Science.gov

Sample records for electric furnace division

  1. CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN REROLL BAY. CAKES FROM THE CASTING SHOP ARE BROUGHT UP TO ROLLING TEMPERATURE IN ONE OF TWO (#130 AND 146) GAS-FIRED FURNACES. A RADIO-CONTROLLED OVERHEAD CRANE TRANSFERS CAKES FROM FLATCARS TO THE ROLLER LINE LEADING INTO THE FURNACE. CAKES ARE HEATED AT 900-1000 DEGREES FAHRENHEIT FOR THREE TO FOUR HOURS. RATED FURNACE CAPACITY IS 100,000 LBS.\\HOUR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  2. 2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ELECTRIC FURNACE OFFICE & CHEMICAL LABORATORY BUILDING. INGOT MOLDS IN RIGHT FOREGROUND. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  3. Acoustic characteristics of electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; Bikeev, R. A.; Cherednichenko, A. V.; Ognev, A. M.

    2016-06-01

    A mathematical model is constructed to describe the appearance and development of the noise characteristics of superpower electric arc furnaces. The noise formation is shown to be related to the pulsation of the axial plasma flows in arc discharges because of the electrodynamic pressure oscillations caused by the interaction of the self-magnetic field with the current passing in an arc. The pressure in the arc axis changes at a frequency of 100 Hz at the maximum operating pressure of 66 kPa for an arc current of 80 kA. The main ac arc sound frequencies are multiples of 100 Hz, which is supported in the practice of operation of electric arc furnaces. The sound intensity in the furnace laboratory reaches 160 dB and is decreased to 115-120 dB in the working furnace area due to shielding by the furnace jacket, the molten metal, and the molten slag. The appropriateness of increasing the hermetic sealing of electric furnaces and creating furnaces operating at low currents and high transformer voltages is corroborated.

  4. 4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF CHARGING AISLE. VIEW OF 50 TON CAPACITY CHARGING BUCKET. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  5. 3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. VIEW OF 7 1/2 TON CAPACITY ALLIANCE SIDE DOOR CHARGING MACHINE. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  6. 1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT LOOKING NORTHEAST. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  7. 5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF POURING AISLE. VIEW OF THE NATION'S FIRST VACUUM DEGASSING UNIT (1956). - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. 16 CFR Appendix G2 to Part 305 - Furnaces- Electric

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Furnaces- Electric G2 Appendix G2 to Part... LABELING RULEâ) Appendix G2 to Part 305—Furnaces— Electric Furnace type Range of annual fuel utilization efficiencies (AFUEs) Low High Electric Furnaces—All Capacities 100.0 100.0...

  9. ELECTRIC FURNACES TILT AROUND A PIVOT UNDER THE SPOUT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELECTRIC FURNACES TILT AROUND A PIVOT UNDER THE SPOUT TO FILL BULL LADLES BELOW THE CHARGING DECK. THE REAR VIEW OF A POURING ELECTRIC FURNACE FROM THE CHARGING DECK IS SHOWN HERE. - Southern Ductile Casting Company, Melting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  10. Hydrothermal treatment of electric arc furnace dust.

    PubMed

    Yu, Bing-Sheng; Wang, Yuh-Ruey; Chang, Tien-Chin

    2011-06-15

    In this study, ZnO crystals were fabricated from electric arc furnace dust (EAFD) after alkaline leaching, purification and hydrothermal treatment. The effects of temperature, duration, pH, and solid/liquid ratio on ZnO crystal morphology and size were investigated. Results show a high reaction temperature capable of accelerating the dissolution of ZnO precursor, expediting the growth of 1D ZnO, and increasing the L/D ratio in the temperature range of 100-200°C. ZnO crystals with high purity can also be obtained, using the one-step hydrothermal treatment with a baffle that depends on the different solubility of zincite and franklinite in the hydrothermal conditions.

  11. TILTING ELECTRIC ARC FURNACE USED TO MELT BRONZE IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TILTING ELECTRIC ARC FURNACE USED TO MELT BRONZE IN THE BRASS FOUNDRY BY MEANS OF AN ARC CREATED BETWEEN TWO HORIZONTAL ELECTRODES. WHEN MELTED, THE FURNACE TILTS, FILLING MOBILE LADLES FROM THE SPOUT. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  12. Considerations for Scale-Up of Ferronickel Electric Smelting Furnaces

    NASA Astrophysics Data System (ADS)

    Hundermark, R. J.; Nelson, L. R.

    2017-02-01

    In ferronickel smelting, the selective carbothermic reduction of calcined nickel laterite ores in large electric furnaces yields a crude ferronickel product. The optimal process for nickel laterite smelting requires a fine balance between the metallurgical requirements of the process (feed composition, nickel recovery, energy consumption, product quality) and the capabilities of the feeding, tapping and off-gas systems, and especially of the furnace crucible and electrical system. The scale-up of nickel laterite smelting operations over the last 50 years has seen a tenfold increase in furnace power input. Furnace operations within the industry are examined to identify common trends and some new metrics are proposed which incorporate the combination of electrode power densities and the impact of alloy nickel grade on gas generation rates, and hence local electrode gas fluxes, which may impact on future scale-up of ferronickel furnaces.

  13. Vitrification of electric arc furnace dusts.

    PubMed

    Pelino, M; Karamanov, A; Pisciella, P; Crisucci, S; Zonetti, D

    2002-01-01

    Electric arc furnace baghouse dust (EAFD), a waste by-product of the steelmaking process, contains the elements that are volatilized from the charge during the melting (Cr, Pb, Zn, Cu and Cd). The results of leaching tests show that the concentration of these elements exceeds the regulatory limits. Consequently, EAFD cannot be disposed of in ordinary landfill sites without stabilization of the heavy metals. In this work, the vitrification of EAFD, from both carbon and stainless steel productions, were studied. The vitrification process was selected as the inertizing process because it permits the immobilization of the hazardous elements in the glass network and represents an environmentally acceptable method for the stabilization of this waste. Classes of various compositions were obtained by mixing EAFD with glass cullet and sand. The EAFD and the glass products were characterized by DTA, TG, X-ray analysis and by the TCLP test. The results show that the stability of the product is influenced by the glass structure, which mainly depends on the Si/O ratio. Secondary crystallization heat-treatment were carried out on some samples. The results highlighted the formation of spinel phases, which reduced the chemical durability in acid media. The possibility to recover Zn from carbon steel production EAFD was investigated and about 60-70% of metal recovery was obtained. The resulting glass show higher chemical stability than glasses obtained without metal recovery.

  14. ELECTRIC HOLDING FURNACE IN THE MALLEABLE FOUNDRY MAINTAINS CONSTANT TEMPERATURES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELECTRIC HOLDING FURNACE IN THE MALLEABLE FOUNDRY MAINTAINS CONSTANT TEMPERATURES FOR IRON PRIOR TO FILLING MOBILE LADLES. - Stockham Pipe & Fittings Company, Malleable Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  15. POURING IRON FROM ELECTRIC FURNACE INTO BULL LADLE AFTER MAGNESIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    POURING IRON FROM ELECTRIC FURNACE INTO BULL LADLE AFTER MAGNESIUM HAD BEEN ADDED TO GENERATE DUCTILE IRON WHEN IT COOLS IN THE MOLD. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  16. Structural ceramics containing electric arc furnace dust.

    PubMed

    Stathopoulos, V N; Papandreou, A; Kanellopoulou, D; Stournaras, C J

    2013-11-15

    In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an increase of mechanical strength. Moreover, leaching tests performed according to the Europeans standards on the EAFD-block samples showed that the quantities of heavy metals leached from crushed blocks were within the regulatory limits. Thus the EAFD-blocks can be regarded as material of no environmental concern.

  17. Furnace Blower Electricity: National and Regional Savings Potential

    SciTech Connect

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less

  18. Assessing energy efficiency of electric car bottom furnaces intended for thermal energization of minerals

    NASA Astrophysics Data System (ADS)

    Nizhegorodov, A. I.

