and the shape of the appliances. Furthermore, these induced currents in dental appliances could impact upon human oral health, producing pain and discomfort.
2002-12-19
effective tool in evaluating IMI. A5.2.2 Shipboard internal electromagnetic environment (EME). For ship applications, electric fields (peak V/m-rms...effects waveform parameters ........................................ 9 MIL-STD-464A v CONTENTS Page TABLES 2B Electromagnetic fields from near...blasting of hardware. 3.8 Lightning indirect effects. Electrical transients induced by lightning due to coupling of electromagnetic fields . 3.9
Hanada, Eisuke
2007-01-01
Most problems with the electromagnetic environment of medical institutions have been related to radiated electromagnetic fields and have been constructed from reports about electromagnetic interference (EMI) with electronic medical equipment by the radio waves emitted from mobile telephone handsets. However, radiated electromagnetic fields are just one of the elements. For example, little attention has been placed on problems with the electric power source. Apparatus for clinical treatment and diagnosis that use electric power sources have come into wide use in hospitals. Hospitals must pay careful attention to all elements of the electromagnetic environment. Herein, I will show examples of measurements and measuring methods for radiated electromagnetic fields, static magnetic fields, and power-source noise, common components of the medical electromagnetic environment.
AC induction field heating of graphite foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, James W.; Rios, Orlando; Kisner, Roger
A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.
Electromagnetic compatibility of PLC adapters for in-home/domestic networks
NASA Astrophysics Data System (ADS)
Potisk, Lukas; Hallon, Jozef; Orgon, Milos; Fujdiak, Radek
2018-01-01
The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [1-4]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].
Electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
Schwinger mechanism in electromagnetic field in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Bavarsad, Ehsan; Pyo Kim, Sang; Stahl, Clément; Xue, She-Sheng
2018-01-01
We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS) spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.
Infrared signal generation from AC induction field heating of graphite foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, James W.; Rios, Orlando
A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.
Effect of radio frequency waves of electromagnetic field on the tubulin.
Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi
2013-09-01
Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.
Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure
NASA Astrophysics Data System (ADS)
Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan
2018-05-01
We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.
Electric Field Feature of Moving Magnetic Field
NASA Astrophysics Data System (ADS)
Chen, You Jun
2001-05-01
A new fundamental relationship of electric field with magnetic field has been inferred from the fundamental experimental laws and theories of classical electromagnetics. It can be described as moving magnetic field has or gives electric feature. When a field with magnetic induction of B moves in the velocity of V, it will show electric field character, the electric field intensity E is E = B x V and the direction of E is in the direction of the vector B x V. It is improper to use the time-varying electromagnetics theories as the fundamental theory of the electromagnetics and group the electromagnetic field into static kind and time-varying kind for the static is relative to motional not only time-varying. The relationship of time variation of magnetic field induction or magnetic flux with electric field caused by magnetic field is fellowship not causality. Thus time-varying magnetic field can cause electric field is not a nature principle. Sometime the time variation of magnetic flux is equal to the negative electromotive force or the time variation of magnetic field induction is equal to the negative curl of electric field caused by magnetic field motion, but not always. And not all motion of magnetic field can cause time variation of magnetic field. Therefore Faraday-Lenz`s law can only be used as mathematics tool to calculate the quantity relation of the electricity with the magnetism in some case like the magnetic field moving in uniform medium. Faraday-Lenz`s law is unsuitable to be used in moving uniform magnetic field or there is magnetic shield. Key word: Motional magnetic field, Magnetic induction, Electric field intensity, Velocity, Faraday-Lenz’s law
Exploration of the Electromagnetic Environment
ERIC Educational Resources Information Center
Fullekrug, M.
2009-01-01
The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…
Gryz, Krzysztof; Karpowicz, Jolanta
2014-01-01
Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.
Recommended E3 HEMP Heave Electric Field Waveform for the Critical Infrastructures. Volume 2
2017-07-31
OF THE COMMISSION TO ASSESS THE THREAT TO THE UNITED STATES FROM ELECTROMAGNETIC PULSE (EMP) ATTACK The cover photo depicts Fishbowl Starfish...Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack. The Commission was established by Congress in the FY2001 National...Department of Defense E electric field EMP electromagnetic pulse EPRI Electric Power Research Institute FERC Federal Energy Regulatory Commission GMD
Avionics electromagnetic interference immunity and environment
NASA Technical Reports Server (NTRS)
Clarke, C. A.
1986-01-01
Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.
Study on the electromagnetic radiation characteristics of discharging excimer laser system
NASA Astrophysics Data System (ADS)
Zhao, Duliang; Liang, Xu; Fang, Xiaodong; Wang, Qingsheng
2016-10-01
Excimer laser in condition of high voltage, large current and fast discharge will produce strong electromagnetic pulse radiation and electromagnetic interference on the around electrical equipment. The research on characteristics and distribution of excimer laser electromagnetic radiation could provide important basis for electromagnetic shielding and suppressing electromagnetic interference, and further improving the electromagnetic compatibility of system. Firstly, electromagnetic radiation source is analyzed according to the working principle of excimer laser. The key test points of the electromagnetic radiation, hydrogen thyratron, main discharge circuit and laser outlet, are determined by the mechanical structure and the theory of electromagnetic radiation. Secondly, characteristics of electromagnetic field were tested using a near field probe on the key positions of the vertical direction at 20, 50, and 80 cm, respectively. The main radiation frequencies and the radiation field characteristics in the near field are obtained. The experimental results show that the main radiation frequencies distribute in 47, 65, and 130 MHz for electric field and the main radiation frequencies distribute in 34, 100, and 165 MHz for magnetic field. The intensity of electromagnetic field decreases rapidly with the increase of test distance. The higher the frequency increases, the faster the amplitude attenuate. Finally, several electromagnetic interference suppression measurement methods are proposed from the perspective of electromagnetic compatibility according to the test results.
Design of portable electric and magnetic field generators
NASA Astrophysics Data System (ADS)
Stewart, M. G.; Siew, W. H.; Campbell, L. C.; Stewart, M. G.; Siew, W. H.
2000-11-01
Electric and magnetic field generators capable of producing high-amplitude output are not readily available. This presents difficulties for electromagnetic compatibility testing of new measurement systems where these systems are intended to operate in a particularly hostile electromagnetic environment. A portable electric and a portable magnetic field generator having high pulsed field output are described in this paper. The output of these generators were determined using an electromagnetic-compatible measurement system. These generators allow immunity testing in the laboratory of electronic systems to very high electrical fields, as well as for functional verification of the electronic systems on site. In the longer term, the basic design of the magnetic field generator may be developed as the generator to provide the damped sinusoid magnetic field specified in IEC 61000-4-10, which is adopted in BS EN 61000-4-10.
High dynamic range electric field sensor for electromagnetic pulse detection.
Lin, Che-Yun; Wang, Alan X; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T
2011-08-29
We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.
Electromagnetic fields and their impacts
NASA Astrophysics Data System (ADS)
Prša, M. A.; Kasaš-Lažetić, K. K.
2018-01-01
The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.
ERIC Educational Resources Information Center
Keltikangas, K.; Wallen, H.
2010-01-01
This paper investigates electrical engineers' perceptions on their education in Finland, with particular emphasis on the basic electromagnetic field theory courses and their applicability in working life, using two online surveys (n = 99 and n = 120). The answers show a reasonably good satisfaction with the electrical engineering studies in…
Noninvasive valve monitor using alternating electromagnetic field
Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.
1993-01-01
One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.
Noninvasive valve monitor using alternating electromagnetic field
Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.
1993-03-16
One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.
A high-performance electric field detector for space missions
NASA Astrophysics Data System (ADS)
Badoni, D.; Ammendola, R.; Bertello, I.; Cipollone, P.; Conti, L.; De Santis, C.; Diego, P.; Masciantonio, G.; Picozza, P.; Sparvoli, R.; Ubertini, P.; Vannaroni, G.
2018-04-01
We present the prototype of an Electric Field Detector (EFD) for space applications, that has been developed in the framework of the Chinese-Italian collaboration on the CSES (China Seismo-Electromagnetic Satellite) forthcoming missions. In particular CSES-1 will be placed in orbit in the early 2018. The detector consists of spherical probes designed to be installed at the tips of four booms deployed from a 3-axes stabilized satellite. The instrument has been conceived for space-borne measurements of electromagnetic phenomena such as ionospheric waves, lithosphere-atmosphere-ionosphere-magnetosphere coupling and anthropogenic electromagnetic emissions. The detector allows to measure electric fields in a wide band of frequencies extending from quasi-DC up to about 4 MHz , with a sensitivity of the order of 1 μV / m in the ULF band. With these bandwidth and sensitivity, the described electric field detector represents a very performing and updated device for electric field measurements in space.
Agricultural Electricity. Electric Motors. Student Manual.
ERIC Educational Resources Information Center
Benson, Robert T.
Addressed to the student, this manual, which includes supplementary diagrams, discusses the following topics and principles: Electromagnetic fields, electromagnets, parts of an electric motor, determining speed of an electric motor, types of electric motors in common use (split-phase, capacitor, repulsion-induction, three-phase), the electric…
NASA Astrophysics Data System (ADS)
De Conti, Alberto; Silveira, Fernando H.; Visacro, Silvério
2014-05-01
This paper investigates the influence of corona on currents and electromagnetic fields predicted by a return-stroke model that represents the lightning channel as a nonuniform transmission line with time-varying (nonlinear) resistance. The corona model used in this paper allows the calculation of corona currents as a function of the radial electric field in the vicinity of the channel. A parametric study is presented to investigate the influence of corona parameters, such as the breakdown electric field and the critical electric field for the stable propagation of streamers, on predicted currents and electromagnetic fields. The results show that, regardless of the assumed corona parameters, the incorporation of corona into the nonuniform and nonlinear transmission line model under investigation modifies the model predictions so that they consistently reproduce most of the typical features of experimentally observed lightning electromagnetic fields and return-stroke speed profiles. In particular, it is shown that the proposed model leads to close vertical electric fields presenting waveforms, amplitudes, and decay with distance in good agreement with dart leader electric field changes measured in triggered lightning experiments. A comparison with popular engineering return-stroke models further confirms the model's ability to predict consistent electric field waveforms in the close vicinity of the channel. Some differences observed in the field amplitudes calculated with the different models can be related to the fact that current distortion, while present in the proposed model, is ultimately neglected in the considered engineering return-stroke models.
NASA Technical Reports Server (NTRS)
Hom, Kam W.
1994-01-01
In this video, several examples of electromagnetic field and surface-current animation sequences are shown to demonstrate the visualization capabilities of the EM-ANIMATE computer program. These examples show the animation of total and scattered electric near fields from test bodies of a flat plate, a corner reflector, and a sphere. These test cases show the electric-field behavior caused by different scattering mechanisms through the animation of electromagnetic data from the EM-ANIMATE routine.
Introducing Electromagnetic Field Momentum
ERIC Educational Resources Information Center
Hu, Ben Yu-Kuang
2012-01-01
I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…
Interaction of biological systems with static and ELF electric and magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, L.E.; Kelman, B.J.; Weigel, R.J.
1987-01-01
Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic fieldmore » strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.« less
[Electromagnetic pollution (electrosmog)--potential hazards of our electromagnetic future].
Nowak, D; Radon, K
2004-02-26
The term electromagnetic environment encompasses the totality of all electric, magnetic and electromagnetic fields generated by natural and technical sources. A differentiation is made between low- and high-frequency electromagnetic fields. Typical sources of the former are domestic electricity Exposure to the latter is, for example, associated with the sue of mobile telephones. Studies on the health-related effects of electromagnetic fields are available in particular for the low-frequency range, based on an appropriate estimation of exposure. A number of these studies reveal an association between exposure to this type of electromagnetic fields and the occurrence of infantile leukemia in the highest exposure category. For high-frequency electromagnetic fields the number of epidemiological studies is limited. An increased risk of an accident occurring through the use of a cellular phone while driving has consistently been shown. Against the background of our limited knowledge about possible adverse effects of exposure to mobile phone transmitters, and the inability of the public to influence such exposure, transparency in the communication of the risks involved is of great importance.
On Whether Angular Momentum in Electric and Magnetic Fields Radiates to Infinity
NASA Technical Reports Server (NTRS)
Canning, Francis X.; Knudsen, Steven
2006-01-01
The Feynman Disk experiment and a related thought experiment with a static magnetic field and capacitor are studied. The mechanical torque integrated over time (angular impulse) is related to the angular momentum in the electric/magnetic field. This is not called an electromagnetic field since quasi-static as well as electromagnetic effects are included. The angular momentum in the electric/magnetic field is examined to determine its static and radiative components. This comparison was then examined to see if it clarified the Abraham-Minkowski paradox.
The high-performance electric field detector EFD for space-based measurements
NASA Astrophysics Data System (ADS)
Badoni, Davide
2016-04-01
We present the prototype of a new electric field detector (EFD) for space applications, that has been built and fully tested in laboratory in the framework of the LIMADOU collaboration between Italy and China aimed at developing the CSES (China Seismo-Electromagnetic Satellite) space mission (launch scheduled by the end of 2016). Investigations of the electromagnetic near-Earth space environment represent an important field of research as demonstrated by the satellite missions, already accomplished and/or planned to be launched in the near future, devoted to such issue (e.g. INJUN-5; POLAR, DEMETER, THEMIS, TARANIS, CSES, etc.). The payload of these satellites includes several instruments to measure electric fields in a broad frequency band along with magnetic field, plasma parameters and high energy particles fluxes. Even though these phenomena are mainly dominated by the solar activity, they are also conditioned by atmospheric and ionospheric processes, seismic activity, and human electromagnetic sources. The CSES mission will prosecute the exploratory study performed by the DEMETER satellite, by studying the electromagnetic, plasma and particle perturbations caused by seismicity in the ionosphere, magnetosphere and inner Van Allen belts. This task will be carried out through a detailed investigation of the anomalous electromagnetic field fluctuations, ionospheric plasma perturbations and instabilities accompanying earthquakes of moderate and strong magnitude, as observed by numerous satellite. As a secondary objective, the CSES satellite will also investigate the influence of the electromagnetic emissions of anthropogenic origin on the ionosphere and magnetosphere. The EFD detector consists of four probes designed to be installed on four booms deployed from the 3-axes stabilized satellite. The instrument has been conceived for space-borne measurements of electromagnetic phenomena such as magnetospheric waves, seimo-electromagnetic perturbations, anthropogenic electromagnetic emissions and more in general to investigate lithosphere-atmosphere-ionosphere EM coupling. The EFD can measure electric field in a wide band of frequencies extending from quasi-DC up to about 5 MHz. The resolution in the ULF band is better than 1μV/m with a dynamic range of 120 dB. This is a value 40 times better than that of any other recent instrument of similar quality. The sensitivity, in measuring d.o.p., in the other bands (ELF, VLF and HF) is better than 300 nV/√Hz, i.e. - by considering the boom lengths - the sensitivity in measuring electric field is of the order of 50 nV/(√Hz m). With these bandwidth and precision, the described electric field detector represents the most performing and updated device so far developed for electric field measurements in near-space applications. We present the description of the EFD instrument electronics and the results of the preliminary tests performed on the prototype in laboratory.
NASA Astrophysics Data System (ADS)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin
2015-09-01
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua
Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less
NASA Astrophysics Data System (ADS)
Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.
2017-04-01
Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.
Students' Development of Representational Competence through the Sense of Touch
ERIC Educational Resources Information Center
Magana, Alejandra J.; Balachandran, Sadhana
2017-01-01
Electromagnetism is an umbrella encapsulating several different concepts like electric current, electric fields and forces, and magnetic fields and forces, among other topics. However, a number of studies in the past have highlighted the poor conceptual understanding of electromagnetism concepts by students even after instruction. This study aims…
Numerical analysis of multicomponent responses of surface-hole transient electromagnetic method
NASA Astrophysics Data System (ADS)
Meng, Qing-Xin; Hu, Xiang-Yun; Pan, He-Ping; Zhou, Feng
2017-03-01
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver-Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
Development of Experience-based Visible-type Electromagnetic Teaching Materials
NASA Astrophysics Data System (ADS)
Suzuki, Masayoshi; Shima, Kenzou
Electromagnetism is the base of electrical engineering, however, it is one of the most difficult subjects to learn. The small experiments which show the principles of electricity visibly are useful technique to promote these comprehension. For classroom experimental materials to learn basic electromagnetism, we developed rotating magnetic field visualizer, gravity-use generators, simple motors, and electric-field visualizer. We report how we visualized the principles of motors and generators in classroom experiments. In particular, we discuss in detail how to visualize the mechanism of very simple motors. We have been demonstrating the motors in children science classes conducted all over Japan. We developed these experimental materials, and we achieved remarkable results using these materials in the electromagnetism class.
Quantum phases for a charged particle and electric/magnetic dipole in an electromagnetic field
NASA Astrophysics Data System (ADS)
Kholmetskii, Alexander; Yarman, Tolga
2017-11-01
We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic field must be composed from more fundamental quantum phases emerging for moving elementary charges. Using this idea, we have found two new fundamental quantum phases, next to the known magnetic and electric Aharonov-Bohm phases, and discuss their general properties and physical meaning.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao
2003-01-01
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
Scanning evanescent electro-magnetic microscope
Xiang, Xiao-Dong; Gao, Chen
2001-01-01
A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.
NASA Astrophysics Data System (ADS)
Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu
2017-07-01
2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.
Aircraft Electromagnetic Compatibility.
1987-06-01
Human Exposure to Radio Frequency Electromagnetic Fields , 300 KiloHertz to 100 GigaHertz." 6. ARINC 429-8, "Digital Information Transfer System (DITS...142 V EXECUTIVE SUMMARY The Aircraft Electromagnetic Compatibility guidelines document deals with electromagnetic compatibility in a... electromagnetic interference paths (figure EI. TYPE PATH 400 Hz Electrostatic MagneticCharge Electric Field Transients 5 R d t Coupling 150/i 300o Wire
NASA Technical Reports Server (NTRS)
Trost, T. F.; Zaepfel, K. P.
1980-01-01
A set of electromagnetic sensors, or electrically-small antennas, is described. The sensors are designed for installation on an F-106 research aircraft for the measurement of electric and magnetic fields and currents during a lightning strike. The electric and magnetic field sensors mount on the aircraft skin. The current sensor mounts between the nose boom and the fuselage. The sensors are all on the order of 10 cm in size and should produce up to about 100 V for the estimated lightning fields. The basic designs are the same as those developed for nuclear electromagnetic pulse studies. The most important electrical parameters of the sensors are the sensitivity, or equivalent area, and the bandwidth (or rise time). Calibration of sensors with simple geometries is reliably accomplished by a geometric analysis; all the sensors discussed possess geometries for which the sensitivities have been calculated. For the calibration of sensors with more complex geometries and for general testing of all sensors, two transmission lines were constructed to transmit known pulsed fields and currents over the sensors.
Electromagnetically Tunable Fields
2008-07-01
constitutive material properties (electrical permittivity, magnetic permeability, and electrical conductivity) of electromagnetically tunable fluids ( ETFs ... trade -offs and operational perspectives of a dielectric coated spherical inverted-F antenna," accepted for IEEE/URSI Int. Symp. Antennas and Propag
Electromagnetic field generated in model of human head by simplified telephone transceiver
NASA Astrophysics Data System (ADS)
King, Ronold W. P.
1995-01-01
Possible adverse effects of electromagnetic fields on the human body and especially on the nervous system and the brain are of increasing concern, particularly with reference to cellular telephone transceivers held close to the head. An essential step in the study of this problem is the accurate determination of the complete electromagnetic field penetrating through the skull into the brain. Simple analytical formulas are derived from the theory of the horizontal electric dipole over a layered region. These give the components of the electric and magnetic fields on the air-head surface, in the skin-skull layer, and throughout the brain in terms of a planar model with the dimensions and average electrical properties of the human head. The specific absorption rate (SAR) is also determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maidana, Carlos O.; Nieminen, Juha E.
Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less
Maidana, Carlos O.; Nieminen, Juha E.
2017-02-01
Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is amore » source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. Here, first studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskardes, G. D.; Weiss, Chester J.; Everett, M. E.
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Here by quantifying the relationship between multi-scale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. Furthermore, we present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, suggesting that the spatial fluctuations may be considered as “geologic noise”.
Beskardes, G. D.; Weiss, Chester J.; Everett, M. E.
2016-11-30
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Here by quantifying the relationship between multi-scale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. Furthermore, we present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, suggesting that the spatial fluctuations may be considered as “geologic noise”.
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.; Jones, William Prichard; Huerta, Robert H.
1961-01-01
Reported here are the results of a systematic study of a model of the direct-current electromagnetic pump. Of particular interest is the motion imparted to the electrically conducting fluid in the rectangular duct by the body forces that result from applied electric and magnetic fields. The purpose of the investigation is to associate the observed fluid motion with the characteristics of the electric and magnetic fields which cause them. The experiments were carried out with electromagnetic fields that moved a stream of copper sulphate solution through a clear plastic channel. Ink filaments injected into the stream ahead of the region where the fields were applied identify the motion of the fluid elements as they passed through the test channel. Several magnetic field configurations were employed with a two-dimensional electric current distribution in order to study and identify the magnitude of some of the effects on the fluid motion brought about by nonuniformities in the electromagnetic fields. A theoretical analysis was used to guide and evaluate the identification of the several fluid motions observed. The agreement of the experimental data with the theoretical predictions is satisfactory. It is found that sizable variations in the velocity profile and pressure head of the output stream are produced by the shape of the electric and magnetic fields.
Growth Stimulation of Biological Cells and Tissue by Electromagnetic Fields and Uses Thereof
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
2002-01-01
The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells, and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.
Growth stimulation of biological cells and tissue by electromagnetic fields and uses thereof
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
2004-01-01
The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.
A few categories of electromagnetic field problems treated through Fuzzy Logic
NASA Astrophysics Data System (ADS)
Lolea, M. S.; Dzitac, S.
2018-01-01
The paper deals with the problems of fuzzy logic applied in the field of electromagnetism. In the first part, there are presented some theoretical aspects regarding the characteristics and the application of the fuzzy logic in the general case. Are presented then, some categories of electromagnetic field problems treated by fuzzy logic. The accent is on the effects of exposure to the electromagnetic field on the human body. For this approach is dedicated a paragraph at the end of the paper. There is an application on how to treat by fuzzy logic the effects of electric field exposure. For this purpose, the fuzzy toolbox existing in the Matlab software and the results of some electric field strength measurements into a power substation are used. The results of the study and its conclusions are analyzed and exposed at the end of the paper.
Farashi, Sajjad; Sasanpour, Pezhman; Rafii-Tabar, Hashem
2018-05-24
Purpose-Although the effect of electromagnetic fields on biological systems has attracted attraction in recent years, there has not been any conclusive result concerning the effects of interaction and the underlying mechanisms involved. Besides the complexity of biological systems, the parameters of the applied electromagnetic field have not been estimated in most of the experiments. Material and Method-In this study, we have used computational approach in order to find the excitation parameters of an external electric field which produces sensible effects in the function of insulin secretory machinery, whose failure triggers the diabetes disease. A mathematical model of the human β-cell has been used and the effects of external electric fields with different amplitudes, frequencies and wave shapes have been studied. Results-The results from our simulations show that the external electric field can influence the membrane electrical activity and perhaps the insulin secretion when its amplitude exceeds a threshold value. Furthermore, our simulations reveal that different waveforms have distinct effects on the β-cell membrane electrical activity and the characteristic features of the excitation like frequency would change the interaction mechanism. Conclusion-The results could help the researchers to investigate the possible role of the environmental electromagnetic fields on the promotion of diabetes disease.
NASA Astrophysics Data System (ADS)
Bejan, D.; Stan, C.; Niculescu, E. C.
2018-01-01
We theoretically investigated the effects of the impurity position, in-plane electric field, intensity and polarization of the probe and control lasers on the electromagnetically induced transparency (EIT) in GaAs/GaAlAs disc shaped quantum ring. Our study reveals that, depending on the impurity position, the quantum system presents two specific configurations for the EIT occurrence even in the absence of the external electric field, i.e. ladder-configuration or V-configuration, and changes the configuration from ladder to V for specific electric field values. The polarization of the probe and control lasers plays a crucial role in obtaining a good transparency. The electric field controls the red-shift (blue-shift) of the transparency window and modifies its width. The system exhibits birefringence for the probe light in a limited interval of electric field values.
Compact orthogonal NMR field sensor
Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL
2009-02-03
A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.
The assessment of electromagnetic field radiation exposure for mobile phone users.
Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas
2014-12-01
During recent years, the widespread use of mobile phones has resulted in increased human ex- posure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the distance of 1 to 30 cm from the mobile user. In this paper, the measurements of electric field strength exposure were conducted on different brand of mobile phones by the call-related factors: urban/rural area, indoor/outdoor setting and moving/stationary mode during calls. The different types of mobile phone were placed facing the field probe at 1 cm, 10 cm, 20 cm and 30 cm distance. The highest electric field strength was recorded for calls made in rural area (indoors) while the lowest electric field strength was recorded for calls made in urban area (outdoors). Calls made from a phone in a moving car gave a similar result like for indoor calls; however, calls made from a phone in a moving car exposed electric field strength two times more than that of calls in a standing (motionless) position. Electromagnetic field radiation depends on mobile phone power class and factors, like urban or rural area, outdoor or indoor, moving or motionless position, and the distance of the mobile phone from the phone user. It is recommended to keep a mobile phone in the safe distance of 10, 20 or 30 cm from the body (especially head) during the calls.
Anisotropic conducting films for electromagnetic radiation applications
Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard
2015-06-16
Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.
Gérard, Merlin; Noamen, Omri; Evelyne, Gonze; Eric, Valette; Gilles, Cauffet; Marc, Henry
2015-10-15
This study aims to elucidate the interactions between water, subjected to electromagnetic waves of very low frequency (VLF) (kHz) with low strength electromagnetic fields (3.5 mT inside the coils), and the development of microbial biofilms in this exposed water. Experimental results demonstrate that in water exposed to VLF electromagnetic waves, the biomass of biofilm is limited if hydraulic continuity is achieved between the electromagnetic generator and the biofilm media. The measured amount of the biofilm's biomass is approximately a factor two lower for exposed biofilm than the non-exposed biofilm. Measurements of electromagnetic fields in the air and simulations exhibit very low intensities of fields (<10 nT and 2 V/m) in the biofilm-exposed region at a distance of 1 m from the electromagnetic generator. Exposure to electric and magnetic fields of the quoted intensities cannot explain thermal and ionizing effects on the biofilm. A variable electrical potential with a magnitude close to 20 mV was detected in the tank in hydraulic continuity with the electromagnetic generator. The application of quantum field theory may help to explain the observed effects in this case. Copyright © 2015 Elsevier Ltd. All rights reserved.
Generating highly uniform electromagnetic field characteristics
Crow, James Terry
1998-01-01
An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.
Generating highly uniform electromagnetic field characteristics
Crow, James T.
1998-01-01
An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.
Generating highly uniform electromagnetic field characteristics
Crow, James T.
1997-01-01
An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially cancelling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.
NASA Astrophysics Data System (ADS)
Jacobs, Verne
Dynamical descriptions for the propagation of quantized electromagnetic fields, in the presence of environmental interactions, are systematically and self-consistently developed in the complimentary Schrödinger and Heisenberg pictures. An open-systems (non-equilibrium) quantum-electrodynamics description is thereby provided for electromagnetic-field propagation in general non-local and non-stationary dispersive and absorbing optical media, including a fundamental microscopic treatment of decoherence and relaxation processes due to environmental collisional and electromagnetic interactions. Particular interest is centered on entangled states and other non-classical states of electromagnetic fields, which may be created by non-linear electromagnetic interactions and detected by the measurement of various electromagnetic-field correlation functions. Accordingly, we present dynamical descriptions based on general forms of electromagnetic-field correlation functions involving both the electric-field and the magnetic-field components of the electromagnetic field, which are treated on an equal footing. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.
Applied Computational Electromagnetics Society Journal. Volume 7, Number 1, Summer 1992
1992-01-01
previously-solved computational problem in electrical engineering, physics, or related fields of study. The technical activities promoted by this...in solution technique or in data input/output; identification of new applica- tions for electromagnetics modeling codes and techniques; integration of...papers will represent the computational electromagnetics aspects of research in electrical engineering, physics, or related disciplines. However, papers
Topological responses from chiral anomaly in multi-Weyl semimetals
NASA Astrophysics Data System (ADS)
Huang, Ze-Min; Zhou, Jianhui; Shen, Shun-Qing
2017-08-01
Multi-Weyl semimetals are a kind of topological phase of matter with discrete Weyl nodes characterized by multiple monopole charges, in which the chiral anomaly, the anomalous nonconservation of an axial current, occurs in the presence of electric and magnetic fields. Electronic transport properties related to the chiral anomaly in the presence of both electromagnetic fields and axial electromagnetic fields in multi-Weyl semimetals are systematically studied. It has been found that the anomalous Hall conductivity has a modification linear in the axial vector potential from inhomogeneous strains. The axial electric field leads to an axial Hall current that is proportional to the distance of Weyl nodes in momentum space. This axial current may generate chirality accumulation of Weyl fermions through delicately engineering the axial electromagnetic fields even in the absence of external electromagnetic fields. Therefore this work provides a nonmagnetic mechanism of generation of chirality accumulation in Weyl semimetals and might shed new light on the application of Weyl semimetals in the emerging field of valleytronics.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.; Etters, R. D.
1982-01-01
A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.
A gyrofluid description of Alfvenic turbulence and its parallel electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, N. H.; Kontar, E. P.
2010-06-15
Anisotropic Alfvenic fluctuations with k{sub ||}/k{sub perpendicular}<<1 remain at frequencies much smaller than the ion cyclotron frequency in the presence of a strong background magnetic field. Based on the simplest truncation of the electromagnetic gyrofluid equations in a homogeneous plasma, a model for the energy cascade produced by Alfvenic turbulence is constructed, which smoothly connects the large magnetohydrodynamics scales and the small 'kinetic' scales. Scaling relations are obtained for the electromagnetic fluctuations, as a function of k{sub perpendicular} and k{sub ||}. Moreover, a particular attention is paid to the spectral structure of the parallel electric field which is produced bymore » Alfvenic turbulence. The reason is the potential implication of this parallel electric field in turbulent acceleration and transport of particles. For electromagnetic turbulence, this issue was raised some time ago in Hasegawa and Mima [J. Geophys. Res. 83, 1117 (1978)].« less
Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposur...
Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level
ERIC Educational Resources Information Center
Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.
2010-01-01
A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…
Model to Test Electric Field Comparisons in a Composite Fairing Cavity
NASA Technical Reports Server (NTRS)
Trout, Dawn; Burford, Janessa
2012-01-01
Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This study shows cumulative distribution function (CDF) comparisons of composite . a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. This work is an extension of the bare aluminum fairing perfect electric conductor (PEC) model. Test and model data correlation is shown.
Model to Test Electric Field Comparisons in a Composite Fairing Cavity
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Burford, Janessa
2013-01-01
Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. This work is an extension of the bare aluminum fairing perfect electric conductor (PEC) model. Test and model data correlation is shown.
Spacetime algebra as a powerful tool for electromagnetism
NASA Astrophysics Data System (ADS)
Dressel, Justin; Bliokh, Konstantin Y.; Nori, Franco
2015-08-01
We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO FAMILIARIZE THE TRAINEE WITH THE FUNDAMENTALS OF ELECTRICITY AND MAGNETISM AS THEY RELATE TO DIESEL POWERED EQUIPMENT. TOPICS ARE (1) FUNDAMENTALS OF ELECTRICITY AND MAGNETISM, (2) ELECTROMAGNETIC FIELDS, (3) MAGNETIC FORCE ON A CONDUCTOR, (4) ELECTROMAGNETIC INDUCTION, (5) OHM'S LAW, (6) METER…
Generating highly uniform electromagnetic field characteristics
Crow, J.T.
1997-06-24
An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 26 figs.
Generating highly uniform electromagnetic field characteristics
Crow, J.T.
1998-05-05
An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 55 figs.
Generating highly uniform electromagnetic field characteristics
Crow, J.T.
1998-02-10
An apparatus and method for generating homogeneous electromagnetic fields within a volume is disclosed. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 39 figs.
2005-07-06
C95.1-1991, American National Standard Safety Levels With Respect to Human Exposure to Radiofrequency Electromagnetic Fields , 300 kHz to 100 GHz. New...Site 4) were evaluated for possible siting of the ASR- 11. All three sites are situated in undeveloped fields on base. Site 2 is located between the...alternative ASR-1 1 sites. 3.12 ELECTROMAGNETIC ENERGY 3.12.1 Existing Conditions Electrical currents and components generate electrical fields and
Time-Domain Computation Of Electromagnetic Fields In MMICs
NASA Technical Reports Server (NTRS)
Lansing, Faiza S.; Rascoe, Daniel L.
1995-01-01
Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.
Marracino, P; Migliorati, M; Paffi, A; Liberti, M; Denzi, A; d'Inzeo, G; Apollonio, F
2012-01-01
Protein functions and characteristics can highly differ from physiological conditions in presence of chemical, mechanical or electromagnetic stimuli. In this work we provide a rigorous picture of electric field effects on proteins behavior investigating, at atomistic details, the possible ways in which an external signal can be transduced into biochemical effects. Results from molecular dynamics (MD) simulations of a single superoxidismutase (SOD) enzyme in presence of high exogenous alternate electric fields will be discussed.
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.
1974-01-01
With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.
1996-01-01
A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.
Quantum and classical dissipation of charged particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.
2013-08-15
A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less
The electric field changes and UHF radiations caused by the triggered lightning in Japan
NASA Technical Reports Server (NTRS)
Kawasaki, Zen-Ichiro; Kanao, Tadashi; Matsuura, Kenji; Nakano, Minoru; Horii, Kenji; Nakamura, Koichi
1991-01-01
In the rocket triggered lightning experiment of fiscal 1989, researchers observed electromagnetic field changes and UHF electromagnetic radiation accompanying rocket triggered lightning. It was found that no rapid changes corresponding to the return stroke of natural lightning were observed in the electric field changes accompanying rocket triggered lightning. However, continuous currents were present. In the case of rocket triggered lightning to the tower, electromagnetic field changes corresponding to the initiation of triggered lightning showed a bipolar pulse of a relatively large amplitude. In contrast, the rocket triggered lightning to the ground did not have such a bipolar pulse. The UHF radiation accompanying the rocket triggered lightning preceded the waveform portions corresponding to the first changes in electromagnetic fields. The number of isolated pulses in the UHF radiation showed a correlation with the time duration from rocket launching up to triggered lightning. The time interval between consecutive isolated pulses tended to get shorter with the passage of time, just like the stepped leaders of natural lightning.
Radiation Forces and Torques without Stress (Tensors)
ERIC Educational Resources Information Center
Bohren, Craig F.
2011-01-01
To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…
47 CFR 2.1093 - Radiofrequency radiation exposure evaluation: portable devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Electromagnetic Fields, 3 kHz to 300 GHz,” ANSI/IEEE C95.1-1992, Copyright 1992 by the Institute of Electrical and... Exposure Criteria for Radiofrequency Electromagnetic Fields,” NCRP Report No. 86, Section 17.4.5. Copyright...
Zradziński, Patryk
2015-01-01
Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781
Qin, Qi-Zhong; Chen, Yu; Fu, Ting-Ting; Ding, Li; Han, Ling-Li; Li, Jian-Chao
2012-03-01
To understand electromagnetic radiation field strength and its influencing factors of certain 110-kV high-voltage lines in one urban area of Chongqing by measuring 110-kV high-voltage line's electromagnetic radiation level. According to the methodology as determined by the National Hygienic Standards, we selected certain adjacent residential buildings, high-voltage lines along a specific street and selected different distances around its vertical projection point as monitoring points. The levels of electromagnetic radiations were measured respectively. In this investigation within the frequency of 5-1,000 Hz both the electric field strength and magnetic field strength of each monitoring sites were lower than the public exposure standards as determined by the International Commission on Non-Ionizing Radiation Protection. However, the electrical field strength on the roof adjacent to the high-voltage lines was significantly higher than that as measured on the other floors in the same buildings (p < 0.05). The electromagnetic radiation measurements of different monitoring points, under the same high-voltage lines, showed the location which is nearer the high-voltage line maintain a consistently higher level of radiation than the more distant locations (p < 0.05). Electromagnetic radiation generated by high-voltage lines decreases proportionally to the distance from the lines. The buildings can to some extent shield (or absorb) the electric fields generated by high-voltage lines nearby. The electromagnetic radiation intensity near high-voltage lines may be mitigated or intensified by the manner in which the high-voltage lines are set up, and it merits attention for the potential impact on human health.
Electromagnetic Field Penetration Studies
NASA Technical Reports Server (NTRS)
Deshpande, M.D.
2000-01-01
A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.
De Ninno, Antonella; Pregnolato, Massimo
2017-01-01
The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.
Electromagnetic perception and individual features of human beings.
Lebedeva, N N; Kotrovskaya, T I
2001-01-01
An investigation was made of the individual reactions of human subjects exposed to electromagnetic fields. We performed the study on 86 volunteers separated into two groups. The first group was exposed to the electromagnetic field of infralow frequencies, whereas the second group was exposed to the electromagnetic field of extremely high frequencies. We found that the electromagnetic perception of human beings correlated with their individual features, such as EEG parameters, the critical frequency of flash merging, and the electric current sensitivity. Human subjects who had a high-quality perception of electromagnetic waves showed an optimal balance of cerebral processes, an excellent functional state of the central nervous system, and a good decision criterion.
Electromagnetic cellular interactions.
Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan
2011-05-01
Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.
2018-05-01
We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic (EM) field must be presented as the superposition of more fundamental quantum phases emerging for elementary charges. Using this idea, we find two new fundamental quantum phases for point-like charges, next to the known electric and magnetic Aharonov-Bohm (A-B) phases, named by us as the complementary electric and magnetic phases, correspondingly. We further demonstrate that these new phases can indeed be derived via the Schrödinger equation for a particle in an EM field, where however the operator of momentum is re-defined via the replacement of the canonical momentum of particle by the sum of its mechanical momentum and interactional field momentum for a system "charged particle and a macroscopic source of EM field". The implications of the obtained results are discussed.
Mode suppression means for gyrotron cavities
Chodorow, Marvin; Symons, Robert S.
1983-08-09
In a gyrotron electron tube of the gyro-klystron or gyro-monotron type, having a cavity supporting an electromagnetic mode with circular electric field, spurious resonances can occur in modes having noncircular electric field. These spurious resonances are damped and their frequencies shifted by a circular groove in the cavity parallel to the electric field.
Some didactical suggestions for a deeper embedding of DC circuits into electromagnetism
NASA Astrophysics Data System (ADS)
Cavinato, M.; Giliberti, M.; Barbieri, S. R.
2017-09-01
Undergraduate students often encounter great difficulties in understanding Ohm’s law and electrical circuits. Considering the widespread students’ beliefs and their common mistakes, as they come out from the literature and our teaching experience, we think that a relevant source of these problems comes from the fact that electrical circuits are generally treated separately from the other topics of electromagnetism, with poor reference to the circulation of the electric field. We present here a way to deal with electrical circuits that could help students to overcome their difficulties. In our approach, the electric field is the protagonist and the mathematical tool the students are asked to use is its circulation. In the light of the circulation of the electric field, the experimental Ohm’s law is revisited, the concept of electromotive force is discussed and some suggestions to eliminate common misconceptions about the role of a battery in a circuit are presented.
Applying TM-polarization geoelectric exploration for study of low-contrast three-dimensional targets
NASA Astrophysics Data System (ADS)
Zlobinskiy, Arkadiy; Mogilatov, Vladimir; Shishmarev, Roman
2018-03-01
With using new field and theoretical data, it has been shown that applying the electromagnetic field of transverse magnetic (TM) polarization will give new opportunities for electrical prospecting by the method of transient processes. Only applying a pure field of the TM polarization permits poor three-dimensional objects (required metalliferous deposits) to be revealed in a host horizontally-layered medium. This position has good theoretical grounds. There is given the description of the transient electromagnetic method, that uses only the TM polarization field. The pure TM mode is excited by a special source, which is termed as a circular electric dipole (CED). The results of three-dimensional simulation (by the method of finite elements) are discussed for three real geological situations for which applying electromagnetic fields of transverse electric (TE) and transverse magnetic (TM) polarizations are compared. It has been shown that applying the TE mode gives no positive results, while applying the TM polarization field permits the problem to be tackled. Finally, the results of field works are offered, which showed inefficiency of application of the classical TEM method, whereas in contrast, applying the field of TM polarization makes it easy to identify the target.
Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons
NASA Astrophysics Data System (ADS)
Chanyal, B. C.
2017-12-01
In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.
[The influence of electromagnetic fields on flora and fauna].
Rochalska, Małgorzata
2009-01-01
This paper presents the influence of natural and artificial electromagnetic fields (EMF) on fauna and flora. The mechanisms of Earth's magnetic field detection and the use of this skill by migratory animals to faultlessly reach the destination of their travel are discussed, as well as the positive effects of electric and magnetic fields on plants relative to their physiology, yielding and health. EMF influence on social insects and animal organisms, including possible DNA damages and DNA repair systems, is presented. The influence of high frequency electromagnetic fields on birds nesting is also discussed.
NASA Astrophysics Data System (ADS)
Michalski, Krzysztof A.; Lin, Hung-I.
2018-01-01
Second-order asymptotic formulas for the electromagnetic fields of a horizontal electric dipole over an imperfectly conducting half-space are derived using the modified saddle-point method. Application examples are presented for ordinary and plasmonic media, and the accuracy of the new formulation is assessed by comparisons with two alternative state-of-the-art theories and with the rigorous results of numerical integration.
