Giant Electric Field Enhancement in Split Ring Resonators Featuring Nanometer-Sized Gaps
NASA Astrophysics Data System (ADS)
Bagiante, S.; Enderli, F.; Fabiańska, J.; Sigg, H.; Feurer, T.
2015-01-01
Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm-1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations.
Enhanced Fair-Weather Electric Fields Soon After Sunrise
NASA Technical Reports Server (NTRS)
Marshall, T. C.; Rust, W. D.; Stolzenburg, M.; Roeder, W.; Krehbiel, P. R.
1999-01-01
The typical fair weather electric field at the ground is between -100 and -300 V/m. At the NASA Kennedy Space Center and US Air Force Cape Canaveral Air Station (KSC) the electric field at the ground sometimes reaches -400 to -1200 V/m within an hour or two after sunrise on days that otherwise seem to be fair weather. We refer to the enhanced negative electric fields as the "sunrise enhancement." To investigate the sunrise enhancement at KSC we measured the electric field (E) in the first few hundred meters above the ground before and during several sunrise enhancements. From these E soundings we can infer the presence of charge layers and determine their thickness and charge density.
NASA Astrophysics Data System (ADS)
Thaller, S. A.; Wygant, J. R.; Cattell, C. A.; Breneman, A. W.; Bonnell, J. W.; Kletzing, C.; De Pascuale, S.; Kurth, W. S.; Hospodarsky, G. B.; Bounds, S. R.
2015-12-01
The Van Allen Probes offer the first opportunity to investigate the response of the plasmasphere to the enhancement and penetration of the large scale duskward convection electric field in different magnetic local time (MLT) sectors. Using electric field measurements and estimates of the cold plasma density from the Van Allen Probes' Electric Fields and Waves (EFW) instrument, we study erosion of the plasmasphere during moderate and strong geomagnetic storms. We present the electric field and density data both on an orbit by orbit basis and synoptically, showing the behavior of the convection electric field and plasmasphere over a period of months. The data indicate that the large scale duskward electric field penetrates deep (L shell < 3) into the inner magnetosphere on both the dusk and dawn sides, but that the plasmasphere response on the dusk and dawn sides differ. In particular, significant (~2 orders of magnitude) decreases in the cold plasma density occur on the dawn side within hours of the onset of enhanced duskward electric field. In contrast, on the dusk side, the plasmapause is located at higher L shell than it is on the dawn side. In some cases, in the post-noon sector, cold plasma density enhancements accompany duskward electric field enhancements for the first orbit after the electric field enchantment, consistent with a duskside, sunward flowing, drainage plume.
The effect of substrate on electric field enhancement of Tip-enhanced Raman spectroscopy (TERS)
NASA Astrophysics Data System (ADS)
Bahreini, Maryam
2018-01-01
The characterization of materials down to a few-molecule level is a key challenge in nanotechnology. Raman spectroscopy is a powerful method that provides chemical information via nondestructive vibrational fingerprinting. Unfortunately, this method suffers from signal weakness which prevents the study of small quantities. Tip-enhanced Raman spectroscopy (TERS) which combines the chemical sensitivity of Raman spectroscopy (RS) with high spatial resolution of scanning probe microscopy (SPM), provides chemical images of surfaces at the nanometer scale. In this method, irradiation of an SPM tip by a focused laser beam results in enhancement of local electric field via two reasons of localized surface plasmon resonance and lightning rod effect. This enhancement leads to the enhancement in Raman intensity from the sample surface in the vicinity of tip. In all TERS measurements, samples should be located on a substrate. In this paper, the dependence of the electric field enhancement to the substrate has been investigated. In simulations, three-dimensional finite-difference time-domain (3D-FDTD) method is used for numerical solution of Maxwell's equations. Our results show that the electric field enhancement is weak for the tip alone case. Introducing a substrate provides further electric field enhancement via near field electromagnetic dipole-dipole coupling between the tip and substrate. Since the side-illumination geometry is used for laser irradiation, the vertical component of the incident field plays a dominant role in the electric field enhancement. Therefore, the coupling effect between the tip and the substrate is the key contribution to the enhancement. For the case of silicon tip and the gold substrate, the electric field enhancement is improved considerably. There is an optimal tip size for TERS because of the competing effects of the radiation damping and the surface scattering of the tip. The results show the substrate as an effective tool for the improvement of the TERS detection sensitivity.
Electric field distribution and current emission in a miniaturized geometrical diode
NASA Astrophysics Data System (ADS)
Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng
2017-06-01
We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h <2. The calculations are spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.
Electric-field enhanced performance in catalysis and solid-state devices involving gases
Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin
2015-05-19
Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.
Enhancement of plasma generation in catalyst pores with different shapes
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ru; Neyts, Erik C.; Bogaerts, Annemie
2018-05-01
Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.
Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage
2015-10-01
AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage PRINCIPAL...DATES COVERED 30 Sep 2014 – 29 Sep 2015 4. TITLE AND SUBTITLE Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage...instability, among other traumatic affections of joints, and occupations or sports that subject joints to high levels of impact and torsional loading
Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage
2017-10-01
expected. Statistics: Comparisons were analyzed using ANOVA with Tukey’s post -hoc test (pɘ.05). RESULTS: In study 1, a proportion of synovial...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic Cartilage PRINCIPAL...2016 – 29 Sep 2017 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic
Phonon-Mediated Exciton Stark Effect Enhanced by a Static Electric Field
NASA Astrophysics Data System (ADS)
Ivanov, A. L.
1997-03-01
The optical properties of semiconductor QW's change in the presence of coherent pump light. The exciton (phonon-mediated, biexciton-mediated, etc.) optical Stark effect is an effective shift of the exciton level that follow dynamically the intensity I0 ~= 0.1 div 1 GW/cm^2 of the pump light. In the present work we develop a theory of a low-intensity electric-field enhanced phonon-mediated optical Stark effect in polar semiconductors and semiconductor microstructures. The main point is that the exciton - LO-phonon Fröhlich interaction can be strongly enhanced by a (quasi-) static electric field F which polarizes the exciton in the geometry F | k | p, where k and p are the wavevectors of the pump and probe light, respectively. The electric field enhancement of spontaneous Raman scattering has been already analyzed (E. Burstein et al., 1971). Even a moderate electric field F ~= 10^3 V/cm reduces the intensity of the pump light to I0 ~= 1 div 10 MW/cm^2. Moreover, the phonon-mediated Stark effect enhanced by a static electric field F allow us to realize the both red and blue dynamical shifts of the exciton level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, Shang-Chao, E-mail: schung99@gmail.com; Chen, Yu-Jyun
2016-07-15
Highlights: • Graphene nanoribbons (GNBs) slanted on aggregate TiO{sub 2} nanotube (A-TNTs) as field-emitters. • Turn-on electric field and field enhancement factor β are dependent on the substrate morphology. • Various quantities of GNRs are deposited on top of A-TNTs (GNRs/A-TNTs) with different morphologies. • With an increase of GNBs compositions, the specimens' turn-on electric field is reduced to 2.8 V/μm. • The field enhancement factor increased rapidly to about 1964 with the addition of GNRs. - Abstract: Graphene nanoribbons (GNRs) slanted on aggregate TiO{sub 2} nanotube arrays (A-TNTs) with various compositions as field-emitters are reported. The morphology, crystalline structure,more » and composition of the as-obtained specimens were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectrometry. The dependence of the turn-on electric field and the field enhancement factor β on substrate morphology was studied. An increase of GNRs reduces the specimens’ turn-on electric field to 2.8 V/μm and the field enhancement factor increased rapidly to about 1964 with the addition of GNRs. Results show a strong dependence of the field emission on GNR composition aligned with the gradient on the top of the A-TNT substrate. Enhanced FE properties of the modified TNTs can be mainly attributed to their improved electrical properties and rougher surface morphology.« less
Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage
2016-10-01
analyzed using ANOVA with Tukey’s post -hoc test (pɘ.05). RESULTS: In study 1, a proportion of synovial fibroblasts migrated to a maximum depth of ~250...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic Cartilage PRINCIPAL...COVERED 30 Sep 2015 – 29 Sep 2016 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post -Traumatic
Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications.
Wang, Qijun; Li, Yifei; Sun, Da-Wen; Zhu, Zhiwei
2018-02-02
Improvements in living standards result in a growing demand for food with high quality attributes including freshness, nutrition and safety. However, current industrial processing methods rely on traditional thermal and chemical methods, such as sterilization and solvent extraction, which could induce negative effects on food quality and safety. The electric fields (EFs) involving pulsed electric fields (PEFs) and high voltage electric fields (HVEFs) have been studied and developed for assisting and enhancing various food processes. In this review, the principles and applications of pulsed and high voltage electric fields are described in details for a range of food processes, including microbial inactivation, component extraction, and winemaking, thawing and drying, freezing and enzymatic inactivation. Moreover, the advantages and limitations of electric field related technologies are discussed to foresee future developments in the food industry. This review demonstrates that electric field technology has a great potential to enhance food processing by supplementing or replacing the conventional methods employed in different food manufacturing processes. Successful industrial applications of electric field treatments have been achieved in some areas such as microbial inactivation and extraction. However, investigations of HVEFs are still in an early stage and translating the technology into industrial applications need further research efforts.
NASA Astrophysics Data System (ADS)
Venkattraman, Ayyaswamy
2014-10-01
The electric field enhancement due to an isolated saw-tooth asperity in an infinite channel is considered with the goal of providing some inputs to the choice of field enhancement factors used to describe microscale gas breakdown. The Schwarz-Christoffel transformation is used to map the interior of the channel to the upper half of the transformed plane. The expression for the electric field in the transformed plane is then used to determine the electric field distribution in the channel as well as field enhancement near the asperity. The effective field enhancement factor is determined and its dependence on operating and geometrical parameters is studied. While the effective field enhancement factor depends only weakly on the height of the asperity in comparison to the channel, it is influenced significantly by the base angles of the asperity. Due to the strong dependence of field emission current density on electric field, the effective field enhancement factor (βeff) is shown to vary rapidly with the applied electric field irrespective of the geometrical parameters. This variation is included in the analysis of microscale gas breakdown and compared with results obtained using a constant βeff as is done traditionally. Even though results for a varying βeff may be approximately reproduced using an equivalent constant βeff independent of E-field, it might be important for a range of operating conditions. This is confirmed by extracting βeff from experimental data for breakdown in argon microgaps with plane-parallel cathodes and comparing its dependence on the E-field. While the use of two-dimensional asperities is shown to be a minor disadvantage of the proposed approach in its current form, it can potentially help in developing predictive capabilities as opposed to treating βeff as a curve-fitting parameter.
Magnetic-field enhancement beyond the skin-depth limit
NASA Astrophysics Data System (ADS)
Shin, Jonghwa; Park, Namkyoo; Fan, Shanhui; Lee, Yong-Hee
2010-02-01
Electric field enhancement has been actively studied recently and many metallic structures that are capable of locally enhancing electric field have been reported. The Babinet's principle can be utilized, especially in the form of Booker's extension, to transform the known electric field enhancing structures into magnetic field enhancing structures. The authors explain this transformation process and discuss the regime in which this principle breaks down. Unless the metals used can be well approximated with a PEC model, the principle's predictions fails to hold true. Authors confirm this aspect using numerical simulations based on realistic material parameters for actual metals. There is large discrepancy especially when the structural dimensions are comparable or less than the skin-depth at the wavelength of interest. An alternative way to achieve magnetic field enhancement is presented and the design of a connected bow-tie structure is proposed as an example. FDTD simulation results confirm the operation of the proposed structure.
Visualizing Electric Fields at Au(111) Step Edges via Tip-Enhanced Raman Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Tip-enhanced Raman scattering (TERS) can be used to image plasmon-enhanced local electric fields on the nanoscale. This is illustrated through ambient TERS measurements recorded using silver atomic force microscope tips coated with 4-mercaptobenzonitrile molecules and used to image step edges on an Au(111) surface. The observed 2D TERS images uniquely map electric fields localized at Au(111) step edges following 671-nm excitation. We establish that our measurements are not only sensitive to spatial variations in the enhanced electric fields but also to their vector components. We also experimentally demonstrate that (i) few nanometer precision is attainable in TERS nanoscopy using corrugatedmore » tips with nominally radii on the order of 100-200 nm, and (ii) TERS signals do not necessarily exhibit the expected E4 dependence. Overall, we illustrate the concept of electric field imaging via TERS and establish the connections between our observations and conventional TERS chemical imaging measurements.« less
Space-charge-limited currents for cathodes with electric field enhanced geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu
This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less
NASA Astrophysics Data System (ADS)
Yan, Xinzhu; Li, Jian; Li, Licheng; Huang, Zhengyong; Wang, Feipeng; Wei, Yuan
2016-10-01
In this Letter, the dewetting behavior of superhydrophobic condensing surfaces under a tangential AC electric field is reported. The surface coverage of condensed droplets only exhibits a negligible increase with time. The jumping frequency of droplets is enhanced. The AC electric field motivates the dynamic transition of droplets from stretch to recoil, resulting in the counterforce propelling droplet jumping. The considerable horizontal component of jumping velocity facilitates droplet departure from superhydrophobic surfaces. Both the amplitude and frequency of AC voltage are important factors for droplet departure and dewetting effect. Thereby, the tangential electric field provides a unique and easily implementable approach to enhance droplet removal from superhydrophobic condensing surfaces.
Step-wise potential development across the lipid bilayer under external electric fields
NASA Astrophysics Data System (ADS)
Majhi, Amit Kumar
2018-04-01
Pore formation across the bilayers under external electric field is an important phenomenon, which has numerous applications in biology and bio-engineering fields. However, it is not a ubiquitous event under all field applications. To initiate a pore in the bilayer a particular threshold electric field is required. The electric field alters the intrinsic potential distribution across the bilayer as we as it enhances total potential drop across the bilayer, which causes the pore formation. The intrinsic potential profile has a maximum peak value, which is 0.8 V and it gets enhanced under application of external field, 0.43 V/nm. The peak value becomes 1.4 V when a pore appears in the bilayer and it continues to evolve as along as the external electric field remains switched on.
Effects of an Inhomogenous Electric Field on an Evaporating Thin Film in a Microchannel
NASA Astrophysics Data System (ADS)
Liu, Xiuliang; Hu, Chen; Li, Huafeng; Yu, Fei; Kong, Xiaming
2018-03-01
In this paper, heat transfer enhancement in an evaporating thin film along the wall of a microchannel under an imposed inhomogenous electrostatic field is analyzed. The mathematical model, based on the augmented Young-Laplace equation with the inhomogenous electrostatic field taken into consideration, is developed. The 2D inhomogenous electric field with the curved liquid-vapor interface is solved by the lattice Boltzmann method. Numerical solutions for the thin film characteristics are obtained for both constant wall temperature and uniform wall heat flux boundary conditions. The numerical results show that the liquid film becomes thinner and the heat transfer coefficient increases under an imposed electric field. Both of octane and water are chosen as the working mediums, and similar result about the enhancement of heat transfer on evaporating thin film by imposing electric field is obtained. It is found that applying an electric field on the evaporating thin film can enhance evaporative heat transfer in a microchannel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyidov, MirHasan Yu., E-mail: smirhasan@gyte.edu.tr; Suleymanov, Rauf A.; Institute of Physics Azerbaijan National Academy of Sciences, AZ-1143 Baku
2014-12-07
The strong enhancement, by several orders of magnitude, of the excitonic peak within the photoconductivity spectrum of TlGaSe{sub 2} semiconductor was observed. The samples were polarized in external dc electric field, which was applied prior to the measurements. Due to the accumulation of charges near the surface, an internal electric field was formed. Electron-hole pairs that were created after the absorption of light are fallen in and then separated by the built-in electric field, which prevents radiative recombination process.
Xue, Xu; Zhou, Ziyao; Dong, Guohua; Feng, Mengmeng; Zhang, Yijun; Zhao, Shishun; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Liu, Yaohua; Liu, Ming
2017-09-26
Electric field control of dynamic spin interactions is promising to break through the limitation of the magnetostatic interaction based magnetoelectric (ME) effect. In this work, electric field control of the two-magnon scattering (TMS) effect excited by in-plane lattice rotation has been demonstrated in a La 0.7 Sr 0.3 MnO 3 (LSMO)/Pb(Mn 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) (011) multiferroic heterostructure. Compared with the conventional strain-mediated ME effect, a giant enhancement of ME effect up to 950% at the TMS critical angle is precisely determined by angular resolution of the ferromagnetic resonance (FMR) measurement. Particularly, a large electric field modulation of magnetic anisotropy (464 Oe) and FMR line width (401 Oe) is achieved at 173 K. The electric-field-controllable TMS effect and its correlated ME effect have been explained by electric field modulation of the planar spin interactions triggered by spin-lattice coupling. The enhancement of the ME effect at various temperatures and spin dynamics control are promising paradigms for next-generation voltage-tunable spintronic devices.
Broadband bowtie belt nanoantennas
NASA Astrophysics Data System (ADS)
Morshed, Monir; Hattori, Haroldo T.
2018-01-01
In this article, we study a linear array of bowtie nanoantennas placed between two metallic strips that can work from 800 to 1420 nm (600 nm linewidth), with an electric field enhancement factor close to 20. We study the dynamical change of the position of the electric field enhancement amongst different elements in the array and, at the same time, the effects of dispersion on the scalability of the array elements. A systematic analysis and methodology to produce an array that can operate over a large bandwidth whilst maintaining the electric field enhancement without significant variation is provided.
Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao
2015-01-01
Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161
Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J
2014-10-01
The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.
Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com
2016-08-15
The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less
Xiao, Wendan; Li, Dan; Ye, Xuezhu; Xu, Haizhou; Yao, Guihua; Wang, Jingwen; Zhang, Qi; Hu, Jing; Gao, Na
2017-02-01
The combined use of organic amendment-assisted phytoextraction and electrokinetic remediation to decontaminate Cd-polluted soil was demonstrated in a laboratory-scale experiment. The plant species selected was the hyperaccumulator Sedum alfredii. Prior to the pot experiment, the loamy soil was treated with 15 g kg -1 of pig manure compost, 10 g kg -1 of humic acid, or 5 mmol kg -1 of EDTA, and untreated soil without application of any amendment was the control. Two conditions were applied to each treatment: no voltage (without an electrical field) and a direct current (DC) electrical field (1 V cm -1 with switching polarity every day). Results indicated that Cd concentrations in S. alfredii were significantly (p < 0.05) increased by application of the electrical field and soil amendments (pig manure compost, humic acid, and EDTA). By switching the polarity of the DC electrical field, significant pH variation from anode to cathode can be avoided, and no significant impact was observed on shoot biomass production. Electrical field application increased DTPA-extractable Cd in soils and the Cd accumulation in shoots by 6.06-15.64 and 24.53-52.31%, respectively. The addition of pig manure compost and humic acid enhanced shoot Cd accumulation by 1.54- to 1.92- and 1.38- to 1.64-fold because of their simultaneous enhancement of Cd concentration in shoots and biomass production. However, no enhancement of Cd accumulation was found in the EDTA treatment, which can be ascribed to the inhibition of plant growth caused by EDTA. In conclusion, pig manure compost or humic acid addition in combination with the application of a switched-polarity DC electrical field could significantly enhance Cd phytoextraction by hyperaccumulator S. alfredii.
GROUNDWATER AND SOIL REMEDIATION USING ELECTRICAL FIELD
Enhancements of contaminants removal and degradation in low permeability soils by electrical fields are achieved by the processes of electrical heating, electrokinetics, and electrochemical reactions. Electrical heating increases soil temperature resulting in the increase of cont...
NASA Astrophysics Data System (ADS)
Abdu, M. A.; Nogueira, P. A. B.; Souza, J. R.; Batista, I. S.; Dutra, S. L. G.; Sobral, J. H. A.
2017-03-01
Large enhancement in the equatorial electrojet (EEJ) current can occur due to sudden increase in the E layer density arising from solar flare associated ionizing radiations, as also from background electric fields modified by magnetospheric disturbances when present before or during a solar flare. We investigate the EEJ responses at widely separated longitudes during two X-class flares that occurred at different activity phases surrounding the magnetic super storm sequences of 28-29 October 2003. During the 28 October flare we observed intense reverse electrojet under strong westward electric field in the sunrise sector over Jicamarca. Sources of westward disturbance electric fields driving large EEJ current are identified for the first time. Model calculations on the E layer density, with and without flare, and comparison of the results between Jicamarca and Sao Luis suggested enhanced westward electric field due to the flare occurring close to sunrise (over Jicamarca). During the flare on 29 October, which occurred during a rapid AE recovery, a strong overshielding electric field of westward polarity over Jicamarca delayed an expected EEJ eastward growth due to flare-induced ionization enhancement in the afternoon. This EEJ response yielded a measure of the overshielding decay time determined by the storm time Region 2 field-aligned current. This paper will present a detailed analysis of the EEJ responses during the two flares, including a quantitative evaluation of the flare-induced electron density enhancements and identification of electric field sources that played dominant roles in the large westward EEJ at the sunrise sector over Jicamarca.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Bin; Qin, Hongwei; Pei, Jinliang
2016-05-23
The treatment of perpendicular electric field upon γ-Fe{sub 2}O{sub 3}/MgO film at room temperature could adjust the magnetic properties (saturation magnetization, magnetic remanence, coercivity, and saturation magnetizing field) of the film. The enhancement of saturation magnetization after the treatment of electric field may be connected with the combined shift effects of Mg ions from MgO to γ-Fe{sub 2}O{sub 3} and O{sup 2−} ions from γ-Fe{sub 2}O{sub 3} to MgO. The negative magnetoresistance of the γ-Fe{sub 2}O{sub 3}/MgO film also enhances with the treatment of perpendicular electric field at room temperature, possibly due to the increasing of electron hopping rate betweenmore » Fe{sup 2+} and Fe{sup 3+}.« less
Enhanced electrocaloric cooling in ferroelectric single crystals by electric field reversal
NASA Astrophysics Data System (ADS)
Ma, Yang-Bin; Novak, Nikola; Koruza, Jurij; Yang, Tongqing; Albe, Karsten; Xu, Bai-Xiang
2016-09-01
An improved thermodynamic cycle is validated in ferroelectric single crystals, where the cooling effect of an electrocaloric refrigerant is enhanced by applying a reversed electric field. In contrast to the conventional adiabatic heating or cooling by on-off cycles of the external electric field, applying a reversed field is significantly improving the cooling efficiency, since the variation in configurational entropy is increased. By comparing results from computer simulations using Monte Carlo algorithms and experiments using direct electrocaloric measurements, we show that the electrocaloric cooling efficiency can be enhanced by more than 20% in standard ferroelectrics and also relaxor ferroelectrics, like Pb (Mg1 /3 /Nb2 /3)0.71Ti0.29O3 .
Electro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes
Sun, Pengzhan; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei
2014-01-01
The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows can be done. With the magnetic field, the effective anchoring of ions is demonstrated but the modulation of the ion flowing directions does not occur. The mechanism of the electro- and magneto-modulated ion trans-membrane transport is investigated, indicating that the electric fields dominate the ion migration process while the magnetic fields tune the structure of nanocapillaries within GO membranes. Results also show that the ion selectivity of GO membranes can be tuned with the electric fields while the transport of ions can be enhanced synchronously with the magnetic fields. These excellent properties make GO membranes promising in areas such as field-induced mass transport control and membrane separation. PMID:25347969
Drop Migration and Demixing of Biphasic Aqueous Systems in an Applied Electric Field
NASA Astrophysics Data System (ADS)
Todd, Paul; Raghavarao, Karumanchi S. M. S.
1999-11-01
Applying an electric field to a demixing emulsion of poly(ethylene glycol)(PEG) and dextran (or maltodextrin) in phosphate-buffered aqueous solution shortens the demixing time up to 6 fold. Phosphate ions partition into the dextran-rich phase imparting a small electrical potential between the phases. PEG-rich drops migrate cathodally, and their electrophoretic mobility is directly proportional to their radius and increases with increased ionization of phosphate. An electric field, either parallel or antiparallel to the gravity vector, can enhance demixing. A theory consistent with these observations states that drops move due to external and internal electroosmotic flow (tractor treading). Enhanced demixing in an electric field whose polarity opposes buoyancy is thought to be caused by initial increased drop growth during retardation by the electric field so that the drop becomes more buoyant. However, at infinite internal drop viscosity the theory does not extrapolate to the result for solid colloid particles.
Scale-model charge-transfer technique for measuring enhancement factors
NASA Technical Reports Server (NTRS)
Kositsky, J.; Nanevicz, J. E.
1991-01-01
Determination of aircraft electric field enhancement factors is crucial when using airborne field mill (ABFM) systems to accurately measure electric fields aloft. SRI used the scale model charge transfer technique to determine enhancement factors of several canonical shapes and a scale model Learjet 36A. The measured values for the canonical shapes agreed with known analytic solutions within about 6 percent. The laboratory determined enhancement factors for the aircraft were compared with those derived from in-flight data gathered by a Learjet 36A outfitted with eight field mills. The values agreed to within experimental error (approx. 15 percent).
NASA Astrophysics Data System (ADS)
Reuveni, Yuval; Yair, Yoav; Price, Colin; Steinitz, Gideon
2017-11-01
We report coincidences of ground-level gamma-ray enhancements with precipitation events and strong electric fields typical of thunderstorms, measured at the Emilio Segre Cosmic Ray observatory located on the western slopes of Mt. Hermon in northern Israel. The observatory hosts 2 × 2″ Nal(TI) gamma ray scintillation detectors alongside a vertical atmospheric electric field (Ez) mill and conduction current (Jz) plates. During several active thunderstorms that occurred near the Mt. Hermon station in October and November 2015, we recorded prolonged periods of gamma ray enhancements, which lasted tens of minutes and coincided with peaks both in precipitation and the vertical electric field. Two types of events were detected: slow increase (up to 300 min) of atmospheric gamma ray radiation due to radon progeny washout (or rainout) along with minutes of Ez enhancement, which were not associated with the occurrences of nearby CG lightning discharges. The second type showed 30 min bursts of gamma rays, coinciding with minutes of Ez enhancement that closely matched the occurrences of nearby CG lightning discharges, and are superimposed on the radiation from radon daughters washed out to near surface levels by precipitation. We conclude that a superposition of accelerated high energy electrons by thunderstorm electric fields and radon progeny washout (or rainout) explains the relatively fast near surface gamma-ray increase, where the minutes-scale vertical electric field enhancement are presumably caused due to nearby convective clouds. Our results show that the mean exponential half-life depletion times of the residual nuclei produced during events without lightning occurrences were between 25-65 min, compared to 55-100 min when lightning was present, indicating that different types of nuclei were involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören
The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less
Esteves, Giovanni; Fancher, Chris M.; Röhrig, Sören; ...
2017-04-08
The effects of electrical and mechanical loading on the behavior of domains and phases in Multilayer Piezoelectric Actuators (MAs) is studied using in situ high-energy X-ray diffraction (XRD) and macroscopic property measurements. Rietveld refinement is carried out on measured diffraction patterns using a two-phase tetragonal (P4mm) and rhombohedral (R3m) model. Applying an electric field promotes the rhombohedral phase, while increasing compressive uniaxial pre-stress prior to electric field application favors the tetragonal phase. The competition between electrical and mechanical energy leads to a maximal difference between electric-field-induced phase fractions at 70 MPa pre-stress. Additionally, the available volume fraction of non-180° domainmore » reorientation that can be accessed during electric field application increases with compressive pre-stress up to 70 MPa. The origin for enhanced strain and polarization with applied pre-stress is attributed to a combination of enhanced non-180° domain reorientation and electric-field-induced phase transitions. The suppression of both the electric-field-induced phase transitions and domain reorientation at high pre-stresses (>70 MPa) is attributed to a large mechanical energy barrier, and alludes to the competition of the electrical and mechanical energy within the MA during applied stimuli.« less
ELECTRIC-FIELD-ENHANCED FABRIC FILTRATION OF ELECTRICALLY CHARGED FLYASH
The paper summarizes measurements in which both external electric field (applied by electrodes at the fabric surface) and flyash electrical charge (controlled by an upstream corona precharger) are independent variables in a factorial performance experiment carried out in a labora...
Development of dielectric elastomer nanocomposites as stretchable actuating materials
NASA Astrophysics Data System (ADS)
Wang, Yu; Sun, L. Z.
2017-10-01
Dielectric elastomer nanocomposites (DENCs) filled with multi-walled carbon nanotubes are developed. The electromechanical responses of DENCs to applied electric fields are investigated through laser Doppler vibrometry. It is found that a small amount of carbon nanotube fillers can effectively enhance the electromechanical performance of DENCs. The enhanced electromechanical properties have shown not only that the desired thickness strain can be achieved with reduced required electric fields but also that significantly large thickness strain can be obtained with any electric fields compared to pristine dielectric elastomers.
Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields
Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio
2014-01-01
Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402
NASA Technical Reports Server (NTRS)
Pfaff, R.; Rowland, D.; Klenzing, J.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Roddy, P.; Hunton, D.
2009-01-01
DC electric field observations and associated plasma drifts gathered with the Vector Electric Field Investigation on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite typically reveal considerable variation at large scales (approximately 100's of km), in both daytime and nighttime cases, with enhanced structures usually confined to the nightside. Although such electric field structures are typically associated with plasma density depletions and structures, as observed by the Planar Langmuir Probe on C/NOFS, what is surprising is the number of cases in which large amplitude, structured DC electric fields are observed without a significant plasma density counterpart structure, including their appearance at times when the ambient plasma density appears relatively quiescent. We investigate the relationship of such structured DC electric fields and the ambient plasma density in the C/NOFS satellite measurements observed thus far, taking into account both plasma density depletions and enhancements. We investigate the mapping of the electric fields along magnetic field lines from distant altitudes and latitudes to locations where the density structures, which presumably formed the original seat of the electric fields, are no longer discernible in the observations. In some cases, the electric field structures and spectral characteristics appear to mimic those associated with equatorial spread-F processes, providing important clues to their origins. We examine altitude, seasonal, and longitudinal effects in an effort to establish the origin of such structured DC electric fields observed both with, and without, associated plasma density gradients
NASA Astrophysics Data System (ADS)
Neyra, E.; Videla, F.; Ciappina, M. F.; Pérez-Hernández, J. A.; Roso, L.; Lewenstein, M.; Torchia, G. A.
2018-03-01
We study high-order harmonic generation (HHG) in model atoms driven by plasmonic-enhanced fields. These fields result from the illumination of plasmonic nanostructures by few-cycle laser pulses. We demonstrate that the spatial inhomogeneous character of the laser electric field, in a form of Gaussian-shaped functions, leads to an unexpected relationship between the HHG cutoff and the laser wavelength. Precise description of the spatial form of the plasmonic-enhanced field allows us to predict this relationship. We combine the numerical solutions of the time-dependent Schrödinger equation (TDSE) with the plasmonic-enhanced electric fields obtained from 3D finite element simulations. We additionally employ classical simulations to supplement the TDSE outcomes and characterize the extended HHG spectra by means of their associated electron trajectories. A proper definition of the spatially inhomogeneous laser electric field is instrumental to accurately describe the underlying physics of HHG driven by plasmonic-enhanced fields. This characterization opens up new perspectives for HHG control with various experimental nano-setups.
Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills
NASA Astrophysics Data System (ADS)
Lucas, G.; Thayer, J. P.; Deierling, W.
2016-12-01
Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.
Consolidation of Partially Stabilized ZrO2 in the Presence of a Noncontacting Electric Field
NASA Astrophysics Data System (ADS)
Majidi, Hasti; van Benthem, Klaus
2015-05-01
Electric field-assisted sintering techniques demonstrate accelerated densification at lower temperatures than the conventional sintering methods. However, it is still debated whether the applied field and/or resulting currents are responsible for the densification enhancement. To distinguish the effects of an applied field from current flow, in situ scanning transmission electron microscopy experiments with soft agglomerates of partially stabilized yttria-doped zirconia particles are carried out. A new microelectromechanical system-based sample support is used to heat particle agglomerates while simultaneously exposing them to an externally applied noncontacting electric field. Under isothermal condition at 900 °C , an electric field strength of 500 V /cm shows a sudden threefold enhancement in the shrinkage of the agglomerates. The applied electrostatic potential lowers the activation energy for point defect formation within the space charge zone and therefore promotes consolidation. Obtaining similar magnitudes of shrinkage in the absence of any electric field requires a higher temperature and longer time.
Birbarah, Patrick; Li, Zhaoer; Pauls, Alexander; Miljkovic, Nenad
2015-07-21
Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding positively charged water droplets via coalescence-induced droplet jumping at length scales below the capillary length and allowing the use of external electric fields to enhance droplet removal and heat transfer, in what has been termed electric-field-enhanced (EFE) jumping-droplet condensation. However, achieving optimal EFE conditions for enhanced heat transfer requires capturing the details of transport processes that is currently lacking. While a comprehensive model has been developed for condensation on micro/nanostructured surfaces, it cannot be applied for EFE condensation due to the dynamic droplet-vapor-electric field interactions. In this work, we developed a comprehensive physical model for EFE condensation on superhydrophobic surfaces by incorporating individual droplet motion, electrode geometry, jumping frequency, field strength, and condensate vapor-flow dynamics. As a first step toward our model, we simulated jumping droplet motion with no external electric field and validated our theoretical droplet trajectories to experimentally obtained trajectories, showing excellent temporal and spatial agreement. We then incorporated the external electric field into our model and considered the effects of jumping droplet size, electrode size and geometry, condensation heat flux, and droplet jumping direction. Our model suggests that smaller jumping droplet sizes and condensation heat fluxes require less work input to be removed by the external fields. Furthermore, the results suggest that EFE electrodes can be optimized such that the work input is minimized depending on the condensation heat flux. To analyze overall efficiency, we defined an incremental coefficient of performance and showed that it is very high (∼10(6)) for EFE condensation. We finally proposed mechanisms for condensate collection which would ensure continuous operation of the EFE system and which can scalably be applied to industrial condensers. This work provides a comprehensive physical model of the EFE condensation process and offers guidelines for the design of EFE systems to maximize heat transfer.
Geometrical enhancement of the electric field: Application of fractional calculus in nanoplasmonics
NASA Astrophysics Data System (ADS)
Baskin, E.; Iomin, A.
2011-12-01
We developed an analytical approach, for a wave propagation in metal-dielectric nanostructures in the quasi-static limit. This consideration establishes a link between fractional geometry of the nanostructure and fractional integro-differentiation. The method is based on fractional calculus and permits to obtain analytical expressions for the electric-field enhancement.
NASA Astrophysics Data System (ADS)
Pokatilov, E. P.; Nika, D. L.; Zincenco, N. D.; Balandin, A. A.
2007-12-01
We have shown theoretically that the electron mobility in wurtzite AlN/GaN/AlN heterostructures can be enhanced by compensating the built-in electric field with the externally applied perpendicular electric field and by introducing a shallow InxGa1-xN channel in the center of GaN potential well. It was found that two- to fivefold increase of the room temperature electron mobility can be achieved. The tuning of the electron mobility with the external electric field or InxGa1-xN channel can be useful for the design of GaN-based field-effect transistors and optoelectronic devices.
Bi, Ran; Schlaak, Michael; Siefert, Eike; Lord, Richard; Connolly, Helen
2011-04-01
The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15mgkg(-1) Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1Vcm(-1)) and direct current electrical field (DC, 1Vcm(-1)) with switching polarity every 3h. The electrical fields were applied for 30d for rapeseed and 90d for tobacco, each experiment had three replicates. After a total of 90d growth for rapeseed and of 180d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils. Copyright © 2010 Elsevier Ltd. All rights reserved.
Schottky's conjecture on multiplication of field enhancement factors
NASA Astrophysics Data System (ADS)
Miller, Ryan; Lau, Y. Y.; Booske, John H.
2009-11-01
Of great interest to high power microwave, millimeter wave to terahertz sources, x-ray tubes, electrons guns, etc., is the electric field enhancement obtained from sharp emitting structures fabricated by various microfabrication methods. In this paper, we use conformal mapping to investigate the field enhancement of several rectilinear geometries, including a single rectangular ridge, a trapezoidal ridge, and their superposition, i.e., one ridge on top of another. We show that the composite field enhancement factor of the double ridge with a microprotrusion on top of a macroprotrusion is dominated by the product of the individual protrusions' field enhancement factors over a very wide range of geometric aspect ratios, as conjectured by Schottky. Simplified scaling laws are proposed. Significant deviation from Schottky's product rule occurs almost exclusively when the half-width of the macroprotrusion is less than the height of the microprotrusion. Accurate expressions of the divergent electric field near the sharp edges are derived.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2017-12-01
Parallel electrostatic electric fields provide a powerful mechanism to accelerate auroral particles to high energy in the auroral acceleration region (AAR), creating both quasi-static and Alfvenic discrete aurorae. The total field-aligned current can be written as J||total=J||+J||D, where the displacement current is denoted as J||D=(1/4π)(∂E||/∂t), which describes the E||-generation (Song and Lysak, 2006). The generation of the total field-aligned current is related to spatial gradients of the parallel vorticity caused by the axial torque acting on field-aligned flux tubes in M-I coupling system. It should be noticed that parallel electric fields are not produced by the field-aligned current. In fact, the E||-generation is caused by Alfvenic interaction in the M-I coupling system, and is favored by a low plasma density and the enhanced localized azimuthal magnetic flux. We suggest that the nonlinear interaction of incident and reflected Alfven wave packets in the AAR can create reactive stress concentration, and therefore can generate the parallel electrostatic electric fields together with a seed low density cavity. The generated electric fields will quickly deepen the seed low density cavity, which can effectively create even stronger electrostatic electric fields. The electrostatic electric fields nested in a low density cavity and surrounded by enhanced azimuthal magnetic flux constitute Alfvenic electromagnetic plasma structures, such as Alfvenic Double Layers (DLs). The Poynting flux carried by Alfven waves can continuously supply energy from the generator region to the auroral acceleration region, supporting and sustaining Alfvenic DLs with long-lasting electrostatic electric fields which accelerate auroral particles to high energy. The generation of parallel electric fields and the formation of auroral arcs can redistribute perpendicular mechanical and magnetic stresses in auroral flux tubes, decoupling the magnetosphere from ionosphere drag locally. This may enhance the magnetotail earthward shear flows and rapidly buildup stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release, if there is accumulated free magnetic energy in the tail.
Stevens, Fred J.
1992-01-01
A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.
Hong, Jongwoo; Kim, Sun-Je; Kim, Inki; Yun, Hansik; Mun, Sang-Eun; Rho, Junsuk; Lee, Byoungho
2018-05-14
It has been hard to achieve simultaneous plasmonic enhancement of nanoscale light-matter interactions in terms of both electric and magnetic manners with easily reproducible fabrication method and systematic theoretical design rule. In this paper, a novel concept of a flat nanofocusing device is proposed for simultaneously squeezing both electric and magnetic fields in deep-subwavelength volume (~λ 3 /538) in a large area. Based on the funneled unit cell structures and surface plasmon-assisted coherent interactions between them, the array of rectangular nanocavity connected to a tapered nanoantenna, plasmonic metasurface cavity, is constructed by periodic arrangement of the unit cell. The average enhancement factors of electric and magnetic field intensities reach about 60 and 22 in nanocavities, respectively. The proposed outstanding performance of the device is verified numerically and experimentally. We expect that this work would expand methodologies involving optical near-field manipulations in large areas and related potential applications including nanophotonic sensors, nonlinear responses, and quantum interactions.
NASA Astrophysics Data System (ADS)
Grant-Jacob, James A.; Zin Oo, Swe; Carpignano, Francesca; Boden, Stuart A.; Brocklesby, William S.; Charlton, Martin D. B.; Melvin, Tracy
2016-02-01
Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.
Grant-Jacob, James A; Oo, Swe Zin; Carpignano, Francesca; Boden, Stuart A; Brocklesby, William S; Charlton, Martin D B; Melvin, Tracy
2016-02-12
Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.
NASA Astrophysics Data System (ADS)
Chitnork, Amporn; Yuenyong, Chokchai
2018-01-01
The research aimed to enhance Grade 10 Thai students' scientific argumentation in learning about electric field through science, technology, and society (STS) approach. The participants included 45 Grade 10 students who were studying in a school in Nongsonghong, Khon Kaen, Thailand. Methodology regarded interpretive paradigm. The intervention was the force unit which was provided based on Yuenyong (2006) STS approach. Students learned about the STS electric field unit for 4 weeks. The students' scientific argumentation was interpreted based on Toulmin's argument pattern or TAP. The TAP provided six components of argumentation including data, claim, warrants, qualifiers, rebuttals and backing. Tools of interpretation included students' activity sheets, conversation, journal writing, classroom observation and interview. The findings revealed that students held the different pattern of argumentation. Then, they change pattern of argumentation close to the TAP. It indicates that the intervention of STS electric field unit enhance students to develop scientific argumentation. This finding may has implication of further enhancing scientific argumentation in Thailand.
NASA Astrophysics Data System (ADS)
Das, Suchandra; Musunuri, Naga; Kucheryavy, Pavel; Lockard, Jenny; Fischer, Ian; Singh, Pushpendra; New Jersey Institute of Technology Collaboration; Rutgers University Newark Collaboration
2017-11-01
We present a technique that uses an electric field in the direction normal to the interface for self-assembling monolayers of gold nanoparticles on fluid-liquid interfaces and freezing these monolayers onto the surface of a flexible thin film. The electric field gives rise to dipole-dipole and capillary forces which cause the particles to arrange in a triangular pattern. The technique involves assembling the monolayer on the interface between a UV-curable resin and another fluid by applying an electric field, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film. We are using these films for surface enhanced Raman scattering (SERS) applications. Initial measurements indicate improved performance over commercially available SERS substrates.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
Shahini, Mehdi; Yeow, John T W
2011-08-12
We report on the enhancement of electrical cell lysis using carbon nanotubes (CNTs). Electrical cell lysis systems are widely utilized in microchips as they are well suited to integration into lab-on-a-chip devices. However, cell lysis based on electrical mechanisms has high voltage requirements. Here, we demonstrate that by incorporating CNTs into microfluidic electrolysis systems, the required voltage for lysis is reduced by half and the lysis throughput at low voltages is improved by ten times, compared to non-CNT microchips. In our experiment, E. coli cells are lysed while passing through an electric field in a microchannel. Based on the lightning rod effect, the electric field strengthened at the tip of the CNTs enhances cell lysis at lower voltage and higher throughput. This approach enables easy integration of cell lysis with other on-chip high-throughput sample-preparation processes.
Nanoantennas for enhancing and confining the magnetic optical field
NASA Astrophysics Data System (ADS)
Grosjean, Thierry; Mivelle, Mathieu; Baida, Fadi I.; Burr, Geoffrey W.; Fischer, Ulrich C.
2011-05-01
We propose different optical antenna structures for enhancing and confining the magnetic optical field. A common feature of these structures are concave corners in thin metal films as locations of the enhanced magnetic field. This proposal is inspired by Babinet's principle as the concave edges are the complementary structures to convex metal corners, which are known to be locations of a strongly enhanced electric field. Bowtie antennas and the bowtie apertures of appropriate size were shown to exhibit resonances in the infrared frequency range with an especially strong enhancement of the electrical field in the gap between 2 convex metal corners. We show by numerical calculations, that the complementary structures, the complementary bowtie aperture - the diabolo antenna - and the complementary bow tie antenna - two closely spaced triangular apertures in a metal film with a narrow gap between two opposing concave corners - exhibit resonances with a strongly enhanced magnetic field at the narrow metal constriction between the concave corners. We suggest sub-wavelength circuits of concave and convex corners as building blocks of planar metamaterials.
NASA Astrophysics Data System (ADS)
Reuveni, Yuval; Yair, Yoav; Price, Colin; Steinitz, Gideon
2017-04-01
We present correlations found between ground-level gamma-ray enhancements with precipitation and strong electric fields typical of thunderstorms. The data was obtained at the Cosmic Ray Observatory located on the western slopes of Mt. Hermon in northern Israel (altitude 2020 m ASL). During several thunderstorms in October and November 2015, we recorded extended periods of gamma ray enhancements, which lasted tens of minutes and coincided with peaks both in precipitation and the vertical electric field (Ez). We distinguish between two types of events based on the behavior of these parameters: (a) slow increase (up to 300 minutes) of atmospheric gamma ray radiation due to radon progeny washout along with minutes of Ez enhancement, which were not associated with the occurrences of near-by CG lightning discharges, and (b) rapid 30 minutes-long bursts of gamma rays, coinciding with much shorter Ez enhancements that were associated with the occurrences of near-by CG lightning discharges, and were superimposed on the radiation from radon daughters at ground level washed out by precipitation. We conclude that the superposition of accelerated high energy electrons by thunderstorm electric fields with the radon progeny washout explains the relatively fast gamma-ray increase observed at ground level, where the minutes-scale vertical electric field enhancement are presumably caused due to near-by convective clouds. Our results show that the mean half-life depletion times of the residual nuclei that were produced during events without lightning occurrences were between 25-65 minutes, compared to 55-100 minutes when lightning were present, indicating that different types of nuclei were involved.
NASA Astrophysics Data System (ADS)
Dul'kin, E.; Kojima, S.; Roth, M.
2018-01-01
[001] oriented Sr0.75Ba0.25Nb2O6 uniaxial relaxor ferroelectric crystals have been studied by acoustic emission in the temperature range of 20÷200 °C and under an external electric field up to 1 kV/cm. Under the application of an electric field the temperature of a dielectric maximum exhibits a nontrivial behavior: it remains constant at first, secondly steep decreases down to some threshold field, and thirdly starts to increase as a field enhances, whereas the same temperature of a dielectric maximum under a bias electric field to [100] oriented Sr0.75Ba0.25Nb2O6 crystals exhibits a smoothed minimum before the start to increase as a field enhances (E. Dul'kin et al., J. Appl. Phys. 110, 044106 (2011)). Such a difference of electric field effects in c- and a-cut crystals is discussed from the viewpoint of random-bond-random-field model of relaxor ferroelectrics. By the comparison between experimental and theoretical data, a dipole moment of the PNR was estimated to be 0.1 (C cm).
ERIC Educational Resources Information Center
Lakonpol, Thongmee; Ruangsuwan, Chaiyot; Terdtoon, Pradit
2015-01-01
This research aimed to develop a web-based learning environment model for enhancing cognitive skills of undergraduate students in the field of electrical engineering. The research is divided into 4 phases: 1) investigating the current status and requirements of web-based learning environment models. 2) developing a web-based learning environment…
Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells.
Ganeva, Valentina; Galutzov, Bojidar; Teissie, Justin
2014-02-01
The application of rectangular electric pulses, with 0.1-2 ms duration and field intensity of 2.5-4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2-8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domengie, F., E-mail: florian.domengie@st.com; Morin, P.; Bauza, D.
We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metalmore » atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.« less
Yuan, Ye; Guo, Shuhai; Li, Fengmei; Wu, Bo; Yang, Xuelian; Li, Xuan
2016-12-15
An innovative approach that couples electrokinetics with microbial degradation to breakdown cycloparaffinic hydrocarbons in soils is described. Soils were spiked with cyclododecane, used as a model pollutant, at approximately 1000mgkg -1 . A mixture of petroleum-utilizing bacteria was added to achieve about 10 6 -10 7 CFUg -1 . Then, three treatments were applied for 25 days: (1) no electric field, control; (2) a constant voltage gradient of 1.3Vcm -1 in one direction; and (3) the same electric field, but with periodical switching of polarity. The degradation pathway of cyclododecane was not changed by the electric field, but the dynamic processes were remarkably enhanced, especially when the electric field was periodically switched. After 25 days, 79.9% and 87.0% of the cyclododecane was degraded in tests 2 and 3, respectively; both much higher than the 61.5% degraded in test 1. Analysis of the intermediate products strongly indicated that the competitive advantage of the electric field was the increase in ring-breaking of cyclododecane, resulting in greater concentrations of linear substances that were more susceptible to microbial attack, that is, β-oxidation. The conditions near the cathode were more favorable for the growth and metabolism of microorganisms, which also enhanced β-oxidation of the linear alkanoic acids. Therefore, when the electric field polarity was periodically switched, the functions of both the anode and cathode electrodes were applied across the whole soil cell, further increasing the degradation efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ohba, Nobuko; Ogata, Shuji; Tamura, Tomoyuki; Kobayashi, Ryo; Yamakawa, Shunsuke; Asahi, Ryoji
2012-02-01
Enhancing the diffusivity of the Li ion in a Li-graphite intercalation compound that has been used as a negative electrode in the Li-ion rechargeable battery, is important in improving both the recharging speed and power of the battery. In the compound, the Li ion creates a long-range stress field around itself by expanding the interlayer spacing of graphite. We advance the hybrid quantum-classical simulation code to include the external electric field in addition to the long-range stress field by first-principles simulation. In the hybrid code, the quantum region selected adaptively around the Li ion is treated using the real-space density-functional theory for electrons. The rest of the system is described with an empirical interatomic potential that includes the term relating to the dispersion force between the C atoms in different layers. Hybrid simulation runs for Li dynamics in graphite are performed at 423 K under various settings of the amplitude and frequency of alternating electric fields perpendicular to C-layers. We find that the in-plane diffusivity of the Li ion is enhanced significantly by the electric field if the amplitude is larger than 0.2 V/Å within its order and the frequency is as high as 1.7 THz. The microscopic mechanisms of the enhancement are explained.
Large Electric Field-Enhanced-Hardness Effect in a SiO2 Film
NASA Astrophysics Data System (ADS)
Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen
2014-03-01
Silicon dioxide films are extensively used in nano and micro-electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation-induced deformation during the friction measurements.
Seng, Frederick; Yang, Zhenchao; King, Rex; Shumway, LeGrand; Stan, Nikola; Hammond, Alec; Warnick, Karl F; Schultz, Stephen
2017-06-10
This work introduces a passive dipole antenna integrated into the packaging of a slab-coupled optical sensor to enhance the directional sensitivity of electro-optic electric field measurements parallel to the fiber axis. Using the passive integrated dipole antenna described in this work, a sensor that can typically only sense fields transverse to the fiber direction is able to sense a 1.25 kV/m field along the fiber direction with a gain of 17.5. This is verified through simulation and experiment.
Slightly uneven electric field trigatron employed in tens of microseconds charging time.
Lin, Jiajin; Yang, Jianhua; Zhang, Jiande; Zhang, Huibo; Yang, Xiao
2014-09-01
To solve the issue of operation instability for the trigatron switch in the application of tens of microseconds or even less charging time, a novel trigatron spark gap with slightly uneven electric field was presented. Compared with the conventional trigatron, the novel trigatron was constructed with an obvious field enhancement on the edge of the opposite electrode. The selection of the field enhancement was analyzed based on the theory introduced by Martin. A low voltage trigatron model was constructed and tested on the tens of microseconds charging time platform. The results show that the character of relative range was improved while the trigger character still held a high level. This slightly uneven electric field typed trigatron is willing to be employed in the Tesla transformer - pulse forming line system.
Field and energy relations in continuum electrodynamics.
Crenshaw, Michael E
2005-09-01
The bare, or fundamental, electric and magnetic fields in a linear medium are identified. Through the energy relations for the bare fields, the electric permittivity is shown to combine the effects of the enhanced energy density and the polarization reaction field. The macroscopic Maxwell equations are modified to be consistent with the constitutive relations for the bare fields.
Equatorial measurement of SAID electric fields and relation with the plasmapause location
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Wygant, J.; Ono, T.; Iizima, M.; Kumamoto, A.; Brautigam, D.; Rich, F.