    2017-01-01

    The paper deals with a new concept of electric furnaces for roasting and thermal energization of vermiculite and other minerals with vibrational transportation of a single-layer mass under constant thermal field. The paper presents performance calculation and comparative assessment of energy data for furnaces of different modifications: flame and electric furnaces with three units, furnaces with six units and ones with series-parallel connection of units, and furnaces of new concept.

  19. 76 FR 4724 - Emerson Transportation Division, a Division of Emerson Electric, Including Workers Located...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ..., Including Workers Located Throughout the United States; Bridgeton, MO; Amended Certification Regarding... Emerson Transportation Division, a division of Emerson Electric, including workers located throughout...

  20. Glass-ceramic materials from electric arc furnace dust.

    PubMed

    Kavouras, P; Kehagias, T; Tsilika, I; Kaimakamis, G; Chrissafis, K; Kokkou, S; Papadopoulos, D; Karakostas, Th

    2007-01-31

    Electric arc furnace dust (EAFD) was vitrified with SiO2, Na2CO3 and CaCO3 powders in an electric furnace at ambient atmosphere. Vitreous products were transformed into glass-ceramic materials by two-stage heat treatment, at temperatures determined by differential thermal analysis. Both vitreous and glass-ceramic materials were chemically stable. Wollastonite (CaSiO3) was separated from the parent matrix as the dominant crystalline phase, verified by X-ray diffraction analysis and energy dispersive spectrometry. Transmission electron microscopy revealed that wollastonite crystallizes mainly in its monoclinic form. Knoop microhardness was measured with the static indentation test method in all initial vitreous products and the microhardness values were in the region of 5.0-5.5 GPa. Devitrification resulted in glass-ceramic materials with microhardness values strongly dependent on the morphology and orientation of the separated crystal phase.

  1. Effect of the chemical composition of slag on its foamability in an electric arc furnace

    NASA Astrophysics Data System (ADS)

    Kozhukhov, A. A.

    2015-06-01

    The problems of foaming electric furnace slags are considered. The role of the physicochemical properties of slag during its foaming in electric arc furnaces is studied. The regions of slag foaming in an electric arc furnace are determined. Based on the derived relations between the chemical composition of slag and its foamability, one can choose a rational path of slag formation to ensure good slag foaming in the course of electrosmelting of steel.

  2. Optimization of anthracite calcination process in a vertical electric arc furnace

    SciTech Connect

    Perron, J.; Bouvette, J.F.; Dupuis, M.

    1996-10-01

    Anthracite is used for cathode block manufacturing must be calcined prior to its use to eliminate volatile matter and reduce its electrical resistivity. Anthracite calcination in vertical electric arc furnaces is widely used in the industry. It is well known that this technology leads to a radial temperature gradient in the furnace which results in non-homogeneous calcined anthracite properties. Also, operation experience has shown that production of calcination furnaces can be difficult to stabilize if process changes occur, which may lead to variable quality of the calcined material. To optimize the calcination process, an improved control strategy and a mathematical model of Elkem-type electric arc furnace were developed. Using these, it was successfully demonstrated that temperature gradient in the furnace can be reduced and that furnace productivity can be substantially increased.

  3. Removal of chloride from electric arc furnace dust.

    PubMed

    Chen, Wei-Sheng; Shen, Yun-Hwei; Tsai, Min-Shing; Chang, Fang-Chih

    2011-06-15

    Electric arc furnace (EAF) dust with high chloride content increases the threat of dioxin emissions and the high chloride content reduces the value of recycled zinc oxide produced by EAF dust recycling plants. This study conducts a number of laboratory experiments to determine the technical feasibility of a new dechlorination method. These methods consist of a series of roasting processes and water washing processes. In the roasting process, EAF dust was heated in a tube furnace to evaluate the parameters of atmospheric conditions, roasting temperature, and roasting time. Results indicate that sulfation roasting is more efficient in reducing chloride content than other roasting processes. The water washing process can totally remove water-soluble chloride at a solid to liquid ratio of 1:10. However, the remaining water-insoluble substance is difficult to dechlorinate. For example, lead chloride forms a hydroxyl-halide (PbOHCl) and lead chloride carbonate (Pb(2)CO(3)Cl(2)) agglutinative matrix that is hard to wash away.

  4. Electricity and Natural Gas Efficiency Improvements forResidential Gas Furnaces in the U.S.

    SciTech Connect

    Lekov, Alex; Franco, Victor; Meyers, Steve; McMahon, James E.; McNeil, Michael; Lutz, Jim

    2006-05-26

    This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78 percent annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80 percent AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81 percent AFUE) and condensing furnaces (90-96 percent AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80 percent. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90 percent or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current

  5. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control...

  6. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control...

  7. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control...

  8. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control...

  9. 40 CFR 424.10 - Applicability; description of the open electric furnaces with wet air pollution control devices...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electric furnaces with wet air pollution control devices subcategory. 424.10 Section 424.10 Protection of... MANUFACTURING POINT SOURCE CATEGORY Open Electric Furnaces With Wet Air Pollution Control Devices Subcategory § 424.10 Applicability; description of the open electric furnaces with wet air pollution control...

  10. GUI for studying the parameters influence of the electric arc model for a three-phase electric arc furnace

    NASA Astrophysics Data System (ADS)

    Ghiormez, L.; Prostean, O.; Panoiu, M.; Panoiu, C.

    2017-01-01

    This paper presents an analysis regarding the modeling of the behavior for a three-phase electric arc furnace installation. Therefore, a block diagram is implemented in Simulink that represents the modeling of the entire electric arc furnace installation. This block diagram contains also the modeling of the electric arc which is the element that makes the electric arc furnace behaving as a nonlinear load. The values for the model parameters of the electric arc furnace installation are like the ones from the real installation taken into consideration. Other model parameters are the electric arc model ones. In order to study the influence of the parameters of the electric arc models, it is developed a Matlab program that contains the graphical user interfaces. These interfaces make connection with the models of the electric arc implemented in Simulink. The interfaces allow the user to modify parameters for each of the electric arc model. Current and voltage of the electric arc are the variables taken into account to study the influence of the parameters on the electric arc models. Waveforms for voltage and current of the electric arc are illustrated when a parameter of the model is modified in order to analyze the importance of this parameter on the electric arc model. Also, for each of the models is presented the voltage-current characteristic of the electric arc because this characteristic gives information about the behavior of the electric arc furnace installation.

  11. Innovation approaches to controlling the electric regimes of electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Bikeev, R. A.; Serikov, V. A.; Ognev, A. M.; Rechkalov, A. V.; Cherednichenko, V. S.

    2015-12-01

    The processes of current passage in an ac electric arc furnace (EAF) are subjected to industrial experiments and mathematical simulation. It is shown that, when a charge is melted, arcs between charge fragments exist in series with main arc discharges, and these arcs influence the stability of the main arc discharges. The measurement of instantaneous currents and voltages allowed us to perform a real-time calculation of the electrical characteristics of a three-phase circuit and to determine the θ parameter, which characterizes the nonlinearity of the circuit segment between electrodes. Based on these studies, we created an advanced system for controlling the electric regime of EAF.

  12. Multipurpose electric furnace system. [for use in Apollo-Soyuz Test Program

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Mchugh, J. P.; Foust, H. C.; Piotrowski, P. A.

    1974-01-01

    A multipurpose electric furnace system of advanced design for space applications was developed and tested. This system is intended for use in the Apollo-Soyuz Test Program. It consists of the furnace, control package and a helium package for rapid cooldown.

  13. Control systems of melting electric furnaces in metallurgy and mechanical engineering

    NASA Astrophysics Data System (ADS)

    Dednev, A. A.; Elizariov, K. A.; Kissel'man, M. A.; Nekhamin, S. M.

    2013-06-01

    The development and improvement of melting electric furnaces and the attendant technological processes are accompanied by development in the field of creating compatible automatic control systems. The automation of the functioning of equipment can also modify the furnaces that operate several decades and can prolong their life.