Electromagnetic interference in electrical systems of motor vehicles
NASA Astrophysics Data System (ADS)
Dziubiński, M.; Drozd, A.; Adamiec, M.; Siemionek, E.
2016-09-01
Electronic ignition system affects the electronic equipment of the vehicle by electric and magnetic fields. The measurement of radio electromagnetic interference originating from the ignition system affecting the audiovisual test bench was carried out with a variable speed of the ignition system. The paper presents measurements of radio electromagnetic interference in automobiles. In order to determine the level of electromagnetic interference, the audiovisual test bench was equipped with a set of meters for power consumption and assessment of the level of electromagnetic interference. Measurements of the electromagnetic interference level within the audiovisual system were performed on an experimental test bench consisting of the ignition system, starting system and charging system with an alternator and regulator.
NASA Astrophysics Data System (ADS)
Diego, P.; Bertello, I.; Candidi, M.; Mura, A.; Coco, I.; Vannaroni, G.; Ubertini, P.; Badoni, D.
2017-11-01
The floating potential variability of the Electric Field Detector (EFD) probes, on board the Chinese Seismo-Electromagnetic Satellite (CSES), has been modeled, and the effects of several structural and environmental elements have been determined. The expected floating potentials of the probes are computed considering the ambient ionospheric plasma parameter variations. In addition, the ion collection variability, due to the different probe attitudes along the orbit, and its effect on each floating potential, are considered. Particular attention is given to the analysis of the shadow produced by the stubs, in order to determine the artificial electric field introduced by instrumental effects which has to be subtracted from the real measurements. The modulation of the altered electric field, due to the effect on shadowing of the ion drift, as measured by the ESA satellite Swarm A in a similar orbit, is also modeled. Such simulations are made in preparation of real EFD data analysis performed during the upcoming flight of CSES.
Immunity of medical electrical equipment to radiated RF disturbances
NASA Astrophysics Data System (ADS)
Mocha, Jan; Wójcik, Dariusz; Surma, Maciej
2018-04-01
Immunity of medical equipment to radiated radio frequency (RF) electromagnetic (EM) fields is a priority issue owing to the functions that the equipment is intended to perform. This is reflected in increasingly stringent normative requirements that medical electrical equipment has to conform to. A new version of the standard concerning electromagnetic compatibility of medical electrical equipment IEC 60601-1-2:2014 has recently been published. The paper discusses major changes introduced in this edition of the standard. The changes comprise more rigorous immunity requirements for medical equipment as regards radiated RF EM fields and a new requirement for testing the immunity of medical electrical equipment to disturbances coming from digital radio communication systems. Further on, the paper presents two typical designs of the input block: involving a multi-level filtering and amplification circuit and including a solution which integrates an input amplifier and an analog-to-digital converter in one circuit. Regardless of the applied solution, presence of electromagnetic disturbances in the input block leads to demodulation of the disturbance signal envelope. The article elaborates on mechanisms of amplitude detection occurring in such cases. Electromagnetic interferences penetration from the amplifier's input to the output is also described in the paper. If the aforementioned phenomena are taken into account, engineers will be able to develop a more conscious approach towards the issue of immunity to RF EM fields in the process of designing input circuits in medical electrical equipment.
On the electrophonic generation of audio frequency sound by meteors
NASA Astrophysics Data System (ADS)
Kelley, Michael C.; Price, Colin
2017-04-01
Recorded for centuries, people can hear and see meteors nearly concurrently. Electromagnetic energy clearly propagates at the speed of light and converts to sound (called electrophonics) when coupled to metals. An explanation for the electromagnetic energy source is suggested. Coma ions around the meteor head can easily travel across magnetic field lines up to 120 km. The electrons, however, are tied to magnetic field lines, since they must gyrate around the field above 75 km. A large ambipolar electric field must be generated to conserve charge neutrality. This localized electric field maps to the E region then drives a large Hall current that launches the electromagnetic wave. Using antenna theory and following, a power flux of over 10-8 W/m2 at the ground is found. Electrophonic conversion to sound efficiency then needs to be only 0.1% to explain why humans can hear and see meteors nearly concurrently.
General-relativistic pulsar magnetospheric emission
NASA Astrophysics Data System (ADS)
Pétri, J.
2018-06-01
Most current pulsar emission models assume photon production and emission within the magnetosphere. Low-frequency radiation is preferentially produced in the vicinity of the polar caps, whereas the high-energy tail is shifted to regions closer but still inside the light cylinder. We conducted a systematic study of the merit of several popular radiation sites like the polar cap, the outer gap, and the slot gap. We computed sky maps emanating from each emission site according to a prescribed distribution function for the emitting particles made of an electron/positron mixture. Calculations are performed using a three-dimensional integration of the plasma emissivity in the vacuum electromagnetic field of a rotating and centred general-relativistic dipole. We compare Newtonian electromagnetic fields to their general-relativistic counterpart. In the latter case, light bending is also taken into account. As a typical example, light curves and sky maps are plotted for several power-law indices of the particle distribution function. The detailed pulse profiles strongly depend on the underlying assumption about the fluid motion subject to strong electromagnetic fields. This electromagnetic topology enforces the photon propagation direction directly, or indirectly, from aberration effects. We also discuss the implication of a net stellar electric charge on to sky maps. Taking into account, the electric field strongly affects the light curves originating close to the light cylinder, where the electric field strength becomes comparable to the magnetic field strength.
Control and monitoring method and system for electromagnetic forming process
Kunerth, Dennis C.; Lassahn, Gordon D.
1990-01-01
A process, system, and improvement for a process for electromagnetic forming of a workpiece in which characteristics of the workpiece such as its geometry, electrical conductivity, quality, and magnetic permeability can be determined by monitoring the current and voltage in the workcoil. In an electromagnet forming process in which a power supply provides current to a workcoil and the electromagnetic field produced by the workcoil acts to form the workpiece, the dynamic interaction of the electromagnetic fields produced by the workcoil with the geometry, electrical conductivity, and magnetic permeability of the workpiece, provides information pertinent to the physical condition of the workpiece that is available for determination of quality and process control. This information can be obtained by deriving in real time the first several time derivatives of the current and voltage in the workcoil. In addition, the process can be extended by injecting test signals into the workcoil during the electromagnetic forming and monitoring the response to the test signals in the workcoil.
Occupational exposure to electromagnetic fields in the Polish Armed Forces.
Sobiech, Jaromir; Kieliszek, Jarosław; Puta, Robert; Bartczak, Dagmara; Stankiewicz, Wanda
2017-06-19
Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems). Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Portable radios emit the electric field strength between 20-80 V/m close to a human head. The manpack radio operator's exposure is 60-120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF) band radios, the electric field strength is between 7-30 V/m and inside the radar cabin it ranges between 9-20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7-15 V/m and the personnel of non-directional radio beacons - 100-150 V/m. In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% - only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4):565-577. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Theoretical investigation of operation modes of MHD generators for energy-bypass engines
NASA Astrophysics Data System (ADS)
Tang, Jingfeng; Li, Nan; Yu, Daren
2014-12-01
A MHD generator with different arrangements of electromagnetic fields will lead the generator working in three modes. A quasi-one-dimensional approximation is used for the model of the MHD generator to analyze the inner mechanism of operation modes. For the MHD generator with a uniform constant magnetic field, a specific critical electric field E cr is required to decelerate a supersonic entrance flow into a subsonic exit flow. Otherwise, the generator works in a steady mode with a larger electric field than E cr in which a steady supersonic flow is provided at the exit, or the generator works in a choked mode with a smaller electric field than E cr in which the supersonic entrance flow is choked in the channel. The detailed flow field characteristics in different operation modes are discussed, demonstrating the relationship of operation modes with electromagnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu; Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp; Garain, Sudip, E-mail: sgarain@nd.edu
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equationsmore » is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge–Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.« less
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This collocation also ensures that electromagnetic radiation that is propagating in a vacuum has both electric and magnetic fields that are exactly divergence-free. Coupled relativistic fluid dynamic equations are solved for the positively and negatively charged fluids. The fluids' numerical fluxes also provide a self-consistent current density for the update of the electric field. Our reconstruction strategy ensures that fluid velocities always remain sub-luminal. Our third innovation consists of an efficient design for several popular IMEX schemes so that they provide strong coupling between the finite-volume-based fluid solver and the electromagnetic fields at high order. This innovation makes it possible to efficiently utilize high order IMEX time update methods for stiff source terms in the update of high order finite-volume methods for hyperbolic conservation laws. We also show that this very general innovation should extend seamlessly to Runge-Kutta discontinuous Galerkin methods. The IMEX schemes enable us to use large CFL numbers even in the presence of stiff source terms. Several accuracy analyses are presented showing that our method meets its design accuracy in the MHD limit as well as in the limit of electromagnetic wave propagation. Several stringent test problems are also presented. We also present a relativistic version of the GEM problem, which shows that our algorithm can successfully adapt to challenging problems in high energy astrophysics.
Tissue interactions with nonionizing electromagnetic fields. Final report, March 1979-February 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adey, W.R.; Bawin, S.M.; Byus, C.V.
1986-08-01
This report provides an overview of this research program focused on basic research in nervous system responses to electric fields at 60 Hz. The emphasis in this project was to determine the fundamental mechanisms underlying some phenomena of electric field interactions in neural systems. The five studies of the initial program were tests of behavioral responses in the rat based upon the hypothesis that electric field detection might follow psychophysical rules known from prior research with light, sound and other stimuli; tests of electrophysiological responses to ''normal'' forms of stimulation in rat brain tissue exposed in vitro to electric fields,more » based on the hypothesis that the excitability of brain tissue might be affected by fields in the extracellular environment; tests of electrophysiological responses of spontaneously active pacemaker neurons of the Aplysia abdominal ganglion, based on the hypothesis that electric field interactions at the cell membrane might affect the balance among the several membrane-related processes that govern pacemaker activity; studies of mechanisms of low frequency electromagnetic field interactions with bone cells in the context of field therapy of ununited fractures; and manipulation of cell surface receptor proteins in studies of their mobility during EM field exposure.« less
NASA Astrophysics Data System (ADS)
Arrayás, M.; Bouwmeester, D.; Trueba, J. L.
2017-01-01
Maxwell equations in vacuum allow for solutions with a non-trivial topology in the electric and magnetic field line configurations at any given moment in time. One example is a space filling congruence of electric and magnetic field lines forming circles lying on the surfaces of nested tori. In this example the electric, magnetic and Poynting vector fields are orthogonal everywhere. As time evolves the electric and magnetic fields expand and deform without changing the topology and energy, while the Poynting vector structure remains unchanged while propagating with the speed of light. The topology is characterized by the concept of helicity of the field configuration. Helicity is an important fundamental concept and for massless fields it is a conserved quantity under conformal transformations. We will review several methods by which linked and knotted electromagnetic (spin-1) fields can be derived. A first method, introduced by A. Rañada, uses the formulation of the Maxwell equations in terms of differential forms combined with the Hopf map from the three-sphere S3 to the two-sphere S2. A second method is based on spinor and twistor theory developed by R. Penrose in which elementary twistor functions correspond to the family of electromagnetic torus knots. A third method uses the Bateman construction of generating null solutions from complex Euler potentials. And a fourth method uses special conformal transformations, in particular conformal inversion, to generate new linked and knotted field configurations from existing ones. This fourth method is often accompanied by shifting singularities in the field to complex space-time points. Of course the various methods must be closely related to one another although they have been developed largely independently and they suggest different directions in which to expand the study of topologically non-trivial field configurations. It will be shown how the twistor formulation allows for a direct extension to massless fields of other spin values, such as spin-2 fields satisfying the linearized Einstein vacuum equation, and how the formulation by A. Rañada can be extended to fields for which the electric and magnetic fields are not orthogonal everywhere. Underlying the various methods is the fact that electric and magnetic field lines can be described as the level curves of complex functions. Compactification of R3 naturally leads to finite energy solutions because the fields at infinity in all directions should all converge towards zero. An intriguing question that is raised by the finite energy is whether there is a connection to the quantization of the classical electromagnetic field. We will review some issues related to this question. Another interesting question is why the general formulation of topologically non-trivial solutions uses the electric and magnetic fields instead of the electromagnetic vector potentials. This leads to a discussion of the Clebsch representation of the electromagnetic field strength 2-form. Finally, a topic of great interest is the possibility of experimentally generating and investigating linked and knotted field configurations. Since the non-trivial topological field solutions exploit the special conformal symmetry of the underlying vacuum wave-equations it will only be possible to approximate the solutions in an experiment, which necessarily introduces material objects that will break the special conformal symmetry. We will review the research on plasma configurations in which the magnetic field-line configuration approximates plasma torus knots leading to the prediction of topological solitons in plasma.
Electromagnetic fields in curved spacetimes
NASA Astrophysics Data System (ADS)
Tsagas, Christos G.
2005-01-01
We consider the evolution of electromagnetic fields in curved spacetimes and calculate the exact wave equations for the associated electric and magnetic components. Our analysis is fully covariant, applies to a general spacetime and isolates all the sources that affect the propagation of these waves. Among others, we explicitly show how the different components of the gravitational field act as driving sources of electromagnetic disturbances. When applied to perturbed Friedmann Robertson Walker cosmologies, our results argue for a superadiabatic-type amplification of large-scale cosmological magnetic fields in Friedmann models with open spatial curvature.
Electromagnetic Gun With Commutated Coils
NASA Technical Reports Server (NTRS)
Elliott, David G.
1991-01-01
Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.
Measurement and analysis of electromagnetic fields from trams, trains and hybrid cars.
Halgamuge, Malka N; Abeyrathne, Chathurika D; Mendis, Priyan
2010-10-01
Electricity is used substantially and sources of electric and magnetic fields are, unavoidably, everywhere. The transportation system is a source of these fields, to which a large proportion of the population is exposed. Hence, investigation of the effects of long-term exposure of the general public to low-frequency electromagnetic fields caused by the transportation system is critically important. In this study, measurements of electric and magnetic fields emitted from Australian trams, trains and hybrid cars were investigated. These measurements were carried out under different conditions, locations, and are summarised in this article. A few of the measured electric and magnetic field strengths were significantly lower than those found in prior studies. These results seem to be compatible with the evidence of the laboratory studies on the biological effects that are found in the literature, although they are far lower than international levels, such as those set up in the International Commission on Non-Ionising Radiation Protection guidelines.
MOM3D method of moments code theory manual
NASA Technical Reports Server (NTRS)
Shaeffer, John F.
1992-01-01
MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Kelley, James S.; Panneton, Robert B.; Arndt, G. Dickey
1995-01-01
In order to estimate the RF radiation hazards to astronauts and electronics equipment due to various Space Station transmitters, the electric fields around the various Space Station antennas are computed using the rigorous Computational Electromagnetics (CEM) techniques. The Method of Moments (MoM) was applied to the UHF and S-band low gain antennas. The Aperture Integration (AI) method and the Geometrical Theory of Diffraction (GTD) method were used to compute the electric field intensities for the S- and Ku-band high gain antennas. As a result of this study, The regions in which the electric fields exceed the specified exposure levels for the Extravehicular Mobility Unit (EMU) electronics equipment and Extravehicular Activity (EVA) astronaut are identified for various Space Station transmitters.
Electromagnetic field effects in explosives
NASA Astrophysics Data System (ADS)
Tasker, Douglas
2009-06-01
Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.
On magnetoelectric coupling at equilibrium in continua with microstructure
NASA Astrophysics Data System (ADS)
Romeo, Maurizio
2017-10-01
A theory of micromorphic continua, applied to electromagnetic solids, is exploited to study magnetoelectric effects at equilibrium. Microcurrents are modeled by the microgyration tensor of stationary micromotions, compatibly with the balance equations for null microdeformation. The equilibrium of the continuum subject to electric and magnetic fields is reformulated accounting for electric multipoles which are related to microdeformation by evolution equations. Polarization and magnetization are derived for uniform fields under the micropolar reduction in terms of microstrain and octupole structural parameters. Nonlinear dependance on the electromagnetic fields is evidenced, compatibly with known theoretical and experimental results on magnetoelectric coupling.
Raise and collapse of pseudo Landau levels in graphene
NASA Astrophysics Data System (ADS)
Castro, Eduardo V.; Cazalilla, Miguel A.; Vozmediano, María A. H.
2017-12-01
Lattice deformations couple to the low-energy electronic excitations of graphene as vector fields similar to the electromagnetic potential. The observation of strain-induced pseudo Landau levels with scanning tunnel microscopy experiments has been one of the most exciting events in the history of graphene. Nevertheless, the experimental observation presents some ambiguities. Similar strain patterns show different images that are sometimes difficult to interpret. In this Rapid Communication, we show that, for some strain configurations, the deformation potential acts as a parallel electric field able to destabilize the Landau level structure via a mechanism identical to that occurring for real electromagnetic fields. This effect also alters the estimations of the value of the pseudomagnetic field, which can be significantly bigger. The mechanism applies equally if the electric field has an external origin, which opens the door to an electric control of giant pseudomagnetic fields in graphene.
NASA Astrophysics Data System (ADS)
Rickard, Scott
Electromagnets are a crucial component in a wide range of more complex electrical devices due to their ability to turn electrical energy into mechanical energy and vice versa. The trend for electronics becoming smaller and lighter has led to increased interest in using flat, planar electromagnetic coils, which have been shown to perform better at scaled down sizes. The two-dimensional geometry of a planar electromagnetic coil yields itself to be produced by a roll-to-roll additive manufacturing process. The emergence of the printed electronics field, which uses traditional printing processes to pattern functional inks, has led to new methods of mass-producing basic electrical components. The ability to print a planar electromagnetic coil using printed electronics could rival the traditional subtractive and semi-subtractive PCB process of manufacturing. The ability to print lightweight planar electromagnetic coils on flexible substrates could lead to their inclusion into intelligent packaging applications and could have specific use in actuating devices, transformers, and electromagnetic induction applications such as energy harvesting or wireless charging. In attempts to better understand the limitations of printing planar electromagnetic coils, the effect that the design parameters of the planar coils have on the achievable magnetic field strength were researched. A comparison between prototyping methods of digital extrusion and manufacturing scale flexographic printing are presented, discussing consistency in the printed coils and their performance in generating magnetic fields. A method to predict the performance of these planar coils is introduced to allow for design within required needs of an application. Results from the research include a demonstration of a printed coil being used in a flat speaker design, working off of actuating principles.
2017-01-01
Objectives The aim was to evaluate correlations between biophysical effects of 27 MHz electromagnetic field exposure in humans (limb induced current (LIC)) and (1) parameters of affecting heterogeneous electric field and (2) body anthropometric properties, in order to improve the evaluation of electromagnetic environmental hazards. Methods Biophysical effects of exposure were studied in situ by measurements of LIC in 24 volunteers (at the ankle) standing near radio communication rod antenna and in silico in 4 numerical body phantoms exposed near a model of antenna. Results Strong, positive, statistically significant correlations were found in all exposure scenarios between LIC and body volume index (body height multiplied by mass) (r > 0.7; p < 0.001). The most informative exposure parameters, with respect to the evaluation of electromagnetic hazards by measurements (i.e., the ones strongest correlated with LIC), were found to be the value of electric field (unperturbed field, in the absence of body) in front of the chest (50 cm from body axis) or the maximum value in space occupied by human. Such parameters were not analysed in previous studies. Conclusions Exposed person's body volume and electric field strength in front of the chest determine LIC in studied exposure scenarios, but their wider applicability needs further studies. PMID:28758119
Electromagnetic earthquake triggering phenomena: State-of-the-art research and future developments
NASA Astrophysics Data System (ADS)
Zeigarnik, Vladimir; Novikov, Victor
2014-05-01
Developed in the 70s of the last century in Russia unique pulsed power systems based on solid propellant magneto-hydrodynamic (MHD) generators with an output of 10-500 MW and operation duration of 10 to 15 s were applied for an active electromagnetic monitoring of the Earth's crust to explore its deep structure, oil and gas electrical prospecting, and geophysical studies for earthquake prediction due to their high specific power parameters, portability, and a capability of operation under harsh climatic conditions. The most interesting and promising results were obtained during geophysical experiments at the test sites located at Pamir and Northern Tien Shan mountains, when after 1.5-2.5 kA electric current injection into the Earth crust through an 4 km-length emitting dipole the regional seismicity variations were observed (increase of number of weak earthquakes within a week). Laboratory experiments performed by different teams of the Institute of Physics of the Earth, Joint Institute for High Temperatures, and Research Station of Russian Academy of Sciences on observation of acoustic emission behavior of stressed rock samples during their processing by electric pulses demonstrated similar patterns - a burst of acoustic emission (formation of cracks) after application of current pulse to the sample. Based on the field and laboratory studies it was supposed that a new kind of earthquake triggering - electromagnetic initiation of weak seismic events has been observed, which may be used for the man-made electromagnetic safe release of accumulated tectonic stresses and, consequently, for earthquake hazard mitigation. For verification of this hypothesis some additional field experiments were carried out at the Bishkek geodynamic proving ground with application of pulsed ERGU-600 facility, which provides 600 A electric current in the emitting dipole. An analysis of spatio-temporal redistribution of weak regional seismicity after ERGU-600 pulses, as well as a response of geoacoustic emission recorded in the wells at a distance of 7-12 km from the emitting dipole to the ERGU-600 pulses confirmed the effects of an influence of electromagnetic field on the deformation processes in the Earth crust and the real existence of electromagnetic triggering phenomena. For verification of results of field observations laboratory studies of behavior of rock samples under critical stress-strain state and external electric actions were carried out at the spring and lever presses, as well as at the stick-slip models simulated the seismic cycle (stress accumulation and discharge) in the seismogenic geological fault. Various possible mechanisms of weak electrical stimulation (electric current density 10-7-10-8 mA/cm2 at a depth of earthquake epicenters of 5 to10 km) of deformation processes in the Earth crust, including increased fluid pore pressure, electrokinetic phenomena, magnetostriction, electrical stimulation of fluid migration into the fault area are considered. However, the mechanism of electromagnetic earthquake triggering phenomena is still open. Based on the field observations of electromagnetic triggering of weak seismicity resulting in a partial safe release of stresses in the Earth crust a possibility of control of seismic process is considered for risk reduction of catastrophic earthquakes. The results obtained from field and laboratory experiments on electromagnetic initiation of seismic events allow to consider a problem of lithosphere-ionosphere relations from another point of view. Keeping in mind that the current density generated in the Earth crust by artificial electric source is comparable with the density of telluric currents induced during severe ionospheric disturbances (e.g., magnetic storms) it may be possible under certain favorable conditions in lithosphere to initiate earthquakes by electromagnetic disturbances in ionosphere. A possibility of application of these triggering phenomena for short-term earthquake prediction is discussed.
Nanoscale electron manipulation in metals with intense THz electric fields
NASA Astrophysics Data System (ADS)
Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi
2018-03-01
Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.
Giant Electric Field Enhancement in Split Ring Resonators Featuring Nanometer-Sized Gaps
NASA Astrophysics Data System (ADS)
Bagiante, S.; Enderli, F.; Fabiańska, J.; Sigg, H.; Feurer, T.
2015-01-01
Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm-1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations.
On the existence of the field line solutions of the Einstein-Maxwell equations
NASA Astrophysics Data System (ADS)
Vancea, Ion V.
The main result of this paper is the proof that there are local electric and magnetic field configurations expressed in terms of field lines on an arbitrary hyperbolic manifold. This electromagnetic field is described by (dual) solutions of the Maxwell’s equations of the Einstein-Maxwell theory. These solutions have the following important properties: (i) they are general, in the sense that the knot solutions are particular cases of them and (ii) they reduce to the electromagnetic fields in the field line representation in the flat space-time. Also, we discuss briefly the real representation of these electromagnetic configurations and write down the corresponding Einstein equations.
Switchable Scattering Meta-Surfaces for Broadband Terahertz Modulation
Unlu, M.; Hashemi, M. R.; Berry, C. W.; Li, S.; Yang, S.-H.; Jarrahi, M.
2014-01-01
Active tuning and switching of electromagnetic properties of materials is of great importance for controlling their interaction with electromagnetic waves. In spite of their great promise, previously demonstrated reconfigurable metamaterials are limited in their operation bandwidth due to their resonant nature. Here, we demonstrate a new class of meta-surfaces that exhibit electrically-induced switching in their scattering parameters at room temperature and over a broad range of frequencies. Structural configuration of the subwavelength meta-molecules determines their electromagnetic response to an incident electromagnetic radiation. By reconfiguration of the meta-molecule structure, the strength of the induced electric field and magnetic field in the opposite direction to the incident fields are varied and the scattering parameters of the meta-surface are altered, consequently. We demonstrate a custom-designed meta-surface with switchable scattering parameters at a broad range of terahertz frequencies, enabling terahertz intensity modulation with record high modulation depths and modulation bandwidths through a fully integrated, voltage-controlled device platform at room temperature. PMID:25028123
Presented here are the numerical relationships between incident power densities that produce the same average electric field intensity within a chick brain half immersed in buffered saline solution and exposed to a uniform electromagnetic field at carrier frequencies of 50, 147, ...
Archaeological Graves Revealing By Means of Seismic-electric Effect
NASA Astrophysics Data System (ADS)
Boulytchov, A.
[a4paper,12pt]article english Seismic-electric effect was applied in field to forecast subsurface archaeological cul- tural objects. A source of seismic waves were repeated blows of a heavy hammer or powerful signals of magnetostrictive installation. Main frequency used was 500 Hz. Passed a soil layer and reached a second boundary between upper clayey-sand sedi- ments and archaeological object, the seismic wave caused electromagnetic fields on the both boundaries what in general is due to dipole charge separation owe to an im- balance of streaming currents induced by the seismic wave on opposite sides of a boundary interface. According to theoretical works of Pride the electromagnetic field appears on a boundary between two layers with different physical properties in the time of seismic wave propagation. Electric responses of electromagnetic fields were measured on a surface by pair of grounded dipole antennas or by one pivot and a long wire antenna acting as a capacitive pickup. The arrival times of first series of responses correspond to the time of seismic wave propagation from a source to a boundary between soil and clayey-sand layers. The arrival times of second row of responses correspond to the time of seismic wave way from a source to a boundary of clayey-sand layer with the archaeological object. The method depths successfully investigated were between 0.5-10 m. Similar electromagnetic field on another type of geological structure was also revealed by Mikhailov et al., Massachusetts, but their signals registered from two frontiers were too faint and not evident in comparing with ours ones that occurred to be perfect and clear. Seismic-electric method field experi- ments were successfully provided for the first time on archaeological objects.
Electromagnetic potential vectors and the Lagrangian of a charged particle
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatara, Gen, E-mail: gen.tatara@riken.jp; Nakabayashi, Noriyuki; Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan
2014-05-07
Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.
The Electromagnetic Force between Two Moving Charges
ERIC Educational Resources Information Center
Minkin, Leonid; Shapovalov, Alexander S.
2018-01-01
A simple model of parallel motion of two point charges and the subsequent analysis of the electromagnetic field transformation invariant quantity are considered. It is shown that ignoring the coupling of electric and magnetic fields, as is done in some introductory physics books, can lead to miscalculations of the force between moving charges.…
NASA Astrophysics Data System (ADS)
Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.
2017-12-01
It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.
Seomun, GyeongAe; Kim, YoungHwan; Lee, Jung-Ah; Jeong, KwangHoon; Park, Seon-A; Kim, Miran; Noh, Wonjung
2014-04-01
To better understand environmental electromagnetic wave exposure during the use of digital textbooks by elementary school students, we measured numeric values of the electromagnetic fields produced by tablet personal computers (TPCs). Specifically, we examined the distribution of the electromagnetic waves for various students' seating positions in an elementary school that uses digital textbooks. Electric and magnetic fields from TPCs were measured using the HI-3603 Visual Display Terminal/ Very Low Frequency (VDT/VLF) radiation measurement system. Electromagnetic field values from TPCs measured at a student's seat and at a teacher's computer were deemed not harmful to health. However, electromagnetic field values varied based on the distance between students, other electronic devices such as a desktop computers, and student posture while using a TPC. Based on these results, it is necessary to guide students to observe proper posture and to arrange seats at an appropriate distance in the classroom.
Shaping metallic glasses by electromagnetic pulsing
Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.
2016-01-01
With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460
1985-05-01
Environ. Biophys. 20:53-65. 1983. Electric field effects on bacteria and yeast cells . Radiat. Environ. Biophys. 22 :149-162. Husing, J. 0., F. Strauss, and...Jr., Ph.D. 141 A Review of Cell Effects Induced by Exposure of Extremely Low 155 Frequency Electromagnetic Fields - Eugene M. Goodman, Ph.D. and Ben...and E. M. Goodman. 1983. Cell surface effects of 60 Hz electromagnetic fields. Radiat. Res. 94:217-220. artucci, G. I., P. C. Gailey, and R. A. Tell
1980-01-01
CATALOG NUMBER Tech. Report No. E715-1 4. TTE (ln tlitts LTYPE RPOT’ QcOIJj. Compendium of the ULF/ELF Electromagnetic Fields nccnicat Generated above...sidi if noeess’ry arid Identify hy bulock mriifi.rnb) ULF/ELF Electromagnetic Fields VMD, VED, HED, HMD Submerged Dipoles Undersea /Air Communication...a whole, it appears that the vertical electric component produced by th HED in the plane of the dipole (• =0) should be the most useful for undersea
Active and passive electromagnetic sounding on comets and moons
NASA Astrophysics Data System (ADS)
Przyklenk, Anita; Auster, Hans-Ulrich
We want to present the method of electromagnetic sounding on small extraterrestrial bodies to determine interior structures of those. Our sensors are perfectly suited for rover or lander missions, because they do not weight much (sum of all devices is approximately 600g) and can be easily installed at the bottom of a rover or at lander feet. The aim is to measure the material-specific complex resistivity, which depends on the electrical resistivity and electrical permittivity, for various sounding depth. This penetration depth depends on the 2 different operating modes. In the active mode, that is the so called Capacitive Resistivity (CR) method, the sounding depth is around a few meters. The CR is a purely electrical field measurement and works with a 4 electrode array. 2 of them are transmitter electrodes. They inject AC signals with frequencies between 100 Hz and 100 kHz into the subsurface. Then 2 receiver electrodes pick up the generated potentials. And a 4-point impedance can be calculated that depends on the electrical parameters among others [Grard, 1990a and b] [Kuras, 2002]. The second operating mode is the passive one. In the so called magneto telluric method the penetration depth depends on electrical parameters and can be in range of several 100m to km. Here, for excitation natural magnetic field variations are used. The magnetic field components are measured with our Fluxgate Magnetometer (FGM) (flight heritage: Rosetta, Venus Express, Themis,…). Induced electrical field components are measured again with the CR electrode array. Then the electromagnetic impedance can be derived, which depends on electrical resistivity among others. In the end, we want to discuss advantages and disadvantages of investigations during space missions compared to surveys on earth. As examples we have a closer look at the jovian moon Ganymede, the earth moon and the comet 67P/Churyumov-Gerasimenko and consider the applicability of electromagnetic sounding on this objects from a theoretical point of view.
NASA Astrophysics Data System (ADS)
Xuegang Xin, Sherman; Gu, Shiyong; Carluccio, Giuseppe; Collins, Christopher M.
2015-01-01
Due to the strong dependence of tissue electrical properties on temperature, it is important to consider the potential effects of intense tissue heating on the RF electromagnetic fields during MRI, as can occur in MR-guided focused ultrasound surgery. In principle, changes of the RF electromagnetic fields could affect both efficacy of RF pulses, and the MRI-induced RF heating (SAR) pattern. In this study, the equilibrium temperature distribution in a whole-body model with 2 mm resolution before and during intense tissue heating up to 60 °C at the target region was calculated. Temperature-dependent electric properties of tissues were assigned to the model to establish a temperature-dependent electromagnetic whole-body model in a 3T MRI system. The results showed maximum changes in conductivity, permittivity, ≤ft|\\mathbf{B}1+\\right|, and SAR of about 25%, 6%, 2%, and 20%, respectively. Though the B1 field and SAR distributions are both temperature-dependent, the potential harm to patients due to higher SARs is expected to be minimal and the effects on the B1 field distribution should have minimal effect on images from basic MRI sequences.
Electromagnetic interference of dental equipment with implantable cardioverter defibrillators.
Dadalti, Manoela Teixeira de Sant'Anna; da Cunha, Antônio José Ledo Alves; Araújo, Marcos César Pimenta de; Moraes, Luis Gustavo Belo de; Risso, Patrícia de Andrade
2017-11-01
Implantable cardioverter defibrillators (ICDs) are subject to electromagnetic interference (EMI). The aim of this study was to assess both the EMI of dental equipments with ICDs and related factors. High- and low-speed handpieces, an electric toothbrush, an implant motor and two types of ultrasonic devices were tested next to an ICD with different sensitivity settings. The ICD was immersed in a saline solution with electrical resistance of 400-800 ohms to simulate the resistance of the human body. The dental equipments were tested in both horizontal (0°) and vertical (90°) positions in relation to the components of the ICD. The tests were performed with a container containing saline solution, which was placed on a dental chair in order to assess the cumulative effect of electromagnetic fields. The dental chair, high- and low-speed handpieces, electric toothbrush, implant motor and ultrasonic devices caused no EMI with the ICD, irrespective of the program set-up or positioning. No cumulative effect of electromagnetic fields was verified. The results of this study suggest that the devices tested are safe for use in patients with an ICD.
Modelling and assessment of the electric field strength caused by mobile phone to the human head.
Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas; Stukas, Rimantas
2016-06-01
Electromagnetic field exposure is the one of the most important physical agents that actively affects live organisms and environment. Active use of mobile phones influences the increase of electromagnetic field radiation. The aim of the study was to measure and assess the electric field strength caused by mobile phones to the human head. In this paper the software "COMSOL Multiphysics" was used to establish the electric field strength created by mobile phones around the head. The second generation (2G) Global System for Mobile (GSM) phones that operate in the frequency band of 900 MHz and reach the power of 2 W have a stronger electric field than (2G) GSM mobile phones that operate in the higher frequency band of 1,800 MHz and reach the power up to 1 W during conversation. The third generation of (3G) UMTS smart phones that effectively use high (2,100 MHz) radio frequency band emit the smallest electric field strength values during conversation. The highest electric field strength created by mobile phones is around the ear, i.e. the mobile phone location. The strength of mobile phone electric field on the phantom head decreases exponentially while moving sidewards from the center of the effect zone (the ear), and constitutes 1-12% of the artificial head's surface. The highest electric field strength values of mobile phones are associated with their higher power, bigger specific energy absorption rate (SAR) and lower frequency of mobile phone. The stronger electric field emitted by the more powerful mobile phones takes a higher percentage of the head surface. The highest electric field strength created by mobile phones is distributed over the user's ear.
Control of the electromagnetic drag using fluctuating light fields
NASA Astrophysics Data System (ADS)
Pastor, Víctor J. López; Marqués, Manuel I.
2018-05-01
An expression for the electromagnetic drag force experienced by an electric dipole in a light field consisting of a monochromatic plane wave with polarization and phase randomly fluctuating is obtained. The expression explicitly considers the transformations of the field and frequency due to the Doppler shift and the change of the polarizability response of the electric dipole. The conditions to be fulfilled by the polarizability of the dipole in order to obtain a positive, a null, and a negative drag coefficient are analytically determined and checked against numerical simulations for the dynamics of a silver nanoparticle. The theoretically predicted diffusive, superdiffusive, and exponentially accelerated dynamical regimes are numerically confirmed.
Human Health and Exposure to Electromagnetic Radiation
1992-07-01
electromagnetic field exposures and cancer. Studies of electrical and electronic workers are suggestive of such a link, but are subject to the confounding factor ...associations between cancer and electrical installations 108 51 Factors associated with increased risk of childhood cancer in the Denver studies 109 52...It is important in epidemiological studies to make Arenuous efforts to adjust for possible confounding factors , many - in particular the early
Havas, Magda
2008-01-01
Transient electromagnetic fields (dirty electricity), in the kilohertz range on electrical wiring, may be contributing to elevated blood sugar levels among diabetics and prediabetics. By closely following plasma glucose levels in four Type 1 and Type 2 diabetics, we find that they responded directly to the amount of dirty electricity in their environment. In an electromagnetically clean environment, Type 1 diabetics require less insulin and Type 2 diabetics have lower levels of plasma glucose. Dirty electricity, generated by electronic equipment and wireless devices, is ubiquitous in the environment. Exercise on a treadmill, which produces dirty electricity, increases plasma glucose. These findings may explain why brittle diabetics have difficulty regulating blood sugar. Based on estimates of people who suffer from symptoms of electrical hypersensitivity (3–35%), as many as 5–60 million diabetics worldwide may be affected. Exposure to electromagnetic pollution in its various forms may account for higher plasma glucose levels and may contribute to the misdiagnosis of diabetes. Reducing exposure to electromagnetic pollution by avoidance or with specially designed GS filters may enable some diabetics to better regulate their blood sugar with less medication and borderline or pre-diabetics to remain non diabetic longer. PMID:18568931
Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells
NASA Astrophysics Data System (ADS)
Zhang, Kuo; Wu, Xi-Ling; Yan, Jing-Fu; Cai, Jia-Tie
2017-03-01
Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.
University Students' Conceptions of the Electric and Magnetic Fields and Their Interrelationships
ERIC Educational Resources Information Center
Kesonen, M. H. P.; Asikainen, M. A.; Hirvonen, P. E.
2011-01-01
This study focuses on students' conceptions of electric and magnetic fields at university level and of the interrelations between them. A total of 33 students participated in a paper and pencil test after the completion of first-year electricity and second-year electromagnetism courses. The conceptions were investigated in the contexts of a…
Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field
ERIC Educational Resources Information Center
Kholmetskii, A. L.; Yarman, T.
2008-01-01
In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…
Binary black hole in a double magnetic monopole field
NASA Astrophysics Data System (ADS)
Rodriguez, Maria J.
2018-01-01
Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows.
NASA Astrophysics Data System (ADS)
Isaka, Katsuo
The biological effects of extremely low frequency electric fields on animals are reviewed with emphasis on studies of the nervous system, behavior, endocrinology, and blood chemistry. First, this paper provides a histrical overview of studies on the electric field effects initiated in Russia and the United States mainly regarding electric utility workers in high voltage substations and transmission lines. Then, the possible mechanisms of electric field effects are explained using the functions of surface electric fields and induced currents in biological objects. The real mechanisms have not yet been identified. The thresholds of electric field perception levels for rats, baboons, and humans are introduced and compared. The experimental results concerning the depression of melatonin secretion in rats exposed to electric fields are described.
Electromagnetic pulses bone healing booster
NASA Astrophysics Data System (ADS)
Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.
2015-11-01
Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.
Offshore windmills and the effects of electromagnetic fields on fish.
Ohman, Marcus C; Sigray, Peter; Westerberg, Håkan
2007-12-01
With the large scale developments of offshore windpower the number of underwater electric cables is increasing with various technologies applied. A wind farm is associated with different types of cables used for intraturbine, array-to-transformer, and transformer-to-shore transmissions. As the electric currents in submarine cables induce electromagnetic fields there is a concern of how they may influence fishes. Studies have shown that there are fish species that are magneto-sensitive using geomagnetic field information for the purpose of orientation. This implies that if the geomagnetic field is locally altered it could influence spatial patterns in fish. There are also physiological aspects to consider, especially for species that are less inclined to move as the exposure could be persistent in a particular area. Even though studies have shown that magnetic fields could affect fish, there is at present limited evidence that fish are influenced by the electromagnetic fields that underwater cables from windmills generate. Studies on European eel in the Baltic Sea have indicated some minor effects. In this article we give an overview on the type of submarine cables that are used for electric transmissions in the sea. We also describe the character of the magnetic fields they induce. The effects of magnetic fields on fish are reviewed and how this may relate to the cables used for offshore wind power is discussed.
Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird.
Engels, Svenja; Schneider, Nils-Lasse; Lefeldt, Nele; Hein, Christine Maira; Zapka, Manuela; Michalik, Andreas; Elbers, Dana; Kittel, Achim; Hore, P J; Mouritsen, Henrik
2014-05-15
Electromagnetic noise is emitted everywhere humans use electronic devices. For decades, it has been hotly debated whether man-made electric and magnetic fields affect biological processes, including human health. So far, no putative effect of anthropogenic electromagnetic noise at intensities below the guidelines adopted by the World Health Organization has withstood the test of independent replication under truly blinded experimental conditions. No effect has therefore been widely accepted as scientifically proven. Here we show that migratory birds are unable to use their magnetic compass in the presence of urban electromagnetic noise. When European robins, Erithacus rubecula, were exposed to the background electromagnetic noise present in unscreened wooden huts at the University of Oldenburg campus, they could not orient using their magnetic compass. Their magnetic orientation capabilities reappeared in electrically grounded, aluminium-screened huts, which attenuated electromagnetic noise in the frequency range from 50 kHz to 5 MHz by approximately two orders of magnitude. When the grounding was removed or when broadband electromagnetic noise was deliberately generated inside the screened and grounded huts, the birds again lost their magnetic orientation capabilities. The disruptive effect of radiofrequency electromagnetic fields is not confined to a narrow frequency band and birds tested far from sources of electromagnetic noise required no screening to orient with their magnetic compass. These fully double-blinded tests document a reproducible effect of anthropogenic electromagnetic noise on the behaviour of an intact vertebrate.
Proposed electromagnetic wave energy converter
NASA Technical Reports Server (NTRS)
Bailey, R. L.
1973-01-01
Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
NASA Astrophysics Data System (ADS)
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-09-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-01-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482
Radiation from an Accelerated Point Charge and Non-Inertial Observers
ERIC Educational Resources Information Center
Leonov, A. B.