2007-12-01
In order to investigate the equatorial source of subauroral ion drifts (SAID) and its association with the plasmapause position, multi-spacecraft measurements of SAID are presented using the CRRES, Akebono, and DMSP. Direct measurement of the convection electric field and plasmapause density close to the equator is measured by the electric field instrument onboard the CRRES satellite, and the plasmasheet electrons and low energy part of the ring current ions are measured by the low energy plasma instrument. The CRRES satellite is on the dusk inner magnetosphere, and the DMSP-F8 and Akebono satellites are approximately on the same field line. Associated with a substorm onset at 16:40 UT on February 20, 1991, the DMSP-F8 satellite at 19 MLT measures SAID with a maximum westward velocity of 1,500 m/s. The CRRES satellite is on outbound in the inner magnetosphere at ~21 MLT and ~5 RE at the onset of the substorm. It measures increase of DC electric field with 0.4 mV/m in the plasmasphere just after the substorm onset. Thirty minutes later, injection of ring current ions are observed in the plasmasphere with Bz decrease. After the crossing of the plasmapause, the electric field increases to 0.8 mV/m. At the same time, the spacecraft enters the plasmasheet, and the DC electric field disappears. The same time sequence is also identified in other SAID events detected on the dusk inner magnetosphere. The above CRRES measurement indicates that DC electric field is intensified in a narrow region between the ring current and electron plasmasheet after the onset of the substorm. Although the E*B drift points sunward in this region, this region with enhanced electric field is filled with plasmaspheric plasma without abrupt density change. The position where the convection electric field is equal to the corotation electric field locates inside the plasmapause. The plasmapause coincides with inner edge of the plasmasheet. This association suggests that the plasmaspheric plasma is depleted by the plasmasheet electrons, possibly by the enhanced E*B drift earthward of the plasmasheet. During the SAID event on 16:40 UT on February 20, 1991, the Akebono satellite was approximately on the same field line of the CRRES satellite (21 MLT and 5 RE) 40 minutes later the substorm onset. It measures enhancement of electric field with 2 mV/m between L=5 and 6. The inner edge of the electric field corresponds to the inner edge of ring current ions, and the outer edge coincides with the plasmasheet electrons. This signature of the electric field intensification in the charge-separated region is in accordance with the CRRES measurement. This study has clarified that the equatorial source of SAID electric fields is charge separation of ring current ions and plasmasheet electrons by electric field associated with substorms. This is consistent with the theoretical study by Southwood and Wolf [1978] and low-altitude measurements by Anderson et al. [2001] by that the charge separation provides current and voltage sources and the electric field is increased by the low conductance of the subauroral ionosphere.
Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties
NASA Astrophysics Data System (ADS)
Song, Meng; Xu, Peng; Song, Yenan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wu, Huizhen; Zhao, Pei; Wang, Miao
2015-09-01
Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ˜1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.
Lin, Jing; Huang, Yang; Bando, Yoshio; Tang, Chengchun; Li, Chun; Golberg, Dmitri
2010-04-27
We report on the synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures via a simple catalyst-free method. A typical heterostructure, where an In2O3 nanowire forms a sort of a "dorsal fin" on the Ga2O3 nanobelt, exhibits the T-shaped cross-section. The structure, electrical porperties, and field-emission properties of this material are systematically investigated. The heterostructures possess a typical n-type semiconducting behavior with enhanced conductivity. Field-emission measurements show that they have a low turn-on field (approximately 1.31 V/microm) and a high field-enhancement factor (over 4000). The excellent field-emission characteristics are attributed to their special geometry and good electrical properties. The present In2O3-decorated Ga2O3 heterostructures are envisaged to be decent field-emitters useful in advanced electronic and optoelectronic nanodevices.
Rout, Diptiranjan; Chakrabarty, D.; Sekar, R.; ...
2016-05-26
Before the onset of a geomagnetic storm on 22 January 2012 (Ap = 24), an enhancement in solar wind number density from 10/cm 3 to 22/cm 3 during 0440–0510 UT under northward interplanetary magnetic field (IMF Bz) condition is shown to have enhanced the high-latitude ionospheric convection and also caused variations in the geomagnetic field globally. Some conspicuous changes in ΔX are observed not only at longitudinally separated low-latitude stations over Indian (prenoon), South American (midnight), Japanese (afternoon), Pacific (afternoon) and African (morning) sectors but also at latitudinally separated stations located over high and middle latitudes. The latitudinal variation ofmore » the amplitude of the ΔX during 0440–0510 UT is shown to be consistent with the characteristics of prompt penetration electric field disturbances. Most importantly, the density pulse event caused enhancements in the equatorial electrojet strength and the peak height of the F layer (h mF 2) over the Indian dip equatorial sector. Furthermore, the concomitant enhancements in electrojet current and F layer movement over the dip equator observed during this space weather event suggest a common driver of prompt electric field disturbance at this time. Such simultaneous variations are found to be absent during magnetically quiet days. In the absence of significant change in solar wind velocity and magnetospheric substorm activity, these observations point toward perceptible prompt electric field disturbance over the dip equator driven by the overcompression of the magnetosphere by solar wind density enhancement.« less
NASA Astrophysics Data System (ADS)
Lu, Xianfeng
The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition. The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect. The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp 2 phase concentration. In addition, the deviation of the experimental Fowler-Nordheim (F-N) plot from a straight line was observed for graphitic nanocone films. The deviation can be mainly attributed to the nonuniform field enhancement factor of the graphitic nanocones. In low macroscopic electric field regions, electrons are emitted mainly from nanocone or nanocones with the largest field enhancement factor, which corresponds to the smallest slope magnitude. With the increase of electric field, nanocones with small field enhancement factors also contribute to the emission current, which results in a reduced average field enhancement factor and therefore a large slope magnitude.
Effect of interphase permittivity on the electric field distribution of epoxy nanocomposites
NASA Astrophysics Data System (ADS)
Pradeep, Lavanya; Nelson, Avinash; Preetha, P.
2018-05-01
Epoxy plays a vital role in high voltage insulation system due to its superior electrical and thermal properties. Literature reports the enhancement in these properties by the addition of nanofillers to epoxy and this enhancement is attributed to the effect of interphase. Characterization of polymer nanocomposites proves the importance of interphase formed between the polymer and nanoparticle in the composite. It was observed that the permittivity of the interphase is having a significant effect on the properties of these materials. In this work, a three dimensional Epoxy nanocomposite with 0.5 vol%, 1 vol% of alumina particles are modeled using unit cell approach in COMSOL Multiphysics. Simulation is done using several existing interphase permittivity models and field distribution is observed. Results shows the noticeable influence of interphase permittivity on the electric field distribution. A good correlation of electric field distribution with the AC breakdown strength is observed.
PLOTNIKOV, A; FISHMAN, D; TICHLER, T; KORENSTEIN, R; KEISARI, Y
2004-01-01
Low electric field cancer treatment − enhanced chemotherapy (LEFCT-EC) is a new anticancer treatment which utilizes a combination of chemotherapeutic agents and a low electric field. We investigated the antitumour effectiveness of this technique in a model of murine colon carcinoma (CT-26). The low electric field was applied to ∼65 mm3 intracutaneous tumours after intratumoral injection of 5FU, bleomycin or BCNU. We observed significant tumour size reduction and a prolongation of survival time. The complete cure of a significant fraction of animals treated by LEFCT-EC with 5FU (33%), bleomycin (51%) or BCNU (83%) was observed. Mice cured by LEFCT-EC developed resistance to a tumour challenge and their splenocytes had antitumour activity in vivo. Our results suggest that LEFCT-EC is an effective method for treatment of solid tumours. PMID:15544616
Plotnikov, A; Fishman, D; Tichler, T; Korenstein, R; Keisari, Y
2004-12-01
Low electric field cancer treatment-enhanced chemotherapy (LEFCT-EC) is a new anticancer treatment which utilizes a combination of chemotherapeutic agents and a low electric field. We investigated the antitumour effectiveness of this technique in a model of murine colon carcinoma (CT-26). The low electric field was applied to approximately 65 mm3 intracutaneous tumours after intratumoral injection of 5FU, bleomycin or BCNU. We observed significant tumour size reduction and a prolongation of survival time. The complete cure of a significant fraction of animals treated by LEFCT-EC with 5FU (33%), bleomycin (51%) or BCNU (83%) was observed. Mice cured by LEFCT-EC developed resistance to a tumour challenge and their splenocytes had antitumour activity in vivo. Our results suggest that LEFCT-EC is an effective method for treatment of solid tumours.
Wahlstrand, J K; Zhang, H; Choi, S B; Sipe, J E; Cundiff, S T
2011-11-07
A static electric field enables coherent control of the photoexcited carrier density in a semiconductor through the interference of one- and two-photon absorption. An experiment using optical detection is described. The polarization dependence of the signal is consistent with a calculation using a 14-band k · p model for GaAs. We also describe an electrical measurement. A strong enhancement of the phase-dependent photocurrent through a metal-semiconductor-metal structure is observed when a bias of a few volts is applied. The dependence of the signal on bias and laser spot position is studied. The field-induced enhancement of the signal could increase the sensitivity of semiconductor-based carrier-envelope phase detectors, useful in stabilizing mode-locked lasers for use in frequency combs.
Electric potential and electric field imaging
NASA Astrophysics Data System (ADS)
Generazio, E. R.
2017-02-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for "illuminating" volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e-Sensor enhancements (ephemeral e-Sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
NASA Astrophysics Data System (ADS)
Shojaeifar, Mohsen; Mohajerani, Ezeddin; Fathollahi, Mohammadreza
2018-01-01
Herein, we report the application of electric field assisted sintering (EFAS) procedure in dye sensitized solar cells (DSSCs). The EFAS process improved DSSC performance by enhancing optical and electrical characteristics simultaneously. The EFAS procedure is shown to be capable of reducing the TiO2 nanoparticle aggregation leading to the higher surface area for dye molecules adsorbates. Lower nanoparticle aggregation can be evidently observed by field emission scanning electron microscopy imaging. By applying an external electric field, the current density and conversion efficiency improved significantly about 30% and 45%, respectively. UV-Visible spectra of the desorbed dye molecules on the porous nanoparticles bedding confirm a higher amount of dye loading in the presence of an external electric field. Correspondingly, comprehensive J-V characteristics modeling reveals the enhancement of the diffusion coefficient by EFAS process. The proposed method can be applied to improve the efficiency of the mesostructured hybrid perovskite solar cells, photodetectors, and quantum dot-sensitized solar cells, as well as reduction of the surface area loss in all porous media.
Electric Potential and Electric Field Imaging with Applications
NASA Technical Reports Server (NTRS)
Generazio, Ed
2016-01-01
The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
Inward transport of a toroidally confined plasma subject to strong radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y. H.
1977-01-01
Digitally implemented spectral analysis techniques were used to investigate the frequency-dependent fluctuation-induced particle transport across a toroidal magnetic field. When the electric field pointed radially inward, the transport was inward and a significant enhancement of the plasma density and confinement time resulted.
The mechanism of plasma-assisted penetration of NO2- in model tissues
NASA Astrophysics Data System (ADS)
He, Tongtong; Liu, Dingxin; Liu, Zhijie; Liu, Zhichao; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.
2017-11-01
Cold atmospheric plasmas are reportedly capable of enhancing the percutaneous absorption of drugs, which is a development direction of plasma medicine. This motivated us to study how the enhancement effect was realized. In this letter, gelatin gel films were used as surrogates of human tissues, NaNO2 was used as a representative of small-molecule drugs, and cross-field and linear-field plasma jets were used for the purpose of enhancing the penetration of NaNO2 through the gelatin gel films. The permeability of gelatin gel films was quantified by measuring the NO2- concentration in water which was covered by those films. It was found that the gas flow and electric field of cold plasmas played a crucial role in the permeability enhancement of the model tissues, but the effect of gas flow was mainly confined in the surface layer, while the effect of the electric field was holistic. Those effects might be attributed to the localized squeezing of particles by gas flow and the weakening of the ion-dipole interaction by the AC electric field. The enhancement effect decreases with the increasing mass fraction of gelatin because the macromolecules of gelatin could significantly hinder the penetration of small molecules in the model tissues.
Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon
Gao, Jinghui; Wang, Yan; Liu, Yongbin; Hu, Xinghao; Ke, Xiaoqin; Zhong, Lisheng; He, Yuting; Ren, Xiaobing
2017-01-01
Although dielectric energy-storing devices are frequently used in high voltage level, the fast growing on the portable and wearable electronics have been increasing the demand on the energy-storing devices at finite electric field strength. This paper proposes an approach on enhancing energy density under low electric field through compositionally inducing tricriticality in Ba(Ti,Sn)O3 ferroelectric material system with enlarged dielectric response. The optimal dielectric permittivity at tricritical point can reach to εr = 5.4 × 104, and the associated energy density goes to around 30 mJ/cm3 at the electric field of 10 kV/cm, which exceeds most of the selected ferroelectric materials at the same field strength. The microstructure nature for such a tricritical behavior shows polarization inhomogeneity in nanometeric scale, which indicates a large polarizability under external electric field. Further phenomenological Landau modeling suggests that large dielectric permittivity and energy density can be ascribed to the vanishing of energy barrier for polarization altering caused by tricriticality. Our results may shed light on developing energy-storing dielectrics with large permittivity and energy density at low electric field. PMID:28098249
Global ionospheric dynamics and electrodynamics during geomagnetic storms (Invited)
NASA Astrophysics Data System (ADS)
Mannucci, A. J.; Tsurutani, B.; Verkhoglyadova, O. P.; Komjathy, A.; Butala, M. D.
2013-12-01
Globally distributed total electron content (TEC) data has become an important tool for exploring the consequences of storm-time electrodynamics. Magnetosphere-ionosphere coupling during the main phase is responsible for the largest ionospheric effects observed during geomagnetic storms, mediated by global scale electrodynamics. Recent research using case studies reveals a complex picture of M-I coupling and its relationship to interplanetary drivers such as the solar wind electric field. Periods of direct coupling exist where the solar wind electric field is strongly correlated with prompt penetration electric fields, observed as enhanced vertical plasma drifts or an enhanced electrojet in the daytime equatorial ionosphere. Periods of decoupling between low latitude electric fields and the solar wind electric field are also observed, but the factors distinguishing these two types of response have not been clearly identified. Recent studies during superstorms suggest a role for the transverse (y-component) of the interplanetary magnetic field, which affects magnetospheric current systems and therefore may affect M-I coupling, with significant ionospheric consequences. Observations of the global ionospheric response to a range of geomagnetic storm intensities are presented. Scientific understanding of the different factors that affect electrodynamic aspects of M-I coupling are discussed.
Lewpiriyawong, Nuttawut; Xu, Guolin; Yang, Chun
2018-03-01
This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kosc, Tanya Z.; Marshall, Kenneth L.; Jacobs, Stephen D.
2004-12-07
Composite or layered flakes having a plurality of layers of different materials, which may be dielectric materials, conductive materials, or liquid crystalline materials suspended in a fluid host and subjected to an electric field, provide optical effects dependent upon the angle or orientation of the flakes in the applied electric field. The optical effects depend upon the composition and thickness of the layers, producing reflectance, interference, additive and/or subtractive color effects. The composition of layered flakes may also be selected to enhance and/or alter the dielectric properties of flakes, whereby flake motion in an electric field is also enhanced and/or altered. The devices are useful as active electro-optical displays, polarizers, filters, light modulators, and wherever controllable polarizing, reflecting and transmissive optical properties are desired.
Electrostatic ion instabilities in the presence of parallel currents and transverse electric fields
NASA Technical Reports Server (NTRS)
Ganguli, G.; Palmadesso, P. J.
1988-01-01
The electrostatic ion instabilities are studied for oblique propagation in the presence of magnetic field-aligned currents and transverse localized electric fields in a weakly collisional plasma. The presence of transverse electric fields result in mode excitation for magnetic field aligned current values that are otherwise stable. The electron collisions enhance the growth while ion collisions have a damping effect. These results are discussed in the context of observations of low frequency ion modes in the auroral ionosphere by radar and rocket experiments.
NASA Astrophysics Data System (ADS)
Fang, Yun-tuan; Zhang, Yi-chi; Xia, Jing
2018-06-01
In order to obtain tunable unidirectional device, we assumed an ideal periodic layered Parity-Time (PT) symmetry structure inserted by doped LiNbO3 (LN) interlayers. LN is a typical electro-optical material of which the refractive index depends on the external electric field. In our work, we theoretically investigate the modulation effect of the external electric field on the transmittance and reflectance of the structure through numerical method. Through selected structural parameters, the one-way enhanced reflection and high absorption (above 0.9) behaviors are found. Within a special frequency band (not a single frequency), our theoretical model performs enhanced reflection in one incidence direction and high absorption in the other direction. Furthermore, the directions of enhanced reflection and absorption can be reversed through reversing the direction of applied electric field. Such structure with reversible properties has the potential in designing new optical devices.
Space charge enhanced plasma gradient effects on satellite electric field measurements
NASA Technical Reports Server (NTRS)
Diebold, Dan; Hershkowitz, Noah; Dekock, J.; Intrator, T.; Hsieh, M-K.
1991-01-01
It has been recognized that plasma gradients can cause error in magnetospheric electric field measurements made by double probes. Space charge enhanced Plasma Gradient Induced Error (PGIE) is discussed in general terms, presenting the results of a laboratory experiment designed to demonstrate this error, and deriving a simple expression that quantifies this error. Experimental conditions were not identical to magnetospheric conditions, although efforts were made to insure the relevant physics applied to both cases. The experimental data demonstrate some of the possible errors in electric field measurements made by strongly emitting probes due to space charge effects in the presence of plasma gradients. Probe errors in space and laboratory conditions are discussed, as well as experimental error. In the final section, theoretical aspects are examined and an expression is derived for the maximum steady state space charge enhanced PGIE taken by two identical current biased probes.
Tunability of the fractional quantum Hall states in buckled Dirac materials
NASA Astrophysics Data System (ADS)
Apalkov, Vadym M.; Chakraborty, Tapash
2014-12-01
We report on the fractional quantum Hall states of germanene and silicene where one expects a strong spin-orbit interaction. This interaction causes an enhancement of the electron-electron interaction strength in one of the Landau levels corresponding to the valence band of the system. This enhancement manifests itself as an increase of the fractional quantum Hall effect gaps compared to that in graphene and is due to the spin-orbit induced coupling of the Landau levels of the conduction and valence bands, which modifies the corresponding wave functions and the interaction within a single level. Due to the buckled structure, a perpendicular electric field lifts the valley degeneracy and strongly modifies the interaction effects within a single Landau level: in one valley the perpendicular electric field enhances the interaction strength in the conduction band Landau level, while in another valley, the electric field strongly suppresses the interaction effects.
Su, Li-Chien; Hsu, Yi-Hsiang; Wang, Hsiang-Yu
2012-05-01
An alternating current was used to generate an electric field to enhance the fluorescent labeling of microalgae cellular lipids with Nile red and LipidTOX. The decay of the fluorescence intensity of Chlorella vulgaris cells in 0 V/cm was more than 50% after 10 min, and the intensity variation was as high as 7% in 20s. At 2000 V/cm, the decay rate decreased to 1.22% per minute and the intensity fluctuation was less than 1% for LipidTOX-labeled cells. For Spirulina sp. cells at 0 V/cm, the fluorescence intensity increased by 10% after 10 min, whereas at 2000 V/cm, labeling was more rapid and fluorescence intensity doubled. These results show that applying an electric field can improve the quality of fluorescence detection by alleviating decay and fluctuation or by enhancing signal intensity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Electrical tuning of spin splitting in Bi-doped ZnO nanowires
NASA Astrophysics Data System (ADS)
Aras, Mehmet; Kılıç, ćetin
2018-01-01
The effect of applying an external electric field on doping-induced spin-orbit splitting of the lowest conduction-band states in a bismuth-doped zinc oxide nanowire is studied by performing electronic structure calculations within the framework of density functional theory. It is demonstrated that spin splitting in Bi-doped ZnO nanowires could be tuned and enhanced electrically via control of the strength and direction of the applied electric field, thanks to the nonuniform and anisotropic response of the ZnO:Bi nanowire to external electric fields. The results reported here indicate that a single ZnO nanowire doped with a low concentration of Bi could function as a spintronic device, the operation of which is controlled by applied lateral electric fields.
Inward transport of a toroidally confined plasma subject to strong radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.
1977-01-01
The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.
Enhancement of convective heat transfer in internal flows using an electrically-induced corona jet
NASA Astrophysics Data System (ADS)
Baghaei Lakeh, Reza
The enhancement of heat transfer by active and passive methods has been the subject of many academic and industrial research studies. Internal flows play a major role in many applications and different methods have been utilized to augment the heat transfer to internal flows. Secondary flows consume part of the kinetic energy of the flow and disturb the boundary layer. Inducing secondary flows is known as mechanism for heat transfer enhancement. Secondary flows may be generated by corona discharge and ion-driven flows. When a high electric potential is applied to a conductor, a high electric field will be generated. The high electric field may exceed the partial break-down of the neutral molecules of surrounding gas (air) and generate a low-temperature plasma in the vicinity of the conductor. The generated plasma acts as a source of ions that accelerate under the influence of the electric field and escape beyond the plasma region and move toward the grounded electrode. The accelerating ions collide with neutral particles of the surrounding gas and impose a dragging effect which is interpreted as a body-force to the air particles. The shape and configuration of the emitting and receiving electrodes has a significant impact on the distribution of the electric body-force and the resulting electrically-induced flow field. It turned out that the certain configurations of longitudinal electrodes may cause a jet-like secondary flow field on the cross section of the flow passage in internal flows. The impingement effect of the corona jet on the walls of the channel disturbs the boundary layer, enhances the convective heat transfer, and generates targeted cooling along the centerline of the jet. The results of the current study show that the concentric configuration of a suspended wire-electrode in a circular tube leads to a hydrostatic condition and do not develop any electrically-induced secondary flow; however, the eccentric wire-electrode configuration generates a corona jet along the eccentricity direction. The generated corona jet exhibits interesting specifications similar to conventional inertia-driven air jets which are among common techniques for cooling and heat transfer enhancement. On the other hand, wall-mounted flat electrode pairs along the parallel walls of a rectangular mini-channel develop a similar jet-like flow pattern. The impingement of the corona jet to the receiving wall causes excessive heat transfer enhancement and cooling effect. The flat electrode pairs were also utilized to study the effect of corona discharge on the heat transfer specifications of the internal flow between parallel plates in fully-developed condition. It turned out that the electrically-induced secondary flow along with a pressure-driven main flow generates a swirling effect which can enhance the heat transfer significantly in fully-developed condition.
Belfiore, Laurence A; Floren, Michael L; Belfiore, Carol J
2012-02-01
This research contribution addresses electric-field stimulation of intra-tissue mass transfer and cell proliferation in viscoelastic biomaterials. The unsteady state reaction-diffusion equation is solved according to the von Kármán-Pohlhausen integral method of boundary layer analysis when nutrient consumption and tissue regeneration occur in response to harmonic electric potential differences across a parallel-plate capacitor in a dielectric-sandwich configuration. The partial differential mass balance with diffusion and electro-kinetic consumption contains the Damköhler (Λ(2)) and Deborah (De) numbers. Zero-field and electric-field-sensitive Damköhler numbers affect nutrient boundary layer growth. Diagonal elements of the 2nd-rank diffusion tensor are enhanced in the presence of weak electric fields, in agreement with the formalism of equilibrium and nonequilibrium thermodynamics. Induced dipole polarization density within viscoelastic biomaterials is calculated via the real and imaginary components of the complex dielectric constant, according to the Debye equation, to quantify electro-kinetic stimulation. Rates of nutrient consumption under zero-field conditions are described by third-order kinetics that include local mass densities of nutrients, oxygen, and attached cells. Thinner nutrient boundary layers are stabilized at shorter dimensionless diffusion times when the zero-field intra-tissue Damköhler number increases above its initial-condition-sensitive critical value [i.e., {Λ(2)(zero-field)}(critical)≥53, see Eq. (23)], such that the biomaterial core is starved of essential ingredients required for successful proliferation. When tissue regeneration occurs above the critical electric-field-sensitive intra-tissue Damköhler number, the electro-kinetic contribution to nutrient consumption cannot be neglected. The critical electric-field-sensitive intra-tissue Damköhler number is proportional to the Deborah number. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Lingxiang; Zhao, Xiaopeng
The aqueous ER elastomers, containing crude organic starch particles which dispersed in gelatin/glycerin/water matrix, were prepared with or without the applied DC electric field. The responses of the composite systems to the electric field were tested by the compression modulus and resistance of the elastomers. The result shows that they are enhanced and controlled evidently under an applied DC electric field. The strongest responses appear at 25% weight fraction of starch. In addition, the increment modulus of the elastomer increases with the strength of the applied field within 0.5~1.5 kV/mm, while after the field is stronger than 1.5 kV/mm it doesn't increase with field, appearing "saturation".
NASA Astrophysics Data System (ADS)
Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.
2017-08-01
Bound polaron in RbCl delta quantum dot under electric field and Coulombic impurity were considered. The ground and first excited state energy were derived by employing Pekar variational and unitary transformation methods. Applying Fermi golden rule, the expression of temperature and polaron lifetime were derived. The decoherence was studied trough the Tsallis entropy. Results shows that decreasing (or increasing) the lifetime increases (or decreases) the temperature and delta parameter (electric field strength and hydrogenic impurity). This suggests that to accelerate quantum transition in nanostructure, temperature and delta have to be enhanced. The improvement of electric field and coulomb parameter, increases the lifetime of the delta quantum dot qubit. Energy spectrum of polaron increases with increase in temperature, electric field strength, Coulomb parameter, delta parameter, and polaronic radius. The control of the delta quantum dot energies can be done via the electric field, coulomb impurity, and delta parameter. Results also show that the non-extensive entropy is an oscillatory function of time. With the enhancement of delta parameter, non-extensive parameter, Coulombic parameter, and electric field strength, the entropy has a sinusoidal increase behavior with time. With the study of decoherence through the Tsallis entropy, it may be advised that to have a quantum system with efficient transmission of information, the non-extensive and delta parameters need to be significant. The study of the probability density showed an increase from the boundary to the center of the dot where it has its maximum value and oscillates with period T0 = ℏ / ΔE with the tunneling of the delta parameter, electric field strength, and Coulombic parameter. The results may be very helpful in the transmission of information in nanostructures and control of decoherence
Nuclear spin cooling by electric dipole spin resonance and coherent population trapping
NASA Astrophysics Data System (ADS)
Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei
2017-09-01
Nuclear spin fluctuation suppression is a key issue in preserving electron coherence for quantum information/computation. We propose an efficient way of nuclear spin cooling in semiconductor quantum dots (QDs) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. The EDSR can enhance the spin flip-flop rate and may bring out bistability under certain conditions. By tuning the optical fields, we can avoid the EDSR induced bistability and obtain highly polarized nuclear spin state, which results in long electron coherence time. With the help of CPT and EDSR, an enhancement of 1500 times of the electron coherence time can been obtained after a 500 ns preparation time.
NASA Astrophysics Data System (ADS)
Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hongwu; Chen, Zhen
2018-01-01
Polar water molecules exhibit extraordinary phenomena under nanoscale confinement. Through the application of an electric field, a water-filled carbon nanotube (CNT) that has been successfully fabricated in the laboratory is expected to have distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is observed that a longitudinal electric field enhances, but the transverse electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The divergent effect of the electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transverse electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply nonuniform pressure on nanochannels. Based on pre-strained water-filled CNTs, we designed a nanoscale trigger with an evident and rapid height change initiated by switching the direction of the electric field. The reported finding provides a foundation for an electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices.
Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hongwu; Chen, Zhen
2017-12-11
Polar water molecules exhibit extraordinary phenomena under nanoscale confinement. Through the application of an electric field, a water-filled carbon nanotube (CNT) that has been successfully fabricated in the laboratory is expected to have distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is observed that a longitudinal electric field enhances, but the transverse electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The divergent effect of the electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transverse electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply nonuniform pressure on nanochannels. Based on pre-strained water-filled CNTs, we designed a nanoscale trigger with an evident and rapid height change initiated by switching the direction of the electric field. The reported finding provides a foundation for an electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices.
NASA Astrophysics Data System (ADS)
Veysi, Mehdi; Guclu, Caner; Capolino, Filippo
2015-09-01
We investigate azimuthally E-polarized vortex beams with enhanced longitudinal magnetic field. Ideally, such beams possess strong longitudinal magnetic field on the beam axis where there is no electric field. First we formulate the electric field vector and the longitudinal magnetic field of an azimuthally E-polarized beam as an interference of right- and left-hand circularly polarized Laguerre Gaussian (LG) beams carrying the orbital angular momentum (OAM) states of -1 and +1, respectively. Then we propose a metasurface design that is capable of converting a linearly polarized Gaussian beam into an azimuthally E-polarized vortex beam with longitudinal magnetic field. The metasurface is composed of a rectangular array of double-layer double split-ring slot elements, though other geometries could be adopted as well. The element is specifically designed to have nearly a 180° transmission phase difference between the two polarization components along two orthogonal axes, similar to the optical axes of a half-wave plate. By locally rotating the optical axes of each metasurface element, the transmission phase profile of the circularly polarized waves over the metasurface can be tailored. Upon focusing of the generated vortex beam through a lens with a numerical aperture of 0.7, a 41-fold enhancement of the magnetic to electric field ratio is achieved on the beam axis with respect to that of a plane wave. Generation of beams with large magnetic field to electric field contrast can find applications in future spectroscopy systems based on magnetic dipole transitions, which are usually much weaker than electric dipole transitions.
Viability of Using Diamond Field Emitter Array Cathodes in Free Electron Lasers
2010-06-01
essential component of a field emitter array is the shape of the electric field lines and equipotential lines at the surface of the array. The...BARRIER AND QUANTUM TUNNELING ...........25 B. FIELD ENHANCEMENT AND SURFACE PROTRUSIONS .........26 C. ELECTRIC FIELDS AND ELECTRON TRAVEL...26 Figure 4. Diagram of a protrusion (triangular in shape) from the surface of a cathode. The protrusion is of height h, with a
Regional United States electric field and GIC hazard impacts (Invited)
NASA Astrophysics Data System (ADS)
Gannon, J. L.; Balch, C. C.; Trichtchenko, L.
2013-12-01
Geomagnetically Induced Currents (GICs) are primarily driven by impulsive geomagnetic disturbances created by the interaction between the Earth's magnetosphere and sharp velocity, density, and magnetic field enhancements in the solar wind. However, the magnitude of the induced electric field response at the ground level, and therefore the resulting hazard to the bulk power system, is determined not only by magnetic drivers, but also by the underlying geology. Convolution techniques are used to calculate surface electric fields beginning from the spectral characteristics of magnetic field drivers and the frequency response of the local geology. Using these techniques, we describe historical scenarios for regions across the United States, and the potential impact of large events on electric power infrastructure.
Enhanced optoelastic interaction range in liquid crystals with negative dielectric anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoni, F.; Lalli, S.; Lucchetti, L.
2014-01-06
We demonstrate that the long-range interaction between surface-functionalized microparticles immersed a nematic liquid crystal—a “nematic colloid”—and a laser-induced “ghost colloid” can be enhanced by a low-voltage quasistatic electric field when the nematic mesophase has a negative dielectric anisotropy. The optoelastic trapping distance is shown to be enhanced by a factor up to 2.5 in presence of an electric field. Experimental data are quantitatively described with a theoretical model accounting for the spatial overlap between the orientational distortions around the microparticle and those induced by the trapping light beam itself.
NASA Astrophysics Data System (ADS)
Dang Chien, Nguyen; Shih, Chun-Hsing; Hoa, Phu Chi; Minh, Nguyen Hong; Thi Thanh Hien, Duong; Nhung, Le Hong
2016-06-01
The two-band Kane model has been popularly used to calculate the band-to-band tunneling (BTBT) current in tunnel field-effect transistor (TFET) which is currently considered as a promising candidate for low power applications. This study theoretically clarifies the maximum electric field approximation (MEFA) of direct BTBT Kane model and evaluates its appropriateness for low bandgap semiconductors. By analysing the physical origin of each electric field term in the Kane model, it has been elucidated in the MEFA that the local electric field term must be remained while the nonlocal electric field terms are assigned by the maximum value of electric field at the tunnel junction. Mathematical investigations have showed that the MEFA is more appropriate for low bandgap semiconductors compared to high bandgap materials because of enhanced tunneling probability in low field regions. The appropriateness of the MEFA is very useful for practical uses in quickly estimating the direct BTBT current in low bandgap TFET devices.
NASA Astrophysics Data System (ADS)
Krishnaveni, T.; Renganathan, T.; Picardo, J. R.; Pushpavanam, S.
2017-09-01
We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.
Krishnaveni, T; Renganathan, T; Picardo, J R; Pushpavanam, S
2017-09-01
We propose an innovative mechanism for enhancing mixing in steady pressure driven flow of an electrolytic solution in a straight rectangular microchannel. A transverse electric field is used to generate an electroosmotic flow across the cross-section. The resulting flow field consists of a pair of helical vortices that transport fluid elements along the channel. We show, through numerical simulations, that chaotic advection may be induced by periodically varying the direction of the applied electric field along the channel length. This periodic electric field generates a longitudinally varying, three-dimensional steady flow, such that the streamlines in the first half of the repeating unit cell intersect those in the second half, when projected onto the cross-section. Mixing is qualitatively characterized by tracking passive particles and obtaining Poincaré maps. For quantification of the extent of mixing, Shannon entropy is calculated using particle advection of a binary mixture. The convection diffusion equation is also used to track the evolution of a scalar species and quantify the mixing efficiency as a function of the Péclet number.
Resistive field structures for semiconductor devices and uses therof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert
The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additionalmore » methods and architectures are described herein.« less
NASA Technical Reports Server (NTRS)
Smith, P. H.; Bewtra, N. K.; Hoffman, R. A.
1979-01-01
The motions of charged particles under the influence of the geomagnetic and electric fields were quite complex in the region of the inner magnetosphere. The Volland-Stern type large scale convection electric field was used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 measurements. A time dependence in this electric field was introduced based on the variation in Kp for actual magnetic storm conditions. The particle trajectories were computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments were allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format.
NASA Astrophysics Data System (ADS)
Li, Fang; Yin, Xie-Yuan; Yin, Xie-Zhen
2016-05-01
A one-dimensional electrified viscoelastic model is built to study the nonlinear behavior of a slightly viscoelastic, perfectly conducting liquid jet under a radial electric field. The equations are solved numerically using an implicit finite difference scheme together with a boundary element method. The electrified viscoelastic jet is found to evolve into a beads-on-string structure in the presence of the radial electric field. Although the radial electric field greatly enhances the linear instability of the jet, its influence on the decay of the filament thickness is limited during the nonlinear evolution of the jet. On the other hand, the radial electric field induces axial non-uniformity of the first normal stress difference within the filament. The first normal stress difference in the center region of the filament may be greatly decreased by the radial electric field. The regions with/without satellite droplets are illuminated on the χ (the electrical Bond number)-k (the dimensionless wave number) plane. Satellite droplets may be formed for larger wave numbers at larger radial electric fields.
The enhancement mechanism of thin plasma layer on antenna radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Jiang, Binhao; Li, Xueai
A model of plasma-antenna is carried out to study the radiation enhancement mechanism of antenna covered by thin plasma layer. The results show when the radiation intensity achieves maximum, a region of equal electric field is formed due to the reflection of electric field at the interface of plasma and air. The plasma layer acted as an extension of the antenna. Furthermore, the shape of plasma layer is changed to verify the effect of plasma boundary on antenna radiation. The study shows the effect of thin plasma layer on electromagnetic field and provides a type of plasma antenna.
Choi, Jinyong; Jeon, Youngin; Cho, Kyoungah; Kim, Sangsig
2016-12-02
In this study, we demonstrate the substantial enhancement of the thermoelectric power factors of silicon nanowires (SiNWs) on plastic substrates achievable by field-effect modulation. The Seebeck coefficient and electrical conductivity are adjusted by varying the charge carrier concentration via electrical modulation with a gate voltage in the 0 to ±5 range, thus enhancing the power factors from 2.08 to 935 μW K -2 m -1 ) for n-type SiNWs, and from 453 to 944 μW K -2 m -1 ) for p-type SiNWs. The electrically modulated thermoelectric characteristics of SiNWs are analyzed and discussed.
Optical field enhancement of nanometer-sized gaps at near-infrared frequencies.
Ahn, Jae Sung; Kang, Taehee; Singh, Dilip K; Bahk, Young-Mi; Lee, Hyunhwa; Choi, Soo Bong; Kim, Dai-Sik
2015-02-23
We report near-field and far-field measurements of transmission through nanometer-sized gaps at near-infrared frequencies with varying the gap size from 1 nm to 10 nm. In the far-field measurements, we excluded direct transmission on the metal film surface via interferometric method. Kirchhoff integral formalism was used to relate the far-field intensity to the electric field at the nanogaps. In near-field measurements, field enhancement factors of the nanogaps were quantified by measuring transmission of the nanogaps using near-field scanning optical microscopy. All the measurements produce similar field enhancements of about ten, which we put in the context of comparing with the giant field enhancements in the terahertz regime.
NASA Astrophysics Data System (ADS)
Wang, J.; Huang, Q. K.; Lu, S. Y.; Tian, Y. F.; Chen, Y. X.; Bai, L. H.; Dai, Y.; Yan, S. S.
2018-04-01
Room-temperature reversible electrical-field control of the magnetization and the anomalous Hall effect was reported in hybrid multiferroic heterojunctions based on Co/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT). We demonstrate herein that electrical-field-induced strain and oxygen-ion migration in ZnO/Co/PMN-PT junctions exert opposing effects on the magnetic properties of the Co sublayer, and the competition between these effects determines the final magnitude of magnetization. This proof-of-concept investigation opens an alternative way to optimize and enhance the electrical-field effect on magnetism through the combination of multiple electrical manipulation mechanisms in hybrid multiferroic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Zhou, Jun, E-mail: zhoujun@nbu.edu.cn; Rippa, Massimo
A set of periodic and quasi-periodic Au nanoarrays with different morphologies have been fabricated by using electron beam lithography technique, and their optical properties have been examined experimentally and analyzed theoretically by scanning near-field optical microscope and finite element method, respectively. Results present that the localized surface plasmon resonance of the as-prepared Au nanoarrays exhibit the structure-depended characteristics. Comparing with the periodic nanoarrays, the quasi-periodic ones demonstrate stronger electric field enhancement, especially for Thue-Morse nanoarray. Meanwhile, the surface enhanced Raman scattering (SERS) spectra of 4-mercaptobenzoic acid molecular labeled nanoarrays show that the quasi-periodic nanoarrays exhibit distinct SERS enhancement, for example,more » a higher enhancement factor of ∼10{sup 7} is obtained for the Thue-Morse nanoarray consisted of square pillars of 100 nm size. Therefore, it is significant to optimally design and fabricate the chip-scale quasi-periodic nanoarrays with high localized electric field enhancement for SERS applications in biosensing field.« less
Guo, Kai; Zhang, Yong-Liang; Qian, Cheng; Fung, Kin-Hung
2018-04-30
In this work, we demonstrate computationally that electric dipole-quadrupole hybridization (EDQH) could be utilized to enhance plasmonic SHG efficiency. To this end, we construct T-shaped plasmonic heterodimers consisting of a short and a long gold nanorod with finite element method simulation. By controlling the strength of capacitive coupling between two gold nanorods, we explore the effect of EDQH evolution on the SHG process, including the SHG efficiency enhancement, corresponding near-field distribution, and far-field radiation pattern. Simulation results demonstrate that EDQH could enhance the SHG efficiency by a factor >100 in comparison with that achieved by an isolated gold nanorod. Additionally, the far-field pattern of the SHG could be adjusted beyond the well-known quadrupolar distribution and confirms that EDQH plays an important role in the SHG process.
NASA Astrophysics Data System (ADS)
Lopatynskyi, Andrii M.; Lytvyn, Vitalii K.; Nazarenko, Volodymyr I.; Guo, L. Jay; Lucas, Brandon D.; Chegel, Volodymyr I.
2015-03-01
This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called `hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for sensing of small-size objects.
Energy loss of ions by electric-field fluctuations in a magnetized plasma.
Nersisyan, Hrachya B; Deutsch, Claude
2011-06-01
The results of a theoretical investigation of the energy loss of charged particles in a magnetized classical plasma due to the electric-field fluctuations are reported. The energy loss for a test particle is calculated through the linear-response theory. At vanishing magnetic field, the electric-field fluctuations lead to an energy gain of the charged particle for all velocities. It has been shown that in the presence of strong magnetic field, this effect occurs only at low velocities. In the case of high velocities, the test particle systematically loses its energy due to the interaction with a stochastic electric field. The net effect of the fluctuations is the systematic reduction of the total energy loss (i.e., the sum of the polarization and stochastic energy losses) at vanishing magnetic field and reduction or enhancement at strong field, depending on the velocity of the particle. It is found that the energy loss of the slow heavy ion contains an anomalous term that depends logarithmically on the projectile mass. The physical origin of this anomalous term is the coupling between the cyclotron motion of the plasma electrons and the long-wavelength, low-frequency fluctuations produced by the projectile ion. This effect may strongly enhance the stochastic energy gain of the particle.
Strain-engineered inverse charge-funnelling in layered semiconductors.
De Sanctis, Adolfo; Amit, Iddo; Hepplestone, Steven P; Craciun, Monica F; Russo, Saverio
2018-04-25
The control of charges in a circuit due to an external electric field is ubiquitous to the exchange, storage and manipulation of information in a wide range of applications. Conversely, the ability to grow clean interfaces between materials has been a stepping stone for engineering built-in electric fields largely exploited in modern photovoltaics and opto-electronics. The emergence of atomically thin semiconductors is now enabling new ways to attain electric fields and unveil novel charge transport mechanisms. Here, we report the first direct electrical observation of the inverse charge-funnel effect enabled by deterministic and spatially resolved strain-induced electric fields in a thin sheet of HfS 2 . We demonstrate that charges driven by these spatially varying electric fields in the channel of a phototransistor lead to a 350% enhancement in the responsivity. These findings could enable the informed design of highly efficient photovoltaic cells.
2010-01-01
We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002)]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small. PMID:20672062
Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hong Wu; Chen, Zhen
2017-11-08
Polar water molecules would exhibit extraordinary phenomena under nanoscale confinement. By means of electric field, the water-filled carbon nanotube (CNT) that has been successfully fabricated in laboratory is expected to make distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is found that the longitudinal electric field enhances but the transversal electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The double-edged effect of electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transversal electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply the nonuniform pressure on nanochannels. Based on a pre-strained water-filled CNTs, we design a nanoscale trigger with the evident and rapid height change started through switching the direction of electric field. The reported finding lays a foundation for the electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices. © 2017 IOP Publishing Ltd.
Complementary bowtie aperture for localizing and enhancing optical magnetic field
NASA Astrophysics Data System (ADS)
Zhou, Nan; Kinzel, Edward C.; Xu, Xianfan
2011-08-01
Nanoscale bowtie antenna and bowtie aperture antenna have been shown to generate strongly enhanced and localized electric fields below the diffraction limit in the optical frequency range. According to Babinet's principle, their complements will be efficient for concentrating and enhancing magnetic fields. In this Letter, we discuss the enhancement of magnetic field intensity of nanoscale complementary bowtie aperture as well as complementary bowtie aperture antenna, or diabolo nanoantenna. We show that the complementary bowtie antenna resonates at a smaller wavelength and thus is more suitable for applications near visible wavelengths. The near-field magnetic intensity can be further enhanced by the addition of groove structures that scatter surface plasmon.
Lee, Chany; Jung, Young-Jin; Lee, Sang Jun; Im, Chang-Hwan
2017-02-01
Since there is no way to measure electric current generated by transcranial direct current stimulation (tDCS) inside the human head through in vivo experiments, numerical analysis based on the finite element method has been widely used to estimate the electric field inside the head. In 2013, we released a MATLAB toolbox named COMETS, which has been used by a number of groups and has helped researchers to gain insight into the electric field distribution during stimulation. The aim of this study was to develop an advanced MATLAB toolbox, named COMETS2, for the numerical analysis of the electric field generated by tDCS. COMETS2 can generate any sizes of rectangular pad electrodes on any positions on the scalp surface. To reduce the large computational burden when repeatedly testing multiple electrode locations and sizes, a new technique to decompose the global stiffness matrix was proposed. As examples of potential applications, we observed the effects of sizes and displacements of electrodes on the results of electric field analysis. The proposed mesh decomposition method significantly enhanced the overall computational efficiency. We implemented an automatic electrode modeler for the first time, and proposed a new technique to enhance the computational efficiency. In this paper, an efficient toolbox for tDCS analysis is introduced (freely available at http://www.cometstool.com). It is expected that COMETS2 will be a useful toolbox for researchers who want to benefit from the numerical analysis of electric fields generated by tDCS. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale;
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Astrophysics Data System (ADS)
Xiao, Zhuyun; Mohanchandra, Kotekar P.; Lo Conte, Roberto; Ty Karaba, C.; Schneider, J. D.; Chavez, Andres; Tiwari, Sidhant; Sohn, Hyunmin; Nowakowski, Mark E.; Scholl, Andreas; Tolbert, Sarah H.; Bokor, Jeffrey; Carman, Gregory P.; Candler, Rob N.
2018-05-01
Enhancing the magnetoelectric coupling in a strain-mediated multiferroic composite structure plays a vital role in controlling magnetism by electric fields. An enhancement of magnetoelastic coupling between ferroelectric single crystal (011)-cut [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈ 0.30) and ferromagnetic polycrystalline Ni thin film through an interposed benzocyclobutene polymer thin film is reported. A nearly twofold increase in sensitivity of remanent magnetization in the Ni thin film to an applied electric field is observed. This observation suggests a viable method of improving the magnetoelectric response in these composite multiferroic systems.
Wei, Xile; Zhang, Danhong; Lu, Meili; Wang, Jiang; Yu, Haitao; Che, Yanqiu
2015-01-01
This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.
NASA Astrophysics Data System (ADS)
Tseng, Yi-Chuan; Lee, Yang-Chun; Chang, Sih-Wei; Lin, Tzu-Yao; Ma, Dai-Liang; Lin, Bo-Cheng; Chen, Hsuen-Li
2017-11-01
In this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347. The hot zones of intense electric field were generated not only within the nonmetallic NPs but also around them, even within the underlying substrate. We observed experimentally that gallium nitride (GaN) and silicon carbide (SiC) surfaces presenting very few SiNPs (coverage: <0.3%) could display significantly enhanced (>50%) Raman signals. In contrast, the Raman signals of the underlying substrates were not enhanced by gold nanoparticles (AuNPs), even though these NPs displayed a localized surface plasmon resonance (LSPR) phenomenon. A comparison of the areas of the electric field hot zones (E 2 > 10) generated by SiNPs undergoing magnetic dipole resonance with the electric field hot spots (E 2 > 10) generated by AuNPs undergoing LSPR revealed that the former was approximately 70 times that of the latter. More noteworthily, the electromagnetic field hot zone generated from the SiNP is able to extend into the surrounding and underlying media. Relative to metallic NPs undergoing LSPR, these nonmetallic NPs displaying magnetic dipole resonance were more effective at enhancing the Raman scattering signals from analytes that were underlying, or even far away from, them. This application of magnetic dipole resonance in metal-free structures appears to have great potential for use in developing next-generation techniques for Raman enhancement.
Electric field control in DC cable test termination by nano silicone rubber composite
NASA Astrophysics Data System (ADS)
Song, Shu-Wei; Li, Zhongyuan; Zhao, Hong; Zhang, Peihong; Han, Baozhong; Fu, Mingli; Hou, Shuai
2017-07-01
The electric field distributions in high voltage direct current cable termination are investigated with silicone rubber nanocomposite being the electric stress control insulator. The nanocomposite is composed of silicone rubber, nanoscale carbon black and graphitic carbon. The experimental results show that the physical parameters of the nanocomposite, such as thermal activation energy and nonlinearity-relevant coefficient, can be manipulated by varying the proportion of the nanoscale fillers. The numerical simulation shows that safe electric field distribution calls for certain parametric region of the thermal activation energy and nonlinearity-relevant coefficient. Outside the safe parametric region, local maximum of electric field strength around the stress cone appears in the termination insulator, enhancing the breakdown of the cable termination. In the presence of the temperature gradient, thermal activation energy and nonlinearity-relevant coefficient work as complementary factors to produce a reasonable electric field distribution. The field maximum in the termination insulator show complicate variation in the transient processes. The stationary field distribution favors the increase of the nonlinearity-relevant coefficient; for the transient field distribution in the process of negative lighting impulse, however, an optimized value of the nonlinearity-relevant coefficient is necessary to equalize the electric field in the termination.
Electrically driven spin qubit based on valley mixing
NASA Astrophysics Data System (ADS)
Huang, Wister; Veldhorst, Menno; Zimmerman, Neil M.; Dzurak, Andrew S.; Culcer, Dimitrie
2017-02-01
The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.
Part 1 of the work has shown that electrical breakdown in dust layers obeys Paschen's Law, but occurs at applied field values which appear too small to initiate the breakdown. In this paper the authors show how an effective dielectric constant characterizing the dust layer can be...
Jayathunge, K G L R; Stratakos, Alexandros Ch; Cregenzán-Albertia, Oliver; Grant, Irene R; Lyng, James; Koidis, Anastasios
2017-04-15
The influence of moderate intensity pulsed electric field pre-processing on increasing the lycopene bioaccessibility of tomato fruit, and the combined effect of blanching, ultrasonic and high intensity pulsed electric field processing on further enhancement of the lycopene bioaccessibility after juicing were investigated. Maximum total lycopene bioaccessibility (9.6%) of the tomato fruit was achieved by a 4μs pre-processed treatment after 24h holding period and further processing results revealed that all treatments were effective to increase the total lycopene. Most of juice processing treatments decreased the release of lycopene from the tomato matrix during digestion. Only the treatment of blanching followed by high intensity pulsed electric field showed a significant release of trans-(4.01±0.48) and cis-(5.04±0.26μg/g) lycopene, achieving 15.6% total lycopene bioaccessibility. Thus, processing of pre-blanched juice using high intensity pulsed electric field, derived from pre-processed tomato was the best overall process to achieve the highest nutritive value. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electrically detected magnetic resonance in a W-band microwave cavity
NASA Astrophysics Data System (ADS)
Lang, V.; Lo, C. C.; George, R. E.; Lyon, S. A.; Bokor, J.; Schenkel, T.; Ardavan, A.; Morton, J. J. L.
2011-03-01
We describe a low-temperature sample probe for the electrical detection of magnetic resonance in a resonant W-band (94 GHz) microwave cavity. The advantages of this approach are demonstrated by experiments on silicon field-effect transistors. A comparison with conventional low-frequency measurements at X-band (9.7 GHz) on the same devices reveals an up to 100-fold enhancement of the signal intensity. In addition, resonance lines that are unresolved at X-band are clearly separated in the W-band measurements. Electrically detected magnetic resonance at high magnetic fields and high microwave frequencies is therefore a very sensitive technique for studying electron spins with an enhanced spectral resolution and sensitivity.
NASA Astrophysics Data System (ADS)
Kumagai, Takayuki; Yoshida, Hiroyuki; Ozaki, Masanori
2017-04-01
The electric-field-induced switching behavior of a polymer microplate is investigated. A microplate fabricated with a photopolymerizable dual-frequency liquid crystal was surrounded by an unpolymerized photopolymerizable dual-frequency liquid crystal in the isotropic phase. As an electric field was applied along the plane of the microplate, the microplate switched to set its interior molecular orientation to be either parallel or perpendicular to the field, depending on the frequency. Analysis of the rotational behavior, as well as numerical calculations, showed that the surrounding unpolymerized photopolymerizable dual-frequency liquid crystal infiltrated into the microplate, which enhanced the dielectric properties of the microplate. To the best of our knowledge, this is the first report of an enhanced dual-frequency dielectric response of a polymer microplate induced by liquid crystal infiltration.
NASA charging analyzer program: A computer tool that can evaluate electrostatic contamination
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Mandell, M. J.