  14. Mineral phases of weathered and recent electric arc furnace dust.

    PubMed

    Martins, Fernanda Machado; dos Reis Neto, José Manoel; da Cunha, Carlos Jorge

    2008-06-15

    A weathered and a recent sample of electric arc furnace dust (EAFD), generated in a southern Brazilian steel industry, were characterized by X-ray fluorescence spectroscopy (XFA), powder X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) probe and Fourier transform infrared spectroscopy (FTIR). A quantitative phase composition model, that accounts for the observed data and for the physico-chemical conditions of formation, was postulated for each material. One sample, in the form of a wet paste, was collected from the lowest part of a landfill and corresponds to a weathered material whereas the other sample was collected from the top portion of the landfill and corresponds to a recently produced material. The dominant cations present in both samples are iron, zinc and lead with minor amounts of manganese, calcium and silicon. The dominant mineralogical phases identified in both materials are Magnetite, Franklinite and Zincite. The recent sample has Laurionite whereas the weathered sample has Hydrocerussite and Hydrozincite.

  15. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect

    O'Connor, W.K.; Turner, P.C.

    1999-09-01

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  16. Characterization of steel mill electric-arc furnace dust.

    PubMed

    Sofilić, Tahir; Rastovcan-Mioc, Alenka; Cerjan-Stefanović, Stefica; Novosel-Radović, Vjera; Jenko, Monika

    2004-06-18

    In order to make a complete characterization of electric-arc furnace (EAF) dust, as hazardous industrial waste, and to solve its permanent disposal and/or recovery, bearing in mind both the volumes formed in the Croatian steel industry and experiences of developed industrial countries, a study of its properties was undertaken. For this purpose, samples of EAF dust, taken from the regular production process in the Zeljezara Sisak Steel Mill between December 2000 and December 2001, were subjected to a series of tests. The chemical composition of EAF dust samples was investigated by means of a several different analytical methods. The results from the chemical analysis show that the approximate order of abundance of major elements in EAF dusts is as follows: Fe, Zn, Mn, Ca, Mg, Si, Pb, S, Cr, Cu, Al, C, Ni, Cd, As and Hg. Granular-metric composition of single samples was determined by applying sieve separation. Scanning electron micro-structural examination of EAF dust microstructure was performed and results indicated that all twelve EAF dusts were composed of solid spherical agglomerates with Fe, Zn, Pb, O, Si and Ca as the principal element. The investigation of grain morphology and the mineralogical composition of EAF dust were taken by combination of high resolution Auger electron spectroscopy (HR AES), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction analysis. The analysis of XPS-spectra determined the presence of zinc in the form of ZnO phase and the presence of lead in the form of PbO phase, i.e. PbSO3/PbSO4 forms. The results of the X-ray diffraction phase analysis show that the basis of the examined EAF dust samples is made of a mixture of metal oxides, silicates and sulphates. The metal concentration, anions, pH value and conductivity in water eluates was determined in order to define the influence of EAF dust on the environment.

  17. Thermodynamic Modeling of Zinc Speciation in Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Pickles, Chris A.

    2011-04-01

    The remelting of automobile scrap, containing galvanized steel, in an electric arc furnace (EAF) results in the generation of a dust, which contains considerable amounts of zinc and other metals. Typically, the amount of zinc is of significant commercial value, but the recovery of this metal can be hindered by the varied speciation of zinc. The majority of the zinc exists as zincite (ZnO) and zinc ferrite (ZnFe2O4) or ferritic spinels ((Zn x Mn y Fe1-x-y )Fe2O4), but other zinccontaining species such as zinc chloride, zinc hydroxide chlorides, hydrated zinc sulphates and zinc silicates have also been identified. There is a scarcity of research literature on the thermodynamic aspects of the formation of these zinc-containing species, in particular, the minor zinc-containing species. Therefore, in this study, the equilibrium module of HSC Chemistry® 6.1 was utilized to calculate the types and the amounts of the zinc-containing species. The variables studied were: the gas composition, the temperature and the dust composition. At high temperatures, zincite forms via the reaction of zinc vapour with oxygen gas and the zinc-manganese ferrites form as a result of the reaction of iron-manganese particles with zinc vapour and oxygen. At intermediate temperatures, zinc sulphates are produced through the reaction of zinc oxide and sulphur dioxide gas. As room temperature is approached, zinc chlorides and fluorides form by the reaction of zinc oxide with hydrogen chloride and hydrogen fluoride gases, respectively. Zinc silicate likely forms via the high temperature reaction of zinc vapour and oxygen with silica. In the presence of excess water and as room temperature is approached, the zinc sulphates, chlorides and fluorides can become hydrated.

  18. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    NASA Astrophysics Data System (ADS)

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  19. Optical emission from a small scale model electric arc furnace in 250-600 nm region

    SciTech Connect

    Maekinen, A.; Tikkala, H.; Aksela, H.; Niskanen, J.

    2013-04-15

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr{sub 2}O{sub 3}, Ni, SiO{sub 2}, Al{sub 2}O{sub 3}, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  20. Optical emission from a small scale model electric arc furnace in 250-600 nm region.

    PubMed

    Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H

    2013-04-01

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  1. 16 CFR Appendix G2 to Part 305 - Furnaces-Electric

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Furnaces-Electric G2 Appendix G2 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Electric Manufacturer's rated heating capacities (Btu's/hr.) Range of annual...

  2. 16 CFR Appendix G2 to Part 305 - Furnaces-Electric

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Furnaces-Electric G2 Appendix G2 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Electric Manufacturer's rated heating capacities (Btu's/hr.) Range of annual...

  3. 16 CFR Appendix G2 to Part 305 - Furnaces-Electric

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Furnaces-Electric G2 Appendix G2 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Electric Manufacturer's rated heating capacities (Btu's/hr.) Range of annual...

  4. 16 CFR Appendix G2 to Part 305 - Furnaces-Electric

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Furnaces-Electric G2 Appendix G2 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Furnaces—Electric Manufacturer's rated heating capacities (Btu's/hr.) Range of annual...

  5. 40 CFR 424.20 - Applicability; description of the covered electric furnaces and other smelting operations with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control...

  6. 40 CFR 424.20 - Applicability; description of the covered electric furnaces and other smelting operations with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control...

  7. 40 CFR 424.20 - Applicability; description of the covered electric furnaces and other smelting operations with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control...

  8. 40 CFR 424.20 - Applicability; description of the covered electric furnaces and other smelting operations with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control...

  9. 40 CFR 424.20 - Applicability; description of the covered electric furnaces and other smelting operations with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... covered electric furnaces and other smelting operations with wet air pollution control devices subcategory... Smelting Operations With Wet Air Pollution Control Devices Subcategory § 424.20 Applicability; description of the covered electric furnaces and other smelting operations with wet air pollution control...

  10. 40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Electric Arc Furnace (EAF) CH4.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission... charging intermittently every minute. b Temperature measured in off-gas channel downstream of the...

  11. 40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Electric Arc Furnace (EAF) CH4.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission... charging intermittently every minute. b Temperature measured in off-gas channel downstream of the...

  12. 40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Electric Arc Furnace (EAF) CH4.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission... charging intermittently every minute. b Temperature measured in off-gas channel downstream of the...

  13. 40 CFR Table K-1 to Subpart K of... - Electric Arc Furnace (EAF) CH4 Emission Factors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Electric Arc Furnace (EAF) CH4.... 98, Subpt. K, Table K-1 Table K-1 to Subpart K of Part 98—Electric Arc Furnace (EAF) CH4 Emission... charging intermittently every minute. b Temperature measured in off-gas channel downstream of the...

  14. Valorization of electric arc furnace primary steelmaking slags for cement applications.

    PubMed

    Kim, Hyung-Seok; Kim, Kee-Seok; Jung, Sung Suk; Hwang, Jin Ill; Choi, Jae-Seok; Sohn, Il

    2015-07-01

    To produce supplementary cementitious materials from electric arc furnace (EAF) slags, FeO was reduced using a two-stage reduction process that included an Al-dross reduction reaction followed by direct carbon reduction. A decrease in FeO was observed on tapping after the first-stage reduction, and further reduction with a stirred carbon rod in the second-stage reduction resulted in final FeO content below 5wt%, which is compatible with cement clinker applications. The reduced electric arc furnace slags (REAFS) mixed with cement at a unit ratio exhibited physical properties comparable to those of commercialized ground granulated blast furnace slags (GGBFS). Confocal laser scanning microscopy (CLSM) was used to obtain fundamental information on the cooling characteristics and conditions required to obtain amorphous REAFS. REAFS can be applied in cement mixtures to achieve the hydraulic properties needed for commercial use.