2012-01-01
It is known that observers comoving with a uniformly accelerated point charge detect the electromagnetic field of a charge as a static electric field. We show that one can find a similar family of observers, which detect the field of a charge as a static electric field, in the general case of arbitrary point-charge motion. We find the velocities…
Investigation of Axial Electric Field Measurements with Grounded-Wire TEM Surveys
NASA Astrophysics Data System (ADS)
Zhou, Nan-nan; Xue, Guo-qiang; Li, Hai; Hou, Dong-yang
2018-01-01
The grounded-wire transient electromagnetic (TEM) surveying is often performed along the equatorial direction with its observation lines paralleling to the transmitting wire with a certain transmitter-receiver distance. However, such method takes into account only the equatorial component of the electromagnetic field, and a little effort has been made on incorporating the other major component along the transmitting wire, here denoted as axial field. To obtain a comprehensive understanding of its fundamental characteristics and guide the designing of the corresponding observation system for reliable anomaly detection, this study for the first time investigates the axial electric field from three crucial aspects, including its decay curve, plane distribution, and anomaly sensitivity, through both synthetic modeling and real application to one major coal field in China. The results demonstrate a higher sensitivity to both high- and low-resistivity anomalies by the electric field in axial direction and confirm its great potentials for robust anomaly detection in the subsurface.
Probing Surface Electric Field Noise with a Single Ion
2013-07-30
potentials is housed inside a Faraday cage providing more than 40 dB of attenuation for electromagnetic fields in the range of frequencies between 200...and measuring the ion quantum state [16]. Thus, by measuring the effect of electric field noise on the motional quantum state of the ion, one can probe...understand these effects . In summary, we have probed the electric field noise near an aluminum-copper surface at room temperature using a single trapped ion
Novel Aspects of Evolution of the Stokes Parameters for an Electromagnetic Wave in Anisotropic Media
NASA Astrophysics Data System (ADS)
Botet, R.; Kuratsuji, H.; Seto, R.
2006-08-01
Polarization of a plane electromagnetic wave travelling through a medium is studied in the slowly-varying field envelope approximation. It is shown that the problem is identical to the 4-momentum evolution of a negatively-charged massless relativistic particle in an electromagnetic field. The approach is exemplified by the resonant oscillations of circular polarization in a medium embedded in a static magnetic field and a modulated electric field. The effect of dissipation in the medium is discussed. It is shown that the Rabi oscillations are stable below a threshold depending on the absorption coefficient. Above it, oscillations disappear.
Zharov, Alexander A; Zharov, Alexander A; Zharova, Nina A
2014-08-01
We show that transverse electromagnetic waves propagating along an external static electric field in liquid metacrystal (LMC) can provoke spontaneous rearrangement of elongated meta-atoms that changes the direction of the anisotropy axis of the LMC. This kind of instability may reorient the meta-atoms from the equilibrium state parallel to a static field to the state along a high-frequency field and back at the different threshold intensities of electromagnetic waves in such a way that bistability in the system takes place. Reorientation of meta-atoms causes a change in the effective refraction index of LMC that creates, in turn, the conditions for the formation of bright spatial solitons. Such spatial solitons are the self-consistent domains of redirected meta-atoms with trapped photons. We find that the instability thresholds as well as energy flux captured by the spatial soliton can be easily managed by variation of the static electric field applied to the LMC. We study the effects of soliton excitation and collisions via numerical simulations.
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, R.K.
1993-05-11
An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
Electromagnetic induction pump for pumping liquid metals and other conductive liquids
Smither, Robert K.
1993-01-01
An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.
Rigorous Electromagnetic Analysis of the Focusing Action of Refractive Cylindrical Microlens
NASA Astrophysics Data System (ADS)
Liu, Juan; Gu, Ben-Yuan; Dong, Bi-Zhen; Yang, Guo-Zhen
The focusing action of refractive cylindrical microlens is investigated based on the rigorous electromagnetic theory with the use of the boundary element method. The focusing behaviors of these refractive microlenses with continuous and multilevel surface-envelope are characterized in terms of total electric-field patterns, the electric-field intensity distributions on the focal plane, and their diffractive efficiencies at the focal spots. The obtained results are also compared with the ones obtained by Kirchhoff's scalar diffraction theory. The present numerical and graphical results may provide useful information for the analysis and design of refractive elements in micro-optics.
Modelling of a Double-Track Railway Contact System Electric Field Intensity
NASA Astrophysics Data System (ADS)
Belinsky, Stanislav; Khanzhina, Olga; Sidorov, Alexander
2017-12-01
Working conditions of personnel that serves contact system (CS) are affected by factors including health and safety, security and working hours (danger of rolling stock accidents, danger of electric shock strokes, work at height, severity and tension of work, increased noise level, etc.) Low frequency electromagnetic fields as part of both electric and magnetic fields are among of the most dangerous and harmful factors. These factors can affect not only the working personnel, but also a lot of people, who do not work with the contact system itself, but could be influenced by electromagnetic field as the result of their professional activity. People, who use public transport or live not far from the electrified lines, are endangered by these factors as well. There are results of the theoretical researches in which low frequency electric fields of railway contact system were designed with the use of mathematical and computer modelling. Significant features of electric field distribution near double-track railway in presence or absence of human body were established. The studies showed the dependence of low frequency electric field parameters on the distance to the track axis, height, and presence or absence of human body. The obtained data were compared with permissible standards established in the Russian Federation and other countries with advanced electrified railway system. Evaluation of low frequency electric fields harmful effect on personnel is the main result of this work. It is also established, that location of personnel, voltage and current level, amount of tracks and other factors influence electric fields of contact systems.
Electromagnetic properties of material coated surfaces
NASA Technical Reports Server (NTRS)
Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.
1989-01-01
The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.
Anyons in an electromagnetic field and the Bargmann-Michel-Telegdi equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S.
1995-05-15
The Lagrangian model for anyons, presented earlier, is extended to include interactions with an external, homogeneous electromagnetic field. Explicit electric and magnetic moment terms for the anyon are introduced in the Lagrangian. The (2+1)-dimensional Bargmann-Michel-Telegdi equation as well as the correct value (2) of the gyromagnetic ratio is rederived, in the Hamiltonian framework.
Liboff, A R
2009-01-01
Wellness can be described in physical terms as a state that is a function of the organism's electric polarization vector P(r, t). One can alter P by invasive application of electric fields or by non invasive external pulsed magnetic fields (PMF) or ion cyclotron resonance (ICR)-like combinations of static and sinusoidal magnetic fields. Changes in human (total) body bioimpedance are significantly altered during exposure to ICR magnetic field combinations. The conductivities of polar amino acids in solution exhibit sharp discontinuities at ICR magnetic fields tuned to the specific charge to mass ratio of the amino acid. It has been reported that protein peptide bonds are broken by such amino acid ICR fields. Remarkably, some of these effects are only found at ultra-low AC magnetic intensities, on the order of .05 muT. This is approximately 10(3) below accepted levels determined by engineering estimates. Such strikingly low magnetic intensities imply the existence of physically equivalent endogenous weak electric field oscillations. These observations not only make claims related to electromagnetic pollution more credible but also provide a basis for future electromagnetic applications in medicine. They also reinforce the notion that physical factors acting to influence the electric polarization in living organisms play a key role in biology.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Korvink, Jan G.
2016-01-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766
Magnetospheric-ionospheric Poynting flux
NASA Technical Reports Server (NTRS)
Thayer, Jeffrey P.
1994-01-01
Over the past three years of funding SRI, in collaboration with the University of Texas at Dallas, has been involved in determining the total electromagnetic energy flux into the upper atmosphere from DE-B electric and magnetic field measurements and modeling the electromagnetic energy flux at high latitudes, taking into account the coupled magnetosphere-ionosphere system. This effort has been very successful in establishing the DC Poynting flux as a fundamental quantity in describing the coupling of electromagnetic energy between the magnetosphere and ionosphere. The DE-B satellite electric and magnetic field measurements were carefully scrutinized to provide, for the first time, a large data set of DC, field-aligned, Poynting flux measurement. Investigations describing the field-aligned Poynting flux observations from DE-B orbits under specific geomagnetic conditions and from many orbits were conducted to provide a statistical average of the Poynting flux distribution over the polar cap. The theoretical modeling effort has provided insight into the observations by formulating the connection between Poynting's theorem and the electromagnetic energy conversion processes that occur in the ionosphere. Modeling and evaluation of these processes has helped interpret the satellite observations of the DC Poynting flux and improved our understanding of the coupling between the ionosphere and magnetosphere.
NASA Astrophysics Data System (ADS)
Subjects related to electromagnetic compatibility (EMC) analysis are discussed, taking into account forcing terms of line equations for externally excited transmission lines, E-fields over ground, electromagnetic near fields as a function of electrical size, a program for experimental verification of EMC analysis models, random susceptability of an IC 7400 TTL NAND gate, and a comparison of IEMCAP and SEMCAP. Other topics explored are concerned with EMC measurements, spectrum management, the electromagnetic pulse (EMP), a Navy EMC program, measurement systems, filters, EMC design, electromagnetic vulnerability (EMV) assessment of weapon systems, FCC rules and regulations, shielding, and electromagnetic interference (EMI) in communication systems. Attention is also given to nonsinusoidal functions in radar and communications, transients/electrostatic discharge, open field testing, cables and connectors, interference effects of induced and conducted earth current at dc and ELF, test cells, and cable coupling.
Overview of Advanced Electromagnetic Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Kamhawi, Hani; Gilland, James H.; Arrington, Lynn A.
2005-01-01
NASA Glenn Research Center s Very High Power Electric Propulsion task is sponsored by the Energetics Heritage Project. Electric propulsion technologies currently being investigated under this program include pulsed electromagnetic plasma thrusters, magnetoplasmadynamic thrusters, helicon plasma sources as well as the systems models for high power electromagnetic propulsion devices. An investigation and evaluation of pulsed electromagnetic plasma thruster performance at energy levels up to 700 Joules is underway. On-going magnetoplasmadynamic thruster experiments will investigate applied-field performance characteristics of gas-fed MPDs. Plasma characterization of helicon plasma sources will provide additional insights into the operation of this novel propulsion concept. Systems models have been developed for high power electromagnetic propulsion concepts, such as pulsed inductive thrusters and magnetoplasmadynamic thrusters to enable an evaluation of mission-optimized designs.
Compact, Lightweight Electromagnetic Pump for Liquid Metal
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Palzin, Kurt
2010-01-01
A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.
Fujisaki, Keisuke; Ikeda, Tomoyuki
2013-01-01
To connect different scale models in the multi-scale problem of microwave use, equivalent material constants were researched numerically by a three-dimensional electromagnetic field, taking into account eddy current and displacement current. A volume averaged method and a standing wave method were used to introduce the equivalent material constants; water particles and aluminum particles are used as composite materials. Consumed electrical power is used for the evaluation. Water particles have the same equivalent material constants for both methods; the same electrical power is obtained for both the precise model (micro-model) and the homogeneous model (macro-model). However, aluminum particles have dissimilar equivalent material constants for both methods; different electric power is obtained for both models. The varying electromagnetic phenomena are derived from the expression of eddy current. For small electrical conductivity such as water, the macro-current which flows in the macro-model and the micro-current which flows in the micro-model express the same electromagnetic phenomena. However, for large electrical conductivity such as aluminum, the macro-current and micro-current express different electromagnetic phenomena. The eddy current which is observed in the micro-model is not expressed by the macro-model. Therefore, the equivalent material constant derived from the volume averaged method and the standing wave method is applicable to water with a small electrical conductivity, although not applicable to aluminum with a large electrical conductivity. PMID:28788395
Apparatus for enhancing tissue repair in mammals
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)
2007-01-01
An apparatus is disclosed for enhancing tissue repair in mammals, with the apparatus comprising: a sleeve for encircling a portion of a mammalian body part, said sleeve comprising an electrically conductive coil capable of generating an electromagnetic field when an electrical current is applied thereto, means for supporting the sleeve on the mammalian body part; and means for supplying the electrically conductive coil with a square wave time varying electrical current sufficient to create a time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss within the interior of the coil in order that when the sleeve is placed on a mammalian body part and the time varying electromagnetic force of from approximately 0.05 gauss to 0.05 gauss is generated on the mammalian body part for an extended period of time, tissue regeneration within the mammalian body part is increased to a rate in excess of the normal tissue regeneration rate that would occur without application of the time varying electromagnetic force.
Hidden momentum of electrons, nuclei, atoms, and molecules
NASA Astrophysics Data System (ADS)
Cameron, Robert P.; Cotter, J. P.
2018-04-01
We consider the positions and velocities of electrons and spinning nuclei and demonstrate that these particles harbour hidden momentum when located in an electromagnetic field. This hidden momentum is present in all atoms and molecules, however it is ultimately canceled by the momentum of the electromagnetic field. We point out that an electron vortex in an electric field might harbour a comparatively large hidden momentum and recognize the phenomenon of hidden hidden momentum.
Surface charges and J H Poynting’s disquisitions on energy transfer in electrical circuits
NASA Astrophysics Data System (ADS)
Matar, M.; Welti, R.
2017-11-01
In this paper we review applications given by J H Poynting (1884) on the transfer of electromagnetic energy in DC circuits. These examples were strongly criticized by O Heaviside (1887). Heaviside stated that Poynting had a misconception about the nature of the electric field in the vicinity of a wire through which a current flows. The historical review of this conflict and its resolution based on the consideration of electrical charges on the surface of the wires can be useful for student courses on electromagnetism or circuit theory.
Tripolar electric field Structure in guide field magnetic reconnection
NASA Astrophysics Data System (ADS)
Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua
2018-03-01
It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.
Condition for a Bounded System of Klein-Gordon Particles in Electric and Magnetic Fields
NASA Astrophysics Data System (ADS)
Kisoglu, Hasan Fatih; Sogut, Kenan
2018-07-01
We investigate the motion of relativistic spinless particles in an external electromagnetic field that is considered to has a constant magnetic field and a time-dependent electric field. For such a system, we obtain analytical eigenfunctions through Asymptotic Iteration Method. We also obtain a condition of choosing the external magnetic field for which the system is bounded with usage of the method in perturbation theory.
Optical Vector Near-Field Imaging for the Design of Impedance Matched Optical Antennas and Devices
NASA Astrophysics Data System (ADS)
Olmon, Robert L.
Antennas control and confine electromagnetic energy, transforming free-space propagating modes to localized regions. This is not only true for the traditional classical radio antenna, but also for structures that interact resonantly at frequencies throughout the visible regime, that are on the micro- and nanometer size scales. The investigation of these optical antennas has increased dramatically in recent years. They promise to bring the transformative capabilities of radio antennas to the nanoscale in fields such as plasmonics, photonics, spectroscopy, and microscopy. However, designing optical antennas with desired properties is not straightforward due to different material properties and geometric considerations in the optical regime compared to the RF. New antenna characterization tools and techniques must be developed for the optical frequency range. Here, the optical analogue of the vector network analyzer, based on a scattering-type scanning near-field optical microscope, is described and demonstrated for the investigation of the electric and magnetic properties of optical antennas through their electromagnetic vector near-field. Specifically, bringing this microwave frequency tool to the optical regime enables the study of antenna resonant length scaling, optical frequency electromagnetic parameters including current density and impedance, optical antenna coupling to waveguides and nanoloads, local electric field enhancement, and electromagnetic duality of complementary optical antenna geometries.
Tourab, Wafa; Babouri, Abdesselam
2016-06-01
This work presents an experimental and modeling study of the electromagnetic environment in the vicinity of a high voltage substation located in eastern Algeria (Annaba city) specified with a very high population density. The effects of electromagnetic fields emanating from the coupled multi-lines high voltage power systems (MLHV) on the health of the workers and people living in proximity of substations has been analyzed. Experimental Measurements for the Multi-lines power system proposed have been conducted in the free space under the high voltage lines. Field's intensities were measured using a referenced and calibrated electromagnetic field meter PMM8053B for the levels 0 m, 1 m, 1.5 m and 1.8 m witch present the sensitive's parts as organs and major functions (head, heart, pelvis and feet) of the human body. The measurement results were validated by numerical simulation using the finite element method and these results are compared with the limit values of the international standards. We project to set own national standards for exposure to electromagnetic fields, in order to achieve a regional database that will be at the disposal of partners concerned to ensure safety of people and mainly workers inside high voltage electrical substations.
Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed
ERIC Educational Resources Information Center
Smith, Glenn S.
2011-01-01
The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…
NASA Astrophysics Data System (ADS)
Cooray, G. V.; Cooray, G. K.
2011-12-01
Gurevich et al. [1] postulated that the source of narrow bipolar pulses, a class of high energy pulses that occur during thunderstorms, could be a runaway electron avalanche driven by the intense electric fields of a thunderstorm. Recently, Watson and Marshall [2] used the modified transmission line model to test the mechanism of the source of narrow bipolar pulses. In a recent paper, Cooray and Cooray [3] demonstrated that the electromagnetic fields of accelerating charges could be used to evaluate the electromagnetic fields from electrical discharges if the temporal and spatial variation of the charges in the discharge is known. In the present study, those equations were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This makes it possible to extract directly the spatial variation of the e-folding length of the avalanche from the measured radiation fields. In the study this model avalanche was used to investigate whether it can be used to describe the measured electromagnetic fields of narrow bipolar pulses. The results obtained are in reasonable agreement with the two station data of Eack [4] for speeds of propagation around (2 - 2.5) x 10^8 m/s and when the propagation effects on the electric fields measured at the distant station is taken into account. [1] Gurevich et al. (2004), Phys. Lett. A., 329, pp. 348 -361. [2] Watson, S. S. and T. C. Marshall (2007), Geophys. Res. Lett., Vol. 34, L04816, doi: 10.1029/2006GL027426. [3] Cooray, V. and G. Cooray (2010), IEEE Transactions on Electromagnetic Compatibility, 52, No. 4, 944 - 955. [4] Eack, K. B. (2004), Geophys. Res. Lett., Vol. 31, L20102, doi: 10.1029/2005GL023975.
Strong coupling in electromechanical computation
NASA Astrophysics Data System (ADS)
Füzi, János
2000-06-01
A method is presented to carry out simultaneously electromagnetic field and force computation, electrical circuit analysis and mechanical computation to simulate the dynamic operation of electromagnetic actuators. The equation system is solved by a predictor-corrector scheme containing a Powell error minimization algorithm which ensures that every differential equation (coil current, field strength rate, flux rate, speed of the keeper) is fulfilled within the same time step.
Evaluation of magnetic field's uniformity inside electromagnetic coils using graphene
NASA Astrophysics Data System (ADS)
Amanatiadis, Stamatios A.; Kantartzis, Nikolaos V.; Ohtani, Tadao; Kanai, Yasushii
2018-05-01
The distribution of the magnetic field in electromagnetic coils, such as those employed in magnetic resonance imaging (MRI), is evaluated in this paper, through graphene gyrotropic properties. Initially, the rotation of an incident linearly polarized plane wave, due to an infinite graphene layer, is studied theoretically via the extraction of the perpendicular, to the polarization, electric component of the transmitted wave. Moreover, the influence of the magnetic bias field strength on this component is, also, examined, indicating the eligibility of graphene to detect magnetostatic field variations. To this aim, a specific device is proposed, consisting of a high frequency source, an electric field detector, and a finite graphene sheet that differs from the infinite one of the analytical case. To quantify the distance that the gyrotropic effects are detectable, the effective region is introduced and extracted via a properly modified finite-difference time-domain (FDTD) algorithm. The featured device is verified through a setup comprising a uniform electromagnetic coil, where the generated magnetostatic field is calculated at several cross-sections of the coil and compared to actual field values. Results indicate the accuracy and sensitivity of the designed device for the unambiguous regions.
Modelling of induced electric fields based on incompletely known magnetic fields
NASA Astrophysics Data System (ADS)
Laakso, Ilkka; De Santis, Valerio; Cruciani, Silvano; Campi, Tommaso; Feliziani, Mauro
2017-08-01
Determining the induced electric fields in the human body is a fundamental problem in bioelectromagnetics that is important for both evaluation of safety of electromagnetic fields and medical applications. However, existing techniques for numerical modelling of induced electric fields require detailed information about the sources of the magnetic field, which may be unknown or difficult to model in realistic scenarios. Here, we show how induced electric fields can accurately be determined in the case where the magnetic fields are known only approximately, e.g. based on field measurements. The robustness of our approach is shown in numerical simulations for both idealized and realistic scenarios featuring a personalized MRI-based head model. The approach allows for modelling of the induced electric fields in biological bodies directly based on real-world magnetic field measurements.
1987-12-01
0 00 I DTIC"ELECTE. ~FEB 0 911988< " H VALIDATION OF GEMACS FOR MODELING ’LIGHTNING-INDUCED ELECTROMAGNETIC FIELDS THESIS David S. Mabee Captain...THESIS David S. Mabee . Captain, USAFD T C ’::, AFIT/GE/ENG/87D-39 ELECTFE r C:’., ~FEB 0 91988 J Approved for public release; distribution unlimited...Electrical Engineering David S. Mabee , B.S. ’- ,. . Captain, USAF December 1987 A o fr p.. ’ Approved for public release; distribution unlimited ,12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shalashov, A. G., E-mail: ags@appl.sci-nnov.ru; Gospodchikov, E. D.
An efficient and fairly simple method of solving the problem of the incidence of a plane electromagnetic wave on an inhomogeneous object with specified spherically symmetric distributions of its electric permittivity and magnetic permeability is presented. The fields inside the object and the integrated scattering and absorption cross sections are found by assuming the object to be small compared to the vacuum wavelength. Since no constraints are imposed on the scales of the fields inside the object, the method is suitable for investigating complex cases, including those associated with the local amplification and absorption of the electromagnetic field in inhomogeneousmore » resonant media.« less
Fetter, J G; Benditt, D G; Stanton, M S
1996-08-01
This study was designed to determine the susceptibility of an implanted cardioverter-defibrillator to electromagnetic interference in an electrically hostile work site environment, with the ultimate goal of allowing the patient to return to work. Normal operation of an implanted cardioverter-defibrillator depends on reliable sensing of the heart's electrical activity. Consequently, there is concern that external electromagnetic interference from external sources in the work place, especially welding equipment or motor-generator systems, may be sensed and produce inappropriate shocks or abnormal reed switch operation, temporarily suspending detection of ventricular tachycardia or ventricular fibrillation. The effects of electromagnetic interference on the operation of one type of implantable cardioverter-defibrillator (Medtronic models 7217 and 7219) was measured by using internal event counter monitoring in 10 patients operating arc welders at up to 900 A or working near 200-hp motors and 1 patient close to a locomotive starter drawing up to 400 A. The electromagnetic interference produced two sources of potential interference on the sensing circuit or reed switch operation, respectively: 1) electrical fields with measured frequencies up to 50 MHz produced by the high currents during welding electrode activation, and 2) magnetic fields produced by the current in the welding electrode and cable. The defibrillator sensitivity was programmed to the highest (most sensitive) value: 0.15 mV (model 7219) or 0.3 mV (model 7217). The ventricular tachycardia and ventricular fibrillation therapies were temporarily turned off but the detection circuits left on. None of the implanted defibrillators tested were affected by oversensing of the electric field as verified by telemetry from the detection circuits. The magnetic field from 225-A welding current produced a flux density of 1.2 G; this density was not adequate to close the reed switch, which requires approximately 10 G. Our testing at the work site revealed no electrical interference with this type of defibrillator. Patients were allowed to return to work. The following precautions should be observed by the patient: 1) maintain a minimal distance of 2 ft (61 cm) from the welding arc and cables or large motors, 2) do not exceed tested currents with the welding equipment, 3) wear insulated gloves while operating electrical equipment, 4) verify that electrical equipment is properly grounded, and 5) stop welding and leave the work area immediately if a therapy is delivered or a feeling of lightheadedness is experienced.
Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.
Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A
2016-02-01
Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.
Control of electromagnetic edge effects in electrically-small rectangular plasma reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trampel, Christopher P.; Stieler, Daniel S.; PowerFilm, Inc., 2337 230th Street, Ames, Iowa 50014
Electromagnetic fields supported by rectangular reactors for plasma enhanced chemical vapor deposition are studied theoretically. Expressions for the fields in an electrically-small rectangular reactor with plasma in the chamber are derived. Modal field decompositions are employed under the homogeneous plasma slab approximation. The amplitude of each mode is determined analytically. It is shown that the field can be represented by the standing wave, evanescent waves tied to the edges, and an evanescent wave tied to the corners of the reactor. The impact of boundary conditions at the plasma edge on nonuniformity is quantified. Uniformity may be improved by placing amore » lossy magnetic layer on the reactor sidewalls. It is demonstrated that nonuniformity is a decreasing function of layer thickness.« less
USSR and Eastern Europe Scientific Abstracts- Physics - Number 45
1978-10-02
compound, a function of the angle between the electrical vector of the ’ light wave and the optical c-axis of the crystal. Heterodiodes have first...of naturally radioactive U, Th and K in a 1-liter sample. USSR A VECTOR MESON IN A QUANTUM ELECTROMAGNETIC FIELD Moscow TEORETICHESKAYA I...arbitrary spin in a classical plane electromagnetic field are used to find the exact wave function of a vector meson in the quantum field of a linearly
Transverse electric and magnetic field cells are often designed to subject samples to electromagnetic radiation of intrinsic impedance (E/H) that is the same as in free space, 377 ohms. Earlier work has shown this value to be correct for the RF region. In the study, measurements ...
The effects of electric fields on charged molecules and particles in individual microenvironments
NASA Astrophysics Data System (ADS)
Jamieson, K. S.; ApSimon, H. M.; Jamieson, S. S.; Bell, J. N. B.; Yost, M. G.
Measurements of small air ion concentrations, electrostatic potential and AC electric field strengths were taken in an office setting to investigate the link between electric fields and charged molecule and particle concentrations in individual microenvironments. The results obtained indicate that the electromagnetic environments individuals can be exposed to whilst indoors can often bear little resemblance to those experienced outdoors in nature, and that many individuals may spend large periods of their time in "Faraday cage"-like conditions exposed to inappropriate levels and types of electric fields that can reduce localised concentrations of biologically essential and microbiocidal small air ions. Such conditions may escalate their risk of infection from airborne contaminants, including microbes, whilst increasing localised surface contamination. The degree of "electro-pollution" that individuals are exposed to was shown to be influenced by the type of microenvironment they occupy, with it being possible for very different types of microenvironment to exist within the same room. It is suggested that adopting suitable electromagnetic hygiene/productivity guidelines that seek to replicate the beneficial effects created by natural environments may greatly mitigate such problems.
Electron dynamics in Hall thruster
NASA Astrophysics Data System (ADS)
Marini, Samuel; Pakter, Renato
2015-11-01
Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.
Differential form representation of stochastic electromagnetic fields
NASA Astrophysics Data System (ADS)
Haider, Michael; Russer, Johannes A.
2017-09-01
In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
Transcranial stimulability of phosphenes by long lightning electromagnetic pulses
NASA Astrophysics Data System (ADS)
Peer, J.; Kendl, A.
2010-06-01
The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.
Magnetic field in expanding quark-gluon plasma
NASA Astrophysics Data System (ADS)
Stewart, Evan; Tuchin, Kirill
2018-04-01
Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.
Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model
Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A.; Cifra, Michal
2014-01-01
The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells—a strategy used in novel methods for cancer treatment. PMID:24497952
Electromagnetically induced transparency in the case of elliptic polarization of interacting fields
NASA Astrophysics Data System (ADS)
Parshkov, Oleg M.
2018-04-01
The theoretical investigation results of disintegration effect of elliptic polarized shot probe pulses of electromagnetically induced transparency in the counterintuitive superposed elliptic polarized control field and in weak probe field approximation are presented. It is shown that this disintegration occurs because the probe field in the medium is the sum of two normal modes, which correspond to elliptic polarized pulses with different speeds of propagation. The polarization ellipses of normal modes have equal eccentricities and mutually perpendicular major axes. Major axis of polarization ellipse of one normal mode is parallel to polarization ellipse major axis of control field, and electric vector of this mode rotates in the opposite direction, than electric vector of the control field. The electric vector other normal mode rotates in the same direction that the control field electric vector. The normal mode speed of the first type aforementioned is less than that of the second type. The polarization characteristics of the normal mode depend uniquely on the polarization characteristics of elliptic polarized control field and remain changeless in the propagation process. The theoretical investigation is performed for Λ-scheme of degenerated quantum transitions between 3P0, 3P10 and 3P2 energy levels of 208Pb isotope.
NASA Astrophysics Data System (ADS)
Cheng, Jianjun; Jin, Ke; Kou, Yong; Hu, Ruifeng; Zheng, Xiaojing
2017-03-01
When a hypersonic vehicle travels in the Earth and Mars atmosphere, the surface of the vehicle is surrounded by a plasma layer, which is an envelope of ionized air, created from the compression and heat of the atmosphere by the shock wave. The vehicles will lose contact with ground stations known as the reentry communication blackout. Based on the magnetohydrodynamic framework and electromagnetic wave propagation theory, an analytical model is proposed to describe the effect of the effectiveness of electromagnetic mitigation scheme on removing the reentry communication blackout. C and Global Positioning System (GPS) bands, two commonly used radio bands for communication, are taken as the cases to discuss the effectiveness of the electromagnetic field mitigation scheme. The results show that the electron density near the antenna of vehicles can be reduced by the electromagnetic field, and the required external magnetic field strength is far below the one in the magnetic window method. The directions of the external electric field and magnetic field have a significant impact on the effectiveness of the mitigation scheme. Furthermore, the effect of electron collisions on the required applied electromagnetic field is discussed, and the result indicates that electron collisions are a key factor to analyze the electromagnetic mitigation scheme. Finally, the feasible regions of the applied electromagnetic field for eliminating blackout are given. These investigations could have a significant benefit on the design and optimization of electromagnetic mitigation scheme for the blackout problem.
Transmission of the convection electric field to the inner magnetosphere
NASA Astrophysics Data System (ADS)
Kikuchi, T.
2003-12-01
Low latitude magnetometer observations revealed that the partial ring current started to develop within several minutes after the onset of growth of the polar cap potential (PCP), and decayed simultaneously with the decrease in the PCP (Hashimoto, Kikuchi and Ebihara., JGR 2002). The magnetometer observations also indicated that the DP2 ionospheric currents were driven by the convection electric field at mid latitudes as well as at high latitudes. These observational facts suggest that the ionospheric electric field plays a crucial role in driving the convection in the inner magnetosphere. A probable model for the electric field transmission should explain both the convection in the inner magnetosphere and the ionospheric currents at mid latitudes. The instantaneous transmission of the ionospheric electric field and currents from the polar ionosphere to the equator was explained by Kikuchi and Araki (JATP 1979) based on the TM0 mode in the Earth-ionosphere waveguide. In this paper, we attempt to explain the transmission of the convection electric field to the inner magnetosphere by applying the Earth-ionosphere waveguide. However, two issues remained unresolved in the paper by Kikuchi and Araki (1979). One is the excitation of the TM0 mode in the Earth-ionosphere waveguide, and the other is the attenuation under the nighttime ionospheric condition. To examine the excitation of the TM0 mode, we couple the Earth-ionosphere waveguide (transmission line) with a magnetospheric transmission line composed of a pair of field-aligned currents (e.g., R1 FACs). A fraction of the electromagnetic energy carried from the magnetosphere is transmitted into the Earth-ionosphere waveguide, although substantial energy is dissipated in the polar ionosphere intervening between the two transmission lines. The transmitted electromagnetic energy excites the TM0 mode in the Earth-ionosphere waveguide. We then evaluate the attenuation of the TM0 mode by calculating upward flow of energy from the waveguide into the conducting ionosphere and the magnetosphere. It is shown that the attenuation of the TM0 mode is not significant even for the nighttime condition, when compared to the geometrical attenuation due to the finite size of the polar electric field. Furthermore, it is shown that the ionospheric electric field carried by the TM0 mode is transmitted by Alfven waves upward into the inner magnetosphere along the magnetic field lines, supplying energy for the convection in the inner magnetosphere. It should be stressed that the ionosphere never creates electromagnetic energy but acts as a transmission line for the convection electric field. We conclude that the Earth-ionosphere waveguide connected with the magnetospheric transmission line explains both the instantaneous propagation of the electric field and currents in the ionosphere and of the convection electric field into the inner magnetosphere.
Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acuna, M. A.; Gravielle, M. S.; Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
2011-03-15
Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, whilemore » the influence of the crystal orientation was found to be negligible.« less
Havas, Magda
2006-01-01
Dirty electricity is a ubiquitous pollutant. It flows along wires and radiates from them and involves both extremely low frequency electromagnetic fields and radio frequency radiation. Until recently, dirty electricity has been largely ignored by the scientific community. Recent inventions of metering and filter equipment provide scientists with the tools to measure and reduce dirty electricity on electrical wires. Several case studies and anecdotal reports are presented. Graham/Stetzer (GS) filters have been installed in schools with sick building syndrome and both staff and students reported improved health and more energy. The number of students needing inhalers for asthma was reduced in one school and student behavior associated with ADD/ADHD improved in another school. Blood sugar levels for some diabetics respond to the amount of dirty electricity in their environment. Type 1 diabetics require less insulin and Type 2 diabetics have lower blood sugar levels in an electromagnetically clean environment. Individuals diagnosed with multiple sclerosis have better balance and fewer tremors. Those requiring a cane walked unassisted within a few days to weeks after GS filters were installed in their home. Several disorders, including asthma, ADD/ADHD, diabetes, multiple sclerosis, chronic fatigue, fibromyalgia, are increasing at an alarming rate, as is electromagnetic pollution in the form of dirty electricity, ground current, and radio frequency radiation from wireless devices. The connection between electromagnetic pollution and these disorders needs to be investigated and the percentage of people sensitive to this form of energy needs to be determined.
Investigation of Electric and Self-Generated Magnetic Fields in Implosion Experiments on OMEGA
NASA Astrophysics Data System (ADS)
Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N.; Li, C. K.; Zylstra, A. B.; Petrasso, R. D.
2013-10-01
Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA laser were investigated using proton radiography. The experiments use plastic-shell targets with various surface defects (glue spot, wire, and stalk mount) to seed perturbations and generate localized electromagnetic fields at the ablation surface and in the plasma corona surrounding the targets. Proton radiographs show features from these perturbations and quasi-spherical multiple shell structures around the capsules at earlier times of implosions (up to ~700 ps for a 1-ns laser pulse) indicating the development of the fields. Two-dimensional magnetohydrodynamic simulations of these experiments predict the growth of magnetic fields up to several MG. The simulated distributions of electromagnetic fields were used to produce proton images, which show good agreement with experimental radiographs. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji
2016-10-03
Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually limited to a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which could manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for the manipulation of multi-physics fields.
Nonminimal coupling for the gravitational and electromagnetic fields: Traversable electric wormholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakin, Alexander B.; Zayats, Alexei E.; Lemos, Jose P. S.
2010-04-15
We discuss new exact solutions of a three-parameter nonminimal Einstein-Maxwell model. The solutions describe static spherically symmetric objects with and without center, supported by an electric field nonminimally coupled to gravity. We focus on a unique one-parameter model, which admits an exact solution for a traversable electrically charged wormhole connecting two universes, one asymptotically flat the other asymptotically de Sitter ones. The relation between the asymptotic mass and charge of the wormhole and its throat radius is analyzed. The wormhole solution found is thus a nonminimal realization of Wheeler's idea about charge without charge and shows that, if the worldmore » is somehow nonminimal in the coupling of gravity to electromagnetism, then wormhole appearance, or perhaps construction, is possible.« less
Electrically tunable metasurface based on Mie-type dielectric resonators.
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-02-21
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.
Electrically tunable metasurface based on Mie-type dielectric resonators
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-01-01
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak. PMID:28220861
Electrically tunable metasurface based on Mie-type dielectric resonators
NASA Astrophysics Data System (ADS)
Su, Zhaoxian; Zhao, Qian; Song, Kun; Zhao, Xiaopeng; Yin, Jianbo
2017-02-01
In this paper, we have designed a metasurface based on electrically tunable Mie-type resonators and theoretically demonstrated its tunable response to electromagnetic waves with varying frequency. The metasurface consists of disk-like ferroelectric resonators arrayed on a metal film and the upper surface of resonators is covered by ion gel film which is transparent for incident electromagnetic wave. Using the metal film and ion gel film as electrodes, the permittivity of the resonators can be adjusted by an external electric field and, as a result, the reflection phase of the resonators can be dynamically adjusted in a relatively wide range. By programmable controlling the electric field strength applied on resonators of metasurface, a 2π phase ramp can be realized and, thereby, the arbitrary reflection behavior of incident waves with varied frequency is obtained. Because of the tunability, this metasurface can also be used to design adaptive metasurface lens and carpet cloak.
Reilly, J Patrick; Hirata, Akimasa
2016-06-21
This article treats unsettled issues in the use of numerical models of electrical dosimetry as applied to international limits on human exposure to low-frequency (typically < 100 kHz) electromagnetic fields and contact current. The perspective in this publication is that of Subcommittee 6 of IEEE-ICES (International Committee on Electromagnetic Safety) Technical Committee 95. The paper discusses 25 issues needing attention, fitting into three general categories: induction models; electrostimulation models; and human exposure limits. Of these, 9 were voted as 'high priority' by members of Subcommittee 6. The list is presented as a research agenda for refinements in numerical modeling with applications to human exposure limits. It is likely that such issues are also important in medical and electrical product safety design applications.
NASA Astrophysics Data System (ADS)
Roy, S. R.; Banerjee, S. K.
1992-11-01
A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (γ-1)ɛ is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.
NASA Astrophysics Data System (ADS)
Dolcini, Fabrizio
2017-02-01
The effects of Rashba interaction and electromagnetic field on the edge states of a two-dimensional topological insulator are investigated in a nonperturbative way. We show that the electron dynamics is equivalent to a problem of massless Dirac fermions propagating with an inhomogeneous velocity, enhanced by the Rashba profile with respect to the bare Fermi value vF. Despite the inelastic and time-reversal breaking processes induced by the electromagnetic field, no backscattering occurs without interaction. The photoexcited electron densities are explicitly obtained in terms of the electric field and the Rashba interaction, and are shown to fulfill generalized chiral anomaly equations. The case of a Gaussian electromagnetic pulse is analyzed in detail. When the photoexcitation occurs far from the Rashba region, the latter effectively acts as a "superluminal gate" boosting the photoexcited wave packet outside the light-cone determined by vF. In contrast, for an electric pulse overlapping the Rashba region, the emerging wave packets are squeezed in a manner that depends on the overlap area. The electron-electron interaction effects are also discussed, for both intraspin and interspin density-density coupling. The results suggest that Rashba interaction, often considered as an unwanted disorder effect, may be exploited to tailor the shape and the propagation time of photoexcited spin-polarized wave packets.
The interference of electronic implants in low frequency electromagnetic fields.
Silny, J
2003-04-01
Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is currently in progress. In case of the vertically-oriented electric 50 Hz fields preliminary results show that per 1 kV/m unimpaired electrical field strength (rms) an interference voltage of about 400 microVpp as worst-case could occur at the input of a unipolar ventricularly controlled, left-pectorally implanted cardiac pacemaker. Thus, already a field strength above ca. 5 kV/m could cause an interference with an implanted pacemaker. The magnetic fields induces an electric disturbance voltage at the input of the pacemaker. The body and the pacemaker system compose several induction loops, whose induced voltages rates add or subtract. The effective area of one representing inductive loop ranges from 100 to 221 cm2. For the unfavourable left-pectorally implantated and atrially-controlled pacemaker with a low interference threshold, the interference threshold ranges between 552 and 16 microT (rms) for magnetic fields at frequencies between 10 and 250 Hz. On this basis the occurrence of interferences with implanted pacemakers is possible in everyday-life situations. But experiments demonstrate a low probability of interference of cardiac pacemakers in practical situations. This apparent contradiction can be explained by a very small band of inhibition in most pacemakers and, in comparison with the worst-case, deviating conditions.
Yang, A P; Du, L P; Meng, F F; Yuan, X C
2018-05-17
Electromagnetic fields at near-field exhibit distinctive properties with respect to their free-space counterparts. In particular, an optical transverse spin appearing in a confined electromagnetic field provides the foundation for many intriguing physical effects and applications. We present a transverse spin coupling configuration where plasmonic nanoparticles are employed to couple the transverse spin in a focused beam to that of a surface plasmon polariton. The plasmonic resonance of nanoparticles on a metal film plays a significant role in transverse spin coupling. We demonstrate in experiments that Ag and Au nanoparticles yield distinct imaging patterns when scanned over a focused field, because of their different plasmonic responses to the transverse and longitudinal electric fields. Such resonance-dependent spin-coupling enables the identification of nanoparticles using a focused field, as well as electric field mapping of a specific field component of a focused beam using a plasmonic nanoparticle. These interesting findings regarding the transverse spin coupling with a plasmonic nanoparticle may find valuable applications in near-field and nano-optics.
NASA Technical Reports Server (NTRS)
Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.
2011-01-01
A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW-interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was also observed in the wing of the plasma wake. However, 2.5D hybrid modeling did not show excitation of whistler/Alfven waves in the upstream connected with the bidirectional current closure that was observed in short-time 3D modeling SPPSC and near a tether in the ionosphere. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements planned for the future Solar Probe Plus (SPP) mission. The results of modeling electromagnetic field perturbations in the SW due to shot noise in absence of SPPSC are also discussed.