1978-01-01
A computer code, the NASA Charging Analyzer Program (NASCAP), was developed to study the surface charging of bodies subjected to geomagnetic substorm conditions. This program will treat the material properties of a surface in a self-consistent manner and calculate the electric fields in space due to the surface charge. Trajectories of charged particles in this electric field can be computed to determine if these particles enhance surface contamination. A preliminary model of the Spacecraft Charging At The High Altitudes (SCATHA) satellite was developed in the NASCAP code and subjected to a geomagnetic substorm environment to investigate the possibility of electrostatic contamination. The results indicate that differential voltages will exist between the spacecraft ground surfaces and the insulator surfaces. The electric fields from this differential charging can enhance the contamination of spacecraft surfaces.
Electric field-induced emission enhancement and modulation in individual CdSe nanowires.
Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru
2012-10-23
CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.
Dipolar resonances in conductive carbon micro-fibers probed by near-field terahertz spectroscopy
Khromova, I.; Navarro-Cia, M.; Brener, I.; ...
2015-07-13
In this study, we observe dipole resonances in thin conductive carbon micro-fibers by detecting an enhanced electric field in the near-field of a single fiber at terahertz (THz) frequencies. Time-domain analysis of the electric field shows that each fiber sustains resonant current oscillations at the frequency defined by the fiber's length. Strong dependence of the observed resonance frequency and degree of field enhancement on the fibers' conductive properties enable direct non-contact probing of the THz conductivity in single carbon micro-fibers. We find the conductivity of the fibers to be within the range of 1– 5∙10 4 S/m. This approach ismore » suitable for experimental characterization of individual doped semiconductor resonators for THz metamaterials and devices.« less
Stan, Claudiu A; Tang, Sindy K Y; Bishop, Kyle J M; Whitesides, George M
2011-02-10
The freezing of water can initiate at electrically conducting electrodes kept at a high electric potential or at charged electrically insulating surfaces. The microscopic mechanisms of these phenomena are unknown, but they must involve interactions between water molecules and electric fields. This paper investigates the effect of uniform electric fields on the homogeneous nucleation of ice in supercooled water. Electric fields were applied across drops of water immersed in a perfluorinated liquid using a parallel-plate capacitor; the drops traveled in a microchannel and were supercooled until they froze due to the homogeneous nucleation of ice. The distribution of freezing temperatures of drops depended on the rate of nucleation of ice, and the sensitivity of measurements allowed detection of changes by a factor of 1.5 in the rate of nucleation. Sinusoidal alternation of the electric field at frequencies from 3 to 100 kHz prevented free ions present in water from screening the electric field in the bulk of drops. Uniform electric fields in water with amplitudes up to (1.6 ± 0.4) × 10(5) V/m neither enhanced nor suppressed the homogeneous nucleation of ice. Estimations based on thermodynamic models suggest that fields in the range of 10(7)-10(8) V/m might cause an observable increase in the rate of nucleation.
Current-level triggered plasma-opening switch
Mendel, C.W.
1987-06-29
An opening switch for very high power electrical pulses uses a slow magnetic field to confine a plasma across a gap between two electrodes. The plasma conducts the electric pulse across the gap while the switch is closed. A magnetic field generated by the pulse repels the slow magnetic field from the negative electrode to push the plasma from the electrode, opening the switch. A plurality of radial vanes may be used to enhance the slow magnetic field. 5 figs.
Current-level triggered plasma-opening switch
Mendel, Clifford W.
1989-01-01
An opening switch for very high power electrical pulses uses a slow magnetic field to confine a plasma across a gap between two electrodes. The plasma conducts the electric pulse across the gap while the switch is closed. A magnetic field generated by the pulse repels the slow magnetic field from the negative electrode to push the plasma from the electrode, opening the switch. A plurality of radial vanes may be used to enhance the slow magnetic field.
Topology optimized gold nanostrips for enhanced near-infrared photon upconversion
NASA Astrophysics Data System (ADS)
Vester-Petersen, Joakim; Christiansen, Rasmus E.; Julsgaard, Brian; Balling, Peter; Sigmund, Ole; Madsen, Søren P.
2017-09-01
This letter presents a topology optimization study of metal nanostructures optimized for electric-field enhancement in the infrared spectrum. Coupling of such nanostructures with suitable ions allows for an increased photon-upconversion yield, with one application being an increased solar-cell efficiency by exploiting the long-wavelength part of the solar spectrum. In this work, topology optimization is used to design a periodic array of two-dimensional gold nanostrips for electric-field enhancements in a thin film doped with upconverting erbium ions. The infrared absorption band of erbium is utilized by simultaneously optimizing for two polarizations, up to three wavelengths, and three incident angles. Geometric robustness towards manufacturing variations is implemented considering three different design realizations simultaneously in the optimization. The polarization-averaged field enhancement for each design is evaluated over an 80 nm wavelength range and a ±15-degree incident angle span. The highest polarization-averaged field enhancement is 42.2 varying by maximally 2% under ±5 nm near-uniform design perturbations at three different wavelengths (1480 nm, 1520 nm, and 1560 nm). The proposed method is generally applicable to many optical systems and is therefore not limited to enhancing photon upconversion.
Caselli, Niccolò; La China, Federico; Bao, Wei; ...
2015-06-05
Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magneticmore » intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.« less
Assessment of the electrochemical effects of pulsed electric fields in a biological cell suspension.
Chafai, Djamel Eddine; Mehle, Andraž; Tilmatine, Amar; Maouche, Bachir; Miklavčič, Damijan
2015-12-01
Electroporation of cells is successfully used in biology, biotechnology and medicine. Practical problems still arise in the electroporation of cells in suspension. For example, the determination of cell electroporation is still a demanding and time-consuming task. Electric pulses also cause contamination of the solution by the metal released from the electrodes and create local enhancements of the electric field, leading to the occurrence of electrochemical reactions at the electrode/electrolyte interface. In our study, we investigated the possibility of assessing modifications to the cell environment caused by pulsed electric fields using electrochemical impedance spectroscopy. We designed an experimental protocol to elucidate the mechanism by which a pulsed electric field affects the electrode state in relation to different electrolyte conductivities at the interface. The results show that a pulsed electric field affects electrodes and its degree depends on the electrolyte conductivity. Evolution of the electrochemical reaction rate depends on the initial free charges and those generated by the pulsed electric field. In the presence of biological cells, the initial free charges in the medium are reduced. The electrical current path at low frequency is longer, i.e., conductivity is decreased, even in the presence of increased permeability of the cell membrane created by the pulsed electric field. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis of Electrokinetic Mixing Using AC Electric Field and Patchwise Surface Heterogeneities
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yarn, Kao-Feng; Hsu, Shou-Ping
2007-04-01
In this paper, the authors investigate the use of an applied AC electric field and microchannel surface heterogeneities to carry out the microfluidic mixing of two-dimensional, time-dependent electroosmotic flows. The time-dependent flow fields within the microchannel are simulated using the backwards-Euler time-stepping numerical method. The mixing efficiencies obtained in microchannels with two different patchwise surface heterogeneity patterns are investigated. In general, the results show that the application of an AC electric field significantly reduces the required mixing length compared with the use of a DC electric field. Furthermore, the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulation regions within the bulk flow. These circulation regions grow and decay periodically in accordance with the periodic variation of the AC electric field intensity and provide an effective means of enhancing species mixing in the microchannel. Consequently, the use of an AC electric field together with patchwise surface heterogeneities permits a significant reduction in both the mixing channel length and the retention time required to attain a homogeneous solution.
Simulated Prompt Acceleration of Multi-MeV Electrons by the 17 March 2015 Interplanetary Shock
NASA Astrophysics Data System (ADS)
Hudson, Mary; Jaynes, Allison; Kress, Brian; Li, Zhao; Patel, Maulik; Shen, Xiao-Chen; Thaller, Scott; Wiltberger, Michael; Wygant, John
2017-10-01
Prompt enhancement of relativistic electron flux at L = 3-5 has been reported from Van Allen Probes Relativistic Electron Proton Telescope (REPT) measurements associated with the 17 March 2015 interplanetary shock compression of the dayside magnetosphere. Acceleration by ˜1 MeV is inferred on less than a drift timescale as seen in prior shock compression events, which launch a magnetosonic azimuthal electric field impulse tailward. This impulse propagates from the dayside around the flanks accelerating electrons in drift resonance at the dusk flank. Such longitudinally localized acceleration events produce a drift echo signature which was seen at >1 MeV energy on both Van Allen Probe spacecraft, with sustained observations by Probe B outbound at L = 5 at 2100 MLT at the time of impulse arrival, measured by the Electric Fields and Waves instrument. MHD test particle simulations are presented which reproduce drift echo features observed in the REPT measurements at Probe B, including the energy and pitch angle dependence of drift echoes observed. While the flux enhancement was short lived for this event due to subsequent inward motion of the magnetopause, stronger events with larger electric field impulses, as observed in March 1991 and the Halloween 2003 storm, produce enhancements which can be quantified by the inward radial transport and energization determined by the induction electric field resulting from dayside compression.
Optically Tunable Resistive-Switching Memory in Multiferroic Heterostructures
NASA Astrophysics Data System (ADS)
Zheng, Ming; Ni, Hao; Xu, Xiaoke; Qi, Yaping; Li, Xiaomin; Gao, Ju
2018-04-01
Electronic phase separation has been used to realize exotic functionalities in complex oxides with external stimuli, such as magnetic field, electric field, current, light, strain, etc. Using the Nd0.7Sr0.3MnO3/0.7 Pb (Mg1 /3Nb2 /3)O3-0 .3 PbTiO3 multiferroic heterostructure as a model system, we investigate the electric field and light cocontrol of phase separation in resistive switching. The electric-field-induced nonvolatile electroresistance response is achieved at room temperature using reversible ferroelastic domain switching, which can be robustly modified on illumination of light. Moreover, the electrically controlled ferroelastic strain can effectively enhance the visible-light-induced photoresistance effect. These findings demonstrate that the electric-field- and light-induced effects strongly correlate with each other and are essentially driven by electronic phase separation. Our work opens a gate to design electrically tunable multifunctional storage devices based on multiferroic heterostructures by adding light as an extra control parameter.
Harrison, R K; Ben-Yakar, Adela
2010-10-11
We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-shaped ablation pattern matches the enhancement patterns of the Poynting vector magnitude on the surface of silicon, implying that the ablation is a result of the plasmonic enhancement of the incident electromagnetic waves in the near-field of the particles. Interestingly, the ablation pattern is different from the two separated holes at the ends of the nanorod, as would be expected from the electric field--|E|(2) enhancement pattern. We measured the plasmonic ablation threshold fluence to be almost two orders of magnitude less than the femtosecond laser ablation threshold of silica, present in the thin native oxide layer on the surface of silicon. This value also agrees with the enhancement of the Poynting vector of a nanorod on silicon as calculated with electromagnetic simulations. We thus conclude that plasmonic ablation with plasmonic nanoparticles depends directly on the polarization and the value of the near-field enhancement of the Poynting vector and not the square of the electric field as previously suggested.
Ground-based studies of ionospheric convection associated with substorm expansion
NASA Technical Reports Server (NTRS)
Kamide, Y.; Richmond, A. D.; Emery, B. A.; Hutchins, C. F.; Ahn, B.-H.; De La Beaujardiere, O.; Foster, J. C.; Heelis, R. A.; Kroehl, H. W.; Rich, F. J.
1994-01-01
The instantaneous patterns of electric fields and currents in the high-latitude ionosphere are deduced by combining satellite and radar measurements of the ionospheric drift velocity, along with ground-based magnetometer observations for October 25, 1981. The period under study was characterized by a relatively stable southward interplanetary magnetic field (IMF), so that the obtained electric field patterns do reflect, in general, the state of sustained and enhanced plasma convection in the magnetosphere. During one of the satellite passes, however, an intense westward electrojet caused by a substorm intruded into the satellite (DE2) and radar (Chatanika, Alaska) field of view in the premidnight sector, providing a unique opportunity to differentiate the enhanced convection and substorm expansion fields. The distributions of the calculated electric potential for the expansion and maximum phases of the substorm show the first clear evidence of the coexistence of two physically different systems in the global convection pattern. The changes in the convection pattern during the substorm indicate that the large-scale potential distributions are indeed of general two-cell patterns representing the southward IMF status, but the night-morning cell has two positive peaks, one in the midnight sector and the other in the late morning hours, corresponding to the substorm expansion and the convection enhancement, respectively.
Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field
NASA Technical Reports Server (NTRS)
Chang, Shinan; Herman, Cila; Iacona, Estelle
2002-01-01
The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.
NASA Astrophysics Data System (ADS)
Cao, Qianqian; Tian, Xiu; You, Hao
2018-04-01
We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.
Hui, Debrup; Chakrabarty, D.; Sekar, R.; ...
2017-05-08
This study tries to bring out the fact that storm time substorms can compete and at times significantly contribute to the geomagnetically disturbed time prompt penetration electric field effects on low and equatorial latitudes. Observations of unusual equatorial plasma drift data from Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere during two space weather events show that substorms can induce both eastward and westward penetration electric fields under steady southward interplanetary magnetic field (IMF B z) conditions. During the first event on 2 January 2005, the enhancement of the daytime eastward electric field over Jicamarca due to substorm ismore » found to be comparable with the Sq and interplanetary electric field (IEFy) generated electric fields combined. During the second event on 19 August 2006, the substorm is seen to weaken the daytime eastward field thereby inducing a westward field in spite of the absence of northward turning of IMF B z (overshielding). The westward electric field perturbation in the absence of any overshielding events is observationally sparse and contrary to the earlier results. Further, the substorm-induced field is found to be strong enough to compete or almost nullify the effects of storm time IEFy fields. This study also shows quantitatively that at times substorm contribution to the disturbed time prompt electric fields can be significant and thus should be taken into consideration in evaluating penetration events over low latitudes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, Debrup; Chakrabarty, D.; Sekar, R.
This study tries to bring out the fact that storm time substorms can compete and at times significantly contribute to the geomagnetically disturbed time prompt penetration electric field effects on low and equatorial latitudes. Observations of unusual equatorial plasma drift data from Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere during two space weather events show that substorms can induce both eastward and westward penetration electric fields under steady southward interplanetary magnetic field (IMF B z) conditions. During the first event on 2 January 2005, the enhancement of the daytime eastward electric field over Jicamarca due to substorm ismore » found to be comparable with the Sq and interplanetary electric field (IEFy) generated electric fields combined. During the second event on 19 August 2006, the substorm is seen to weaken the daytime eastward field thereby inducing a westward field in spite of the absence of northward turning of IMF B z (overshielding). The westward electric field perturbation in the absence of any overshielding events is observationally sparse and contrary to the earlier results. Further, the substorm-induced field is found to be strong enough to compete or almost nullify the effects of storm time IEFy fields. This study also shows quantitatively that at times substorm contribution to the disturbed time prompt electric fields can be significant and thus should be taken into consideration in evaluating penetration events over low latitudes.« less
Jumping-droplet electronics hot-spot cooling
NASA Astrophysics Data System (ADS)
Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle; Neely, Jason; Pilawa-Podgurski, Robert C. N.; Miljkovic, Nenad
2017-03-01
Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm × 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25 °C air temperature, 20%-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm) and applied heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.
NASA Astrophysics Data System (ADS)
Hoder, T.; Synek, P.; Chorvát, D.; Ráhel', J.; Brandenburg, R.; Černák, M.
2017-07-01
The coplanar barrier discharge in synthetic air at 30 kPa pressure was studied by time-correlated single photon counting enhanced optical emission spectroscopy, far-field microscopy enhanced intensified CCD camera and sensitive current measurements. The discharge operated in a regime where two subsequent microdischarges appeared within the same voltage half-period. The electrical analysis of the barrier discharge setup enabled us to quantify charge transfer and the effective electric field development. During the second microdischarge the positive surface streamers follow the interface (triple-line) between the area of deposited charge from the previous one and the area of uncharged dielectric surface. It is shown that additional branching and flashes of surface streamers are responsible for the increased spatial complexity of the deposited surface charges at high overvoltage. A suppressed streamer propagating over the area of deposited surface charge was tracked and the evidence of surface streamer reconnection is presented. A spatiotemporal distribution (resolution of 120 ps and 100 μm) of the reduced electric field strength was obtained for both microdischarges from the recorded luminosities of the molecular nitrogen. The reduced electric field of positive streamers in the first microdischarge reached 1200 Td. For the second one, the electric field values for the streamer at the triple-line are slightly lower than that, while for the suppressed streamers are even higher.
Electro-aerodynamic field aided needleless electrospinning.
Yan, Guilong; Niu, Haitao; Zhou, Hua; Wang, Hongxia; Shao, Hao; Zhao, Xueting; Lin, Tong
2018-06-08
Auxiliary fields have been used to enhance the performance of needle electrospinning. However, much less has been reported on how auxiliary fields affect needleless electrospinning. Herein, we report a novel needleless electrospinning technique that consists of an aerodynamic field and a second electric field. The second electric field is generated by setting two grounded inductive electrodes near the spinneret. The two auxiliary fields have to be applied simultaneously to ensure working of the electrospinning process. A synergistic effect was observed between inductive electrode and airflow. The aerodynamic-electric auxiliary field was found to significantly increase fiber production rate (4.5 g h -1 ), by 350% in comparison to the setup without auxiliary field (1.0 g h -1 ), whereas it had little effect on fiber diameter. The auxiliary fields allow running needleless electrospinning at an applied voltage equivalent to that in needle electrospinning (e.g. 10-30 kV). The finite element analyses of electric field and airflow field verify that the inductive electrodes increase electric field strength near the spinneret, and the airflow assists in fiber deposition. This novel needleless electrospinning may be useful for development of high-efficiency, low energy-consumption nanofiber production systems.
Electro-aerodynamic field aided needleless electrospinning
NASA Astrophysics Data System (ADS)
Yan, Guilong; Niu, Haitao; Zhou, Hua; Wang, Hongxia; Shao, Hao; Zhao, Xueting; Lin, Tong
2018-06-01
Auxiliary fields have been used to enhance the performance of needle electrospinning. However, much less has been reported on how auxiliary fields affect needleless electrospinning. Herein, we report a novel needleless electrospinning technique that consists of an aerodynamic field and a second electric field. The second electric field is generated by setting two grounded inductive electrodes near the spinneret. The two auxiliary fields have to be applied simultaneously to ensure working of the electrospinning process. A synergistic effect was observed between inductive electrode and airflow. The aerodynamic-electric auxiliary field was found to significantly increase fiber production rate (4.5 g h‑1), by 350% in comparison to the setup without auxiliary field (1.0 g h‑1), whereas it had little effect on fiber diameter. The auxiliary fields allow running needleless electrospinning at an applied voltage equivalent to that in needle electrospinning (e.g. 10–30 kV). The finite element analyses of electric field and airflow field verify that the inductive electrodes increase electric field strength near the spinneret, and the airflow assists in fiber deposition. This novel needleless electrospinning may be useful for development of high-efficiency, low energy-consumption nanofiber production systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Fei; Wan, Xiangang; Phelan, Daniel
ZrCuSi 2-type CePd 1-xBi 2 crystals were obtained from excess Bi flux. Magnetic susceptibility measurements reveal that CePd 1-xBi 2 is a highly anisotropic antiferromagnet with transition temperature at 6 K, and a magnetic-field-induced metamagnetic transition at 5 T. An enhanced Sommerfeld coefficient of γ of 0.199 J-mol-Ce -1K -2 obtained from specific heat measurements suggests a moderate Kondo effect in CePd 1-xBi 2. In addition to the antiferromagnetic peak the resistivity curve shows a shoulder-like behavior which could be attributed to the presence of Kondo effect and crystal-electric-field effects in this compound. Magnetoresistance and Hall effect measurements suggest anmore » interplay between Kondo and crystal-electric-field effects which reconstructs the Fermi surface topology of CePd 1-xBi 2 around 75 K. Electronic structure calculations reveal the Pd vacancies are important to the magnetic structure and enhance the crystal-electric-field effects which quench the orbital moment of Ce at low temperatures.« less
Initiation of Positive Streamers near Uncharged Ice Hydrometeors in the Thundercloud Field
NASA Astrophysics Data System (ADS)
Babich, L. P.; Bochkov, E. I.
2018-05-01
Since the threshold electric field required for breakdown of air is much higher than the maximum field strength measured in thunderstorm clouds, the problem of lightning initiation still remains unsolved. According to the popular hypothesis, lightning can be initiated by a streamer discharge in the field enhanced near a hydrometeor. To verify the adequacy of this hypothesis, the development of a positive streamer propagating along the thunderstorm electric field in the vicinity of an ice needle at an air pressure corresponding to an altitude of 5 km (which is typical of the lightning initiation conditions) was simulated numerically. The hydrometeor dimensions are determined at which streamers can be initiated at different strengths of the thunderstorm electric field.
Imaging Magnetospheric Perturbations of the Ionosphere/Plasmasphere System from the Ground and Space
NASA Astrophysics Data System (ADS)
Foster, J. C.
2004-05-01
The thermal plasmas of the inner magnetosphere and ionosphere move across the magnetic field under the influence of electric fields. Irrespective of their source, these electric fields extend along magnetic field lines coupling the motion of thermal plasmas in the various altitude regimes. Modern remote-sensing techniques based both on the ground and in space are providing a new view of the large and meso-scale characteristics and dynamics of the plasmas of the extended ionosphere and their importance in understanding processes and effects observed throughout the coupled spheres of Earth's upper atmosphere. During strong geomagnetic storms, disturbance electric fields uplift and redistribute the thermal plasma of the low-latitude ionosphere and inner magnetosphere, producing a pronounced poleward shift of the equatorial anomalies (EA) and enhancements of plasma concentration (total electric content, TEC) in the post-noon plasmasphere. Strong SAPS (subauroral polarization stream) electric fields erode the plasmasphere boundary layer in the region of the dusk-sector bulge, producing plasmaspheric drainage plumes which carry the high-altitude material towards the dayside magnetopause. The near-Earth footprint of these flux tubes constitutes the mid-latitude streams of storm-enhanced density (SED) which produce considerable space weather effects across the North American continent. We use ground-based GPS propagation data to produce two-dimensional maps and movies of the evolution of these TEC features as they progress from equatorial regions to the polar caps. DMSP satellite overflights provide in-situ density and plasma flow/electric field observations, while the array of incoherent scatter radars probe the altitude distribution and characteristics of these dynamic thermal plasma features. IMAGE EUV and FUV observations reveal the space-based view of spatial extent and temporal evolution of these phenomena.
Bead-on-string structure printed by electrohydrodynamic jet under alternating current electric field
NASA Astrophysics Data System (ADS)
Liu, Juan; Lin, Yihuang; Jiang, Jiaxin; Liu, Haiyan; Zhao, Yang; Zheng, Gaofeng
2016-09-01
Electrohydrodynamic printing (EHDP) under alternating current (AC) electric field provides a novel way for the precise micro-/nano-droplet printing. The AC electric field induces the free charge to reciprocate along the EHDP jet and changes the electric field force on the jet periodically. The stability of jet can be enhanced by increasing the voltage frequency, and the regular bead-on-string structure is direct-written along the trajectory of collector. The deposition frequency of bead structure increases with the increasing of voltage frequency, due to the short period of AC electric field. As the voltage frequency is increased from 10 to 60 Hz, the diameter of bead structure decreases from 200 to 110 µm. As the duty ration increased from 10 to 60 %, the diameter of bead structure increased from 100 to 140 µm. This work would accelerate the development and the application of micro-/nano-printing technology in the fields of flexible electronic and micro-/nano-system.
Acceleration of runaway electrons in solar flares
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Goertz, C. K.
1990-01-01
The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.
TEC Variations Over Korean Peninsula During Magnetic Storm
NASA Astrophysics Data System (ADS)
Ji, E.-Y.; Choi, B.-K.; Kim, K.-H.; Lee, D.-H.; Cho, J.-H.; Chung, J.-K.; Park, J.-U.
2008-03-01
By analyzing the observations from a number of ground- and space-based instruments, including ionosonde, magnetometers, and ACE interplanetary data, we examine the response of the ionospheric TEC over Korea during 2003 magnetic storms. We found that the variation of vertical TEC is correlated with the southward turning of the interplanetary magnetic field B_z. It is suggested that the electric fields produced by the dynamo process in the high-latitude region and the prompt penetration in the low-latitude region are responsible for TEC increases. During the June 16 event, dayside TEC values increase more than 15%. And the ionospheric F2-layer peak height (hmF2) was ˜300km higher and the vertical E×B drift (estimated from ground-based magnetometer equatorial electrojet delta H) showed downward drift, which may be due to the ionospheric disturbance dynamo electric field produced by the large amount of energy dissipation into high-latitude regions. In contr! ast, during November 20 event, the nightside TEC increases may be due to the prompt penetration westward electric field. The ionospheric F2-layer peak height was below 200km and the vertical E×B drift showed downward drift. Also, a strong correlation is observed between enhanced vertical TEC and enhanced interplanetary electric field. It is shown that, even though TEC increases are caused by the different processes, the electric field disturbances in the ionosphere play an important role in the variation of TEC over Korea.
Signal Cloaking by Electric Fish
STODDARD, PHILIP K.; MARKHAM, MICHAEL R.
2010-01-01
Electric fish produce weak electric fields to image their world in darkness and to communicate with potential mates and rivals. Eavesdropping by electroreceptive predators exerts selective pressure on electric fish to shift their signals into less-detectable high-frequency spectral ranges. Hypopomid electric fish evolved a signal-cloaking strategy that reduces their detectability by predators in the lab (and thus presumably their risk of predation in the field). These fish produce broad-frequency electric fields close to the body, but the heterogeneous local fields merge over space to cancel the low-frequency spectrum at a distance. Mature males dynamically regulate this cloaking mechanism to enhance or suppress low-frequency energy. The mechanism underlying electric-field cloaking involves electrogenic cells that produce two independent action potentials. In a unique twist, these cells orient sodium and potassium currents in the same direction, potentially boosting their capabilities for current generation. Exploration of such evolutionary inventions could aid the design of biogenerators to power implantable medical devices, an ambition that would benefit from the complete genome sequence of a gymnotiform fish. PMID:20209064
Coherent anti-Stokes Raman scattering under electric field stimulation
NASA Astrophysics Data System (ADS)
Capitaine, Erwan; Ould Moussa, Nawel; Louot, Christophe; Lefort, Claire; Pagnoux, Dominique; Duclère, Jean-René; Kaneyasu, Junya F.; Kano, Hideaki; Duponchel, Ludovic; Couderc, Vincent; Leproux, Philippe
2016-12-01
We introduce an experiment using electro-CARS, an electro-optical method based on the combination of ultrabroadband multiplex coherent anti-Stokes Raman scattering (M-CARS) spectroscopy and electric field stimulation. We demonstrate that this method can effectively discriminate the resonant CARS signal from the nonresonant background owing to a phenomenon of molecular orientation in the sample medium. Such molecular orientation is intrinsically related to the induction of an electric dipole moment by the applied static electric field. Evidence of the electro-CARS effect is obtained with a solution of n -alkanes (CnH2 n +2 , 15 ≤n ≤40 ), for which an enhancement of the CARS signal-to-noise ratio is achieved in the case of CH2 and CH3 symmetric/asymmetric stretching vibrations. Additionally, an electric-field-induced second-harmonic generation experiment is performed in order to corroborate the orientational organization of molecules due to the electric field excitation. Finally, we use a simple mathematical approach to compare the vibrational information extracted from electro-CARS measurements with spontaneous Raman data and to highlight the impact of electric stimulation on the vibrational signal.
Photovoltaic dependence of photorefractive grating on the externally applied dc electric field
NASA Astrophysics Data System (ADS)
Maurya, M. K.; Yadav, R. A.
2013-04-01
Photovoltaic dependence of photorefractive grating (i.e., space-charge field and phase-shift of the index grating) on the externally applied dc electric field in photovoltaic-photorefractive materials has been investigated. The influence of photovoltaic field (EPhN), diffusion field and carrier concentration ratio r (donor/acceptor impurity concentration ratio) on the space-charge field (SCF) and phase-shift of the index grating in the presence and absence of the externally applied dc electric field have also been studied in details. Our results show that, for a given value of EPhN and r, the magnitude of the SCF and phase-shift of the index grating can be enhanced significantly by employing the lower dc electric field (EON<10) across the photovoltaic-photorefractive crystal and higher value of diffusion field (EDN>40). Such an enhancement in the magnitude of the SCF and phase-shift of the index grating are responsible for the strongest beam coupling in photovoltaic-photorefractive materials. This sufficiently strong beam coupling increases the two-beam coupling gain that may be exceed the absorption and reflection losses of the photovoltaic-photorefractive sample, and optical amplification can occur. The higher value of optical amplification in photovoltaic-photorefractive sample is required for the every applications of photorefractive effect so that technology based on the photorefractive effect such as holographic storage devices, optical information processing, acousto-optic tunable filters, gyro-sensors, optical modulators, optical switches, photorefractive-photovoltaic solitons, biomedical applications, and frequency converters could be improved.
Li, Wen-Wei; Sheng, Guo-Ping; Liu, Xian-Wei; Cai, Pei-Jie; Sun, Min; Xiao, Xiang; Wang, Yun-Kun; Tong, Zhong-Hua; Dong, Fang; Yu, Han-Qing
2011-06-15
The electricity production of Shewanella-inoculated microbial fuel cells (MFCs) under magnetic field (MF) exposure was investigated in different reactor systems. The persistency of the MF effect and the influences of MF intensity and direction on MFC performance were also studied. Application of a 100-mT static MF to the MFCs improved electricity production considerably, with an increase in the maximum voltage by 20-27% in both single- and two-chamber MFCs, while a more conspicuous improvement in the electricity generation was observed in a three-electrode cell. The MF effects were found to be immediate and reversible, and adverse effects seemed to occur when the MF was suddenly removed. The medium components analysis demonstrated that the application of MF led to an enhanced bioelectrochemical activity of Shewanella, and no significant promotion in mediator secretion was found. The improvement in the electricity production of MFCs under MF was mainly attributed to the enhanced bioelectrochemical activity, possibly through the oxidative stress mechanism. An accelerated cell growth under MF might also contribute to the enhanced substrate degradation and power generation. Copyright © 2010 Elsevier B.V. All rights reserved.
Kada, T; Asahi, S; Kaizu, T; Harada, Y; Tamaki, R; Okada, Y; Kita, T
2017-07-19
We studied the effects of the internal electric field on two-step photocarrier generation in InAs/GaAs quantum dot superlattice (QDSL) intermediate-band solar cells (IBSCs). The external quantum efficiency of QDSL-IBSCs was measured as a function of the internal electric field intensity, and compared with theoretical calculations accounting for interband and intersubband photoexcitations. The extra photocurrent caused by the two-step photoexcitation was maximal for a reversely biased electric field, while the current generated by the interband photoexcitation increased monotonically with increasing electric field intensity. The internal electric field in solar cells separated photogenerated electrons and holes in the superlattice (SL) miniband that played the role of an intermediate band, and the electron lifetime was extended to the microsecond scale, which improved the intersubband transition strength, therefore increasing the two-step photocurrent. There was a trade-off relation between the carrier separation enhancing the two-step photoexcitation and the electric-field-induced carrier escape from QDSLs. These results validate that long-lifetime electrons are key to maximising the two-step photocarrier generation in QDSL-IBSCs.
NASA Astrophysics Data System (ADS)
Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI
2018-05-01
The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.
Hole-to-surface resistivity measurements.
Daniels, J.J.
1983-01-01
Hole-to-surface resistivity measurements over a layered volcanic tuff sequence illustrate procedures for gathering, reducing, and interpreting hole-to-surface resistivity data. The magnitude and direction of the total surface electric field resulting from a buried current source is calculated from orthogonal potential difference measurements for a grid of closely spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Resistivity anomalies can be enhanced by calculating the difference between apparent resistivities calculated from the total surface electric field and apparent resistivities for a layered earth model.-from Author
Nongyrotropic Electrons in Guide Field Reconnection
NASA Technical Reports Server (NTRS)
Wendel, D. E.; Hesse, M.; Bessho, N.; Adrian, M. L.; Kuznetsova, M.
2016-01-01
We apply a scalar measure of nongyrotropy to the electron pressure tensor in a 2D particle-in-cell simulation of guide field reconnection and assess the corresponding electron distributions and the forces that account for the nongyrotropy. The scalar measure reveals that the nongyrotropy lies in bands that straddle the electron diffusion region and the separatrices, in the same regions where there are parallel electric fields. Analysis of electron distributions and fields shows that the nongyrotropy along the inflow and outflow separatrices emerges as a result of multiple populations of electrons influenced differently by large and small-scale parallel electric fields and by gradients in the electric field. The relevant parallel electric fields include large-scale potential ramps emanating from the x-line and sub-ion inertial scale bipolar electron holes. Gradients in the perpendicular electric field modify electrons differently depending on their phase, thus producing nongyrotropy. Magnetic flux violation occurs along portions of the separatrices that coincide with the parallel electric fields. An inductive electric field in the electron EB drift frame thus develops, which has the effect of enhancing nongyrotropies already produced by other mechanisms and under certain conditions producing their own nongyrotropy. Particle tracing of electrons from nongyrotropic populations along the inflows and outflows shows that the striated structure of nongyrotropy corresponds to electrons arriving from different source regions. We also show that the relevant parallel electric fields receive important contributions not only from the nongyrotropic portion of the electron pressure tensor but from electron spatial and temporal inertial terms as well.
Field enhancement in plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Piltan, Shiva; Sievenpiper, Dan
2018-05-01
Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of {{W}} {{{c}}{{m}}}-2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.
AC Electric Field Activated Shape Memory Polymer Composite
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.
2011-01-01
Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.
Defect and field-enhancement characterization through electron-beam-induced current analysis
NASA Astrophysics Data System (ADS)
Umezawa, Hitoshi; Gima, Hiroki; Driche, Khaled; Kato, Yukako; Yoshitake, Tsuyoshi; Mokuno, Yoshiaki; Gheeraert, Etienne
2017-05-01
To investigate the effects of defects and field enhancement in diamond power devices, a biased Schottky barrier diode was characterized by electron-beam-induced current (EBIC) analysis. The nonuniform distribution of the electrical field was revealed by bright spots on the laterally expanded depletion layer of the EBIC intensity map when the applied electrical field exceeded 0.95 MV/cm. The nonuniformity is partly due to a structural effect: the roughness at the edge of the Schottky electrode, induced by lithography and lift-off processes. A second family of spots was shown to increase the leakage current of the device. The time constant associated with this second spot family was 0.98 ms, which is three orders of magnitude shorter than that for defects previously characterized by deep-level transient spectroscopy.
MacKay, Scott; Hermansen, Peter; Wishart, David; Chen, Jie
2015-01-01
In this paper, we describe a point-of-care biosensor design. The uniqueness of our design is in its capability for detecting a wide variety of target biomolecules and the simplicity of nanoparticle enhanced electrical detection. The electrical properties of interdigitated electrodes (IDEs) and the mechanism for gold nanoparticle-enhanced impedance-based biosensor systems based on these electrodes are simulated using COMSOL Multiphysics software. Understanding these properties and how they can be affected is vital in designing effective biosensor devices. Simulations were used to show electrical screening develop over time for IDEs in a salt solution, as well as the electric field between individual digits of electrodes. Using these simulations, it was observed that gold nanoparticles bound closely to IDEs can lower the electric field magnitude between the digits of the electrode. The simulations are also shown to be a useful design tool in optimizing sensor function. Various different conditions, such as electrode dimensions and background ion concentrations, are shown to have a significant impact on the simulations. PMID:26364638
Electrokinetic transport in unsteady flow through peristaltic microchannel
NASA Astrophysics Data System (ADS)
Tripathi, Dharmendra; Mulchandani, Janak; Jhalani, Shubham
2016-04-01
We analyze the electrokinetic transport of aqueous electrolyte fluids with Newtonian model in presence of peristalsis through microchannel. Debye-Hückel linearization is employed to simplify the problem. Low Reynolds number and large wavelength approximations are taken into account subjected to microfluidics applications. Electrical double layer (EDL) is considered very thin and electroosmotic slip velocity (i.e. Helmholtz-Smoluchowski velocity) at the wall is subjected to study the effect of applied electrical field. The solutions for axial velocity and pressure difference along the channel length are obtained analytically and the effects of adding and opposing the flow by applied electric field have been discussed. It is revealed that the axial velocity and pressure gradient enhances with adding electric field and an opposite behavior is found in the flow direction on opposing the electric field. These results may also help towards designing organ-on-a-chip like devices for better drug design.
Direct measurement of the electric-field distribution in a light-emitting electrochemical cell
NASA Astrophysics Data System (ADS)
Slinker, Jason D.; Defranco, John A.; Jaquith, Michael J.; Silveira, William R.; Zhong, Yu-Wu; Moran-Mirabal, Jose M.; Craighead, Harold G.; Abruña, Héctor D.; Marohn, John A.; Malliaras, George G.
2007-11-01
The interplay between ionic and electronic charge carriers in mixed conductors offers rich physics and unique device potential. In light-emitting electrochemical cells (LEECs), for example, the redistribution of ions assists the injection of electronic carriers and leads to efficient light emission. The mechanism of operation of LEECs has been controversial, as there is no consensus regarding the distribution of electric field in these devices. Here, we probe the operation of LEECs using electric force microscopy on planar devices. We show that obtaining the appropriate boundary conditions is essential for capturing the underlying device physics. A patterning scheme that avoids overlap between the mixed-conductor layer and the metal electrodes enabled the accurate in situ measurement of the electric-field distribution. The results show that accumulation and depletion of mobile ions near the electrodes create high interfacial electric fields that enhance the injection of electronic carriers.
Electromagnetic field effects in explosives
NASA Astrophysics Data System (ADS)
Tasker, Douglas
2009-06-01
Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.
Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R
2018-05-30
Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.
Plasmon enhanced terahertz emission from single layer graphene.
Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M
2014-09-23
We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigorenko, E. E., E-mail: elenagrigorenko2003@yahoo.com; Malova, H. V., E-mail: hmalova@yandex.ru; Malykhin, A. Yu., E-mail: anmaurdreg@gmail.com
2015-01-15
The influence of the shear magnetic field component, which is directed along the electric current in the current sheet (CS) of the Earth’s magnetotail and enhanced near the neutral plane of the CS, on the nonadiabatic dynamics of ions interacting with the CS is studied. The results of simulation of the nonadiabatic ion motion in the prescribed magnetic configuration similar to that observed in the magnetotail CS by the CLUSTER spacecraft demonstrated that, in the presence of some initial shear magnetic field, the north-south asymmetry in the ion reflection/refraction in the CS is observed. This asymmetry leads to the formationmore » of an additional current system formed by the oppositely directed electric currents flowing in the northern and southern parts of the plasma sheet in the planes tangential to the CS plane and in the direction perpendicular to the direction of the electric current in the CS. The formation of this current system perhaps is responsible for the enhancement and further maintenance of the shear magnetic field near the neutral plane of the CS. The CS structure and ion dynamics observed in 17 intervals of the CS crossings by the CLUSTER spacecraft is analyzed. In these intervals, the shear magnetic field was increased near the neutral plane of the CS, so that the bell-shaped spatial distribution of this field across the CS plane was observed. The results of the present analysis confirm the suggested scenario of the enhancement of the shear magnetic field near the neutral plane of the CS due to the peculiarities of the nonadiabatic ion dynamics.« less
Electric Fields, Cloud Microphysics, and Reflectivity in Anvils of Florida Thunderstorms
NASA Technical Reports Server (NTRS)
Dye, J. E.; Bateman, M. G.; Christian, H. J.; Grainger, C. A.; Hall, W. D.; Krider, E. P.; Lewis, S. A.; Mach, D. M.; Merceret, F. J.; Willett, J. C.;
2006-01-01
A coordinated aircraft - radar project that investigated the electric fields, cloud microphysics and radar reflectivity of thunderstorm anvils near Kennedy Space Center is described. Measurements from two cases illustrate the extensive nature of the microphysics and electric field observations. As the aircraft flew from the edges of anvils into the interior, electric fields very frequently increased abruptly from approx.1 to >10 kV/m even though the particle concentrations and radar reflectivity increased smoothly. The abrupt increase in field usually occurred when the aircraft entered regions with a reflectivity of 10 to 15 dBZ. It is suggested that the abrupt increase in electric field may be because the charge advection from the storm core did not occur across the entire breadth of the anvil and was not constant in time. Screening layers were not detected near the edges of the anvils. Some long-lived anvils showed subsequent enhancement of electric field and reflectivity and growth of particles, which if localized, might be a factor in explaining the abrupt change of field in some cases. Comparisons of electric field magnitude with particle concentration or reflectivity for a combined data set that included all anvil measurements showed a threshold behavior. When the average reflectivity, such as in a 3-km cube, was less than approximately 5 dBZ, the electric field magnitude was <3 kV/m. Based on these findings, the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) is now being used by NASA, the Air Force and Federal Aviation Administration in new Lightning Launch Commit Criteria as a diagnostic for high electric fields in anvils.
Terahertz radiation in graphene hyperbolic medium excited by an electric dipole.
Feng, Xiaodong; Gong, Sen; Zhong, Renbin; Zhao, Tao; Hu, Min; Zhang, Chao; Liu, Shenggang
2018-03-01
In this Letter, the enhanced and directional radiation in a wide terahertz (THz) frequency range in a graphene hyperbolic medium excited by an electric dipole is presented. The numerical simulations and theoretical analyses indicate that the enhanced radiation comes from the strong surface plasmon couplings in the graphene hyperbolic medium, consisting of alternative graphene and dielectric substrate layers. The simulation results also show that the peak power flow of the enhanced THz radiation in the graphene hyperbolic medium is dramatically enhanced by more than 1 order of magnitude over that in a general medium within a certain distance from the dipole, and the electromagnetic fields are strongly concentrated in a narrow angle. Also, the radiation fields can be manipulated, and the fields' angular distributions can be tuned by adjusting the dielectric permittivity and thickness of the substrates, and the chemical potential of graphene. Accordingly, it provides a good opportunity for developing miniature, integratable, high-power-density, and tunable radiation sources in the THz band at room temperature.
Fluctuation-enhanced electric conductivity in electrolyte solutions.
Péraud, Jean-Philippe; Nonaka, Andrew J; Bell, John B; Donev, Aleksandar; Garcia, Alejandro L
2017-10-10
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.
Fluctuation-enhanced electric conductivity in electrolyte solutions
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.
2017-01-01
We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell–Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration. PMID:28973890
Observed Enhancement of Reflectivity and Electric Field in Long-Lived Florida Anvils
NASA Technical Reports Server (NTRS)
Dye, James E.; Willett, John C.
2007-01-01
A study of two long-lived Florida anvils showed that reflectivity >20 dBZ increased in area, thickness and sometimes magnitude at mid-level well downstream of the convective cores. In these same regions electric fields maintained strengths >10 kV m1 for many tens of minutes and became quite uniform over tens of kilometers. Millimetric aggregates persisted at 9 to 10 km for extended times and distances. Aggregation of ice particles enhanced by strong electric fields might have contributed to reflectivity growth in the early anvil, but is unlikely to explain observations further out in the anvil. The enhanced reflectivity and existence of small, medium and large ice particles far out into the anvil suggest that an updraft was acting, perhaps in weak convective cells formed by instability generated from the evaporation and melting of falling ice particles. We conclude that charge separation must have occurred in these anvils, perhaps at the melting level but also at higher altitudes, in order to maintain fields >10 kV m 1 at 9 to 10 km for extended periods of time over large distances. We speculate that charge separation occurred as a result of ice-ice particle collisions (without supercooled water being present) via either a non-inductive or perhaps even an inductive mechanism, given the observed broad ice particle spectra, the strong pre-existing electric fields and the many tens of minutes available for particle interactions. The observations, particularly in the early anvil, show that the charge structure in these anvils was quite complex.
NASA Astrophysics Data System (ADS)
Yasuoka, Takanori; Kato, Tomohiro; Kato, Katsumi; Okubo, Hitoshi
Electrode conditioning is very important technique for improvement of the insulation performance of vacuum circuit breakers (VCBs). This paper discusses the spark conditioning mechanism under non-uniform electric field focused on the pre-breakdown current. We quantitatively evaluated the spark conditioning effect by analyzing the pre-breakdown current based on Fowler-Nordheim equation. As a result, field enhancement factor β decreased with the increasing in breakdown voltage in the beginning of conditioning process, and finally β was saturated with the saturation of breakdown voltage. In addition, in case of non-uniform field, we found that β on high voltage rod electrode after conditioning varied according to the electric field strength on the rod electrode.
NASA Astrophysics Data System (ADS)
Lavigne, Thomas
In the early 1900's, J.W. Whipple began validating C.R. Wilson's Global Electric Circuit (GEC) hypothesis by correlating diurnal variations of global thunder days with diurnal variations of the fair weather electric field. This study applies 16+ years of Precipitation Feature (PF) data from the Tropical Rainfall Measuring Mission (TRMM), including lightning data from the Lightning Imaging Sensor (LIS), alongside 12-years of electric field measurements from Vostok, Antarctica to further examine this relationship. Joint diurnal-seasonal variations of the electric field are compared with PF parameters that are potentially related to the GEC. The flash rate and volume of 30 dBZ between -5°C and -35°C variables are shown to have the best direct relationship to the electric field, with r2 values of 0.67 and 0.62, respectively. However, the Coefficient of Variation (COV) of the flash rate (28%) and the electric field (12%), display relatively large differences in the spread of the variables. The volume of 30 dBZ between -5°C and -35°C shows a closer amplitude agreement to the variance of the electric field (COV=17%). Furthermore, these relationships are analyzed during two different phases of the El Nino Southern Oscillation (ENSO). Results show different seasonal-diurnal variations of the electric field during ENSO phases, with enhancements in the electric field between January through April at 16-24 UTC in La Nina years. In all, similar variations have been found in the fair weather electric field, and the variation of properties of global PFs with high potential of electrification at diurnal, seasonal, and interannual timescales. These confirm the dominant role of the global thunderclouds and electrified clouds in the global electric circuit.
NASA Astrophysics Data System (ADS)
Roth, Connie B.; Kriisa, Annika
Understanding the phase behavior of polymer blends and block copolymers under the presence of electric fields is important for advanced applications containing electrodes such as organic photovoltaics and batteries, as well as for field-directed assembly and alignment of domains. We have recently demonstrated that electric fields enhance the miscibility of polystyrene (PS) / poly(vinyl methyl ether blends) (PVME) blends, shifting the phase separation temperature Ts(E) up by 13.5 +/- 1.4 K for electric field strengths of E = 1.7 MV/m. Experimentally this effect is much larger than the traditional predictions from adding the standard electrostatic energy term for mixtures to the free energy of mixing. However, accounting for the energy penalty of dielectric interfaces between domains created during phase separation, the primary factor that drives alignment of domains, may also be responsible for the change in miscibility. Here we investigate the dynamics of repeatedly jumping the system from the one-phase to the two-phase region and demonstrate that this can be done at a constant temperature simply by turning the electric field on and off, illustrating electric-field-induced remixing in the two-phase region.
Electrodynamics of ionospheric weather over low latitudes
NASA Astrophysics Data System (ADS)
Abdu, Mangalathayil Ali
2016-12-01
The dynamic state of the ionosphere at low latitudes is largely controlled by electric fields originating from dynamo actions by atmospheric waves propagating from below and the solar wind-magnetosphere interaction from above. These electric fields cause structuring of the ionosphere in wide ranging spatial and temporal scales that impact on space-based communication and navigation systems constituting an important segment of our technology-based day-to-day lives. The largest of the ionosphere structures, the equatorial ionization anomaly, with global maximum of plasma densities can cause propagation delays on the GNSS signals. The sunset electrodynamics is responsible for the generation of plasma bubble wide spectrum irregularities that can cause scintillation or even disruptions of satellite communication/navigation signals. Driven basically by upward propagating tides, these electric fields can suffer significant modulations from perturbation winds due to gravity waves, planetary/Kelvin waves, and non-migrating tides, as recent observational and modeling results have demonstrated. The changing state of the plasma distribution arising from these highly variable electric fields constitutes an important component of the ionospheric weather disturbances. Another, often dominating, component arises from solar disturbances when coronal mass ejection (CME) interaction with the earth's magnetosphere results in energy transport to low latitudes in the form of storm time prompt penetration electric fields and thermospheric disturbance winds. As a result, drastic modifications can occur in the form of layer restructuring (Es-, F3 layers etc.), large total electron content (TEC) enhancements, equatorial ionization anomaly (EIA) latitudinal expansion/contraction, anomalous polarization electric fields/vertical drifts, enhanced growth/suppression of plasma structuring, etc. A brief review of our current understanding of the ionospheric weather variations and the electrodynamic processes underlying them and some outstanding questions will be presented in this paper.
NASA Astrophysics Data System (ADS)
Wang, Hanxiong; Liu, Liping; Liu, Dong
2017-03-01
The equilibrium shape of a bubble/droplet in an electric field is important for electrowetting over dielectrics (EWOD), electrohydrodynamic (EHD) enhancement for heat transfer and electro-deformation of a single biological cell among others. In this work, we develop a general variational formulation in account of electro-mechanical couplings. In the context of EHD, we identify the free energy functional and the associated energy minimization problem that determines the equilibrium shape of a bubble in an electric field. Based on this variational formulation, we implement a fixed mesh level-set gradient method for computing the equilibrium shapes. This numerical scheme is efficient and validated by comparing with analytical solutions at the absence of electric field and experimental results at the presence of electric field. We also present simulation results for zero gravity which will be useful for space applications. The variational formulation and numerical scheme are anticipated to have broad applications in areas of EWOD, EHD and electro-deformation in biomechanics.
InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface
NASA Astrophysics Data System (ADS)
Teubert, J.; Koslowski, S.; Lippert, S.; Schäfer, M.; Wallys, J.; Dimitrakopulos, G.; Kehagias, Th.; Komninou, Ph.; Das, A.; Monroy, E.; Eickhoff, M.
2013-08-01
We investigated the electric-field dependence of the photoluminescence-emission properties of InGaN/GaN quantum dot multilayers in contact with an electrolyte. Controlled variations of the surface potential were achieved by the application of external electric fields using the electrolytic Schottky contact and by variation of the solution's pH value. Prior to characterization, a selective electrochemical passivation process was required to suppress leakage currents. The quantum dot luminescence is strongly affected by surface potential variations, i.e., it increases exponentially with cathodic bias and acidic pH values. The results cannot be explained by a modification of intra-dot polarization induced electric fields via the quantum confined Stark effect but are attributed to the suppression/enhancement of non-radiative recombination processes, i.e., mainly hole transfer into the electrolyte. The results establish a link between the photoluminescence intensity and the magnitude of electric fields at the semiconductor/electrolyte interface.
NASA Astrophysics Data System (ADS)
Socias, Alvaro; Oyarzun, Diego; Guzman, Amador
2014-11-01
The electroosmotic flow (EOF) pattern characteristics in cross-shaped microchannels flow are important features when either suppressing or enhancing flow features for injection and separation or mixing of multiple species are the wanted objectives. There are situations in EOF in cross-shaped microchannels where the fluid flows toward unexpected and unwanted directions under a given external electric field that depends of both the applied electric field and lengths of the different channels. This article describes the effect of the electric field ratio, defined as the ratio between longitudinal nominal electric field ELong = (VE-VW) /(LW + LE) and the nominal electric field E a = (VS-VE) /(VS + VE) , where E, S and W define the east, south and west directions of the cross-shaped microchannel; V is the externally applied voltage and L is the length, on the EOF characteristics in a cross-shaped microchannel. We use the lattice-Boltzmann method (LBM) for solving the discretized Boltzmann Transport Equation (BTE) describing the coupled processes of hydrodynamics and electrodynamic. Our numerical simulations allow us to determine the EOF pattern for a wide range of the electric field ratio and Ea such that inverted flow features are captured and described, which are very important to determine for flow separation or mixing.