  15. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    PubMed

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  16. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    SciTech Connect

    Gerdemann, S.J.; White, J.C.

    1999-10-19

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  17. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1998-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  18. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, Stephen J.; White, Jack C.

    1999-01-01

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag.

  19. Recovery of titanium values from titanium grinding swarf by electric furnace smelting

    DOEpatents

    Gerdemann, S.J.; White, J.C.

    1998-08-04

    A method for the recovery of valuable materials from titanium grinding swarf is provided comprising the steps of sieving the accumulated titanium grinding swarf to remove unwanted coarse trash and grinding wheel fragments, pelletizing, and smelting in an electric arc furnace to produce ferrotitanium and/or high titanium slag. 1 fig.

  20. Multivariate economic performance assessment of an MPC controlled electric arc furnace.

    PubMed

    Wei, Donghui; Craig, Ian K; Bauer, Margret

    2007-06-01

    Economic performance is very important to advanced process control projects investigating whether the investment of control technology is worthwhile. In this paper economic performance assessment of a simulated electric arc furnace is conducted. The dependence of controlled variables and the corresponding economic impact are highlighted.

  1. Characteristics of electric arc furnaces powered by a low-frequency alternating current

    NASA Astrophysics Data System (ADS)

    Mironov, Yu. M.; Mironova, A. N.

    2016-06-01

    The changes in the parameters of a DSP-100 electric arc furnace that are induced by a decrease in the current frequency are considered. It is shown that the related decrease in the current lead resistances causes an increase in the arc power and voltage, a decrease in the reactive power, and an increase in the electrical efficiency and the power coefficient. The heat indices are expected to be significantly improved.

  2. Analysis the electrical parameters of a high-frequency coreless induction furnace

    NASA Astrophysics Data System (ADS)

    Iagăr, A.; Popa, G. N.; Diniş, C. M.

    2015-06-01

    The paper analyzes the most important electrical parameters of a coreless induction furnace, having a capacity of 7 kg molten iron (i.e. 2.5 kg aluminum). The furnace is supplied by a high-frequency (HF) static converter ITS2 12K20, with the output frequency 5...12 kHz, 600...1200 Vac rated HF voltage, and 20 kW rated HF power. Monitoring of electrical parameters was done for an aluminum charge, using a power quality analyser CA8334. The measurement results showed that induction furnace operation causes unbalance and harmonics in three-phase currents absorbed from the distribution network. Harmonics in the line currents are caused mainly by static converter, and to a lesser extent by furnace load and interaction of eddy currents induced in the charge and the magnetic field of the inductor. To reduce the negative impact of the current harmonics on the distribution network is necessary the design and achievement of electrical filters for odd-order harmonics (5th, 7th, 11th, 13th, 17th, 19th, 23th, 25th).

  3. Designing modern furnace cooling systems

    NASA Astrophysics Data System (ADS)

    Merry, J.; Sarvinis, J.; Voermann, N.

    2000-02-01

    An integrated multidisciplinary approach to furnace design that considers the interdependence between furnace cooling elements and other furnace systems, such as binding, cooling water, and instrumentation, is necessary to achieve maximum furnace production and a long refractory life. The retrofit of the BHP Hartley electric furnace and the Kidd Creek copper converting furnace are successful examples of an integrated approach to furnace cooling design.

  4. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia.

    PubMed

    Mohiuddin, Kazi; Strezov, Vladimir; Nelson, Peter F; Stelcer, Eduard; Evans, Tim

    2014-07-15

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings.

  5. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.

    PubMed

    Pickles, C A

    2010-07-15

    Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel.

  6. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R; Storey, John Morse

    2014-01-01

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  7. Steelworks residues and the Waelz kiln treatment of electric arc furnace dust

    SciTech Connect

    Strohmeier, G.; Bonestell, J.E.

    1996-04-01

    Electric arc furnace dust with a combined zinc and lead content in excess of 20% renders the dumping of this material impossible in many countries, for both statutory and financial reasons. In the Waelz process, dust is treated in a rotary kiln where it is heated to approximately 1,200 C. lead and zinc are volatilized under reducing conditions and collected as fine dust in the off-gas dust collection system. The oxide recovered in the off-gas filters contains approximately 55% Zn and up to 10% Pb, and is ideal feedstock for the Imperial Smelting furnace for lead/zinc recovery. The remaining slag is inert and unleachable so that it can be used as a building aggregate.

  8. Research on temperature control with numerical regulators in electric resistance furnaces with indirect heating

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2016-02-01

    The paper is an analysis of two-positions (hysteresis) regulators, self-tuned PID controller and PID controller for temperature control used for indirect heat resistance furnaces. For PID controller was used three methods of tuning: Ziegler-Nichols step response model, Cohen-Coon tuning rules and Ziegler-Nichols tuning rules. In experiments it used an electric furnace with indirect heating with active power of resistance of 1 kW/230V AC and a numerical temperature regulator AT-503 type (ANLY). It got a much better temperature control when using the Cohen-Coon tuning rules method than those of Ziegler-Nichols step response method and Ziegler-Nichols tuning rules method.

  9. A review of the use of anthracite in electric arc furnace steelmaking

    SciTech Connect

    Rozelle, P.L.

    1994-12-31

    The applications of anthracite in Electric Arc Furnace (EAF) steelmaking, include the adjustment of hot metal carbon content, the generation of foamy slags, and its use as a support fuel in the EAF to reduce power consumption per tonne of product. Incentives to use support fuel in EAF steelmaking include the reduction of electric power consumption without reducing plant output. As such, the concept can reduce steelmaking costs and can serve as a basis for maximizing an EAF operation`s demand side management program. The use of carbon and oxygen additions to the EAF can cause significant release of energy within the furnace. This energy can offset a portion of the electrical energy required by the system for production of steel. Reduced consumption of electricity per tonne of hot metal is the result Electrode consumption and tap to tap times can also be reduced. significant interest in the use of anthracite as EAF support fuel, as well as the other applications of anthracite in EAF steelmaking, have combined to establish the EAF steelmaking trade as a significant market sector for anthracite. This discussion is a review of key anthracite properties and production considerations, and their interplay with the requirements of the EAF process.

  10. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  11. Properties of steel foundry electric arc furnace dust solidified/stabilized with Portland cement.

    PubMed

    Salihoglu, Guray; Pinarli, Vedat; Salihoglu, Nezih Kamil; Karaca, Gizem

    2007-10-01

    Electric arc furnace dust from steel production is generated in considerable amounts worldwide and needs to be treated as hazardous waste. The aim of this study was to investigate the properties of electric arc furnace dust solidified/stabilized by using Portland cement. Mortar and paste samples were prepared with varying waste-to-binder ratios between 0% and 90%. A comprehensive experimental program was designed including XRF characterization, setting time, unconfined compressive strength, and toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and acid neutralization capacity (ANC) tests. The results were evaluated in order to determine if the solidified /stabilized product can be disposed of at a landfill site with domestic waste or at a segregated landfill. The effect of using sand on S/S performance was also investigated. The results indicated that the solidification /stabilization process using PC helps the heavy metals to be bound in the cement matrix, but the TCLP leaching results exceeded the EPA landfilling limits. The SPLP leaching results conformed to the limits implying that the waste or S/S products can be disposed of at a segregated landfill; however the low ANC of the S/S products reveals that there may be leaching in the long-term. The sand used in the mortar samples adversely affected the S/S performance, causing higher heavy metal leaching levels, and lower pH levels in the leachate after the TCLP extraction than those measured in the leachate of the paste samples.