Analysing Simple Electric Motors in the Classroom
ERIC Educational Resources Information Center
Yap, Jeff; MacIsaac, Dan
2006-01-01
Electromagnetic phenomena and devices such as motors are typically unfamiliar to both teachers and students. To better visualize and illustrate the abstract concepts (such as magnetic fields) underlying electricity and magnetism, we suggest that students construct and analyse the operation of a simply constructed Johnson electric motor. In this…
Influence of surface error on electromagnetic performance of reflectors based on Zernike polynomials
NASA Astrophysics Data System (ADS)
Li, Tuanjie; Shi, Jiachen; Tang, Yaqiong
2018-04-01
This paper investigates the influence of surface error distribution on the electromagnetic performance of antennas. The normalized Zernike polynomials are used to describe a smooth and continuous deformation surface. Based on the geometrical optics and piecewise linear fitting method, the electrical performance of reflector described by the Zernike polynomials is derived to reveal the relationship between surface error distribution and electromagnetic performance. Then the relation database between surface figure and electric performance is built for ideal and deformed surfaces to realize rapidly calculation of far-field electric performances. The simulation analysis of the influence of Zernike polynomials on the electrical properties for the axis-symmetrical reflector with the axial mode helical antenna as feed is further conducted to verify the correctness of the proposed method. Finally, the influence rules of surface error distribution on electromagnetic performance are summarized. The simulation results show that some terms of Zernike polynomials may decrease the amplitude of main lobe of antenna pattern, and some may reduce the pointing accuracy. This work extracts a new concept for reflector's shape adjustment in manufacturing process.
Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions
Tuchin, Kirill
2013-01-01
I reviewmore » the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~ m π 2 at RHIC and ~ 10 m π 2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J / ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.« less
Theorem: A Static Magnetic N-pole Becomes an Oscillating Electric N-pole in a Cosmic Axion Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Christopher T.
We show for the classical Maxwell equations, including the axion electromagnetic anomaly source term, that a cosmic axion field induces an oscillating electric N-moment for any static magnetic N-moment. This is a straightforward result, accessible to anyone who has taken a first year graduate course in electrodynamics.
Non-ionising electromagnetic environments on manned spacecraft.
Murphy, J R
1989-08-01
Future space travellers and settlers will be exposed to a variety of electromagnetic fields (EMFs). Extrinsic sources will include solar and stellar fluxes, planetary fluxes, and supernovae. Intrinsic sources may include fusion and ion engines, EMFs from electrical equipment, radar, lighting, superconduction energy storage systems, magnetic bearings on gyroscopic control and orientation systems, and magnetic rail microprobe launch systems. Communication sources may include radio and microwave frequencies, and laser generating systems. Magnetic fields may also be used for deflection of radiation. There is also a loss of the normal Geomagnetic field (GMF) which includes static, alternating, and time-varying components. This paper reviews exposure limits and the biological effects of EMFs, and evidence for an electromagnetic sense organ and a relationship between man and the Geomagnetic field.
Vertical Electromagnetic Pulse (VEMP) Testing
2009-09-11
3) MIL-STD-2169B: High Altitude Electromagnetic Pulse ( HEMP ) Environment. The final survivability analysis of the baseline system...Electromagnetic Pulse ( HEMP ). The first EMP situation, SREMP, occurs within the atmosphere at an altitude of less than 40 km above sea level, and possesses an...The second EMP situation, HEMP , occurs at an altitude greater than 40 km above sea level, and possesses a large electric and magnetic field over a
Electromagnetism of Bacterial Growth
NASA Astrophysics Data System (ADS)
Ainiwaer, Ailiyasi
2011-10-01
There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.
The measurement procedure in the SEMONT monitoring system.
Djuric, Nikola; Kljajic, Dragan; Kasas-Lazetic, Karolina; Bajovic, Vera
2014-03-01
The measurement procedure of the open area in situ electric field strength is presented, acquiring the real field data for testing of the Serbian electromagnetic field monitoring network (SEMONT) and its Internet portal. The SEMONT monitoring system introduces an advanced approach of wireless sensor network utilization for the continuous supervision of overall and cumulative level of electromagnetic field over the observed area. The aim of the SEMONT system is to become a useful tool for the national and municipal agencies for the environmental protection, regarding the electromagnetic pollution monitoring and the exposure assessment of the general population. Considering the public concern on the potentially harmful effects of the long-term exposure to electromagnetic radiation, as well as the public transparency principle that is incorporated into the Serbian law on non-ionizing radiation protection, the SEMONT monitoring system is designed for the long-term continuous monitoring, presenting real-time measurement results, and corresponding exposure assessment over the public Internet network.
Peterchev, Angel V.; Wagner, Timothy A.; Miranda, Pedro C.; Nitsche, Michael A.; Paulus, Walter; Lisanby, Sarah H.; Pascual-Leone, Alvaro; Bikson, Marom
2011-01-01
The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. The biological effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biological effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. This paper provides fundamental definition and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. PMID:22305345
Peterchev, Angel V; Wagner, Timothy A; Miranda, Pedro C; Nitsche, Michael A; Paulus, Walter; Lisanby, Sarah H; Pascual-Leone, Alvaro; Bikson, Marom
2012-10-01
The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. This paper provides fundamental definitions and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. The biologic effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biologic effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Inamori, Takaya; Sugawara, Yoshiki; Satou, Yasutaka
2015-12-01
Increasingly, spacecraft are installed with large-area structures that are extended and deployed post-launch. These extensible structures have been applied in several missions for power generation, thermal radiation, and solar propulsion. Here, we propose a deployment and retraction method using the electromagnetic force generated when the geomagnetic field interacts with electric current flowing on extensible panels. The panels are installed on a satellite in low Earth orbit. Specifically, electrical wires placed on the extensible panels generate magnetic moments, which interfere with the geomagnetic field. The resulting repulsive and retraction forces enable panel deployment and retraction. In the proposed method, a satellite realizes structural deployment using simple electrical wires. Furthermore, the satellite can achieve not only deployment but also retraction for avoiding damage from space debris and for agile attitude maneuvers. Moreover, because the proposed method realizes quasi-static deployment and the retraction of panels by electromagnetic forces, low impulsive force is exerted on fragile panels. The electrical wires can also be used to detect the panel deployment and retraction and generate a large magnetic moment for attitude control. The proposed method was assessed in numerical simulations based on multibody dynamics. Simulation results shows that a small cubic satellite with a wire current of 25 AT deployed 4 panels (20 cm × 20 cm) in 500 s and retracted 4 panels in 100 s.
Hall effect in a moving liquid
NASA Astrophysics Data System (ADS)
Di Lieto, Alberto; Giuliano, Alessia; Maccarrone, Francesco; Paffuti, Giampiero
2012-01-01
A simple experiment, suitable for performing in an undergraduate physics laboratory, illustrates electromagnetic induction through the water entering into a cylindrical rubber tube by detecting the voltage developed across the tube in the direction transverse both to the flow velocity and to the magnetic field. The apparatus is a very simple example of an electromagnetic flowmeter, a device which is commonly used both in industrial and physiological techniques. The phenomenology observed is similar to that of the Hall effect in the absence of an electric current in the direction of motion of the carriers. The experimental results show a dependence on the intensity of the magnetic field and on the carrier velocity, in good agreement with the theory. Discussion of the system, based on classical electromagnetism, indicates that the effect depends only on the flow rate, and is independent both of the velocity profile and of the electrical conductivity of the medium.
Magnetoacoustic Sensing of Magnetic Nanoparticles.
Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis
2016-03-11
The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.
Magnetic correlates in electromagnetic consciousness.
Liboff, A R
2016-01-01
We examine the hypothesis that consciousness is a manifestation of the electromagnetic field, finding supportive factors not previously considered. It is not likely that traditional electrophysiological signaling modes can be readily transmitted throughout the brain to properly enable this field because of electric field screening arising from the ubiquitous distribution of high dielectric lipid membranes, a problem that vanishes for low-frequency magnetic fields. Many reports over the last few decades have provided evidence that living tissue is robustly sensitive to ultrasmall (1-100 nT) ELF magnetic fields overlapping the γ-frequency range often associated with awareness. An example taken from animal behavior (coherent bird flocking) lends support to the possibility of a disembodied electromagnetic consciousness. In contrast to quantum consciousness hypotheses, the present approach is open to experimental trial.
NASA Technical Reports Server (NTRS)
Huba, J. D.; Rowland, H. L.
1993-01-01
The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.
Light localization and SERS in tip-shaped silicon metasurface.
Lagarkov, Andrey; Boginskaya, Irina; Bykov, Igor; Budashov, Igor; Ivanov, Andrey; Kurochkin, Ilya; Ryzhikov, Ilya; Rodionov, Ilya; Sedova, Marina; Zverev, Alexander; Sarychev, Andrey K
2017-07-24
Optical properties of two dimensional periodic system of the silicon micro-cones are investigated. The metasurface, composed of the silicon tips, shows enhancement of the local optical field. Finite element computer simulations as well as real experiment reveal anomalous optical response of the dielectric metasurface due to excitation of the dielectric resonances. Various electromagnetic resonances are considered in the dielectric cone. The metal-dielectric resonances, which are excited between metal nanoparticles and dielectric cones, are also considered. The resonance local electric field can be much larger than the field in the usual surface plasmon resonances. To investigate local electric field the signal molecules are deposited on the metal nanoparticles. We demonstrate enhancement of the electromagnetic field and Raman signal from the complex of DTNB acid molecules and gold nanoparticles, which are distributed over the metasurface. The metasurfaces composed from the dielectric resonators can have quasi-continuous spectrum and serve as an efficient SERS substrates.
[Effects of extremely low frequency electromagnetic radiation on cardiovascular system of workers].
Zhao, Long-yu; Song, Chun-xiao; Yu, Duo; Liu, Xiao-liang; Guo, Jian-qiu; Wang, Chuan; Ding, Yuan-wei; Zhou, Hong-xia; Ma, Shu-mei; Liu, Xiao-dong; Liu, Xin
2012-03-01
To observe the exposure levels of extremely low frequency electromagnetic fields in workplaces and to analyze the effects of extremely low frequency electromagnetic radiation on cardiovascular system of occupationally exposed people. Intensity of electromagnetic fields in two workplaces (control and exposure groups) was detected with EFA-300 frequency electromagnetic field strength tester, and intensity of the noise was detected with AWA5610D integral sound level. The information of health physical indicators of 188 controls and 642 occupationally exposed workers was collected. Data were analyzed by SPSS17.0 statistic software. The intensity of electric fields and the magnetic fields in exposure groups was significantly higher than that in control group (P < 0.05), but there was no significant difference of noise between two workplaces (P > 0.05). The results of physical examination showed that the abnormal rates of HCY, ALT, AST, GGT, ECG in the exposure group were significantly higher than those in control group (P < 0.05). There were no differences of sex, age, height, weight between two groups (P > 0.05). Exposure to extremely low frequency electromagnetic radiation may have some effects on the cardiovascular system of workers.
NASA Astrophysics Data System (ADS)
Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl
2017-11-01
In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.
Tailored Fano resonance and localized electromagnetic field enhancement in Ag gratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhaozhu; Klopf, J. Michael; Wang, Lei
Metallic gratings can support Fano resonances when illuminated with EM radiation, and their characteristic reflectivity versus incident angle lineshape can be greatly affected by the surrounding dielectric environment and the grating geometry. By using conformal oblique incidence thin film deposition onto an optical grating substrate, it is possible to increase the grating amplitude due to shadowing effects, thereby enabling tailoring of the damping processes and electromagnetic field couplings of the Fano resonances, hence optimizing the associated localized electric field intensity. To investigate these effects we compare the optical reflectivity under resonance excitation in samples prepared by oblique angle deposition (OAD)more » and under normal deposition (ND) onto the same patterned surfaces. We observe that by applying OAD method, the sample exhibits a deeper and narrower reflectivity dip at resonance than that obtained under ND. This can be explained in terms of a lower damping of Fano resonance on obliquely deposited sample and leads to a stronger localized electric field. This approach opens a fabrication path for applications where tailoring the electromagnetic field induced by Fano resonance can improve the figure of merit of specific device characteristics, e.g. quantum efficiency (QE) in grating-based metallic photocathodes.« less
Tailored Fano resonance and localized electromagnetic field enhancement in Ag gratings
Li, Zhaozhu; Klopf, J. Michael; Wang, Lei; ...
2017-03-14
Metallic gratings can support Fano resonances when illuminated with EM radiation, and their characteristic reflectivity versus incident angle lineshape can be greatly affected by the surrounding dielectric environment and the grating geometry. By using conformal oblique incidence thin film deposition onto an optical grating substrate, it is possible to increase the grating amplitude due to shadowing effects, thereby enabling tailoring of the damping processes and electromagnetic field couplings of the Fano resonances, hence optimizing the associated localized electric field intensity. To investigate these effects we compare the optical reflectivity under resonance excitation in samples prepared by oblique angle deposition (OAD)more » and under normal deposition (ND) onto the same patterned surfaces. We observe that by applying OAD method, the sample exhibits a deeper and narrower reflectivity dip at resonance than that obtained under ND. This can be explained in terms of a lower damping of Fano resonance on obliquely deposited sample and leads to a stronger localized electric field. This approach opens a fabrication path for applications where tailoring the electromagnetic field induced by Fano resonance can improve the figure of merit of specific device characteristics, e.g. quantum efficiency (QE) in grating-based metallic photocathodes.« less
Radiation and matter: Electrodynamics postulates and Lorenz gauge
NASA Astrophysics Data System (ADS)
Bobrov, V. B.; Trigger, S. A.; van Heijst, G. J.; Schram, P. P.
2016-11-01
In general terms, we have considered matter as the system of charged particles and quantized electromagnetic field. For consistent description of the thermodynamic properties of matter, especially in an extreme state, the problem of quantization of the longitudinal and scalar potentials should be solved. In this connection, we pay attention that the traditional postulates of electrodynamics, which claim that only electric and magnetic fields are observable, is resolved by denial of the statement about validity of the Maxwell equations for microscopic fields. The Maxwell equations, as the generalization of experimental data, are valid only for averaged values. We show that microscopic electrodynamics may be based on postulation of the d'Alembert equations for four-vector of the electromagnetic field potential. The Lorenz gauge is valid for the averages potentials (and provides the implementation of the Maxwell equations for averages). The suggested concept overcomes difficulties under the electromagnetic field quantization procedure being in accordance with the results of quantum electrodynamics. As a result, longitudinal and scalar photons become real rather than virtual and may be observed in principle. The longitudinal and scalar photons provide not only the Coulomb interaction of charged particles, but also allow the electrical Aharonov-Bohm effect.
Cosmological magnetic fields from inflation in extended electromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran Jimenez, Jose; Maroto, Antonio L.
2011-01-15
In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge densitymore » generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B{sub {lambda}>}10{sup -12} G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.« less
Building health: The need for electromagnetic hygiene?
NASA Astrophysics Data System (ADS)
Jamieson, Isaac A.; Holdstock, Paul; ApSimon, Helen M.; Bell, J. Nigel B.
2010-04-01
Whilst the electromagnetic nature of the built environment has changed considerably over the past century, little thought is at present given to the possible advantages of creating electromagnetic microenvironments that more closely resemble those found in nature and/or developing biologically-friendly technology aligned more closely to its operating principles. This review paper examines how more natural exposures to a variety of electromagnetic phenomena could be re-introduced into the built environment, possible benefits that might arise, and discusses the extent to which there may be tangible benefits obtainable from introducing more rigorous properly considered electromagnetic hygiene measures. Amongst the matters discussed are: the effects of different materials, finishes and electrical items on charge generation (and the effects of excess charge on contaminant deposition); the possible benefits of suitably grounding conductive objects (including humans) in order to reduce excess charge and contaminant deposition; how the presence of vertical electric field regimes, similar to those found in nature, may enhance biological performance; and possible pitfalls to avoid when seeking to introduce appropriate electromagnetic hygiene regimes.
Electromagnetic dissipation during asymmetric reconnection with a moderate guide field
NASA Astrophysics Data System (ADS)
Genestreti, Kevin; Burch, James; Cassak, Paul; Torbert, Roy; Phan, Tai; Ergun, Robert; Giles, Barbara; Russell, Chris; Wang, Shan; Akhavan-Tafti, Mojtaba; Varsani, Ali
2017-04-01
We calculate the work done on the plasma by the electromagnetic (EM) field, ⃗Jṡ⃗E', and analyze the related electron currents and electric fields, focusing on a single asymmetric guide field electron diffusion region (EDR) event observed by MMS on 8 December 2015. For this event, each of the four MMS spacecraft observed dissipation of EM energy at the in-plane magnetic null point, though large-scale generation/dissipation was observed inconsistently on the magnetospheric side of the boundary. The current at the null was carried by a beam-like population of magnetosheath electrons traveling anti-parallel to the guide field, whereas the current on the Earthward side of the boundary was carried by crescent-shaped electron distributions. We also analyze the terms in Ohm's law, finding a large residual electric field throughout the EDR, inertial and pressure divergence fields at the null, and pressure divergence fields at the magnetosphere-side EDR. Our analysis of the terms in Ohm's law suggests that the EDR had significant three-dimensional structure.
The electromagnetic force between two moving charges
NASA Astrophysics Data System (ADS)
Minkin, Leonid; Shapovalov, Alexander S.
2018-05-01
A simple model of parallel motion of two point charges and the subsequent analysis of the electromagnetic field transformation invariant quantity are considered. It is shown that ignoring the coupling of electric and magnetic fields, as is done in some introductory physics books, can lead to miscalculations of the force between moving charges. Conceptual and computational aspects of these issues are discussed, and implications to the design of electron beam devices are considered.
Forward Field Computation with OpenMEEG
Gramfort, Alexandre; Papadopoulo, Théodore; Olivi, Emmanuel; Clerc, Maureen
2011-01-01
To recover the sources giving rise to electro- and magnetoencephalography in individual measurements, realistic physiological modeling is required, and accurate numerical solutions must be computed. We present OpenMEEG, which solves the electromagnetic forward problem in the quasistatic regime, for head models with piecewise constant conductivity. The core of OpenMEEG consists of the symmetric Boundary Element Method, which is based on an extended Green Representation theorem. OpenMEEG is able to provide lead fields for four different electromagnetic forward problems: Electroencephalography (EEG), Magnetoencephalography (MEG), Electrical Impedance Tomography (EIT), and intracranial electric potentials (IPs). OpenMEEG is open source and multiplatform. It can be used from Python and Matlab in conjunction with toolboxes that solve the inverse problem; its integration within FieldTrip is operational since release 2.0. PMID:21437231
NASA Astrophysics Data System (ADS)
Sturman, V. I.
2018-01-01
This paper studies spatial distribution and temporal dynamics of power frequency electric and magnetic fields in Saint-Petersburg. It was determined that sanitary-protection and exclusion zones of the standard size high-voltage transmission lines (HVTL) do not always ensure maximum allowable limits of the electrical field depression. A dependence of the electric field strength on meteorological factors was defined. A series of sources create a city-wide background for magnetic fields. That said, the heavier the man-caused load is, the higher the mean values of magnetic induction are. Abnormally high values of magnetic induction are explained by the influence of underground electric cables.
Angular momentum and torque described with the complex octonion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Zi-Hua, E-mail: xmuwzh@xmu.edu.cn
2014-08-15
The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field andmore » of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory.« less
Occupational Electromagnetic Field Exposures Associated with Sleep Quality: A Cross-Sectional Study
Liu, Hui; Chen, Guangdi; Pan, Yifeng; Chen, Zexin; Jin, Wen; Sun, Chuan; Chen, Chunjing; Dong, Xuanjun; Chen, Kun; Xu, Zhengping; Zhang, Shanchun; Yu, Yunxian
2014-01-01
Background Exposure to electromagnetic field (EMF) emitted by mobile phone and other machineries concerns half the world’s population and raises the problem of their impact on human health. The present study aims to explore the effects of electromagnetic field exposures on sleep quality and sleep duration among workers from electric power plant. Methods A cross-sectional study was conducted in an electric power plant of Zhejiang Province, China. A total of 854 participants were included in the final analysis. The detailed information of participants was obtained by trained investigators using a structured questionnaire, which including socio-demographic characteristics, lifestyle variables, sleep variables and electromagnetic exposures. Physical examination and venous blood collection were also carried out for every study subject. Results After grouping daily occupational electromagnetic exposure into three categories, subjects with long daily exposure time had a significantly higher risk of poor sleep quality in comparison to those with short daily exposure time. The adjusted odds ratios were 1.68 (95%CI: 1.18, 2.39) and 1.57 (95%CI: 1.10, 2.24) across tertiles. Additionally, among the subjects with long-term occupational exposure, the longer daily occupational exposure time apparently increased the risk of poor sleep quality (OR (95%CI): 2.12 (1.23∼3.66) in the second tertile; 1.83 (1.07∼3.15) in the third tertile). There was no significant association of long-term occupational exposure duration, monthly electric fee or years of mobile-phone use with sleep quality or sleep duration. Conclusions The findings showed that daily occupational EMF exposure was positively associated with poor sleep quality. It implies EMF exposure may damage human sleep quality rather than sleep duration. PMID:25340654
Temperature limited heater utilizing non-ferromagnetic conductor
Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX
2012-07-17
A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.
Electromagnetic Induction with Neodymium Magnets
NASA Astrophysics Data System (ADS)
Wood, Deborah; Sebranek, John
2013-09-01
In April 1820, Hans Christian Ørsted noticed that the needle of a nearby compass deflected briefly from magnetic north each time the electric current of the battery he was using for an unrelated experiment was turned on or off. Upon further investigation, he showed that an electric current flowing through a wire produces a magnetic field. In 1831 Michael Faraday and Joseph Henry separately expanded on Ørsted's discovery by showing that a changing magnetic field produces an electric current. Heinrich Lenz found in 1833 that an induced current has the opposite direction from the electromagnetic force that produced it. This paper describes an experiment that can help students to develop an understanding of Faraday's law and Lenz's law by studying the emf generated as a magnet drops through a set of coils having increasing numbers of turns.
A Set of Computer Projects for an Electromagnetic Fields Class.
ERIC Educational Resources Information Center
Gleeson, Ronald F.
1989-01-01
Presented are three computer projects: vector analysis, electric field intensities at various distances, and the Biot-Savart law. Programing suggestions and project results are provided. One month is suggested for each project. (MVL)
Poynting-vector based method for determining the bearing and location of electromagnetic sources
Simons, David J.; Carrigan, Charles R.; Harben, Philip E.; Kirkendall, Barry A.; Schultz, Craig A.
2008-10-21
A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.
Magnetohydrodynamic drag reduction and its efficiency
NASA Astrophysics Data System (ADS)
Shatrov, V.; Gerbeth, G.
2007-03-01
We present results of direct numerical simulations of a turbulent channel flow influenced by electromagnetic forces. The magnetohydrodynamic Lorentz force is created by the interaction of a steady magnetic field and electric currents fed to the fluid via electrodes placed at the wall surface. Two different cases are considered. At first, a time-oscillating electric current and a steady magnetic field create a spanwise time-oscillating Lorentz force. In the second case, a stationary electric current and a steady magnetic field create a steady, mainly streamwise Lorentz force. Besides the viscous drag, the importance of the electromagnetic force acting on the wall is figured out. Regarding the energetic efficiency, it is demonstrated that in all cases a balance between applied and flow-induced electric currents improves the efficiency significantly. But even then, the case of a spanwise oscillating Lorentz force remains with a very low efficiency, whereas for the self-propelled regime in the case of a steady streamwise force, much higher efficiencies are found. Still, no set of parameters has yet been found for which an energetic breakthrough, i.e., a saved power exceeding the used power, is reached.
NASA Technical Reports Server (NTRS)
Norbury, John W.
1989-01-01
The invariance of classical electromagnetism under charge-conjugation, parity, and time-reversal (CPT) is studied by considering the motion of a charged particle in electric and magnetic fields. Upon applying CPT transformations to various physical quantities and noting that the motion still behaves physically demonstrates invariance.
Project Physics Text 4, Light and Electromagnetism.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Optical and electromagnetic fundamentals are presented in this fourth unit of the Project Physics text for use by senior high students. Development of the wave theory in the first half of the 19th Century is described to deal with optical problems at the early stage. Following explanations of electric charges and forces, field concepts are…
On the Electromagnetic Momentum of Static Charge and Steady Current Distributions
ERIC Educational Resources Information Center
Gsponer, Andre
2007-01-01
Faraday's and Furry's formulae for the electromagnetic momentum of static charge distributions combined with steady electric current distributions are generalized in order to obtain full agreement with Poynting's formula in the case where all fields are of class C[superscript 1], i.e., continuous and continuously differentiable, and the…
The Use of Computer-Simulated Trajectories to Teach Real Particle Flight
ERIC Educational Resources Information Center
Gagnon, Michel
2011-01-01
The close relationship between charged particles and electromagnetic fields has been well known since the 19th century, thanks to James Clerk Maxwell's brilliant unified theory of electricity and magnetism. Today, electromagnetism is recognized as an essential aspect of human activity and has consequently become a major component of senior…
Transient Electromagnetic Wave Propagation in a Plasma Waveguide
2011-10-24
dielectric. The calculation of the propagation characteristics is based upon tangential continuity of the electric and magnetic field components...filament as a time-dependent resistance , we have determined the electron density, the kinetic parameters for electron attachment and recombination, and...wall conductivity simplifies the imposition of the boundary conditions. The tangential component of the electric field and the normal component of the
The 1991 International Aerospace and Ground Conference on Lightning and Static Electricity, volume 1
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity are reported. Some of the topics covered include: lightning, lightning suppression, aerospace vehicles, aircraft safety, flight safety, aviation meteorology, thunderstorms, atmospheric electricity, warning systems, weather forecasting, electromagnetic coupling, electrical measurement, electrostatics, aircraft hazards, flight hazards, meteorological parameters, cloud (meteorology), ground effect, electric currents, lightning equipment, electric fields, measuring instruments, electrical grounding, and aircraft instruments.
[Inefficiency of electrosmog-shielding mats. Part 2: radio frequency range].
Leitgeb, N; Cech, R
2005-09-01
It could already be shown that electromagnetic shielding mats do not reduce but even enhance electric field exposure in daily life situations. By measurements and numerical simulations the claims of manufacturers were checked who pretend that radio frequency electromagnetic fields can be shielded to 99% and more, and transferred to earth by earth cables (if attached). It could be shown that in the radio frequency range such products do not fulfil the justified expectations of customers, but in most cases even cause the opposite. The results depend on the electric properties of the material. Good electric conductivity of shielding mats even considerably increases electromagnetic field exposure. To connect the mats with earth potential by an attached cable might increase the beliefs on a protective effect, however, this is not capable to enhance the shielding effect. The investigation demonstrates that in spite of references made to experts opinions manufacturers claims about the shielding efficiency of radio frequency fields are misleading and fool clients about the real situation. Overall, acquisition and use of electrosmog shielding mats must be discouraged. If at all, shielding can be reached by placing a shielding cover between the source and the person. However, even in this case, efficiency is much lower than promised by manufacturers and decreases even more if it is taken into account that the head naturally remains uncovered and hence unshielded.
Horizontal fields generated by return strokes
NASA Technical Reports Server (NTRS)
Cooray, Vernon
1991-01-01
Horizontal fields generated by return strokes play an important role in the interaction of lightning generated electric fields with power lines. In many of the recent investigations on the interaction of lightning electromagnetic fields with power lines, the horizontal field was calculated by employing the expression for the tilt of the electric field of a plane wave propagating over finitely conducting earth. The method is suitable for calculating horizontal fields generated by return strokes at distances as close as 200m. At these close ranges, the use of the wavetilt expression can cause large errors.
Students' Development of Representational Competence Through the Sense of Touch
NASA Astrophysics Data System (ADS)
Magana, Alejandra J.; Balachandran, Sadhana
2017-06-01
Electromagnetism is an umbrella encapsulating several different concepts like electric current, electric fields and forces, and magnetic fields and forces, among other topics. However, a number of studies in the past have highlighted the poor conceptual understanding of electromagnetism concepts by students even after instruction. This study aims to identify novel forms of "hands-on" instruction that can result in representational competence and conceptual gain. Specifically, this study aimed to identify if the use of visuohaptic simulations can have an effect on student representations of electromagnetic-related concepts. The guiding questions is How do visuohaptic simulations influence undergraduate students' representations of electric forces? Participants included nine undergraduate students from science, technology, or engineering backgrounds who participated in a think-aloud procedure while interacting with a visuohaptic simulation. The think-aloud procedure was divided in three stages, a prediction stage, a minimally visual haptic stage, and a visually enhanced haptic stage. The results of this study suggest that students' accurately characterized and represented the forces felt around a particle, line, and ring charges either in the prediction stage, a minimally visual haptic stage or the visually enhanced haptic stage. Also, some students accurately depicted the three-dimensional nature of the field for each configuration in the two stages that included a tactile mode, where the point charge was the most challenging one.
Microfabricated sensors for the measurement of electromagnetic fields in biological tissues
NASA Astrophysics Data System (ADS)
Monberg, James; Henning, Albert K.
1995-09-01
Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.
Electromagnetic simulation of helicon plasma antennas for their electrostatic shield design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratakos, Yorgos, E-mail: y.stratakos@gmail.com; Zeniou, Angelos, E-mail: a.zeniou@inn.demokritos.gr; Gogolides, Evangelos, E-mail: e.gogolides@inn.demokritos.gr
A detailed electromagnetic parametric analysis of the helicon antenna (half Nagoya type) is shown at 13.56 MHz using a CST Microwave Studio 2012. The antenna is used to excite plasma inside a dielectric cylinder similar to a commercial reactor. Instead of focusing on the plasma state, the authors focus on the penetration and the three dimensional distribution of electric fields through the dielectric wall. Our aim is to reduce capacitive coupling which produces unwanted longitudinal and radial electric fields. Comparison of the helicon antenna electromagnetic performance under diverse boundary conditions shows that one is allowed to use vacuum simulations without plasmamore » present in the cylinder, or approximate the plasma as a column of gyrotropic material with a tensor dielectric permittivity and with a sheath of a few millimeters in order to qualitatively predict the electric field distribution, thus avoiding a full plasma simulation. This way the analysis of the full problem is much faster and allows an optimal shield design. A detailed study of various shields shows that one can reduce the radial and axial fields by more than 1 order of magnitude compared to the unshielded antenna, while the azimuthal field is reduced only by a factor of 2. Optimal shield design in terms of pitch and spacing of openings is determined. Finally, an experimental proof of concept of the effect of shielding on reduced wall sputtering is provided, by monitoring the roughness created during oxygen plasma etching of an organic polymer.« less
Apparatus and method for magnetically unloading a rotor bearing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, Seth Robert
An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.
Active System for Electromagnetic Perturbation Monitoring in Vehicles
NASA Astrophysics Data System (ADS)
Matoi, Adrian Marian; Helerea, Elena
Nowadays electromagnetic environment is rapidly expanding in frequency domain and wireless services extend in terms of covered area. European electromagnetic compatibility regulations refer to limit values regarding emissions, as well as procedures for determining susceptibility of the vehicle. Approval procedure for a series of cars is based on determining emissions/immunity level for a few vehicles picked randomly from the entire series, supposing that entire vehicle series is compliant. During immunity assessment, the vehicle is not subjected to real perturbation sources, but exposed to electric/magnetic fields generated by laboratory equipment. Since current approach takes into account only partially real situation regarding perturbation sources, this paper proposes an active system for determining electromagnetic parameters of vehicle's environment, that implements a logical diagram for measurement, satisfying the imposed requirements. This new and original solution is useful for EMC assessment of hybrid and electrical vehicles.
Radiofrequency Electromagnetic Field Map of Timisoara
NASA Astrophysics Data System (ADS)
Stefu, N.; Solyom, I.; Arama, A.
2015-12-01
There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.
Spin polarization effects and their time evolutions
NASA Astrophysics Data System (ADS)
Vernes, A.; Weinberger, P.
2015-04-01
The time evolution of the density corresponding to the polarization operator, originally constructed to commute with the Dirac Hamiltonian in the absence of an external electromagnetic field, is investigated in terms of the time-dependent Dirac equation taking the presence of an external electromagnetic field into account. It is found that this time evolution leads to 'tensorial' and 'vectorial' particle current densities and to the interaction of the spin density with the external electromagnetic field. As the time evolution of the spin density does not refer to a constant of motion (continuity condition) it only serves as auxiliary density. By taking the non-relativistic limit, it is shown that the polarization, spin and magnetization densities are independent of electric field effects and, in addition, no preferred directions can be defined.
On Acceptable Exposures to Short Pulses of Electromagnetic Fields
2015-09-01
in the comparisons given in this report, the electric and magnetic field strengths are assumed to be related as for a propagating wave . In the...adequacy of current standards is far from a settled issue. 15. SUBJECT TERMS International Commission on Non- Ionizing Radiation Protection, Institute...a source, the electric and magnetic fields are approximately related to each other in the same way as in a radiating wave far from the source. That
Electromagnetic fields of slowly rotating magnetized compact stars in conformal gravity
NASA Astrophysics Data System (ADS)
Turimov, Bobur; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon; Bambi, Cosimo
2018-06-01
In this paper we investigate the exterior vacuum electromagnetic fields of slow-rotating magnetized compact stars in conformal gravity. Assuming the dipolar magnetic field configuration, we obtain an analytical solution of the Maxwell equations for the magnetic and the electric fields outside a slowly rotating magnetized star in conformal gravity. Furthermore, we study the dipolar electromagnetic radiation and energy losses from a rotating magnetized star in conformal gravity. In order to get constraints on the L parameter of conformal gravity, the theoretical results for the magnetic field of a magnetized star in conformal gravity are combined with the precise observational data of radio pulsar period slowdown, and it is found that the maximum value of the parameter of conformal gravity is less than L ≲9.5 ×105 cm (L /M ≲5 ).
NASA Astrophysics Data System (ADS)
Abrudean, C.
2017-05-01
Due to multiple reflexions on walls, the electromagnetic field in a multimode microwave oven is difficult to estimate analytically. This paper presents a C++ program that calculates the electromagnetic field in a resonating cavity with an absorbing payload, uses the result to calculate heating in the payload taking its properties into account and then repeats. This results in a simulation of microwave heating, including phenomena like thermal runaway. The program is multithreaded to make use of today’s common multiprocessor/multicore computers.
The electromagnetic analogy of a ball on a rotating conical turntable
NASA Astrophysics Data System (ADS)
Zengel, Keith
2017-12-01
A ball on a flat rotating turntable executes circular orbits analogous to those of a charged particle in a uniform magnetic field. Stable circular orbits are also possible on rotating conical turntables and are analogous to those of a charged particle in an axial magnetic field superimposed on a radial electric field. The existence and stability of these orbits is derived and discussed. Further, parallels are drawn between the mechanical and electromagnetic cases, with particular attention to the magnetic vector potential. Finally, an experimental confirmation is reported and discussed.
On a remarkable electromagnetic field in the Einstein Universe
NASA Astrophysics Data System (ADS)
Kopiński, Jarosław; Natário, José
2017-06-01
We present a time-dependent solution of the Maxwell equations in the Einstein universe, whose electric and magnetic fields, as seen by the stationary observers, are aligned with the Clifford parallels of the 3-sphere S^3. The conformal equivalence between Minkowski's spacetime and (a region of) the Einstein cylinder is then exploited in order to obtain a knotted, finite energy, radiating solution of the Maxwell equations in flat spacetime. We also discuss similar electromagnetic fields in expanding closed Friedmann models, and compute the matter content of such configurations.
Processing of energy materials in electromagnetic field
NASA Astrophysics Data System (ADS)
Rodzevich, A. P.; Kuzmina, L. V.; Gazenaur, E. G.; Krasheninin, V. I.
2015-09-01
This paper presents the research results of complex impact of mechanical stress and electromagnetic field on the defect structure of energy materials. As the object of research quite a typical energy material - silver azide was chosen, being a model in chemistry of solids. According to the experiments co-effect of magnetic field and mechanical stress in silver azide crystals furthers multiplication, stopper breakaway, shift of dislocations, and generation of superlattice dislocations - micro-cracks. A method of mechanical and electric strengthening has been developed and involves changing the density of dislocations in whiskers.
NASA Astrophysics Data System (ADS)
Pandey, R. S.; Singh, Vikrant; Rani, Anju; Varughese, George; Singh, K. M.
2018-05-01
In the present paper Oblique propagating electromagnetic ion-cyclotron wave has been analyzed for anisotropic multi ion plasma (H+, He+, O+ ions) in earth magnetosphere for the Dione shell of L=7 i.e., the outer radiation belt of the magnetosphere for Loss-cone distribution function with a spectral index j in the presence of A.C. electric field. Detail for particle trajectories and dispersion relation has been derived by using the method of characteristic solution on the basis of wave particle interaction and transformation of energy. Results for the growth rate have been calculated numerically for various parameters and have been compared for different ions present in magnetosphere. It has been found that for studying the wave over wider spectrum, anisotropy for different values of j should be taken. The effect of frequency of A.C. electric field and angle which propagation vector make with magnetic field, on growth rate has been explained.
NASA Astrophysics Data System (ADS)
Toshmatov, Bobir; Stuchlík, Zdeněk; Schee, Jan; Ahmedov, Bobomurat
2018-04-01
The electromagnetic (EM) perturbations of the black hole solutions in general relativity coupled to nonlinear electrodynamics (NED) are studied for both electrically and magnetically charged black holes, assuming that the EM perturbations do not alter the spacetime geometry. It is shown that the effective potentials of the electrically and magnetically charged black holes related to test perturbative NED EM fields are related to the effective metric governing the photon motion, contrary to the effective potential of the linear electrodynamic (Maxwell) field that is related to the spacetime metric. Consequently, corresponding quasinormal (QN) frequencies differ as well. As a special case, we study new family of the NED black hole solutions which tend in the weak field limit to the Maxwell field, giving the Reissner-Nordström (RN) black hole solution. We compare the NED Maxwellian black hole QN spectra with the RN black hole QN spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Catrin F., E-mail: williamscf@cardiff.ac.uk; School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales; Geroni, Gilles M.
Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separatedmore » electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.« less
NASA Astrophysics Data System (ADS)
Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lloyd, David; Lees, Jonathan; Porch, Adrian
2016-08-01
Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the "internet of things" is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.
Transient ElectroMagnetic and Electric Self-Potential survey in the TAG hydrothermal field in MAR
NASA Astrophysics Data System (ADS)
Tao, C.; Deng, X.; Wu, G.; Xi, Z.; Zhou, D.; Zuo, L.
2012-12-01
The TAG hydrothermal field is one of the most studied hydrothermal fields. This field covers an area of 5km×5km, which includes low-temperature Mn- and Fe-oxides and nontronites zone, relict massive sulfide mounds as well as active hydrothermal mound(TAG mound) [Thompson, 1985, Rona, 1993]. Drilling program was performed in the ODP (Ocean Drilling Program) Leg 158 in the TAG mound [Humphris, 1996]. In 1996, electrical resistivity survey in the TAG mound was conducted using innovative transient electric dipole-dipole instruments which was carried by DSV 'Alvin' [Cairns et al., 1996, Von Herzen et al., 1996]. In June 2012, the 2nd Leg of the Chinese 26th cruise was carried out in the TAG hydrothermal field at Mid Atlantic Ridge by R/V DAYANGYIHAO. Six TEM (Transient ElectroMagnetic) survey lines were deployed, with four of which across the ODP Leg 158 drilling area. Besides, two SP (Electric Self-Potential) survey lines were across the ODP drilling area. The survey results of TEM preliminary revealed the vertical structure of the TAG hydrothermal field. The survey results of both TEM and SP are consistent with the ODP drilling result, and also agree well with the temperature and water-column anomalies obtained in this leg. Preliminary results show that the TEM and SP methods are capable of revealing the horizontal and vertical distribution of the hydrothermal sulfide fields.
Karadağ, Teoman; Yüceer, Mehmet; Abbasov, Teymuraz
2016-01-01
The present study analyses the electric field radiating from the GSM/UMTS base stations located in central Malatya, a densely populated urban area in Turkey. The authors have conducted both instant and continuous measurements of high-frequency electromagnetic fields throughout their research by using non-ionising radiation-monitoring networks. Over 15,000 instant and 13,000,000 continuous measurements were taken throughout the process. The authors have found that the normal electric field radiation can increase ∼25% during daytime, depending on mobile communication traffic. The authors' research work has also demonstrated the fact that the electric field intensity values can be modelled for each hour, day or week with the results obtained from continuous measurements. The authors have developed an estimation model based on these values, including mobile communication traffic (Erlang) values obtained from mobile phone base stations and the temperature and humidity values in the environment. The authors believe that their proposed artificial neural network model and multivariable least-squares regression analysis will help predict the electric field intensity in an environment in advance. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Elmas, Onur; Comlekci, Selcuk; Koylu, Halis
2012-01-01
ABSTRACT The heart is a contractile organ that can generate its own rhythm. The contraction, or the rhythm, of the heart may be influenced by electromagnetic field (EMF) exposure, because of the heart's excitability characteristic. In previous studies, different methods have been used to study the possible effects of an extremely low frequency electromagnetic field (ELF-EMF) on the heart. But the studies' designs were not similar, and the results were also different. Recent studies have shown some evidence that short-term EMF exposure can influence the heart more than long-term exposure. This study investigated how the heart is affected in the first EMF exposure. In a simulation of the daily exposure of humans to a power frequency, Wistar albino rats were used. By utilizing the Helmholtz-coil set, we obtained a 50-Hz, 1-μT EMF and examined rat heart activity during short-term EMF exposure. No effect was observed under this exposure condition. The results obtained do not confirm a possible mechanism in the electrical activity of the rat heart model.