NASA Astrophysics Data System (ADS)
Kriisa, Annika; Roth, Connie B.
2015-03-01
Techniques which can externally control and manipulate the phase behavior of polymeric systems, without altering chemistry on a molecular level, have great practical benefits. One such possible mechanism is the use of electric fields, shown to cause interfacial instabilities, orientation of morphologies, and phase transitions in polymer blends and block copolymers. We have recently demonstrated that the presence of uniform electric fields can also strongly enhance the miscibility of polystyrene (PS) / poly(vinyl methyl ether) (PVME) blends [J. Chem. Phys. 2014, 141, 134908]. Using fluorescence to measure the phase separation temperature Ts of PS/PVME blends with and without electric fields, we show that Ts can be reproducibly and reversibly increased by 13.5 +/- 1.4 K for electric fields of 17 kV/mm for this lower critical solution temperature (LCST) blend. This increase in blend miscibility with electric fields represents some of the largest absolute shifts in Ts ever recorded, well outside of experimental error. The best theoretical prediction for the expected shift in Ts with electric field for this system is still two orders of magnitude smaller than that observed experimentally. We discuss the limitations of this theoretical prediction and consider possible factors affecting miscibility that may need to be also included.
McCullen, Seth D; McQuilling, John P; Grossfeld, Robert M; Lubischer, Jane L; Clarke, Laura I; Loboa, Elizabeth G
2010-12-01
Electric stimulation is known to initiate signaling pathways and provides a technique to enhance osteogenic differentiation of stem and/or progenitor cells. There are a variety of in vitro stimulation devices to apply electric fields to such cells. Herein, we describe and highlight the use of interdigitated electrodes to characterize signaling pathways and the effect of electric fields on the proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). The advantage of the interdigitated electrode configuration is that cells can be easily imaged during short-term (acute) stimulation, and this identical configuration can be utilized for long-term (chronic) studies. Acute exposure of hASCs to alternating current (AC) sinusoidal electric fields of 1 Hz induced a dose-dependent increase in cytoplasmic calcium in response to electric field magnitude, as observed by fluorescence microscopy. hASCs that were chronically exposed to AC electric field treatment of 1 V/cm (4 h/day for 14 days, cultured in the osteogenic differentiation medium containing dexamethasone, ascorbic acid, and β-glycerol phosphate) displayed a significant increase in mineral deposition relative to unstimulated controls. This is the first study to evaluate the effects of sinusoidal AC electric fields on hASCs and to demonstrate that acute and chronic electric field exposure can significantly increase intracellular calcium signaling and the deposition of accreted calcium under osteogenic stimulation, respectively.
A fully electric field driven scalable magnetoelectric switching element
NASA Astrophysics Data System (ADS)
Ahmed, R.; Victora, R. H.
2018-04-01
A technique for micromagnetic simulation of the magnetoelectric (ME) effect in Cr2O3 based structures has been developed. It has been observed that the microscopic ME susceptibility differs significantly from the experimentally measured values. The deviation between the two susceptibilities becomes more prominent near the Curie temperature, affecting the operation of the device at room temperature. A fully electric field controlled ME switching element has been proposed for use at technologically interesting densities: it employs quantum mechanical exchange at the boundaries instead of the applied magnetic field needed in traditional switching schemes. After establishing temperature dependent physics-based parameters, switching performances have been studied for different temperatures, applied electric fields, and Cr2O3 cross-sections. It has been found that our proposed use of quantum mechanical exchange favors reduced electric field operation and enhanced scalability while retaining reliable thermal stability.
NASA Astrophysics Data System (ADS)
Qiao, K. M.; Li, J.; Liu, Y.; Kuang, H.; Wang, J.; Hu, F. X.; Sun, J. R.; Shen, B. G.
2018-06-01
In this paper, we have investigated the magnetocaloric effect (MCE) and its modulation by electric field in La0.325Pr0.3Ca0.375MnO3 (LPCMO) films grown on (0 1 1)-oriented PMN-PT substrates. As a typical perovskite manganite with phase separation, the LPCMO bulk shows a considerable MCE, but the MCE of the LPCMO films has never been investigated. We found that the LPCMO films exhibit a MCE over a wide temperature range. A modulation of magnetization by electric field has been observed in the temperature dependent (M-T) and magnetic field dependent (M-H) curves. As a result, enhanced magnetic entropy change and refrigeration capacity by about 4% under an electric field of +6 kV/cm has been demonstrated.
Jumping-droplet electronics hot-spot cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Junho; Birbarah, Patrick; Foulkes, Thomas
Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobicmore » surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm 2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm 2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.« less
Jumping-droplet electronics hot-spot cooling
Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; ...
2017-03-20
Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobicmore » surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm 2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm 2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.« less
NASA Astrophysics Data System (ADS)
Khaerdinov, N. S.; Lidvansky, A. S.; Petkov, V. B.
2005-07-01
We present the data on correlations of the intensity of the soft component of cosmic rays with the local electric field of the near-earth atmosphere during thunderstorm periods at the Baksan Valley (North Caucasus, 1700 m a.s.l.). The large-area array for studying the extensive air showers of cosmic rays is used as a particle detector. An electric field meter of the 'electric mill' type (rain-protected) is mounted on the roof of the building in the center of this array. The data were obtained in the summer seasons of 2000-2002. We observe strong enhancements of the soft component intensity before some lightning strokes. At the same time, the analysis of the regression curve 'intensity versus field' discovers a bump at the field sign that is opposite to the field sign corresponding to acceleration of electrons. It is interpreted as a signature of runaway electrons from the region of the strong field (with opposite sign) overhead.
Electrical Stimulation Technologies for Wound Healing
Kloth, Luther C.
2014-01-01
Objective: To discuss the physiological bases for using exogenously applied electric field (EF) energy to enhance wound healing with conductive electrical stimulation (ES) devices. Approach: To describe the types of electrical currents that have been reported to enhance chronic wound-healing rate and closure. Results: Commercial ES devices that generate direct current (DC), and mono and biphasic pulsed current waveforms represent the principal ES technologies which are reported to enhance wound healing. Innovation: Wafer-thin, disposable ES technologies (wound dressings) that utilize mini or micro-batteries to deliver low-level DC for wound healing and antibacterial wound-treatment purposes are commercially available. Microfluidic wound-healing chips are currently being used with greater accuracy to investigate the EF effects on cellular electrotaxis. Conclusion: Numerous clinical trials described in subsequent sections of this issue have demonstrated that ES used adjunctively with standard wound care (SWC), enhances wound healing rate faster than SWC alone. PMID:24761348
Shimada, Kunio; Saga, Norihiko
2016-01-01
Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics. PMID:27649210
Shimada, Kunio; Saga, Norihiko
2016-09-18
Sensors are essential to the fulfillment of every condition of haptic technology, and they need simultaneously to sense shear stress as well as normal force, and temperature. They also must have a strong and simple structure, softness, and large extension. To achieve these conditions simultaneously, we enhanced the sensitivity of sensors utilizing natural rubber (NR)-latex through the application of electrolytic polymerization focused on the isoprene C=C bonds in natural rubbers such as NR-latex, and then applied a magnetic field and magnetic compound fluid (MCF) as magnetically responsive fluid. When an electric field alone was used in the rubber, the effect of electrolytic polymerization was very small compared to the effect in well-known conductive polymer solution such as plastic. The MCF developed by Shimada in 2001 involved magnetite and metal particles, and acts as a filler in NR-latex. By utilizing the magnetic, electric fields and the MCF, we aligned the electrolytically polymerized C=C along the magnetic field line with the magnetic clusters formed by the aggregation of magnetite and metal particles so as to enhance the effect of electrolytic polymerization. We then demonstrated the effectiveness of the new method of rubber vulcanization on the sensitivity of the rubber by experimentally investigating its electric and dynamic characteristics.
USDA-ARS?s Scientific Manuscript database
Current FDA regulations require that juice processors effect a 5 log CFU/ml reduction of a target pathogen prior to distributing products. Whereas thermal pasteurization reduces the sensory characteristics of juice by altering flavor components, pulsed electric field (PEF) treatment can be conducte...
Light localization and SERS in tip-shaped silicon metasurface.
Lagarkov, Andrey; Boginskaya, Irina; Bykov, Igor; Budashov, Igor; Ivanov, Andrey; Kurochkin, Ilya; Ryzhikov, Ilya; Rodionov, Ilya; Sedova, Marina; Zverev, Alexander; Sarychev, Andrey K
2017-07-24
Optical properties of two dimensional periodic system of the silicon micro-cones are investigated. The metasurface, composed of the silicon tips, shows enhancement of the local optical field. Finite element computer simulations as well as real experiment reveal anomalous optical response of the dielectric metasurface due to excitation of the dielectric resonances. Various electromagnetic resonances are considered in the dielectric cone. The metal-dielectric resonances, which are excited between metal nanoparticles and dielectric cones, are also considered. The resonance local electric field can be much larger than the field in the usual surface plasmon resonances. To investigate local electric field the signal molecules are deposited on the metal nanoparticles. We demonstrate enhancement of the electromagnetic field and Raman signal from the complex of DTNB acid molecules and gold nanoparticles, which are distributed over the metasurface. The metasurfaces composed from the dielectric resonators can have quasi-continuous spectrum and serve as an efficient SERS substrates.
Kitamura, Kyoko; Sakai, Kyosuke; Noda, Susumu
2011-07-18
Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bindokas, V.P.; Gauger, J.R.; Greenberg, B.
Mechanisms to explain disturbance of honey bee colonies under a 765-kV, 60-Hz transmission line (electric (E) field = 7 kV/m) fall into two categories: direct bee perception of enhanced in-hive E fields, and perception of shock from induced currents. The same adverse biological effects previously observed in honey bee colonies exposed under a 765-kV transmission line can be reproduced by exposing worker bees to shock or E field within elongated hive entranceways (= tunnels). Exposure to intense E field caused disturbance only if bees were in contact with a conductive substrate. E-field and shock exposure can be separated and preciselymore » defined within tunnels, eliminating dosimetric vagaries that occur when entire hives are exposed to E field.« less
NASA Astrophysics Data System (ADS)
Fu, Dong; Zhang, Zuyin; Li, Jian; Wu, Haoyue; Wang, Wenbo; Wei, Xin
2017-05-01
By exploiting the radiative coupling between the electromagnetic field scattered by individual Si dimer and the collective wave diffracted (Rayleigh Anomalies) in the plane of Si dimers array, optical resonance with extremely narrow linewidth is achieved, accompanied with dramatic enhancement of electric field in the gap of the dimer. We analyze the optical properties of Si dimers array by decomposing it into three fundamental sub-systems. Theoretical investigation employing the coupled dipole approximation is complemented with numerical simulations. The result shows that polarization angle has significant influence on the orientation of the field scattered by individual Si dimer, which determines the efficiency of radiative coupling and further impacts on the electric field enhancement. Moreover, we explore the feasibility of application in refractive sensing. It is shown that the figure of merit value for the proposed system of Si dimers array is as high as 306. The Si dimers array that takes advantage of multiple coupling creates new possibility to implement field-enhanced spectroscopy and refractive sensing with ultra-high sensitivity.
Strong radial electric field shear and reduced fluctuations in a reversed-field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, B.E.; Chiang, C.S.; Prager, S.C.
1997-05-01
A strongly sheared radial electric field is observed in enhanced confinement discharges in the MST reversed-field pinch. The strong shear develops in a narrow region in the plasma edge. Electrostatic fluctuations are reduced over the entire plasma edge with an extra reduction in the shear region. Magnetic fluctuations, resonant in the plasma core but global in extent, are also reduced. The reduction of fluctuations in the shear region is presumably due to the strong shear, but the causes of the reductions outside this region have not been established.
NASA Astrophysics Data System (ADS)
Hattori, Yoshiaki; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke
2018-01-01
The electrical evaluation of the crystallinity of hexagonal boron nitride (h -BN) is still limited to the measurement of dielectric breakdown strength, in spite of its importance as the substrate for two-dimensional van der Waals heterostructure devices. In this study, physical phenomena for degradation and failure in exfoliated single-crystal h -BN films were investigated using the constant-voltage stress test. At low electrical fields, the current gradually reduced and saturated with time, while the current increased at electrical fields higher than ˜8 MV /cm and finally resulted in the catastrophic dielectric breakdown. These transient behaviors may be due to carrier trapping to the defect sites in h -BN because trapped carriers lower or enhance the electrical fields in h -BN depending on their polarities. The key finding is the current enhancement with time at the high electrical field, suggesting the accumulation of electrons generated by the impact ionization process. Therefore, a theoretical model including the electron generation rate by an impact ionization process was developed. The experimental data support the expected degradation mechanism of h -BN. Moreover, the impact ionization coefficient was successfully extracted, which is comparable to that of Si O2 , even though the fundamental band gap for h -BN is smaller than that for Si O2 . Therefore, the dominant impact ionization in h -BN could be band-to-band excitation, not defect-assisted impact ionization.
Zan, Wenyan; Geng, Wei; Liu, Huanxiang; Yao, Xiaojun
2016-01-28
Vertical heterostructures of MoS2/h-BN/graphene have been successfully fabricated in recent experiments. Using first-principles analysis, we show that the structural and electronic properties of such vertical heterostructures are sensitive to applied vertical electric fields and strain. The applied electric field not only enhances the interlayer coupling but also linearly controls the charge transfer between graphene and MoS2 layers, leading to a tunable doping in graphene and controllable Schottky barrier height. Applied biaxial strain could weaken the interlayer coupling and results in a slight shift of graphene's Dirac point with respect to the Fermi level. It is of practical importance that the tunable electronic properties by strain and electric fields are immune to the presence of sulfur vacancies, the most common defect in MoS2.
Qin, Frank G F; Mawson, John; Zeng, Xin An
2011-05-30
Sintered stainless steel (SSS) microfiltration membranes, which served as electrode directly, were used for the experiment of separating Alamin, a calcium salt and protein containing particles, found in dairy processing. Fouling and cleaning of the SSS membranes under the application of an external electric field were studied. The imposed electric field was found, diverging the pH of permeate and retentate. This in turn altered the solubility of the calcium salt and impacted the performance of electro microfiltration membrane. Using electric field as an enhanced cleaning-in-place (CIP) method in back flushing SSS membrane was also studied.
Qin, Frank G. F.; Mawson, John; Zeng, Xin An
2011-01-01
Sintered stainless steel (SSS) microfiltration membranes, which served as electrode directly, were used for the experiment of separating Alamin, a calcium salt and protein containing particles, found in dairy processing. Fouling and cleaning of the SSS membranes under the application of an external electric field were studied. The imposed electric field was found, diverging the pH of permeate and retentate. This in turn altered the solubility of the calcium salt and impacted the performance of electro microfiltration membrane. Using electric field as an enhanced cleaning-in-place (CIP) method in back flushing SSS membrane was also studied. PMID:24957615
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koizumi, H.; Uda, S.; Fujiwara, K.
X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.
Al Attar, Hameed A; Monkman, Andy P
2016-09-01
A simple but novel method is designed to study the characteristics of the exciplex state pinned at a donor-acceptor abrupt interface and the effect an external electric field has on these excited states. The reverse Onsager process, where the field induces blue-shifted emission and increases the efficiency of the exciplex emission as the e-h separation reduces, is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Field-aligned current sources in the high-latitude ionosphere
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1979-01-01
The paper determines the electric potential in a plane which is fed current from a pair of field-aligned current sheets. The ionospheric conductivity is modelled as a constant with an enhanced conductivity annular ring. It is shown that field-aligned current distributions are arbitrary functions of azimuth angle (MLT) and thus allow for asymmetric potential configurations over the pole cap. In addition, ionospheric surface currents are computed by means of stream functions. Finally, the discussion relates these methods to the electrical characteristics of the magnetosphere.
Electric-field control of magnetic properties for α-Fe2O3/Al2O3 films
NASA Astrophysics Data System (ADS)
Cheng, Bin; Qin, Hongwei; Liu, Liang; Xie, Jihao; Zhou, Guangjun; Chen, Lubin; Hu, Jifan
2018-06-01
α-Fe2O3/Al2O3 films can exhibit weak ferromagnetism at room temperature. The saturation magnetization of the thinner film is larger than that of the thick one deposited at the same temperature of 500 °C, which implies that the weak ferromagnetism at room temperature comes not only from the intrinsic canted magnetic structure, but also from the effects of interface between α-Fe2O3/Al2O3, such as the effect of Al diffusion into α-Fe2O3 film. Perpendicular electric field upon α-Fe2O3/Al2O3 film at room temperature could adjust the magnetic properties (saturation magnetization, magnetic remanence, coercivity and saturation magnetizing field). The positive electric field can enhance the magnetism of α-Fe2O3/Al2O3 thin film, while negative electric field can reduce it. The change induced by electric field may be connected with the migration effects of Al3+ ions. The steps of curve for saturation magnetization versus the electric field may reflect these complicated processes. The magnetization of the film deposited at a higher temperature can be changed by electric field more easily. This study may inspire more in-depth research and lead to an alternative approach to future magneto-electronic devices.
NASA Technical Reports Server (NTRS)
Smith, P. H.; Hoffman, R. A.; Bewtra, N. K.
1979-01-01
The motions of charged particles under the influence of the geomagnetic and electric fields are quite complex in the region of the inner magnetosphere. The Volland-Stern type large-scale convection electric field with gamma = 2 has been used successfully to predict both the plasmapause location and particle enhancements determined from Explorer 45 (S3-A) measurements. Recently introduced into the trajectory calculations of Ejiri et al. (1978) is a time dependence in this electric field based on the variation in Kp for actual magnetic storm conditions. The particle trajectories are computed as they change in this time-varying electric field. Several storm fronts of particles of different magnetic moments are allowed to be injected into the inner magnetosphere from L = 10 in the equatorial plane. The motions of these fronts are presented in a movie format. The local time of injection, the particle magnetic moments and the subsequent temporal history of the magnetospheric electric field play important roles in determining whether the injected particles are trapped within the ring current region or whether they are convected to regions outside the inner magnetosphere.
Antunez, Edgar E; Campos, Jose; Basurto, Miguel A; Agarwal, Vivechana
2014-01-01
Fabrication of photoluminescent n-type porous silicon (nPS), using electrode-assisted lateral electric field accompanied with a perpendicular magnetic field, is reported. The results have been compared with the porous structures fabricated by means of conventional anodization and electrode-assisted lateral electric field without magnetic field. The lateral electric field (LEF) applied across the silicon substrate leads to the formation of structural gradient in terms of density, dimension, and depth of the etched pores. Apart from the pore shape tunability, the simultaneous application of LEF and magnetic field (MF) contributes to a reduction of the dimension of the pores and promotes relatively more defined pore tips as well as a decreased side-branching in the pore walls of the macroporous structure. Additionally, when using magnetic field-assisted etching, within a certain range of LEF, an enhancement of the photoluminescence (PL) response was obtained.
2014-01-01
Fabrication of photoluminescent n-type porous silicon (nPS), using electrode-assisted lateral electric field accompanied with a perpendicular magnetic field, is reported. The results have been compared with the porous structures fabricated by means of conventional anodization and electrode-assisted lateral electric field without magnetic field. The lateral electric field (LEF) applied across the silicon substrate leads to the formation of structural gradient in terms of density, dimension, and depth of the etched pores. Apart from the pore shape tunability, the simultaneous application of LEF and magnetic field (MF) contributes to a reduction of the dimension of the pores and promotes relatively more defined pore tips as well as a decreased side-branching in the pore walls of the macroporous structure. Additionally, when using magnetic field-assisted etching, within a certain range of LEF, an enhancement of the photoluminescence (PL) response was obtained. PMID:25313298
Electric Fields, Cloud Microphysics, and Reflectivity in Anvils of Florida Thunderstorms
NASA Technical Reports Server (NTRS)
Dye, J. E.; Bateman, M. G.; Christian, H. J.; Defer, E.; Grainger, C. A.; Hall, W. D.; Krider, E. P.; Lewis, S. A.; Mach, D. M.; Merceret, F. J.;
2007-01-01
A coordinated aircraft - radar project that investigated the electric fields, cloud microphysics and radar reflectivity of thunderstorm anvils near Kennedy Space Center is described. Measurements from two cases illustrate the extensive nature of the microphysics and electric field observations. As the aircraft flew from the edges of anvils into the interior, electric fields very frequently increased abruptly from approximately 1 to more than 10 kV m(exp -1) even though the particle concentration and radar reflectivity increased smoothly. The abrupt increase in field usually occurred when the aircraft entered regions with a reflectivity of 10 to 15 dBZ. It is suggested that the abrupt increase in electric field may be because the charge advection from the storm core did not occur across the entire breadth of the anvil and was not constant in time. Screening layers were not detected near the edges of the anvils. Some long-lived anvils showed subsequent enhancement of electric field and reflectivity and growth of particles, which if localized, might be a factor in explaining the abrupt change of field in some cases. Comparisons of electric field magnitude with particle concentration or reflectivity for a combined data set that included all anvil measurements showed a threshold behavior. When the average reflectivity, such as in a 3-km cube, was less than approximately 5 dBZ, the electric field magnitude was les than kV m(exp -1). Based on these findings, the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) is now being used by NASA, the Air Force and Federal Aviation Administration in new Lightning Launch Commit Criteria as a diagnostic for high electric fields in anvils.
Generation mechanism of L-value dependence of oxygen flux enhancements during substorms
NASA Astrophysics Data System (ADS)
Nakayama, Y.; Ebihara, Y.; Tanaka, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.; Kistler, L. M.; Kletzing, C.
2015-12-01
The Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument measures charged particles with an energy range from ~eV to ~ tens of keV. The observation shows that the energy flux of the particles increases inside the geosynchronous orbit during substorms. For some night-side events around the apogee, the energy flux of O+ ion enhances below ~10 keV at lower L shell, whereas the flux below ~8 keV sharply decreases at higher L shells. This structure of L-energy spectrogram of flux is observed only for the O+ ions. The purpose of this study is to investigate the generation mechanism of the structure by using numerical simulations. We utilized the global MHD simulation developed by Tanaka et al (2010, JGR) to simulate the electric and magnetic fields during substorms. We performed test particle simulation under the electric and magnetic fields by applying the same model introduced by Nakayama et al. (2015, JGR). In the test particle simulation each test particle carries the real number of particles in accordance with the Liouville theorem. Using the real number of particles, we reconstructed 6-dimensional phase space density and differential flux of O+ ions in the inner magnetosphere. We obtained the following results. (1) Just after the substorm onset, the dawn-to-dusk electric field is enhanced to ~ 20 mV/m in the night side tail region at L > 7. (2) The O+ ions are accelerated and transported to the inner region (L > ~5.5) by the large-amplitude electric field. (3) The reconstructed L-energy spectrogram shows a similar structure to the Van Allen Probes observation. (4) The difference in the flux enhancement between at lower L shell and higher L shells is due to two distinct acceleration processes: adiabatic and non-adiabatic. We will discuss the relationship between the particle acceleration and the structure of L-energy spectrogram of flux enhancement in detail.
Enhancement of fluorescence intensity by silicon particles and its size effect.
Saitow, Ken-ichi; Suemori, Hidemi; Tamamitsu, Hironori
2014-02-04
Fluorescence-intensity enhancement of dye molecules was investigated using silicon submicron particles as a function of the particle size. Silicon particles with a size of 500 nm gave an enhancement factor up to 180. Measurement of scattering spectra revealed that the localized electric field at the particle enhances the fluorescence intensity.
Fourier analysis of polar cap electric field and current distributions
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1984-01-01
A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.
2012-01-01
Vertically aligned conducting ultrananocrystalline diamond (UNCD) nanorods are fabricated using the reactive ion etching method incorporated with nanodiamond particles as mask. High electrical conductivity of 275 Ω·cm−1 is obtained for UNCD nanorods. The microplasma cavities using UNCD nanorods as cathode show enhanced plasma illumination characteristics of low threshold field of 0.21 V/μm with plasma current density of 7.06 mA/cm2 at an applied field of 0.35 V/μm. Such superior electrical properties of UNCD nanorods with high aspect ratio potentially make a significant impact on the diamond-based microplasma display technology. PMID:23009733
[Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy].
Wu, Xiao-Bin; Wang, Jia; Wang, Rui; Xu, Ji-Ying; Tian, Qian; Yu, Jian-Yuan
2009-10-01
Raman spectroscopy is a powerful technique in the characterization of carbon nanotubes (CNTs). However, this spectral method is subject to two obstacles. One is spatial resolution, namely the diffraction limits of light, and the other is its inherent small Raman cross section and weak signal. To resolve these problems, a new approach has been developed, denoted tip-enhanced Raman spectroscopy (TERS). TERS has been demonstrated to be a powerful spectroscopic and microscopic technique to characterize nanomaterial or nanostructures. Excited by a focused laser beam, an enhanced electric field is generated in the vicinity of a metallic tip because of the surface plasmon polariton (SPP) and lightening rod effect. Consequently, Raman signal from the sample area illuminated by the enhanced field nearby the tip is enhanced. At the same time, the topography is obtained in the nanometer scale. The exact corresponding relationship between the localized Raman and the topography makes the Raman identification at the nanometer scale to be feasible. In the present paper, based on an inverted microscope and a metallic AFM tip, a tip-enhanced Raman system was set up. The radius of the Au-coated metallic tip is about 30 nm. The 532 nm laser passes through a high numerical objective (NA0.95) from the bottom to illuminate the tip to excite the enhanced electric field. Corresponding with the AFM image, the tip-enhanced near-field Raman of a 100 nm diameter single-walled carbon nanotube (SWNT) bundles was obtained. The SWNTs were prepared by arc method. Furthermore, the near-field Raman of about 3 SWNTs of the bundles was received with the spatial resolution beyond the diffraction limit. Compared with the far-field Raman, the enhancement factor of the tip-enhanced Raman is more than 230. With the super-diffraction spatial resolution and the tip-enhanced Raman ability, tip-enhanced Raman spectroscopy will play an important role in the nano-material and nano-structure characterization.
Effects of microstructural defects on the performance of base-metal multilayer ceramic capacitors
NASA Astrophysics Data System (ADS)
Samantaray, Malay M.
Multilayer ceramic capacitors (MLCCs), owing to their processing conditions, can exhibit microstructure defects such as electrode porosity and roughness. The effect of such extrinsic defects on the electrical performance of these devices needs to be understood in order to achieve successful miniaturization into the submicron dielectric layer thickness regime. Specifically, the presence of non-planar and discontinuous electrodes can lead to local field enhancements while the relative morphologies of two adjacent electrodes determine variations in the local dielectric thickness. To study the effects of electrode morphologies, an analytical approach is taken to calculate the electric field enhancement and leakage current with respect to an ideal parallel-plate capacitor. Idealized electrode defects are used to simulate the electric field distribution. It is shown that the electrode roughness causes both the electric field and the leakage current to increase with respect to that of the ideal flat parallel-plate capacitor. Moreover, finite element methods are used to predict electric field enhancements by as high as 100% within capacitor structures containing rough interfaces and porosity. To understand the influence of microstructural defects on field distributions and leakage current, the real three-dimensional microstructure of local regions in MLCCs are reconstructed using a serial-sectioning technique in the focused ion beam. These microstructures are then converted into a finite element model in order to simulate the perturbations in electric field due to the presence of electrode defects. The electric field is three times the average value, and this leads to increase in current density of these devices. It is also shown that increasing sintering rates of MLCCs leads to improved electrode morphology with smoother more continuous electrodes, which in turn leads to a decrease in electric field enhancement and calculated leakage current density. To simulate scaling effects, the dielectric layer thickness is reduced from 2.0mum to 0.5mum in the three-dimensional microstructure keeping the same electrode morphology. It is seen that the effect of microstructure defects is more pronounced as one approaches thinner layers, leading to higher local electric field concentrations and a concomitant drop in insulation resistance. It is also seen that the electric field values are as high as 3.8 times the average field in termination regions due the disintegrated structure of the electrodes. In order to assess the effect of microstructure on MLCC performance, two sets of multilayer capacitors subjected to two vastly different sintering rates of 150ºC/hr and 3000ºC/hr are compared for their electrical properties. Capacitors with higher electrode continuity exhibit proportionally higher capacitance, provided the grain size distributions are similar. From the leakage current measurements, it is found that the Schottky barrier at the electrode-dielectric interface controls the conduction mechanism. This barrier height is calculated to be 1.06 eV for slow-fired MLCCs and was 1.15 for fast-fired MLCCs. This shows that high concentration of electrode defects cause field perturbations and subsequent drop in the net Schottky barrier height. These results are further supported by frequency-dependent impedance measurements. With temperature dependence behavior of current-voltage trends we note that below temperatures of 135°C, the conduction is controlled by interfacial effects, whereas at higher temperatures it is consistent with bulk-controlled space charge limited current for the samples that are highly reoxidized. The final part of this work studies the various aspects of the initial stages of degradation of MLCCs. MLCCs subjected to unipolar and bipolar degradation are studied for changes in microstructure and electrical properties. With bipolar degradation studies new insights into degradation are gained. First, the ionic accumulation with oxygen vacancies at cathodes is only partially reversible. This has implications on the controlling interface with electronic conduction. Also, it is shown that oxygen vacancy accumulation near the cathodes leads to a drop in insulation resistance. The capacitance also increases with progressive steps of degradation due to the effective thinning of dielectric layer. The reduction in interfacial resistance is also confirmed by impedance analysis. Finally, it is observed that on degradation, the dominant leakage current mechanism changes from being controlled by cathodic injection of electrons to being controlled by their anodic extraction. (Abstract shortened by UMI.)
ADVANCED ELECTROSTATIC ENHANCEMENT OF FABRIC FILTRATION
The paper discusses laboratory and pilot plant studies of a modification of the U.S. EPA's Electrically Stimulated Fabric Filtration (ESFF) method in which corona voltage on a center-wire electrode replaces the subcorona electrodes at the bag surface. The electric field which aff...
Nie, Tianxiao; Tang, Jianshi; Kou, Xufeng; Gen, Yin; Lee, Shengwei; Zhu, Xiaodan; He, Qinglin; Chang, Li-Te; Murata, Koichi; Fan, Yabin; Wang, Kang L
2016-10-20
Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (T c ), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique Mn x Ge 1-x nanomeshes fabricated by nanosphere lithography, in which a T c above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high T c in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications.
Electrokinetic effects on motion of submicron particles in microchannel
NASA Astrophysics Data System (ADS)
Sato, Yohei; Hishida, Koichi
2006-11-01
Two-fluid mixing utilizing electrokinetically driven flow in a micro-channel is investigated by micron-resolution particle image velocimetry and an image processing technique. Submicron particles are transported and mixed with deionized water by electrophoresis. The particle electrophoretic velocity that is proportional to an applied electric field is measured in a closed cell, which is used to calculate the electroosmotic flow velocity. At a constant electric field, addition of pressure-driven flow to electrokinetically driven flow in a T-shaped micro-channel enhances two-fluid mixing because the momentum flux is increased. On the other hand, on application of an alternative sinusoidal electric field, the velocity difference between pressure-driven and electroosmotic flows has a significant effect on increasing the length of interface formed between two fluids. It is concluded from the present experiments that the transport and mixing process in the micro-channel will be enhanced by accurate flow-rate control of both pressure-driven and electroosmotic flows.
Field-effect enhanced triboelectric colloidal quantum dot flexible sensor
NASA Astrophysics Data System (ADS)
Meng, Lingju; Xu, Qiwei; Fan, Shicheng; Dick, Carson R.; Wang, Xihua
2017-10-01
Flexible electronics, which is of great importance as fundamental sensor and communication technologies for many internet-of-things applications, has established a huge market encroaching into the trillion-dollar market of solid state electronics. For the capability of being processed by printing or spraying, colloidal quantum dots (CQDs) play an increasingly important role in flexible electronics. Although the electrical properties of CQD thin-films are expected to be stable on flexible substrates, their electrical performance could be tuned for applications in flexible touch sensors. Here, we report CQD touch sensors employing polydimethylsiloxane (PDMS) triboelectric films. The electrical response of touching activity is enhanced by incorporating CQD field-effect transistors into the device architecture. Thanks to the use of the CQD thin film as a current amplifier, the field-effect CQD touch sensor shows a fast response to various touching materials, even being bent to a large curvature. It also shows a much higher output current density compared to a PDMS triboelectric touch sensor.
Nie, Tianxiao; Tang, Jianshi; Kou, Xufeng; Gen, Yin; Lee, Shengwei; Zhu, Xiaodan; He, Qinglin; Chang, Li-Te; Murata, Koichi; Fan, Yabin; Wang, Kang L.
2016-01-01
Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (Tc), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique MnxGe1−x nanomeshes fabricated by nanosphere lithography, in which a Tc above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high Tc in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications. PMID:27762320
Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.
López-Neira, Juan Pablo; Galicia-Hernández, José Mario; Reyes-Coronado, Alejandro; Pérez, Elías; Castillo-Rivera, Francisco
2015-05-07
The surface enhanced raman scattering (SERS) signal from the l-tyrosine (tyr) molecule adsorbed on gold nanoparticles (Au-tyr) is compared with the SERS signal assisted by the presence of gadolinium ions (Gd(3+)) coordinated with the Au-tyr system. An enhancement factor of the SERS signal in the presence of Gd(3+) ions was ∼5 times higher than that produced by l-tyrosine adsorbed on gold nanoparticles. The enhancement of the SERS signal can be attributed to a corresponding increase in the local electric field due to the presence of Gd(3+) ions in the vicinity of a gold dimer configuration. This scenario was confirmed by solving numerically Maxwell equations, showing an increase of 1 order of magnitude in the local electric scattered field when the Gd(3+) ion is located in between a gold dimer compared with naked gold nanoparticles.
Nanosecond Plasma Enhanced H2/O2/N2 Premixed Flat Flames
2014-01-01
Simulations are conducted with a one-dimensional, multi-scale, pulsed -discharge model with detailed plasma-combustion kinetics to develop additional insight... model framework. The reduced electric field, E/N, during each pulse varies inversely with number density. A significant portion of the input energy is...dimensional numerical model [4, 12] capable of resolving electric field transients over nanosecond timescales (during each discharge pulse ) and radical
Broadly absorbing metalloporphyrin-based multichromophoric arrays for triplet harvesting
Thompson, Mark E.; Whited, Matthew T.; Djurovich, Peter I.
2016-09-20
The present disclosure relates to multichromophoric assemblies comprising metalloporphyrin scaffolds. The present disclosure also relates, in part, to methods for generating electric-field-stabilized geminate polaron pairs comprising applying electric fields to the multichromophoric assemblies described herein, or alternatively, directly to the metalloporphyrins provided by the present disclosure. The present disclosure further relates, in part, to multichromophoric assemblies comprising metalloporphyrin scaffolds, which exhibit enhanced energy transfer properties.
Tip-Enhanced Raman Nanographs: Mapping Topography and Local Electric Fields
El-Khoury, Patrick Z.; Gong, Yu; Abellan, Patricia; ...
2015-03-05
We report tip-enhanced Raman scattering experiments in which topographic and local electric field images are recorded simultaneously. We employ a Raman-active 4,4’-dimercaptostilbene (DMS)-coated gold tip of an atomic force microscope to map the topography and image electric fields localized at nanometric (20 and 5 nm-wide) slits lithographically etched in silver. Bi-modal imaging is feasible by virtue of the recorded scanning probe position-dependent frequency-resolved optical response, which can be sub-divided into two components. The first is a 500-2250 cm-1 Raman-shifted signal, characteristic of DMS. The molecular response reports on topography through intensity contrast in the absence/presence of a plasmonic junction formedmore » between the scanning probe and patterned silver surface. Here, we demonstrate that sub-15 nm spatial resolution is attainable using a 30 nm DMS-coated gold tip. The second response consists of two correlated sub-500 cm-1 signals arising from mirror-like reflections of (i) the incident laser, and (ii) the Raman scattered response of an underlying glass support (at 100-500 cm-1) off the gold tip. We show that both the low-wavenumber signals trace the local electric fields in the vicinity of the nanometric slits.« less
Thermally-enhanced oil recovery method and apparatus
Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.
1987-01-01
A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.
Fluctuation-enhanced electric conductivity in electrolyte solutions
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.; ...
2017-09-26
In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less
Fluctuation-enhanced electric conductivity in electrolyte solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Péraud, Jean-Philippe; Nonaka, Andrew J.; Bell, John B.
In this work, we analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson–Nernst–Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation–anion diffusion coefficient. Specifically, we predict a nonzero cation–anion Maxwell– Stefan coefficient proportionalmore » to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye–Huckel–Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Lastly, we show that strong applied electric fields result in anisotropically enhanced “giant” velocity fluctuations and reduced fluctuations of salt concentration.« less
Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jingdi; Averitt, Richard D., E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu; Department of Physics, Boston University, Boston, Massachusetts 02215
We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits amore » linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.« less
NASA Astrophysics Data System (ADS)
Ling, F. L.; Zhou, T. W.; Liu, X. Q.; Kang, W.; Zeng, W.; Zhang, Y. X.; Fang, L.; Lu, Y.; Zhou, M.
2018-01-01
Understanding the interfacial properties of catalyst/substrate is crucial for the design of high-performance catalyst for important chemical reactions. Recent years have witnessed a surge of research in utilizing MoS2 as a promising electro-catalyst for hydrogen production, and field effect has been employed to enhance the activity (Wang et al 2017 Adv. Mater. 29, 1604464; Yan et al 2017 Nano Lett. 17, 4109-15). However, the underlying atomic mechanism remains unclear. In this paper, by using the prototype MoS2/Au system as a probe, we investigate effects of external electric field on the interfacial electronic structures via density functional theory (DFT) based first-principles calculations. Our results reveal that although there is no covalent interaction between MoS2 overlayer and Au substrate, an applied electric field efficiently adjusts the charge transfer between MoS2 and Au, leading to tunable Schottky barrier type (n-type to p-type) and decrease of barrier height to facilitate charge injection. Furthermore, we predict that the adsorption energy of atomic hydrogen on MoS2/Au to be readily controlled by electric field to a broad range within a modest magnitude of field, which may benefit the performance enhancement of hydrogen evolution reaction. Our DFT results provide valuable insight into the experimental observations and pave the way for future understanding and control of catalysts in practice, such as those with vacancies, defects, edge states or synthesized nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sumit; Srivastava, Subodh; Agrawal, Shweta
The composite membranes of multi-walled carbon nanotube (MWCNT) and polymethylmethacrylate (PMMA) were prepared by solution cast method. The MWCNT was dispersing a very low concentration (0.1 wt %) in PMMA matrix. Alignment of MWCNT in PMMA matrix has been performed by inducing a DC electric field at different voltage parameter varying from 350 V/cm to 1250 V/cm. The MWCNT/PMMA composites were characterized by gas permeation and electrical measurement before and after electric field alignment. The effect of electric field alignment has been studied on gas permeation measurements for gas purification applications. These measurements indicate the enhancement in gas permeability duemore » to the aligned of MWCNT in PMMA matix as compare to randomly dispersed MWCNT. I-V characteristics measurement also indicates that aligned MWCNT/PMMA composite membrane exhibits electron tunneling conductivity.« less
NASA Astrophysics Data System (ADS)
Ling, C. C.; Shek, Y. F.; Huang, A. P.; Fung, S.; Beling, C. D.
1999-02-01
Positron-lifetime spectroscopy has been used to investigate the electric-field distribution occurring at the Au-semi-insulating GaAs interface. Positrons implanted from a 22Na source and drifted back to the interface are detected through their characteristic lifetime at interface traps. The relative intensity of this fraction of interface-trapped positrons reveals that the field strength in the depletion region saturates at applied biases above 50 V, an observation that cannot be reconciled with a simple depletion approximation model. The data, are, however, shown to be fully consistent with recent direct electric-field measurements and the theoretical model proposed by McGregor et al. [J. Appl. Phys. 75, 7910 (1994)] of an enhanced EL2+ electron-capture cross section above a critical electric field that causes a dramatic reduction of the depletion region's net charge density. Two theoretically derived electric field profiles, together with an experimentally based profile, are used to estimate a positron mobility of ~95+/-35 cm2 V-1 s-1 under the saturation field. This value is higher than previous experiments would suggest, and reasons for this effect are discussed.
NASA Astrophysics Data System (ADS)
Peña, Adrian F.; Devine, Jack; Doronin, Alexander; Meglinski, Igor
2014-03-01
We report the use of conventional Optical Coherence Tomography (OCT) for visualization of propagation of low frequency electric field in soft biological tissues ex vivo. To increase the overall quality of the experimental images an adaptive Wiener filtering technique has been employed. Fourier domain correlation has been subsequently applied to enhance spatial resolution of images of biological tissues influenced by low frequency electric field. Image processing has been performed on Graphics Processing Units (GPUs) utilizing Compute Unified Device Architecture (CUDA) framework in the frequencydomain. The results show that variation in voltage and frequency of the applied electric field relates exponentially to the magnitude of its influence on biological tissue. The magnitude of influence is about twice more for fresh tissue samples in comparison to non-fresh ones. The obtained results suggest that OCT can be used for observation and quantitative evaluation of the electro-kinetic changes in biological tissues under different physiological conditions, functional electrical stimulation, and potentially can be used non-invasively for food quality control.
Quasistatic limit for plasmon-enhanced optical chirality
NASA Astrophysics Data System (ADS)
Finazzi, Marco; Biagioni, Paolo; Celebrano, Michele; Duò, Lamberto
2015-05-01
We discuss the possibility of enhancing the chiroptical response from molecules uniformly distributed around nanostructures that sustain localized plasmon resonances. We demonstrate that the average optical chirality in the near field of any plasmonic nanostructure cannot be significantly higher than that in a plane wave. This conclusion stems from the quasistatic nature of the nanoparticle-enhanced electromagnetic fields and from the fact that, at optical frequencies, the magnetic response of matter is much weaker than the electric one.
NASA Technical Reports Server (NTRS)
Kaminska, M.; Parsey, J. M.; Lagowski, J.; Gatos, H. C.
1982-01-01
Current oscillations thermally activated by the release of electrons from deep levels in undoped semiinsulating GaAs were observed for the first time. They were attributed to electric field-enhanced capture of electrons by the dominant deep donor EL2 (antisite AsGa defect). This enhanced capture is due to the configurational energy barrier of EL2, which is readily penetrated by hot electrons.
Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500°C
NASA Astrophysics Data System (ADS)
Yue, Hong-rui; Jiang, Tao; Zhang, Qiao-yi; Duan, Pei-ning; Xue, Xiang-xin
2017-07-01
The electrorheological properties of CaO-SiO2-Al2O3-MgO-TiO2-TiC slags were investigated to enhance understanding of the effect of TiC addition on the viscosity, yield stress, and fluid pattern of Ti-bearing slags in a direct-current electric field. The viscosities and shear stresses of 4wt% and 8wt% TiC slags were found to increase substantially with increasing electric field intensity, whereas virtually no rheological changes were observed in the 0wt% TiC slag. The Herschel-Bulkley model was applied to demonstrate that the fluid pattern of the 4wt% TiC slag was converted from that of a Newtonian fluid to that of a Bingham fluid in response to the applied electric field; and the static yield stress increased linearly with the square of the electric field intensity.
NASA Astrophysics Data System (ADS)
Zhang, Li; Xie, Hong-Jing
2003-12-01
By using the compact-density-matrix approach and iterative procedure, a detailed procedure for the calculation of the second-harmonic generation (SHG) susceptibility tensor is given in the electric-field-biased parabolic and semiparabolic quantum wells (QW’s). The simple analytical formula for the SHG susceptibility in the systems is also deduced. By adopting the methods of envelope wave function and displacement harmonic oscillation, the electronic states in parabolic and semi parabolic QW’s with applied electric fields are exactly solved. Numerical results on typical AlxGa1-xAl/GaAs materials show that, for the same effective widths, the SHG susceptibility in semiparabolic QW is larger than that in parabolic QW due to the self-asymmetry of the semiparabolic QW, and the applied electric field can make the SHG susceptibilities in both systems enhance remarkably. Moreover, the SHG susceptibility also sensitively depends on the relaxation rate of the systems.
Janesko, Benjamin G; Scuseria, Gustavo E
2006-09-28
We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.
Enhanced pearl-chain formation by electrokinetic interaction with the bottom surface of vessel.
Nishimura, Satoshi; Matsumura, Hideo; Kosuge, Katsunori; Yamaguchi, Tomohiko
2007-08-14
Counterions in an electric double layer (EDL) around a colloidal particle accumulate on one side of the EDL and are deficient on the other side under an electric field, resulting in an imbalance of ionic concentration in the EDL, that is to say, the ionic polarization of EDL. It is well known that the ionic polarization of EDL induces electric dipole moments whereby the alignments of colloidal particles (e.g., pearl chains) are formed under alternating electric fields. In this study, we focus on the effect of the frequency of applied electric fields (100 Hz-1 kHz) on the alignment of silica particles settling at the bottom of a silica glass vessel. In digital imaging analyses for pearl chains of silica particles, it is confirmed that surface distances between two neighboring particles decrease but the number of particles in a pearl chain increases as the frequency of the applied electric field is lowered from 1 kHz to 100 Hz. More interestingly, electrical conductance measurements suggest that the induced ionic polarization of EDL around silica particles at the bottom of the silica vessel is enhanced as the frequency is lowered from 1 kHz to 100 Hz, whereas the ionic polarization around isolated silica particles in uniform dispersions is alleviated by the relaxation of ionic concentration in the EDL as a result of the diffusion of counterions. This curious phenomenon can be explained by considering that the ionic polarization of EDL of silica particles at the bottom of a vessel is affected by the electro-osmosis of the silica surface at the bottom of the vessel.
Electric field-based technologies for valorization of bioresources.
Rocha, Cristina M R; Genisheva, Zlatina; Ferreira-Santos, Pedro; Rodrigues, Rui; Vicente, António A; Teixeira, José A; Pereira, Ricardo N
2018-04-01
This review provides an overview of recent research on electrotechnologies applied to the valorization of bioresources. Following a comprehensive summary of the current status of the application of well-known electric-based processing technologies, such as pulsed electric fields (PEF) and high voltage electrical discharges (HVED), the application of moderate electric fields (MEF) as an extraction or valorization technology will be considered in detail. MEF, known by its improved energy efficiency and claimed electroporation effects (allowing enhanced extraction yields), may also originate high heating rates - ohmic heating (OH) effect - allowing thermal stabilization of waste stream for other added-value applications. MEF is a simple technology that mostly makes use of green solvents (mainly water) and that can be used on functionalization of compounds of biological origin broadening their application range. The substantial increase of MEF-based plants installed in industries worldwide suggests its straightforward application for waste recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermospheric Response to Solar Wind Electric Field Fluctuations
NASA Astrophysics Data System (ADS)
Perlongo, N. J.; Ridley, A. J.
2013-12-01
The electron density of the thermosphere is of paramount importance for radio communications and drag on low altitude satellites, particularly during geomagnetic storms. Transient enhancements of ion velocities and subsequent density and temperature increases frequently occur as a result of storm-driven solar wind electric field fluctuations. Since the Earth's dipole magnetic field is tilted and offset from the center of the planet, significant asymmetries arise that alter the thermospheric response to energy input based upon the time of day of the disturbance. This study utilizes the Global Ionosphere-Thermosphere Model (GITM) to investigate this phenomenon by enhancing the convective electric field for one hour of the day in 22 different simulations. An additional baseline run was conducted with no IMF perturbation. Furthermore, four configurations of Earth's magnetic field were considered, Internal Geomagnetic Reference Field (IGRF), a perfect dipole, a dipole tilted by 10 degrees, and a tilted and offset dipole. These runs were conducted at equinox when the amount of sunlight falling on the different hemispheres is the same. Two additional runs were conducted at the solstices for comparison. It was found that the most geo-effective times are when the poles are pointed towards the sun. The electron density, neutral density and temperature as well as the winds are explored.
Batra, Saurabh; Cakmak, Miko
2015-12-28
In this study, the chaining and preferential alignment of barium titanate nanoparticles (100 nm) through the thickness direction of a polymer matrix in the presence of an electric field is shown. Application of an AC electric field in a well-dispersed solution leads to the formation of chains of nanoparticles in discrete rows oriented with their primary axis in the E-field direction due to dielectrophoresis. The change in the orientation of these chains was quantified through statistical analysis of SEM images and was found to be dependent on E-field, frequency and viscosity. When a DC field is applied a distinct layer consisting of dense particles was observed with micro-computed tomography. These studies show that the increase in DC voltage leads to increase in the thickness of the particle rich layer along with the packing density also increasing. Increasing the mutual interactions between particles due to the formation of particle chains in the "Z"-direction decreases the critical percolation concentration above which substantial enhancement of properties occurs. This manufacturing method therefore shows promise to lower the cost of the products for a range of applications including capacitors by either enhancing the dielectric properties for a given concentration or reduces the concentration of nanoparticles needed for a given property.
NASA Astrophysics Data System (ADS)
Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin
2017-03-01
This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.
Influence of temperature gradients on charge transport in asymmetric nanochannels.
Benneker, Anne M; Wendt, Hans David; Lammertink, Rob G H; Wood, Jeffery A
2017-10-25
Charge selective asymmetric nanochannels are used for a variety of applications, such as nanofluidic sensing devices and energy conversion applications. In this paper, we numerically investigate the influence of an applied temperature difference over tapered nanochannels on the resulting charge transport and flow behavior. Using a temperature-dependent formulation of the coupled Poisson-Nernst-Planck and Navier-Stokes equations, various nanochannel geometries are investigated. Temperature has a large influence on the total ion transport, as the diffusivity of ions and viscosity of the solution are strongly affected by temperature. We find that the selectivity of the nanochannels is enhanced with increasing asymmetry ratios, while the total current is reduced at higher asymmetry cases. Most interestingly, we find that applying a temperature gradient along the electric field and along the asymmetry direction of the nanochannel enhances the selectivity of the tapered channels even further, while a temperature gradient countering the electric field reduces the selectivity of the nanochannel. Current rectification is enhanced in asymmetric nanochannels if a temperature gradient is applied, independent of the direction of the temperature difference. However, the degree of rectification is dependent on the direction of the temperature gradient with respect to the channel geometry and the electric field direction. The enhanced selectivity of nanochannels due to applied temperature gradients could result in more efficient operation in energy harvesting or desalination applications, motivating experimental investigations.
NASA Astrophysics Data System (ADS)
Yan, Jian-Min; Gao, Guan-Yin; Liu, Yu-Kuai; Wang, Fei-Fei; Zheng, Ren-Kui
2017-10-01
We report the fabrication of lead-free multiferroic structures by depositing ferromagnetic La0.7Sr0.3MnO3 (LSMO) polycrystalline films on polished 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 (BZT-BCT) piezoelectric ceramic substrates. By applying electric fields to the BZT-BCT along the thickness direction, the resistivity of LSMO films can be effectively manipulated via the piezoelectric strain of the BZT-BCT. Moreover, the LSMO polycrystalline films exhibit almost temperature independent and significantly enhanced magnetoresistance (MR) below TC. At T = 2 K and H = 8 T, the MR of polycrystalline films is approximately two orders of magnitude higher than that of LSMO epitaxial films grown on (LaAlO3)0.3(SrAl1/2Ta1/2O3)0.7 single-crystal substrates. The enhanced MR mainly results from the spin-polarized tunneling of charge carriers across grain boundaries. The LSMO/BZT-BCT structures with electric-field controllable modulation of resistivity and enhanced MR effect may have potential applications in low-energy consumption and environmentally friendly electronic devices.