  12. Chemical, physical, structural and morphological characterization of the electric arc furnace dust.

    PubMed

    Machado, Janaína G M S; Brehm, Feliciane Andrade; Moraes, Carlos Alberto Mendes; Santos, Carlos Alberto Dos; Vilela, Antônio Cezar Faria; Cunha, João Batista Marimon da

    2006-08-25

    Electric arc furnace dust (EAFD) is a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Important elements to the industry such as, Fe and Zn are the main ones in EAFD. Due to their presence, it becomes very important to know how these elements are combined before studying new technologies for its processing. The aim of this work was to carry out a chemical, physical, structural and morphological characterization of the EAFD. The investigation was carried out by using granulometry analysis, chemical analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), X-ray mapping analysis via SEM, X-ray diffraction (XRD) and Mössbauer spectroscopy. By XRD the following phases were detected: ZnFe(2)O(4), Fe(3)O(4), MgFe(2)O(4), FeCr(2)O (4), Ca(0.15)Fe(2.85)O(4), MgO, Mn(3)O(4), SiO(2) and ZnO. On the other hand, the phases detected by Mössbauer spectroscopy were: ZnFe(2)O(4), Fe(3)O(4), Ca(0.15)Fe(2.85)O(4) and FeCr(2)O(4). Magnesium ferrite (MgFe(2)O(4)), observed in the XRD pattern as overlapped peaks, was not identified in the Mössbauer spectroscopy analysis.

  13. Application of multi-model switching predictive functional control on the temperature system of an electric heating furnace.

    PubMed

    Xu, Weide; Zhang, Junfeng; Zhang, Ridong

    2017-02-06

    A method of multi-model switching based predictive functional control is proposed and applied to the temperature control system of an electric heating furnace. The control strategies provide the effective and independent control modes of the electric heating furnace temperature in order to obtain improved control performance. The method depends on conventional implementation of the multi-model switching state, which requires some endeavors to tune the switching model in the model predictive control and allows a reduction of the calculation compared with the weighted multiple model algorithms. In order to test the advantage of the proposed method, experimental equipment is set up and experiments are done on the temperature process of a heating furnace, which verify the validity and effectiveness of the proposed algorithm.

  14. Recycling of an electric arc furnace flue dust to obtain high grade ZnO.

    PubMed

    Ruiz, Oscar; Clemente, Carmen; Alonso, Manuel; Alguacil, Francisco Jose

    2007-03-06

    The production of steel in electric arc furnace (EAF) generates a by-product called EAF dusts. These steelmaking flue dusts are classified in most industrialized countries as hazardous residues because the heavy metals contained in them, tend to leach under slightly acidic rainfall conditions. However, and at the same time they contain zinc species which can be used as a source to obtain valuable by-products. The present investigation shows results on the processing of an EAF flue dust using ammonium carbonate solutions. Once zinc is dissolved: ZnO + 4NH3 + H2O --> Zn(NH3)4(2+) + 2OH- with other impurities (i.e. cadmium and copper), these are eliminated from the zinc solution via cementation with metallic zinc. The purified zinc solution was evaporated (distilled) until precipitation of a zinc carbonate species, which then was calcined to yield a zinc oxide of a high grade. For the unattacked dust residue from the leaching operation, mainly composed of zinc ferrite, several options can be considered: back-recycling to the furnace, further treatment by sodium hydroxide processing or a more safely dumping due to its relatively inertness.

  15. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability.

    PubMed

    Mombelli, D; Mapelli, C; Barella, S; Gruttadauria, A; Le Saout, G; Garcia-Diaz, E

    2014-08-30

    Electric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e. Ba, V, Cr. Chemical treatment appears to be the only way to guarantee a completely stable structure, especially for long-term applications. This study presents the efficiency of silica addition during the deslagging period. Microstructural characterization of modified slag was performed by SEM and XRD analysis. Elution tests were performed according to the EN 12457-2 standard, with the addition of silica and without, and the obtained results were compared. These results demonstrate the efficiency of the inertization process: the added silica induces the formation of gehlenite, which, even in caustic environments, does not exhibit hydraulic behaviour.

  16. System using electric furnace exhaust gas to preheat scrap for steelmaking

    SciTech Connect

    Takai, K.; Iwasaki, K.

    1987-09-08

    A method is described for clean preheating of scrap contaminated with oil and organic matter, for steelmaking, using heat from exhaust gas flow from an electric furnace. It consists of: burning any combustibles present in the exhaust gas flow and simultanously separating out dust particles from the exhaust gas flow; heating a predetermined amount of the scrap by heat exchange with a predetermined portion of the exhaust gas flow; removing and collecting dust from the exhaust gas flow after preheating of scrap thereby; sensing the temperature of the exhaust flow; scrubbing the exhaust gas flow with an aqueous solution of a deodorant solvent flowing at a rate regulated to be in a predetermined relationship related to the exhaust gas temperature sensed prior to scrubbing, thereby generating saturated vapor and reducing the temperature of the exhaust gas flow by a predetermined amount; and electrostatically precipitating out oil mist attached to saturated water vapor and liquid droplets in the exhaust gas flow.

  17. Recycling of electric arc furnace dust through dissolution in deep eutectic ionic liquids and electrowinning.

    PubMed

    Bakkar, Ashraf

    2014-09-15

    The dust waste formed during steelmaking in electric arc furnace (EAF) is rich in ferrous and nonferrous metals. Recycling of this dust as a raw material in iron or steel-making is hazardous and therefore it is mostly dumped. This paper demonstrates recycling of EAF dust through selective dissolution of metal oxides in a deep eutectic ionic liquid. It was found that about 60% of Zn and 39% of Pb could be dissolved from the dust when stirred for 48h in 1 choline chloride:2 urea ionic liquid at 60°C. The resultant electrolyte was subsequently fed to a conventional three-electrode cell where cyclic voltammetry (CV) measurements were conducted to describe its electrochemical behavior. Two deposition peaks were determined and ascribed to deposition of zinc and lead. Static potentials were successively applied to electrowin metallic zinc. SEM/EDX investigations showed that the zinc electrowon contained remarkable contents of lead.

  18. Kinetics of Hydrochloric Acid Leaching of Titanium from Titanium-Bearing Electric Furnace Slag

    NASA Astrophysics Data System (ADS)

    Zheng, Fuqiang; Chen, Feng; Guo, Yufeng; Jiang, Tao; Travyanov, Andrew Yakovlevich; Qiu, Guanzhou

    2016-05-01

    The hydrochloric acid leaching of titanium from titanium-bearing electric furnace slag was investigated under different experimental conditions. The results indicate that particle size, hydrochloric acid concentration and reaction temperature were of significance to the leaching kinetics. Specifically, reaction temperature was the most important factor followed by hydrochloric acid concentration and particle size. The shrinking core model was used to describe the leaching process which was controlled by surface chemical reaction. The kinetic equation was obtained and the activation energy was found to be 43.16 kJ/mol. Iron and calcium species were almost completely dissolved in the acid when the extraction degree of titanium reached 99.84%. MgO (19.34 wt.%) and Al2O3 (32.45 wt.%) in the spinel were still in the leaching residue and SiO2 (43.53 wt.%) in the form of quartz remained in the leaching residue.

  19. Reduction Kinetics of Electric Arc Furnace Oxidizing Slag by Al-Fe Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Jaehong; Oh, Joon Seok; Lee, Joonho

    2016-09-01

    Effects of temperature and slag basicity on the reduction rate of iron oxide in molten synthetic electric arc furnace oxidizing slag by Al-40 wt.%Fe alloy was investigated. An alloy sample was dropped into molten slag in an MgO crucible. When the initial slag temperature was 1723 K, there was no reduction. However, when the initial slag temperature was 1773 K and the slag basicity was 1.1, the reduction was initiated and the temperature of the slag rapidly increased. When the slag basicity was 1.1, increasing the initial slag temperature from 1773 K to 1823 K increases the reaction rate. As the slag basicity increased from 1.1 to 1.4 at 1773 K, the reaction rate increased. From SEM analysis, it was found that an Al2O3 or a spinel phase at the slag-metal interface inhibited the reaction at a lower temperature and a lower slag basicity.