The HEPD particle detector and the EFD electric field detector for the CSES satellite
NASA Astrophysics Data System (ADS)
Alfonsi, L.; Ambroglini, F.; Ambrosi, G.; Ammendola, R.; Assante, D.; Badoni, D.; Belyaev, V. A.; Burger, W. J.; Cafagna, A.; Cipollone, P.; Consolini, G.; Conti, L.; Contin, A.; Angelis, E. De; Donato, C. De; Franceschi, G. De; Santis, A. De; Santis, C. De; Diego, P.; Durante, M.; Fornaro, C.; Guandalini, C.; Laurenti, G.; Laurenza, M.; Lazzizzera, I.; Lolli, M.; Manea, C.; Marcelli, L.; Marcucci, F.; Masciantonio, G.; Osteria, G.; Palma, F.; Palmonari, F.; Panico, B.; Patrizii, L.; Picozza, P.; Pozzato, M.; Rashevskaya, I.; Ricci, M.; Rovituso, M.; Scotti, V.; Sotgiu, A.; Sparvoli, R.; Spataro, B.; Spogli, L.; Tommasino, F.; Ubertini, P.; Vannaroni, G.; Xuhui, S.; Zoffoli, S.
2017-08-01
The CSES satellite, developed by Chinese (CNSA) and Italian (ASI) space Agencies, will investigate iono-magnetospheric disturbances (induced by seismicity and electromagnetic emissions of tropospheric and anthropogenic origin); will monitor the temporal stability of the inner Van Allen radiation belts and will study the solar-terrestrial coupling by measuring fluxes of cosmic rays and solar energetic particles. In particular the mission aims at confirming the existences (claimed from several analyses) of a temporal correlations between the occurrence of earthquakes and the observation in space of electromagnetic disturbances, plasma fluctiations and anomalous fluxes of high-energy particles precipitating from the inner Van Allen belt. CSES will be launched in the summer of 2017 with a multi-instruments payload able to measure: e.m. fields, charged particles, plasma, TEC, etc. The Italian LIMADOU collaboration will provide the High-Energy Particle Detector (HEPD), designed for detecting electrons (3-200 MeV) and proton (30-300 MeV)), and participates to develop the Electric Field Detector (EFD) conceived for measuring electric field from ∼DC up to 5 MHz.
NASA Astrophysics Data System (ADS)
Aiello, Andrea; Ornigotti, Marco
2014-09-01
We address the question of whether there exists a hidden relationship between the near-field distribution generated by an oscillating electric dipole and the so-called cross-polarization of a collimated beam of light. We find that the answer is affirmative by showing that the complex field distributions occurring in both cases have a common physical origin: the requirement that the electromagnetic fields must be transverse.
Balmori, Alfonso; Hallberg, Orjan
2007-01-01
During recent decades, there has been a marked decline of the house sparrow (Passer domesticus) population in the United Kingdom and in several western European countries. The aims of this study were to determine whether the population is also declining in Spain and to evaluate the hypothesis that electromagnetic radiation (microwaves) from phone antennae is correlated with the decline in the sparrow population. Between October 2002 and May 2006, point transect sampling was performed at 30 points during 40 visits to Valladolid, Spain. At each point, we carried out counts of sparrows and measured the mean electric field strength (radiofrequencies and microwaves: 1 MHz-3 GHz range). Significant declines (P = 0.0037) were observed in the mean bird density over time, and significantly low bird density was observed in areas with high electric field strength. The logarithmic regression of the mean bird density vs. field strength groups (considering field strength in 0.1 V/m increments) was R = -0.87 (P = 0.0001). The results of this article support the hypothesis that electromagnetic signals are associated with the observed decline in the sparrow population. We conclude that electromagnetic pollution may be responsible, either by itself or in combination with other factors, for the observed decline of the species in European cities during recent years. The appearently strong dependence between bird density and field strength according to this work could be used for a more controlled study to test the hypothesis.
Sliding mode control of electromagnetic tethered satellite formation
NASA Astrophysics Data System (ADS)
Hallaj, Mohammad Amin Alandi; Assadian, Nima
2016-08-01
This paper investigates the control of tethered satellite formation actuated by electromagnetic dipoles and reaction wheels using the robust sliding mode control technique. Generating electromagnetic forces and moments by electric current coils provides an attractive control actuation alternative for tethered satellite system due to the advantages of no propellant consumption and no obligatory rotational motion. Based on a dumbbell model of tethered satellite in which the flexibility and mass of the tether is neglected, the equations of motion in Cartesian coordinate are derived. In this model, the J2 perturbation is taken into account. The far-field and mid-field models of electromagnetic forces and moments of two satellites on each other and the effect of the Earth's magnetic field are presented. A robust sliding mode controller is designed for precise trajectory tracking purposes and to deal with the electromagnetic force and moment uncertainties and external disturbances due to the Earth's gravitational and magnetic fields inaccuracy. Numerical simulation results are presented to validate the effectiveness of the developed controller and its superiority over the linear controller.
Assisted of electromagnetic fields in glucose production from cassava stems
NASA Astrophysics Data System (ADS)
Lismeri, Lia; Haryati, Sri; Djoni Bustan, M.; Darni, Yuli
2018-03-01
Decrease in fossil fuel reserves that led to high price has become major problem in many countries around the world. To acquire the sustainability of energy reserves, the renewable energies obtained from plant biomass will therefore have to play an increasing role in fulfilling energy demand throughout the century. Renewable energy source must be explored by innovative techniques which is safe to the environment and low in energy consumptions. This research conducted to produce glucose from cassava stems assisted by electromagnetic field inductions process. The parameters used in this research were pretreatment solvent, concentration, temperature and electrical currents. The electromagnetic field inductions could be applied to increase glucose productivity with the maximum yield of glucose was 47.43%.
Investigation of Electromagnetic Field Threat to Fuel Tank Wiring of a Transport Aircraft
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.
2000-01-01
National Transportation Safety Board investigators have questioned whether an electrical discharge in the Fuel Quantity Indication System (FQIS) may have initiated the TWA-800 center wing tank explosion. Because the FQIS was designed to be incapable of producing such a discharge on its own, attention has been directed to mechanisms of outside electromagnetic influence. To support the investigation, the NASA Langley Research Center was tasked to study the potential for radiated electromagnetic fields from external radio frequency (RF) transmitters and passenger carried portable electronic devices (PEDs) to excite the FQIS enough to cause arcing, sparking or excessive heating within the fuel tank.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malobabic, Sina; Jupe, Marco; Ristau, Detlev
Nowadays, Ion Beam Sputter (IBS) processes are very well optimized on an empirical basis. To achieve further progresses, a modification of the IBS process by guiding the coating material using an axial magnetic field and an additional electrical field has been studied. The electro-magnetic (EM) field leads to a significant change in plasma properties and deposition rate distributions, whereas an increase in deposition rate along the centerline of the axial EM field around 150% was observed. These fundamental studies on the prototype are the basis for the development of an applicable and workable design of a separation device.
A comparison of lightning and nuclear electromagnetic pulse response of tactical shelters
NASA Technical Reports Server (NTRS)
Perala, R. A.; Rudolph, T. H.; Mckenna, P. M.
1984-01-01
The internal response (electromagnetic fields and cable responses) of tactical shelters is addressed. Tactical shelters are usually well-shielded systems. Apart from penetrations by signal and power lines, the main leakage paths to the interior are via seams and the environment control unit (ECU) honeycomb filter. The time domain in three-dimensional finite-difference technique is employed to determine the external and internal coupling to a shelter excited by nuclear electromagnetic pulses (NEMP) and attached lightning. The responses of interest are the internal electromagnetic fields and the voltage, current, power, and energy coupled to internal cables. Leakage through the seams and ECU filter is accomplished by their transfer impedances which relate internal electric fields to external current densities. Transfer impedances which were experimentally measured are used in the analysis. The internal numerical results are favorably compared to actual shelter test data under simulated NEMP illumination.
Shibata, Naoya; Findlay, Scott D; Matsumoto, Takao; Kohno, Yuji; Seki, Takehito; Sánchez-Santolino, Gabriel; Ikuhara, Yuichi
2017-07-18
The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can now be realized through very fast data acquisition, processing, and reconstruction algorithms. If we use DPC STEM for atomic-resolution imaging using a sub-angstrom size electron probe, it has been shown that we can directly observe the atomic electric field inside atoms within crystals and even inside single atoms, the field between the atomic nucleus and the surrounding electron cloud, which possesses information about the atomic species, local chemical bonding and charge redistribution between bonded atoms. This possibility may open an alternative way for directly visualizing atoms and nanostructures, that is, seeing atoms as an entity of electromagnetic fields that reflect the intra- and interatomic electronic structures. In this Account, the current status of aberration-corrected DPC STEM is highlighted, along with some applications in real material and device studies.
NASA Astrophysics Data System (ADS)
Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg
2017-06-01
We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.
NASA Astrophysics Data System (ADS)
Aly, Said A.; Farag, Karam S. I.; Atya, Magdy A.; Badr, Mohamed A. M.
2018-06-01
A joint multi-spacing electromagnetic-terrain conductivity meter and DC-resistivity horizontal profiling survey was conducted at the anticipated eastern extensional area of the 15th-of-May City, southeastern Cairo, Egypt. The main objective of the survey was to highlight the applicability, efficiency, and reliability of utilizing such non-invasive surface techniques in a field like geologic mapping, and hence to image both the vertical and lateral electrical resistivity structures of the subsurface bedrock. Consequently, a total of reliable 6 multi-spacing electromagnetic-terrain conductivity meter and 7 DC-resistivity horizontal profiles were carried out between August 2016 and February 2017. All data sets were transformed-inverted extensively and consistently in terms of two-dimensional (2D) electrical resistivity smoothed-earth models. They could be used effectively and inexpensively to interpret the area's bedrock geologic sequence using the encountered consecutive electrically resistive and conductive anomalies. Notably, the encountered subsurface electrical resistivity structures, below all surveying profiles, are correlated well with the mapped geological faults in the field. They even could provide a useful understanding of their faulting fashion. Absolute resistivity values were not necessarily diagnostic, but their vertical and lateral variations could provide more diagnostic information about the layer lateral extensions and thicknesses, and hence suggested reliable geo-electric earth models. The study demonstrated that a detailed multi-spacing electromagnetic-terrain conductivity meter and DC-resistivity horizontal profiling survey can help design an optimal geotechnical investigative program, not only for the whole eastern extensional area of the 15th-of-May City, but also for the other new urban communities within the Egyptian desert.
Atmosphere-Ionosphere Electrodynamic Coupling
NASA Astrophysics Data System (ADS)
Sorokin, V. M.; Chmyrev, V. M.
Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally observed effects as excitation of plasma density inhomogeneities, field-aligned currents, and ULF/ELF emissions and the modification of electron and ion altitude profiles in the upper ionosphere. The electrodynamic model of the ionosphere modification under the influence of some natural and man-made processes in the atmosphere is also discussed. The model is based on the satellite and ground measurements of electromagnetic field and plasma perturbations and on the data on atmospheric radioactivity and soil gas injection into the atmosphere.
Determining if an axially rotated solenoid will induce a radial EMF
NASA Astrophysics Data System (ADS)
MacDermott, Dustin R.
The nature of the electromagnetic field of an axially rotated solenoid or magnet is investigated. The investigations reviewed suggest the possibility of a radially emitted electric field by either: axially rotated magnetic field lines, or a relativistic change in charge of the electron. For a very long solenoid a relativistic change in charge leaves no electric field inside while leaving an electric field outside. The concept of axially rotating magnetic field lines gives an opposite prediction. They both seem to be in contradiction to the standard model of induction, which gives no change in the electric field for a rotated solenoid or magnet. An experiment by Joseph B. Tate [48], [49] conducted in 1968 seemed to have measured a change in charge outside of a rotated solenoid. Another experiment by Barnett [3] in 1912 reported measuring no electric field inside of a rotated solenoid. Further experimentation was decided necessary and the method decided upon to attempt detection of the radial E or EMF induced by an axially rotating B field or change in charge is two concentric capacitor plates, one inside and the other outside an axially rotated solenoid. The solenoid was rotated on a lathe for the test. A concentric capacitor around an axially rotated permanent neodymium magnet was also used as a test. These experiments proved very challenging because of the small magnitude of the predicted effect. Nevertheless, the bulk of the evidence obtained indicates that no induced E arises when a magnetic source is rotated about its magnetic axis, thus supporting the standard field model of electromagnetic induction, and casting doubt on the alternative theories of magnetic field line rotation or relativistic charge enhancement.
Electromagnetic processes during phase commutation in field regulated reluctance machine
NASA Astrophysics Data System (ADS)
Shishkov, A. N.; Sychev, D. A.; Zemlyansky, A. A.; Krupnova, M. N.; Funk, T. A.; Ishmet'eva, V. D.
2018-03-01
The processes of currents switching in stator windings have been explained by the existence of the electromagnetic torque ripples in the electric drive with the field-regulated reluctance machine. The maximum value of ripples in the open loop control system for the six-phase machine can reach 20 percent from the developed electromagnetic torque. This method allows one to make calculation of ripple spike towards average torque developed by the electromotor for the different number of phases. Application of a trapezoidal form of current at six phases became the solution. In case of a less number of phases than six, a ripple spike considerably increases, which is inadmissible. On the other hand, increasing the number of phases tends to the increase of the semiconductor inverter external dimensions based on the inconspicuous decreasing of a ripple spike. The creation and usage of high-speed control loops of current (HCLC) have been recommended for a reduction of the electromagnetic torque’s ripple level, as well as the appliance of positive current feedback in switching phase currents. This decision allowed one to receive a mean value of the torque more than 10%, compared to system without change, to reduce greatly ripple spike of the electromagnetic torque. The possibility of the electric drive effective operation with FRRM in emergency operation has been shown.
Hypothesis on how to measure electromagnetic hypersensitivity.
Tuengler, Andreas; von Klitzing, Lebrecht
2013-09-01
Electromagnetic hypersensitivity (EHS) is an ill-defined term to describe the fact that people who experience health symptoms in the vicinity of electromagnetic fields (EMFs) regard them as causal for their complaints. Up to now most scientists assume a psychological cause for the suffering of electromagnetic hypersensitive individuals. This paper addresses reasons why most provocation studies could not find any association between EMF exposure and EHS and presents a hypothesis on diagnosis and differentiation of this condition. Simultaneous recordings of heart rate variability, microcirculation and electric skin potentials are used for classification of EHS. Thus, it could be possible to distinguish "genuine" electromagnetic hypersensitive individuals from those who suffer from other conditions.
Electromagnetic characteristics of systems of prolate and oblate ellipsoids
NASA Astrophysics Data System (ADS)
Karimi, Pouyan; Amiri-Hezaveh, Amirhossein; Ostoja-Starzewski, Martin; Jin, Jian-Ming
2017-11-01
The present study suggests a novel model for simulating electromagnetic characteristics of spheroidal nanofillers. The electromagnetic interference shielding efficiency of prolate and oblate ellipsoids in the X-band frequency range is studied. Different multilayered nanocomposite configurations incorporating carbon nanotubes, graphene nanoplatelets, and carbon blacks are fabricated and tested. The best performance for a specific thickness is observed for the multilayered composite with a gradual increase in the thickness and electrical conductivity of layers. The simulation results based on the proposed model are shown to be in good agreement with the experimental data. The effect of filler alignment on shielding efficiency is also studied by using the nematic order parameter. The ability of a nanocomposite to shield the incident power is found to decrease by increasing alignment especially for high volume fractions of prolate fillers. The interaction of the electromagnetic wave and the fillers is mainly affected by the polarization of the electric field; when the electric field is perpendicular to the equatorial axis of a spheroid, the interaction is significantly reduced and results in a lower shielding efficiency. Apart from the filler alignment, size polydispersity is found to have a significant effect on reflected and transmitted powers. It is demonstrated that the nanofillers with a higher aspect ratio mainly contribute to the shielding performance. The results are of interest in both shielding structures and microwave absorbing materials.
Large Strain Transparent Magneto-Active Polymer Nanocomposites
NASA Technical Reports Server (NTRS)
Yoonessi, Mitra (Inventor); Meador, Michael A (Inventor)
2016-01-01
A large strain polymer nanocomposite actuator is provided that upon subjected to an external stimulus, such as a magnetic field (static or electromagnetic field), an electric field, thermal energy, light, etc., will deform to thereby enable mechanical manipulations of structural components in a remote and wireless manner.
Using a free software tool for the visualization of complicated electromagnetic fields
NASA Astrophysics Data System (ADS)
Murello, A.; Milotti, E.
2014-01-01
Here, we show how a readily available and free scientific visualization program—ParaView—can be used to display electric fields in interesting situations. We give a few examples and specify the individual steps that lead to highly educational representations of the fields.
Design and experimental results of the 1-T Bitter Electromagnet Testing Apparatus (BETA)
NASA Astrophysics Data System (ADS)
Bates, E. M.; Birmingham, W. J.; Romero-Talamás, C. A.
2018-05-01
The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) technical prototype of the 10 T Adjustable Long Pulsed High-Field Apparatus. BETA's final design specifications are highlighted in this paper which include electromagnetic, thermal, and stress analyses. We discuss here the design and fabrication of BETA's core, vessel, cooling, and electrical subsystems. The electrical system of BETA is composed of a scalable solid-state DC breaker circuit. Experimental results display the stable operation of BETA at 1 T. These results are compared to both analytical design and finite element calculations. Experimental results validate analytical magnet designing methods developed at the Dusty Plasma Laboratory. The theoretical steady state maxima and the limits of BETA's design are explored in this paper.
Design and experimental results of the 1-T Bitter Electromagnet Testing Apparatus (BETA).
Bates, E M; Birmingham, W J; Romero-Talamás, C A
2018-05-01
The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) technical prototype of the 10 T Adjustable Long Pulsed High-Field Apparatus. BETA's final design specifications are highlighted in this paper which include electromagnetic, thermal, and stress analyses. We discuss here the design and fabrication of BETA's core, vessel, cooling, and electrical subsystems. The electrical system of BETA is composed of a scalable solid-state DC breaker circuit. Experimental results display the stable operation of BETA at 1 T. These results are compared to both analytical design and finite element calculations. Experimental results validate analytical magnet designing methods developed at the Dusty Plasma Laboratory. The theoretical steady state maxima and the limits of BETA's design are explored in this paper.
Eldridge-Thomas, Buffy; Rubin, G James
2013-01-01
Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged with the media to counteract this effect.
Aniołczyk, Halina
2006-01-01
Exposure to electromagnetic fields (EMF) occurs when man is exposed to the effect of electric, magnetic and electromagnetic fields and contact currents different from those resulting from physiological processes in the organism or other natural phenomena. In Poland, the system of protection against EMF has been functioning for over 35 years. In 2001, when the Minister of Labor and Social Policy issued the regulation introducing the maximum admissible intensities (MAI) for electromagnetic fields and radiation within the range of 0 Hz-300 GHz, the system was directed mainly towards evaluation of exposure to EMF occurring in the occupational environment. The system is linked via MAI values with human protection in the natural environment. In this paper, the background, principles and the range of the national system of protection against EMF and its monitoring are presented. The project of implementation of EU directives, following Poland's accession to the European Union is also discussed.
Transient regime in second harmonic generation
NASA Astrophysics Data System (ADS)
Szeftel, Jacob; Sandeau, Laure; Sandeau, Nicolas; Delezoide, Camille; Khater, Antoine
2013-09-01
The time growth of the electromagnetic field at the fundamental and double frequencies is studied from the very onset of the second harmonic generation (SHG) process for a set of dipoles lacking a symmetry centre and exhibiting a nonresonant coupling with a classical electromagnetic field. This approach consists first of solving the Schrödinger equation by applying a generalised Rabi rotation to the Hamiltonian describing the light-dipole interaction. This rotation has been devised for the resulting Hamiltonian to show up time-independent for both components of the electromagnetic field at the fundamental frequency and the second harmonic one. Then an energy conservation argument, derived from the Poynting theorem, is introduced to work out an additional relationship between the electromagnetic field and its associated electric polarisation. Finally this analysis yields the full time behaviour of all physical quantities of interest. The calculated results reproduce accurately both the observed spatial oscillations of the SHG intensity (Maker's fringes) and its power law dependence on the intensity of the incoming light at the fundamental frequency.
Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation
Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi
1999-09-14
Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.
A computer program to evaluate optical systems
NASA Technical Reports Server (NTRS)
Innes, D.
1972-01-01
A computer program is used to evaluate a 25.4 cm X-ray telescope at a field angle of 20 minutes of arc by geometrical analysis. The object is regarded as a point source of electromagnetic radiation, and the optical surfaces are treated as boundary conditions in the solution of the electromagnetic wave propagation equation. The electric field distribution is then determined in the region of the image and the intensity distribution inferred. A comparison of wave analysis results and photographs taken through the telescope shows excellent agreement.
NASA Technical Reports Server (NTRS)
Kelley, M. C.; Kintner, P. M.; Kudeki, E.; Holmgren, G.; Bostrom, R.; Fahleson, U. V.
1980-01-01
Instruments onboard the Trigger payload detected a large-amplitude, low-frequency, electric field pulse which was observed with a time delay consistent only with an electromagnetic wave. A model for this perturbation is constructed, and the associated field-aligned current is calculated as a function of altitude. This experiment may simulate the acceleration mechanism which results in the formation of auroral arcs, and possibly even other events in cosmic plasmas.
NASA Astrophysics Data System (ADS)
Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.
2017-03-01
In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Hojin
The thesis presents studies of vacuum pair productions and its applications in early universe cosmology and high energy astrophysics. Vacuum often becomes unstable and spontaneously decays into pairs of particles in rapidly expanding universes or under strong external electromagnetic fields. Theoretically, spontaneous pair productions due to such non-trivial backgrounds of spacetimes or electromagnetic fields are well-understood. However, the effect of particle productions has not been observed so far because of experiemtal difficulties in obtaining large curvatures of space-times or strong electric fields. Although it may be impossible to observe the pair productions directly via laboratory experiments, there are still powerfulmore » sources of space-time curvatures or electric fields in cosmology and astrophysics, which result in observations. In Part I, we explore the inflationary models in early universe utilizing pair productions through gravity. We study observable signatures on the cosmic microwave background, such as isocurvature perturbations and non-Gaussianities, generated from the particle production of WIMPzillas and axions during or after inflation. In Part II, we investigate the electron-positron pair production in the magnetosphere of pulsars whose electromagnetic fields are expected to close to or even greater than the pair production threshold. In particular, we demonstrate that the pair production may be responsible for giant pulses from the Crab pulsar.« less
Cansiz, Mustafa; Abbasov, Teymuraz; Kurt, M Bahattin; Celik, A Recai
2018-03-01
In this study, radio frequency electromagnetic field exposure levels were measured on the main streets in the city center of Diyarbakır, Turkey. Measured electric field levels were plotted on satellite imagery of Diyarbakır and were compared with exposure guidelines published by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Exposure measurements were performed in dense urban, urban and suburban areas each day for 7 consecutive days. The measurement system consisted of high precision and portable spectrum analyzer, three-axis electric field antenna, connection cable and a laptop which was used to record the measurement samples as a data logger. The highest exposure levels were detected for two places, which are called Diclekent and Batıkent. It was observed that the highest instantaneous electric field strength value for Batıkent was 7.18 V/m and for Diclekent was 5.81 V/m. It was statistically determined that the main contributor band to the total exposure levels was Universal Mobile Telecommunications System band. Finally, it was concluded that all measured exposure levels were lower than the reference levels recommended by ICNIRP for general public health.
The momentum of an electromagnetic wave inside a dielectric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Testa, Massimo, E-mail: massimo.testa@roma1.infn.it
2013-09-15
The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from themore » conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.« less
NASA Technical Reports Server (NTRS)
Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.
1994-01-01
We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.
On the Possibility of the Existence of a Surface Electromagnetic Wave in the Permafrost Area
NASA Astrophysics Data System (ADS)
Balkhanov, V. K.; Bashkuev, Yu. B.; Advokatov, V. R.
2018-01-01
The results of measurements of the vertical component of electric field at a radio path with the permafrost at a frequency of 255 kHz have been interpreted. An analysis of the results has shown that the considered radio path exhibits the properties of a two-part impedance surface, i.e., it consists of two sections. At a distance of 70 km from a radiation source and at a frequency of 255 kHz of the electromagnetic wave, the field decreases with the distance R according to the power law as R -1.5 and a power index takes an intermediate value between the power indices for decreasing the field in free space R -2 and for the decrease in the field above an ideal conducting surface R -1. With further propagation at a distance of 70-220 km, the field shows the specific behavior of a surface electromagnetic wave.
Capacity of dental equipment to interfere with cardiac implantable electrical devices.
Lahor-Soler, Eduard; Miranda-Rius, Jaume; Brunet-Llobet, Lluís; Sabaté de la Cruz, Xavier
2015-06-01
Patients with cardiac implantable electrical devices should take precautions when exposed to electromagnetic fields. Possible interference as a result of proximity to electromagnets or electricity flow from electronic tools employed in clinical odontology remains controversial. The objective of this study was to examine in vitro the capacity of dental equipment to provoke electromagnetic interference in pacemakers and implantable cardioverter defibrillators. Six electronic dental instruments were tested on three implantable cardioverter defibrillators and three pacemakers from different manufacturers. A simulator model, submerged in physiological saline, with elements that reproduced life-size anatomic structures was used. The instruments were analyzed at differing distances and for different time periods of application. The dental instruments studied displayed significant differences in their capacity to trigger electromagnetic interference. Significant differences in the quantity of registered interference were observed with respect to the variables manufacturer, type of cardiac implant, and application distance but not with the variable time of application. The electronic dental equipment tested at a clinical application distance (20 cm) provoked only slight interference in the pacemakers and implantable cardioverter defibrillators employed, irrespective of manufacturer. © 2015 Eur J Oral Sci.
Historical Evolution of the Field View and Textbook Accounts.
ERIC Educational Resources Information Center
Pocovi, M. Cecilia; Finley, Fred N.
2003-01-01
Analyzes how two electromagnetism textbooks approach the concept of electric field. Uses historical evolution of the field representation. Indicates that one textbook mixes up the historical and pedagogical reasons for the introduction of the concept of field while the other one presents a sketch that might lead students to understand the field…
NASA Astrophysics Data System (ADS)
Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.
2016-08-01
The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1-2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.
The stress system generated by an electromagnetic field in a suspension of drops
NASA Technical Reports Server (NTRS)
Erdogan, M. E.
1982-01-01
The stress generated in a suspension of drops in the presence of a uniform electric field and a pure straining motion, taking into account that the magnetohydrodynamic effects are dominant was calculated. It was found that the stress generated in the suspension depended on the direction of the applied electric field, the dielectric constants, the vicosity coefficients, the conductivities, and the permeabilities of fluids inside and outside the drops. The expression of the particle stress shows that for fluids which are good conductors and poor dielectrics, especially for larger drops, magnetohydrodynamic effects end to reduce the dependence on the direction of the applied electric field.
Surface electrical properties experiment, Part 3
NASA Technical Reports Server (NTRS)
1974-01-01
A complete unified discussion of the electromagnetic response of a plane stratified structure is reported. A detailed and comprehensive analysis of the theoretical parts of the electromagnetic is given. The numerical problem of computing numbers of the electromagnetic field strengths is discussed. It is shown that the analysis of the conductive media is not very far removed from the theoretical analysis and the numerical difficulties are not as accute as for the low-loss problem. For Vol. 1, see N75-15570; for Vol. 2 see N75-15571.
Introduction to Electrodynamics
NASA Astrophysics Data System (ADS)
Griffiths, David J.
2017-06-01
1. Vector analysis; 2. Electrostatics; 3. Potentials; 4. Electric fields in matter; 5. Magnetostatics; 6. Magnetic fields in matter; 7. Electrodynamics; 8. Conservation laws; 9. Electromagnetic waves; 10. Potentials and fields; 11. Radiation; 12. Electrodynamics and relativity; Appendix A. Vector calculus in curvilinear coordinates; Appendix B. The Helmholtz theorem; Appendix C. Units; Index.
ERIC Educational Resources Information Center
Sanders, Bill
1993-01-01
Reports the results of a field trip to measure the intensity of electromagnetic fields generated by electronic devices in the home, in cars, at work, outside, and in places people visit during the day. Found that a person gets more intense exposure while working at a computer than by living next to an electrical substation. (MDH)
NASA Astrophysics Data System (ADS)
Liu, Changsheng; Lin, Jun; Zhou, Fengdao; Hu, Ruihua; Sun, Caitang
2013-12-01
The frequency-domain controlled-source electromagnetic method (FDCSEM) has played an important role in the terrestrial and oceanic exploration. However, the measuring manners and the detecting abilities in two kinds of environment are much different. This paper analyses the electromagnetic theories of the FDCSEM exploration on land and in ocean, simulates the electromagnetic responses in the two cases based on a united physical and mathematical model, and studies the physical mechanism leading to these differences. In this study, the relationship between the propagation paths and the detecting ability is illuminated and the way to improve the detecting ability of FDCSEM is brought forward. In terrestrial exploration, FDCSEM widely adopts the measuring manner of controlled-source audio-frequency magnetotelluric method (CSAMT), which records the electromagnetic fields in the far zone in the broadside direction of an electric dipole source. This manner utilizes the airwave (i.e. the Earth surface wave) and takes the stratum wave as interference. It is sensitive to the conductive target but insensitive to the resistive one. In oceanic exploration, FDCSEM usually adopts the measuring manner of marine controlled-source electromagnetic method (MCSEM), which records the electromagnetic fields, commonly the horizontal electric fields, in the in-line direction of the electric dipole source. This manner utilizes the stratum wave (i.e. the seafloor wave and the guided wave in resistive targets) and takes the airwave as interference. It is sensitive to the resistive target but relatively insensitive to the conductive one. The numerical simulation shows that both the airwave and the stratum wave contribute to the FDCSEM exploration. United utilization of them will enhance the anomalies of targets and congregate the advantages of CSAMT and MCSEM theories. At different azimuth and different offset, the contribution of the airwave and the stratum wave to electromagnetic anomaly is different. Observation at moderate offset in the in-line direction is the best choice for the exploration of resistive targets, no matter the environment is land or shallow sea. It is also the best choice for the exploration of conductive targets in terrestrial environment. As for the conductive targets in shallow sea, observation at moderate offset in the broadside direction is better. Synthetic and felicitous utilization of the airwave and the stratum wave will optimize the performance of FDCSEM.
A Qualitative Approach to Electricity.
ERIC Educational Resources Information Center
Haertel, Hermann
In the teaching of physics, the study of electricity and magnetism typically follows the introduction of the basic concepts of mechanics. However, there are some new concepts associated with electromagnetic fields that seem at first to the student to be unrelated to, or even incompatible with, Newton's third law as learned in mechanics.…
Wigner functions for nonparaxial, arbitrarily polarized electromagnetic wave fields in free space.
Alonso, Miguel A
2004-11-01
New representations are defined for describing electromagnetic wave fields in free space exactly in terms of rays for any wavelength, level of coherence or polarization, and numerical aperture, as long as there are no evanescent components. These representations correspond to tensors assigned to each ray such that the electric and magnetic energy densities, the Poynting vector, and the polarization properties of the field correspond to simple integrals involving these tensors for the rays that go through the specified point. For partially coherent fields, the ray-based approach provided by the new representations can reduce dramatically the computation times for the physical properties mentioned earlier.
Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields.
D'Elia, Massimo; Mariti, Marco; Negro, Francesco
2013-02-22
We investigate two flavor quantum chromodynamics (QCD) in the presence of CP-odd electromagnetic background fields and determine, by means of lattice QCD simulations, the induced effective θ term to first order in E[over →] · B[over →]. We employ a rooted staggered discretization and study lattice spacings down to 0.1 fm and Goldstone pion masses around 480 MeV. In order to deal with a positive measure, we consider purely imaginary electric fields and real magnetic fields, and then exploit the analytic continuation. Our results are relevant to a description of the effective pseudoscalar quantum electrodynamics-QCD interactions.
Biofield Physiology: A Framework for an Emerging Discipline
Levin, Michael; McCraty, Rollin; Bat, Namuun; Ives, John A.; Lutgendorf, Susan K.; Oschman, James L.
2015-01-01
Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed. PMID:26665040
Biofield Physiology: A Framework for an Emerging Discipline.
Hammerschlag, Richard; Levin, Michael; McCraty, Rollin; Bat, Namuun; Ives, John A; Lutgendorf, Susan K; Oschman, James L
2015-11-01
Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed.
Electromagnetic phenomena analysis in brushless DC motor with speed control using PWM method
NASA Astrophysics Data System (ADS)
Ciurys, Marek Pawel
2017-12-01
Field-circuit model of a brushless DC motor with speed control using PWM method was developed. Waveforms of electrical and mechanical quantities of the designed motor with a high pressure vane pump built in a rotor of the motor were computed. Analysis of electromagnetic phenomena in the system: single phase AC network - converter - BLDC motor was carried out.
An Apparatus for Constructing an Electromagnetic Plane Wave Model
ERIC Educational Resources Information Center
Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William
2015-01-01
In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…
A new unified theory of electromagnetic and gravitational interactions
NASA Astrophysics Data System (ADS)
Li, Li-Xin
2016-12-01
In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξ R b a A a = -4π J b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a , R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term ξ R b a A a , whose presence addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza-Klein theory and its variants in which the Einstein-Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.
Lunar electromagnetic scattering. 1: Propagation parallel to the diamagnetic cavity axis
NASA Technical Reports Server (NTRS)
Schwartz, K.; Schubert, G.
1972-01-01
An analytic theory is developed for the time dependent magnetic fields inside the Moon and the diamagnetic cavity when the interplanetary electromagnetic field fluctuation propagates parallel to the cavity axis. The Moon model has an electrical conductivity which is an arbitrary function of radius. The lunar cavity is modelled by a nonconducting cylinder extending infinitely far downstream. For frequencies less than about 50 Hz, the cavity is a cylindrical waveguide below cutoff. Thus, cavity field perturbations due to the Moon do not propagate down the cavity, but are instead attenuated with distance downstream from the Moon.
NASA Technical Reports Server (NTRS)
Vanian, L. L.; Vnutchokova, T. A.; Fainberg, E. B.; Eroschenko, E. A.; Dyal, P.; Parkin, C. W.; Daily, W. D.
1977-01-01
A technique of deep electromagnetic sounding of the moon using simultaneous magnetic-field measurements at two lunar surface sites is described. The method, used with the assumption that deep electrical conductivity is a function only of lunar radius, has the advantage of allowing calculation of the external driving field from two surface-site measurements only and therefore does not require data from a lunar orbiting satellite. A transient-response calculation is presented for the example of a magnetic-field discontinuity, measured simultaneously by Apollo 16 and Lunokhod 2 surface magnetometers.
NASA Technical Reports Server (NTRS)
Vanyan, L. L.; Vnutchokova, T. A.; Fainberg, E. B.; Eroschenko, E. A.; Dyal, P.; Parkin, C. W.; Parkin, C. W.
1977-01-01
A new technique of deep electromagnetic sounding of the Moon using simultaneous magnetic field measurements at two lunar surface sites is described. The method, used with the assumption that deep electrical conductivity is a function only of lunar radius, has the advantage of allowing calculation of the external driving field from two surface site measurements only, and therefore does not require data from a lunar orbiting satellite. A transient response calculation is presented for the example of a magnetic field discontinuity of February 13, 1973, measured simultaneously by Apollo 16 and Lunokhod 2 surface magnetometers.
NASA Astrophysics Data System (ADS)
Morace, A.; Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Alpinaniz, J.; Brabetz, C.; Schaumann, G.; Volpe, L.
2017-02-01
Understanding the dynamics of rapidly varying electromagnetic fields in intense short pulse laser plasma interactions is of key importance to understand the mechanisms at the basis of a wide variety of physical processes, from high energy density physics and fusion science to the development of ultrafast laser plasma devices to control laser-generated particle beams. Target normal sheath accelerated (TNSA) proton radiography represents an ideal tool to diagnose ultrafast electromagnetic phenomena, providing 2D spatially and temporally resolved radiographs with temporal resolution varying from 2-3 ps to few tens of ps. In this work we introduce the proton radiography technique and its application to diagnose the spatial and temporal evolution of electromagnetic fields in laser-driven capacitor coil targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwasa, Takeshi, E-mail: tiwasa@mail.sci.hokudai.ac.jp; Takenaka, Masato; Taketsugu, Tetsuya
A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems.more » The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.« less
Iwasa, Takeshi; Takenaka, Masato; Taketsugu, Tetsuya
2016-03-28
A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems. The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.
[Nonionizing radiation and electromagnetic fields].
Bernhardt, J H
1991-01-01
Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com
2013-02-15
We have studied the spin dependent force and the associated momentum space Berry curvature in an accelerating system. The results are derived by taking into consideration the non-relativistic limit of a generally covariant Dirac equation with an electromagnetic field present, where the methodology of the Foldy-Wouthuysen transformation is applied to achieve the non-relativistic limit. Spin currents appear due to the combined action of the external electric field, the crystal field and the induced inertial electric field via the total effective spin-orbit interaction. In an accelerating frame, the crucial role of momentum space Berry curvature in the spin dynamics has alsomore » been addressed from the perspective of spin Hall conductivity. For time dependent acceleration, the expression for the spin polarization has been derived. - Highlights: Black-Right-Pointing-Pointer We study the effect of acceleration on the Dirac electron in the presence of an electromagnetic field, where the acceleration induces an electric field. Black-Right-Pointing-Pointer Spin currents appear due to the total effective electric field via the total spin-orbit interaction. Black-Right-Pointing-Pointer We derive the expression for the spin dependent force and the spin Hall current, which is zero for a particular acceleration. Black-Right-Pointing-Pointer The role of the momentum space Berry curvature in an accelerating system is discussed. Black-Right-Pointing-Pointer An expression for the spin polarization for time dependent acceleration is derived.« less
NASA Astrophysics Data System (ADS)
Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1993-09-01
In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.
Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems.
Wen, Feng; Huang, Xueliang
2017-02-08
The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working simultaneously.
Human Exposure to Electromagnetic Fields from Parallel Wireless Power Transfer Systems
Wen, Feng; Huang, Xueliang
2017-01-01
The scenario of multiple wireless power transfer (WPT) systems working closely, synchronously or asynchronously with phase difference often occurs in power supply for household appliances and electric vehicles in parking lots. Magnetic field leakage from the WPT systems is also varied due to unpredictable asynchronous working conditions. In this study, the magnetic field leakage from parallel WPT systems working with phase difference is predicted, and the induced electric field and specific absorption rate (SAR) in a human body standing in the vicinity are also evaluated. Computational results are compared with the restrictions prescribed in the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs). The results show that the middle region between the two WPT coils is safer for the two WPT systems working in-phase, and the peripheral regions are safer around the WPT systems working anti-phase. Thin metallic plates larger than the WPT coils can shield the magnetic field leakage well, while smaller ones may worsen the situation. The orientation of the human body will influence the maximum magnitude of induced electric field and its distribution within the human body. The induced electric field centralizes in the trunk, groin, and genitals with only one exception: when the human body is standing right at the middle of the two WPT coils working in-phase, the induced electric field focuses on lower limbs. The SAR value in the lungs always seems to be greater than in other organs, while the value in the liver is minimal. Human exposure to EMFs meets the guidelines of the International Committee on Non-Ionizing Radiation Protection (ICNIRP), specifically reference levels with respect to magnetic field and basic restrictions on induced electric fields and SAR, as the charging power is lower than 3.1 kW and 55.5 kW, respectively. These results are positive with respect to the safe applications of parallel WPT systems working simultaneously. PMID:28208709
Hadron electric polarizability from lattice QCD
NASA Astrophysics Data System (ADS)
Alexandru, Andrei
2017-09-01
Electromagnetic polarizabilities are important parameters for hadron structure, describing the response of the charge and current distributions inside the hadron to an external electromagnetic field. For most hadrons these quantities are poorly constrained experimentally since they can only be measured indirectly. Lattice QCD can be used to compute these quantities directly in terms of quark and gluons degrees of freedom, using the background field method. We present results for the neutron electric polarizability for two different quark masses, light enough to connect to chiral perturbation theory. These are currently the lightest quark masses used in polarizability studies. For each pion mass we compute the polarizability at four different volumes and perform an infinite volume extrapolation. We also discuss the effect of turning on the coupling between the background field and the sea quarks. A.A. is supported in part by the National Science Foundation CAREER Grant PHY-1151648 and by U.S. DOE Grant No. DE-FG02-95ER40907.
On focusing of a ring ripple on a Gaussian electromagnetic beam in a plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Shikha; Mishra, S. K.
In this communication the authors have investigated the focusing of a ring ripple on a Gaussian electromagnetic beam propagating in a plasma, considering each of the three kinds of basic nonlinearities, namely, ponderomotive, collisional, and relativistic. In this analysis, the electric field profile of the propagating beam is assumed to be composed of the radial electric field distribution of the Gaussian beam as well as that of the ring ripple; a paraxial like approach has been adopted to analyze the characteristics of the propagation. Thus, one considers a unique dielectric function for the beam propagation and a radial field sensitivemore » diffraction term, appropriate to the vicinity of the maximum of the irradiance distribution of the ring ripple. Further, the variation of the phase associated with the beam on account of the r independent terms in the eikonal has also been accounted for.« less
Biological effects of exposure to magnetic resonance imaging: an overview
Formica, Domenico; Silvestri, Sergio
2004-01-01
The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited. PMID:15104797
Setting prudent public health policy for electromagnetic field exposures.
Carpenter, David O; Sage, Cindy
2008-01-01
Electromagnetic fields (EMF) permeate our environment, coming both from such natural sources as the sun and from manmade sources like electricity, communication technologies and medical devices. Although life on earth would not be possible without sunlight, increasing evidence indicates that exposures to the magnetic fields associated with electricity and to communication frequencies associated with radio, television, WiFi technology, and mobile cellular phones pose significant hazards to human health. The evidence is strongest for leukemia from electricity-frequency fields and for brain tumors from communication-frequency fields, yet evidence is emerging for an association with other diseases as well, including neurodegenerative diseases. Some uncertainty remains as to the mechanism(s) responsible for these biological effects, and as to which components of the fields are of greatest importance. Nevertheless, regardless of whether the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Inaction is not compatible with the Precautionary Principle, as enunciated by the Rio Declaration. Because of ubiquitous exposure, the rapidly expanding development of new EMF technologies and the long latency for the development of such serious diseases as brain cancers, the failure to take immediate action risks epidemics of potentially fatal diseases in the future.