Plotnikov, Alexander; Tichler, Thomas; Korenstein, Rafi; Keisari, Yona
2005-12-10
Low electric field cancer treatment-enhanced chemotherapy (LEFCT-EC) is a new treatment modality that combines chemotherapeutic agents and low electric field stimulation. LEFCT-EC was found to destroy malignant mouse tumors and cause massive death of tumor cells. This may enable the immune system cells to efficiently recognize and eliminate tumor cells at the primary tumor site and at metastatic foci. Mice with 15 mm diameter intracutaneous colon carcinomas (CT-26) were injected with BCNU (35 mg/kg), and 2 min later the tumors were exposed to low electric fields (intensity 40 V/cm, pulse duration 180 micros, frequency 500 Hz) for 12 min (LEFCT-EC). We found that treatment with LEFCT-EC achieved complete cure of 93% of the animals. In comparison, electric fields alone (13% cure), chemotherapy alone (0%), surgery (15%) or a combination of surgery and bis-chloroethyl-nitrosurea, carmustine (BCNU; 84%) treatments resulted in lower cure rates. After treatment and cure with LEFCT-EC, 50% of the cured mice developed resistance to a tumor challenge (surgery + BCNU only 15%). Furthermore, splenocytes from cured animals protected naive animals from a tumorigenic dose of tumor cells. Separation of spleen cells into lymphocyte subpopulations indicated a major role for CD4 and CD8 T cells in this protection. FACS analysis revealed restoration of normal splenocyte subpopulation proportions impaired by cytotoxic chemotherapy. Our results suggest that LEFCT-EC can directly destroy primary tumors and facilitate the destruction of metastatic disease by enforcement of antitumor immune responses. Copyright 2005 Wiley-Liss, Inc
NASA Astrophysics Data System (ADS)
Hashimoto, K. K.; Kikuchi, T.; Nagatsuma, T.; Tomizawa, I.
2016-12-01
During the stormtime Pc5 magnetic pulsations on 31 October 2003, we detected large amplitude oscillations in the ionospheric electric field with the HF Doppler sounders at midlatitude for 10 hours from 11 to 21 LT. Similar oscillations were recorded on the magnetometer data at high-to-equatorial latitudes with significant amplitude enhancement at the dayside equator. We deduced the equatorial electrojet (EEJ) by subtracting the low latitude Pc5 from the equatorial Pc5 and found that the midlatitude electric field (EF) is well correlated with the EEJ with correlation coefficients (0.80-0.95) and that the EEJ to EF ratio reached maximum at 11 LT and dramatically decreased until 18 LT in a function of cos0.6(solar zenith angle). With these observations, we suggest that the midlatitude electric field (EF) is associated with the DP2 type ionospheric currents transmitted from high latitude to the equator. It is to be noted that the EF is well correlated with the EEJ during the night after 18 LT, indicating that the Pc5 electric field is so strong as to drive equatorial electrojet in the nighttime ionosphere. Using the electric field measured by ROCSAT-1/IPEI, we confirmed that the Pc5 electric field in the mid- and low-latitude ionosphere is comparable to or even stronger than those observed by the HF Doppler sounders. High correlations between the ground- and satellite-based observations over 15 minutes indicate that the Pc5 electric field distribute uniform over 6500 km along the ROCSAT orbit which is consistent with the large-scale DP2 electric field.
Numerical modelling of geodesic acoustic mode relaxation in a tokamak edge
Dorf, M. A.; Cohen, R. H.; Dorr, M.; ...
2013-05-08
Here, the edge of a tokamak in a high confinement (H mode) regime is characterized by steep density gradients and a large radial electric field. Recent analytical studies demonstrated that the presence of a strong radial electric field consistent with a subsonic pedestal equilibrium modifies the conventional results of the neoclassical formalism developed for the core region. In the present work we make use of the recently developed gyrokinetic code COGENT to numerically investigate neoclassical transport in a tokamak edge including the effects of a strong radial electric field. The results of numerical simulations are found to be in goodmore » qualitative agreement with the theoretical predictions and the quantitative discrepancy is discussed. In addition, the present work investigates the effects of a strong radial electric field on the relaxation of geodesic acoustic modes (GAMs) in a tokamak edge. Numerical simulations demonstrate that the presence of a strong radial electric field characteristic of a tokamak pedestal can enhance the GAM decay rate, and heuristic arguments elucidating this finding are provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Gyoung Gug; Song, Bo; Li, Liyi
This paper reported a novel two-step process to fabricate high-performance supercapacitor films that contain microscale domains of nano-interspaced, re-stacked graphene sheets oriented perpendicular to the surface of current collector substrate, i.e., carbon fiber paper. In the two-step process, we first used ligand molecules to modify the surface of graphene oxide (GO) sheets and manipulate the interspacing between the re-stacked GO sheets. The ligand-modified GOs, i.e., m-GOs, were then reduced to obtain more conductive graphene (m-rGO), where X-ray diffraction measurement results indicated well-controlled interlayer spacing between the restacked m-rGO sheets up to 1 nm. The typical lateral dimension of the restackedmore » m-rGO sheets were ~40 µm. Then, electrical field was introduced during m-rGO slurry deposition process to induce the vertical orientation of the m-rGO sheets/stacks in the film deposit. The direct current electrical field induced the orientation of the domains of m-rGO stacks along the direction perpendicular to the surface of deposit film, i.e., direction of electric field. Also, the applied electric field increased the interlayer spacing further, which should enhance the diffusion and accessibility of electrolyte ions. As compared with the traditionally deposited “control” films, the field-processed film deposits that contain oriented structure of graphene sheets/stacks have shown up to ~1.6 times higher values in capacitance (430 F/g at 0.5 A/g) and ~67% reduction in equivalent series resistance. Finally, the approach of using electric field to tailor the microscopic architecture of graphene-based deposit films is effective to fabricate film electrodes for high performance supercapacitors.« less
Jang, Gyoung Gug; Song, Bo; Li, Liyi; ...
2016-12-14
This paper reported a novel two-step process to fabricate high-performance supercapacitor films that contain microscale domains of nano-interspaced, re-stacked graphene sheets oriented perpendicular to the surface of current collector substrate, i.e., carbon fiber paper. In the two-step process, we first used ligand molecules to modify the surface of graphene oxide (GO) sheets and manipulate the interspacing between the re-stacked GO sheets. The ligand-modified GOs, i.e., m-GOs, were then reduced to obtain more conductive graphene (m-rGO), where X-ray diffraction measurement results indicated well-controlled interlayer spacing between the restacked m-rGO sheets up to 1 nm. The typical lateral dimension of the restackedmore » m-rGO sheets were ~40 µm. Then, electrical field was introduced during m-rGO slurry deposition process to induce the vertical orientation of the m-rGO sheets/stacks in the film deposit. The direct current electrical field induced the orientation of the domains of m-rGO stacks along the direction perpendicular to the surface of deposit film, i.e., direction of electric field. Also, the applied electric field increased the interlayer spacing further, which should enhance the diffusion and accessibility of electrolyte ions. As compared with the traditionally deposited “control” films, the field-processed film deposits that contain oriented structure of graphene sheets/stacks have shown up to ~1.6 times higher values in capacitance (430 F/g at 0.5 A/g) and ~67% reduction in equivalent series resistance. Finally, the approach of using electric field to tailor the microscopic architecture of graphene-based deposit films is effective to fabricate film electrodes for high performance supercapacitors.« less
2015-08-14
stream (SAPS) E field had been strong. During these E field events, the repeated development of equatorial ionization anomaly ( EIA ), storm-enhanced...density (SED) bulge and SED plume occurred in those longitude sectors that covered the local dusk-midnight hours. Thus, a well-formed EIA - SED...Observational results and CTIPe simulated wind vector maps suggest that 1) the enhanced growth of the EIA transported solar produced plasma to the
Positional control of plasmonic fields and electron emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Word, R. C.; Fitzgerald, J. P. S.; Könenkamp, R., E-mail: rkoe@pdx.edu
2014-09-15
We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.
Aligned Immobilization of Proteins Using AC Electric Fields.
Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph
2016-03-01
Protein molecules are aligned and immobilized from solution by AC electric fields. In a single-step experiment, the enhanced green fluorescent proteins are immobilized on the surface as well as at the edges of planar nanoelectrodes. Alignment is found to follow the molecules' geometrical shape with their longitudinal axes parallel to the electric field. Simultaneous dielectrophoretic attraction and AC electroosmotic flow are identified as the dominant forces causing protein movement and alignment. Molecular orientation is determined by fluorescence microscopy based on polarized excitation of the proteins' chromophores. The chromophores' orientation with respect to the whole molecule supports X-ray crystal data. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
X-ray Production in a Laboratory Streamer Discharge
NASA Astrophysics Data System (ADS)
Lehtinen, N. G.; Kochkin, P.; Ostgaard, N.
2016-12-01
A 1D model of a 1-m scale laboratory discharge streamer system [Lehtinen et al, 2016, http://meetingorganizer.copernicus.org/EGU2016/EGU2016-6180.pdf] has reproduced the experimentally-observed [Kochkin et al, 2014, doi:10.1088/0022-3727/47/14/145203] detached streamer systems (pilots). The pilots grow in both directions and thus produce counter-streamers which collide with forward-moving streamers, a mechanism which was proposed to lead to the production of x-rays [Cooray, 2009, doi:10.1016/j.jastp.2009.07.010]. However, the 1D model is insufficient to analyse this process because in this model the electric field between the colliding streamers is averaged in the transverse direction and therefore the maximum fields are underestimated. In this presentation, we include the microscopic processes in the modeling of streamer propagation in order to calculate accurately the electric field enhancement between colliding streamers of opposite polarity. We evaluate the temporal and spatial characteristics of the enhanced electric field, which define the production of relativistic runaway electrons and x-rays. The x-ray output for the conditions occuring in a laboratory discharge is compared to the experimental data [Kochkin et al, 2012, doi:10.1088/0022-3727/45/42/425202; 2015, doi:10.1088/0022-3727/48/2/025205]. We note that the previous modeling of streamer collisions [Ihaddadene and Celestin, 2015, doi:10.1002/2015GL064623] obtained the field enhancements which are insufficient for the observed x-ray production.
Tilki, Tahir; Yavuz, Mustafa; Karabacak, Ciğdem; Cabuk, Mehmet; Ulutürk, Mehmet
2010-03-30
Considerable scientific and industrial interest is currently being focused on a class of materials known as electrorheological (ER) fluids, which display remarkable rheological behaviour, being able to convert rapidly and repeatedly from a liquid to solid when an electric field (E) is applied or removed. In this study, biodegradable cellulose was modified and converted to their carboxyl salts. Modified cellulose is characterised by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA) and conductivity measurements. Suspensions of cellulose (C) and modified cellulose (MC) were prepared in insulated corn oil (CO). The effects of electric field strength, shear rate, shear stress, temperature, etc. of these suspensions onto ER activity were determined. Rheological measurements were carried out via a rotational rheometer with a high-voltage generator to investigate the effects of electric field strength and particle concentration on ER performance. The results show that the ER properties are enhanced by increasing the particle concentration and electric field strength. Also the cellulose-based ER fluids exhibit viscoelastic behaviour under an applied electric field due to the chain formation induced by electric polarization between particles. Copyright 2009 Elsevier Ltd. All rights reserved.
Towards graphane field emitters
Ding, Shuyi; Li, Chi; Zhou, Yanhuai; Collins, Clare M.; Kang, Moon H.; Parmee, Richard J.; Zhang, Xiaobing; Milne, William I.; Wang, Baoping
2015-01-01
We report on the improved field emission performance of graphene foam (GF) following transient exposure to hydrogen plasma. The enhanced field emission mechanism associated with hydrogenation has been investigated using Fourier transform infrared spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron microscopy. The observed enhanced electron emissionhas been attributed to an increase in the areal density of lattice defects and the formation of a partially hydrogenated, graphane-like material. The treated GF emitter demonstrated a much reduced macroscopic turn-on field (2.5 V μm–1), with an increased maximum current density from 0.21 mA cm–2 (pristine) to 8.27 mA cm–2 (treated). The treated GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is further attributed to hydrogenation and the subsequent formation of a partially hydrogenated structured 2D material, which advantageously shifts the emitter work function. Alongside augmentation of the nominal crystallite size of the graphitic superstructure, surface bound species are believed to play a key role in the enhanced emission. The hydrogen plasma treatment was also noted to increase the emission spatial uniformity, with an approximate four times reduction in the per unit area variation in emission current density. Our findings suggest that plasma treatments, and particularly hydrogen and hydrogen-containing precursors, may provide an efficient, simple, and low cost means of realizing enhanced nanocarbon-based field emission devices via the engineered degradation of the nascent lattice, and adjustment of the surface work function. PMID:28066543
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my
2014-03-24
Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.
Bagheri, Zahra; Massudi, Reza
2017-05-01
An analytical quantum model is used to calculate electrical permittivity of a metal nanoparticle located in an adjacent molecule. Different parameters, such as radiative and non-radiative decay rates, quantum yield, electrical field enhancement factor, and fluorescence enhancement are calculated by such a model and they are compared with those obtained by using the classical Drude model. It is observed that using an analytical quantum model presents a higher enhancement factor, up to 30%, as compared to classical model for nanoparticles smaller than 10 nm. Furthermore, the results are in better agreement with those experimentally realized.
Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.
Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue
2017-01-01
Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.
Microwave transmission through metallic hole arrays: Surface electric field measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou Bo; Hang Zhihong; Wen Weijia
2006-09-25
The authors investigate the enhanced microwave transmission through a metal plate perforated by a square lattice of subwavelength holes, predicted to occur as a structure factor resonance phenomenon [F. J. Gracia de Abajo and J. J. Saenz, Phys. Rev. Lett. 95, 233901 (2005)]. By probing the surface electric field on the metallic plate at the peak transmission frequency, they establish the similarities and differences between the structure factor resonance and surface plasmon.
Delory, Gregory T; Farrell, William M; Atreya, Sushil K; Renno, Nilton O; Wong, Ah-San; Cummer, Steven A; Sentman, Davis D; Marshall, John R; Rafkin, Scot C R; Catling, David C
2006-06-01
Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars.
Magnetospheric electric fields and auroral oval
NASA Technical Reports Server (NTRS)
Laakso, Harri; Pedersen, Arne; Craven, John D.; Frank, L. A.
1992-01-01
DC electric field variations in a synchronous orbit (GEOS 2) during four substorms in the time sector 19 to 01 LT were investigated. Simultaneously, the imaging photometer on board DE 1 provided auroral images that are also utilized. Substorm onset is defined here as a sudden appearance of large electric fields. During the growth phase, the orientation of the electric field begins to oscillate some 30 min prior to onset. About 10 min before the onset GEOS 2 starts moving into a more tenuous plasma, probably due to a thinning of the current sheet. The onset is followed by a period of 10 to 15 min during which large electric fields occur. This interval can be divided into two intervals. During the first interval, which lasts 4 to 8 min, very large fields of 8 to 20 mV/m are observed, while the second interval contains relatively large fields (2 to 5 mV/m). A few min after the onset, the spacecraft returns to a plasma region of higher electron fluxes which are usually larger than before substorm. Some 30 min after onset, enhanced activity, lasting about 10 min, appears in the electric field. One of the events selected offers a good opportunity to study the formation and development of the Westward Traveling Surge (WST). During the traversal of the leading edge of the WTS (approximately 8 min) a stable wave mode at 5.7 mHz is detected.
Magnetically-enhanced open string pair production
NASA Astrophysics Data System (ADS)
Lu, J. X.
2017-12-01
We consider the stringy interaction between two parallel stacks of D3 branes placed at a separation. Each stack of D3 branes in a similar fashion carry an electric flux and a magnetic flux with the two sharing no common field strength index. The interaction amplitude has an imaginary part, giving rise to the Schwinger-like pair production of open strings. We find a significantly enhanced rate of this production when the two electric fluxes are almost identical and the brane separation is on the order of string scale. This enhancement will be largest if the two magnetic fluxes are opposite in direction. This novel enhancement results from the interplay of the non-perturbative Schwinger-type pair production due to the electric flux and the stringy tachyon due to the magnetic flux, and may have realistic physical applications.
Boulais, E; Robitaille, A; Desjeans-Gauthier, P; Meunier, M
2011-03-28
In this comment, we argue that the conlusion made by Harrisson and Ben-Yakar [Opt. Express 18, 22556 (2010)], which states that nanoablation with plasmonic nanorods depends on the enhancement of the Poynting vector rather than the one of the square of the electric field, is incorrect and not necessarily needed to explain their experimental results.
Predicting the Electric Field Distribution in the Brain for the Treatment of Glioblastoma
Miranda, Pedro C.; Mekonnen, Abeye; Salvador, Ricardo; Basser, Peter J.
2014-01-01
The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a “virtual lesion” in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V/cm and exceeded 1.0 V/cm in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor’s necrotic core and in some parts of the gray matter-white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning. PMID:25003941
Predicting the electric field distribution in the brain for the treatment of glioblastoma
NASA Astrophysics Data System (ADS)
Miranda, Pedro C.; Mekonnen, Abeye; Salvador, Ricardo; Basser, Peter J.
2014-08-01
The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a ‘virtual lesion’ in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V cm - 1 and exceeded 1.0 V cm - 1 in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor’s necrotic core and in some parts of the gray matter-white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning.
Predicting the electric field distribution in the brain for the treatment of glioblastoma.
Miranda, Pedro C; Mekonnen, Abeye; Salvador, Ricardo; Basser, Peter J
2014-08-07
The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a 'virtual lesion' in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V cm( - 1) and exceeded 1.0 V cm( - 1) in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor's necrotic core and in some parts of the gray matter-white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning.
Application of STEM/EELS to Plasmon-Related Effects in Optical Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camden, Jon
In this project we employed EELS/STEM to understand the near-field enhancements that drive current applications of plasmonic nanostructures. In particular, we explore the connection between optical and electron excitation of plasmon modes in metallic nanostructures: (1) Probing the structural parameters and dielectric properties of multimetallic nanoparticles; (2) Characterization of the near-electric-field enhancements obtained upon excitation of the localized surface plasmon resonance and understand the connection between electron- and photon-driven plasmons; (3) Understanding the behavior of molecules in plasmon-enhanced fields which is essential to emerging applications such as plasmon-assisted catalysis and solar energy harvesting.
Guo, Yuanhao; Batra, Saurabh; Chen, Yuwei; Wang, Enmin; Cakmak, Miko
2016-07-20
A roll to roll continuous processing method is developed for vertical alignment ("Z" alignment) of barium titanate (BaTiO3) nanoparticle columns in polystyrene (PS)/toluene solutions. This is accomplished by applying an electric field to a two-layer solution film cast on a carrier: one is the top sacrificial layer contacting the electrode and the second is the polymer solution dispersed with BaTiO3 particles. Flexible Teflon coated mesh is utilized as the top electrode that allows the evaporation of solvent through the openings. The kinetics of particle alignment and chain buckling is studied by the custom-built instrument measuring the real time optical light transmission during electric field application and drying steps. The nanoparticles dispersed in the composite bottom layer form chains due to dipole-dipole interaction under an applied electric field. In relatively weak electric fields, the particle chain axis tilts away from electric field direction due to bending caused by the shrinkage of the film during drying. The use of strong electric fields leads to maintenance of alignment of particle chains parallel to the electric field direction overcoming the compression effect. At the end of the process, the surface features of the top porous electrodes are imprinted at the top of the top sacrificial layer. By removing this layer a smooth surface film is obtained. The nanocomposite films with "Z" direction alignment of BaTiO3 particles show substantially increased dielectric permittivity in the thickness direction for enhancing the performance of capacitors.
Thermal conductivity of electrospun polyethylene nanofibers.
Ma, Jian; Zhang, Qian; Mayo, Anthony; Ni, Zhonghua; Yi, Hong; Chen, Yunfei; Mu, Richard; Bellan, Leon M; Li, Deyu
2015-10-28
We report on the structure-thermal transport property relation of individual polyethylene nanofibers fabricated by electrospinning with different deposition parameters. Measurement results show that the nanofiber thermal conductivity depends on the electric field used in the electrospinning process, with a general trend of higher thermal conductivity for fibers prepared with stronger electric field. Nanofibers produced at a 45 kV electrospinning voltage and a 150 mm needle-collector distance could have a thermal conductivity of up to 9.3 W m(-1) K(-1), over 20 times higher than the typical bulk value. Micro-Raman characterization suggests that the enhanced thermal conductivity is due to the highly oriented polymer chains and enhanced crystallinity in the electrospun nanofibers.
NASA Astrophysics Data System (ADS)
Abdu, Mangalathayil A.; Nogueira, Paulo A. B.; Santos, Angela M.; de Souza, Jonas R.; Batista, Inez S.; Sobral, Jose H. A.
2018-04-01
Equatorial plasma bubble/spread F irregularity occurrence can present large variability depending upon the intensity of the evening prereversal enhancement in the zonal electric field (PRE), that is, the F region vertical plasma drift, which basically drives the post-sunset irregularity development. Forcing from magnetospheric disturbances is an important source of modification and variability in the PRE vertical drift and of the associated bubble development. Although the roles of magnetospheric disturbance time penetration electric fields in the bubble irregularity development have been studied in the literature, many details regarding the nature of the interaction between the penetration electric fields and the PRE vertical drift still lack our understanding. In this paper we have analyzed data on F layer heights and vertical drifts obtained from digisondes operated in Brazil to investigate the connection between magnetic disturbances occurring during and preceding sunset and the consequent variabilities in the PRE vertical drift and associated equatorial spread F (ESF) development. The impact of the prompt penetration under-shielding eastward electric field and that of the over-shielding, and disturbance dynamo, westward electric field on the evolution of the evening PRE vertical drift and thereby on the ESF development are briefly examined.
NASA Astrophysics Data System (ADS)
Wood, Matthew D.; Willits, Rebecca Kuntz
2009-08-01
Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.
Henning, Alex; Swaminathan, Nandhini; Vaknin, Yonathan; Jurca, Titel; Shimanovich, Klimentiy; Shalev, Gil; Rosenwaks, Yossi
2018-01-26
The ability to control surface-analyte interaction allows tailoring chemical sensor sensitivity to specific target molecules. By adjusting the bias of the shallow p-n junctions in the electrostatically formed nanowire (EFN) chemical sensor, a multiple gate transistor with an exposed top dielectric layer allows tuning of the fringing electric field strength (from 0.5 × 10 7 to 2.5 × 10 7 V/m) above the EFN surface. Herein, we report that the magnitude and distribution of this fringing electric field correlate with the intrinsic sensor response to volatile organic compounds. The local variations of the surface electric field influence the analyte-surface interaction affecting the work function of the sensor surface, assessed by Kelvin probe force microscopy on the nanometer scale. We show that the sensitivity to fixed vapor analyte concentrations can be nullified and even reversed by varying the fringing field strength, and demonstrate selectivity between ethanol and n-butylamine at room temperature using a single transistor without any extrinsic chemical modification of the exposed SiO 2 surface. The results imply an electric-field-controlled analyte reaction with a dielectric surface extremely compelling for sensitivity and selectivity enhancement in chemical sensors.
Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields
NASA Technical Reports Server (NTRS)
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.
1979-01-01
Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.
Greenberg, Anastasia; Dickson, Clayton T
2013-12-01
The neocortical slow oscillation (SO; ~1Hz) of non-REM sleep and anesthesia reflects synchronized network activity composed of alternating active and silent (ON/OFF) phases at the local network and cellular level. The SO itself shows self-organized spatiotemporal dynamics as it appears to originate at unique foci on each cycle and then propagates across the cortical surface. During sleep, this rhythm is relevant for neuroplastic processes mediating memory consolidation especially since its enhancement by slow, rhythmic electrical fields improves subsequent recall. However, the neurobiological mechanism by which spontaneous or enhanced SO activity might operate on memory traces is unknown. Here we show a series of original results, using cycle to cycle tracking across multiple neocortical sites in urethane anesthetized rats: The spontaneous spatiotemporal dynamics of the SO are complex, showing interfering propagation patterns in the anterior-to-posterior plane. These patterns compete for expression and tend to alternate following phase resets that take place during the silent OFF phase of the SO. Applying sinusoidal electrical field stimulation to the anterior pole of the cerebral cortex progressively entrained local field, gamma, and multi-unit activity at all sites, while disrupting the coordination of endogenous SO activity. Field stimulation also biased propagation in the anterior-to-posterior direction and more notably, enhanced the long-range gamma synchrony between cortical regions. These results are the first to show that changes to slow wave dynamics cause enhancements in high frequency cortico-cortical communication and provide mechanistic clues into how the SO is relevant for sleep-dependent memory consolidation. © 2013.
NASA Astrophysics Data System (ADS)
Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.
2017-12-01
It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.
NASA Technical Reports Server (NTRS)
Herman, Cila
1996-01-01
Boiling is an effective mode of heat transfer since high heat flux levels are possible driven by relatively small temperature differences. The high heat transfer coefficients associated with boiling have made the use of these processes increasingly attractive to aerospace engineering. Applications of this type include compact evaporators in the thermal control of aircraft avionics and spacecraft environments, heat pipes, and use of boiling to cool electronic equipment. In spite of its efficiency, cooling based on liquid-vapor phase change processes has not yet found wide application in aerospace engineering due to specific problems associated with the low gravity environment. After a heated surface has reached the superheat required for the initiation of nucleate boiling, bubbles will start forming at nucleation sites along the solid interface by evaporation of the liquid. Bubbles in contact with the wall will continue growing by this mechanism until they detach. In terrestrial conditions, bubble detachment is determined by the competition between body forces (e.g. buoyancy) and surface tension forces that act to anchor the bubble along the three phase contact line. For a given body force potential and a balance of tensions along the three phase contact line, bubbles must reach a critical size before the body force can cause them to detach from the wall. In a low gravity environment the critical bubble size for detachment is much larger than under terrestrial conditions, since buoyancy is a less effective means of bubble removal. Active techniques of heat transfer enhancement in single phase and phase change processes by utilizing electric fields have been the subject of intensive research during recent years. The field of electrohydrodynamics (EHD) deals with the interactions between electric fields, flow fields and temperature fields. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 as compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The goal of our research is to experimentally investigate the potential of EHD and the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions.
Electric-field-control of magnetic anisotropy of Co0.6Fe0.2B0.2/oxide stacks using reduced voltage
NASA Astrophysics Data System (ADS)
Kita, Koji; Abraham, David W.; Gajek, Martin J.; Worledge, D. C.
2012-08-01
We have demonstrated purely electrical manipulation of the magnetic anisotropy of a Co0.6Fe0.2B0.2 film by applying only 8 V across the CoFeB/oxide stack. A clear transition from in-plane to perpendicular anisotropy was observed. The quantitative relationship between interface anisotropy energy and the applied electric-field was determined from the linear voltage dependence of the saturation field. By comparing the dielectric stacks of MgO/Al2O3 and MgO/HfO2/Al2O3, enhanced voltage control was also demonstrated, due to the higher dielectric constant of the HfO2. These results suggest the feasibility of purely electrical control of magnetization with small voltage bias for spintronics applications.
Nanogap near-field thermophotovoltaics.
Fiorino, Anthony; Zhu, Linxiao; Thompson, Dakotah; Mittapally, Rohith; Reddy, Pramod; Meyhofer, Edgar
2018-06-18
Conversion of heat to electricity via solid-state devices is of great interest and has led to intense research of thermoelectric materials 1,2 . Alternative approaches for solid-state heat-to-electricity conversion include thermophotovoltaic (TPV) systems where photons from a hot emitter traverse a vacuum gap and are absorbed by a photovoltaic (PV) cell to generate electrical power. In principle, such systems may also achieve higher efficiencies and offer more versatility in use. However, the typical temperature of the hot emitter remains too low (<1,000 K) to achieve a sufficient photon flux to the PV cell, limiting practical applications. Theoretical proposals 3-12 suggest that near-field (NF) effects 13-18 that arise in nanoscale gaps may be leveraged to increase the photon flux to the PV cell and significantly enhance the power output. Here, we describe functional NFTPV devices consisting of a microfabricated system and a custom-built nanopositioner and demonstrate an ~40-fold enhancement in the power output at nominally 60 nm gaps relative to the far field. We systematically characterize this enhancement over a range of gap sizes and emitter temperatures, and for PV cells with two different bandgap energies. We anticipate that this technology, once optimized, will be viable for waste heat recovery applications.
Evidence for electrotropism in some plant species
NASA Astrophysics Data System (ADS)
Gorgolewski, S.; Rożej, B.
2001-01-01
The ever-present global Atmospheric Electrical Field (AEF) is used by many plant species. There are many natural habitats with electrotropic plants and habitats with no AEF. The plants growing there are not electrotropic, like the plants growing under the canopies of the trees or the Arecibo radio telescope. Examples are given of different plants which belong to one or the other class, and the criteria how to distinguish them. In addition to natural habitat observations, laboratory experiments were run in search of the sensitivity of electrotropic effect to different electric field intensities. During a few years, it was established that in very strong fields (of the order of 1 MV/m) all plants respond immediately to the field. This type of reaction is due to the Coulomb forces, but electrotropism depends on electric field interaction with ions. The "reference field" (130 V/m) was always used with stronger fields in the several kV/m range which enhance plant growth rate and size similar to plant growth hormones. Surprising effects were also observed with reversed and horizontal field polarity. In conclusion electrotropic plants deprived of the electrical field do not develop as expected, as can be seen in Biosphere 2. This is an instructive example of what happens when we forget to provide the plants with this vital natural environmental factor. Electrical fields of different intensity, directions and configurations are cheap and easy to generate.
Han, Fei; Wan, Xiangang; Phelan, Daniel; ...
2015-07-13
ZrCuSi 2-type CePd 1-xBi 2 crystals were obtained from excess Bi flux. Magnetic susceptibility measurements reveal that CePd 1-xBi 2 is a highly anisotropic antiferromagnet with transition temperature at 6 K, and a magnetic-field-induced metamagnetic transition at 5 T. An enhanced Sommerfeld coefficient of γ of 0.199 J-mol-Ce -1K -2 obtained from specific heat measurements suggests a moderate Kondo effect in CePd 1-xBi 2. In addition to the antiferromagnetic peak the resistivity curve shows a shoulder-like behavior which could be attributed to the presence of Kondo effect and crystal-electric-field effects in this compound. Magnetoresistance and Hall effect measurements suggest anmore » interplay between Kondo and crystal-electric-field effects which reconstructs the Fermi surface topology of CePd 1-xBi 2 around 75 K. Electronic structure calculations reveal the Pd vacancies are important to the magnetic structure and enhance the crystal-electric-field effects which quench the orbital moment of Ce at low temperatures.« less
NASA Astrophysics Data System (ADS)
Fung, Carmen Kar Man; Xi, Ning; Lou, Jianyong; Lai, King Wai Chiu; Chen, Hongzhi
2010-10-01
We report high sensitivity carbon nanotube (CNT) based middle wave infrared (MWIR) sensors with a two-dimensional photonic crystal waveguide. MWIR sensors are of great importance in a variety of current military applications including ballistic missile defense, surveillance and target detection. Unlike other existing MWIR sensing materials, CNTs exhibit low noise level and can be used as new nano sensing materials for MWIR detection where cryogenic cooling is not required. However, the quantum efficiency of the CNT based infrared sensor is still limited by the small sensing area and low incoming electric field. Here, a photonic nanostructure is used as a resonant cavity for boosting the electric field intensity at the position of the CNT sensing element. A two-dimensional photonic crystal with periodic holes in a polymer thin film is fabricated and a resonant cavity is formed by removing holes from the array of the photonic crystal. Based on the design of the photonic crystal topologies, we theoretically study the electric field distribution to predict the resonant behavior of the structure. Numerical simulations reveal the field is enhanced and almost fully confined to the defect region of the photonic crystal. To verify the electric field enhancement effect, experiments are also performed to measure the photocurrent response of the sensor with and without the photonic crystal resonant cavity. Experimental results show that the photocurrent increases ~3 times after adding the photonic crystal resonant cavity.
Hess, Ricarda; Jaeschke, Anna; Neubert, Holger; Hintze, Vera; Moeller, Stephanie; Schnabelrauch, Matthias; Wiesmann, Hans-Peter; Hart, David A; Scharnweber, Dieter
2012-12-01
In vivo, bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo-like stimulation of target cells. The purpose of the present studies was to investigate the synergistic role of defined biochemical and physical microenvironments with respect to osteogenic differentiation of human mesenchymal stem cells (MSCs). Biochemical microenvironments have been designed using artificial extracellular matrices (aECMs), containing collagen I (coll) and glycosaminoglycans (GAGs) like chondroitin sulfate (CS), or a high-sulfated hyaluronan derivative (sHya), formulated as coatings on three-dimensional poly(caprolactone-co-lactide) (PCL) scaffolds. As part of the physical microenvironment, cells were exposed to pulsed electric fields via transformer-like coupling (TC). Results showed that aECM containing sHya enhanced osteogenic differentiation represented by increases in ALP activity and gene-expression (RT-qPCR) of several bone-related proteins (RUNX-2, ALP, OPN). Electric field stimulation alone did not influence cell proliferation, but osteogenic differentiation was enhanced if osteogenic supplements were provided, showing synergistic effects by the combination of sHya and electric fields. These results will improve the understanding of bone regeneration processes and support the development of effective tissue engineered bone constructs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Charge induced enhancement of adsorption for hydrogen storage materials
NASA Astrophysics Data System (ADS)
Sun, Xiang
2009-12-01
The rising concerns about environmental pollution and global warming have facilitated research interest in hydrogen energy as an alternative energy source. To apply hydrogen for transportations, several issues have to be solved, within which hydrogen storage is the most critical problem. Lots of materials and devices have been developed; however, none is able to meet the DOE storage target. The primary issue for hydrogen physisorption is a weak interaction between hydrogen and the surface of solid materials, resulting negligible adsorption at room temperature. To solve this issue, there is a need to increase the interaction between the hydrogen molecules and adsorbent surface. In this study, intrinsic electric dipole is investigated to enhance the adsorption energy. The results from the computer simulation of single ionic compounds with hydrogen molecules to form hydrogen clusters showed that electrical charge of substances plays an important role in generation of attractive interaction with hydrogen molecules. In order to further examine the effects of static interaction on hydrogen adsorption, activated carbon with a large surface area was impregnated with various ionic salts including LiCl, NaCl, KCl, KBr, and NiCl2 and their performance for hydrogen storage was evaluated by using a volumetric method. Corresponding computer simulations have been carried out by using DFT (Density Functional Theory) method combined with point charge arrays. Both experimental and computational results prove that the adsorption capacity of hydrogen and its interaction with the solid materials increased with electrical dipole moment. Besides the intrinsic dipole, an externally applied electric field could be another means to enhance hydrogen adsorption. Hydrogen adsorption under an applied electric field was examined by using porous nickel foil as electrodes. Electrical signals showed that adsorption capacity increased with the increasing of gas pressure and external electric voltage. Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy. Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Kamel, Mohamed A.
2017-05-01
This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.
NASA Technical Reports Server (NTRS)
Generazio, Ed
2017-01-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
Dai, Daoxin; Wu, Hao; Zhang, Wei
2015-10-09
Plasmonic nanostructures have attracted intensive attention for many applications in recent years because of the field enhancement at the metal/dielectric interface. First, this strong field enhancement makes it possible to break the diffraction limit and enable subwavelength optical waveguiding, which is desired for nanophotonic integrated circuits with ultra-high integration density. Second, the field enhancement in plasmonic nanostructures occurs only for the polarization mode whose electric field is perpendicular to the metal/dielectric interface, and thus the strong birefringence is beneficial for realizing ultra-small polarization-sensitive/selective devices, including polarization beam splitters, and polarizers. Third, plasmonic nanostructures provide an excellent platform of merging electronics and photonics for some applications, e.g., thermal tuning, photo-thermal detection, etc. Finally, the field enhancement at the metal/dielectric interface helps a lot to realize optical sensors with high sensitivity when introducing plasmonic nanostrutures. In this paper, we give a review for recent progresses on the utilization of field enhancement in plasmonic nanostructures for these applications, e.g., waveguiding, polarization handling, heating, as well as optical sensing.
Dai, Daoxin; Wu, Hao; Zhang, Wei
2015-01-01
Plasmonic nanostructures have attracted intensive attention for many applications in recent years because of the field enhancement at the metal/dielectric interface. First, this strong field enhancement makes it possible to break the diffraction limit and enable subwavelength optical waveguiding, which is desired for nanophotonic integrated circuits with ultra-high integration density. Second, the field enhancement in plasmonic nanostructures occurs only for the polarization mode whose electric field is perpendicular to the metal/dielectric interface, and thus the strong birefringence is beneficial for realizing ultra-small polarization-sensitive/selective devices, including polarization beam splitters, and polarizers. Third, plasmonic nanostructures provide an excellent platform of merging electronics and photonics for some applications, e.g., thermal tuning, photo-thermal detection, etc. Finally, the field enhancement at the metal/dielectric interface helps a lot to realize optical sensors with high sensitivity when introducing plasmonic nanostrutures. In this paper, we give a review for recent progresses on the utilization of field enhancement in plasmonic nanostructures for these applications, e.g., waveguiding, polarization handling, heating, as well as optical sensing. PMID:28793600
NASA Astrophysics Data System (ADS)
Su, S. Y.; Nayak, C.; Tsai, L. C.; Caton, R. G.; Groves, K. M.
2016-12-01
Variations of zonal drift and ionospheric VHF scintillations observed by a SCINDA station in Southern Taiwan during the St. Patrick's day geomagnetic storm are studied. Although scintillations were observed for 6 consecutive days before the storm, they were absence during the storm period. Data from VHF receivers, ionosonde and in situ plasma density observations from ESA's SWARM constellation are used to study the ionospheric irregularity/scintillation events in the Taiwanese sector to compare with what happened in the Indian sectors. The absence of scintillation in the Taiwanese sector during the storm period seems to be caused by a reduced pre-reversal enhancement (PRE) electric field from a westward prompt-penetration electric field (PPEF) during the storm. A low post-sunset ionosphere thus becomes unfavorable for the Rayleigh-Taylor instability to occur. On the contrary, the PPEFs were found to strongly enhance the PRE electric field in the Indian sector to cause the ionospheric irregularities/scintillations in the post-sunset sector. Zonal drift variations during the storm time are also discussed in conjunction with the irregularity/scintillation occurrences.
Repetitive transcranial magnetic stimulator with controllable pulse parameters
NASA Astrophysics Data System (ADS)
Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Ultrafast Plasmonic Control of Second Harmonic Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less
Ultrafast Plasmonic Control of Second Harmonic Generation
Davidson, Roderick B.; Yanchenko, Anna; Ziegler, Jed I.; ...
2016-06-01
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast control pulse is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an even-order nonlinear optical response. The temporal evolution of the plasmonic near-fieldmore » is characterized with ~100 as resolution using a novel nonlinear interferometric technique. The serrated nanogap is a unique platform in which to investigate optically controlled, plasmonically enhanced harmonic generation in dielectric materials on an ultrafast time scale. Lastly, this metamaterial geometry can also be readily extended to all-optical control of other nonlinear phenomena, such as four-wave mixing and sum- and difference-frequency generation, in a wide variety of dielectric materials.« less
Adiabatic Nanofocusing in Hybrid Gap Plasmon Waveguides on the Silicon-on-Insulator Platform.
Nielsen, Michael P; Lafone, Lucas; Rakovich, Aliaksandra; Sidiropoulos, Themistoklis P H; Rahmani, Mohsen; Maier, Stefan A; Oulton, Rupert F
2016-02-10
We present an experimental demonstration of a new class of hybrid gap plasmon waveguides on the silicon-on-insulator (SOI) platform. Created by the hybridization of the plasmonic mode of a gap in a thin metal sheet and the transverse-electric (TE) photonic mode of an SOI slab, this waveguide is designed for efficient adiabatic nanofocusing simply by varying the gap width. For gap widths greater than 100 nm, the mode is primarily photonic in character and propagation lengths can be many tens of micrometers. For gap widths below 100 nm, the mode becomes plasmonic in character with field confinement predominantly within the gap region and with propagation lengths of a few microns. We estimate the electric field intensity enhancement in hybrid gap plasmon waveguide tapers at 1550 nm by three-photon absorption of selectively deposited CdSe/ZnS quantum dots within the gap. Here, we show electric field intensity enhancements of up to 167 ± 26 for a 24 nm gap, proving the viability of low loss adiabatic nanofocusing on a commercially relevant photonics platform.
Repetitive transcranial magnetic stimulator with controllable pulse parameters.
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2011-06-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.
Effect of polarization field on mean free path of phonons in indium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Sushant Kumar
2016-05-06
The effect of built-in-polarization field on mean free path of acoustic phonons in bulk wurtzite indium nitride (InN) has been theoretically investigated. The elastic constant of the material gets modified due to the existence of polarization field. As a result velocity and Debye frequency of phonons get enhanced. The various scattering rates of phonons are suppressed by the effect of polarization field, which implies an enhanced combined relaxation time. Thus phonons travel freely for a longer distance between two successive scatterings. This would enhance the thermal transport properties of the material when built-in-polarization field taken into account. Hence by themore » application of electric field the transport properties of such materials can be controlled as and when desired.« less
Guo, Yuanhao; Chen, Yuwei; Wang, Enmin; Cakmak, Miko
2017-01-11
A roll-to-roll continuous process was developed to manufacture large-scale multifunctional poly(dimethylsiloxane) (PDMS) films embedded with thickness direction ("Z" direction) aligned graphite nanoparticles by application of electric field. The kinetics of particle "Z" alignment and chain formation was studied by tracking the real-time change of optical light transmission through film thickness direction. Benefiting from the anisotropic structure of aligned particle chains, the electrical and thermal properties of the nanocomposites were dramatically enhanced through the thickness direction as compared to those of the nanocomposites containing the same particle loading without electrical field alignment. With 5 vol % graphite loading, 250 times higher electrical conductivity, 43 times higher dielectric permittivity, and 1.5 times higher thermal conductivity was achieved in the film thickness direction after the particles were aligned under electrical field. Moreover, the aligned nanocomposites with merely 2 vol % graphite particles exhibit even higher electric conductivity and dielectric permittivity than those of the nonaligned nanocomposites at random percolation threshold (10 vol % particles), as the "electric-field-directed" percolation threshold concentration is substantially decreased using this process. As the graphite loading increases to 20 vol %, the aligned nanocomposites exhibit thermal conductivity as high as 6.05 W/m·K, which is 35 times the thermal conductivity of pure matrix. This roll-to-roll electric field continuous process provides a simple, low-cost, and commercially viable method to manufacture multifunctional nanocomposites for applications as embedded capacitor, electromagnetic (EM) shielding, and thermal interface materials.
The electric field standing wave effect in infrared transflection spectroscopy
NASA Astrophysics Data System (ADS)
Mayerhöfer, Thomas G.; Popp, Jürgen
2018-02-01
We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.
NASA Astrophysics Data System (ADS)
Kikuchi, Takashi; Hashimoto, Kumiko K.
2016-12-01
The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.
NASA Astrophysics Data System (ADS)
Kikuchi, T.; Hashimoto, K. K.; Ebihara, Y.; Tanaka, T.; Tomizawa, I.; Nagatsuma, T.
2016-12-01
The solar wind energy is transmitted to the low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter-electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night-sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents also develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC) and ULF pulsations, which appear simultaneously at high latitude and equator within the temporal resolution of 10 sec. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both the day- and night-sides, which is explained by means of the light speed propagation of the TM0 mode waves in the Earth-ionosphere waveguide.
NASA Astrophysics Data System (ADS)
Lavigne, Thomas; Liu, Chuntao; Deierling, Wiebke; Mach, Douglas
2017-08-01
In the early 1900s, J. W. Whipple began to validate C. T. R. Wilson's global electric circuit (GEC) hypothesis by correlating the diurnal variation of global thunder days with the diurnal variation of the fair weather electric field measured by the Carnegie Cruise. This study applies 16+ years of precipitation feature (PF) data from the Tropical Rainfall Measuring Mission, including lightning data from the Lightning Imaging Sensor, alongside 12 years of electric field measurements from Vostok, Antarctica, to further examine this relationship. Joint diurnal-seasonal variations of the electric field are introduced and compared with a variety of PF parameters that are potentially related to the GEC. All tested PF parameters showed significant correlations to the electric field on the joint seasonal-diurnal timescale, with the flash rate and volume of 30 dBZ between the -5°C and -35°C isotherms showing the best linear correlations with R2 values of 0.67 and 0.62, respectively. Furthermore, these relationships are analyzed during the two different phases of the El Niño-Southern Oscillation. Results show different seasonal-diurnal variations of the electric field during El Niño and La Niña periods, with enhancements in the electric field between the months of January through April at 16-24 UTC in La Niña years. A similar trend is shown in global PF parameters, indicating relationships between the variations seen in the fair weather electric field and the variations of global PFs at diurnal, seasonal, and interannual timescales. This provides further evidence that PFs around the globe have a direct connection to the GEC.
NASA Astrophysics Data System (ADS)
Gkioulidou, Malamati
The convection electric field resulting from the coupling of the Earth's magnetosphere with the solar wind and interplanetary magnetic field (IMF) drives plasma in the tail plasma sheet earthward. This transport and the resulting energy storage in the near Earth plasma sheet are important for setting up the conditions that lead to major space weather disturbances, such as storms and substorms. Penetration of plasma sheet particles into the near-Earth magnetosphere in response to enhanced convection is crucial to the development of the Region 2 field-aligned current system and large-scale magnetosphere-ionosphere (M-I) coupling, which results in the shielding of the convection electric field. In addition to the electric field, plasma transport is also strongly affected by the magnetic field, which is distinctly different from dipole field in the inner plasma sheet and changes with plasma pressure in maintaining force balance. The goal of this dissertation is to investigate how the plasma transport into the inner magnetosphere is affected by the interplay between plasma, electric field and magnetic field. For this purpose, we conduct simulations using the Rice Convection Model (RCM), which self-consistently calculates the electric field resulting from M-I coupling. In order to quantitatively evaluate the interplay, we improved the RCM simulations by establishing realistic plasma sheet particle sources, by incorporating it with a modified Dungey force balance magnetic field solver (RCM-Dungey runs), and by adopting more realistic electron loss rates. We found that plasma sheet particle sources strongly affect the shielding of the convection electric field, with a hotter and more tenuous plasma sheet resulting in less shielding than a colder and denser one and thus in more earthward penetration of the plasma sheet. The Harang reversal, which is closely associated with the shielding of the convection electric field and the earthward penetration of low-energy protons, is found to be located at lower latitudes and extend more dawnward for a hotter and more tenuous plasma sheet. In comparison with simulation runs under an empirical but not force balance magnetic field from the Tsyganenko 96 model, the simulation results show that transport under force-balanced magnetic field results in weaker pressure gradients and thus weaker R2 FAC in the near-earth region, weaker shielding of the penetration electric field and, as a result, more earthward penetration of plasma sheet protons and electrons with their inner edges being closer together and more azimuthally symmetric. To evaluate the effect of electron loss rate on ionospheric conductivity, a major contributing factor to M-I coupling, we run RCM-Dungey with a more realistic, MLT dependent electron loss rate established from observed wave activity. Comparing our results with those using a strong diffusion everywhere rate, we found that under the MLT dependent loss rate, the dawn-dusk asymmetry in the precipitating electron energy fluxes agrees better with statistical DMSP observations. The more realistic loss rate is much weaker than the strong diffusion limit in the inner magnetosphere. This allows high-energy electrons in the inner magnetosphere to remain much longer and produce substantial conductivity at lower latitudes. The higher conductivity at lower latitudes under the MLT dependent loss rate results in less efficient shielding in response to an enhanced convection electric field, and thus to deeper penetration of the ion plasma sheet into the inner magnetosphere than under the strong diffusion everywhere rate.
The Electrical Response to Injury: Molecular Mechanisms and Wound Healing
Reid, Brian; Zhao, Min
2014-01-01
Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds. PMID:24761358
NASA Astrophysics Data System (ADS)
Huang, Y. C.; Lyu, L. H.
2014-12-01
Magnetic reconfiguration/reconnection plays an important role on energy and plasma transport in the space plasma. It is known that magnetic field lines on two sides of a tangential discontinuity can connect to each other only at a neutral point, where the strength of the magnetic field is equal to zero. Thus, the standard reconnection picture with magnetic field lines intersecting at the neutral point is not applicable to the component reconnection events observed at the magnetopause and in the solar corona. In our early study (Yu, Lyu, & Wu, 2011), we have shown that annihilation of magnetic field near a thin current sheet can lead to the formation of normal magnetic field component (normal to the current sheet) to break the frozen-in condition and to accelerate the reconnected plasma flux, even without the presence of a neutral point. In this study, we examine whether or not a generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet can also lead to reconnection of plasma flux. Our results indicate that a non-uniform enhancement of electric current can yield formation of field-aligned currents. The normal-component magnetic field generated by the field-aligned currents can yield reconnection of plasma flux just outside the current-enhancement region. The particle motion that can lead to non-uniform enhancement of electric currents will be discussed.
Electric field enhanced hydrogen storage on polarizable materials substrates
Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.
2010-01-01
Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647
NASA Astrophysics Data System (ADS)
Korobko, Evguenia V.; Korobko, Yulia O.
2000-04-01
Fluid disperse systems, sensitive to the external electric field-electrorheological fluids, are finding increasing use in various areas of industry and technology. Their physicomechanical, electrophysical characteristics determine the valuable specific properties of the materials with assigned structure, obtainable with everwide use of electric fields, which makes it possible to substantially enhance efficiency and productiveness of technological processes and to improve the control of operational regimes of the equipment which employ fluid disperse media. The present investigations has been undertaken with the aim of studying thermophysical properties and rheophysical behavior of low-concentration ER- fluid (diatomite in transformer oil) at different temperatures. It was shown that the electric field, which changes considerably the structure of electrorheological fluid, influences effective thermal conductivity and diffusivity coefficients. Their increase with electric field intensity and the increase of the effective viscosity with temperature are connected with the increase of the conductive component of the overall heat transfer through the contact spots between the solid particles, and with intensification of electric convection in the spaces between the dispersed particles.
Comparative In Situ Measurements of Plasma Instabilities in the Equatorial and Auroral Electrojets
NASA Technical Reports Server (NTRS)
Pfaff, Robert F.
2008-01-01
This presentation provides a comparison of in situ measurements of plasma instabilities gathered by rocket-borne probes in the equatorial and auroral electrojets. Specifically, using detailed measurements of the DC electric fields, current density, and plasma number density within the unstable daytime equatorial electrojet from Brazil (Guara Campaign) and in the auroral electrojet from Sweden (ERRIS Campaign), we present comparative observations and general conclusions regarding the observed physical properties of Farley-Buneman two-stream waves and large scale, gradient drift waves. The two stream observations reveal coherent-like waves propagating near the E x B direction but at reduced speeds (nearer to the presumed acoustic velocity) with wavelengths of approximately 5-10m in both the equatorial and auroral electrojet, as measured using the spaced-receiver technique. The auroral electrojet data generally shows extensions to shorter wavelengths, in concert with the fact that these waves are driven harder. With respect to gradient-drift driven waves, observations of this instability are much more pronounced in the equatorial electrojet, given the more favorable geometry for growth provided by the vertical gradient and horizontal magnetic field lines. We present new analysis of Guara rocket observations of electric field and plasma density data that reveal considerable structuring in the middle and lower portion of the electrojet (90-105 km) where the ambient plasma density gradient is unstable. Although the electric field amplitudes are largest (approximately 10-15 mV/m) in the zonal direction, considerable structure (approximately 5-10 mV/m) is also observed in the vertical electric field component as well, implying that the dominant large scale waves involve significant vertical interaction and coupling within the narrow altitude range where they are observed. Furthermore, a detailed examination of the phase of the waveforms show that on some, but not all occasions, locally enhanced eastward fields are associated with locally enhanced upwards (polarization) electric fields. The measurements are discussed in terms of theories involving the non-linear evolution and structuring of plasma waves.
C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis.