  20. Modeling of zinc solubility in stabilized/solidified electric arc furnace dust.

    PubMed

    Fernández-Olmo, Ignacio; Lasa, Cristina; Irabien, Angel

    2007-06-18

    Equilibrium models which attempt for the influence of pH on the solubility of metals can improve the dynamic leaching models developed to describe the long-term behavior of waste-derived forms. In addition, such models can be used to predict the concentration of metals in equilibrium leaching tests at a given pH. The aim of this work is to model the equilibrium concentration of Zn from untreated and stabilized/solidified (S/S) electric arc furnace dust (EAFD) using experimental data obtained from a pH-dependence leaching test (acid neutralization capacity, ANC). EAFD is a hazardous waste generated in electric arc furnace steel factories; it contains significant amounts of heavy metals such as Zn, Pb, Cr or Cd. EAFD from a local factory was characterized by X-ray fluorescence (XRF), acid digestion and X-ray diffraction (XRD). Zn and Fe were the main components while the XRD analysis revealed that zincite, zinc ferrite and hematite were the main crystalline phases. Different cement/EAFD formulations ranging from 7 to 20% dry weight of cement were prepared and subjected to the ANC leaching test. An amphoteric behavior of Zn was found from the pH dependence test. To model this behavior, the geochemical model Visual MINTEQ (VMINTEQ) was used. In addition to the geochemical model, an empirical model based on the dissolution of Zn in the acidic zone and the re-dissolution of zinc compounds in the alkaline zone was considered showing a similar prediction than that obtained with VMINTEQ. This empirical model seems to be more appropriate when the metal speciation is unknown, or when if known, the theoretical solid phases included in the database of VMINTEQ do not allow to describe the experimental data.

  1. Thermodynamic analysis of the selective carbothermic reduction of electric arc furnace dust.

    PubMed

    Pickles, C A

    2008-01-31

    Electric arc furnace (EAF) dust, which is produced as a result of the melting of automobile scrap in an electric arc furnace, contains considerable amounts of zinc and lead, which are of significant economic value. Typically, the other major components are iron oxide and calcium oxide with minor amounts of other metal oxides. In this research, a detailed thermodynamic study of the pyrometallurgical processing of the dust, using carbon as a reducing agent was performed. The SOLGASMIX solver of Outokumpu HSC Chemistry((R)) 5.1 was used to calculate the equilibrium composition under reducing conditions. The control input dust composition was as follows (in mass percent): 8.100% CaO, 8.250% 2CaO.SiO(2), 11.200% CaCO(3), 8.830% CaO.Fe(2)O(3), 7.840% Fe(3)O(4), 3.770% PbO, 38.150% ZnFe(2)O(4) and 13.860% ZnO. Selective reduction and separation of both the zinc and the lead as metallic vapours, from the iron, in oxide form, was examined. The separation of the zinc or the lead from the iron, was defined quantitatively in terms of the selectivity factor (logbeta) as follows. Equation [see the text] where the subscript symbols refer to the metal being present in gaseous (g), metallic solid (m), solid oxide (o) or metallic liquid (l) form, respectively. The standard calculations were performed for one hundred grams of dust at atmospheric pressure. The variables investigated were as follows; temperature in the range of 1273-1873K, reactant ratio (i.e. moles of carbon per gram of dust), dust composition, addition of inert gas and reduced total pressure. The calculated values were in reasonable agreement with those from previously published studies and also industrial results.

  2. Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)

    SciTech Connect

    Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

    2003-12-31

    Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

  3. Behavior of Zn and Fe Content in Electric Arc Furnace Dust as Submitted to Chlorination Methods

    NASA Astrophysics Data System (ADS)

    Santos, Felipe; Brocchi, Eduardo; Araújo, Victor; Souza, Rodrigo

    2015-08-01

    This work covers initially a general thermodynamics assessment regarding the zinc ferrite (ZnFe2O4) behavior toward direct and reducing chlorination. Then, the use of alternative chlorination agents were also theoretically appreciated, before a set of experiments has been carried out with industrial residue (electric arc furnace dust). Besides identifying zinc ferrite (95.4 pct), the XRD analysis indicated the presence of ZnO (4.6 pct). Therefore, the main objective of the present work is related to a theoretical (thermodynamics) and experimental (kinetics) evaluation of the mentioned residue chemical behavior as submitted to chlorination methods. Several characterization methods were used, such as X-ray diffraction, scanning electron microscopy, X-ray fluorescence, mass spectroscopy (ICP-MS), and energy-dispersive X-ray spectroscopy (EDS). It was observed that zinc was present, mostly, in the form of zinc ferrite (franklinite). The thermodynamics study revealed that Zn has a more susceptible behavior regarding the oxides conversion into chlorides. However, this tendency is not necessarily associated with a selective reaction, as showed for the chlorination in the presence of carbon, as both iron and zinc chlorides formation is feasible. The experimental results have indicated that some reaction systems can be further studied in order to identify operational conditions that enable selective formations. So, it was observed that for the calcium chloride reaction conducted at 1273 K (1000 °C) for 30 minutes, the iron content in the residue slightly increases (with 15 pct removal), whereas the zinc content decreases from 20 to 12 pct (53 pct removal), suggesting complementary studies where this possible selectivity could be even more determinant. Such results have also indicated that the direct action of chlorine at 1073 K (800 °C) allowed complete removal of zinc, followed by conversion in the order of 40 pct in iron. Therefore, a complementary investigation over

  4. Submerged arc furnace process superior to the Waelz process in reducing PCDD/F emission during thermal treatment of electric arc furnace dust.

    PubMed

    Xu, Fu-Qian; Huang, Shao-Bin; Liao, Wei-Tung; Wang, Lin-Chi; Chang, Yu-Cheng; Chang-Chien, Guo-Ping

    2014-01-01

    Besides the Waelz process, the submerged arc furnace (SAF) process has also been extensively used to retain metals from ashes and scraps in the metallurgical industry. However, very little is known about the formation and depletion of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from this thermal process. In this study, an electric arc furnace (EAF) dust treatment plant adopting the SAF process was investigated and compared to the plant adopting the Waelz process. The predominant contributor of PCDD/F I-TEQ input was the EAF dusts, accounting for 98.4% of the total. The PCDD/F contents in the generated fly ashes of the SAF were extremely low, as almost all the organic compounds for PCDD/F formation were decomposed by the high operating temperatures (1500-1700 °C) of the SAF. Therefore, the PCDD/F emission factor of the SAF process (46.9 μg I-TEQ/tonne-EAF dust) was significantly lower than that of the Waelz process (840-1120 μg I-TEQ/tonne-EAF dust). Its PCDD/F output/input ratios (0.23 and 0.50 based on mass and toxicity) were also lower than those of the Waelz process plant (0.62 and 1.19). Therefore, the SAF process is superior to the Waelz process in reducing the potential of PCDD/F formation.

  5. 75 FR 41895 - Emerson Power Transmission, a Division of Emerson Electric Co., Including On-Site Leased From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Employment and Training Administration Emerson Power Transmission, a Division of Emerson Electric Co..., 2010, applicable to workers of Emerson Power Transmission, a Division of Emerson Electric Co... were employed on-site at the Ithaca, New York, location of Emerson Power Transmission, a Division...

  6. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    PubMed

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work.

  7. Turning waste into valuable resource: potential of electric arc furnace dust as photocatalytic material.

    PubMed

    Sapiña, M; Jimenez-Relinque, E; Castellote, M

    2014-10-01

    This paper explores the potential of a hazardous waste of difficult management, electric arc furnace dust (EAFD), as photocatalytic material. Starting from a real waste coming from a Spanish steel factory, chemical, mineralogical, and optical characterizations have been carried out. Direct trials on EAFD and mortar containing this waste have been performed to evaluate its potential as photocatalyst itself and within a cementitious material. The analysis of photocatalytic properties has been done by two different methods: degradation of NO x and degradation of rhodamine (RhB). As a result, it can be said that EAFD exhibited photocatalytic activity for both configurations with UV and visible light, having the mortar enhanced photocatalytic activity for NO x with respect to the EAFD itself. Additionally, in direct trials on the EAFD, it has been able to degrade RhB even in the dark, which has been attributed to transfer of electrons between the adsorbed RhB and the conduction band of some oxides in the dust.