Features of electromagnetic processes in electric gas turbine installations
NASA Astrophysics Data System (ADS)
Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.
2017-12-01
Electric gas turbine aggregates are considered in terms of ensuring reliable operation of gas-dynamic bearings. A complex of unfavorable factors affecting this unit of the installation is described, including rotor unbalance, eccentricity, irregularity of armature field rotation, its amplitude variation during rotor rotation, etc. The studies have shown that it is possible to increase the efficiency of EGTA by increasing the number of armature winding phases (i.e. reducing electromagnetic torque ripples), amplifying the damping circuits on the rotor, as well as by introducing pulse-width modulation of currents in the phases and flexible feedbacks.
... Power lines Electrical wiring Microwave ovens Computers Cell phones Some people worry about EMF exposure and cancer. ... cancer. Some people worry that wireless and cellular phones cause cancer or other health problems. The phones ...
Non-linear processes in the Earth atmosphere boundary layer
NASA Astrophysics Data System (ADS)
Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay
2013-04-01
The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components in the form of PAS instruments of processes of geophysical and man-triggered nature; to predict the presence of the features of geophysical nature in the electromagnetic field of the atmosphere boundary surface layer; to study dynamics the analyzed signals coming from the geophysical and man-triggered sources in the electrical and magnetic fields of the atmosphere boundary surface layer; to expose changes of the investigated time series in the periods preceding the appearance of the predicted phenomena; to form clusters of the time series being the features of the predicted events. On the base of the exposed clusters of the time series there have been built the predicting rules allowing to coordinate the probability of appearing the groups of the occurred events. The work is carried out with supporting of Program FPP #14.B37.210668, FPP #5.2071.2011, RFBR #11-05-97518.
Models for electromagnetic coupling of lightning onto multiconductor cables in underground cavities
NASA Astrophysics Data System (ADS)
Higgins, Matthew Benjamin
This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of lightning strokes, are then used to predict electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of lightning current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of lightning (< 100 kHz), electromagnetic energy can readily propagate through hundreds of feet of earth. Indirect transfer function measurements compare extremely well with analytical and computational models developed for the Sago site which take into account measured soil properties.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.
2003-01-01
The present investigation details the development of model systems for growing two- and three-dimensional human neural progenitor cells within a culture medium facilitated by a time-varying electromagnetic field (TVEMF). The cells and culture medium are contained within a two- or three-dimensional culture vessel, and the electromagnetic field is emitted from an electrode or coil. These studies further provide methods to promote neural tissue regeneration by means of culturing the neural cells in either configuration. Grown in two dimensions, neuronal cells extended longitudinally, forming tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time-varying electrical current was conducted. In the three-dimensional aspect, exposure to TVEMF resulted in the development of three-dimensional aggregates, which emulated organized neural tissues. In both experimental configurations, the proliferation rate of the TVEMF cells was 2.5 to 4.0 times the rate of the non-waveform cells. Each of the experimental embodiments resulted in similar molecular genetic changes regarding the growth potential of the tissues as measured by gene chip analyses, which measured more than 10,000 human genes simultaneously.
Endogenous electromagnetic fields in plant leaves: a new hypothesis for vascular pattern formation.
Pietak, Alexis Mari
2011-06-01
Electromagnetic (EM) phenomena have long been implicated in biological development, but few detailed, practical mechanisms have been put forth to connect electromagnetism with morphogenetic processes. This work describes a new hypothesis for plant leaf veination, whereby an endogenous electric field forming as a result of a coherent Frohlich process, and corresponding to an EM resonant mode of the developing leaf structure, is capable of instigating leaf vascularisation. In order to test the feasibility of this hypothesis, a three-dimensional, EM finite-element model (FEM) of a leaf primordium was constructed to determine if suitable resonant modes were physically possible for geometric and physical parameters similar to those of developing leaf tissue. Using the FEM model, resonant EM modes with patterns of relevance to developing leaf vein modalities were detected. On account of the existence of shared geometric signatures in a leaf's vascular pattern and the electric field component of EM resonant modes supported by a developing leaf structure, further theoretical and experimental investigations are warranted. Significantly, this hypothesis is not limited to leaf vascular patterning, but may be applicable to a variety of morphogenetic phenomena in a number of living systems.
Electric levitation using ϵ-near-zero metamaterials.
Rodríguez-Fortuño, Francisco J; Vakil, Ashkan; Engheta, Nader
2014-01-24
The ability to manufacture metamaterials with exotic electromagnetic properties has potential for surprising new applications. Here we report how a specific type of metamaterial--one whose permittivity is near zero--exerts a repulsive force on an electric dipole source, resulting in levitation of the dipole. The phenomenon relies on the expulsion of the time-varying electric field from the metamaterial interior, resembling the perfect diamagnetic expulsion of magnetostatic fields. Leveraging this concept, we study some realistic requirements for the levitation or repulsion of a polarized particle radiating at any frequency, from microwave to optics.
47 CFR 80.217 - Suppression of interference aboard ships.
Code of Federal Regulations, 2011 CFR
2011-10-01
... to any receiver required by statute or treaty. (b) The electromagnetic field from receivers required... mile from the receiver: Frequency of interfering emissions Field intensity in microvolts per meter... following amounts of power, to an artificial antenna having electrical characteristics equivalent to those...
Current Understanding of the Health Effects of Electromagnetic Fields.
Miah, Tayaba; Kamat, Deepak
2017-04-01
There has been an exponential increase in the use of electronic devices over the past few decades. This has led to increased exposure to electromagnetic fields (EMF). Electric fields result from differences in voltage, whereas magnetic fields result from the flow of electric current. Higher-frequency waves of EMF have more energy than lower-frequency waves, and thus generally tend to be more harmful. An EMF activates cellular stress response and also causes breaks in DNA strands. There are many methodological barriers to effectively measuring the associations of EMF and childhood cancers. The consensus from multiple studies is that there is no causal role of extremely low-frequency EMFs in childhood cancers, including brain cancer. A recent study showed a link between EMF radiation and the development of malignant tumors in rats. In light of that study, the American Academy of Pediatrics set out new recommendations to decrease the adverse effects of cellphone exposure on children. [Pediatr Ann. 2017;46(4):e172-e174.]. Copyright 2017, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.
2016-04-01
In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.
NASA Astrophysics Data System (ADS)
Meng, Qingxin; Hu, Xiangyun; Pan, Heping; Xi, Yufei
2018-04-01
We propose an algorithm for calculating all-time apparent resistivity from transient electromagnetic induction logging. The algorithm is based on the whole-space transient electric field expression of the uniform model and Halley's optimisation. In trial calculations for uniform models, the all-time algorithm is shown to have high accuracy. We use the finite-difference time-domain method to simulate the transient electromagnetic field in radial two-layer models without wall rock and convert the simulation results to apparent resistivity using the all-time algorithm. The time-varying apparent resistivity reflects the radially layered geoelectrical structure of the models and the apparent resistivity of the earliest time channel follows the true resistivity of the inner layer; however, the apparent resistivity at larger times reflects the comprehensive electrical characteristics of the inner and outer layers. To accurately identify the outer layer resistivity based on the series relationship model of the layered resistance, the apparent resistivity and diffusion depth of the different time channels are approximately replaced by related model parameters; that is, we propose an apparent resistivity correction algorithm. By correcting the time-varying apparent resistivity of radial two-layer models, we show that the correction results reflect the radially layered electrical structure and the corrected resistivities of the larger time channels follow the outer layer resistivity. The transient electromagnetic fields of radially layered models with wall rock are simulated to obtain the 2D time-varying profiles of the apparent resistivity and corrections. The results suggest that the time-varying apparent resistivity and correction results reflect the vertical and radial geoelectrical structures. For models with small wall-rock effect, the correction removes the effect of the low-resistance inner layer on the apparent resistivity of the larger time channels.
Evidence of a primordial solar wind. [T Tauri-type evolution model
NASA Technical Reports Server (NTRS)
Sonett, C. P.
1974-01-01
A model is reviewed which requires a T Tauri 'wind' and at the same time encompasses certain early-object stellar features. The theory rests on electromagnetic induction driven by the 'wind'. Plasma confinement of the induced field prohibits a scattered field, and all energy loss is via ohmic heating in the scatterer (i.e., planetary objects). Two modes, one caused by the interplanetary electric field (transverse magnetic) and the other by time variations in the interplanetary magnetic field (transverse electric) are present. Parent body melting, lunar surface melting, and a primordial magnetic field are components of the proposed model.
Magnetic field therapy: a review.
Markov, Marko S
2007-01-01
There is increasing interest in using permanent magnets for therapeutic purposes encouraged by basic science publications and clinical reports. Magnetotherapy provides a non invasive, safe, and easy method to directly treat the site of injury, the source of pain and inflammation, and other types of disease. The physiological bases for the use of magnetic fields for tissue repair as well as physical principles of dosimetry and application of various magnetic fields are subjects of this review. Analysis of the magnetic and electromagnetic stimulation is followed by a discussion of the advantage of magnetic field stimulation compared with electric current and electric field stimulation.
Cluster: A fleet of four spacecraft to study plasma structures in three dimensions
NASA Technical Reports Server (NTRS)
Schmidt, R.; Goldstein, M. L.
1988-01-01
The four Cluster spacecraft are spin stabilized spacecraft which are designed and built under stringent requirements as far as electromagnetic cleanliness is concerned. Conductive surfaces and low electromagnetic background noise are mandatory for accurate electric field and cold plasma measurements. The mission is implemented in collaboration between ESA and NASA. A Russian mission will be closely coordinated with Cluster.
NASA Astrophysics Data System (ADS)
Chen, Mingji; Wang, Changxian; Cheng, Xiaodong; Gong, Congcheng; Song, Weili; Yuan, Xujin; Fang, Daining
2018-04-01
The realization of an ideal invisible cloak implementing transformation optics is still missing. An impedance matching concept is implanted into transformation optics cloak to generate an impedance matching cloak (IMC) shell. In this work, it is proved that impedance matching structure reduces the cloaking structure’s disturbance to a propagating electromagnetic field and improves its invisibility measured by scattering field intensity. Such a cylindrical IMC shell is designed, fabricated with proposed rounded rectangular split-ring-resonators (RR-SRRs), and experimental measurements show the total scattering field of a perfect electric conductor (PEC) cylinder surrounded by an IMC shell is improved greatly compared to the PEC cylinder showing electromagnetic wave front ripple suppression and a considerable scattering shrinking effect. IMC shell backward scattering field is suppressed down to 7.29%, compared to the previous value of 86.7% due to its impedance matching character, and overall scattering field intensity shrinking is down to 19.3% compared to the previously realized value of 56.4%. Sideward scattering field recorded in the experiment also has a remarkable improvement compared to the PEC cylinder. The impedance matching concept might enlighten the realization of an ideal cloak and other novel electromagnetic cloaking and shielding structures.
Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo
2000-08-29
Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.
Electromagnetic disturbance of electric drive system signal is extracted based on PLS
NASA Astrophysics Data System (ADS)
Wang, Yun; Wang, Chuanqi; Yang, Weidong; Zhang, Xu; Jiang, Li; Hou, Shuai; Chen, Xichen
2018-05-01
At present ISO11452 and GB/T33014 specified by electromagnetic immunity are narrowband electromagnetic radiation, but our exposure to electromagnetic radiation at ordinary times is not only a narrowband electromagnetic radiation, and some broadband electromagnetic radiation, and even some of the more complex electromagnetic environment. In terms of Electric vehicles, electric drive system is a kind of complex electromagnetic disturbance source, is not only a narrow-band signal, there are a lot of broadband signal, this paper puts forward PLS data processing method is adopted to analyze the electric drive system of electromagnetic disturbance, this kind of method to extract the data can be provide reliable data support for future standards.
Electromagnetic Scattering From a Polygonal Thin Metallic Plate Using Quadrilateral Meshing
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.
2003-01-01
The problem of electromagnetic (EM) scattering from irregularly shaped, thin, metallic flat plates in free space is solved using the electric field integral equation (EFIE) approach in conjunction with the method of moments (MoM) with quadrilateral meshing. An irregularly shaped thin plate is discretized into quadrilateral patches and the unknown electric surface current over the plate is expressed in terms of proper basis functions over these patches. The basis functions for the electric surface current density that satisfy the proper boundary conditions on these quadrilateral patches are derived. The unknown surface current density on these quadrilateral patches is determined by setting up and solving the electric field integral equation by the application of the MoM. From the knowledge of the surface current density, the EM scattering from various irregularly shaped plates is determined and compared with the earlier published results. The novelty in the present approach is the use of quadrilateral patches instead of well known and often used triangular patches. The numerical results obtained using the quadrilateral patches compare favorably with measured results.
Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu
2018-04-01
In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.
A study of the electric field in an open magnetospheric model
NASA Technical Reports Server (NTRS)
Stern, D. P.
1973-01-01
Recently, Svalgaard and Heppner reported two separate features of the polar electromagnetic field that correlate with the dawn-dusk component of the interplanetary magnetic field. This work attempts to explain these findings in terms of properties of the open magnetosphere. The topology and qualitative properties of the open magnetosphere are first studied by means of a simple model, consisting of a dipole in a constant field. Many such properties are found to depend on the separation line, a curve connecting neutral points and separating different field line regimes. In the simple model it turns out that the electric field in the central polar cap tends to point from dawn to dusk for a wide variety of external fields, but, near the boundary of the polar cap, electric equipotentials are deformed into crescents.
Occupational exposure to electromagnetic fields from medical sources
STAM, Rianne; YAMAGUCHI-SEKINO, Sachiko
2017-01-01
High exposures to electromagnetic fields (EMF) can occur near certain medical devices in the hospital environment. A systematic assessment of medical occupational EMF exposure could help to clarify where more attention to occupational safety may be needed. This paper seeks to identify sources of high exposure for hospital workers and compare the published exposure data to occupational limits in the European Union. A systematic search for peer-reviewed publications was conducted via PubMed and Scopus databases. Relevant grey literature was collected via a web search. For each publication, the highest measured magnetic flux density or internal electric field strength per device and main frequency component was extracted. For low frequency fields, high action levels may be exceeded for magnetic stimulation, MRI gradient fields and movement in MRI static fields. For radiofrequency fields, the action levels may be exceeded near devices for diathermy, electrosurgery and hyperthermia and in the radiofrequency field inside MRI scanners. The exposure limit values for internal electric field may be exceeded for MRI and magnetic stimulation. For MRI and magnetic stimulation, practical measures can limit worker exposure. For diathermy, electrosurgery and hyperthermia, additional calculations are necessary to determine if SAR limits may be exceeded in some scenarios. PMID:29109357
Smith, B.D.; Abraham, J.D.; Cannia, J.C.; Minsley, B.J.; Ball, L.B.; Steele, G.V.; Deszcz-Pan, M.
2011-01-01
This report is a release of digital data from a helicopter electromagnetic and magnetic survey conducted by Fugro Airborne Surveys in areas of eastern Nebraska as part of a joint hydrologic study by the Lower Platte North and Lower Platte South Natural Resources Districts, and the U.S. Geological Survey. The survey flight lines covered 1,418.6 line km (882 line mile). The survey was flown from April 22 to May 2, 2009. The objective of the contracted survey was to improve the understanding of the relation between surface water and groundwater systems critical to developing groundwater models used in management programs for water resources. The electromagnetic equipment consisted of six different coil-pair orientations that measured resistivity at separate frequencies from about 400 hertz to about 140,000 hertz. The electromagnetic data were converted to georeferenced electrical resistivity grids and maps for each frequency that represent different approximate depths of investigation for each survey area. The electrical resistivity data were input into a numerical inversion to estimate resistivity variations with depth. In addition to the electromagnetic data, total field magnetic data and digital elevation data were collected. Data released in this report consist of flight line data, digital grids, digital databases of the inverted electrical resistivity with depth, and digital maps of the apparent resistivity and total magnetic field. The range of subsurface investigation is comparable to the depth of shallow aquifers. The survey areas, Swedeburg and Sprague, were chosen based on results from test flights in 2007 in eastern Nebraska and needs of local water managers. The geophysical and hydrologic information from U.S. Geological Survey studies are being used by resource managers to develop groundwater resource plans for the area.
NASA Astrophysics Data System (ADS)
Crosse, J. A.
2017-02-01
Topological insulators subject to a time-reversal-symmetry-breaking perturbation are predicted to display a magneto-electric effect that causes the electric and magnetic induction fields to mix at the material’s surface. This effect induces polarization rotations of between ≈1-10 mrad per interface in an incident plane-polarized electromagnetic wave normal to a multilayered structure. Here we show, theoretically and numerically, that by using a waveguide geometry with a topological insulator guide layer and magneto-dielectric cladding it is possible to achieve rotations of ≈100 mrad and generate an elliptical polarization with only a three-layered structure. This geometry is beneficial, not only as a way to enhance the magneto-electric effect, rendering it easier to observe, but also as a method for controlling the polarization of electromagnetic radiation.
Pulsed interrupter and method of operation
Drake, Joel Lawton; Kratz, Robert
2015-06-09
Some embodiments provide interrupter systems comprising: a first electrode; a second electrode; a piston movably located at a first position and electrically coupled with the first and second electrodes establishing a closed state, the piston comprises an electrical conductor that couples with the first and second electrodes providing a conductive path; an electromagnetic launcher configured to, when activated, induce a magnetic field pulse causing the piston to move away from the electrical coupling with the first and second electrodes establishing an open circuit between the first and second electrodes; and a piston control system comprising a piston arresting system configured to control a deceleration of the piston following the movement of the piston induced by the electromagnetic launcher such that the piston is not in electrical contact with at least one of the first electrode and the second electrode when in the open state.
Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.
Azari, Mina; Hatami, Mohsen; Meygoli, Vahid; Yousefi, Elham
2016-11-01
Over the past decades, scientists have presented ways to manipulate the macroscopic properties of a material at levels unachieved before, and called them metamaterials. This research can be considered an important step forward in electromagnetics and optics. In this study, higher-order nonlinear coupled equations in a special kind of metamaterial waveguides (a planar waveguide with metamaterial core) will be derived from both electric and magnetic components of the transverse electric mode of electromagnetic pulse propagation. On the other hand, achieving the refractive index in this research is worthwhile. It is also shown that the coupled equations are not symmetric with respect to the electric and magnetic fields, unlike these kinds of equations in fiber optics and dielectric waveguides. Simulations on the propagation of a fundamental soliton pulse in a nonlinear metamaterial waveguide near the resonance frequency (a little lower than the magnetic resonant frequency) are performed to study its behavior. These pulses are recommended to practice in optical communications in controlled switching by external voltage, even in low power.
Novel topological effects in dense QCD in a magnetic field
NASA Astrophysics Data System (ADS)
Ferrer, E. J.; de la Incera, V.
2018-06-01
We study the electromagnetic properties of dense QCD in the so-called Magnetic Dual Chiral Density Wave phase. This inhomogeneous phase exhibits a nontrivial topology that comes from the fermion sector due to the asymmetry of the lowest Landau level modes. The nontrivial topology manifests in the electromagnetic effective action via a chiral anomaly term θFμνF˜μν, with a dynamic axion field θ given by the phase of the Dual Chiral Density Wave condensate. The coupling of the axion with the electromagnetic field leads to several macroscopic effects that include, among others, an anomalous, nondissipative Hall current, an anomalous electric charge, magnetoelectricity, and the formation of a hybridized propagating mode known as an axion polariton. Connection to topological insulators and Weyls semimetals, as well as possible implications for heavy-ion collisions and neutron stars are all highlighted.
NASA Technical Reports Server (NTRS)
Flourens, F.; Morel, T.; Gauthier, D.; Serafin, D.
1991-01-01
Numerical techniques such as Finite Difference Time Domain (FDTD) computer programs, which were first developed to analyze the external electromagnetic environment of an aircraft during a wave illumination, a lightning event, or any kind of current injection, are now very powerful investigative tools. The program called GORFF-VE, was extended to compute the inner electromagnetic fields that are generated by the penetration of the outer fields through large apertures made in the all metallic body. Then, the internal fields can drive the electrical response of a cable network. The coupling between the inside and the outside of the helicopter is implemented using Huygen's principle. Moreover, the spectacular increase of computer resources, as calculations speed and memory capacity, allows the modellization structures as complex as these of helicopters with accuracy. This numerical model was exploited, first, to analyze the electromagnetic environment of an in-flight helicopter for several injection configurations, and second, to design a coaxial return path to simulate the lightning aircraft interaction with a strong current injection. The E field and current mappings are the result of these calculations.
NASA Astrophysics Data System (ADS)
Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga
2016-02-01
We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.
NASA Astrophysics Data System (ADS)
Glazebrook, R. T.
2016-10-01
1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.
NASA Astrophysics Data System (ADS)
Cifra, M.; Havelka, D.; Deriu, M. A.
2011-12-01
Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. It recently was determined from anisotropic elastic network modeling of entire microtubules that the frequencies of microtubule longitudinal axial eigenmodes lie in the region of tens of GHz for the physiologically common microtubule lengths. We calculated electric field generated by axial longitudinal vibration modes of microtubule, which model is based on subnanometer precision of charge distribution. Due to elastoelectric nature of the vibrations, the vibration wavelength is million-fold shorter than that of the electromagnetic field in free space and the electric field around the microtubule manifests rich spatial structure with multiple minima. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of reactions via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play a role in biological self-organization.
NASA Astrophysics Data System (ADS)
Zohdi, T. I.
2017-07-01
A key part of emerging advanced additive manufacturing methods is the deposition of specialized particulate mixtures of materials on substrates. For example, in many cases these materials are polydisperse powder mixtures whereby one set of particles is chosen with the objective to electrically, thermally or mechanically functionalize the overall mixture material and another set of finer-scale particles serves as an interstitial filler/binder. Often, achieving controllable, precise, deposition is difficult or impossible using mechanical means alone. It is for this reason that electromagnetically-driven methods are being pursued in industry, whereby the particles are ionized and an electromagnetic field is used to guide them into place. The goal of this work is to develop a model and simulation framework to investigate the behavior of a deposition as a function of an applied electric field. The approach develops a modular discrete-element type method for the simulation of the particle dynamics, which provides researchers with a framework to construct computational tools for this growing industry.
NASA Astrophysics Data System (ADS)
Kalivarapu, Vijay K.; Serrate, Ciro; Hadimani, Ravi L.
2017-05-01
Transcranial Magnetic Stimulation (TMS) is a non-invasive procedure that uses time varying short pulses of magnetic fields to stimulate nerve cells in the brain. In this method, a magnetic field generator ("TMS coil") produces small electric fields in the region of the brain via electromagnetic induction. This technique can be used to excite or inhibit firing of neurons, which can then be used for treatment of various neurological disorders such as Parkinson's disease, stroke, migraine, and depression. It is however challenging to focus the induced electric field from TMS coils to smaller regions of the brain. Since electric and magnetic fields are governed by laws of electromagnetism, it is possible to numerically simulate and visualize these fields to accurately determine the site of maximum stimulation and also to develop TMS coils that can focus the fields on the targeted regions. However, current software to compute and visualize these fields are not real-time and can work for only one position/orientation of TMS coil, severely limiting their usage. This paper describes the development of an application that computes magnetic flux densities (h-fields) and visualizes their distribution for different TMS coil position/orientations in real-time using GPU shaders. The application is developed for desktop, commodity VR (HTC Vive), and fully immersive VR CAVETM systems, for use by researchers, scientists, and medical professionals to quickly and effectively view the distribution of h-fields from MRI brain scans.
NASA Astrophysics Data System (ADS)
Tseng, Yi-Chuan; Lee, Yang-Chun; Chang, Sih-Wei; Lin, Tzu-Yao; Ma, Dai-Liang; Lin, Bo-Cheng; Chen, Hsuen-Li
2017-11-01
In this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347. The hot zones of intense electric field were generated not only within the nonmetallic NPs but also around them, even within the underlying substrate. We observed experimentally that gallium nitride (GaN) and silicon carbide (SiC) surfaces presenting very few SiNPs (coverage: <0.3%) could display significantly enhanced (>50%) Raman signals. In contrast, the Raman signals of the underlying substrates were not enhanced by gold nanoparticles (AuNPs), even though these NPs displayed a localized surface plasmon resonance (LSPR) phenomenon. A comparison of the areas of the electric field hot zones (E 2 > 10) generated by SiNPs undergoing magnetic dipole resonance with the electric field hot spots (E 2 > 10) generated by AuNPs undergoing LSPR revealed that the former was approximately 70 times that of the latter. More noteworthily, the electromagnetic field hot zone generated from the SiNP is able to extend into the surrounding and underlying media. Relative to metallic NPs undergoing LSPR, these nonmetallic NPs displaying magnetic dipole resonance were more effective at enhancing the Raman scattering signals from analytes that were underlying, or even far away from, them. This application of magnetic dipole resonance in metal-free structures appears to have great potential for use in developing next-generation techniques for Raman enhancement.
Analysis of electromagnetic fields on an F-106B aircraft during lightning strikes
NASA Technical Reports Server (NTRS)
Trost, T. F.; Pitts, F. L.
1982-01-01
Information on the exterior electromagnetic environment of an aircraft when it is struck by lightning has been obtained during thunderstorm penetrations with an F-106B aircraft. Electric and magnetic fields were observed, using mainly time-derivative type sensors, with bandwidths to 50 MHz. Lightning pulse lengths ranging from 25 ns to 7 microsec have been recorded. Sufficient high-frequency content was present to excite electromagnetic resonances of the aircraft, and peaks in the frequency spectra of the waveforms in the range 7 to 23 MHz are in agreement with the resonant frequencies determined in laboratory scale-model tests. Both positively and negatively charged strikes were experienced, and most of the data suggest low values of peak current.
NASA Technical Reports Server (NTRS)
Shawhan, S. D.; Murphy, G.
1983-01-01
The plasma diagnostics package receiver system is described to identify the various antennas and to characterize the complement of receivers which cover the frequency range of 30 Hz to 800 Hz and S-band at 2200 + or - 300 MHz. Sample results are presented to show the variability of electromagnetic effects associated with the orbiter and the time variability of these effects. The electric field and magnetic field maximum and minimum field strength spectra observed during the mission at the pallet location are plotted. Values are also derived for the maximum UHF transmitter and S-band transmitter field strengths. Calibration data to convert from the survey plots to actual narrowband and broadband field strengths are listed.
NASA Astrophysics Data System (ADS)
Strack, K.; Davydycheva, S.; Hanstein, T.; Smirnov, M.
2017-07-01
Over the last 6 years we developed an array system for electromagnetic acquisition (magnetotelluric & long offset transient electromagnetics [LOTEM]) that includes microseismic acquisition. While predominantly used for magnetotellurics, we focus on the autonomous operation as reservoir monitoring system including a shallow borehole receiver and 100/150 KVA transmitter. A marine extension is also under development. For Enhanced Oil recovery (EOR), in addition to reservoir flood front movements, reservoir seal integrity has become an issue [1]. Seal integrity is best addressed with microseismics while the water flood front is best addressed with electromagnetics. Since the flooded reservoir is conductive and the hydrocarbon saturated part is resistive, you need both magnetic and electric fields. The fluid imaging is addressed using electromagnetics. To overcome the volume-focus inherent to electromagnetics a new methodology to focus the sensitivity under the receiver is proposed. Field data and 3D modeling confirm this could increase the efficiency of LOTEM to reservoir monitoring.
Magnetic and Electric Transverse Spin Density of Spatially Confined Light
NASA Astrophysics Data System (ADS)
Neugebauer, Martin; Eismann, Jörg S.; Bauer, Thomas; Banzer, Peter
2018-04-01
When a beam of light is laterally confined, its field distribution can exhibit points where the local magnetic and electric field vectors spin in a plane containing the propagation direction of the electromagnetic wave. The phenomenon indicates the presence of a nonzero transverse spin density. Here, we experimentally investigate this transverse spin density of both magnetic and electric fields, occurring in highly confined structured fields of light. Our scheme relies on the utilization of a high-refractive-index nanoparticle as a local field probe, exhibiting magnetic and electric dipole resonances in the visible spectral range. Because of the directional emission of dipole moments that spin around an axis parallel to a nearby dielectric interface, such a probe particle is capable of locally sensing the magnetic and electric transverse spin density of a tightly focused beam impinging under normal incidence with respect to said interface. We exploit the achieved experimental results to emphasize the difference between magnetic and electric transverse spin densities.
Electromagnetic interference assessment of an ion drive electric propulsion system
NASA Technical Reports Server (NTRS)
Whittlesey, A. C.
1979-01-01
The electromagnetic interference (EMI) form elements of an ion drive electric propulsion system was analyzed, and the effects of EMI interaction with a typical interplanetary spacecraft engineering and scientific subsystems were predicted. SEMCAP, a computerized electromagnetic compatibility assessment code, was used to analyze the impact of EMI noise sources on 65 engineering/telemetry circuits and 48 plasma wave and planetary radio astronomy channels measuring over the range of 100 Hz to 40 MHz in a spacecraft of the Voyager type; manual methods were used to evaluate electrostatics, magnetics, and communications effects. Results indicate that some conducted and radiated spectra are in excess of electromagnetic compatibility specification limits; direct design changes may be required for filtering and shielding of thrust system elements. The worst source of broadband radiated noise appears to be the power processor. The magnetic field necessary to thruster operation is equivalent to about 18 amp-sq m per amp of beam current at right angles to the axis caused by the neutralizer/plume loop.
FDTD simulation of field performance in reverberation chamber excited by two excitation antennas
NASA Astrophysics Data System (ADS)
Wang, Song; Wu, Zhan-cheng; Cui, Yao-zhong
2013-03-01
The excitation source is one of the critical items that determine the electromagnetic fields in a reverberation chamber (RC). In order to optimize the electromagnetic fields performance, a new method of exciting RC with two antennas is proposed based on theoretical analysis. The full 3D simulation of RC is carried out by the finite difference time domain (FDTD) method on two excitation conditions of one antenna and two antennas. The broadband response of RC is obtained by fast Fourier transformation (FFT) after only one simulation. Numerical data show that the field uniformity in the test space is improved on the condition of two transmitting antennas while the normalized electric fields decreased slightly compared to the one antenna condition. It is straightforward to recognize that two antennas excitation can reduce the demands on power amplifier as the total input power is split among the two antennas, and consequently the cost of electromagnetic compatibility (EMC) test in large-scale RC can be reduced.
NASA Astrophysics Data System (ADS)
Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.
2015-07-01
Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.
The gravitational analog of Faraday's induction law
NASA Astrophysics Data System (ADS)
Zile, Daniel; Overduin, James
2015-04-01
Michael Faraday, the discoverer of electromagnetic induction, was convinced that there must also be a gravitational analog of this law, and he carried out drop-tower experiments in 1849 to look for the electric current induced in a coil by changes in gravitational flux through the coil. This work, now little remembered, was in some ways the first investigation of what we would now call a unified-field theory. We revisit Faraday's experiments in the light of current knowledge and ask what might be learned if they were to be performed today. We then review the gravitational analog for Faraday's law that arises within the vector (or gravito-electromagnetic) approximation to Einstein's theory of general relativity in the weak-field, low-velocity limit. This law relates spinning masses and induced ``mass currents'' rather than spinning charges and electric currents, but is otherwise remarkably similar to its electromagnetic counterpart. The predicted effects are completely unobservable in everyday settings like those envisioned by Faraday, but are thought to be relevant in astrophysical contexts like the accretion disks around collapsed stars, thus bearing out Faraday's remarkable intuition. Undergraduate student.
Janesko, Benjamin G; Scuseria, Gustavo E
2006-09-28
We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.
Numerical modelling of GPR electromagnetic fields for locating burial sites
NASA Astrophysics Data System (ADS)
Carcione, José M.; Karczewski, Jerzy; Mazurkiewicz, Ewelina; Tadeusiewicz, Ryszard; Tomecka-Suchoń, Sylwia
2017-11-01
Ground-penetrating radar (GPR) is commonly used for locating burial sites. In this article, we acquired radargrams at a site where a domestic pig cadaver was buried. The measurements were conducted with the ProEx System GPR manufactured by the Swedish company Mala Geoscience with an antenna of 500MHz. The event corresponding to the pig can be clearly seen in the measurements. In order to improve the interpretation, the electromagnetic field is compared to numerical simulations computed with the pseudo-spectral Fourier method. A geological model has been defined on the basis of assumed electromagnetic properties (permittivity, conductivity and magnetic permeability). The results, when compared with the GPR measurements, show a dissimilar amplitude behaviour, with a stronger reflection event from the bottom of the pit. We have therefore performed another simulation by decreasing the electrical conductivity of the body very close to that of air. The comparison improved, showing more reflections, which could be an indication that the body contains air or has been degraded to a certain extent that the electrical resistivity has greatly increased.
Electron heating in the laser and static electric and magnetic fields
NASA Astrophysics Data System (ADS)
Zhang, Yanzeng; Krasheninnikov, S. I.
2018-01-01
A 2D slab approximation of the interactions of electrons with intense linearly polarized laser radiation and static electric and magnetic fields is widely used for both numerical simulations and simplified semi-analytical models. It is shown that in this case, electron dynamics can be conveniently described in the framework of the 3/2 dimensional Hamiltonian approach. The electron acceleration beyond a standard ponderomotive scaling, caused by the synergistic effects of the laser and static electro-magnetic fields, is due to an onset of stochastic electron motion.
NASA Astrophysics Data System (ADS)
Rodzevich, A. P.; Gazenaur, E. G.; Kuzmina, L. V.; Krasheninin, V. I.; Sokolov, P. N.
2016-08-01
The present work is one of the world first attempts to develop effective methods for controlling explosive sensitivity of energy-related materials with the help of weak electric (up to 1 mV/cm) and magnetic (0.001 T) fields. The resulting experimental data can be used for purposeful alternation of explosive materials reactivity, which is of great practical importance. The proposed technology of producing and processing materials in a weak electric field allows forecasting long-term stability of these materials under various energy impacts.
University Physics, Study Guide, Revised Edition
NASA Astrophysics Data System (ADS)
Benson, Harris
1996-01-01
Partial table of contents: Vectors. One-Dimensional Kinematics. Particle Dynamics II. Work and Energy. Linear Momentum. Systems of Particles. Angular Momentum and Statics. Gravitation. Solids and Fluids. Oscillations. Mechanical Waves. Sound. First Law of Thermodynamics. Kinetic Theory. Entropy and the Second Law of Thermodynamics. Electrostatics. The Electric Field. Gauss's Law. Electric Potential. Current and Resistance. The Magnetic Field. Sources of the Magnetic Field. Electromagnetic Induction. Light: Reflection and Refraction. Lenses and Optical Instruments. Wave Optics I. Special Relativity. Early Quantum Theory. Nuclear Physics. Appendices. Answers to Odd-Numbered Exercises and Problems. Index.
NASA Astrophysics Data System (ADS)
Gao, Xuetong; Liu, Zhian; Zhao, Judong
2018-01-01
Compared to other treatment of industrial circulating cooling water in the field of industrial water treatment, high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization technology, an advanced technology, is widely used because of its special characteristics--low energy consumption, nonpoisonous and environmentally friendly. In order to get a better cooling water sterilization effect under the premise of not polluting the environment, some experiments about sterilization of heterotrophic bacteria in industrial circulating cooling water by cooperative treatment of high voltage electrostatic field and variable frequency pulsed electromagnetic field were carried out. The comparison experiment on the sterilization effect of high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization on heterotrophic bacteria in industrial circulating cooling water was carried out by change electric field strength and pulse frequency. The results show that the bactericidal rate is selective to the frequency and output voltage, and the heterotrophic bacterium can only kill under the condition of sweep frequency range and output voltage. When the voltage of the high voltage power supply is 4000V, the pulse frequency is 1000Hz and the water temperature is 30°C, the sterilization rate is 48.7%, the sterilization rate is over 90%. Results of this study have important guiding significance for future application of magnetic field sterilization.
Electromagnetic coupling of spins and pseudospins in bilayer graphene
NASA Astrophysics Data System (ADS)
Winkler, R.; Zülicke, U.
2015-03-01
We present a theoretical study of bilayer-graphene's electronic properties in the presence of electric and magnetic fields. In contrast to known materials, including single-layer graphene, any possible coupling of physical quantities to components of the electric field has a counterpart where the analogous component of the magnetic field couples to exactly the same quantities. For example, a purely electric spin splitting appears as the magneto-electric analogue of the magnetic Zeeman spin splitting. The measurable thermodynamic response induced by magnetic and electric fields is thus completely symmetric. The Pauli magnetization induced by a magnetic field takes exactly the same functional form as the polarization induced by an electric field. Although they seem counterintuitive, our findings are consistent with fundamental principles such as time reversal symmetry. For example, only a magnetic field can give rise to a macroscopic spin polarization, whereas only a perpendicular electric field can induce a macroscopic polarization of the sublattice-related pseudospin in bilayer graphene. These rules enforced by symmetry for the matter-field interactions clarify the nature of spins versus pseudospins. We have obtained numerical values of prefactors for relevant terms. NSF Grant DMR-1310199 and Marsden Fund Contract No. VUW0719.
Bracken, M B; Belanger, K; Hellenbrand, K; Dlugosz, L; Holford, T R; McSharry, J E; Addesso, K; Leaderer, B
1995-05-01
Several animal and human studies indicate that fetal growth may be retarded following exposure to electromagnetic fields (EMF). We conducted a prospective study (N = 2,967) to evaluate the relation of birthweight and fetal growth retardation with use of electrically heated beds (electric blankets and heated water beds) during pregnancy. A "nested" study design allowed monitoring of exposure at different stages of pregnancy using both direct and indirect methods. We assessed EMF exposure using personal monitors, home measurement, video display terminal use, and wire code. Exposure to EMF during pregnancy, either at conception, at < or = 16 weeks, or in the third trimester, showed no important relation to risk of low birth-weight or fetal growth retardation. This result was the same whether we used subjective measures of exposure or direct measurement. Use of video display terminals at home or work, exposure to > or = 2.0-milligauss fields as measured by home or personal monitors, and home wire code were unrelated to the reproductive outcomes studied. A time-weighted analysis of electric bed use, which accounted for strength of EMF exposure and hours of use, also showed evidence of no meaningful increase in risk. None of the exposure measures showed a dose response relation to risk. We conclude that risk of low birth-weight and intrauterine growth retardation is not increased after electrically heated bed use during pregnancy.
Fu, Yu-Xuan; Kang, Yan-Mei; Xie, Yong
2018-01-01
The FitzHugh–Nagumo model is improved to consider the effect of the electromagnetic induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of the improved model, stochastic resonance in the stochastic version is captured near the bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic disturbance can be amplified through stochastic resonance, and it is the cooperative effect of random transition between the resting state and the large amplitude oscillating state that results in the resonant phenomenon. Using the noise dependence of the mean of interburst intervals, we essentially suggest a biologically feasible clue for detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These observations should be helpful in understanding the influence of the magnetic field to neural electrical activity. PMID:29467642
Fu, Yu-Xuan; Kang, Yan-Mei; Xie, Yong
2018-01-01
The FitzHugh-Nagumo model is improved to consider the effect of the electromagnetic induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of the improved model, stochastic resonance in the stochastic version is captured near the bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic disturbance can be amplified through stochastic resonance, and it is the cooperative effect of random transition between the resting state and the large amplitude oscillating state that results in the resonant phenomenon. Using the noise dependence of the mean of interburst intervals, we essentially suggest a biologically feasible clue for detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These observations should be helpful in understanding the influence of the magnetic field to neural electrical activity.
Electromagnetic enhancement of turbulent heat transfer.
Kenjeres, Sasa
2008-12-01
We performed large eddy simulations (LES) of the turbulent natural convection of an electrically conductive fluid (water with 7% Na2SO4 electrolyte solution) in a moderate (4:4:1) aspect ratio enclosure heated from below and cooled from above and subjected to external nonuniformly distributed electromagnetic fields. Different configurations with permanent magnets (located under the lower thermally active wall, B_{0}=1T ) and different strengths of imposed dc electric currents ( I=0-10A ) were compared to the case of pure thermal convection in the turbulent regime, Ra=10;{7} , Pr=7 . It is demonstrated that the electromagnetic forcing of the boundary layers caused significant reorganization of flow and turbulence structures producing significant enhancement of the wall-heat transfer (up to 188% for a configuration with 35 magnets and an applied dc current of 10A ).
Al-Jabri, Talal; Tan, Jessica Yan Qi; Tong, Gabriel Yihan; Shenoy, Ravikiran; Kayani, Babar; Parratt, Timothy; Khan, Tahir
2017-07-28
Avascular necrosis of the femoral head causes significant morbidity and occurs in up to 20,000 people per year. A variety of nonoperative and operative measures have been trialled however a definitive treatment algorithm is yet to be established. Young adults in many cases have undergone multiple surgical procedures in their lifetime with increasing risks of complications. Less invasive techniques may help reduce the number of operations required and positively influence the natural history of the disease process. Our aim was to navigate the literature and examine the results of electrical stimulation of the femoral head in avascular necrosis. The following defined search strategy was used to perform a systematic review using MEDLINE and Google Scholar databases: ((avascular necrosis) OR (osteonecrosis)) AND (femoral head) AND ((electrical stimulation) OR (capacitive coupling) OR (pulsed electromagnetic fields)). Articles were reviewed and data compiled into tables for analysis. Fourty six articles were identified with a total of 10 articles meeting the inclusion criteria. 8 articles were prospective studies and 2 were retrospective. Early Ficat stages showed the best responses to treatment via pulsed electromagnetic fields with improvements in both clinical and radiographic parameters. Direct current and capacitative coupling have had a more ambiguous outcome. Pulsed electromagnetic fields may have a role in the management of early avascular necrosis. The paucity of clinical studies into this technique indicates a need for further studies.