Martínez, Juan Manuel; Luengo, Elisa; Saldaña, Guillermo; Álvarez, Ignacio; Raso, Javier
2017-09-01
This paper assesses the application of pulsed electric fields (PEF) to the fresh biomass of Artrhospira platensis in order to enhance the extraction of C-phycocyanin into aqueous media. Electroporation of A. platensis depended on both electric field strength and treatment duration. The minimum electric field intensity for detecting C-phycocyanin in the extraction medium was 15kV/cm after the application of a treatment time 150μs (50 pulses of 3μs). However higher electric field strength were required when shorter treatment times were applied. Response surface methodology was used in order to investigate the influence of electric field strength (15-25kV/cm), treatment time (60-150μs), and temperature of application of PEF (10-40°C) on C-phycocyanin extraction yield (PEY). The increment of the temperature PEF treatment reduced the electric field strength and the treatment time required to obtain a given PEY and, consequently decreased the total specific energy delivered by the treatment. For example, the increment of temperature from 10°C to 40°C permitted to reduce the electric field strength required to extract 100mg/g d w of C-phycocyanin from 25 to 18kV/cm, and the specific energy input from 106.7 to 67.5kJ/Kg. Results obtained in this investigation demonstrated PEF's potential for selectively extraction C-phycocyanin from fresh A. platensis biomass. The purity of the C-phycocyanin extract obtained from the electroporated cells was higher than that obtained using other techniques based on the cell complete destruction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancement of hydrogen gas permeability in electrically aligned MWCNT-PMMA composite membranes.
Kumar, Sumit; Sharma, Anshu; Tripathi, Balram; Srivastava, Subodh; Agrawal, Shweta; Singh, M; Awasthi, Kamlendra; Vijay, Y K
2010-10-01
The multi-walled carbon nanotube (MWCNT) dispersed polymethylmethacrylate (PMMA) composite membranes have been prepared for hydrogen gas permeation application. Composite membranes are characterized by Raman spectroscopy, optical microscopy, X-ray diffraction, electrical measurements and gas permeability measurements. The effect of electric field alignment of MWCNT in PMMA matrix on gas permeation has been studied for hydrogen gas. The permeability measurements indicated that the electrically aligned MWCNT in PMMA has shown almost 2 times higher permeability for hydrogen gas as compare to randomly dispersed MWCNT in PMMA. The enhancement in permeability is explained on the basis of well aligned easy channel provided by MWCNT in electrically aligned sample. The effect of thickness of membrane on the gas permeability also studied and thickness of about 30microm found to be optimum thickness for fast hydrogen gas permeates.
Motional studies of one and two laser-cooled trapped ions for electric-field sensing applications
NASA Astrophysics Data System (ADS)
Domínguez, F.; Gutiérrez, M. J.; Arrazola, I.; Berrocal, J.; Cornejo, J. M.; Del Pozo, J. J.; Rica, R. A.; Schmidt, S.; Solano, E.; Rodríguez, D.
2018-03-01
We have studied the dynamics of one and two laser-cooled trapped ?Ca? ions by applying electric fields of different nature along the axial direction of the trap, namely, driving the motion with a harmonic dipolar field, or with white noise. These two types of driving induce distinct motional states of the axial modes: a coherent oscillation with the dipolar field, or an enhanced Brownian motion due to an additional contribution to the heating rate from the electric noise. In both scenarios, the sensitivity of an isolated ion and a laser-cooled two-ion crystal has been evaluated and compared. The analysis and understanding of this dynamics is important towards the implementation of a novel Penning trap mass-spectroscopy technique based on optical detection, aiming at improving precision and sensitivity.
Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei
Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retainedmore » the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.« less
Deashing macroalgae biomass by pulsed electric field treatment.
Robin, Arthur; Sack, Martin; Israel, Alvaro; Frey, Wolfgang; Müller, Georg; Golberg, Alexander
2018-05-01
Among all biomass constituents, the ashes are major hurdles for biomass processing. Ashes currently have low market value and can make a non-negligible fraction of the biomass dry weight significantly impacting its further processing by degrading equipment, lowering process yield, inhibiting reactions and decreasing products qualities. However, most of the current treatments for deashing biomass are of poor efficiency or industrial relevance. This work is the first report on the use of Pulsed Electric Field (PEF) to enhance deashing of biomass from a high ash content green marine macroalga, Ulva sp., using hydraulic pressing. By inducing cell permeabilization of the fresh biomass, PEF was able to enhance the ash extraction from 18.4% (non-treated control) to 37.4% of the total ash content in average, significantly enhancing the extraction of five of the major ash elements (K, Mg, Na, P and S) compared to pressing alone. Copyright © 2018 Elsevier Ltd. All rights reserved.
Surface streamer propagations on an alumina bead: experimental observation and numerical modeling
NASA Astrophysics Data System (ADS)
Kang, Woo Seok; Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi; Lee, Jin Young; Kim, Dae-Woong; Hur, Min; Song, Young-Hoon
2018-01-01
A surface streamer in a simplified packed-bed reactor has been studied both experimentally (through time-resolved ICCD imaging) and theoretically (through two-dimensional numerical modeling). The propagation of streamers on an alumina spherical bead without catalytic coating shows three distinct phases—the generation and propagation of a primary streamer (PS) with a moderate velocity and electric field, fast PS acceleration with an enhanced electric field, and slow secondary streamer (SS) propagation. The velocity of the streamer is less than that of propagation in a gaseous media. The electric field and velocity at the streamer front are maximized when a PS propagates during the interval from the midpoint of the bead to the bottom electrode. The SS exhibits a much lower velocity and electric field compared with the PS. The PS velocity is affected by an external applied voltage, especially when it approaches the ground electrode. However, that of the SS remains constant regardless of the voltage change. The simulation shows that the PS exhibits a high electric field mainly created by the space charge induced by electrons, whereas the SS relies on ion movement with electron decay in a charge-filled thin streamer body.
Nagata, Yuki; Lennartz, Christian
2008-07-21
The atomistic simulation of charge transfer process for an amorphous Alq(3) system is reported. By employing electrostatic potential charges, we calculate site energies and find that the standard deviation of site energy distribution is about twice as large as predicted in previous research. The charge mobility is calculated via the Miller-Abrahams formalism and the master equation approach. We find that the wide site energy distribution governs Poole-Frenkel-type behavior of charge mobility against electric field, while the spatially correlated site energy is not a dominant mechanism of Poole-Frenkel behavior in the range from 2x10(5) to 1.4x10(6) V/cm. Also we reveal that randomly meshed connectivities are, in principle, required to account for the Poole-Frenkel mechanism. Charge carriers find a zigzag pathway at low electric field, while they find a straight pathway along electric field when a high electric field is applied. In the space-charge-limited current scheme, the charge-carrier density increases with electric field strength so that the nonlinear behavior of charge mobility is enhanced through the strong charge-carrier density dependence of charge mobility.
A study of nucleate boiling and critical heat flux with EHD enhancement
NASA Astrophysics Data System (ADS)
Hristov, Y.; Zhao, D.; Kenning, D. B. R.; Sefiane, K.; Karayiannis, T. G.
2009-05-01
The paper describes results from an experimental and theoretical study of the effect of an electric field on nucleate boiling and the critical heat flux (CHF) in pool boiling of R123 at atmospheric pressure on a horizontal wall with a smooth surface. Two designs of electrode (parallel rods and wire mesh) were used. The experimental data exhibit some differences from the data obtained by other researchers in similar experiments on a wall with a different surface finish and with a slightly different design of wire mesh electrode. The hydrodynamic model for EHD enhancement of CHF cannot reconcile the differences. A theoretical model has been developed for the growth of a single vapour bubble on a superheated wall in an electric field, leading to a numerical simulation based on the level-set method. The model includes matching of sub-models for the micro- and macro-regions, conduction in the wall, distortion of the electric field by the bubble, the temperature dependence of electrical properties and free-charge generation. In the present form of the model, some of these effects are realised in an approximate form. The capability to investigate dry-spot formation and wall temperature changes that might lead to CHF has been demonstrated.
Pair aligning improved motility of Quincke rollers.
Lu, Shi Qing; Zhang, Bing Yue; Zhang, Zhi Chao; Shi, Yan; Zhang, Tian Hui
2018-06-06
Density-dependent speed is studied in a two-dimensional active colloid in which the colloidal particles are propelled by an external electric field via a Quincke rotation. Above the critcal electric field, dense dynamic clusters form spotaneously, in which the particles are highly aligned in velocity and move much faster than isolated units. Detailed observations on pair collision reveal that the alignment of velocity is induced by the long-ranged hydrodynamic interactions and the improvement of speed in the clusters arises from pair aligning in which two particles are closely paired and rotate synchronically. In the aligning state, the short-range in-plane dipole-dipole attraction enhances the rotation torque and gives rises to a larger rolling speed. The pair aligning becomes difficult and unstable at high electric field where the normal dipole-dipole repulsion becomes dominant. As a consequence, the dependence of speed on density becomes weak increasingly upon the increase of the electric field. This result offers an interpretation for the discrepancy between our and previous observations on Quincke rollers.
Optical magnetic mirrors without metals
Liu, Sheng; Sinclair, Michael B.; Mahony, Thomas S.; ...
2014-01-01
The reflection of an optical wave from metal, arising from strong interactions between the optical electric field and the free carriers of the metal, is accompanied by a phase reversal of the reflected electric field. A far less common route to achieving high reflectivity exploits strong interactions between the material and the optical magnetic field to produce a “magnetic mirror” that does not reverse the phase of the reflected electric field. At optical frequencies, the magnetic properties required for strong interaction can be achieved only by using artificially tailored materials. Here, we experimentally demonstrate, for the first time to themore » best of our knowledge, the magnetic mirror behavior of a low-loss all-dielectric metasurface at infrared optical frequencies through direct measurements of the phase and amplitude of the reflected optical wave. The enhanced absorption and emission of transverse-electric dipoles placed close to magnetic mirrors can lead to exciting new advances in sensors, photodetectors, and light sources.« less
Laxman, Karthik; Myint, Myo Tay Zar; Bourdoucen, Hadj; Dutta, Joydeep
2014-07-09
Electrodes composed of activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanorods are compared with plain ACC electrodes, with respect to their desalination efficiency of a 17 mM NaCl solution at different applied potentials. Polarization of the ZnO nanorods increased the penetration depth and strength of the electric field between the electrodes, leading to an increase in the capacitance and charge efficiency at reduced input charge ratios. Uniform distribution of the electric field lines between two electrodes coated with ZnO nanorods led to faster ion adsorption rates, reduced the electrode saturation time, and increased the average desalination efficiency by ∼45% for all applied potentials. The electrodes were characterized for active surface area, capacitance from cyclic voltammetry, theoretical assessment of surface area utilization, and the magnitude of electric field force acting on an ion of unit charge for each potential.
Electrostatic Assist of Liquid Transfer in Printing Processes
NASA Astrophysics Data System (ADS)
Huang, Chung-Hsuan; Kumar, Satish
2016-11-01
Transfer of liquid from one surface to another plays an important role in many printing processes. Incomplete liquid transfer can produce defects that are detrimental to the operation of printed electronic devices, and one strategy for minimizing these defects is to apply an electric field, a technique known as electrostatic assist (ESA). However, the underlying physical mechanisms of ESA remain a mystery. To better understand these mechanisms, slender-jet models for both perfect dielectric and leaky dielectric Newtonian liquid bridges with moving contact lines are developed. Nonlinear partial differential equations describing the time- and axial-evolution of the bridge radius and interfacial charge are derived, and then solved using finite-element methods. For perfect dielectrics, it is found that application of an electric field enhances transfer of liquid to the more wettable surface. For leaky dielectrics, application of an electric field can augment or oppose the influence of wettability differences, depending on the direction of the electric field and the sign of the interfacial charge. The physical mechanisms underlying these observations will be discussed.
de Assis, T. A.
2015-01-01
This work considers the effects of the Hurst exponent (H) on the local electric field distribution and the slope of the Fowler-Nordheim (FN) plot when considering the cold field electron emission properties of rough Large-Area Conducting Field Emitter Surfaces (LACFESs). A LACFES is represented by a self-affine Weierstrass-Mandelbrot function in a given spatial direction. For 0.1 ≤ H < 0.5, the local electric field distribution exhibits two clear exponential regimes. Moreover, a scaling between the macroscopic current density () and the characteristic kernel current density (), , with an H-dependent exponent , has been found. This feature, which is less pronounced (but not absent) in the range where more smooth surfaces have been found (), is a consequence of the dependency between the area efficiency of emission of a LACFES and the macroscopic electric field, which is often neglected in the interpretation of cold field electron emission experiments. Considering the recent developments in orthodox field emission theory, we show that the exponent must be considered when calculating the slope characterization parameter (SCP) and thus provides a relevant method of more precisely extracting the characteristic field enhancement factor from the slope of the FN plot. PMID:26035290
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments
NASA Astrophysics Data System (ADS)
Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf, Marc
2017-01-01
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning.
Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments
Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf , Marc
2017-01-01
Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning. PMID:28053312
Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode
Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; ...
2016-12-28
The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO 2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excitemore » infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.« less
Numerical analysis of mixing enhancement for micro-electroosmotic flow
NASA Astrophysics Data System (ADS)
Tang, G. H.; He, Y. L.; Tao, W. Q.
2010-05-01
Micro-electroosmotic flow is usually slow with negligible inertial effects and diffusion-based mixing can be problematic. To gain an improved understanding of electroosmotic mixing in microchannels, a numerical study has been carried out for channels patterned with wall blocks, and channels patterned with heterogeneous surfaces. The lattice Boltzmann method has been employed to obtain the external electric field, electric potential distribution in the electrolyte, the flow field, and the species concentration distribution within the same framework. The simulation results show that wall blocks and heterogeneous surfaces can significantly disturb the streamlines by fluid folding and stretching leading to apparently substantial improvements in mixing. However, the results show that the introduction of such features can substantially reduce the mass flow rate and thus effectively prolongs the available mixing time when the flow passes through the channel. This is a non-negligible factor on the effectiveness of the observed improvements in mixing efficiency. Compared with the heterogeneous surface distribution, the wall block cases can achieve more effective enhancement in the same mixing time. In addition, the field synergy theory is extended to analyze the mixing enhancement in electroosmotic flow. The distribution of the local synergy angle in the channel aids to evaluate the effectiveness of enhancement method.
Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew
The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO 2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excitemore » infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankaran, K. J.; Institute for Materials Research; Sundaravel, B.
2015-08-28
In the present work, Au-Si eutectic layer was used to enhance the electrical conductivity/electron field emission (EFE) properties of Au-ion implanted ultrananocrystalline diamond (Au-UNCD) films grown on Si substrates. The electrical conductivity was improved to a value of 230 (Ω cm){sup −1}, and the EFE properties was enhanced reporting a low turn-on field of 2.1 V/μm with high EFE current density of 5.3 mA/cm{sup 2} (at an applied field of 4.9 V/μm) for the Au-UNCD films. The formation of SiC phase circumvents the formation of amorphous carbon prior to the nucleation of diamond on Si substrates. Consequently, the electron transport efficiency of themore » UNCD-to-Si interface increases, thereby improving the conductivity as well as the EFE properties. Moreover, the salient feature of these processes is that the sputtering deposition of Au-coating for preparing the Au-Si interlayer, the microwave plasma enhanced chemical vapor deposition process for growing the UNCD films, and the Au-ion implantation process for inducing the nanographitic phases are standard thin film preparation techniques, which are simple, robust, and easily scalable. The availability of these highly conducting UNCD films with superior EFE characteristics may open up a pathway for the development of high-definition flat panel displays and plasma devices.« less
The need for plant electro-physiology
NASA Astrophysics Data System (ADS)
Gorgolewski, S.
The already experimentaly evidenced existance of electrotropism for some plant species permits me to propose to extend these studies. Electrotropism is not well defined in plant physiology handbooks. There is a confusion of current and electric field which leads to communication problems between biologists and physicists. The electric field E, is measured in units of volts/metre=newtons/coulomb. We do not attach any wires to the plant leaves but subject them to the electric field. The plant distords the electrical field lines which in turn modify the shape of the plant. It has been verified in fitotron experiments that the direction and strength of the E vector relative to the gravitational force has different effects on plant growth. The natural fair weather global value of E is close to 130 V/m with positive charges in the air and negative on the ground. The most important results are: fields of (1.6 kV/m) enhance plant growth. Reversed fields overwhelm the gravitational field and plants grow towards the grownd. Horizontal E also enhances the plant growth in the horizontal direction ignoring the gravity. It shows that we can restore the directional orientation for plants in the absence of gravity by means of electrotropism. This is an important result for the plant growth in micro-gravity, basic advantage for long duration space fligths for raising edible crops for the vegetarian crew. It has the advantage of selecting in laboratory environment the plants which are suitable for space applications. The use of electic fields in ground based and space plant cultivation opens up important applications based on these novel trends also in modern greenhouses including the Biosphere 2. In addition to the fitotron experiments we have also studied plant growth in natural and modified natural electrical field environment. Two pioneering papers describing the above mentioned results and their possible ground based and space applications are cited as well as several references to biology and physics books. The presentation shall be richly illustrated with colour digital pictures of experimental and natural examples of the effects of electrical fields on plant growth shape and rate. Reference is also made to the already performed space experiments of plant cultivation in microgravity, and it is shown that the plants used were not electrotropic and these results thus do not contradict our fitotron and natural habitats observations.
Increasing the switching speed of liquid crystal devices with magnetic nanorods
NASA Astrophysics Data System (ADS)
Garbovskiy, Yu.; Baptist, J. R.; Thompson, J.; Hunter, T.; Lim, J. H.; Gi Min, Seong; Wiley, J. B.; Malkinski, L. M.; Glushchenko, A.; Celinski, Z.
2012-10-01
Liquid crystal (LC)/magnetic nanorods colloids were fabricated and tested using a magneto-optical setup. These thermotropic ferronematics do not show any signs of macroscopic aggregation, exhibit enhanced magnetic sensitivity, and faster time response in the simultaneous presence of crossed electric and magnetic fields. Magnetic nanorods increase an effective magnetic anisotropy of the colloid and decrease magnetic Freedericksz threshold. Applying a magnetic field along the direction perpendicular to the applied electric field leads to a decrease of the time OFF by a factor of 6 for pure liquid crystals, and by a factor of 9—for ferronematics.
Small-amplitude oscillations of electrostatically levitated drops
NASA Astrophysics Data System (ADS)
Feng, J. Q.; Beard, K. V.
1990-07-01
The nature of axisymmetric oscillations of electrostatically levitated drops is examined using an analytical method of multiple-parameter perturbations. The solution for the quiescent equilibrium shape exhibits both stretching of the drop surface along the direction of the externally applied electric field and asymmetry about the drop's equatorial plane. In the presence of electric and gravitational fields, small-amplitude oscillations of charged drops differ from the linear modes first analyzed by Rayleigh. The oscillatory response at each frequency consists of several Legendre polynomials rather than just one, and the characteristic frequency for each axisymmetric mode decreases from that calculated by Rayleigh as the electric field strength increases. This lowering of the characteristic frequencies is enhanced by the net electric charge required for levitation against gravity. Since the contributions of the various forces appear explicitly in the analytic solutions, physical insight is readily gained into their causative role in drop behavior.
Mass transport through vertically aligned large diameter MWCNT embedded in parylene
Krishnakumar, P; Tiwari, P B; Staples, S; Luo, T; Darici, Y; He, J; Lindsay, SM
2013-01-01
We have fabricated porous membranes using a parylene encapsulated vertically aligned forest of multi-walled carbon nanotube (MWCNT, about 7nm inner diameter). The transport of charged particles in electrolyte through these membranes was studied by applying electric field and pressure. Under an electric field in the range of 4.4×104 V/m, electrophoresis instead of electroomosis is found to be the main mechanism for ion transport. Small molecules and 5 nm gold nanoparticles can be driven through the membranes by an electric field. However, small biomolecules, like DNA oligomers, cannot. Due to the weak electric driving force, the interactions between charged particles and the hydrophobic CNT inner surface play important roles in the transport, leading to enhanced selectivity for small molecules. Simple chemical modification on the CNT ends also induces an obvious effect on the translocation of single strand DNA oligomer and gold nanoparticle under a modest pressure (<294 Pa). PMID:23064678
Quasi-elastic light scattering of carnauba wax in the liquid phase: dynamics 2.
de Almeida, F J; Barbosa, G A
1983-12-01
Quasi-elastic light scattering of carnauba wax in the liquid phase is obtained in a heterodyne setup, and dynamic processes are analyzed through electrophoresis. Nonspherical polar clusters are found, containing a net electrical charge. An applied square-wave electric field induces drift and rotation of these clusters.These effects are dependent on strength and frequency of the applied electric field. At 373 K and in the low frequency limit the local electric field strength is approximately 70 times the strength of the applied one. This enhancement is believed to be caused by collective orientation of the clusters. The electrophoretic mobility is 1.1 X 10(-12) m2/V sec in the high frequency limit and 7.4 X 10(-11) m2/V sec in the low frequency limit. The electric dipole moment is 6.3 X 10(-16) N(-1/2) m(-1/2) where N is the cluster density/cubic meter and the net charge is about one or two elementary charges.
A Generalized Model for Transport of Contaminants in Soil by Electric Fields
Paz-Garcia, Juan M.; Baek, Kitae; Alshawabkeh, Iyad D.; Alshawabkeh, Akram N.
2012-01-01
A generalized model applicable to soils contaminated with multiple species under enhanced boundary conditions during treatment by electric fields is presented. The partial differential equations describing species transport are developed by applying the law of mass conservation to their fluxes. Transport, due to migration, advection and diffusion, of each aqueous component and complex species are combined to produce one partial differential equation hat describes transport of the total analytical concentrations of component species which are the primary dependent variables. This transport couples with geochemical reactions such as aqueous equilibrium, sorption, precipitation and dissolution. The enhanced model is used to simulate electrokinetic cleanup of lead and copper contaminants at an Army Firing Range. Acid enhancement is achieved by the use of adipic acid to neutralize the basic front produced for the cathode electrochemical reaction. The model is able to simulate enhanced application of the process by modifying the boundary conditions. The model showed that kinetics of geochemical reactions, such as metals dissolution/leaching and redox reactions might be significant for realistic prediction of enhanced electrokinetic extraction of metals in real world applications. PMID:22242884
Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.
2010-05-11
Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.
Optimization of return electrodes in neurostimulating arrays
NASA Astrophysics Data System (ADS)
Flores, Thomas; Goetz, Georges; Lei, Xin; Palanker, Daniel
2016-06-01
Objective. High resolution visual prostheses require dense stimulating arrays with localized inputs of individual electrodes. We study the electric field produced by multielectrode arrays in electrolyte to determine an optimal configuration of return electrodes and activation sequence. Approach. To determine the boundary conditions for computation of the electric field in electrolyte, we assessed current dynamics using an equivalent circuit of a multielectrode array with interleaved return electrodes. The electric field modeled with two different boundary conditions derived from the equivalent circuit was then compared to measurements of electric potential in electrolyte. To assess the effect of return electrode configuration on retinal stimulation, we transformed the computed electric fields into retinal response using a model of neural network-mediated stimulation. Main results. Electric currents at the capacitive electrode-electrolyte interface redistribute over time, so that boundary conditions transition from equipotential surfaces at the beginning of the pulse to uniform current density in steady state. Experimental measurements confirmed that, in steady state, the boundary condition corresponds to a uniform current density on electrode surfaces. Arrays with local return electrodes exhibit improved field confinement and can elicit stronger network-mediated retinal response compared to those with a common remote return. Connecting local return electrodes enhances the field penetration depth and allows reducing the return electrode area. Sequential activation of the pixels in large monopolar arrays reduces electrical cross-talk and improves the contrast in pattern stimulation. Significance. Accurate modeling of multielectrode arrays helps optimize the electrode configuration to maximize the spatial resolution, contrast and dynamic range of retinal prostheses.
Microwave meta-atom enhanced spintronic rectification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, Peng; Xi, Fuchun; Qian, Qinbai
2015-04-06
An artificial meta-atom (MA), or alternatively, a plasmonic antenna, has been demonstrated to significantly enhance the microwave spin rectifying photovoltage by more than two orders in magnitude (∼280) in the ferromagnetic resonance regime. The large enhancement is attributed to the unique structure of the MA which magnifies both microwave electric (∼5) and magnetic (∼56) fields in the same near-field spatial region. Our work develops the interdisciplinary direction with artificial and natural magnetism and may find promising applications in high-frequency or opto-spintronic devices and wireless microwave energy harvesting.
Graphene-based photovoltaic cells for near-field thermal energy conversion
Messina, Riccardo; Ben-Abdallah, Philippe
2013-01-01
Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat. PMID:23474891
Graphene-based photovoltaic cells for near-field thermal energy conversion.
Messina, Riccardo; Ben-Abdallah, Philippe
2013-01-01
Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat.
Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice.
Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L; Biermann, Klaus; Grahn, Holger T
2017-01-01
Noise-enhanced chaos in a doped, weakly coupled GaAs/Al_{0.45}Ga_{0.55}As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.
Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice
NASA Astrophysics Data System (ADS)
Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L.; Biermann, Klaus; Grahn, Holger T.
2017-01-01
Noise-enhanced chaos in a doped, weakly coupled GaAs /Al0.45Ga0.55As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.
Wang, Jiale; Alves, Tiago V; Trindade, Fabiane J; de Aquino, Caroline B; Pieretti, Joana C; Domingues, Sergio H; Ando, Romulo A; Ornellas, Fernando R; Camargo, Pedro H C
2015-11-23
By a combination of theoretical and experimental design, we probed the effect of a quasi-single electron on the surface plasmon resonance (SPR)-mediated catalytic activities of Ag nanoparticles. Specifically, we started by theoretically investigating how the E-field distribution around the surface of a Ag nanosphere was influenced by static electric field induced by one, two, or three extra fixed electrons embedded in graphene oxide (GO) next to the Ag nanosphere. We found that the presence of the extra electron(s) changed the E-field distributions and led to higher electric field intensities. Then, we experimentally observed that a quasi-single electron trapped at the interface between GO and Ag NPs in Ag NPs supported on graphene oxide (GO-Ag NPs) led to higher catalytic activities as compared to Ag and GO-Ag NPs without electrons trapped at the interface, representing the first observation of catalytic enhancement promoted by a quasi-single electron. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Xie, Yun; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao
2015-01-01
Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the phosphate groups after overcoming a slight energy barrier. Under three states, the basic backbone structures of Cyt c are well kept within the simulation time since the conformation of Cyt c is mainly affected by the surface-generated electric fields, whose strengths are modulated by the external electric fields and are not strong enough to deform protein. The results indicate the possibility of regulating protein behaviors, including promoting or retarding protein adsorption and regulating protein orientations, on responsive surfaces by applying electric fields on the surfaces without worrying protein deformation, which may be helpful in the applications of protein separation and controlled drug delivery.
Schwinger pair production by electric field coupled to inflaton
NASA Astrophysics Data System (ADS)
Geng, Jia-Jia; Li, Bao-Fei; Soda, Jiro; Wang, Anzhong; Wu, Qiang; Zhu, Tao
2018-02-01
We analytically investigate the Schwinger pair production in the de Sitter background by using the uniform asymptotic approximation method, and show that the equation of motion in general has two turning points, and the nature of these points could be single, double, real or complex, depending on the choice of the free parameters involved in the theory. Different natures of these points lead to different electric currents. In particular, when β ≡ m2/H2‑9/4 is positive, both turning points are complex, and the electric current due to the Schwinger process is highly suppressed, where m and H denote, respectively, the mass of the particle and the Hubble parameter. For the turning points to be real, it is necessary to have β < 0, and the more negative of β, the easier to produce particles. In addition, when β < 0, we also study the particle production when the electric field E is very weak. We find that the electric current in this case is proportional to E1/2 ‑ √|β|, which is strongly enhanced in the weak electric field limit when m < √2 H.
Evidence for electrotropism in some plant species.
Gorgolewski, S; Rozej, B
2001-01-01
The ever-present global Atmospheric Electrical Field (AEF) is used by many plant species. There are many natural habitats with electrotropic plants and habitats with no AEF. The plants growing there are not electrotropic, like the plants growing under the canopies of the trees or the Arecibo radio telescope. Examples are given of different plants which belong to one or the other class, and the criteria how to distinguish them. In addition to natural habitat observations, laboratory experiments were run in search of the sensitivity of electrotropic effect to different electric field intensities. During a few years, it was established that in very strong fields (of the order of 1 MV/m) all plants respond immediately to the field. This type of reaction is due to the Coulomb forces, but electrotropism depends on electric field interaction with ions. The "reference field" (130 V/m) was always used with stronger fields in the several kV/m range which enhance plant growth rate and size similar to plant growth hormones. Surprising effects were also observed with reversed and horizontal field polarity. In conclusion electrotropic plants deprived of the electrical field do not develop as expected, as can be seen in Biosphere 2. This is an instructive example of what happens when we forget to provide the plants with this vital natural environmental factor. Electrical fields of different intensity, directions and configurations are cheap and easy to generate. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
An explanation for parallel electric field pulses observed over thunderstorms
NASA Astrophysics Data System (ADS)
Kelley, M. C.; Barnum, B. H.
2009-10-01
Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.
Interaction of electromagnetic fields with chondrocytes in gel culture
NASA Astrophysics Data System (ADS)
Grodzinsky, Alan J.; Buschmann, Michael D.; Gluzband, Yehezkiel A.
1992-01-01
The specific objectives of this research period were: (1) to quantify the effect of applied electric fields on chondrocyte metabolism, using a range of stimulation frequencies and amplitudes; (2) to compare the chondrocyte biosynthetic response to applied fields at early times in agarose gel culture before an extracellular matrix has accumulated and at later times after significant deposition of matrix around and between the cells; and (3) to begin to interpret the biosynthetic response to applied fields in terms of models of physical mechanisms. The results of these studies suggest that electric fields applied to chondrocytes in agarose can modulate the synthesis of proteoglycans and protein constituents. Biosynthesis may be inhibited or stimulated depending on the amplitude of the applied current density. In addition, the presence of extracellular matrix may enhance the ability of normal chondrocytes and cells in intact cartilage to respond to electric fields, although the presence of matrix was not required for the stimulatory response to be observed with Swarm rat chondrosarcoma cells.
Swaminathan, Vikhram V; Shannon, Mark A; Bashir, Rashid
2015-04-01
Dielectrophoretic separation of particles finds a variety of applications in the capture of species such as cells, viruses, proteins, DNA from biological systems, as well as other organic and inorganic contaminants from water. The ability to capture particles is constrained by poor volumetric scaling of separation force with respect to particle diameter, as well as the weak penetration of electric fields in the media. In order to improve the separation of sub-micron colloids, we present a scheme based on multiple interdigitated electrode arrays under mixed AC/DC bias. The use of high frequency longitudinal AC bias breaks the shielding effects through electroosmotic micromixing to enhance electric fields through the electrolyte, while a transverse DC bias between the electrode arrays enables penetration of the separation force to capture particles from the bulk of the microchannel. We determine the favorable biasing conditions for field enhancement with the help of analytical models, and experimentally demonstrate the improved capture from sub-micron colloidal suspensions with the mixed AC/DC electrostatic excitation scheme over conventional AC-DEP methods.
Effect of an alternating electric field on the polluting emission from propane flame.
NASA Astrophysics Data System (ADS)
Ukradiga, I.; Turlajs, D.; Purmals, M.; Barmina, I.; Zake, M.
2001-12-01
The experimental investigations of the AC field effect on the propane combustion and processes that cause the formation of polluting emissions (NO_x, CO, CO_2) are performed. The AC-enhanced variations of the temperature and composition of polluting emissions are studied for the fuel-rich and fuel-lean conditions of the flame core. The results show that the AC field-enhanced mixing of the fuel-rich core with the surrounding air coflow enhances the propane combustion with increase in the mass fraction of NO_x and CO_2 in the products. The reverse field effect on the composition of polluting emissions is observed under the fuel-lean conditions in the flame core. The field-enhanced CO_2 destruction is registered when the applied voltage increase. The destruction of CO_2 leads to a correlating increase in the mass fraction of CO in the products and enhances the process of NO_x formation within the limit of the fuel lean and low temperature combustion. Figs 11, Refs 18.
Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures
Tian, Xiaorui; Fang, Yurui; Sun, Mengtao
2015-01-01
Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558
Synaptic Effects of Electric Fields
NASA Astrophysics Data System (ADS)
Rahman, Asif
Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits. Moreover, stimulation polarity has asymmetric effects on synaptic strength making it easier to enhance ongoing plasticity. These results suggest that the susceptibility of brain networks to an electric field depends on the state of synaptic activity. Combining a training task, which activates specific circuits, with TES may lead to functionally-specific effects. Given the simplicity of TES and the complexity of brain function, understanding the mechanisms leading to specificity is fundamental to the rational advancement of TES.
Tian, Mei-ling; Fang, Ting; Du, Mu-ying; Zhang, Fu-sheng
2016-04-01
To explore an efficient, safe, and speedy application of pulsed electric field (PEF) technology for enzymatic modification, effects of PEF treatment on the enzymatic activity, property and kinetic parameters of α-amylase were investigated. Conformational transitions were also studied with the aid of circular dichroism (CD) and fluorescence spectra. The maximum enzymatic activity of α-amylase was obtained under 15 kV/cm electric field intensity and 100 mL/min flow velocity PEF treatment, in which the enzymatic activity increased by 22.13 ± 1.14% compared with control. The activation effect could last for 18 h at 4 °C. PEF treatment could widen the range of optimum temperature for α-amylase, however, it barely exerted any effect on the optimum pH. On the other hand, α-amylase treated by PEF showed an increase of Vmax, t1/2 and ΔG, whereas a decrease of Km and k were observed. Furthermore, it can be observed from fluorescence and CD spectra that PEF treatment had increased the number of amino acid residues, especially that of tryptophan, on α-amylase surface with enhanced α-helices by 34.76% and decreased random coil by 12.04% on α-amylase when compared with that of untreated. These changes in structure had positive effect on enhancing α-amylase activity and property.
NASA Astrophysics Data System (ADS)
Chakrabarty, D.; Bagiya, Mala S.; Thampi, Smitha V.; Pathan, B. M.; Sekar, R.
2013-12-01
The present investigation brings out, in contrast to the earlier works, the changes in the equatorial electrojet (EEJ) current in response to a few moderate (M-class) and low (C and B class) intensity solar flares during 2005-2010. Special care is taken to pick these flare events in the absence of prompt electric field perturbations associated with geomagnetic storms and substorms that also affect the electrojet current. Interestingly, only the normalized (with respect to the pre-flare level) deviations of daytime EEJ (and not the deviations alone) change linearly with the increases in the EUV and X-ray fluxes. These linear relationships break down during local morning hours when the E-region electric field approaches zero before reversal of polarity. This elicits that the response of EEJ strength corresponding to less-intense flares can be appropriately gauged only when the local time variation of the quiet time E-region zonal electric field is taken into account. The flare events enhanced the EEJ strength irrespective of normal or counter electrojet (CEJ) conditions that shows that solar flares change the E-region ionization density and not the electric field. In addition, the enhancements in the X-ray and EUV fluxes, for these flares occurring during this solar minimum period, are found to be significantly correlated as opposed to the solar maximum period, indicating the differences in the solar processes in different solar epochs.
NASA Astrophysics Data System (ADS)
Yao, Wenzhi; Zhang, Jihua; Wang, Yuanxu; Ren, Fengzhu
2018-03-01
To investigate the origin of the high photocatalytic performance of experimentally synthesized g-C3N4/ BiOCl, we studied its geometry structure, electronic structure, and photocatalytic properties by means of hybrid density-functional theory (DFT). The calculated band alignment of g-C3N4 and few-layer BiOCl sheets clearly shows that g-C3N4/ BiOCl is a standard type-II nanocomposite. The density of states, Bader charge, partial charge density, charge density difference, and the effective masses show that electron-hole pair can be effectively separated in the g-C3N4/BiOCl interface. The calculated absorption coefficients indicate an obvious redshift of the absorption edge. The band gap of g-C3N4/BiOCl can be modulated by external electric field, and a semiconductor-semimetal transition is observed. The type-II vdW heterostructure is still maintained during the changes of external electric field. Especially, when the electric field reaches to +0.7 V/Å, the impurity states have been eliminated with the band gap of 2.3 eV. An analysis of optical properties shows that the absorption coefficient in the visible-light region is enhanced considerably as the electric-field strength increases. Our calculation results suggest that the ultrathin hybrid layered g-C3N4/BiOCl nanocomposite may have significant advantages for visible-light photocatalysis.
Petrishia, A; Sasikala, M
2014-04-01
A Prolate-Spheroidal Impulse Radiating Antenna (PSIRA) is used as a non-invasive technique for generating an electromagnetic implosion to kill melanoma cells. It can launch and focus fast (100 ps) high voltage (>50 KV) pulses into the biological targets. It can be used to obtain electromagnetic focusing on the target to reduce the damage to the tissue layers surrounding the target (skin). The main aim of this work is to improve the gain of the antenna, enhance the electric field intensity and to reduce the spot size at the focal point. In this work the PSIRA with tapered arm is designed to increase the gain of the antenna. The log periodic lens system is designed to enhance the electric field and reduce the spot size. The IRA with tapered arms located at the position of φ = 60° gives a gain improvement of 14.28% when compared to a traditional IRA. In this work a 10-layer dielectric lens system is designed to match the 100 ps pulses to the skin phantom. Simulation results show that the electric field is increased by a factor of 2. The spot size is reduced from 1 cm to 0.75 cm at the focal point where the target is placed. The proposed Log periodic lens system provides an increase in electric field amplitude and reduction in spot size.
NASA Technical Reports Server (NTRS)
Pfaff, Robert F.; Liebrecht, C; Berthelier, Jean-Jacques; Parrot, M.; Lebreton, Jean-Pierre
2007-01-01
Detailed observations of the plasma structure and irregularities that characterize the topside ionosphere at sub-auroral, middle, and low-latitudes are gathered with probes on the DEMETER and DMSP satellites. In particular, we present DEMETER observations near 700 km altitude that reveal: (1) the electric field irregularities and density depletions at mid-latitudes are remarkably similar to those associated with equatorial spread-F at low latitudes; (2) the mid-latitude density structures contain both depletions and enhancements with scale lengths along the spacecraft trajectory that typically vary from 10's to 100's of km; (3) in some cases, ELF magnetic field irregularities are observed in association with the electric field irregularities on the walls of the plasma density structures and appear to be related to finely-structured spatial currents and/or Alfven waves; (4) during severe geomagnetic storms, broad regions of nightside plasma density structures are typically present, in some instances extending from the equator to the subauroral regions; and (5) intense, broadband electric and magnetic field irregularities are observed at sub-auroral latitudes during geomagnetic storm periods that are typically associated with the trough region. Data from successive DEMETER orbits during storm periods in both the daytime and nighttime illustrate how enhancements of both the ambient plasma density, as well as sub-auroral and mid-latitude density structures, correlate and evolve with changes in the Dst. The DEMETER data are compared with near simultaneous observations gathered by the DMSP satellites near 840 km. The observations are related to theories of sub-auroral and mid-latitude plasma density structuring during geomagnetic storms and penetration electric fields and are highly germane to understanding space weather effects regarding disruption of communication and navigation signals in the near-space environment.
Wang, Guojing; Li, Zhengcao; Li, Mingyang; Chen, Chienhua; Lv, Shasha; Liao, Jiecui
2016-01-01
ZnO-CdS, ZnO-ZnS, and ZnO-Ag2S core-shell heterojunction structures were fabricated using low-temperature, facile and simple aqueous solution approaches. The polycrystalline sulfide shells effectively enhance the field emission (FE) properties of ZnO nanowires arrays (NWAs). This results from the formation of the staggered gap heterointerface (ZnO-sulfide) which could lead to an energy well at the interfaces. Hence, electrons can be collected when an electric field is applied. It is observed that ZnO-ZnS NWAs have the lowest turn-on field (3.0 Vμm−1), compared with ZnO-CdS NWAs (6.3 Vμm−1) and ZnO-Ag2S NWAs (5.0 Vμm−1). This may be associated with the pyramid-like ZnS shell which increases the number of emission nanotips. Moreover, the Fowler-Nordheim (F-N) plot displays a nonlinear relationship in the low and high electric field regions caused by the double well potential effect of the heterojunction structures. PMID:27387653
Non-resonant Nanoscale Extreme Light Confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramania, Ganapathi Subramanian; Huber, Dale L.
2014-09-01
A wide spectrum of photonics activities Sandia is engaged in such as solid state lighting, photovoltaics, infrared imaging and sensing, quantum sources, rely on nanoscale or ultrasubwavelength light-matter interactions (LMI). The fundamental understanding in confining electromagnetic power and enhancing electric fields into ever smaller volumes is key to creating next generation devices for these programs. The prevailing view is that a resonant interaction (e.g. in microcavities or surface-plasmon polaritions) is necessary to achieve the necessary light confinement for absorption or emission enhancement. Here we propose new paradigm that is non-resonant and therefore broadband and can achieve light confinement and fieldmore » enhancement in extremely small areas [~(λ/500)^2 ]. The proposal is based on a theoretical work[1] performed at Sandia. The paradigm structure consists of a periodic arrangement of connected small and large rectangular slits etched into a metal film named double-groove (DG) structure. The degree of electric field enhancement and power confinement can be controlled by the geometry of the structure. The key operational principle is attributed to quasistatic response of the metal electrons to the incoming electromagnetic field that enables non-resonant broadband behavior. For this exploratory LDRD we have fabricated some test double groove structures to enable verification of quasistatic electronic response in the mid IR through IR optical spectroscopy. We have addressed some processing challenges in DG structure fabrication to enable future design of complex sensor and detector geometries that can utilize its non-resonant field enhancement capabilities.].« less
Field-induced structural control of COx molecules adsorbed on graphene
NASA Astrophysics Data System (ADS)
Matsubara, Manaho; Okada, Susumu
2018-05-01
Using the density functional theory combined with both the van der Waals correction and the effective screening medium method, we investigate the energetics and electronic structures of CO and CO2 molecules adsorbed on graphene surfaces in the field-effect-transistor structure with respect to the external electric field by the excess electrons/holes. The binding energies of CO and CO2 molecules to graphene monotonically increase with increasing hole and electron concentrations. The increase occurs regardless of the molecular conformations to graphene and the counter electrode, indicating that the carrier injection substantially enhances the molecular adsorption on graphene. Injected carriers also modulate the stable molecular conformation, which is metastable in the absence of an electric field.
Influence of electric field on the hydrogen bond network of methanol.
Suresh, S J; Prabhu, Arun Laxman; Arora, Abhinav
2007-04-07
The understanding of the structure of hydrogen (H) bonding liquids in electric (E) fields is important in the context of several areas of research, such as electrochemistry, surface science, and thermodynamics of electrolyte solutions. We had earlier presented a general thermodynamic framework for this purpose, and had shown that the application of E field enhances H-bond interactions among water molecules. The present investigation with methanol suggests a different result-the H-bond structure, as indicated by the average number of H bonds per molecule, goes through a maxima with increasing field strength. This result is explained based on the symmetry in the location of the H-bonding sites in the two types of molecules.
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yue, Cheng-Feng
2004-12-01
This paper investigates two-dimensional, time-dependent electroosmotic flows driven by an AC electric field via patchwise surface heterogeneities distributed along the microchannel walls. The time-dependent flow fields through the microchannel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. It is shown that the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in accordance with the applied periodic AC electric field intensity. The circulations provide an effective means of enhancing species mixing in the microchannel. A suitable design of the patchwise heterogeneous surface pattern permits the mixing channel length and the retention time required to attain a homogeneous solution to be reduced significantly.
NASA Astrophysics Data System (ADS)
Safari, Samaneh; Niknam, Ali Reza; Jahangiri, Fazel; Jazi, Bahram
2018-04-01
The nonlinear interaction of Hermite-Gaussian and Laguerre-Gaussian (LG) laser beams with a collisional inhomogeneous plasma is studied, and the amplitude of the emitted terahertz (THz) electric field is evaluated. The effects of laser beams and plasma parameters, including the beams width, LG modes, the plasma collision frequency, and the amplitude of density ripple on the evolution of THz electric field amplitude, are examined. It is found that the shape of the generated THz radiation pattern can be tuned by the laser parameters. In addition, the optimum values of the effective parameters for achieving the maximum THz electric field amplitude are proposed. It is shown that a significant enhancement up to 4.5% can be obtained in our scheme, which is much greater than the maximum efficiency obtained for laser beams with the same profiles.
NASA Astrophysics Data System (ADS)
Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof
2015-12-01
A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.
2015-03-26
Electrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Lightning Discharge ...charge is caused by falling graupel that is positively charged (Wallace and Hobbs 2006). 2.3 Lightning Discharge Lightning occurs when the electric...emission of positive corona from the surface of precipitation particles, causing the electric field to become locally enhanced and supporting the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girka, I. O., E-mail: igorgirka@karazin.ua; Girka, V. O.; Sydora, R. D.
2016-06-15
The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1.more » An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.« less
NASA Technical Reports Server (NTRS)
Vezzoli, G. C.; Stanley, William
1990-01-01
The mediation by bound holes creating Cooper pairing in high T(sub c) superconductors has its origin in charge transfer excitations on the multivalence cation (virtual excitions) and in bound excitions or polarizations associated with the oxygen 2p electrons. These phenomena are produced and/or enhanced by a high internal electric field which is itself created by virtue of the unique crystal structures and polyhedral building blocks of high T(sub c) materials. The polarizations which can create oxygen holes (in addition to excitions) may be due to simply the internal electric field or to polaronic and electron-deficient bond behavior. This gives rise to two energy-dependent oxygen bands near the Fermi level. The magnitude and direction of the internal electric fields were calculated for Y1Ba2Cu3O(7-delta) (1-2-3) and show strong z-direction fields at the Cu(2), O2, and O3 sites and an even stronger -z direction field at the O4 site. The field calculations also show why electrical conductivity in the 1-2-3 material is essentially in the base plane of the CuO5 pyramid (the CuO2 plane).
Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?
Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun
2015-02-21
Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.
NASA Astrophysics Data System (ADS)
Kim, Sun-Hong; Kim, Sung-Soo
2014-05-01
In order to develop wide-band noise absorbers with a focused design for low frequency performance, this study investigates hybrid absorbers that are composed of conductive indium-tin-oxide (ITO) thin film and magnetic composite sheets. The ITO films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ≃10-4 Ω m. Rubber composites with flaky Fe-Si-Al particles are used as the magnetic sheet with a high permeability and high permittivity. For the ITO film with a low surface resistance and covered by the magnetic sheet, approximately 90% power absorption can be obtained at 1 GHz, which is significantly higher than that of the original magnetic sheet or ITO film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the ITO film through increased electric field strength bounded by the upper magnetic composite sheet. However, for the reverse layering sequence of the ITO film, the electric field experienced by ITO film is very weak due to the electromagnetic shielding by the under layer of magnetic sheet, which does not result in enhanced power absorption.
Miniaturized power limiter metasurface based on Fano-type resonance and Babinet principle.
Loo, Y L; Wang, H G; Zhang, H; Ong, C K
2016-09-05
In this work, we present a miniaturize power limiter, a device with size smaller than that required by the working frequency, made of coupled self-complementary electric inductive-capacitive (CELC) resonator and original electric inductive-capacitive (ELC) structure. We also make use of Babinet principle to ensure both CELC and ELC are resonating at the same frequency. The CELC structure is loaded with a Schottky diode to achieve the effect of a nonlinear power limiter. The constructive interference of CELC and ELC structure produces a new Fano-type resonance peak at a lower frequency. The Fano peak is sharp and able to concentrate electric field at a region between the inner and outer metallic patch of the metastructure, hence enhancing the nonlinear properties of the loaded diode. The Fano peak enhances the maximum isolation of the power limiter due to the local field enhancement at where the diode is loaded. Numerical simulation and experiment are conducted in the S-band frequency to verify the power limiting effect of the device designed and to discuss the formation of Fano peak. The power limiter designed has a maximum isolation of 8.4 dB and a 3-dB isolation bandwidth of 6%.
Leem, J W; Park, E S; Paik, K S
1995-06-16
Using a rat model of peripheral neuropathy induced by a tight ligation of L5-6 spinal nerves, the effects of transcutaneous electrical stimulation on the mechanical responses of wide dynamic range (WDR) dorsal horn neurons were investigated. The responses of the WDR neurons to both the brush and pinch stimuli were found to be enhanced in the neuropathic rats compared to those in the normal rats. These enhanced responses were depressed by low-frequency and high-intensity transcutaneous electrical stimulation (2 Hz, 4-5 mA) applied to the somatic receptive field. The durations of the depressive effects on the brush responses ranged between 30 and 45 min and those on the pinch responses were 60-90 min. These results imply that the transcutaneous electrical stimulation used here produces an antinociceptive effect via a depressive action on the enhanced mechanical responsiveness of the spinal neurons in this rat model of peripheral neuropathy.
Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X
2014-01-14
Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.
Fluorescence Enhancement of Molecules Inside a Gold Nanomatryoshka
2015-01-01
Metallic nanoparticles exhibiting plasmonic Fano resonances can provide large enhancements of their internal electric near field. Here we show that nanomatryoshkas, nanoparticles consisting of an Au core, an interstitial nanoscale SiO2 layer, and an Au shell layer, can selectively provide either a strong enhancement or a quenching of the spontaneous emission of fluorophores dispersed within their internal dielectric layer. This behavior can be understood by taking into account the near-field enhancement induced by the Fano resonance of the nanomatryoshka, which is responsible for enhanced absorption of the fluorophores incorporated into the nanocomplex. The combination of compact size and enhanced light emission with internal encapsulation of the fluorophores for increased biocompatibility suggests outstanding potential for this type of nanoparticle complex in biomedical applications. PMID:24738706
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhi-fang; Jiang, Hai-tao, E-mail: davies2000@163.com, E-mail: jiang-haitao@tongji.edu.cn; Li, Yun-hui
2013-11-11
The Fano-type interference effect is studied in the heterostructure composed of an epsilon-near-zero (ENZ) material and a truncated photonic crystal for transverse magnetic polarized light. In the Fano-type interference effect, the ENZ material provides narrow reflection pathway and the photonic crystal provides broadband reflection pathway. The boundary condition across the ENZ interface and the confinement effect provided by the photonic crystal can enhance the electric fields in the ENZ material greatly. The field enhancements, together with the asymmetric property of Fano-type spectrum, possess potential applications for significantly lowering the threshold of nonlinear processes such as optical switching and bistability.
Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems.
Hawkins, Benjamin G; Kirby, Brian J
2010-11-01
We simulate electrothermally induced flow in polymeric, insulator-based dielectrophoresis (iDEP) systems with DC-offset, AC electric fields at finite thermal Péclet number, and we identify key regimes where electrothermal (ET) effects enhance particle deflection and trapping. We study a single, two-dimensional constriction in channel depth with parametric variations in electric field, channel geometry, fluid conductivity, particle electrophoretic (EP) mobility, and channel electroosmotic (EO) mobility. We report the effects of increasing particle EP mobility, channel EO mobility, and AC and DC field magnitudes on the mean constriction temperature and particle behavior. Specifically, we quantify particle deflection and trapping, referring to the deviation of particles from their pathlines due to dielectrophoresis as they pass a constriction and the stagnation of particles due to negative dielectrophoresis near a constriction, respectively. This work includes the coupling between fluid, heat, and electromagnetic phenomena via temperature-dependent physical parameters. Results indicate that the temperature distribution depends strongly on the fluid conductivity and electric field magnitude, and particle deflection and trapping depend strongly on the channel geometry. Electrothermal (ET) effects perturb the EO flow field, creating vorticity near the channel constriction and enhancing the deflection and trapping effects. ET effects alter particle deflection and trapping responses in insulator-based dielectrophoresis devices, especially at intermediate device aspect ratios (2 ≤ r ≤ 7) in solutions of higher conductivity (σ m ≥ 1 × 10(-3)S/m). The impact of ET effects on particle deflection and trapping are diminished when particle EP mobility or channel EO mobility is high. In almost all cases, ET effects enhance negative dielectrophoretic particle deflection and trapping phenomena. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nayak, Chinmaya; Tsai, L.-C.; Su, S.-Y.; Galkin, I. A.; Caton, R. G.; Groves, K. M.