  8. Leaching properties of electric arc furnace dust prior/following alkaline extraction.

    PubMed

    Orescanin, Visnja; Mikelić, Luka; Sofilić, Tahir; Rastovcan-Mioc, Alenka; Uzarević, Krunoslav; Medunić, Gordana; Elez, Loris; Lulić, Stipe

    2007-02-15

    This study was carried out to determine the appropriate treatment of electric arc furnace (EAF) dust prior to permanent disposal. The total heavy metal content as well as heavy metal leaching from EAF dust was investigated in five composite samples obtained from three Croatian and Slovenian steelworks. In order to recover zinc and reduce its leaching from the dust, all five samples were submitted to alkaline extraction with 10 M NaOH. Reduction of Cr (VI) to Cr(III) was conducted using FeSO4 x 7H2O solution. The elements Mn, Fe, Cu, Ni, and notably Zn and Pb, exhibited highest mobility during toxicity characteristic leaching procedure (TCLP). Comparing to TCLP extracts of initial EAF dust, zinc was found to be over 15 times lower and lead over 200 times lower in TCLP extracts of EAF dust processed by the alkaline leaching method. Since Cr (VI) exceeded its permissible level in the DIN 38414-S4 extracts of both initial and alkaline digested dust, its reduction to Cr (III) prior to permanent disposal is necessary. The recovery of zinc from EAF dust treated with alkaline agent ranged from 50.3% to 73.2%. According to phase analysis, recovery yield showed dependence on zincite/franklinite ratio. The results of the study indicate that permanent disposal of EAF dust require the following procedure: alkaline digestion (followed by leachate purification and alkaline zinc electrolyses), chromate reduction (if necessary), solidification of leaching residue and its testing using the leaching analyses.

  9. Effect of electric arc furnace slag on growth and physiology of maize (Zea mays L.).

    PubMed

    Radić, Sandra; Crnojević, Helena; Sandev, Dubravka; Jelić, Sonja; Sedlar, Zorana; Glavaš, Katarina; Pevalek-Kozlina, Branka

    2013-12-01

    Basic slag, used in this study as a potential source of certain nutrients, is a byproduct of the production of steel in electric arc furnace (EAF). A pot experiment with two nutrient-poor substrates was conducted to investigate to compare the effect of EAF steel slag and fertilizers NPK + F e on growth and availability of specific nutrients to maize. Mineral content of both substrate and plant leaves, growth, chlorophyll fluorescence and photosynthetic pigments were measured following six weeks of cultivation. As steel slag also contains trace amounts of heavy metals, certain oxidative parameters (antioxidative enzyme activities and lipid peroxidation) were evaluated as well. The steel slag improved soil mineral composition, increased above ground maize biomass by providing Fe, Mn, Mg, K and partly P and improved photosynthetic parameters. The potential phytotoxicity of EAF slag containing substrates was not determined as evaluated by MDA (malondialdehyde), GR (glutathione reductase) and APX (ascorbate peroxidase) levels. The obtained results show that EAF steel slag is comparable to NPK + F e in supplying nutrients for maize growth, indicating the potential of EAF steel slag as an inexpensive and non-phytotoxic nutrient supplier especially in poor soils.

  10. Experimental study of the mechanical stabilization of electric arc furnace dust using fluid cement mortars.

    PubMed

    Ledesma, E F; Jiménez, J R; Ayuso, J; Fernández, J M; Brito, J de

    2017-03-15

    This article shows the results of an experimental study carried out in order to determine the maximum amount of electric arc furnace dust (EAFD) that can be incorporated into fluid cement-based mortars to produce mechanically stable monolithic blocks. The leaching performance of all mixes was studied in order to classify them according to the EU Council Decision 2003/33/EC. Two mortars were used as reference and three levels of EAFD incorporation were tested in each of the reference mortars. As the incorporation ratio of EAFD/cement increases, the mechanical strength decreases. This is due to the greater EAFD/cement and water/cement ratios, besides the presence of a double-hydrated hydroxide of Ca and Zn (CaZn2(OH)6·2H2O) instead of the portlandite phase (Ca(OH)2) in the mixes made with EAFD, as well as non-hydrated tricalcium silicate. A mass ratio of 2:1 (EAFD: cement-based mortar) can be added maintaining a stable mechanical strength. The mechanical stabilization process also reduced the leaching of metals, although it was not able to reduce the Pb concentration below the limit for hazardous waste. The high amount of EAFD mechanically stabilized in this experimental study can be useful to reduce the storage volume required in hazardous waste landfills.

  11. Assessment of hexavalent chromium release in Malaysian electric arc furnace steel slag for fertilizer usage

    NASA Astrophysics Data System (ADS)

    Bankole, L. K.; Rezan, S. A.; Sharif, N. M.

    2014-03-01

    This study investigates the leaching of hexavalent chromium (Cr (VI)) from electric arc furnace steel slag as Cr (VI) is classified as human carcinogen. Batch leaching tests were performed for 16 days. The lixiviants used were alkaline, de-ionized and rain water. After 16 days, Cr (VI) was found to be highest in alkaline water (0.03 mg/L) and lowest in de-ionized water (0.01 mg/L). Besides the lixiviants used, slag stirring speed and liquid to solid ratio also affect Cr (VI) released. The experimental work was complimented with slag characterization using XRF, XRD and SEM/EDX analysis. The leaching process was also simulated via Factsage software to calculate isothermal pourbaix diagrams. The Cr (VI) released was low and below the threshold of 0.1 mg/L set for public water systems. Recycle the slag as fertilizer should be considered safe as it does not exceed the safety limit set for Cr (VI) dissolution.

  12. Environmental impacts of asphalt mixes with electric arc furnace steel slag.

    PubMed

    Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč

    2011-01-01

    Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes.

  13. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium.

    PubMed

    Youcai, Z; Stanforth, R

    2000-12-30

    In this study, a novel and integrated hydrometallurgical process for the production of zinc powder from electric arc furnace (EAF) dust in alkaline medium is reported. The dust is firstly hydrolysed in water, and then fused in caustic soda at 350 degrees C for 1h, followed by leaching in alkaline solution in which both zinc and lead are effectively extracted. Zinc powder is then produced by electrowinning from the leach solution after the lead is selectively removed by precipitation using sodium sulphide as precipitant. The EAF dust tested contained 25% Zn, 1.8% Pb and 33% Fe. It was found that 38% of zinc and 68% of lead could be extracted from the dust when leached directly in caustic soda solution. Leaching of zinc increased to 80% when dust was directly fused with caustic soda followed by alkaline leaching. However, the leaching further increased to 95% when the dust was hydrolysed first with water before fusion. Zinc powder with a purity of 99.95% was then produced by electrowinning from the lead depleted solution. Stainless electrodes were used as both anode and cathode.

  14. Model of phosphorus precipitation and crystal formation in electric arc furnace steel slag filters.

    PubMed

    Claveau-Mallet, Dominique; Wallace, Scott; Comeau, Yves

    2012-02-07

    The objective of this study was to develop a phosphorus retention mechanisms model based on precipitation and crystallization in electric arc furnace slag filters. Three slag columns were fed during 30 to 630 days with a reconstituted mining effluent at different void hydraulic retention times. Precipitates formed in columns were characterized by X-ray diffraction and transmission electronic microscopy. The proposed model is expressed in the following steps: (1) the rate limiting dissolution of slag is represented by the dissolution of CaO, (2) a high pH in the slag filter results in phosphorus precipitation and crystal growth, (3) crystal retention takes place by filtration, settling and growth densification, (4) the decrease in available reaction volume is caused by crystal and other particulate matter accumulation (and decrease in available reaction time), and (5) the pH decreases in the filter over time if the reaction time is too low (which results in a reduced removal efficiency). Crystal organization in a slag filter determines its phosphorus retention capacity. Supersaturation and water velocity affect crystal organization. A compact crystal organization enhances the phosphorus retention capacity of the filter. A new approach to define filter performance is proposed: saturation retention capacity is expressed in units of mg P/mL voids.