Singular Behaviour of the Electrodynamic Fields of an Oscillating Dipole
ERIC Educational Resources Information Center
Leung, P. T.
2008-01-01
The singularity of the exact electromagnetic fields is derived to include the "source terms" for harmonically oscillating electric (and magnetic) dipoles, so that the fields will be consistent with the full Maxwell equations with a source. It is shown explicitly, as somewhat expected, that the same [delta]-function terms for the case of static…
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.
1992-01-01
The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.
NASA Astrophysics Data System (ADS)
Yoo, Junsang; Lee, Euiyeon; Kim, Hee Young; Youn, Dong-Ho; Jung, Junghyun; Kim, Hongwon; Chang, Yujung; Lee, Wonwoong; Shin, Jaein; Baek, Soonbong; Jang, Wonhee; Jun, Won; Kim, Soochan; Hong, Jongki; Park, Hi-Joon; Lengner, Christopher J.; Moh, Sang Hyun; Kwon, Youngeun; Kim, Jongpil
2017-10-01
Electromagnetic fields (EMF) are physical energy fields generated by electrically charged objects, and specific ranges of EMF can influence numerous biological processes, which include the control of cell fate and plasticity. In this study, we show that electromagnetized gold nanoparticles (AuNPs) in the presence of specific EMF conditions facilitate an efficient direct lineage reprogramming to induced dopamine neurons in vitro and in vivo. Remarkably, electromagnetic stimulation leads to a specific activation of the histone acetyltransferase Brd2, which results in histone H3K27 acetylation and a robust activation of neuron-specific genes. In vivo dopaminergic neuron reprogramming by EMF stimulation of AuNPs efficiently and non-invasively alleviated symptoms in mouse Parkinson's disease models. This study provides a proof of principle for EMF-based in vivo lineage conversion as a potentially viable and safe therapeutic strategy for the treatment of neurodegenerative disorders.
Radio Frequency Electromagnetic Radiation From Streamer Collisions
NASA Astrophysics Data System (ADS)
Luque, Alejandro
2017-10-01
We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.
Radio Frequency Electromagnetic Radiation From Streamer Collisions.
Luque, Alejandro
2017-10-16
We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.
Wan, Jianing; Zhu, Junda; Zhong, Ying; Liu, Haitao
2018-06-01
The electromagnetic enhancement by a metallic nanowire optical antenna on metallic substrate is investigated theoretically. By considering the excitation and multiple scattering of surface plasmon polaritons in the nanogap between the antenna and the substrate, we build up an intuitive and comprehensive model that provides semianalytical expressions for the electromagnetic field in the nanogap to achieve an understanding of the mechanism of electromagnetic enhancement. Our results show that antennas with short lengths that support the lowest order of resonance can achieve a high electric-field enhancement factor over a large range of incidence angles. Two phase-matching conditions are derived from the model for predicting the antenna lengths at resonance. Excitation of symmetric or antisymmetric localized surface plasmon resonance is further explained with the model. The model also shows superior computational efficiency compared to the full-wave numerical method when scanning the antenna length, the incidence angle, or the wavelength.
Characterization of Microstructure with Low Frequency Electromagnetic Techniques (Preprint)
2014-02-01
654. 2. G. T. Meaden, Electrical Resistance of Metals, Plenum, New York 1965. 3. G. A. Sargent, K. T. Kinsel, A. L. Pilchak, A. A. Salem , S. L...effect on materials properties. Cambridge university press . 5. Theodoulidis, T., & Kriezis, E. (2005). Series expansions in eddy current nondestructive...analysis, J. Appl . Phys. 89, 2473 (2001). 8. Cheng, D. K., Field and Wave Electromagnetics, Addison-Wiley Publishing Company, Inc., 1989. 9
USDA-ARS?s Scientific Manuscript database
Accurate electromagnetic sensing of soil water contents (') under field conditions is complicated by the dependence of permittivity on specific surface area, temperature, and apparent electrical conductivity, all which may vary across space or time. We present a physically-based mixing model to pred...
L'Abbate, N; Pranzo, S; Martucci, V; Rella, C; Vitucci, L; Salamanna, S
2004-01-01
In this study we measured the levels of the high frequency field in the proximity of non-ionizing radiation sources (wireless transmitting stations for mobile telephones and radio and television transmitters) in nine districts of the city of Bari. The measurements were taken both inside and outside closed environments. For the indoor measurements we took into account electromagnetic field generating equipment (VDT, electric domestic appliances, mobile telephones) in working and non-working order and with the windows open and shut respectively. We carried out these measurements according to the methods laid down in the Italian regulation CEI ENV 50166-2 of May 1995, as shown in the enclosure to the Ministerial Decree of 10.9.98 n.381. The electromagnetic field levels near wireless transmitting stations for mobile telephones are certainly modest when we consider that they never exceeded the limits established by the aforesaid Ministerial Decree. On the contrary radio and television equipment creates a much greater source of exposure. The electromagnetic field levels are certainly superior to those of the wireless transmitting stations although they never exceed, except in one isolated case, the values established by the Ministerial Decree 381/98.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.
Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less
Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.
2016-10-12
Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less
Caselli, Niccolò; La China, Federico; Bao, Wei; ...
2015-06-05
Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magneticmore » intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.« less
Kameda, Takashi; Ohkuma, Kazuo; Oda, Hirotake; Sano, Natsuki; Batbayar, Nomintsetseg; Terashima, Yukari; Sato, Soh; Terada, Kazuto
2013-01-01
Electric toothbrushes are widely used, and their electric motors have been reported to produce low-frequency electromagnetic fields that induced electric currents in metallic objects worn by the users. In this study, we showed that electric toothbrushes generated low-frequency magnetic fields (MFs) and induced electric currents in orthodontic appliances in artificial saliva (AS), which accelerated corrosion in stainless steel (SUS) appliances, but not in titanium (Ti) appliances; the corrosion was evaluated by using an inductively coupled plasma-optical emission spectrometer and a three-dimensional laser confocal microscope. The pH of AS used for appliance immersion did not change during or after MF exposure. These results suggested that MF-induced currents from electric toothbrushes could erode SUS appliances, but not Ti appliances, because of their high corrosion potentials. Further studies are required to clarify the mechanisms of metallic corrosion by induced currents in dental fields, which may trigger metal allergies in patients.
On the feasibility of borehole-to-surface electromagnetics for monitoring CO2 sequestration
NASA Astrophysics Data System (ADS)
Wilson, G. A.; Zhdanov, M. S.; Hibbs, A. D.; Black, N.; Gribenko, A. V.; Cuma, M.; Agundes, A.; Eiskamp, G.
2012-12-01
Carbon capture and storage (CCS) projects rely on storing supercritical CO2 in deep saline reservoirs where buoyancy forces drive the injected CO2 upward into the aquifer until a seal is reached. The permanence of the sequestration depends entirely on the long-term geological integrity of the seal. Active geophysical monitoring of the sequestration is critical for informing CO2 monitoring, accounting and verification (MVA) decisions. During injection, there exists a correlation between the changes in CO2 and water saturations in a saline reservoir. Dissolved salts react with the CO2 to precipitate out as carbonates, thereby generally decreasing the electrical resistivity. As a result, there is a correlation between the change in fluid saturation and measured electromagnetic (EM) fields. The challenge is to design an EM survey appropriate for monitoring large, deep reservoirs. Borehole-to-surface electromagnetic (BSEM) surveys consist of borehole-deployed galvanic transmitters and a surface-based array of electric and magnetic field sensors. During a recent field trial, it was demonstrated that BSEM could successfully identify the oil-water contact in the water-injection zone of a carbonate reservoir. We review the BSEM methodology, and perform full-field BSEM modeling. The 3D resistivity models used in this study are based on dynamic reservoir simulations of CO2 injection into a saline reservoir. Although the electric field response at the earth's surface is low, we demonstrate that it can be accurately measured and processed with novel methods of noise cancellation and sufficient stacking over the period of monitoring to increase the signal-to-noise ratio for subsequent seismic- and well-constrained 3D inversion. For long-term or permanent monitoring, we discuss the deployment of novel electric field sensors with chemically inert electrodes that couple to earth in a capacitive manner. This capacitive coupling is a purely EM phenomenon, which, to first order, has no temperature, ionic concentration or corrosion effects and has unprecedented fidelity. This makes the capacitive E-field sensor ideal for CCS applications which require very stable operation over a wide range of ground temperature and moisture level variation, for extended periods of time.
Cone structure and focusing of VLF and LF electromagnetic waves at high altitudes in the ionosphere
NASA Technical Reports Server (NTRS)
Alpert, Ya. L.; Green, J. L.
1994-01-01
The frequency and angle dependencies of the electric field radiated by an electric dipole E = E(sub 0) cos omega(t) are studied through numerical calculations of absolute value of E in the VLF and LF frequency bands where F is less than or equal 0.02 to 0.05 f(sub b) in a model ionosphere over an altitude region of 800-6000 km where the wave frequency and electron gyrofrequency varies between F approximately 4-500 kHz and f(sub b) is approximately equal (1.1 to 0.2) MHz respectively. It is found that the amplitudes of the electric field have large maxima in four regions: close to the direction of the Earth magnetic field line B(sub 0) (it is called the axis field E(sub 0), in the Storey E(sub St), reversed Storey E(sub RevSt), and resonance E(sub Res) cones. The maximal values of E(sub 0), E(sub Res), and E(sub RevSt) are the most pronounced close to the lower hybrid frequency, F approximately F(sub L). The flux of the electric field is concentrated in very narrow regions, with the apex angles of the cones Delta-B is approximately (0.1-1) deg. The enhancement and focusing of the electric field increases with altitude starting at Z greater than 800 km. At Z greater than or equal to 1000 up to 6000 km, the relative value of absolute value of E, in comparison with its value at Z = 800 km is about (10(exp 2) to 10(exp 4)) times larger. Thus the flux of VLF and LF electromagnetic waves generated at high altitudes in the Earth's ionosphere are trapped into very narrow conical beams similar to laser beams.
Field-aligned Poynting flux observations in the high-latitude ionosphere
NASA Astrophysics Data System (ADS)
Gary, J. B.; Heelis, R. A.; Hanson, W. B.; Slavin, J. A.
1994-06-01
We have used data from Dynamics Explorer 2 to investigate the rate of conversion of electromagnetic energy into both thermal and bulk flow particle kinetic energy in the high-latitude ionosphere. The flux tube integrated conversion rate E.J can be determined from spacecraft measurements of the electric and magnetic field vectors by deriving the field-aligned Poynting flux, S∥=S.B0, where B0 is in the direction of the geomagnetic field. Determination of the Poynting flux from satellite observations is critically dependent upon the establishment of accurate values of the fields and is especially sensitive to errors in the baseline (unperturbed) geomagnetic field. We discuss our treatment of the data in some detail, particularly in regard to systematically correcting the measured magnetic field to account for attitude changes and model deficiencies. S∥ can be used to identify the relative strengths of the magnetosphere and thermospheric winds as energy drivers and we present observations demonstrating the dominance of each of these. Dominance of the magnetospheric driver is indicated by S∥ directed into the ionosphere. Electromagnetic energy is delivered to and dissipated within the region. Dominance of the neutral wind requires that the conductivity weighted neutral wind speed in the direction of the ion drift be larger than the ion drift, resulting in observations of an upward directed Poynting flux. Electromagnetic energy is generated within the ionospheric region in this case. We also present observations of a case where the neutral atmosphere motion may be reaching a state of sustained bulk flow velocity as evidenced by very small Poynting flux in the presence of large electric fields.
Electromagnetic Induction with Neodymium Magnets
ERIC Educational Resources Information Center
Wood, Deborah; Sebranek, John
2013-01-01
In April 1820, Hans Christian Ørsted noticed that the needle of a nearby compass deflected briefly from magnetic north each time the electric current of the battery he was using for an unrelated experiment was turned on or off. Upon further investigation, he showed that an electric current flowing through a wire produces a magnetic field. In 1831…
Hosseini, Monireh; Monazzam, Mohammad Reza; Farhang Matin, Laleh; Khosroabadi, Hossein
2015-05-01
Electromagnetic fields in recent years have been discussed as one of the occupational hazards at workplaces. Hence, control and assessment of these physical factors is very important to protect and promote the health of employees. The present study was conducted to determine hazard zones based on assessment of extremely low-frequency magnetic fields at electric substations of a petrochemical complex in southern Iran, using the single-axis HI-3604 device. In measurement of electromagnetic fields by the single-axis HI-3604 device, the sensor screen should be oriented in a way to be perpendicular to the field lines. Therefore, in places where power lines are located in different directions, it is required to keep the device towards three axes of x, y, and z. For further precision, the measurements should be repeated along each of the three axes. In this research, magnetic field was measured, for the first time, in three axes of x, y, and z whose resultant value was considered as the value of magnetic field. Measurements were done based on IEEE std 644-1994. Further, the spatial changes of the magnetic field surrounding electric substations were stimulated using MATLAB software. The obtained results indicated that the maximum magnetic flux density was 49.90 μT recorded from boiler substation, while the minimum magnetic flux density of 0.02 μT was measured at the control room of the complex. As the stimulation results suggest, the spaces around incoming panels, transformers, and cables were recognized as hazardous zones of indoor electric substations. Considering the health effects of chronic exposure to magnetic fields, it would be possible to minimize exposure to these contaminants at workplaces by identification of risky zones and observation of protective considerations.
A Substantial Plume of Escaping Planetary Ions in the MSE Northern Hemisphere Observed by MAVEN
NASA Astrophysics Data System (ADS)
Dong, Y.; Fang, X.; Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.; Curry, S.; Harada, Y.; Luhmann, J. G.; Jakosky, B. M.
2015-12-01
The Mars-solar wind interaction accelerates and transports planetary ions away from Mars through a number of processes, including pick-up by the electromagnetic fields. The Mars Atmospheric and Volatile EvolutioN (MAVEN) spacecraft has frequently detected strong escaping planetary ion fluxes in both tailward and upstream solar wind motional electric field directions since the beginning of its science phase in November 2014. Our statistical study using three-month MAVEN data from November 2014 through February 2015 illustrates a substantial plume-like escaping planetary ion population organized by the upstream electric field with strong fluxes widely distributed in the northern hemisphere of the Mars-Sun-Electric-field (MSE) coordinate system, which is generally consistent with model predictions. The plume constitutes an important planetary ion escape channel from the Martian atmosphere in addition to the tailward escape. The >25eV O+ escape rate through the plume is estimated to be ~35% of the tailward escape and ~25% of the total escape. We will compare the dynamics of the plume and tailward escaping ions based on their velocity-space distributions with respect to the electromagnetic fields. We will also discuss the variations of the plume characteristics between different ion species (O+, O2+, and CO2+) and from the effect of different solar wind and interplanetary magnetic field (IMF) conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doria, R.
A fourth interpretation for the principle of light invariance is proposed. After Maxwell equations, relativity, Lorentz group, another possibility stands into consider the Lorentz group representations as species. By specie one means fields with same nature under light invariance. For instance, given a ((1/2),(1/2)) representation, instead of just one specific field, we should associate to it the potential fields specie. Thus, starting from such fields specie interpretation the features of a certain potential field A{sub {mu}I} will be determined in terms of its associated fields set {l_brace}A{sub {mu}I}{r_brace}, where I means a diversity index. It says that, the original fieldmore » equation to be searched for a given field description is that one corresponding to the associated group of fields, and not more, for the field being taken isolated. It introduces the meaning of parts enfolded in the whole through whole relativistic equations. There is a more primitive equation to be understood. Instead Maxwell equation this fourth light invariance interpretation is guiding us to a more basic equation describing a fields set {l_brace}A{sub {mu}I}{r_brace}. It will be entitled as Global Maxwell equation. Three steps are necessary for characterizing this Global Maxwell equation. The first one is to derive on abelian terms a generic expression for the fields set {l_brace}A{sub {mu}I}{r_brace}. Further, show the diversity between these associated fields. Prove that every field carries a different quantum number (spin, mass, charges; C, P, T, CPT). The third one is on the photon singularity. Being the light invariance porter, it should be distinguished from others fields. This is done through the group gauge directive symmetry and Noether current. A Global Lorentz force complements the Global Maxwell by introducing three types of force. The first one generalizes the usual Lorentz force while the last two introduce relationships between fields and masses and fields with fields. A Physics of Light is derived. Based on such interpretation relating fields with same Lorentz nature, the electromagnetism is enlarged. The electromagnetic phenomena is not more restricted to Maxwell and electric charge. It englobes Maxwell and produces new types of electromagnetic fields and sectors. It centers the photon at its origin, new aspects as photonic charges and selfinteracting photons are obtained. As a case of this new electromagnetic spectrum one can take the set {l_brace}{gamma}Z{sup 0},W{sup {+-}}{r_brace}. It provides an electromagnetism involving photonic, massive, neutral, electric charged sectors which may antecede the electroweak unification.« less
NASA Technical Reports Server (NTRS)
Cockrell, C. R.; Beck, Fred B.
1997-01-01
The electromagnetic scattering from an arbitrarily shaped aperture backed by a rectangular cavity recessed in an infinite ground plane is analyzed by the integral equation approach. In this approach, the problem is split into two parts: exterior and interior. The electromagnetic fields in the exterior part are obtained from an equivalent magnetic surface current density assumed to be flowing over the aperture and backed by an infinite ground plane. The electromagnetic fields in the interior part are obtained in terms of rectangular cavity modal expansion functions. The modal amplitudes of cavity modes are determined by enforcing the continuity of the electric field across the aperture. The integral equation with the aperture magnetic current density as an unknown is obtained by enforcing the continuity of magnetic fields across the aperture. The integral equation is then solved for the magnetic current density by the method of moments. The electromagnetic scattering properties of an aperture backed by a rectangular cavity are determined from the magnetic current density. Numerical results on the backscatter radar cross-section (RCS) patterns of rectangular apertures backed by rectangular cavities are compared with earlier published results. Also numerical results on the backscatter RCS patterns of a circular aperture backed by a rectangular cavity are presented.
Crosse, J. A.
2017-01-01
Topological insulators subject to a time-reversal-symmetry-breaking perturbation are predicted to display a magneto-electric effect that causes the electric and magnetic induction fields to mix at the material’s surface. This effect induces polarization rotations of between ≈1–10 mrad per interface in an incident plane-polarized electromagnetic wave normal to a multilayered structure. Here we show, theoretically and numerically, that by using a waveguide geometry with a topological insulator guide layer and magneto-dielectric cladding it is possible to achieve rotations of ≈100 mrad and generate an elliptical polarization with only a three-layered structure. This geometry is beneficial, not only as a way to enhance the magneto-electric effect, rendering it easier to observe, but also as a method for controlling the polarization of electromagnetic radiation. PMID:28220875
EMI Performance of the AIRS Cooler and Electronics
NASA Technical Reports Server (NTRS)
Johnson, D.; Collins, S.; Ross, R.
1998-01-01
The TRW pulse tube cryocooler for JPL's Atmospheric Infrared Sounder (AIRS) instrument is required to meet stringent requirements for radiated electric and magnetic fields, conducted emissions on the input power bus, and electromagnetic susceptivility.
NASA Astrophysics Data System (ADS)
Miyake, Yohei; Usui, Hideyuki
It is necessary to predict the nature of spacecraft-plasma interactions in extreme plasma conditions such as in the near-Sun environment. The spacecraft environment immersed in the solar corona is characterized by the small Debye length due to dense (7000 mathrm{/cc}) plasmas and a large photo-/secondary electron emission current emitted from the spacecraft surfaces, which lead to distinctive nature of spacecraft-plasma interactions [1,2,3]. In the present study, electromagnetic field perturbation around the Solar Probe Plus (SPP) spacecraft is examined by using our original EM-PIC (electromagnetic particle-in-cell) plasma simulation code called EMSES. In the simulations, we consider the SPP spacecraft at perihelion (0.04 mathrm{AU} from the Sun) and important physical effects such as spacecraft charging, photoelectron and secondary electron emission, solar wind plasma flow including the effect of spacecraft orbital velocity, and the presence of a background magnetic field. Our preliminary results show that both photoelectrons and secondary electrons from the spacecraft are magnetized in a spatial scale of several meters, and make drift motion due the presence of the background convection electric field. This effect leads to non-axisymmetric distributions of the electron density and the resultant electric potential near the spacecraft. Our simulations predict that a strong (˜ 100 mathrm{mV/m}) spurious electric field can be observed by the probe measurement on the spacecraft due to such a non-axisymmetric effect. We also confirm that the large photo-/secondary electron current alters magnetic field intensity around the spacecraft, but the field variation is much smaller than the background magnetic field magnitude (a few mathrm{nT} compared to a few mathrm{mu T}). [1] Ergun et al., textit{Phys. Plasmas}, textbf{17}, 072903, 2010. [2] Guillemant et al., textit{Ann. Geophys.}, textbf{30}, 1075-1092, 2012. [3] Guillemant et al., textit{IEEE Trans. Plasma Sci.}, textbf{41}, 3338-3348, 2013.
Pulse generation scheme for flying electromagnetic doughnuts
NASA Astrophysics Data System (ADS)
Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.
2018-05-01
Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.
Aguirre, Erik; Arpón, Javier; Azpilicueta, Leire; López, Peio; de Miguel, Silvia; Ramos, Victoria; Falcone, Francisco
2014-12-01
In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft.
Controversies on electromagnetic field exposure and the nervous systems of children.
Warille, Aymen A; Onger, M Emin; Turkmen, A Pinar; Deniz, Ö Gülsüm; Altun, Gamze; Yurt, K Kubra; Altunkaynak, B Zuhal; Kaplan, Süleyman
2016-05-01
This paper reviewed possible health effects from exposure to low levels of electromagnetic field (EMF) in children, arising from electrical power sources and mobile phones. Overall, the information about effects on developmental processes and cognitive functions is insufficient and further research on children and adolescents is critically needed. New research approaches are required focused on the effects on the developmental processes of children exposed to electromagnetic fields, using consistent protocols. When the current data were considered in detail, it was noted that children's unique vulnerabilities make them more sensitive to EMFs emitted by electronics and wireless devices, as compared to adults. Some experimental research shows a neurological impact and exposure in humans may lead to the cognitive and behavioral impairments. Because of the proliferation of wireless devices, public awareness of these dangers now is important to safeguard children's future healthy brain development.
Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation
NASA Astrophysics Data System (ADS)
Membiela, Federico Agustín; Bellini, Mauricio
2009-04-01
We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ0. Using the gravitoelectromagnetic inflationary formalism with A0 = 0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.
Ponderomotive Force in the Presence of Electric Fields
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.
2013-01-01
This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Y.; Chiba, M.; Yasuda, O.
2006-07-12
Detection possibility of ultra high-energy (UHE) neutrino (E >1015 eV) in natural huge rock salt formation has been studied. Collision between the UHE neutrino and the rock salt produces electromagnetic (EM) shower. Charge difference (excess electrons) between electrons and positrons in EM shower radiates radio wave coherently (Askar'yan effect). Angular distribution and frequency spectrum of electric field strength of radio wave radiated from 3-dimensional EM shower in rock salt are presented.
Aircraft electromagnetic compatibility
NASA Technical Reports Server (NTRS)
Clarke, Clifton A.; Larsen, William E.
1987-01-01
Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.
Electromagnetic micropores: fabrication and operation.
Basore, Joseph R; Lavrik, Nickolay V; Baker, Lane A
2010-12-21
We describe the fabrication and characterization of electromagnetic micropores. These devices consist of a micropore encompassed by a microelectromagnetic trap. Fabrication of the device involves multiple photolithographic steps, combined with deep reactive ion etching and subsequent insulation steps. When immersed in an electrolyte solution, application of a constant potential across the micropore results in an ionic current. Energizing the electromagnetic trap surrounding the micropore produces regions of high magnetic field gradients in the vicinity of the micropore that can direct motion of a ferrofluid onto or off of the micropore. This results in dynamic gating of the ion current through the micropore structure. In this report, we detail fabrication and characterize the electrical and ionic properties of the prepared electromagnetic micropores.
Deji, Shizuhiko; Ito, Shigeki; Ariga, Eiji; Mori, Kazuyuki; Hirota, Masahiro; Saze, Takuya; Nishizawa, Kunihide
2006-08-01
High frequency electromagnetic fields in the 120 kHz band emitted from card readers for access control systems in radiation control areas cause abnormally high and erroneous indicated dose readings on semiconductor-type electronic personal dosimeters (SEPDs). All SEPDs malfunctioned but recovered their normal performance by resetting after the exposure ceased. The minimum distances required to prevent electromagnetic interference varied from 5.0 to 38.0 cm. The electric and magnetic immunity levels ranged from 35.1 to 267.6 V m(-1) and from 1.0 to 16.6 A m(-1), respectively. Electromagnetic immunity levels of SEPDs should be strengthened from the standpoint of radiation protection.
Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies
NASA Astrophysics Data System (ADS)
Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Jiyeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik
2015-09-01
Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ /10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.
A class of invisible inhomogeneous media and the control of electromagnetic waves
NASA Astrophysics Data System (ADS)
Vial, B.; Liu, Y.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.
2016-12-01
We propose a general method to arbitrarily manipulate an electromagnetic wave propagating in a two-dimensional medium, without introducing any scattering. This leads to a whole class of isotropic spatially varying permittivity and permeability profiles that are invisible while shaping the field magnitude and/or phase. In addition, we propose a metamaterial structure working in the infrared that demonstrates deep subwavelength control of the electric field amplitude and strong reduction of the scattering. This work offers an alternative strategy to achieve invisibility with isotropic materials and paves the way for tailoring the propagation of light at the nanoscale.
Electromagnetic Saturation of Angstrom-Sized Quantum Barriers at Terahertz Frequencies.
Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Jiyeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik
2015-09-18
Metal-graphene-metal hybrid structures allow angstrom-scale van der Waals gaps, across which electron tunneling occurs. We squeeze terahertz electromagnetic waves through these λ/10 000 000 gaps, accompanied by giant field enhancements. Unprecedented transmission reduction of 97% is achieved with the transient voltage across the gap saturating at 5 V. Electron tunneling facilitated by the transient electric field strongly modifies the gap index, starting a self-limiting process related to the barrier height. Our work enables greater interplay between classical optics and quantum tunneling, and provides optical indices to the van der Waals gaps.
Density matrix perturbation theory for magneto-optical response of periodic insulators
NASA Astrophysics Data System (ADS)
Lebedeva, Irina; Tokatly, Ilya; Rubio, Angel
2015-03-01
Density matrix perturbation theory offers an ideal theoretical framework for the description of response of solids to arbitrary electromagnetic fields. In particular, it allows to consider perturbations introduced by uniform electric and magnetic fields under periodic boundary conditions, though the corresponding potentials break the translational invariance of the Hamiltonian. We have implemented the density matrix perturbation theory in the open-source Octopus code on the basis of the efficient Sternheimer approach. The procedures for responses of different order to electromagnetic fields, including electric polarizability, orbital magnetic susceptibility and magneto-optical response, have been developed and tested by comparison with the results for finite systems and for wavefunction-based perturbation theory, which is already available in the code. Additional analysis of the orbital magneto-optical response is performed on the basis of analytical models. Symmetry limitations to observation of the magneto-optical response are discussed. The financial support from the Marie Curie Fellowship PIIF-GA-2012-326435 (RespSpatDisp) is gratefully acknowledged.
Evaluation of Electromagnetic Fields in a Hospital for Safe Use of Electronic Medical Equipment.
Ishida, Kai; Fujioka, Tomomi; Endo, Tetsuo; Hosokawa, Ren; Fujisaki, Tetsushi; Yoshino, Ryoji; Hirose, Minoru
2016-03-01
Establishment of electromagnetic compatibility is important in use of electronic medical equipment in hospitals. To evaluate the electromagnetic environment, the electric field intensity induced by electromagnetic radiation in broadcasting spectra coming from outside the hospital was measured in a new hospital building before any patients visited the hospital and 6 months after the opening of the hospital. Various incoming radio waves were detected on the upper floors, with no significant difference in measured levels before and after opening of the hospital. There were no cellphone terminal signals before the hospital opened, but these signals were strongly detected at 6 months thereafter. Cellphone base stations signals were strongly detected on the upper floors, but there were no signals at most locations in the basement and in the center of the building on the lower floors. A maximum electrical intensity of 0.28 V/m from cellphone base stations (2.1 GHz) was detected at the south end of the 2nd floor before the hospital opened. This value is lower than the EMC marginal value for general electronic medical equipment specified in IEC 60601-1-2 (3 V/m). Therefore, electromagnetic interference with electronic medical equipment is unlikely in this situation. However, cellphone terminal signals were frequently detected in non-base station signal areas. This is a concern, and understanding signal strength from cellphone base stations at a hospital is important for promotion of greater safety.
Shao, Xuan-Min
2016-04-12
The fundamental electromagnetic equations used by lightning researchers were introduced in a seminal paper by Uman, McLain, and Krider in 1975. However, these equations were derived for an infinitely thin, one-dimensional source current, and not for a general three-dimensional current distribution. In this paper, we introduce a corresponding pair of generalized equations that are determined from a three-dimensional, time-dependent current density distribution based on Jefimenko's original electric and magnetic equations. To do this, we derive the Jefimenko electric field equation into a new form that depends only on the time-dependent current density similar to that of Uman, McLain, and Krider,more » rather than on both the charge and current densities in its original form. The original Jefimenko magnetic field equation depends only on current, so no further derivation is needed. We show that the equations of Uman, McLain, and Krider can be readily obtained from the generalized equations if a one-dimensional source current is considered. For the purpose of practical applications, we discuss computational implementation of the new equations and present electric field calculations for a three-dimensional, conical-shape discharge.« less
The CDRH Helix: an in vivo evaluation.
Anhalt, D; Hynynen, K; DeYoung, D; Shimm, D; Kundrat, M; Cetas, T
1990-01-01
The Helix is an electromagnetic heating device used to induce regional/systemic hyperthermia for cancer therapy. It is a resonant device operating at about 82 MHz with an aperture size of 60 cm x 40 cm (elliptical) x 40 cm long. The Helix deposits power in tissues (or phantoms) by producing a predominantly axial electric field within its radiating aperture. Five pig experiments were performed to provide in vivo verification of specific absorption rate (SAR) measurements and electric field measurements which were obtained earlier in tissue-equivalent phantom and 0.9% saline, respectively. In addition to verifying the power deposition patterns found in phantoms, the pig experiments provided valuable insight into the capabilities and limitations of electromagnetic regional heating. For example, a kidney with limited blood flow, simulating a necrotic tumor, heated very well-although the highest temperature was not always measured there. Also, fat heating may be a problem, since excessive temperatures in the fat were observed in approximately 20% of the heatings. This paper compares the in vivo temperature measurements in pigs with SARs and electric field measurements obtained in phantoms, and also provides a brief overview of results of the Helix in clinical situations.
NASA Astrophysics Data System (ADS)
Chen, Yun-Yu
2016-12-01
As a kind of mass transfer process as well as the basis of separating and purifying mixtures, interfacial adsorption has been widely applied to fields like chemical industry, medical industry and purification engineering in recent years. Influencing factors of interfacial adsorption, in addition to the traditional temperature, intensity of pressure, amount of substance and concentration, also include external fields, such as magnetic field, electric field and electromagnetic field, etc. Starting from the point of thermodynamics and taking the Gibbs adsorption as the model, the combination of energy axiom and the first law of thermodynamics was applied to boundary phase, and thus the theoretical expression for the volume of interface absorption under electric field as well as the mathematical relationship between surface tension and electric field intensity was obtained. In addition, according to the obtained theoretical expression, the volume of interface absorption of ethanol solution under different electric field intensities and concentrations was calculated. Moreover, the mechanism of interfacial adsorption was described from the perspective of thermodynamics and the influence of electric field on interfacial adsorption was explained reasonably, aiming to further discuss the influence of thermodynamic mechanism of interfacial adsorption on purifying air-conditioning engineering under intensification of electric field.
NASA Astrophysics Data System (ADS)
Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel
2017-11-01
The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, K.L.
Airborne measurements of the absolute vertical electric field (E-field) of the radiated electromagnetic pulse were attempted for Shots Little Feller II and Small Boy. Instrumentation included calibrated vertical whip antennas, wideband magnetic tape recorders, and photographs of oscilloscope traces. One instrumented aircraft participated in Little Feller II (C-131F); two aircraft participated in Small Boy (a C-131F and an A-3A). No detectable signals were recorded for either event. It is concluded that the vertical E-field intensities encountered were below the calibrated levels of the instrumentation or the method of instrumentation and calibration was inadequate for nonrepetitive pulse signals.
Ma, Rui; Yuan, Nana; Sun, Shichang; Zhang, Peixin; Fang, Lin; Zhang, Xianghua; Zhao, Xuxin
2017-06-01
Under microwave irradiation, raw sludge was pyrolyzed mainly by evaporation of water, with a weight loss ratio of 84.8% and a maximum temperature not exceeding 200°C. High-temperature pyrolysis of SiC sludge could be realized, with a weight loss ratio of 93.4% and a final pyrolysis temperature of 1131.7°C. Variations between the electric field intensity distribution are the main reason for the differences of pyrolysis efficiencies. HFSS simulation showed that the electric field intensity of the raw sludge gradually decreased from 2.94×10 4 V/m to 0.88×10 4 V/m when pyrolysis ends, while that of SiC sludge decreased from 3.73×10 4 V/m at the beginning to 1.28×10 4 V/m, then increased to 4.03×10 4 V/m. The electromagnetic effect is the main factor (r≥0.91) influencing the temperature increase and weight loss of raw sludge. Both the electromagnetic effect and heat conduction effect influenced temperature rise and weight loss of SiC sludge, but the former's influence was comparatively larger. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of bone tissue using microstrip antennas.
Barros, Jannayna D; de Oliveira, Jose Josemar; da Silva, Sandro G
2010-01-01
The use of electromagnetic waves in the characterization of biological tissues has been conducted since the nineteenth century after the confirmation that electric and magnetic fields can interact with biological materials. In this paper, electromagnetic waves are used to characterize tissues with different levels of bone mass. In this way, one antenna array on microstrip lines was used. It can be seen that bones with different mass has different behavior in microwave frequencies.
Rates of Charged Clocks in an Electric Field.
NASA Astrophysics Data System (ADS)
Ozer, Murat
2008-04-01
The gravitational arguments leading to time dilation, redshift, and spacetime curvature are adapted to electric fields. The energy levels of two identical positively charged atoms at different potentials in a static electric field are shown to undergo blueshift. Secondly, the period of a charged simple pendulum (clock) in the electric field of a metallic sphere is shown to vary with the electric potential. The spacetime diagram for the world lines of two photons emitted and absorbed by two pendulums at different potentials at different times and the world lines of the pendulums, as in Schild's argument, is shown to be not a parallelogram in Minkowski spacetime, concluding that spacetime must be curved. A Pound-Rebka-Snider experiment in an electric field is proposed to confirm that photons undergo a frequency shift in an electric field and hence the spacetime manifold is curved. Next, Torretti's gravitational argument that spacetime around a mass distribution concentrated at a point is curved is extended to electric charge distributions to conclude that the nonuniform electric fields of such charge distributions too curve spacetime. Finally, the local equivalence of a uniform electric field times the charge to mass ratio to a uniform acceleration is shown through spacetime transformations and the electrical redshift is obtained in a uniformly accelerated frame by using this principle. These arguments lead to the conclusion that special relativistic electromagnetism is an approximation to a general relativistic multi-metric theory.
Energy conversion at dipolarization fronts
NASA Astrophysics Data System (ADS)
Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.
2017-02-01
We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.
Sindelka, Milan; Moiseyev, Nimrod
2006-04-27
We study a general problem of the translational/rotational/vibrational/electronic dynamics of a diatomic molecule exposed to an interaction with an arbitrary external electromagnetic field. The theory developed in this paper is relevant to a variety of specific applications, such as alignment or orientation of molecules by lasers, trapping of ultracold molecules in optical traps, molecular optics and interferometry, rovibrational spectroscopy of molecules in the presence of intense laser light, or generation of high order harmonics from molecules. Starting from the first quantum mechanical principles, we derive an appropriate molecular Hamiltonian suitable for description of the center of mass, rotational, vibrational, and electronic molecular motions driven by the field within the electric dipole approximation. Consequently, the concept of the Born-Oppenheimer separation between the electronic and the nuclear degrees of freedom in the presence of an electromagnetic field is introduced. Special cases of the dc/ac-field limits are then discussed separately. Finally, we consider a perturbative regime of a weak dc/ac field, and obtain simple analytic formulas for the associated Born-Oppenheimer translational/rotational/vibrational molecular Hamiltonian.
NASA Astrophysics Data System (ADS)
Arai, Yuuki; Yamashita, Tomohisa; Hasegawa, Hitoshi; Matsuoka, Taro; Kaimori, Hiroyuki; Ishihara, Terumasa
Levitation and guidance force is electromagnetic generated between a superconducting coil and zero field cooled bulk superconductors used in our flywheel energy storage system (FESS). Because the magnetic field depends on the configuration of the coil and the bulks, the eccentricity and the vibration of a rotor cause fluctuation in the magnetic field which induces eddy current and consequent Joule heat on electric conductors such as cooling plates. Heat generation in the cryogenic region critically reduces the efficiency of the FESS. In this paper, we will report the result of the electromagnetic analysis of the SMB and propose an optimal divided cooling plate for reducing the eddy current and Joule heat.
NASA Astrophysics Data System (ADS)
Iwamoto, Mitsumasa; Manaka, Takaaki; Taguchi, Dai
2015-09-01
The probing and modeling of carrier motions in materials as well as in electronic devices is a fundamental research subject in science and electronics. According to the Maxwell electromagnetic field theory, carriers are a source of electric field. Therefore, by probing the dielectric polarization caused by the electric field arising from moving carriers and dipoles, we can find a way to visualize the carrier motions in materials and in devices. The techniques used here are an electrical Maxwell-displacement current (MDC) measurement and a novel optical method based on the electric field induced optical second harmonic generation (EFISHG) measurement. The MDC measurement probes changes of induced charge on electrodes, while the EFISHG probes nonlinear polarization induced in organic active layers due to the coupling of electron clouds of molecules and electro-magnetic waves of an incident laser beam in the presence of a DC field caused by electrons and holes. Both measurements allow us to probe dynamical carrier motions in solids through the detection of dielectric polarization phenomena originated from dipolar motions and electron transport. In this topical review, on the basis of Maxwell’s electro-magnetism theory of 1873, which stems from Faraday’s idea, the concept for probing electron and hole transport in solids by using the EFISHG is discussed in comparison with the conventional time of flight (TOF) measurement. We then visualize carrier transit in organic devices, i.e. organic field effect transistors, organic light emitting diodes, organic solar cells, and others. We also show that visualizing an EFISHG microscopic image is a novel way for characterizing anisotropic carrier transport in organic thin films. We also discuss the concept of the detection of rotational dipolar motions in monolayers by means of the MDC measurement, which is capable of probing the change of dielectric spontaneous polarization formed by dipoles in organic monolayers. Finally we conclude that the ideas and experiments on EFISHG and MDC lead to a novel way of analyzing dynamical motions of electrons, holes, and dipoles in solids, and thus are available in organic electronic device application.
Al-Khalili, Jim
2015-04-13
The history of science is filled with examples of key discoveries and breakthroughs that have been published as landmark texts or journal papers, and to which one can trace the origins of whole disciplines. Such paradigm-shifting publications include Copernicus' De revolutionibus orbium coelestium (1543), Isaac Newton's Philosophiæ Naturalis Principia Mathematica (1687) and Albert Einstein's papers on relativity (1905 and 1915). Michael Faraday's 1832 paper on electromagnetic induction sits proudly among these works and in a sense can be regarded as having an almost immediate effect in transforming our world in a very real sense more than any of the others listed. Here we review the status of the subject-the relationship between magnetism and electricity both before and after Faraday's paper and delve into the details of the key experiments he carried out at the Royal Institution outlining clearly how he discovered the process of electromagnetic induction, whereby an electric current could be induced to flow through a conductor that experiences a changing magnetic field. His ideas would not only enable Maxwell's later development of his theory of classical electromagnetism, but would directly lead to the development of the electric dynamo and electric motor, two technological advances that are the very foundations of the modern world. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlickeiser, R., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu; Yoon, P. H., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu; School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701
2015-07-15
Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts ofmore » the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.« less
Topological magnetoelectric effects in microwave far-field radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezin, M.; Kamenetskii, E. O.; Shavit, R.
2016-07-21
Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of themore » free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.« less
Electromagnetic toroidal excitations in matter and free space.
Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I
2016-03-01
The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.
Electromagnetic interference and shielding: An introduction (revised version of 1991-23)
NASA Astrophysics Data System (ADS)
Dehoop, A. T.; Quak, D.
The basic equations of the electromagnetic field are summarized as far as they are needed in the theory of electromagnetic interference and shielding. Through the analysis of the planar electric current emitter, the propagation coefficient, attenuation coefficient, phase coefficient, wave-speed, wavelength, wave impedance, wave admittance, and power flow density of a wave are introduced. Next, the shielding effectiveness of a shielding plate and the shielding effectiveness of a shielding parallel-plate box are determined. In the latter, particular attention is given to the occurrence of internal resonance effects, which may degrade the shielding effectiveness. Further, a survey of some fundamental properties of a system of low frequency, multiconductor transmission lines is given. For a three conductor system with a plane of symmetry, the decomposition into the common mode and the differential mode of operation is discussed. Finally, expressions for the voltages and electric currents induced by external sources along a single transmission line are derived.
Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing: Wellbore and Fluid Effects
NASA Astrophysics Data System (ADS)
Couchman, M. J.; Everett, M. E.
2017-12-01
As unconventional resources become increasingly important, we must tackle the issue of real-time monitoring of the efficiency of unconventional hydrocarbon extraction. Controlled Source Electromagnetics (CSEM) have been used primarily as a marine-based technique to monitor conventional oil bearing reservoirs with a strong resurgence the new millennium. Many of these studies revolving around detecting a thin resistive layer such as a reservoir at 1m - 3km depth. In these cases, the presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. The lessons learned from these studies can be applied to terrestrial unconventional settings with appropriate modifications. The work shown here is a means develop methods which enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. The predictive model validated for various 1-D marine, and terrestrial cases focus on the mapping of fluid flow in from a horizontal wellbore in a uniform halfspace using an in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The effect of the of the vertical and horizontal wellbores are documented taking into account the conductivity, size, and thickness of each wellbore. The fracturing fluids flow and conductivity are also taken into account throughout various stages of the fracturing process. In each case, the sensitivity at a location of the surface in-line electric field to a given resistive or conductive layer, due to a source is calculated.
Solid-State Multimission Magnetometer (SSM(3)): Application to Groundwater Exploration on Mars
NASA Technical Reports Server (NTRS)
Grimm, Robert E.
2002-01-01
This report describes work to develop solid-state magnetometers using magnetoresistive thin films, low-frequency electric-field measurements, and methods for electromagnetic detection of water and ice in the subsurface of Mars.
A summary of the research program in the broad field of electronics
NASA Technical Reports Server (NTRS)
1972-01-01
Summary reports of research projects covering solid state materials, semiconductors and devices, quantum electronics, plasmas, applied electromagnetics, electrical engineering systems to include control communication, computer and power systems, biomedical engineering and mathematical biosciences.
NASA Astrophysics Data System (ADS)
King, Ronold W. P.
2000-01-01
After a review of recent work on the interaction of electromagnetic fields from cellular telephones with the human head, the structural and radiating properties of two common types of transceivers are determined. These include the impedance and current amplitude distribution of the antennas. The tangential electric field maintained by the antennas on the adjacent surface of the head is next determined. From this, the electric field propagating through the skull into the brain is analyzed and, from it, the electric field in spherical and long cylindrical cells is determined. It ranges from 27 to 13.5 V/m in the first 3 cm inside the skull. Of interest is the fact that the induced field in the interior of all cells, regardless of their shape, is the same as the incident field in the brain. It is hoped that biomedical scientists will review these results and determine possible biological effects.
NASA Astrophysics Data System (ADS)
Kenjeres, S.
2016-09-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.
MMS Observations of Harmonic Electromagnetic Cyclotron Waves
NASA Astrophysics Data System (ADS)
Usanova, M.; Ahmadi, N.; Ergun, R.; Trattner, K. J.; Fuselier, S. A.; Torbert, R. B.; Mauk, B.; Le Contel, O.; Giles, B. L.; Russell, C. T.; Burch, J.; Strangeway, R. J.
2017-12-01
Harmonically related electromagnetic ion cyclotron waves with the fundamental frequency near the O+ cyclotron frequency were observed by the four MMS spacecraft on May 20, 2016. The wave activity was detected by the spacecraft on their inbound passage through the Earth's morning magnetosphere during generally quiet geomagnetic conditions but enhanced solar wind dynamic pressure. It was also associated with an enhancement of energetic H+ and O+ ions. The waves are seen in both magnetic and electric fields, formed by over ten higher order harmonics, most pronounced in the electric field. The wave activity lasted for about an hour with some wave packets giving rise to short-lived structures extending from Hz to kHz range. These observations are particularly interesting since they suggest cross-frequency coupling between the lower and higher frequency modes. Further work will focus on examining the nature and role of these waves in the energetic particle dynamics from a theoretical perspective.
Effect of electromagnetic pulse on avoidance behavior and electroencephalogram of a rhesus monkey.
Mattsson, J L; Oliva, S A
1976-06-01
A 12-kg male rhesus monkey was exposed to electromagnetic pulse (EMP) at 266 kv/m, 5 pulses/s, for 1 h (18,700 pulses). The effects of EMP on Sidman avoidance behavior and on post-exposure electroencephalogram were evaluated, and no significant changes were detected. An analysis of an EMP showed that it contained various frequency components extending from 0 Hz to 10(9) Hz. However, the pulse configuration was such that its power was mainly confined to the longer wave-lengths (less than 30 MHz). The lack of biologic effect was attributed to the fact that the wavelengths were long relative to the size of the monkey, and little energy deposition was likely to occur. In addition, the electric field was evenly distributed across all lower frequencies so that only a very small electric field component existed at any specific low frequency.
An electromagnetic railgun accelerator: a generator of strong shock waves in channels
NASA Astrophysics Data System (ADS)
Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.
2014-11-01
Processes that accompany the generation of strong shock waves during the acceleration of a free plasma piston (PP) in the electromagnetic railgun channel have been experimentally studied. The formation of shock waves in the railgun channel and the motion of a shock-wave-compressed layer proceed (in contrast to the case of a classical shock tube) in a rather strong electric field (up to 300 V/cm). The experiments were performed at the initial gas pressures in the channel ranging from 25 to 500 Torr. At 25 Torr, the shock-wave Mach numbers reached 32 in argon and 16 in helium. At high concentrations of charged particles behind the shock wave, the electric field causes the passage of a part of the discharge current through the volume of the shock-wave-compressed layer, which induces intense glow comparable with that of the PP glow.
Bioelectromagnetic effects of EMP: Preliminary findings
NASA Astrophysics Data System (ADS)
Aldrich, T. E.; Easterly, C. E.; Gailey, P. C.; Hamilton, C. B.
1988-06-01
Facilities to simulate electromagnetic pulses (EMPs) are used to test military equipment and electrical communications devices for resistance to the effects of an EMP caused by an upper-atmospheric nuclear detonation. The rapid rise time and high field strengths (0.1 to 50 kV/m) of an EMP distinguish it from other electromagnetic phenomena. Certain types of EMP simulators also expose facility operators and members of the public to electromagnetic fields of varying intensity as do other natural sources such as the fields produced near a lightning bolt. Limited biological effects data have been collected to assess the potential EMP health hazards to humans. Evidence from the available database does not establish that EMPs represent either an occupational or a public health hazard. A critique is presented of the EMP research published to date in order to explore its limitations and similarities with related outcome experience from other electromagnetic field research. Laboratory research and multiple years of observations on workers in existing EMP manufacturing and simulation facilities suggest that there are no acute or short-term health effects. The occupational exposure guideline for EMP is 100 kV/m, which is far in excess of usual exposures with EMP simulators.
Interaction of an electron with coherent dipole radiation: Role of convergence and anti-dephasing
NASA Astrophysics Data System (ADS)
Robinson, A. P. L.; Arefiev, A. V.
2018-05-01
The impact of longitudinal electric fields that are present in intense focusing and defocusing electromagnetic pulses on electron acceleration is investigated. These fields are typically much weaker than the transverse fields, but it is shown that they can have a profound effect on electron energy gain. It is shown that the longitudinal electric field of a defocusing pulse is directed backward along the trajectory of an accelerated electron, which leads to a continuous net energy gain. At the same time, the effect of the transverse oscillating electric field in a defocusing pulse is to reduce the electron energy over multiple oscillations. In contrast to a well-known interaction with a plane wave, the electron is able to retain a substantial amount of energy following its interaction with a defocusing pulse. The roles of the transverse and longitudinal electric fields are reversed in a focusing pulse, which leads to a reduction in the energy retention. The present analysis underscores the importance of relatively weak oscillating electric fields in focusing and defocusing pulses.
Electromagnetic wave energy conversion research
NASA Technical Reports Server (NTRS)
Bailey, R. L.; Callahan, P. S.
1975-01-01
Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.
NASA Astrophysics Data System (ADS)
Micheli, Davide; Pastore, Roberto; Delfini, Andrea; Giusti, Alfonso; Vricella, Antonio; Santoni, Fabio; Marchetti, Mario; Tolochko, Oleg; Vasilyeva, Ekaterina
2017-05-01
In this work the electromagnetic characterization of composite materials reinforced with carbon and metallic nanoparticles is presented. In particular, the electric permittivity and the magnetic permeability as a function of the frequency are used to evaluate the electromagnetic absorption capability of the nanocomposites. The aim is the study of possible applications in advanced coating able to tune the electromagnetic reflectivity of satellite surfaces in specific frequency ranges, in a special way for those surfaces that for some reason could be exposed to the antenna radiation pattern. In fact, the interference caused by the spurious electromagnetic multipath due to good electric conductive satellite surface components could in turn affect the main radiation lobe of TLC and Telemetry antennas, thus modifying its main propagation directions and finally increasing the microwave channel pathloss. The work reports the analysis of different nanostructured materials in the 2-10 GHz frequency range. The employed nanopowders are of carbon nanotubes, cobalt, argent, titanium, nickel, zinc, copper, iron, boron, bismuth, hafnium, in different weight percentages versus the hosting polymeric matrix. The materials are classified as a function of their electromagnetic losses capability by taking into account of both electric and magnetic properties. The possibility to design multi-layered structures optimized to provide specific microwave response is finally analyzed by the aid of swam intelligence algorithm. This novel technique is in general interesting for metrological purpose and remote sensing purposes, and can be effectively used in aerospace field for frequency selective materials design, in order to reduce the aircraft/spacecraft radar observability at certain frequencies.
Faraday's first dynamo: A retrospective
NASA Astrophysics Data System (ADS)
Smith, Glenn S.
2013-12-01
In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.
NASA Astrophysics Data System (ADS)
Morales-Delgado, V. F.; Gómez-Aguilar, J. F.; Taneco-Hernandez, M. A.
2017-12-01
In this work we propose fractional differential equations for the motion of a charged particle in electric, magnetic and electromagnetic fields. Exact solutions are obtained for the fractional differential equations by employing the Laplace transform method. The temporal fractional differential equations are considered in the Caputo-Fabrizio-Caputo and Atangana-Baleanu-Caputo sense. Application examples consider constant, ramp and harmonic fields. In addition, we present numerical results for different values of the fractional order. In all cases, when α = 1, we recover the standard electrodynamics.
The enhancement mechanism of thin plasma layer on antenna radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Jiang, Binhao; Li, Xueai
A model of plasma-antenna is carried out to study the radiation enhancement mechanism of antenna covered by thin plasma layer. The results show when the radiation intensity achieves maximum, a region of equal electric field is formed due to the reflection of electric field at the interface of plasma and air. The plasma layer acted as an extension of the antenna. Furthermore, the shape of plasma layer is changed to verify the effect of plasma boundary on antenna radiation. The study shows the effect of thin plasma layer on electromagnetic field and provides a type of plasma antenna.
The use of electromagnetic body forces to enhance the quality of laser welds
NASA Astrophysics Data System (ADS)
Ambrosy, Guenter; Berger, P.; Huegel, H.; Lindenau, D.
2003-11-01
The use of electromagnetic body forces in laser beam welding of aluminum alloys is a new method to shape the geometry and to enhance the quality of the weld seams. In this new approach, electromagnetic volume forces are utilized by applying magnetic fields and electric currents of various origins. Acting in the liquid metal, they directly affect the flow field and can lead to favourable conditions for the melt dynamics and energy coupling. Numerous welds with full and partial penetration using both CO2 and Nd:YAG lasers demonstrate that this method directly influences the seam geometry and top-bead topography as well as the penetration depth and the evolution of pores and cracks. In the case of full penetration, it is also possible to lift or to lower the weld pool. The method, therefore, can be used to shape the geometry and to enhance the quality of the weld seam. Depending on the orientation of an external magnetic field, significant impacts are achieved in CO2 welding, even without an external current: the shape of the cross-sectional area can be increased of up to 50% and also the seam width is changed. Whereas for such conditions with Nd:YAG lasers no significant effect could be observed, it turned out that, when an external electric current is applied, similar effects are present with both wavelengths. In further investigations, the effect of electromagnetic body forces resulting from the interaction of an external current and its self-induced magnetic field was studied. Hereby, the current was fed into the workpiece via a tungsten electrode or a filler wire. The resulting phenomena are the same independent from wavelength and means of current feed.
Hidden momentum and the Abraham-Minkowski debate
NASA Astrophysics Data System (ADS)
Saldanha, Pablo L.; Filho, J. S. Oliveira
2017-04-01
We use an extended version of electrodynamics, which admits the existence of magnetic charges and currents, to discuss how different models for electric and magnetic dipoles do or do not carry hidden momentum under the influence of external electromagnetic fields. Based on that, we discuss how the models adopted for the electric and magnetic dipoles from the particles that compose a material medium influence the expression for the electromagnetic part of the light momentum in the medium. We show that Abraham expression is compatible with electric dipoles formed by electric charges and magnetic dipoles formed by magnetic charges, while Minkowski expression is compatible with electric dipoles formed by magnetic currents and magnetic dipoles formed by electric currents. The expression ɛ0E ×B , on the other hand, is shown to be compatible with electric dipoles formed by electric charges and magnetic dipoles formed by electric currents, which are much more natural models. So this expression has an interesting interpretation in the Abraham-Minkowski debate about the momentum of light in a medium: It is the expression compatible with the nonexistence of magnetic charges. We also provide a simple justification of why Abraham and Minkowski momenta can be associated with the kinetic and canonical momentum of light, respectively.
Petrishia, A; Sasikala, M
2014-04-01
A Prolate-Spheroidal Impulse Radiating Antenna (PSIRA) is used as a non-invasive technique for generating an electromagnetic implosion to kill melanoma cells. It can launch and focus fast (100 ps) high voltage (>50 KV) pulses into the biological targets. It can be used to obtain electromagnetic focusing on the target to reduce the damage to the tissue layers surrounding the target (skin). The main aim of this work is to improve the gain of the antenna, enhance the electric field intensity and to reduce the spot size at the focal point. In this work the PSIRA with tapered arm is designed to increase the gain of the antenna. The log periodic lens system is designed to enhance the electric field and reduce the spot size. The IRA with tapered arms located at the position of φ = 60° gives a gain improvement of 14.28% when compared to a traditional IRA. In this work a 10-layer dielectric lens system is designed to match the 100 ps pulses to the skin phantom. Simulation results show that the electric field is increased by a factor of 2. The spot size is reduced from 1 cm to 0.75 cm at the focal point where the target is placed. The proposed Log periodic lens system provides an increase in electric field amplitude and reduction in spot size.
Novel Metamaterial Blueprints and Elements for Electromagnetic Applications
NASA Astrophysics Data System (ADS)
Odabasi, Hayrettin
In the first part of this dissertation, we explore the metric invariance of Maxwell's equations to design metamaterial blueprints for three novel electromagnetic devices. The metric invariance of Maxwell's equations here means that the effects of an (hypothetical) distortion of the background spatial domain on the electromagnetic fields can be mimicked by properly chosen material constitutive tensors. The exploitation of such feature of Maxwell's equations to derive metamaterial devices has been denoted as `transformation optics' (TO). The first device proposed here consists of metamaterial blueprints of waveguide claddings for (waveguide) miniaturization. These claddings provide a precise control of mode distribution and frequency cut-off. The proposed claddings are distinct from conventional dielectric loadings as the former do not support hybrid modes and are impedance-matched to free-space. We next derive a class of metamaterial blueprints designed for low-profile antenna applications, whereby a simple spatial transformation is used to yield uniaxial metamaterial substrate with electrical height higher than its physical height and surface waves are not supported, which is an advantage for patch antenna applications. We consider the radiation from horizontal wire and patch antennas in the presence of such substrates. Fundamental characteristics such as return loss and radiation pattern of the antennas are investigated in detail. Finally, transformation optics is also applied to design cylindrical impedance-matched absorbers. In this case, we employ a complex-valued transformation optics approach (in the Fourier domain) as opposed to the conventional real-valued approach. A connection of such structures with perfectly matched layers and recently proposed optical pseudo black-hole devices is made. In the second part of this dissertation, we move from the derivation of metamaterial blueprints to the application of pre-defined unit-cell metamaterial structures for miniaturization purposes. We first employ electric-field-coupled (ELC) resonators and complementary electric-field-coupled (CELC) resonators to design a new class of electrically small antennas. Since electric-field coupled resonators were recently proposed in the literature to obtain negative permittivity response, we next propose ELC resonators as a new type of waveguide loadings to provide mode control and waveguide miniaturization.
THOR Field and Wave Processor - FWP
NASA Astrophysics Data System (ADS)
Soucek, Jan; Rothkaehl, Hanna; Balikhin, Michael; Zaslavsky, Arnaud; Nakamura, Rumi; Khotyaintsev, Yuri; Uhlir, Ludek; Lan, Radek; Yearby, Keith; Morawski, Marek; Winkler, Marek
2016-04-01
If selected, Turbulence Heating ObserveR (THOR) will become the first mission ever flown in space dedicated to plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer and search-coil magnetometer (SCM) and perform data digitization and on-board processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The feasibility of making highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation complemented by a thorough electromagnetic cleanliness program will further improve on this heritage. Taking advantage of the capabilities of modern electronics, FWP will provide simultaneous synchronized waveform and spectral data products at high time resolution from the numerous THOR sensors, taking advantage of the large telemetry bandwidth of THOR. FWP will also implement a plasma a resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will be interfaced with the particle instrument data processing unit (PPU) via a dedicated digital link which will enable performing on board correlation between waves and particles, quantifying the transfer of energy between waves and particles. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, S. K.; Chang, H. Y.
To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with themore » theories of electromagnetic effects in large area and/or high frequency capacitive discharges.« less
NASA Astrophysics Data System (ADS)
Prudêncio, Filipa R.; Matos, Sérgio A.; Paiva, Carlos R.
2014-11-01
The concept of a perfect electromagnetic conductor (PEMC) was introduced to generalize and unify two well-known and apparently disjoint concepts in electromagnetics: the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC). Although the PEMC has proven a fertile tool in electromagnetic analyses dealing with new and complex boundaries, its corresponding definition as a medium has, nevertheless, raised several problems. In fact, according to its initial 3D definition, the PEMC cannot be considered a unique and well-defined medium: it leads to extraneous fields without physical meaning. By using a previously published generalization of a PEMC that regards this concept both as a boundary and as a medium - which was dubbed an MIM (Minkowskian isotropic medium) and acts, in practice, as an actual electromagnetic conductor (EMC) - it is herein presented a straightforward analysis of waveguides containing PEMCs that readily and systematically follows from the general framework of waveguides containing EMCs.
IMP 8. Volume 1: EM field experiment
NASA Technical Reports Server (NTRS)
1980-01-01
The electromagnetic fields experiment on IMP-J used two electric dipole antennas and a triaxial search coil magnetic antenna to sense the electric and magnetic field of plasma waves in space. The electric dipole antennas consisted of a fine wire, 0.021 inches in diameter, with a nominal extended tip-to-tip length of 400 ft. The outermost 50 ft. of each element was conducting and the rest of the antenna was covered with an insulating coating. The search coil antennas each consisted of a high mu core with two separate windings of 40,000 turns each to sense ac magnetic fields. The search coils had a length of 18 inches tip-to-tip and are mounted on the end of a boom. The axes of the x prime and y prime search coil antennas were parallel to the x prime and y prime electric antenna axes.
Directly tailoring photon-electron coupling for sensitive photoconductance
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Zhou, Wei; Huang, Jingguo; Wu, Jing; Gao, Yanqing; Qu, Yue; Chu, Junhao
2016-03-01
The coupling between photons and electrons is at the heart of many fundamental phenomena in nature. Despite tremendous advances in controlling electrons by photons in engineered energy-band systems, control over their coupling is still widely lacking. Here we demonstrate an unprecedented ability to couple photon-electron interactions in real space, in which the incident electromagnetic wave directly tailors energy bands of solid to generate carriers for sensitive photoconductance. By spatially coherent manipulation of metal-wrapped material system through anti-symmetric electric field of the irradiated electromagnetic wave, electrons in the metals are injected and accumulated in the induced potential well (EIW) produced in the solid. Respective positive and negative electric conductances are easily observed in n-type and p-type semiconductors into which electrons flow down from the two metallic sides under light irradiation. The photoconductivity is further confirmed by sweeping the injected electrons out of the semiconductor before recombination applied by sufficiently strong electric fields. Our work opens up new perspectives for tailoring energy bands of solids and is especially relevant to develop high effective photon detection, spin injection, and energy harvesting in optoelectronics and electronics.
Gryz, Krzysztof; Karpowicz, Jolanta
2006-01-01
The investigation of the occupational exposure to electromagnetic fields from electrosurgery devices were done (according to the requirements of Polish Standard PN-T-06580:2002). The exposure was evaluated following the criteria established by occupational safety and health regulations. The measurements and evaluation of the currents flowing through the exposed workers body were also conducted following the method and criteria published by IEEE standard and European Directive 2004/40/EC. It was found that in the vicinity of electrosurgical devices, the area of electromagnetic fields to which only workers operating the source of field should be exposed can exist up to the distance of 70 cm from the active electrode and supplying cables. In the case when the cables are placed directly on the surgeon body or long duration of the daily exposure the overexposure of workers can appear (referring to Polish regulations). The current flowing through the arm of surgeon keeping the electrode with electric field of the maximum strength (app. 1000 V/m or higher) can exceed permissible value of 40 mA established by the Directive 2004/40/EC for contact current. The reduction of the surgeon exposure can be reached by the proper positioning of the cables supplying monopolar electrode or by the use of bipolar electrode.
NASA Astrophysics Data System (ADS)
Yu, Miao; Yang, Pingan; Fu, Jie; Liu, Shuzhi; Qi, Song
2016-08-01
Magnetorheological (MR) materials are a class of materials whose mechanical and electrical properties can be reversible controlled by the magnetic field. In this study, we pioneered research on the effect of a uniform magnetic field with different strengths and directions on the microwave-absorbing properties of magnetorheological elastomers (MREs), in which the ferromagnetic particles are flower-like carbonyl iron powders (CIPs) prepared by an in situ reduction method. The electromagnetic (EM) absorbing properties of the composites have been analyzed by vector network analysis with the coaxial reflection/transmission technique. Under the magnetic field, the columnar or chainlike structures were formed, which allows EM waves to penetrate. Meanwhile, stronger Debye dipolar relaxation and attenuation constant have been obtained when changing the direction of the applied magnetic field. Compared with untreated MREs, not only have the minimum reflection loss (RL) and the effective absorption bandwidth (below -20 dB) greatly increased, the frequencies of the absorbing peaks shift about 15%. This suggests that MREs are a magnetic-field-sensitive electromagnetic wave-absorbing material and have great potential in applications such as in anti-radar camouflage, due to the fact that radar can continuously conduct detection at many electromagnetic frequencies, while the MR materials can adjust the microwave-absorption peak according to the radar frequency.
Chiral magnetic effect in the presence of electroweak interactions as a quasiclassical phenomenon
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim; Semikoz, Victor B.
2018-03-01
We elaborate the quasiclassical approach to obtain the modified chiral magnetic effect (CME) in the case when the massless charged fermions interact with electromagnetic fields and the background matter by the electroweak forces. The derivation of the anomalous current along the external magnetic field involves the study of the energy density evolution of chiral particles in parallel electric and magnetic fields. We consider both the particle acceleration by the external electric field and the contribution of the Adler anomaly. The condition of the validity of this method for the derivation of the CME is formulated. We obtain the expression for the electric current along the external magnetic field, which appears to coincide with our previous results based on the purely quantum approach. Our results are compared with the findings of other authors.
NASA Astrophysics Data System (ADS)
Omura, K.; Ikeda, R.; Iio, Y.; Matsuda, T.
2005-12-01
Electrical resistivity is important property to investigate the structure of active faults. Pore fluid affect seriously the electrical properties of rocks, subsurface electrical resistivity can be an indicator of the existence of fluid and distribution of pores. Fracture zone of fault is expected to have low resistivity due to high porosity and small gain size. Especially, strike-slip type fault has nearly vertical fracture zone and the fracture zone would be detected by an electrical survey across the fault. We performed electromagnetic survey across the strike-slip active faults in central Japan. At the same faults, we also drilled borehole into the fault and did downhole logging in the borehole. We applied MT or CSAMT methods onto 5 faults: Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), western Nagano Ohtaki area(1984 Nagano-ken seibu earthquake (M=6.8), the fault did not appeared on the surface), Neodani fault which appeared by the 1891 Nobi earthquake (M=8.0), Atera fault which seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), Gofukuji fault that is considered to have activated about 1200 years ago. The sampling frequencies of electrical and magnetic field were 2 - 1024Hz (10 frequencies) for CSAMT survey and 0.00055 - 384Hz (40 frequencies) for MT survey. The electromagnetic data were processed by standard method and inverted to 2-D resistivity structure along transects of the faults. Results of the survey were compared with downhole electrical logging data and observational descriptions of drilled cores. Fault plane of each fault were recognized as low resistivity region or boundary between relatively low and high resistivity region, except for Gofukuji fault. As for Gofukuji fault, fault was located in relatively high resistivity region. During very long elapsed time from the last earthquake, the properties of fracture zone of Gofukuji fault might changed from low resistivity properties as observed for other faults. Downhole electrical logging data were consistent to values of resistivity estimated by electromagnetic survey for each fault. The existence of relatively low and high resistivity regions in 2-D structure from electromagnetic survey was observed again by downhole logging at the correspondent portion in the borehole. Cores recovered from depthes where the electrical logging showed low resistivity were hardly fractured and altered from host rock which showed high resistivity. Results of electromagnetic survey, downhole electrical logging and observation of drilled cores were consistent to each other. In present case, electromagnetic survey is useful to explore the properties of fault fracture zone. In the further investigations, it is important to explore relationships among features of resistivity structure and geological and geophysical situations of the faults.
NASA Astrophysics Data System (ADS)
Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI
2018-05-01
The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.
Effects of an electric field on white sharks: in situ testing of an electric deterrent.
Huveneers, Charlie; Rogers, Paul J; Semmens, Jayson M; Beckmann, Crystal; Kock, Alison A; Page, Brad; Goldsworthy, Simon D
2013-01-01
Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1), using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.
Effects of an Electric Field on White Sharks: In Situ Testing of an Electric Deterrent
Huveneers, Charlie; Rogers, Paul J.; Semmens, Jayson M.; Beckmann, Crystal; Kock, Alison A.; Page, Brad; Goldsworthy, Simon D.
2013-01-01
Elasmobranchs can detect minute electromagnetic fields, <1 nVcm–1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766
A border-ownership model based on computational electromagnetism.
Zainal, Zaem Arif; Satoh, Shunji
2018-03-01
The mathematical relation between a vector electric field and its corresponding scalar potential field is useful to formulate computational problems of lower/middle-order visual processing, specifically related to the assignment of borders to the side of the object: so-called border ownership (BO). BO coding is a key process for extracting the objects from the background, allowing one to organize a cluttered scene. We propose that the problem is solvable simultaneously by application of a theorem of electromagnetism, i.e., "conservative vector fields have zero rotation, or "curl." We hypothesize that (i) the BO signal is definable as a vector electric field with arrowheads pointing to the inner side of perceived objects, and (ii) its corresponding scalar field carries information related to perceived order in depth of occluding/occluded objects. A simple model was developed based on this computational theory. Model results qualitatively agree with object-side selectivity of BO-coding neurons, and with perceptions of object order. The model update rule can be reproduced as a plausible neural network that presents new interpretations of existing physiological results. Results of this study also suggest that T-junction detectors are unnecessary to calculate depth order. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Li; Xiong, De-fu; Liu, Jia-wen; Li, Zi-xin; Zeng, Guang-cheng; Li, Hua-liang
2014-03-01
We aimed to evaluate the interference of 50 Hz extremely low frequency electromagnetic field (ELF-EMF) occupational exposure on the neurobehavior tests of workers performing tour-inspection close to transformers and distribution power lines. Occupational short-term "spot" measurements were carried out. 310 inspection workers and 300 logistics staff were selected as exposure and control. The neurobehavior tests were performed through computer-based neurobehavior evaluation system, including mental arithmetic, curve coincide, simple visual reaction time, visual retention, auditory digit span and pursuit aiming. In 500 kV areas electric field intensity at 71.98% of total measured 590 spots were above 5 kV/m (national occupational standard), while in 220 kV areas electric field intensity at 15.69% of total 701 spots were above 5 kV/m. Magnetic field flux density at all the spots was below 1,000 μT (ICNIRP occupational standard). The neurobehavior score changes showed no statistical significance. Results of neurobehavior tests among different age, seniority groups showed no significant changes. Neurobehavior changes caused by daily repeated ELF-EMF exposure were not observed in the current study.
NASA Astrophysics Data System (ADS)
Zamani, A.; Setareh, F.; Azargoshasb, T.; Niknam, E.; Mohammadhosseini, E.
2017-06-01
In this article the spin of electron as well as simultaneous effects of Rashba and Dresselhaus spin-orbit interactions are considered for a lens-shaped GaAs quantum dot and the influences of applied electric field and Zeeman effect on the electromagnetically induced transparency (EIT) of this system are investigated. To do so, the absorption, refractive index as well as the group velocity of the probe light pulse are presented and discussed. Study of the absorption and refractive index reveals that, at a particular frequency of probe field, absorption diminishes, refractive index becomes unity and so the EIT occurs. Furthermore, the investigation of group velocity show that, around such frequency the probe propagation is sub-luminal, which shifts to super-luminal for higher and lower frequencies. Our results illustrate that the EIT frequency, transparency window and sub(super)-luminal frequency intervals are strongly sensitive to applied fields in the presence of spin-orbit couplings. It is found that, in comparison with the investigations with negligence of spin, the EIT behavior under the effects of applied fields are quite different.
Geonic black holes and remnants in Eddington-inspired Born-Infeld gravity.
Olmo, Gonzalo J; Rubiera-Garcia, D; Sanchis-Alepuz, Helios
We show that electrically charged solutions within the Eddington-inspired Born-Infeld theory of gravity replace the central singularity by a wormhole supported by the electric field. As a result, the total energy associated with the electric field is finite and similar to that found in the Born-Infeld electromagnetic theory. When a certain charge-to-mass ratio is satisfied, in the lowest part of the mass and charge spectrum the event horizon disappears, yielding stable remnants. We argue that quantum effects in the matter sector can lower the mass of these remnants from the Planck scale down to the TeV scale.
Systematic effects in the HfF+-ion experiment to search for the electron electric dipole moment
NASA Astrophysics Data System (ADS)
Petrov, A. N.
2018-05-01
The energy splittings for J =1 , F =3 /2 , | mF|=3 /2 hyperfine levels of the 3Δ1 electronic state of 180Hf+19F ion are calculated as functions of the external variable electric and magnetic fields within two approaches. In the first one, the transition to the rotating frame is performed, whereas in the second approach, the quantization of rotating electromagnetic field is performed. Calculations are required for understanding possible systematic errors in the experiment to search for the electron electric dipole moment (e EDM ) with the 180Hf+19F ion.
Design of a bistable electromagnetic coupling mechanism for underactuated manipulators
NASA Astrophysics Data System (ADS)
Miyuranga Kaluarachchi, Malaka; Ho, Jee-Hou; Yahya, Samer; Teh, Sze-Hong
2018-07-01
Electromagnetic clutches have been widely used in underactuated lightweight manipulator designs as a coupling mechanism due to their advantages of fast activation and electrical controllability. However, an electromagnetic clutch consumes electrical energy continuously during its operation. Furthermore, conventional electromagnetic clutches are not fail-safe in unexpected power failure conditions. These factors have a significant impact on the energy efficiency and the safety of the design, and these are vital aspects for underactuated lightweight manipulators. This paper introduces a bistable electromagnetic coupling mechanism design, with reduced energy consumption and with a fail-safe mechanism. The concept of a bistable electromagnetic mechanism consists of an electromagnet with two permanent magnets. The design has the capability to maintain stable mechanism states, either engaged or disengaged, without a continuous electrical power supply, thus enhancing fail-safety and efficiency. Moreover, the design incorporates the advantages of conventional electromagnetic clutches such as rapid activation and electrical controllability. The experimental results highlight the effectiveness of the proposed mechanism in reducing electric energy consumption. Besides this, a theoretical model is developed and a good correlation is achieved between the theoretical and experimental results. The reduced electric energy consumption and fail-safe design make the bistable electromagnetic mechanism a promising concept for underactuated lightweight manipulators.
Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach
Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel
2014-01-01
Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135
Everaert, Joris; Bauwens, Dirk
2007-01-01
A possible effect of long-term exposure to low-intensity electromagnetic radiation from mobile phone (GSM) base stations on the number of House Sparrows during the breeding season was studied in six residential districts in Belgium. We sampled 150 point locations within the 6 areas to examine small-scale geographic variation in the number of House Sparrow males and the strength of electromagnetic radiation from base stations. Spatial variation in the number of House Sparrow males was negatively and highly significantly related to the strength of electric fields from both the 900 and 1800 MHz downlink frequency bands and from the sum of these bands (Chi(2)-tests and AIC-criteria, P<0.001). This negative relationship was highly similar within each of the six study areas, despite differences among areas in both the number of birds and radiation levels. Thus, our data show that fewer House Sparrow males were seen at locations with relatively high electric field strength values of GSM base stations and therefore support the notion that long-term exposure to higher levels of radiation negatively affects the abundance or behavior of House Sparrows in the wild.
Kunt, Halil; Şentürk, İhsan; Gönül, Yücel; Korkmaz, Mehmet; Ahsen, Ahmet; Hazman, Ömer; Bal, Ahmet; Genç, Abdurrahman; Songur, Ahmet
2016-01-01
Background In the literature, some articles report that the incidence of numerous diseases increases among the individuals who live around high-voltage electric transmission lines (HVETL) or are exposed vocationally. However, it was not investigated whether HVETL affect bone metabolism, oxidative stress, and the prevalence of thyroid nodule. Methods Dual-energy X-ray absorptiometry (DEXA) bone density measurements, serum free triiodothyronine (FT3), free thyroxine (FT4), RANK, RANKL, osteoprotegerin (OPG), alkaline phosphatase (ALP), phosphor, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels were analyzed to investigate this effect. Results Bone mineral density levels of L1–L4 vertebrae and femur were observed significantly lower in the electrical workers. ALP, phosphor, RANK, RANKL, TOS, OSI, and anteroposterior diameter of the left thyroid lobe levels were significantly higher, and OPG, TAS, and FT4 levels were detected significantly lower in the study group when compared with the control group. Conclusion Consequently, it was observed that the balance between construction and destruction in the bone metabolism of the electrical workers who were employed in HVETL replaced toward destruction and led to a decrease in OPG levels and an increase in RANK and RANKL levels. In line with the previous studies, long-term exposure to an electromagnetic field causes disorders in many organs and systems. Thus, it is considered that long-term exposure to an electromagnetic field affects bone and thyroid metabolism and also increases OSI by increasing the TOS and decreasing the antioxidant status. PMID:26929645
Vila, Javier; Bowman, Joseph D; Figuerola, Jordi; Moriña, David; Kincl, Laurel; Richardson, Lesley; Cardis, Elisabeth
2017-01-01
Introduction To estimate occupational exposures to electromagnetic fields (EMF) for the INTEROCC study, a database of source-based measurements extracted from published and unpublished literature resources had been previously constructed. The aim of the current work was to summarize these measurements into a source-exposure matrix (SEM), accounting for their quality and relevance. Methods A novel methodology for combining available measurements was developed, based on order statistics and log-normal distribution characteristics. Arithmetic and geometric means, and estimates of variability and maximum exposure were calculated by EMF source, frequency band and dosimetry type. Mean estimates were weighted by our confidence on the pooled measurements. Results The SEM contains confidence-weighted mean and maximum estimates for 312 EMF exposure sources (from 0 Hz to 300 GHz). Operator position geometric mean electric field levels for RF sources ranged between 0.8 V/m (plasma etcher) and 320 V/m (RF sealer), while magnetic fields ranged from 0.02 A/m (speed radar) to 0.6 A/m (microwave heating). For ELF sources, electric fields ranged between 0.2 V/m (electric forklift) and 11,700 V/m (HVTL-hotsticks), while magnetic fields ranged between 0.14 μT (visual display terminals) and 17 μT (TIG welding). Conclusion The methodology developed allowed the construction of the first EMF-SEM and may be used to summarize similar exposure data for other physical or chemical agents. PMID:27827378
Transversality of electromagnetic waves in the calculus-based introductory physics course
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2008-11-01
Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.
Engineering electromagnetic metamaterials and methanol fuel cells
NASA Astrophysics Data System (ADS)
Yen, Tajen
2005-07-01
Electromagnetic metamaterials represent a group of artificial structures, whose dimensions are smaller than subwavelength. Due to electromagnetic metamaterials' collective response to the applied fields, they can exhibit unprecedented properties to fascinate researchers' eyes. For instance, artificial magnetism above terahertz frequencies and beyond, negative magnetic response, and artificial plasma lower than ultraviolet and visible frequencies. Our goal is to engineer those novel properties aforementioned at interested frequency regions and further optimize their performance. To fulfill this task, we developed exclusive micro/nano fabrication techniques to construct magnetic metamaterials (i.e., split-ring resonators and L-shaped resonators) and electric metamaterials (i.e., plasmonic wires) and also employed Taguchi method to study the optimal design of electromagnetic metamaterials. Moreover, by integrating magnetic and electric metamaterials, we have been pursuing to fabricate so-called negative index media---the Holy Grail enables not only to reverse conventional optical rules such as Snell's law, Doppler shift, and Cerenkov radiation, but also to smash the diffraction limit to realize the superlensing effect. In addition to electromagnetic metamaterials, in this dissertation we also successfully miniaturize silicon-based methanol fuel cells by means of micro-electrical-mechanical-system technique, which promise to provide an integrated micro power source with excellent performance. Our demonstrated power density and energy density are one of the highest in reported documents. Finally, based on the results of metamaterials and micro fuel cells, we intend to supply building blocks to complete an omnipotent device---a system with sensing, communication, computing, power, control, and actuation functions.
The Galileo plasma wave investigation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Kurth, W. S.; Shaw, R. R.; Roux, A.; Gendrin, R.; Kennel, C. F.; Scarf, F. L.; Shawhan, S. D.
1992-01-01
The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10 percent, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.
AC Electric Field Communication for Human-Area Networking
NASA Astrophysics Data System (ADS)
Kado, Yuichi; Shinagawa, Mitsuru
We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.
[Electromagnetic fields in the vicinity of DECT cordless telephones and mobile phones].
Mamrot, Paweł; Mariańska, Magda; Aniołczyk, Halina; Politański, Piotr
2015-01-01
Mobile telephones belong to the most frequently used personal devices. In their surroundings they produce the electromagnetic field (EMF), in which exposure range there are not only users but also nearby bystanders. The aim of the investigations and EMF measurements in the vicinity of phones was to identify the electric field levels with regard to various working modes. Twelve sets of DECT (digital enhanced cordless telecommunications) cordless phones (12 base units and 15 handsets), 21 mobile telephones produced by different manufactures, and 16 smartphones in various applications, (including multimedia) in the conditions of daily use in living rooms were measured. Measurements were taken using the point method in predetermined distances of 0.05-1 m from the devices without the presence of users. In the vicinity of DECT cordless phone handsets, electric field strength ranged from 0.26 to 2.30 V/m in the distance of 0.05 m - 0.18-0.26 V/m (1 m). In surroundings of DECT cordless telephones base units the values of EMF were from 1.78-5.44 V/m (0.05 m) to 0.19- 0.41 V/m (1 m). In the vicinity of mobile phones working in GSM mode with voice transmission, the electric field strength ranged from 2.34-9.14 V/m (0.05 m) to 0.18-0.47 V/m (1 m) while in the vicinity of mobile phones working in WCDMA (Wideband Code Division Multiple Access) mode the electric field strength ranged from 0.22-1.83 V/m (0.05 m) to 0.18-0.20 V/m (1 m). The mean values of the electric field strength for each group of devices, mobile phones and DECT wireless phones sets do not exceed the reference value of 7 V/m, adopted as the limit for general public exposure. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Long-term monitoring of ULF electromagnetic fields at Parkfield, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kappler, K.N.; Morrison, H.F.; Egbert, G.D.
2009-08-01
Electric and magnetic fields in the (10{sup -4}-1.0) Hz band were monitored at two sites adjacent to the San Andreas Fault near Parkfield and Hollister, California from 1995 to present. A data window [2002-2005], enclosing the September 28, 2004 M6 Parkfield earthquake, was analyzed to determine if anomalous electric or magnetic fields, or changes in ground conductivity, occurred before the earthquake. The data were edited, removing intervals of instrument malfunction leaving 875 days in the four-year period. Frequent, spike-like disturbances were common, but were not more frequent around the time of the earthquake; these were removed before subsequent processing. Signalmore » to noise amplitude spectra, estimated via magnetotelluric processing showed the behavior of the ULF fields to be remarkably constant over the period of analysis. These first-order plots make clear that most of the recorded energy is coherent over the spatial extent of the array. Three main statistical techniques were employed to separate local anomalous electrical or magnetic fields from the dominant coherent natural fields: transfer function estimates between components at each site were employed to subtract the dominant field, and look deeper at the 'residual' fields; the data were decomposed into principal components to identify the dominant coherent array modes; and the technique of canonical coherences was employed to distinguish anomalous fields which are spatially broad from anomalies which occur at a single site only, and furthermore to distinguish anomalies which are present in both the electric and magnetic fields from those which are present in only one field type. Standard remote reference apparent resistivity estimates were generated daily at Parkfield. A significant seasonal component of variability was observed suggesting local distortion due to variations in near surface resistance. In all cases, high levels of sensitivity to subtle electromagnetic effects were demonstrated, but no effects which can be reasonably characterized as precursors to the Parkfield earthquake were found.« less
Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.
1993-01-01
A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.