2017-07-01
In this paper, we investigate the reasons behind the absence of ionospheric VHF scintillation over Pingtung, Taiwan during the March 17, 2015 St. Patrick's Day geomagnetic storm. What makes it more interesting is the fact that the absence of scintillation on the storm day was preceded by observations of scintillation for 6 consecutive days before the storm. A combination of data from VHF receivers, ionosonde and in situ plasma density observations from European Space Agency (ESA)'s SWARM constellation were used for this purpose. Also, global hmF2 maps obtained from International Reference Ionosphere (IRI) Real-Time Assimilative Mapping (IRTAM) were utilised for a better picture of the ionospheric conditions. The main driver behind the absence of the scintillation in the Taiwanese sector was a reduced pre-reversal enhancement (PRE) electric field caused due to westward prompt-penetration electric field (PPEF). This caused the post-sunset ionosphere to drift downwards in altitude causing unfavourable conditions for Rayleigh-Taylor instability. On the contrary, the PPEFs were found to strongly enhance the PRE electric fields in the Indian sector leading to ionospheric irregularities/scintillations in the post-sunset sector.
NASA Astrophysics Data System (ADS)
Chun, Myung-Suk; Chun, Byoungjin; Lee, Ji-Young; Complex Fluids Team
2016-11-01
We investigate the externally time-dependent pulsatile electrokinetic viscous flows by extending the previous simulations concerning the electrokinetic microfluidics for different geometries. The external body force originated from between the nonlinear Poisson-Boltzmann field and the flow-induced electric field is employed in the Cauchy momentum equation, and then the Nernst-Planck equation in connection with the net current conservation is coupled. Our explicit model allows one to quantify the effects of the oscillating frequency and conductance of the Stern layer, considering the shear thinning effect and the strong electric double layer interaction. This presentation reports the new results regarding the implication of optimum frequency pressure pulsations toward realizing mechanical to electrical energy transfer with high conversion efficiencies. These combined factors for different channel dimension are examined in depth to obtain possible enhancements of streaming current, with taking advantage of pulsating pressure field. From experimental verifications by using electrokinetic power chip, it is concluded that our theoretical framework can serve as a useful basis for micro/nanofluidics design and potential applications to the enhanced energy conversion. NRF of Korea (No.2015R1A2A1A15052979) and KIST (No.2E26490).
Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters
Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H
2013-01-01
The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487
Xue, Xu; Dong, Guohua; Zhou, Ziyao; Xian, Dan; Hu, Zhongqiang; Ren, Wei; Ye, Zuo-Guang; Chen, Wei; Jiang, Zhuang-De; Liu, Ming
2017-12-13
Controlling spin dynamics through modulation of spin interactions in a fast, compact, and energy-efficient way is compelling for its abundant physical phenomena and great application potential in next-generation voltage controllable spintronic devices. In this work, we report electric field manipulation of spin dynamics-the two-magnon scattering (TMS) effect in Ni 0.5 Zn 0.5 Fe 2 O 4 (NZFO)/Pb(Mg 2/3 Nb 1/3 )-PbTiO 3 (PMN-PT) multiferroic heterostructures, which breaks the bottleneck of magnetostatic interaction-based magnetoelectric (ME) coupling in multiferroics. An alternative approach allowing spin-wave damping to be controlled by external electric field accompanied by a significant enhancement of the ME effect has been demonstrated. A two-way modulation of the TMS effect with a large magnetic anisotropy change up to 688 Oe has been obtained, referring to a 24 times ME effect enhancement at the TMS critical angle at room temperature. Furthermore, the anisotropic spin-freezing behaviors of NZFO were first determined via identifying the spatial magnetic anisotropy fluctuations. A large spin-freezing temperature change of 160 K induced by the external electric field was precisely determined by electron spin resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Xu; Dong, Guohua; Zhou, Ziyao
2017-12-01
Controlling spin dynamics through modulation of spin interactions in a fast, compact, and energy-efficient way is compelling for its abundant physical phenomena and great application potential in next-generation voltage controllable spintronic devices. In this work, we report electric field manipulation of spin dynamics-the two-magnon scattering (TMS) effect in Ni0.5Zn0.5Fe2O4 (NZFO)/Pb(Mg2/3Nb1/3)-PbTiO3 (PMN-PT) multiferroic heterostructures, which breaks the bottleneck of magnetostatic interaction-based magnetoelectric (ME) coupling in multiferroics. An alternative approach allowing spin-wave damping to be controlled by external electric field accompanied by a significant enhancement of the ME effect has been demonstrated. A two-way modulation of the TMS effect with a largemore » magnetic anisotropy change up to 688 Oe has been obtained, referring to a 24 times ME effect enhancement at the TMS critical angle at room temperature. Furthermore, the anisotropic spin-freezing behaviors of NZFO were first determined via identifying the spatial magnetic anisotropy fluctuations. A large spin-freezing temperature change of 160 K induced by the external electric field was precisely determined by electron spin resonance.« less
Static Electric Fields and Lightning Over Land and Ocean in Florida Thunderstorms
NASA Technical Reports Server (NTRS)
Wilson, J. G.; Cummins, K. L.; Simpson, A. A.; Hinckley, A.
2017-01-01
Natural cloud-to-ground (CG) lightning and the charge structure of the associated clouds behave differently over land and ocean. Existing literature has raised questions over the years on the behavior of thunderstorms and lightning over oceans, and there are still open scientific questions. We expand on the observational datasets by obtaining identical electric field observations over coastal land, near-shore, and deep ocean regions during both clear air and thunderstorm periods. Oceanic observations were obtained using two 3-meter NOAA buoys that were instrumented with Campbell Scientific electric field mills to measure the static electric fields. These data were compared to selected electric field records from the existing on-shore electric field mill suite of 31 sensors at Kennedy Space Center (KSC). CG lightning occurrence times, locations and peak current values for both on-shore and ocean were provided by the U.S. National Lightning Detection Network. The buoy instruments were first evaluated on-shore at the Florida coast, to calibrate field enhancements and to confirm proper behavior of the system in elevated-field environments. The buoys were then moored 20NM and 120NM off the coast of KSC in February (20NM) and August (120NM) 2014. Statistically larger CG peak currents were reported over the deep ocean for first strokes and for subsequent strokes with new contacts points. Storm-related static fields were significantly larger at both oceanic sites, likely due to decreased screening by nearby space charge. Time-evolution of the static field during storm development and propagation indicated weak or missing lower positive charge regions in most storms that initiated over the deep ocean, supporting one mechanism for the observed high peak currents in negative first strokes over the deep ocean. This project also demonstrated the practicality of off-shore electric field measurements for safety-related decision making at KSC.
NASA Astrophysics Data System (ADS)
Zhang, Tong; Sun, Hao; Wang, Fengdi; Zhang, Wanqiao; Ma, Junmei; Tang, Shuwei; Gong, Hongwei; Zhang, Jingping
2018-01-01
Phosgene, one of the common chemicals in many industry areas, is extremely harmful to human and the environment. Thus, it is necessary to design the advanced materials to detect or remove phosgene effectively. In fact, detection or adsorption of some small gas molecules are not the most difficult to actualize. Whereas, one of the primary challenges is the gas molecules desorption from the adsorbent for the purpose of recycling of substrate materials since the small gas molecules interacts strongly with the substrates. In this work, the interaction between the phosgene molecule and pristine or Mn-doped graphene sheets with different electric field and charge state are investigated by using first-principles simulations. Our results show that the adsorption energy of phosgene on Mn-doped graphene is dramatically weakened by applying an external negative electric field but is obviously enhanced by introducing a positive electric field. These processes can be easily controlled by transform the direction of the electric field. Thus, introducing an external electric field or charge in the system may be an excellent method to control the phosgene molecule adsorption and desorption on Mn-doped graphene sheet. All energy needed is just a small quantity of electricity, which satisfies well the requirement of green chemistry and sustainable development. The mechanism and reason of reversible adsorption/desorption is also revealed in terms of energy, charge distribution and orbital analysis. Such spontaneous adsorption or desorption makes Mn-doped graphene to be used as an excellent reusable scavenger of phosgene.
Large Electric Field–Enhanced–Hardness Effect in a SiO2 Film
Revilla, Reynier I.; Li, Xiao-Jun; Yang, Yan-Lian; Wang, Chen
2014-01-01
Silicon dioxide films are extensively used in nano and micro–electromechanical systems. Here we studied the influence of an external electric field on the mechanical properties of a SiO2 film by using nanoindentation technique of atomic force microscopy (AFM) and friction force microscopy (FFM). A giant augmentation of the relative elastic modulus was observed by increasing the localized electric field. A slight decrease in friction coefficients was also clearly observed by using FFM with the increase of applied tip voltage. The reduction of the friction coefficients is consistent with the great enhancement of sample hardness by considering the indentation–induced deformation during the friction measurements. PMID:24681517
Initiation of non-tropical thunderstorms by solar activity
NASA Technical Reports Server (NTRS)
Herman, J. R.; Goldberg, R. A.
1976-01-01
Correlative evidence accumulating since 1926 suggests that there must be some physical coupling mechanism between solar activity and thunderstorm occurrence in middle to high latitudes. Such a link may be provided by alteration of atmospheric electric parameters through the combined influence of high-energy solar protons and decreased cosmic ray intensities, both of which are associated with active solar events. The protons produce excess ionization near and above 20km, while the Forbush decreases a lowered conductivity and enhanced fair-weather atmospheric electric field below that altitude. Consequent effects ultimately lead to a charge distribution similar to that found in thunderclouds, and then other cloud physics processes take over to generate the intense electric fields required for lightning discharge.
Kim, Miri; Lim, Jihong; Bae, Jung Min; Park, Hyun Jeong
2017-11-01
Various radiofrequency (RF) devices are used to treat skin laxity and face contouring, but few studies have examined ultrahigh-frequency (UHF) electric field (40.68 MHz) RF devices. To evaluate the efficacy and safety of a UHF electric field (40.68 MHz) RF device for skin tightening and face contouring. Ten patients each underwent four sessions of UHF electric field RF device treatment at 2-week intervals. Clinical improvement was evaluated with the patient satisfaction score using a six-point scale, and clinical photographs taken at every visit and 2 months after the RF treatment were assessed. Skin biopsies were obtained from one patient before the first treatment and immediately after the last treatment. Adverse reactions were recorded at every follow-up visit. All patients were women with a mean age of 51.7 ± 7.2 years. The mean satisfaction score was 4.5 ± 0.9 immediately after the last treatment session. Cheek, jawline, and neck enhancement and tightening were apparent in all patients. Side effects were minimal, and there were no burns or major complications. The UHF electric field RF device was effective for skin tightening and facial contouring, without significant adverse reactions.
NASA Astrophysics Data System (ADS)
Liu, Rong; Chen, Xue; Ding, Zijing
2018-01-01
We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.
NASA Astrophysics Data System (ADS)
Gurk, M.; Bosch, F. P.; Tougiannidis, N.
2013-04-01
Common studies on the static electric field distribution over a conductivity anomaly use the self-potential method. However, this method is time consuming and requires nonpolarizable electrodes to be placed in the ground. Moreover, the information gained by this method is restricted to the horizontal variations of the electric field. To overcome the limitation in the self-potential technique, we conducted a field experiment using a non conventional technique to assess the static electric field over a conductivity anomaly. We use two metallic potential probes arranged on an insulated boom with a separation of 126 cm. When placed into the electric field of the free air, a surface charge will be induced on each probe trying to equalize with the potential of the surrounding atmosphere. The use of a plasma source at both probes facilitated continuous and quicker measurement of the electric field in the air. The present study shows first experimental measurements with a modified potential probe technique (MPP) along a 600-meter-long transect to demonstrate the general feasibility of this method for studying the static electric field distribution over shallow conductivity anomalies. Field measurements were carried out on a test site on top of the Bramsche Massif near Osnabrück (Northwest Germany) to benefit from a variety of available near surface data over an almost vertical conductivity anomaly. High resolution self-potential data served in a numerical analysis to estimate the expected individual components of the electric field vector. During the experiment we found more anomalies in the vertical and horizontal components of the electric field than self-potential anomalies. These contrasting findings are successfully cross-validated with conventional near surface geophysical methods. Among these methods, we used self-potential, radiomagnetotelluric, electric resistivity tomography and induced polarization data to derive 2D conductivity models of the subsurface in order to infer the geometrical properties and the origin of the conductivity anomaly in the survey area. The presented study demonstrates the feasibility of electric field measurements in free air to detect and study near surface conductivity anomalies. Variations in Ez correlate well with the conductivity distribution obtained from resistivity methods. Compared to the self-potential technique, continuously free air measurements of the electric field are more rapid and of better lateral resolution combined with the unique ability to analyze vertical components of the electric field which are of particular importance to detect lateral conductivity contrasts. Mapping Ez in free air is a good tool to precisely map lateral changes of the electric field distribution in areas where SP generation fails. MPP offers interesting application in other geophysical techniques e.g. in time domain electromagnetics, DC and IP. With this method we were able to reveal a ca. 150 m broad zone of enhanced electric field strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqua, Poppy; Hadi, Walid A.; Salhotra, Amith K.
2015-03-28
Within the framework of an ensemble semi-classical three-valley Monte Carlo electron transport simulation approach, we critically contrast the nature of the electron transport that occurs within the wurtzite and zinc-blende phases of indium nitride in response to the application of a constant and uniform electric field. We use the electron energy distribution and its relationship with the electron transport characteristics in order to pursue this analysis. For the case of zinc-blende indium nitride, only a peak corresponding to the electrons within the lowest energy conduction band valley is observed, this peak being seen to broaden and shift to higher energiesmore » in response to increases in the applied electric field strength, negligible amounts of upper energy conduction band valley occupancy being observed. In contrast, for the case of wurtzite indium nitride, in addition to the aforementioned lowest energy conduction band valley peak in the electron energy distribution, and its broadening and shifting to higher energies in response to increases in the applied electric field strength, beyond a certain critical electric field strength, 30 kV/cm for the case of this particular material, upper energy conduction band valley occupancy is observed, this occupancy being further enhanced in response to further increases in the applied electric field strength. Reasons for these results are provided. The potential for device consequences is then commented upon.« less
Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2.
Asaba, Tomoya; Wang, Yongjie; Li, Gang; Xiang, Ziji; Tinsman, Colin; Chen, Lu; Zhou, Shangnan; Zhao, Songrui; Laleyan, David; Li, Yi; Mi, Zetian; Li, Lu
2018-04-25
In conventional superconductors an external magnetic field generally suppresses superconductivity. This results from a simple thermodynamic competition of the superconducting and magnetic free energies. In this study, we report the unconventional features in the superconducting epitaxial thin film tungsten telluride (WTe 2 ). Measuring the electrical transport properties of Molecular Beam Epitaxy (MBE) grown WTe 2 thin films with a high precision rotation stage, we map the upper critical field H c2 at different temperatures T. We observe the superconducting transition temperature T c is enhanced by in-plane magnetic fields. The upper critical field H c2 is observed to establish an unconventional non-monotonic dependence on temperature. We suggest that this unconventional feature is due to the lifting of inversion symmetry, which leads to the enhancement of H c2 in Ising superconductors.
The temporal evolution of 3-m striations in the modified ionosphere
NASA Technical Reports Server (NTRS)
Coster, A. J.; Djuth, F. T.; Jost, R. J.; Gordon, W. E.
1985-01-01
Experiments were performed at Arecibo, Puerto Rico, to investigate the evolution times of 3-m field-aligned striations produced in the ionosphere by powerful high-frequency (HF) radio waves. The results of this investigation are now summarized. First, the striations' rise times are dependent on the HF electric field. The E region data suggest that this dependence is nonlinear. Second, the threshold value of the HF electric field required to produce detectable striations was experimentally determined. At threshold the component of the HF electric field perpendicular to the geomagnetic field is calculated to be 0.09 V/m in the F region and 0.37 V/m in the E region. Third, both the E and the F region data verify theoretical predictions that the striations' decay times are directly proportional to the electron diffusion across B. Finally, a one-to-one correspondence between the growth of the 3-m striations and the decline of the HF-enhanced plasma line during overshoot is sometimes observed.
NASA Technical Reports Server (NTRS)
Nemzek, R. J.; Winckler, J. R.
1991-01-01
Electron detectors on the Echo 7 active sounding rocket experiment measured 'conjugate echoes' resulting from artificial electron beam injections. Analysis of the drift motion of the electrons after a complete bounce leads to measurements of the magnetospheric convection electric field mapped to ionospheric altitudes. The magnetospheric field was highly variable, changing by tens of mV/m on time scales of as little as hundreds of millisec. While the smallest-scale magnetospheric field irregularities were mapped out by ionospheric conductivity, larger-scale features were enhanced by up to 50 mV/m in the ionosphere. The mismatch between magnetospheric and ionspheric convection fields indicates a violation of the equipotential field line condition. The parallel fields occurred in regions roughly 10 km across and probably supported a total potential drop of 10-100 V.
Synthesis of kenaf cellulose carbamate and its smart electric stimuli-response.
Gan, Sinyee; Piao, Shang Hao; Choi, Hyoung Jin; Zakaria, Sarani; Chia, Chin Hua
2016-02-10
Cellulose carbamate (CC) was produced from kenaf core pulp (KCP) via a microwave reactor-assisted method. The formation of CC was confirmed by Fourier transform infrared spectroscopy and nitrogen content analysis. The degree of substitution, zeta potential and size distribution of CC were also determined. The CC was characterized with scanning electron microscopy, X-ray diffraction and thermogravimetry analysis. The CC particles were then dispersed in silicone oil to prepare CC-based anhydrous electric stimuli-responsive electrorheological (ER) fluids. Rhelogical measurement was carried out using rotational rheometer with a high voltage generator in both steady and oscillatory shear modes to examine the effect of electric field strength on the ER characteristics. The results showed that the increase in electric field strength has enhanced the ER properties of CC-based ER fluid due to the chain formation induced by electric polarization among the particles. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.
2017-12-01
During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.
Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions.
Gekelman, W; De Haas, T; Daughton, W; Van Compernolle, B; Intrator, T; Vincena, S
2016-06-10
The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.
NASA Astrophysics Data System (ADS)
Zheng, Ming; Xu, Xiao-Ke; Ni, Hao; Qi, Ya-Ping; Li, Xiao-Min; Gao, Ju
2018-03-01
The phase separation, i.e., the competition between coexisting multi-phases, can be adjusted by external stimuli, such as magnetic field, electric field, current, light, and strain. Here, a multiferroic heterostructure composed of a charge-ordered Nd0.5Sr0.5MnO3 thin film and a ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal is fabricated to investigate the lattice strain and magnetic field co-control of phase separation in resistive switching. The stable and nonvolatile resistance tuning is realized at room temperature using the electric-field-induced reversible ferroelastic strain effect, which can be enhanced by 84% under the magnetic field. Moreover, the magnetoresistance can be effectively tuned by the electrically driven ferroelastic strain. These findings reveal that the ferroelastic strain and the magnetic field strongly correlate with each other and are mediated by phase separation. Our work provides an approach to design strain-engineered multifunctional memory devices based on complex oxides by introducing an extra magnetic field stimulus.
Electric field replaces gravity in laboratory
NASA Astrophysics Data System (ADS)
Gorgolewski, S.
For several years experiments in physical laboratories and in the fitotron have shown that one can replace gravitational field with electrical fields for plants. First obvious experiments in strong electrical fields in the MV/m regi on show that any materials and living plants respond immediately to Coulomb forces. Such fields are found in nature during thunderstorms. One has to be very careful in handling such strong fields for safety reasons. The fair weather global electrical field is about 20,000 times weaker. The coulomb forces are proportional to the square of the field strength and are thus 400 milion times weaker for a field of the order of 100 V/m.Yet it was found that some plants respond to such "weak" fields. We must remember that the electrical field is a factor of 10 38 times stronger than gravitational interaction. In plants we have dissociated in water mineral salts and the ions are subject to such ernormous forces. It was shown and published that the positive charges in the air in fields of the order of 3kV/m enhance lettuce growth by a factor of four relative to fields about 30 times weaker (100V/m). Reversal of the field polarity reverses the direction of plant growth and retards the plant's growth. Such fields overpower the gravitropism in the laboratory. More so horizontal electrical field is othogonal to gravity, now the fields do not see each other. Lettuce now growth horizontally ignoring the gravitational field. We can thus select the plants whose electrotropism even in the laboratory overwhelms gravity. This is important for the long space flights that we must grow vegetarian food for the crew. The successful harvesting of wheat in orbit does not contradict our experimental findings because wheat is not electrotropic like all plants from the grass family. The results of fitotron experiments with kV/m electrical fields are richly illustrated with colour digital photographs. We also subjected the candle flame to very strong horizontal electrical fields. The flame splits into two horizontal flames, ignoring the gravitational field in the laboratory. This result is similar to the behaviour of ions in plants which are responsible for the transport of nutrients from the roots to leaves and opposite ions to roots from the leaves. It shows that we can control the transport phenomena in the process of growth in plants as well as of combustion in space with proper electrical fields.
Controlled alignment of carbon nanofibers in a large-scale synthesis process
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Melechko, A. V.; Guillorn, M. A.; Simpson, M. L.; Lowndes, D. H.; Whealton, J. H.; Raridon, R. J.
2002-06-01
Controlled alignment of catalytically grown carbon nanofibers (CNFs) at a variable angle to the substrate during a plasma-enhanced chemical vapor deposition process is achieved. The CNF alignment is controlled by the direction of the electric field lines during the synthesis process. Off normal CNF orientations are achieved by positioning the sample in the vicinity of geometrical features of the sample holder, where bending of the electric field lines occurs. The controlled growth of kinked CNFs that consist of two parts aligned at different angles to the substrate normal also is demonstrated.
Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing
2016-01-01
Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10−4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics. PMID:27046540
NASA Astrophysics Data System (ADS)
Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav
2017-03-01
Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.
Experimental Study of Magnetic Field Production and Dielectric Breakdown of Auto-Magnetizing Liners
NASA Astrophysics Data System (ADS)
Shipley, Gabriel; Awe, Thomas; Hutchinson, Trevor; Hutsel, Brian; Slutz, Stephen; Lamppa, Derek
2017-10-01
AutoMag liners premagnetize the fuel in MagLIF targets and provide enhanced x-ray diagnostic access and increased current delivery without requiring external field coils. AutoMag liners are composite liners made with discrete metallic helical conduction paths separated by insulating material. First, a low dI/dt ``foot'' current pulse (1 MA in 100 ns) premagnetizes the fuel. Next, a higher dI/dt pulse with larger induced electric field initiates breakdown on the composite liner's; surface, switching the current from helical to axial to implode the liner. Experiments on MYKONOS have tested the premagnetization and breakdown phases of AutoMag and demonstrate axial magnetic fields above 90 Tesla for a 550 kA peak current pulse. Electric fields of 17 MV/m have been generated before breakdown. AutoMag may enhance MagLIF performance by increasing the premagnetization strength significantly above 30 T, thus reducing thermal-conduction losses and mitigating anomalous diffusion of magnetic field out of hotter fuel regions, by, for example, the Nernst thermoelectric effect. This project was funded in part by Sandia's Laboratory Directed Research and Development Program (Projects No. 200169 and 195306).
Geometric effect on second harmonic generation from gold grating
NASA Astrophysics Data System (ADS)
Lu, Jiao; Ding, Baoyong; Huo, Yanyan; Ning, Tingyin
2018-05-01
We numerically investigate second harmonic generation from gold gratings of an ideal rectangular and ladder-shaped cross-section. The SHG efficiency from the gold gratings of the ladder-shaped cross-section is significantly enhanced compared with that from the ideal rectangular cross-section with a maximum enhancement factor of around two. The enhancement is ascribe to the nanostructure dependent local fundamental electric field, the nonlinear sources and thus the far field radiation. Our results have a practical meaning in the explanation of experimental SHG measurement, and the modulation of SHG response in the metallic nanostructure.
Thermal treatment of low permeability soils using electrical resistance heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udell, K.S.
1996-08-01
The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies ofmore » electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.« less
NASA Astrophysics Data System (ADS)
Crosse, J. A.
2017-02-01
Topological insulators subject to a time-reversal-symmetry-breaking perturbation are predicted to display a magneto-electric effect that causes the electric and magnetic induction fields to mix at the material’s surface. This effect induces polarization rotations of between ≈1-10 mrad per interface in an incident plane-polarized electromagnetic wave normal to a multilayered structure. Here we show, theoretically and numerically, that by using a waveguide geometry with a topological insulator guide layer and magneto-dielectric cladding it is possible to achieve rotations of ≈100 mrad and generate an elliptical polarization with only a three-layered structure. This geometry is beneficial, not only as a way to enhance the magneto-electric effect, rendering it easier to observe, but also as a method for controlling the polarization of electromagnetic radiation.
Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements
NASA Astrophysics Data System (ADS)
Lin, Yunlong
Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.
Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields
NASA Astrophysics Data System (ADS)
Gelfer, E. G.; Fedotov, A. M.; Weber, S.
2018-06-01
We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.
Matos, Marvi A; White, Lee R; Tilton, Robert D
2008-02-15
Many biosensors, including those based on sensing agents immobilized inside hydrogels, suffer from slow response dynamics due to mass transfer limitations. Here we present an internal pumping strategy to promote convective mixing inside crosslinked polymer gels. This is envisioned as a potential tool to enhance biosensor response dynamics. The method is based on electroosmotic flows driven by non-uniform, oscillating electric fields applied across a polyacrylamide gel that has been doped with charged colloidal silica inclusions. Evidence for enhanced mixing was obtained from florescence recovery after photobleaching (FRAP) measurements with fluorescein tracer dyes dissolved in the gel. Mixing rates in silica-laden gels under the action of the applied electric fields were more than an order of magnitude faster than either diffusion or electrophoretically driven mixing in gels that did not contain silica. The mixing enhancement was due in comparable parts to the electroosmotic pumping and to the increase in gel swelling caused by the presence of the silica inclusions. The latter had the effect of increasing tracer mobility in the silica-laden gels.
Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films
Aslan, Kadir; Previte, Michael J.R.; Zhang, Yongxia; Geddes, Chris D.
2009-01-01
A detailed study of metal-enhanced fluorescence (MEF) from fluorophores in the blue-to- red spectral region placed in close proximity to thermally evaporated zinc nanostructured films is reported. The zinc nanostructured films were deposited onto glass microscope slides as individual particles and were 1–10 nm in height and 20–100 nm in width, as characterized by Atomic Force Microscopy. The surface plasmon resonance peak of the zinc nanostructured films was ≈ 400 nm. Finite-difference time-domain calculations for single and multiple nanostructures organized in a staggered fashion on a solid support predict, as expected, that the electric fields are concentrated both around and between the nanostructures. Additionally, Mie scattering calculations show that the absorption and scattering components of the extinction spectrum are dominant in the UV and visible spectral ranges, respectively. Enhanced fluorescence emission accompanied by no significant changes in excited state lifetimes of fluorophores with emission wavelengths in the visible blue-to-red spectral range near-to zinc nanostructured films were observed, implying that MEF from zinc nanostructured films is mostly due to an electric field enhancement effect. PMID:19946356
2014-01-01
Hollow-sphere bilayer nanofilm-based ultraviolet light photodetectors made from ZnO and ZnS spherical nanoshells show enhanced photocurrent, which are comparable to or even better than those of other semiconductor nanostructures with different shapes. In this work, the photocurrent enhancement mechanisms of these bilayer nanofilm-based ultraviolet light photodetectors are explained, which could be attributed to the strong light absorption based on the whispering gallery mode resonances, the separation of the photogenerated carriers through the internal electric field within the bilayer nanofilms, the hopping-like electrical transport, and the effective charge injection from Cr/Au contacts to the nanofilms. PMID:25136287
NASA Astrophysics Data System (ADS)
Dong, Dengpan; Vatamanu, Jenel P.; Wei, Xiaoyu; Bedrov, Dmitry
2018-05-01
Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.
2001-01-24
Dr. Cila Herman, G.W.C. Whiting School of Engineering, Johns Hopkins University, Baltimore. She is the principal investigator for the Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields.
Ai, Ye; Joo, Sang W; Jiang, Yingtao; Xuan, Xiangchun; Qian, Shizhi
2009-07-01
Transient electrophoretic motion of a charged particle through a converging-diverging microchannel is studied by solving the coupled system of the Navier-Stokes equations for fluid flow and the Laplace equation for electrical field with an arbitrary Lagrangian-Eulerian finite-element method. A spatially non-uniform electric field is induced in the converging-diverging section, which gives rise to a direct current dielectrophoretic (DEP) force in addition to the electrostatic force acting on the charged particle. As a sequence, the symmetry of the particle velocity and trajectory with respect to the throat is broken. We demonstrate that the predicted particle trajectory shifts due to DEP show quantitative agreements with the existing experimental data. Although converging-diverging microchannels can be used for super fast electrophoresis due to the enhancement of the local electric field, it is shown that large particles may be blocked due to the induced DEP force, which thus must be taken into account in the study of electrophoresis in microfluidic devices where non-uniform electric fields are present.
NASA Astrophysics Data System (ADS)
Du, Jiangfeng; Li, Zhenchao; Liu, Dong; Bai, Zhiyuan; Liu, Yang; Yu, Qi
2017-11-01
In this work, a vertical GaN p-n diode with a high-K/low-K compound dielectric structure (GaN CD-VGD) is proposed and designed to achieve a record high breakdown voltage (BV) with a low specific on-resistance (Ron,sp). By introducing compound dielectric structure, the electric field near the p-n junction interface is suppressed due to the effects of high-K passivation layer, and a new electric field peak is induced into the n-type drift region, because of a discontinuity of electrical field at the interface of high-K and low-K layer. Therefore the distribution of electric field in GaN p-n diode becomes more uniform and an enhancement of breakdown voltage can be achieved. Numerical simulations demonstrate that GaN CD-VGD with a BV of 10650 V and a Ron,sp of 14.3 mΩ cm2, resulting in a record high figure-of-merit of 8 GW/cm2.
Liu, Xueqing; Peng, Sha; Gao, Shuyu; Cao, Yuancheng; You, Qingliang; Zhou, Liyong; Jin, Yongcheng; Liu, Zhihong; Liu, Jiyan
2018-05-09
It is of great significance to seek high-performance solid electrolytes via a facile chemistry and simple process for meeting the requirements of solid batteries. Previous reports revealed that ion conducting pathways within ceramic-polymer composite electrolytes mainly occur at ceramic particles and the ceramic-polymer interface. Herein, one facile strategy toward ceramic particles' alignment and assembly induced by an external alternating-current (AC) electric field is presented. It was manifested by an in situ optical microscope that Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 particles and poly(ethylene glycol) diacrylate in poly(dimethylsiloxane) (LATP@PEGDA@PDMS) assembled into three-dimensional connected networks on applying an external AC electric field. Scanning electron microscopy revealed that the ceramic LATP particles aligned into a necklacelike assembly. Electrochemical impedance spectroscopy confirmed that the ionic conductivity of this necklacelike alignment was significantly enhanced compared to that of the random one. It was demonstrated that this facile strategy of applying an AC electric field can be a very effective approach for architecting three-dimensional lithium-ion conductive networks within solid composite electrolyte.
Highly Polarized Fluorescent Illumination Using Liquid Crystal Phase.
Gim, Min-Jun; Turlapati, Srikanth; Debnath, Somen; Rao, Nandiraju V S; Yoon, Dong Ki
2016-02-10
Liquid crystal (LC) materials are currently the dominant electronic materials in display technology because of the ease of control of molecular orientation using an electric field. However, this technology requires the fabrication of two polarizers to create operational displays, reducing light transmission efficiency below 10%. It is therefore desirable to develop new technologies to enhance the light efficiency while maintaining or improving other properties such as the modulation speed of the molecular orientation. Here we report a uniaxial-oriented B7 smectic liquid crystalline film, using fluorescent bent-core LC molecules, a chemically modified substrate, and an in-plane electric field. A LC droplet under homeotropic boundary conditions of air/LC as well as LC/substrate exhibits large focal conic like optical textures. The in-plane electric field induced uniaxial orientation of the LC molecules, in which molecular polar directors are aligned in the direction of the electric field. This highly oriented LC film exhibits linearly polarized luminescence and microsecond time-scale modulation characteristics. The resultant device is both cheap and easy to fabricate and thus has great potential for electro-optic applications, including LC displays, bioimaging systems, and optical communications.
Aguiló-Aguayo, Ingrid; Suarez, Manuel; Plaza, Lucia; Hossain, Mohammad B; Brunton, Nigel; Lyng, James G; Rai, Dilip K
2015-07-01
The effect of pulsed electric field (PEF) treatment variables (electric field strength and treatment time) on the glucosinolate content of broccoli flowers and stalks was evaluated. Samples were subjected to electric field strengths from 1 to 4 kV cm(-1) and treatment times from 50 to 1000 µs at 5 Hz. Data fitted significantly (P < 0.0014) the proposed second-order response functions. The results showed that PEF combined treatment conditions of 4 kV cm(-1) for 525 and 1000 µs were optimal to maximize glucosinolate levels in broccoli flowers (ranging from 187.1 to 212.5%) and stalks (ranging from 110.6 to 203.0%) respectively. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values, with low average mean deviations (E%) ranging from 0.59 to 8.80%. The use of PEF processing at moderate conditions could be a suitable method to stimulate production of broccoli with high health-promoting glucosinolate content. © 2014 Society of Chemical Industry.
Crater Flux Transfer Events: Highroad to the X Line?
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Chen, Li-Jen; Torbert, R. B.; Southwood, D. J.; Cowley, S. W. H.; Vrublevskis, A.; Mouikis, C.; Vaivads, A.; Andre, M.; Decreau, P.;
2011-01-01
We examine Cluster observations of a so-called magnetosphere crater FTE, employing data from five instruments (FGM, CIS, EDI, EFW, and WHISPER), some at the highest resolution. The aim of doing this is to deepen our understanding of the reconnection nature of these events by applying recent advances in the theory of collisionless reconnection and in detailed observational work. Our data support the hypothesis of a stratified structure with regions which we show to be spatial structures. We support the bulge-like topology of the core region (R3) made up of plasma jetting transverse to reconnected field lines. We document encounters with a magnetic separatrix as a thin layer embedded in the region (R2) just outside the bulge, where the speed of the protons flowing approximately parallel to the field maximizes: (1) short (fraction of a sec) bursts of enhanced electric field strengths (up to approximately 30 mV/m) and (2) electrons flowing against the field toward the X line at approximately the same time as the bursts of intense electric fields. R2 also contains a density decrease concomitant with an enhanced magnetic field strength. At its interface with the core region, R3, electric field activity ceases abruptly. The accelerated plasma flow profile has a catenary shape consisting of beams parallel to the field in R2 close to the R2/R3 boundary and slower jets moving across the magnetic field within the bulge region. We detail commonalities our observations of crater FTEs have with reconnection structures in other scenarios. We suggest that in view of these properties and their frequency of occurrence, crater FTEs are ideal places to study processes at the separatrices, key regions in magnetic reconnection. This is a good preparation for the MMS mission.
Electrical and Structural Origin of Self-Healing Phenomena in Pentacene Thin Films.
Kang, Evan S H; Zhang, Hongbin; Donner, Wolfgang; von Seggern, Heinz
2017-04-01
Self-healing induced by structural phase transformation is demonstrated using pentacene field-effect transistors. During the self-healing process, the electrical properties at the pentacene interfaces improve due to the phase transformation from monolayer phase to thin-film phase. Enhanced mobility is confirmed by first-principles calculations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Fina, Michael Dane
Organic light-emitting diodes (OLEDs) have made tremendous technological progress in the past two decades and have emerged as a top competitor for next generation light-emitting displays and lighting. State-of-the-art OLEDs have been reported in literature to approach, and even surpass, white fluorescent tube efficiency. However, despite rapid technological progress, efficiency metrics must be improved to compete with traditional inorganic light-emitting diode (LED) technology. Organic materials possess specialized traits that permit manipulations to the light-emitting cavity. Overall, as demonstrated within, these modifications can be used to improve electrical and optical device efficiencies. This work is focused at analyzing the effects that nanopatterned geometric modifications to the organic active layers play on device efficiency. In general, OLED efficiency is complicated by the complex, coupled processes which contribute to spontaneous dipole emission. A composite of three sub-systems (electrical, exciton and optical) ultimately dictate the OLED device efficiency. OLED electrical operation is believed to take place via a low-mobility-modified Schottky injection process. In the injection-limited regime, geometric effects are expected to modify the local electric field leading to device current enhancement. It is shown that the patterning effect can be used to enhance charge carrier parity, thereby enhancing overall recombination. Current density and luminance characteristics are shown to be improved by OLED nanopatterning from both the model developed within and experimental techniques. Next, the optical enhancement effects produced by the nanopatterned array are considered. Finite-difference time-domain (FDTD) simulations are used to determine positional, spectral optical enhancement for the nanopatterned device. The results show beneficial effects to the device performance. The optical enhancements are related to the reduction in internal radiative quenching (improved internal quantum efficiency) and improvement in light extraction (improved outcoupling efficiency). Furthermore, the electrical model is used to construct a positional radiative efficiency map that when combined with the optical enhancement reveals the overall external quantum efficiency enhancement.
Contento, Nicholas M.; Bohn, Paul W.
2014-05-23
While electrochemical methods are well suited for lab-on-a-chip applications, reliably coupling multiple, electrode-controlled processes in a single microfluidic channel remains a considerable challenge, because the electric fields driving electrokinetic flow make it difficult to establish a precisely known potential at the working electrode(s). The challenge of coupling electrochemical detection with microchip electrophoresis is well known; however, the problem is general, arising in other multielectrode arrangements with applications in enhanced detection and chemical processing. Here, we study the effects of induced electric fields on voltammetric behavior in a microchannel containing multiple in-channel electrodes, using a Fe(CN) 6 3/4- model system. Whenmore » an electric field is induced by applying a cathodic potential at one inchannel electrode, the half-wave potential (E 1/2) for the oxidation of ferrocyanide at an adjacent electrode shifts to more negative potentials. The E 1/2 value depends linearly on the electric field current at a separate in-channel electrode. The observed shift in E 1/2 is quantitatively described by a model, which accounts for the change in solution potential caused by the iR drop along the length of the microchannel. The model, which reliably captures changes in electrode location and solution conductivity, apportions the electric field potential between iR drop and electrochemical potential components, enabling the study of microchannel electric field magnitudes at low applied potentials. In the system studied, the iR component of the electric field potential increases exponentially with applied current before reaching an asymptotic value near 80 % of the total applied potential. The methods described will aid in the development and interpretation of future microchip electrochemistry methods, particularly those that benefit from the coupling of electrokinetic and electrochemical phenomena at low voltages.« less
Method of improving field emission characteristics of diamond thin films
Krauss, A.R.; Gruen, D.M.
1999-05-11
A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.
Method of improving field emission characteristics of diamond thin films
Krauss, Alan R.; Gruen, Dieter M.
1999-01-01
A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.
Peng, Mingzeng; Liu, Yudong; Yu, Aifang; Zhang, Yang; Liu, Caihong; Liu, Jingyu; Wu, Wei; Zhang, Ke; Shi, Xieqing; Kou, Jinzong; Zhai, Junyi; Wang, Zhong Lin
2016-01-26
Flexible self-powered sensing is urgently needed for wearable, portable, sustainable, maintenance-free and long-term applications. Here, we developed a flexible and self-powered GaN membrane-based ultraviolet (UV) photoswitch with high on/off ratio and excellent sensitivity. Even without any power supply, the driving force of UV photogenerated carriers can be well boosted by the combination of both built-in electric field and piezoelectric polarization field. The asymmetric metal-semiconductor-metal structure has been elaborately utilized to enhance the carrier separation and transport for highly sensitive UV photoresponse. Its UV on/off ratio and detection sensitivity reach to 4.67 × 10(5) and 1.78 × 10(12) cm·Hz(0.5) W(1-), respectively. Due to its excellent mechanical flexibility, the piezoelectric polarization field in GaN membrane can be easily tuned/controlled based on piezo-phototronic effect. Under 1% strain, a stronger and broader depletion region can be obtained to further enhance UV on/off ratio up to 154%. As a result, our research can not only provide a deep understanding of local electric field effects on self-powered optoelectronic detection, but also promote the development of self-powered flexible optoelectronic devices and integrated systems.
NASA Astrophysics Data System (ADS)
Vasić, Borislav; Zografopoulos, Dimitrios C.; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš
2017-03-01
Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.
Vasić, Borislav; Zografopoulos, Dimitrios C; Isić, Goran; Beccherelli, Romeo; Gajić, Radoš
2017-03-24
Large birefringence and its electrical modulation by means of Fréedericksz transition makes nematic liquid crystals (LCs) a promising platform for tunable terahertz (THz) devices. The thickness of standard LC cells is in the order of the wavelength, requiring high driving voltages and allowing only a very slow modulation at THz frequencies. Here, we first present the concept of overcoupled metal-isolator-metal (MIM) cavities that allow for achieving simultaneously both very high phase difference between orthogonal electric field components and large reflectance. We then apply this concept to LC-infiltrated MIM-based metamaterials aiming at the design of electrically tunable THz polarization converters. The optimal operation in the overcoupled regime is provided by properly selecting the thickness of the LC cell. Instead of the LC natural birefringence, the polarization-dependent functionality stems from the optical anisotropy of ultrathin and deeply subwavelength MIM structures. The dynamic electro-optic control of the LC refractive index enables the spectral shift of the resonant mode and, consequently, the tuning of the phase difference between the two orthogonal field components. This tunability is further enhanced by the large confinement of the resonant electromagnetic fields within the MIM cavity. We show that for an appropriately chosen linearly polarized incident field, the polarization state of the reflected field at the target operation frequency can be continuously swept between the north and south pole of the Poincaré sphere. Using a rigorous Q-tensor model to simulate the LC electro-optic switching, we demonstrate that the enhanced light-matter interaction in the MIM resonant cavity allows the polarization converter to operate at driving voltages below 10 Volt and with millisecond switching times.
NASA Astrophysics Data System (ADS)
Li, Weiyi; Zhang, Zhili; Fu, Kai; Yu, Guohao; Zhang, Xiaodong; Sun, Shichuang; Song, Liang; Hao, Ronghui; Fan, Yaming; Cai, Yong; Zhang, Baoshun
2017-07-01
We proposed a novel AlGaN/GaN enhancement-mode (E-mode) high electron mobility transistor (HEMT) with a dual-gate structure and carried out the detailed numerical simulation of device operation using Silvaco Atlas. The dual-gate device is based on a cascode connection of an E-mode and a D-mode gate. The simulation results show that electric field under the gate is decreased by more than 70% compared to that of the conventional E-mode MIS-HEMTs (from 2.83 MV/cm decreased to 0.83 MV/cm). Thus, with the discussion of ionized trap density, the proposed dual-gate structure can highly improve electric field-related reliability, such as, threshold voltage stability. In addition, compared with HEMT with field plate structure, the proposed structure exhibits a simplified fabrication process and a more effective suppression of high electric field. Project supported by the Key Technologies Support Program of Jiangsu Province (No. BE2013002-2) and the National Key Scientific Instrument and Equipment Development Projects of China (No. 2013YQ470767).
Controlling Disorder by Electric Field Directed Reconfiguration of Nanowires to Tune Random Lasing.
Donahue, Philip P; Zhang, Chenji; Nye, Nicholas; Miller, Jennifer; Wang, Cheng-Yu; Tang, Rong; Christodoulides, Demetrios; Keating, Christine D; Liu, Zhiwen
2018-06-27
Top-down fabrication is commonly used to provide positioning control of optical structures; yet, it places stringent limitations on component materials and oftentimes, dynamic reconfigurability is challenging to realize. Here we present a reconfigurable nanoparticle platform that can integrate heterogeneous particle assembly of different shapes, sizes, and material compositions. We demonstrate dynamic manipulation of disorder in this platform and use it to controllably enhance or frustrate random laser emission for a suspension of titanium dioxide nanowires in a dye solution. Using an alternating current electric field, we control the nanowire orientation to dynamically control the collective scattering of the sample and thus light confinement. Our theoretical model indicates that an increase of 22% in scattering coefficient can be achieved for the experimentally determined nanowire length distribution upon alignment. As a result, a nearly 20-fold enhancement in lasing intensity was achieved. We illustrate the generality of the approach by demonstrating enhanced lasing for aligned nanowires of other materials including gold, mixed gold/dielectric and vanadium oxide (VxOy).
NASA Astrophysics Data System (ADS)
Rani, Reena; Bhatia, Ravi
2018-03-01
In their research paper, M. Song et al. [AIP ADVANCES 5, 097130 (2015)] have claimed to have achieved enhanced field emission (FE) characteristics of carbon nanotubes (CNT)/graphene hybrids experimentally, exhibiting improved FE parameters e.g. turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum emission current density (Jmax) of 5.76 mA/cm2, and field enhancement factor (β) of ˜1.3 × 104. The authors have emphasized on the surprisingly high value of β to be the basis of their claim of achieving superior FE performance which is further attributed to the optimized mass ratio CNT/ graphene, which is 5:1 in the present case. However, the claim based upon high value of β is misleading because it does not corroborate with the obtained Jmax parameter. Also, the obtained value of J is quite low in the mentioned study as compared to the reported values. For an instance, Sameera et al. [J. Appl. Phys. 111, 044307 (2012) & Appl. Phys. Lett. 102, 033102 (2013)] have reported FE properties of CNT composites and reduced graphene oxide with Jmax and β values of the order of ˜102 mA/cm2 and 6 × 103, respectively. Therefore, the conclusions drawn by M. Song et al. [AIP ADVANCES 5, 097130 (2015)] in their paper do no hold.
Hot-electron effect in spin relaxation of electrically injected electrons in intrinsic Germanium.
Yu, T; Wu, M W
2015-07-01
The hot-electron effect in the spin relaxation of electrically injected electrons in intrinsic germanium is investigated by the kinetic spin Bloch equations both analytically and numerically. It is shown that in the weak-electric-field regime with E ≲ 0.5 kV cm(-1), our calculations have reasonable agreement with the recent transport experiment in the hot-electron spin-injection configuration (2013 Phys. Rev. Lett. 111 257204). We reveal that the spin relaxation is significantly enhanced at low temperature in the presence of weak electric field E ≲ 50 V cm(-1), which originates from the obvious center-of-mass drift effect due to the weak electron-phonon interaction, whereas the hot-electron effect is demonstrated to be less important. This can explain the discrepancy between the experimental observation and the previous theoretical calculation (2012 Phys. Rev. B 86 085202), which deviates from the experimental results by about two orders of magnitude at low temperature. It is further shown that in the strong-electric-field regime with 0.5 ≲ E ≲ 2 kV cm(-1), the spin relaxation is enhanced due to the hot-electron effect, whereas the drift effect is demonstrated to be marginal. Finally, we find that when 1.4 ≲ E ≲ 2 kV cm(-1) which lies in the strong-electric-field regime, a small fraction of electrons (≲5%) can be driven from the L to Γ valley, and the spin relaxation rates are the same for the Γ and L valleys in the intrinsic sample without impurity. With the negligible influence of the spin dynamics in the Γ valley to the whole system, the spin dynamics in the L valley can be measured from the Γ valley by the standard direct optical transition method.
Subgap transport in silicene-based superconducting hybrid structures
NASA Astrophysics Data System (ADS)
Li, Hai
2016-08-01
We investigate the influences of exchange field and perpendicular electric field on the subgap transport in silicene-based ferromagnetic/superconducting (FS) and ferromagnetic/superconducting/ferromagnetic (FSF) junctions. Owing to the unique buckling structure of silicene, the Andreev reflection and subgap conductance can be effectively modulated by a perpendicular electric field. It is revealed that the subgap conductance in the FS junction can be distinctly enhanced by an exchange field. Remarkably, resorting to the tunable band gap of silicene, an exclusive crossed Andreev reflection (CAR) process in the FSF junction can be realized within a wide range of related parameters. Moreover, in the FSF junction the exclusive CAR and exclusive elastic cotunneling processes can be switched by reversing the magnetization direction in one of the ferromagnetic regions.
NASA Astrophysics Data System (ADS)
Anvarifard, Mohammad K.; Orouji, Ali A.
2017-11-01
This article has related a particular knowledge in order to reduce short channel effects (SCEs) in nano-devices based on silicon-on-insulator (SOI) MOSFETs. The device under study has been designed in 22 nm node technology with embedding Si3N4 extra oxide as a stopping layer of electric field and a useful heatsink for transferring generated heat. Two important subjects (DC characteristics and RF characteristics) have been investigated, simultaneously. Stopping electric field extension and enhancement of channel thermal conduction are introduced as an entrance gateway for this work so that improve the electrical characteristics, eventually. The inserted extra oxide made by the Si3N4 material has a vital impact on the modification of the electrical and thermal features in the proposed device. An immense comparison between the proposed SOI and conventional SOI showed that the proposed structure has higher electrical and thermal proficiency than the conventional structure in terms of main parameters such as short channel effects (SCEs), leakage current, floating body effect (FBE), self-heating effect (SHE), voltage gain, ratio of On-current to Off- current, transconductance, output conductance, minimum noise figure and power gain.
NASA Astrophysics Data System (ADS)
Lemon, C.; Bishop, R. L.; Coster, A. J.; Nikoukar, R.; Chen, M.; Turner, D. L.; Roeder, J. L.; Shumko, M.; Payne, C.; Bhatt, R.
2017-12-01
Magnetosphere-ionosphere coupling is a complex process, and researchers must consider a number of factors: particle transport in the electric and magnetic fields drives plasma from the high latitude tail to the mid-latitude inner magnetosphere; particle precipitation into the ionosphere, which is frequently driven by wave-particle interactions, enhances the ionospheric conductivities; feedback of the ionospheric conductivities on the electric fields determines how well the convection electric field penetrates to the mid-latitude ionosphere; and the erosion and refilling of cold plasma in the plasmasphere substantially determines the mass of plasma on magnetospheric field lines and the subsequent wave environment that drives particle precipitation. While we model all of these processes, in this presentation we focus on the role of the plasmasphere and its role in M-I coupling. We present RCM-E simulations in which particle transport through self-consistent fields controls the drainage of the plasmasphere, an outflow model determines the plasmasphere refilling rate, and electron and ion precipitation influences the electric field by enhancing the ionospheric conductivity. The plasmasphere significantly affects the spatial structure of the wave environment and electron precipitation rates. This impacts the dynamics of the sub-auroral polarization stream (SAPS) in the pre-midnight region equatorward of the auroral boundary, which itself drives erosion of the plasmasphere through strong westward electric fields near the plasmapause. We present comparisons with Van Allen Probes, THEMIS, the Plasmasphere Data Assimilation (PDA) model, and line-of-sight observations from Millstone Hill ISR and space-based GPS receivers, showing how our modeled plasmasphere compares with observational data during the 17-March-2013 and 28-June-2013 magnetic storms. To better understand refilling, we focus particular attention on densities in the recently-depleted flux tubes in the plasmasphere trough. We compare several empirical models of the plasmasphere refilling rate to see which ones give the best agreement, and through parametric simulations we systematically investigate the effect of varying the local time and L dependence of the refilling rate.
Yue, Chao; Li, Wen; Reeves, Geoffrey D.; ...
2016-07-01
Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Chao; Li, Wen; Reeves, Geoffrey D.
Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H +, He +, and O +, were enhanced dramatically in both the parallel and perpendicular directions.more » During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. Furthermore, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.« less
3D plasmonic nanoantennas integrated with MEA biosensors
NASA Astrophysics Data System (ADS)
Dipalo, Michele; Messina, Gabriele C.; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; de Angelis, Francesco
2015-02-01
Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05578k
Electrostatically Induced Carbon Nanotube Alignment for Polymer Composite Applications
NASA Astrophysics Data System (ADS)
Chapkin, Wesley Aaron
We have developed a non-invasive technique utilizing polarized Raman spectroscopy to measure changes in carbon nanotube (CNT) alignment in situ and in real time in a polymer matrix. With this technique, we have confirmed the prediction of faster alignment for CNTs in higher electric fields. Real-time polarized Raman spectroscopy also allows us to demonstrate the loss of CNT alignment that occurs after the electric field is removed, which reveals the need for fast polymerization steps or the continued application of the aligning force during polymerization to lock in CNT alignment. Through a study on the effect of polymer viscosity on the rate of CNT alignment, we have determined that shear viscosity serves as the controlling mechanism for CNT rotation. This finding matches literature modeling of rigid rod mobility in a polymer melt and demonstrates that the rotational mobility of CNTs can be explained by a continuum model even though the diameters of single-walled CNTs are 1-2 nm. The viscosity dependence indicates that the manipulation of temperature (and indirectly viscosity) will have a direct effect on the rate of CNT alignment, which could prove useful in expediting the manufacturing of CNT-reinforced composites cured at elevated temperatures. Using real-time polarized Raman spectroscopy, we also demonstrate that electric fields of various strengths lead not only to different speeds of CNT rotation but also to different degrees of alignment. We hypothesize that this difference in achievable alignment results from discrete populations of nanotubes based on their length. The results are then explained by balancing the alignment energy for a given electric field strength with the randomizing thermal energy of the system. By studying the alignment dynamics of different CNT length distributions, we show that different degrees of alignment achieved as a function of the applied electric field strength are directly related to the square of the nanotube length. This finding matches an electrostatic potential energy model for CNT rotation. Lastly, we investigate the effects of conductive carbon fibers on electrostatically induced alignment of CNTs within carbon fiber composites. The relative electric field strength throughout the composite is modeled using COMSOL Multiphysics. We show the ability to generate enhanced electric field gradients within the gaps between carbon fibers for various fiber orientations. Using polarized Raman spectroscopy, increased levels of CNT alignment are observed between carbon fiber tows, which is consistent with the modeled higher electric field strengths in these regions. These findings could potentially lead to the development of carbon fiber composites with CNT additions that selectively enhance the composite properties outside the carbon fiber interphase in the neat epoxy.
Improving breakdown voltage performance of SOI power device with folded drift region
NASA Astrophysics Data System (ADS)
Qi, Li; Hai-Ou, Li; Ping-Jiang, Huang; Gong-Li, Xiao; Nian-Jiong, Yang
2016-07-01
A novel silicon-on-insulator (SOI) high breakdown voltage (BV) power device with interlaced dielectric trenches (IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedded in the active layer, which results in an increase of length of ionization integral remarkably. The crowding phenomenon of electric field in the corner of IDT is relieved by the N/P pillars. Both traits improve two key factors of BV, the ionization integral length and electric field magnitude, and thus BV is significantly enhanced. The electric field in the dielectric layer is enhanced and a major portion of bias is borne by the oxide layer due to the accumulation of inverse charges (holes) at the corner of IDT. The average value of the lateral electric field of the proposed device reaches 60 V/μm with a 10 μm drift length, which increases by 200% in comparison to the conventional SOI LDMOS, resulting in a breakdown voltage of 607 V. Project supported by the Guangxi Natural Science Foundation of China (Grant Nos. 2013GXNSFAA019335 and 2015GXNSFAA139300), Guangxi Experiment Center of Information Science of China (Grant No. YB1406), Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing of China, Key Laboratory of Cognitive Radio and Information Processing (Grant No. GXKL061505), Guangxi Key Laboratory of Automobile Components and Vehicle Technology of China (Grant No. 2014KFMS04), and the National Natural Science Foundation of China (Grant Nos. 61361011, 61274077, and 61464003).
NASA Astrophysics Data System (ADS)
Babich, Leonid; Bochkov, Evgenii
2017-11-01
The hypothetical mechanism of electric field amplification at contact of positive and negative streamers in a streamer corona up to magnitudes required for the generation of runaway electrons and secondary Bremsstrahlung in the x-ray range, observed in long spark discharges in the open atmosphere, is analyzed. The development of two streamers, moving towards each other in interelectrode gaps of the centimetre range, is numerically simulated at applied voltages from 73 to 250 kV. It is shown that the size of the domain with strong electric field, with intensity sufficient for the thermal electron runaway, is of 1-2 mm. The mean field intensity in this domain increases up to magnitudes of ≈250-280 kV cm-1. The maximum energy, to which electrons are capable of energizing in such field, is in the range of 20-70 keV. However, the electron energy is limited by an extremely small life-time of the strong field domain (less than 20 ps).
NASA Astrophysics Data System (ADS)
Sankaran, K. J.; Srinivasu, K.; Yeh, C. J.; Thomas, J. P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K. C.; Leung, K. T.; Van Bael, M. K.; Schreck, M.; Lin, I. N.; Haenen, K.
2017-06-01
The field electron emission (FEE) properties of nitrogen-incorporated nanocrystalline diamond films were enhanced due to Li-ion implantation/annealing processes. Li-ion implantation mainly induced the formation of electron trap centers inside diamond grains, whereas post-annealing healed the defects and converted the a-C phase into nanographite, forming conduction channels for effective transport of electrons. This resulted in a high electrical conductivity of 11.0 S/cm and enhanced FEE performance with a low turn-on field of 10.6 V/μm, a high current density of 25.5 mA/cm2 (at 23.2 V/μm), and a high lifetime stability of 1,090 min for nitrogen incorporated nanocrystalline diamond films.
NASA Astrophysics Data System (ADS)
Wang, Yijia; Li, Jiaxin; Hu, Naixiu; Jiang, Yunlu; Wei, Qiuping; Yu, Zhiming; Long, Hangyu; Zhu, Hekang; Xie, Youneng; Ma, Li; Lin, Cheng-Te; Su, Weitao
2018-03-01
In this paper, both electric field and magnetic field were used to assist the hot filament chemical vapor deposition (HFCVD) and we systematically investigated the effects of which on the (1) phase composition, (2) grain size, (3) thickness and (4) preferred orientation of diamond films through SEM, Raman and XRD. The application of magnetic field in electric field, so called ‘the magnetic and electric coupling fields’, enhanced the graphitization and refinement of diamond crystals, slowed down the decrease of film thickness along with the increase of bias current, and suppressed diamond (100) orientation. During the deposition process, the electric field provided additional energy to HFCVD system and generated large number of energetic particles which might annihilate at the substrate and lose kinetic energy, while the Lorentz force, provided by magnetic field, could constrict charged particles (including electrons) to do spiral movement, which prolonged their moving path and life, thus the system energy increased. With the graphitization of diamond films intensified, the preferred orientation of diamond films completely evolved from (110) to (100), until the orientation and diamond phase disappeared, which can be attributed to (I) the distribution and concentration ratio of carbon precursors (C2H2 and CH3) and (II) graphitization sequence of diamond crystal facets. Since the electron field emission property of carbon film is sensitive to the phase composition, thickness and preferred orientation, nano- carbon cones, prepared by the negative bias current of 20 mA and magnetic field strength of 80 Gauss, exhibited the lowest turn-on field of 6.1 V -1 μm-1.
Determining if an axially rotated solenoid will induce a radial EMF
NASA Astrophysics Data System (ADS)
MacDermott, Dustin R.
The nature of the electromagnetic field of an axially rotated solenoid or magnet is investigated. The investigations reviewed suggest the possibility of a radially emitted electric field by either: axially rotated magnetic field lines, or a relativistic change in charge of the electron. For a very long solenoid a relativistic change in charge leaves no electric field inside while leaving an electric field outside. The concept of axially rotating magnetic field lines gives an opposite prediction. They both seem to be in contradiction to the standard model of induction, which gives no change in the electric field for a rotated solenoid or magnet. An experiment by Joseph B. Tate [48], [49] conducted in 1968 seemed to have measured a change in charge outside of a rotated solenoid. Another experiment by Barnett [3] in 1912 reported measuring no electric field inside of a rotated solenoid. Further experimentation was decided necessary and the method decided upon to attempt detection of the radial E or EMF induced by an axially rotating B field or change in charge is two concentric capacitor plates, one inside and the other outside an axially rotated solenoid. The solenoid was rotated on a lathe for the test. A concentric capacitor around an axially rotated permanent neodymium magnet was also used as a test. These experiments proved very challenging because of the small magnitude of the predicted effect. Nevertheless, the bulk of the evidence obtained indicates that no induced E arises when a magnetic source is rotated about its magnetic axis, thus supporting the standard field model of electromagnetic induction, and casting doubt on the alternative theories of magnetic field line rotation or relativistic charge enhancement.
Theory for the anomalous electron transport in Hall-effect thrusters
NASA Astrophysics Data System (ADS)
Lafleur, Trevor; Baalrud, Scott; Chabert, Pascal
2016-09-01
Using insights from particle-in-cell (PIC) simulations, we develop a kinetic theory to explain the anomalous cross-field electron transport in Hall-effect thrusters (HETs). The large axial electric field in the acceleration region of HETs, together with the radially applied magnetic field, causes electrons to drift in the azimuthal direction with a very high velocity. This drives an electron cyclotron instability that produces large amplitude oscillations in the plasma density and azimuthal electric field, and which is convected downstream due to the large axial ion drift velocity. The frequency and wavelength of the instability are of the order of 5 MHz and 1 mm respectively, while the electric field amplitude can be of a similar magnitude to axial electric field itself. The instability leads to enhanced electron scattering many orders of magnitude higher than that from standard electron-neutral or electron-ion Coulomb collisions, and gives electron mobilities in good agreement with experiment. Since the instability is a strong function of almost all plasma properties, the mobility cannot in general be fitted with simple 1/B or 1/B2 scaling laws, and changes to the secondary electron emission coefficient of the HET channel walls are expected to play a role in the evolution of the instability. This work received financial support from a CNES postdoctoral research award.
NASA Astrophysics Data System (ADS)
Novak, Nikola; Weyland, Florian; Patel, Satyanarayan; Guo, Hanzheng; Tan, Xiaoli; Rödel, Jürgen; Koruza, Jurij
2018-03-01
The electrocaloric effect in ferroics is considered a powerful solid-state cooling technology. Its potential is enhanced by correlation to the inverse electrocaloric effect and leads into mechanisms of decreasing or increasing dipolar entropy under applied electric field. Nevertheless, the mechanism underlying the increase of the dipolar entropy with applied electric field remains unclear and controversial. This study investigates the electrocaloric response of the antiferroelectric P b0.99N b0.02[(Zr0.58Sn0.43) 0.92T i0.08] 0.98O3 in which the critical electric field is low enough to induce the ferroelectric phase over a broad temperature range. Utilizing temperature- and electric-field-dependent dielectric measurements, direct electrocaloric measurements, and in situ transmission electron microscopy, a crossover from conventional to inverse electrocaloric response is demonstrated. The origin of the inverse electrocaloric effect is rationalized by investigating the field-induced phase transition between antiferroelectric and ferroelectric phases. The disappearance of the latent heat at field-induced transition coincides with the crossover of the electrocaloric effect and demonstrates that the overall electrocaloric response is an interplay of different entropy contributions. This opens new opportunities for highly efficient, environmentally friendly cooling devices based on ferroic materials.
NASA Astrophysics Data System (ADS)
Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael
2018-01-01
[001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.
[Inefficiency of electrosmog-shielding mats. Part 2: radio frequency range].
Leitgeb, N; Cech, R
2005-09-01
It could already be shown that electromagnetic shielding mats do not reduce but even enhance electric field exposure in daily life situations. By measurements and numerical simulations the claims of manufacturers were checked who pretend that radio frequency electromagnetic fields can be shielded to 99% and more, and transferred to earth by earth cables (if attached). It could be shown that in the radio frequency range such products do not fulfil the justified expectations of customers, but in most cases even cause the opposite. The results depend on the electric properties of the material. Good electric conductivity of shielding mats even considerably increases electromagnetic field exposure. To connect the mats with earth potential by an attached cable might increase the beliefs on a protective effect, however, this is not capable to enhance the shielding effect. The investigation demonstrates that in spite of references made to experts opinions manufacturers claims about the shielding efficiency of radio frequency fields are misleading and fool clients about the real situation. Overall, acquisition and use of electrosmog shielding mats must be discouraged. If at all, shielding can be reached by placing a shielding cover between the source and the person. However, even in this case, efficiency is much lower than promised by manufacturers and decreases even more if it is taken into account that the head naturally remains uncovered and hence unshielded.
Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.; ...
2017-05-10
Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.
Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less
NASA Astrophysics Data System (ADS)
Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; Toth, Gabor; Heelis, Roderick
2017-05-01
We report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, and the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a "tongue" of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.
Lunar Electric Fields: Observations and Implications
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Delory, G. T.; Stubbs, T. J.; Farrell, W. M.; Vondrak, R. R.
2006-12-01
Alhough the Moon is typically thought of as having a relatively dormant environment, it is in fact very electrically active. The lunar surface, not protected by any substantial atmosphere, is directly exposed to solar UV and X-rays as well as solar wind plasma and energetic particles. This creates a complex electrodynamic environment, with the surface typically charging positive in sunlight and negative in shadow, and surface potentials varying over orders of magnitude in response to changing solar illumination and plasma conditions. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging also drives dust electrification and horizontal and vertical dust transport. We present a survey of the lunar electric field environment, utilizing both newly interpreted Lunar Prospector (LP) orbital observations and older Apollo surface observations, and comparing to theoretical predictions. We focus in particular on time periods when the most significant surface charging was observed by LP - namely plasmasheet crossings (when the Moon is in the Earth's magnetosphere) and space weather events. During these time periods, kV-scale potentials are observed, and enhanced surface electric fields can be expected to drive significant horizontal and vertical dust transport. Both dust and electric fields can have serious effects on habitability and operation of machinery, so understanding the coupled dust-plasma-electric field system around the Moon is critically important for planning exploration efforts, in situ resource utilization, and scientific observations on the lunar surface. Furthermore, from a pure science perspective, this represents an excellent opportunity to study fundamental surface-plasma interactions.
Crosse, J. A.
2017-01-01
Topological insulators subject to a time-reversal-symmetry-breaking perturbation are predicted to display a magneto-electric effect that causes the electric and magnetic induction fields to mix at the material’s surface. This effect induces polarization rotations of between ≈1–10 mrad per interface in an incident plane-polarized electromagnetic wave normal to a multilayered structure. Here we show, theoretically and numerically, that by using a waveguide geometry with a topological insulator guide layer and magneto-dielectric cladding it is possible to achieve rotations of ≈100 mrad and generate an elliptical polarization with only a three-layered structure. This geometry is beneficial, not only as a way to enhance the magneto-electric effect, rendering it easier to observe, but also as a method for controlling the polarization of electromagnetic radiation. PMID:28220875
Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions
NASA Technical Reports Server (NTRS)
Generazio, Ed
2017-01-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, weather prediction, earth quake prediction, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
Wang, Hsing-Won; Chu, Yueng-Hsiang; Chao, Pin-Zhir; Lee, Fei-Peng
2014-10-01
The pitch of voice is closely related to the vocal fold tension, which is the end result of coordinated movement of the intralaryngeal muscles, and especially the thyroarytenoid muscle. It is known that vocal quality may be affected by surrounding temperature; however, the effect of temperature on vocal fold tension is mostly unknown. Thus, the aim of this study was to evaluate the effect of temperature on isolated rat glottis and thyroarytenoid muscle contraction induced by electrical field stimulation. In vitro isometric tension of the glottis ring from 30 Sprague-Dawley rats was continuously recorded by the tissue bath method. Electrical field stimulation was applied to the glottis ring with two wire electrodes placed parallel to the glottis and connected to a direct-current stimulator. The tension changes of the rat glottis rings that were either untreated or treated with electrical field stimulation were recorded continuously at temperatures from 37 to 7 °C or from 7 to 37 °C. Warming from 7 to 37 °C increased the basal tension of the glottis rings and decreased the electrical field stimulation-induced glottis ring contraction, which was chiefly due to thyroarytenoid muscle contraction. In comparison, cooling from 37 to 7 °C decreased the basal tension and enhanced glottis ring contraction by electrical field stimulation. We concluded that warming increased the basal tension of the glottis in vitro and decreased the amplitude of electrical field stimulation-induced thyroarytenoid muscle contraction. Thus, vocal pitch and the fine tuning of vocal fold tension might be affected by temperature in vivo.
Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean
NASA Astrophysics Data System (ADS)
Hartkorn, Oliver; Saur, Joachim
2017-11-01
We investigate whether induction within Callisto's electrically conductive ionosphere can explain observed magnetic fields which have previously been interpreted as evidence of induction in a saline, electrically conductive subsurface ocean. Callisto's ionosphere is subject to the flow of time-periodic magnetized plasma of Jupiter's magnetosphere, which induces electric fields and electric currents in Callisto's electrically conductive ionosphere. We develop a simple analytic model for a first quantitative understanding of the effects of induction in Callisto's ionosphere caused by the interaction with a time-variable magnetic field environment. With this model, we also investigate how the associated ionospheric currents close in the ambient magnetospheric plasma. Based on our model, we find that the anisotropic nature of Callisto's ionospheric conductivity generates an enhancement effect on ionospheric loop currents which are driven by the time-variable magnetic field. This effect is similar to the Cowling channel effect known from Earth's ionosphere. Subsequently, we numerically calculate the expected induced magnetic fields due to Jupiter's time-variable magnetic field in an anisotropic conductive ionosphere and compare our results with the Galileo C-3 and C-9 flybys. We find that induction within Callisto's ionosphere is responsible for a significant part of the observed magnetic fields. Ionospheric induction creates induced magnetic fields to some extent similar as expected from a subsurface water ocean. Depending on currently unknown properties such as Callisto's nightside ionosphere, the existence of layers of "dirty ice" and the details of the plasma interaction, a water ocean might be located much deeper than previously thought or might not exist at all.
Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation
NASA Astrophysics Data System (ADS)
Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai
2016-02-01
Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media.
Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation
Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai
2016-01-01
Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media. PMID:26876162
Pyroelectricity as a possible mechanism for cell membrane permeabilization.
García-Sánchez, Tomás; Muscat, Adeline; Leray, Isabelle; Mir, Lluis M
2018-02-01
The effects of pyroelectricity on cell membrane permeability had never been explored. Pyroelectricity consists in the generation of an electric field in the surface of some materials when a change in temperature is produced. In the present study, tourmaline microparticles, which are known to display pyroelectrical properties, were subjected to different changes in temperature upon exposure to cells in order to induce an electric field at their surface. Then, the changes in the permeability of the cell membrane to a cytotoxic agent (bleomycin) were assessed by a cloning efficacy test. An increase in the permeability of the cell membrane was only detected when tourmaline was subjected to a change in temperature. This suggests that the apparition of an induced pyroelectrical electric field on the material could actually be involved in the observed enhancement of the cell membrane permeability as a result of cell electropermeabilization. Copyright © 2017 Elsevier B.V. All rights reserved.
El Darra, Nada; Rajha, Hiba N; Ducasse, Marie-Agnès; Turk, Mohammad F; Grimi, Nabil; Maroun, Richard G; Louka, Nicolas; Vorobiev, Eugène
2016-12-15
This work studies the effect of pulsed electric field (PEF) treatment at moderate and high field strengths (E=0.8kV/cm & 5kV/cm) prior and during alcoholic fermentation (AF) of red grapes on improving different parameters of pre-treated extracts: pH, °Brix, colour intensity (CI), total polyphenols content (TPI) of Cabernet Sauvignon red wine. Similar trends were observed for treating grapes using moderate and high electric field strength on the enhancement of CI and TPI of the wine after AF. The application of PEF using moderate strengths at different times during cold maceration (CM) (0, 2 and 4days) was more efficient for treatment during CM. The treatment during AF showed lower extraction rate compared to treating during CM and prior to AF. Our results clearly show that the best time for applying the PEF-treatment through the red fermentation is during the CM step. Copyright © 2016. Published by Elsevier Ltd.
Temperature-Dependent Electric Field Poling Effects in CH3NH3PbI3 Optoelectronic Devices.
Zhang, Chuang; Sun, Dali; Liu, Xiaojie; Sheng, Chuan-Xiang; Vardeny, Zeev Valy
2017-04-06
Organo-lead halide perovskites show excellent optoelectronic properties; however, the unexpected inconsistency in forward-backward I-V characteristics remains a problem for fabricating solar panels. Here we have investigated the reasons behind this "hysteresis" by following the changes in photocurrent and photoluminescence under electric field poling in transverse CH 3 NH 3 PbI 3 -based devices from 300 to 10 K. We found that the hysteresis disappears at cryogenic temperatures, indicating the "freeze-out" of the ionic diffusion contribution. When the same device is cooled under continuous poling, the built-in electric field from ion accumulation brings significant photovoltaic effect even at 10 K. From the change of photoluminescence upon polling, we found a second dipole-related mechanism which enhances radiative recombination upon the alignment of the organic cations. The ionic origin of hysteresis was also verified by applying a magnetic field to affect the ion diffusion. These findings reveal the coexistence of ionic and dipole-related mechanisms for the hysteresis in hybrid perovskites.
LC-lens array with light field algorithm for 3D biomedical applications
NASA Astrophysics Data System (ADS)
Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun
2016-03-01
In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.
Tahmasbian, Iman; Safari Sinegani, Ali Akbar
2013-11-01
The application of electrical fields and chelating agents is an innovative hybrid technology used for the decontamination of soil polluted by heavy metals. The effects of four center-oriented electrical fields and chelating agents on active fractions of lead and zinc were investigated in this pot experiment. Ethylenediaminetetraacetic acid (EDTA) as a synthetic chelator and cow manure extract (CME) and poultry manure extract (PME) as natural chelators were applied to the pots (2 g kg(-1)) 30 days after the first irrigation. Two weeks later, four center-oriented electrical fields were applied in each pot (in three levels of 0, 10, and 30 V) for 1 h each day for 14 days. The soil near the cathode and anodes was collected and analyzed as cathodic and anodic soil, respectively. Results indicated that the soluble-exchangeable fraction of lead and zinc were decreased in the cathodic soil, while the carbonate-bound fractions were increased. In the anodic soil, however, the opposite result was observed. EDTA enhanced the soluble-exchangeable form of the metals in both anodic and cathodic soils. Furthermore, the amounts of carbonate-bound heavy metals were increased by the application of CME in both soils. The organic-bound fraction of the metals was increased by the application of natural chelators, while electrical fields had no significant impacts on this fraction.
NASA Astrophysics Data System (ADS)
Basak, Tista; Basak, Tushima
2018-02-01
In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaroshenko, V. V.; Antonova, T.; Thomas, H. M.
2009-10-15
The screening length, the time-average electric field, and the particle charge as well as the local vertical gradients of these quantities are determined experimentally within a sheath of a capacitively coupled rf, 13.56 MHz, discharge at enhanced argon gas pressures of 30, 55, and 100 Pa. The parameters are derived directly from comparative measurements of levitation positions of the particles of different sizes and variations in the levitation heights caused by formation of new dust layers. The electrostatic effect of the horizontally extended dust layers on the sheath electric field is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L. Z., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn; Xiong, S. J.; Wu, X. L., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn
2016-08-08
The formation of Schottky barriers between 2D semiconductors and traditional metallic electrodes has greatly limited the application of 2D semiconductors in nanoelectronic and optoelectronic devices. In this study, metallic borophene was used as a substitute for the traditional noble metal electrode to contact with the 2D semiconductor. Theoretical calculations demonstrated that no Schottky barrier exists in the borophene/2D semiconductor heterostructure. The contact remains ohmic even with a strong electric field applied. This finding provides a way to construct 2D electronic devices and sensors with greatly enhanced performance.
Effects of Sheared Flow on Microinstabilities and Transport in Plasmas
NASA Astrophysics Data System (ADS)
H, Sanuki; K, Itoh; A, Fujisawa; J, Q. Dong
2005-02-01
Theoretical and experimental studies associated with electric field effects on the stability and transport are briefly surveyed. The effects of radial electric field on the suppression and/or enhancement of various microinstabilities such as drift waves, flute mode and temperature gradient modes are discussed. The suppression of flow shear on the electron temperature gradient mode in plasmas with slightly hollow density profiles is investigated by solving the gyrokinetic integral eigenvalue equation. Comparison between theoretical predictions and experimental observations based on the HIBP measurements with high temporal and spatial resolutions is made in bumpy tori and heliotron (CHS) devices.
Wang, Jie; Bi, Fanghua; Ngo, Huu-Hao; Guo, Wenshan; Jia, Hui; Zhang, Hongwei; Zhang, Xinbo
2016-01-01
A low-cost hybrid system integrating a membrane-less microbial fuel cell (MFC) with an anoxic/oxic membrane bioreactor (MBR) was studied for fouling mitigation. The appended electric field in the MBR was supplied by the MFC with continuous flow. Supernatant from an anaerobic reactor with low dissolved oxygen was used as feed to the MFC in order to enhance its performance compared with that fed with synthetic wastewater. The voltage output of MFC maintained at 0.52±0.02V with 1000Ω resister. The electric field intensity could reach to 0.114Vcm(-1). Compared with the conventional MBR (CMBR), the contents rather than the components of foulants on the cake layer of fouled MFC-MBR system was significantly reduced. Although only 0.5% of the feed COD was translated into electricity and applied to MBR, the hybrid system showed great feasibility without additional consumption but extracting energy from waste water and significantly enhancing the membrane filterability. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Wei; Yang, Fang; Qiao, Rui; Wang, Guiren; Rui Qiao Collaboration
2015-11-01
Understanding the instantaneous response of flows to applied AC electric fields may help understand some unsolved issues in induced-charge electrokinetics and enhance performance of microfluidic devices. Since currently available velocimeters have difficulty in measuring velocity fluctuations with frequency higher than 1 kHz, most experimental studies so far focus only on the average velocity measurement in AC electrokinetic flows. Here, we present measurements of AC electroosmotic flow (AC-EOF) response time in microchannels by a novel velocimeter with submicrometer spatial resolution and microsecond temporal resolution, i.e. laser-induced fluorescence photobleaching anemometer (LIFPA). Several parameters affecting the AC-EOF response time to the applied electric signal were investigated, i.e. channel length, transverse position and solution conductivity. The experimental results show that the EOF response time under a pulsed electric field decreases with the reduction of the microchannel length, distance between the detection position to the wall and the conductivity of the solution. This work could provide a new powerful tool to measure AC electrokinetics and enhance our understanding of AC electrokinetic flows.
NASA Astrophysics Data System (ADS)
Kim, Do-Kyung; Jeong, Hyeon-Seok; Kwon, Hyeok Bin; Kim, Young-Rae; Kang, Shin-Won; Bae, Jin-Hyuk
2018-05-01
We propose a simple hydroxyl group transfer method to improve the electrical characteristics of solution-processed amorphous InGaZnO (IGZO) thin-film transistors (TFTs). Tuned poly(dimethylsiloxane) elastomer, which has a hydroxyl group as a terminal chemical group, was adhered temporarily to an IGZO thin-film during the solidification step to transfer and supply sufficient hydroxyl groups to the IGZO thin-film. The transferred hydroxyl groups led to efficient hydrolysis and condensation reactions, resulting in a denser metal–oxygen–metal network being achieved in the IGZO thin-film compared to the conventional IGZO thin-film. In addition, it was confirmed that there was no morphological deformation, including to the film thickness and surface roughness. The hydroxyl group transferred IGZO based TFTs exhibited enhanced electrical properties (field-effect mobility of 2.21 cm2 V‑1 s‑1, and on/off current ratio of 106) compared to conventional IGZO TFTs (field-effect mobility of 0.73 cm2 V‑1 s‑1 and on/off current ratio of 105).
Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response.
Shcherbakov, Maxim R; Neshev, Dragomir N; Hopkins, Ben; Shorokhov, Alexander S; Staude, Isabelle; Melik-Gaykazyan, Elizaveta V; Decker, Manuel; Ezhov, Alexander A; Miroshnichenko, Andrey E; Brener, Igal; Fedyanin, Andrey A; Kivshar, Yuri S
2014-11-12
We observe enhanced third-harmonic generation from silicon nanodisks exhibiting both electric and magnetic dipolar resonances. Experimental characterization of the nonlinear optical response through third-harmonic microscopy and spectroscopy reveals that the third-harmonic generation is significantly enhanced in the vicinity of the magnetic dipole resonances. The field localization at the magnetic resonance results in two orders of magnitude enhancement of the harmonic intensity with respect to unstructured bulk silicon with the conversion efficiency limited only by the two-photon absorption in the substrate.
Luo, Weiwei; Cai, Wei; Xiang, Yinxiao; Wu, Wei; Shi, Bin; Jiang, Xiaojie; Zhang, Ni; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun
2017-08-01
Graphene plasmons provide great opportunities in light-matter interactions benefiting from the extreme confinement and electrical tunability. Structured graphene cavities possess enhanced confinements in 3D and steerable plasmon resonances, potential in applications for sensing and emission control at the nanoscale. Besides graphene boundaries obtained by mask lithography, graphene defects engineered by ion beams have shown efficient plasmon reflections. In this paper, near-field responses of structured graphene achieved by ion beam direct-writing are investigated. Graphene nanoresonators are fabricated easily and precisely with a spatial resolution better than 30 nm. Breathing modes are observed in graphene disks. The amorphous carbons around weaken the response of edge modes in the resonators, but meanwhile render the isolated resonators in-plane electrical connections, where near-fields are proved gate-tunable. The realization of gate-tunable near-fields of graphene 2D resonators opens up tunable near-field couplings with matters. Moreover, graphene nonconcentric rings with engineered near-field confinement distributions are demonstrated, where the quadrupole plasmon modes are excited. Near-field mappings reveal concentrations at the scale of 3.8×10-4λ02 within certain zones which can be engineered. The realization of electrically tunable graphene nanoresonators by ion beam direct-writing is promising for active manipulation of emission and sensing at the nanoscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Experimental Characterization of Plasma Detachment from Magnetic Nozzles
NASA Astrophysics Data System (ADS)
Olsen, Christopher Scott
Magnetic nozzles, like Laval nozzles, are observed in several natural systems and have application in areas such as electric propulsion and plasma processing. Plasma flowing through these nozzles is inherently tied to the field lines and must separate for momentum redirection or particle transport to occur. Plasma detachment and associated mechanisms from a magnetic nozzle are investigated. Experimental results are presented from the plume of the VASIMRRTM VX-200 device flowing along an axisymmetric magnetic nozzle and operated at two ion energies to explore momentum dependent detachment. The argon plume expanded into a 150m3 vacuum chamber where the background pressure was low enough that charge-exchange mean-free-paths were longer than experiment scale lengths. This magnetic nozzle system is demonstrated to hydrodynamically scale up to astrophysical plasmas, particularly the solar chromosphere, implying general relevance to many systems. Plasma parameters were mapped over a large spatial range using measurements from multiple plasma diagnostics. The data show that the plume does not follow the magnetic field lines. A mapped integration of the ion flux shows the plume may be divided into three regions where 1) the plume briefly follows the magnetic flux, 2) diverges quadratically before 3) expanding with linear trajectories. Transitioning from region 1→2, the ion flux departs from the magnetic flux suggesting ion detachment. An instability forms in region 2 driving an oscillating electric field that causes ions to expand before enhancing electron cross-field transport through anomalous resistivity. Transitioning from region 2→3 the electric field dissipates, the trajectories linearize, and the plume effectively detaches. A delineation of sub-to-super Alfvenic flow aligns well with the inflection points of the linearization without a change in magnetic topology. The detachment process is best described as a two part process: First, ions detach by a breakdown of the magnetic moment when the quantity |v/fcLB| becomes of order unity. Second, the turbulent electric field enhances electron transport up to a factor of 4+/-1 above collisional diffusion; electron cross-field velocities approximate that of the ions and depart on more centralized field lines. Electrons are believed to detach by breakdown of magnetic moment further downstream in the weaker magnetic field.
Zhao, Chen; Zhang, Shunqi; Liu, Zhipeng; Yin, Tao
2015-07-01
A new method to improve the focalization and efficiency of the Figure of Eight (FOE) coil in rTMS is discussed in this paper. In order to decrease the half width of the distribution curve (HWDC), as well to increase the ratio of positive peak value to negative peak value (RPN) of the induced electric field, a shield plate with a window and a ferromagnetic block are assumed to enhance the positive peak value of the induced electrical field. The shield is made of highly conductive copper, and the block is made of highly permeable soft magnetic ferrite. A computer simulation is conducted on ANSYS® software to conduct the finite element analysis (FEA). Two comparing coefficients were set up to optimize the sizes of the shield window and the block. Simulation results show that a shield with a 60 mm × 30 mm sized window, together with a block 40 mm thick, can decrease the focal area of a FOE coil by 46.7%, while increasing the RPN by 135.9%. The block enhances the peak value of the electrical field induced by a shield-FOE by 8.4%. A real human head model was occupied in this paper to further verify our method.
Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan
2015-01-01
The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field. PMID:26670467
NASA Astrophysics Data System (ADS)
Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan
2015-12-01
The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field.
Students' Development of Representational Competence Through the Sense of Touch
NASA Astrophysics Data System (ADS)
Magana, Alejandra J.; Balachandran, Sadhana
2017-06-01
Electromagnetism is an umbrella encapsulating several different concepts like electric current, electric fields and forces, and magnetic fields and forces, among other topics. However, a number of studies in the past have highlighted the poor conceptual understanding of electromagnetism concepts by students even after instruction. This study aims to identify novel forms of "hands-on" instruction that can result in representational competence and conceptual gain. Specifically, this study aimed to identify if the use of visuohaptic simulations can have an effect on student representations of electromagnetic-related concepts. The guiding questions is How do visuohaptic simulations influence undergraduate students' representations of electric forces? Participants included nine undergraduate students from science, technology, or engineering backgrounds who participated in a think-aloud procedure while interacting with a visuohaptic simulation. The think-aloud procedure was divided in three stages, a prediction stage, a minimally visual haptic stage, and a visually enhanced haptic stage. The results of this study suggest that students' accurately characterized and represented the forces felt around a particle, line, and ring charges either in the prediction stage, a minimally visual haptic stage or the visually enhanced haptic stage. Also, some students accurately depicted the three-dimensional nature of the field for each configuration in the two stages that included a tactile mode, where the point charge was the most challenging one.
NASA Astrophysics Data System (ADS)
Zhao, H.; Baker, D. N.; Califf, S.; Li, X.; Jaynes, A. N.; Leonard, T.; Kanekal, S. G.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.; Reeves, G. D.; Spence, H. E.
2017-12-01
Using measurements from the Van Allen Probes, a penetration event of tens to hundreds of keV electrons and tens of keV protons into the low L shells (L < 4) is studied. Timing and magnetic local time (MLT) differences of energetic particle deep penetration are unveiled and underlying physical processes are examined. During this event, both proton and electron penetrations are MLT asymmetric. The observed MLT difference of proton penetration is consistent with convection of plasma sheet protons, suggesting enhanced convection during geomagnetic active times to be the cause of energetic proton deep penetration during this event. The observed MLT difference of tens to hundreds of keV electron penetration is completely different from tens of keV protons and cannot be well explained by inward radial diffusion, convection of plasma sheet electrons, or transport of trapped electrons by enhanced convection electric field represented by the Volland-Stern model or a uniform dawn-dusk electric field model based on the electric field measurements. It suggests that the underlying physical mechanism responsible for energetic electron deep penetration, which is very important for fully understanding energetic electron dynamics in the low L shells, should be MLT localized.
Alternating Field Electronanofluidization
NASA Astrophysics Data System (ADS)
Espin, M. J.; Valverde, J. M.; Quintanilla, M. A. S.; Castellanos, A.
2009-06-01
The use of fluidized beds to remove submicron particles from gases has been investigated since 1949. High efficiency removal was achieved in the 1970's by imposing an electric field on a fluidized bed of semi-insulating granules that were able to collect the charged pollutant entrained in the fluidizing gas. In spite of their extended use nowadays, the collection efficiency of electrofluidized beds (EFB) is still hindered by gas bypassing associated to gas bubbling and the consequent requirement of too high gas flow and pressure drop. In this paper we report on the electromechanical behavior of an EFB of insulating nanoparticles. When fluidized by gas, these nanoparticles form extremely porous light agglomerates of size of the order of hundreds of microns that allow for a highly expanded nonbubbling fluidized state at reduced gas flow. It is found that fluidization uniformity and bed expansion are additionally enhanced by an imposed AC electric field for field oscillation frequencies of several tens of hertzs and field strengths of the order of 1 kV/cm. For oscillation frequencies of the order of hertzs, or smaller, bed expansion is hindered due to electrophoretic deposition of the agglomerates onto the vessel walls, whereas for oscillation frequencies of the order of kilohertzs, or larger, electrophoresis is nullified and bed expansion is not affected. According to a proposed model, the size of nanoparticle agglomerates stems from the balance between shear, which depends on field strength, and van der Waals forces. The optimum field strength for enhancing bed expansion produces an electric force on the agglomerates similar to their weight force, while the oscillation velocity of the agglomerates is similar to the gas velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jiahang; Antipov, Sergey P.; Baryshev, Sergey V.
Field emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L-band rf gun. The stored energy was changed by adjusting the axial position (distance between the cathode base and the gun back surface) of the cathode while the applied electric field on the cathode tip is kept constant. Avery strong correlation ofmore » the field-emission current with the stored energy has been observed. While eliminating all possible interfering sources, an enhancement of the current by a factor of 5 was obtained as the stored energy was increased by a factor of 3. It implies that under certain circumstances a localized field emission may be significantly altered by the global parameters in a system.« less
NASA Astrophysics Data System (ADS)
Zhang, Xizhu; Wang, Jinshu; Wang, Yiman; Liu, Wei; Zhou, Meiling; Gao, Zhiyuan
2013-06-01
The microstructure of a fully activated scandia doped dispenser (SDD) cathode has been studied by scanning electron microscope (SEM). The observation results display that nanoparticles appear at the growth steps and the surface of tungsten grains of the fully activated SDD cathode. To study the influence of the nanoparticles on the emission, the local electric field strengths around the nanoparticles have been calculated by Maxwell 2D code and Comsol. The calculation results show that the local electric field strengths are enhanced by 1.1 to 3.8 times to average value based on different model conditions. The highest field strength is about 1.54 × 105 V/cm at an average field strength of 40 KV/cm, which is related to a space-charge limited (SCL) current density of 100 A/cm2 in the experimental configuration. This implies the field strength is not high enough to cause field emission.
Control of electromagnetic edge effects in electrically-small rectangular plasma reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trampel, Christopher P.; Stieler, Daniel S.; PowerFilm, Inc., 2337 230th Street, Ames, Iowa 50014
Electromagnetic fields supported by rectangular reactors for plasma enhanced chemical vapor deposition are studied theoretically. Expressions for the fields in an electrically-small rectangular reactor with plasma in the chamber are derived. Modal field decompositions are employed under the homogeneous plasma slab approximation. The amplitude of each mode is determined analytically. It is shown that the field can be represented by the standing wave, evanescent waves tied to the edges, and an evanescent wave tied to the corners of the reactor. The impact of boundary conditions at the plasma edge on nonuniformity is quantified. Uniformity may be improved by placing amore » lossy magnetic layer on the reactor sidewalls. It is demonstrated that nonuniformity is a decreasing function of layer thickness.« less
Modulation of the electronic property of phosphorene by wrinkle and vertical electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Wei, Zhongming, E-mail: zmwei@semi.ac.cn; Li, Jingbo, E-mail: jbli@semi.ac.cn
2015-09-14
The electronic properties of wrinkled phosphorene and its response to charge injection and external vertical electric field have been studied using first-principles calculations. It is found that small-size wrinkle systems have lower energy than wrinkle-free monolayer, suggesting that free-standing phosphorene spontaneously forms small protrusion on its nanosheet. The ratio of wrinkle height to curvature radius increases with enlarging height, indicating a promotion of field enhancement factor. Furthermore, the injected charges mostly distribute at peak and valley. Direct-to-indirect band-gap transition has been found for zigzag wrinkle with height of 14.81 Å. The band gaps of wrinkled nanosheets decrease almost linearly with increasingmore » field, which is caused by charge separation of valence band maximum and conduction band minimum.« less
A novel SOI LDMOS with substrate field plate and variable-k dielectric buried layer
NASA Astrophysics Data System (ADS)
Li, Qi; Wen, Yi; Zhang, Fabi; Li, Haiou; Xiao, Gongli; Chen, Yonghe; Fu, Tao
2018-09-01
A novel silicon-on-insulator (SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) structure has been proposed. The new structure features a substrate field plate (SFP) and a variable-k dielectric buried layer (VKBL). The SFP and VKBL improve the breakdown voltage by introducing new electric field peaks in the surface electric field distribution. Moreover, the SFP reduces the specific ON-resistance through an enhanced auxiliary depletion effect on the drift region. The simulation results indicate that compared to the conventional SOI LDMOS structure, the breakdown voltage is improved from 118 V to 221 V, the specific ON-resistance is decreased from 7.15 mΩ·cm2 to 3.81 mΩ·cm2, the peak value of surface temperature is declined by 38 K.
Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia
2015-06-01
A magnetic-field energy harvester using a low-frequency magneto-mechano-electric (MME) composite tuning-fork is proposed. This MME composite tuning-fork consists of a copper tuning fork with piezoelectric Pb(Zr(1-x)Ti(x))O3 (PZT) plates bonded near its fixed end and with NdFeB magnets attached at its free ends. Due to the resonance coupling between fork prongs, the MME composite tuning-fork owns strong vibration and high Q value. Experimental results show that the proposed magnetic-field energy harvester using the MME composite tuning-fork exhibits approximately 4 times larger maximum output voltage and 7.2 times higher maximum power than the conventional magnetic-field energy harvester using the MME composite cantilever.
Nanofocusing of the free-space optical energy with plasmonic Tamm states.
Niu, Linyu; Xiang, Yinxiao; Luo, Weiwei; Cai, Wei; Qi, Jiwei; Zhang, Xinzheng; Xu, Jingjun
2016-12-20
To achieve extreme electromagnetic enhancement, we propose a plasmonic Tamm states (PTSs) configuration based on the metal-insulator-metal Bragg reflector, which is realized by periodically modulating the width of the insulator. Both the thick (2D) and thin (3D) structures are discussed. Through optimization performed by the impedance-based transfer matrix method and the finite difference time domain method, we find that both the electric field and magnetic field intensities can be increased by three orders of magnitude. The field-enhancement inside the PTSs configuration is not limited to extremely sharp waveguide terminal, which can greatly reduce processing difficulties.
Ferroelastic domain switching dynamics under electrical and mechanical excitations.
Gao, Peng; Britson, Jason; Nelson, Christopher T; Jokisaari, Jacob R; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing
2014-05-02
In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.
Ferroelastic domain switching dynamics under electrical and mechanical excitations
NASA Astrophysics Data System (ADS)
Gao, Peng; Britson, Jason; Nelson, Christopher T.; Jokisaari, Jacob R.; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M.; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing
2014-05-01
In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babich, L. P., E-mail: babich@elph.vniief.ru; Bochkov, E. I.; Kutsyk, I. M.
2011-05-15
The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.
Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions.
de Ceglia, Domenico; Vincenti, Maria Antonietta; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael
2017-02-20
Plasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.
NASA Astrophysics Data System (ADS)
Miyake, Y.; Cully, C. M.; Usui, H.; Nakashima, H.
2013-12-01
In order to increase accuracy and reliability of in-situ measurements made by scientific spacecraft, it is imperative to develop comprehensive understanding of spacecraft-plasma interactions. In space environments, not only the spacecraft charging but also surrounding plasma disturbances such as caused by the wake formation may interfere directly with in-situ measurements. The self-consistent solutions of such phenomena are necessary to assess their effects on scientific spacecraft systems. As our recent activity, we work on the modeling and simulations of Cluster double-probe instrument in tenuous and cold streaming plasmas [1]. Double-probe electric field sensors are often deployed using wire booms with radii much less than typical Debye lengths of magnetospheric plasmas (millimeters compared to tens of meters). However, in tenuous and cold streaming plasmas seen in the polar cap and lobe regions, the wire booms have a high positive potential due to photoelectron emission and can strongly scatter approaching ions. Consequently, an electrostatic wake formed behind the spacecraft is further enhanced by the presence of the wire booms. We reproduce this process for the case of the Cluster satellite by performing plasma particle-in-cell (PIC) simulations [2], which include the effects of both the spacecraft body and the wire booms in a simultaneous manner, on modern supercomputers. The simulations reveal that the effective thickness of the booms for the Cluster Electric Field and Wave (EFW) instrument is magnified from its real thickness (2.2 millimeters) to several meters, when the spacecraft potential is at 30-40 volts. Such booms enhance the wake electric field magnitude by a factor of about 2 depending on the spacecraft potential, and play a principal role in explaining the in situ Cluster EFW data showing sinusoidal spurious electric fields of about 10 mV/m amplitudes. The boom effects are quantified by comparing PIC simulations with and without wire booms. The paper also reports some recent progress of ongoing PIC simulation research that focuses on spurious electric field generation in subsonic ion flows. Our preliminary simulation results revealed that; (1) there is no apparent wake signature behind the spacecraft in such a condition, but (2) spurious electric field over 1 mV/m amplitude is observed in the direction of the flow vector. The observed field amplitude is sometimes comparable to the convection electric field (a few mV/m) associated with the flow. Our analysis also confirmed that the spurious field is caused by a weakly-asymmetric potential pattern created by the ion flow. We will present the parametric study of such spurious fields for various conditions of plasma flows. [References] [1] Miyake, Y., C. M. Cully, H. Usui, and H. Nakashima (2013), Plasma particle simulations of wake formation behind a spacecraft with thin wire booms, submitted to J. Geophys. Res. [2] Miyake, Y., and H. Usui (2009), New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions, Phys. Plasmas, 16, 062904, doi:10.1063/1.3147922.
Near Earth Current Meander (Necm) Model of Substorms
NASA Astrophysics Data System (ADS)
Heikkila, W. J.; Chen, T.; Liu, Z. X.; Pu, Z. Y.; Pellinen, R. J.; Pulkkinen, T. I.
2001-01-01
We propose that the appropriate instability to trigger a substorm is a tailward meander (in the equatorial plane) of the strong current filament that develops during the growth phase. From this single assumption follows the entire sequence of events for a substorm. The main particle acceleration mechanism in the plasma sheet is curvature drift with a dawn-dusk electric field, leading to the production of auroral arcs. Eventually the curvature becomes so high that the ions cannot negotiate the sharp turn at the field-reversal region, locally, at a certain time. The particle motion becomes chaotic, causing a local outward meander of the cross-tail current. An induction electric field is produced by Lenz's law, E^ind=-∂A/∂t. An outward meander with B_z>0 will cause E×B flow everywhere out from the disturbance; this reaction is a macroscopic instability which we designate the electromotive instability. The response of the plasma is through charge separation and a scalar potential, E^es=-∇φ. Both types of electric fields have components parallel to B in a realistic magnetic field. For MHD theory to hold the net E_∥ must be small; this usually seems to happen (because MHD often does hold), but not always. Part of the response is the formation of field-aligned currents producing the well-known substorm current diversion. This is a direct result of a strong E_∥^ind (the cause) needed to overcome the mirror force of the current carriers; this enables charge separation to produce an opposing electrostatic field E_∥^es (the effect). Satellite data confirm the reality of a strong E_∥ in the plasma sheet by counter-streaming of electrons and ions, and by the inverse ion time dispersion, up to several 100 keV. The electron precipitation is associated with the westward traveling surge (WTS) and the ion with omega (Ω) bands, respectively. However, with zero curl, E^es cannot modify the emf ɛ=∮E.dl=-dΦ^M/dt of the inductive electric field E^ind (a property of vector fields); the charge separation that produces a reduction of E_∥ must enhance the transverse component E_⊥. The new plasma flow becomes a switch for access to the free energy of the stressed magnetotail. On the tailward side the dusk-dawn electric field with E.J<0 will cause tailward motion of the plasma and a plasmoid may be created; it will move in the direction of least magnetic pressure, tailward. On the earthward side the enhanced dawn-dusk induction electric field with E.J>0 will cause injection into the inner plasma sheet, repeatedly observed at moderate energies of 1-50 keV. This same electric field near the emerging X-line will accelerate particles non-adiabatically to moderate energies. With high magnetic moments in a weak magnetic field, electrons (ions) can benefit from gradient and curvature drift to attain high energies (by the ratio of the magnetic field magnitude) in seconds (minutes).
Impact of electrical conductivity on acid hydrolysis of guar gum under induced electric field.
Li, Dandan; Zhang, Yao; Yang, Na; Jin, Zhengyu; Xu, Xueming
2018-09-01
This study aimed to improve induced electric field (IEF)-assisted hydrolysis of polysaccharide by controlling electrical conductivity. As the conductivity of reaction medium was increased, the energy efficiency of IEF was increased because of deceased impedance, as well as enhanced output voltage and temperature, thus the hydrolysis of guar gum (GG) was accelerated under IEF. Changes in weight-average molecular weight (Mw) suggested that IEF-assisted hydrolysis of GG could be described by the first-order kinetics 1/Mw ∝ kt, with the rate constant (k), varying directly with the medium conductivity. Although IEF-assisted hydrolysis largely disrupted the morphological structure of GG, it had no impact on the chemical structure. In comparison to native GG, the steady shear viscosity of hydrolyzed GG dramatically declined while the thermal stability slightly decreased. This study extended the knowledge of electrical conductivity upon IEF-assisted acid hydrolysis of GG and might contribute to a better utilization of IEF for polysaccharide modification. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Matthew W.
2013-01-01
This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include themore » inherently weak Raman cross section and susceptibility to fluorescence interference.« less
Lei, Guangping; Zhang, Yayun; Liu, Hantao; Song, Fenhong
2018-05-11
By performing molecular dynamics simulations, a GNT/CNT hybrid structure constructed via combing (6, 6) graphyne nanotube (GNT) with (6, 6) carbon nanotube (CNT) has been designed and investigated. The mechanical properties induced by the percentage of GNT, water content and electric field were examined. Calculation results reveal that the fracture strain and strength of hollow hybrid structure are remarkably smaller than that of perfect (6, 6) CNT. In addition, the Young's modulus decreases monotonously with the increase of percentage of GNT. More importantly, the tunable mechanical properties of hybrid structure can be achieved through filling with water molecules and applying an electric field along tensile direction. Specifically, increasing water content from 0.0 to 8.70 mmol g -1 in the absence of electric field could result in fracture strain and strength reducing by 15.09% and 12.87%, respectively. Besides, enhancing fracture strain and strength of water-filled hybrid structure with water content of 8.70 mmol g -1 can also be obtained with rising electric field intensity. These findings would provide a valuable theoretical basis for designing and fabricating a nanodevice with controllable mechanical performances.
NASA Astrophysics Data System (ADS)
Lei, Guangping; Zhang, Yayun; Liu, Hantao; Song, Fenhong
2018-05-01
By performing molecular dynamics simulations, a GNT/CNT hybrid structure constructed via combing (6, 6) graphyne nanotube (GNT) with (6, 6) carbon nanotube (CNT) has been designed and investigated. The mechanical properties induced by the percentage of GNT, water content and electric field were examined. Calculation results reveal that the fracture strain and strength of hollow hybrid structure are remarkably smaller than that of perfect (6, 6) CNT. In addition, the Young’s modulus decreases monotonously with the increase of percentage of GNT. More importantly, the tunable mechanical properties of hybrid structure can be achieved through filling with water molecules and applying an electric field along tensile direction. Specifically, increasing water content from 0.0 to 8.70 mmol g-1 in the absence of electric field could result in fracture strain and strength reducing by 15.09% and 12.87%, respectively. Besides, enhancing fracture strain and strength of water-filled hybrid structure with water content of 8.70 mmol g-1 can also be obtained with rising electric field intensity. These findings would provide a valuable theoretical basis for designing and fabricating a nanodevice with controllable mechanical performances.