  15. Characterization and leachability of electric arc furnace dust made from remelting of stainless steel.

    PubMed

    Laforest, Guylaine; Duchesne, Josée

    2006-07-31

    Electric arc furnace dust (EAFD) is a toxic waste product made in the remelting of scrap steel. The results of a Toxicity Characteristic Leaching Procedure (TCLP) conducted on a sample of EAFD originating from the remelting of stainless steel scrap showed that the total Cr and Cr (VI) liquor concentrations (9.7 and 6.1 mg/L, respectively) exceeded the Toxicity Characteristic Regulatory Level (TCRL). The EAFD showed a complex heterogeneous mineralogy with spinel minerals group predominance. A sequential extractions method has permitted the determination of the amount of available metals (potentially mobile component) from the EAFD as follows: Cr (3%), Ni (6%), Pb (49%) and Zn (40%). Solubility controls on Cr, Pb, Zn and Ni were identified in the EAFD. This means that the Cr, Pb, Zn and Ni concentrations in solution were controlled by the solubility of some phases from EAFD. The concentrations of Ni and Zn, which are metals not regulated by TCRL were below 0.41 and 1.3 mg/L, respectively. The solubility control on Pb was sufficient to decrease its concentration (<0.24 mg/L) to a level below the TCRL. However, the control on Cr was not sufficient to decrease its concentration (between 117 and 331 mg/L) to below the TCRL.

  16. Valorisation of electric arc furnace steel slag as raw material for low energy belite cements.

    PubMed

    Iacobescu, R I; Koumpouri, D; Pontikes, Y; Saban, R; Angelopoulos, G N

    2011-11-30

    In this paper, the valorisation of electric arc furnace steel slag (EAFS) in the production of low energy belite cements is studied. Three types of clinkers were prepared with 0 wt.% (BC), 5 wt.% (BC5) and 10 wt.% (BC10) EAFS, respectively. The design of the raw mixes was based on the compositional indices lime saturation factor (LSF), alumina ratio (AR) and silica ratio (SR). The clinkering temperature was studied for the range 1280-1400°C; firing was performed at 1380°C based on the results regarding free lime and the evolution of microstructure. In order to activate the belite, clinkers were cooled fast by blown air and concurrent crushing. The results demonstrate that the microstructure of the produced clinkers is dominated by belite and alite crystals, with tricalcium aluminate and tetracalcium-alumino-ferrite present as micro-crystalline interstitial phases. The prepared cements presented low early strength development as expected for belite-rich compositions; however the 28-day results were 47.5 MPa, 46.6 MPa and 42.8 MPa for BC, BC5 and BC10, respectively. These values are comparable with OPC CEMI 32.5 N (32.5-52.5 MPa) according to EN 197-1. A fast setting behaviour was also observed, particularly in the case of BC10, whereas soundness did not exceed 1mm.

  17. Steel foundry electric arc furnace dust management: stabilization by using lime and Portland cement.

    PubMed

    Salihoglu, Guray; Pinarli, Vedat

    2008-05-30

    The purpose of this study was to determine an appropriate treatment for steel foundry electric arc furnace dust (EAFD) prior to permanent disposal. Lime and Portland cement (PC)-based stabilization was applied to treat the EAFD that contains lead and zinc above the landfilling limits, and is listed by USEPA as hazardous waste designation K061 and by EU as 10 02 07. Three types of paste samples were prepared with EAFD content varying between 0 and 90%. The first type contained the EAFD and Portland cement, the second contained the EAFD, Portland cement, and lime, and the third contained the EAFD and lime. All the samples were subjected to toxicity characteristics leaching procedure (TCLP) after an air-curing period of 28 days. pH changes were monitored and acid neutralization capacity of the samples were examined. Treatment effectiveness was evaluated in terms of reducing the heavy metal leachability to the levels below the USEPA landfilling criteria. An optimum composition for the EAFD stabilization was formulated as 30% EAFD +35% lime +35% Portland cement to achieve the landfilling criteria. The pH interval, where the solubility of the heavy metals in the EAFD was minimized, was found to be between 8.2 and 9.4.

  18. Microwave treatment of electric arc furnace dust with PVC: dielectric characterization and pyrolysis-leaching.

    PubMed

    Al-Harahsheh, Mohammad; Kingman, Sam; Al-Makhadmah, Leema; Hamilton, Ian E

    2014-06-15

    Microwave treatment of electric arc furnace dust (EAFD) with poly(vinyl chloride) (PVC) was studied in this work. A comprehensive characterization of the dust as well as assessing the suitability of using the thermal de-chlorination of the common plastic (PVC) under inert atmosphere was carried out to assess the possibility of Zn and other heavy metals extraction (Pb and Cd) from EAFD. The dielectric and thermal properties of EAFD, PVC and their mixtures were measured. Once combined and heated the metal oxides present in the dust reacted with HCl released from PVC during thermal de-chlorination, forming metal chlorides which were subsequently recovered by leaching with water. It was found that zinc chloride could be almost completely recovered in the leaching stage, with the overall recovery of Zn reaching 97% when the EAFD:PVC ratio was 1:2. The investigation highlighted that franklinite, the most refractory mineral to leaching, was completely destroyed. The leaching residue was found to compose mainly of magnetite and hematite.

  19. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking.

    PubMed

    Yang, Gordon C C; Chuang, Tsun-Nan; Huang, Chien-Wen

    2017-02-25

    The main objective of this work was to promote zero waste of municipal incinerator fly ash (MIFA) by full-scale melting in electric arc furnaces (EAFs) of steel mini mills around the world. MIFA, generally, is considered as a hazardous waste. Like in many countries, MIFA in Taiwan is first solidified/stabilized and then landfilled. Due to the scarcity of landfill space, the cost of landfilling increases markedly year by year in Taiwan. This paper presents satisfactory results of treating several hundred tons of MIFA in a full-scale steel mini mill using the approach of "melting MIFA while EAF steelmaking", which is somewhat similar to "molten salt oxidation" process. It was found that this practice yielded many advantages such as (1) about 18wt% of quicklime requirement in EAF steelmaking can be substituted by the lime materials contained in MIFA; (2) MIFA would totally end up as a material in fractions of recyclable EAF dust, oxidized slag and reduced slag; (3) no waste is needed for landfilling; and (4) a capital cost saving through the employment of existing EAFs in steel mini mills instead of building new melting plants for the treatment of MIFA. Thus, it is technically feasible to achieve zero waste of MIFA by the practice of this innovative melting technology.

  20. Preparation of ZnS-graphene nanocomposites under electric furnace and photocatalytic degradation of organic dyes.

    PubMed

    Park, Hae Soo; Ko, Weon Bae

    2014-11-01

    Zinc sulfide (ZnS) nanoparticles were synthesized from zinc nitrate hexahydrate and thiourea under microwave irradiation. The ZnS-graphene nanocomposites were calcined in an electric furnace at 700 degrees C under an inert argon gas atmosphere for 2 hr. The heated ZnS-graphene nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV-vis spectrophotometry. After heat treatment, ZnS-graphene nanocomposites had a more porous and larger surface area, than the unheated ZnS-graphene nanocomposites. The photocatalytic activity of the heated ZnS-graphene nanocomposites in the degradation of organic dyes, such as methylene blue, methyl orange, and rhodamine B, under ultraviolet light at 254 nm by UV- vis spectrophotometer was evaluated and compared with that of the unheated ZnS nanoparticles, heated ZnS nanoparticles, unheated ZnS-graphene nanocomposites. Among the our experimental results as a photocatalyst, the heated ZnS-graphene nanocomposites exhibited remarkably higher photocatalytic degradation of organic dyes as compared to other nanomaterials such as unheated ZnS nanoparticles and heated ZnS-graphene nanocomposites.

  1. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    PubMed

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  2. Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)

    SciTech Connect

    Dr. Gordon A. Irons

    2004-03-31

    Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

  3. General view of blast furnace plant, with blast furnace "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of blast furnace plant, with blast furnace "A" (built in 1907) to the left; in the foreground is the turbo-blower and blast furnace gas-powered electric generating station (built in 1919), looking northwest - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  4. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  5. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-12-31

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  6. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  7. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.

    PubMed

    Suetens, T; Guo, M; Van Acker, K; Blanpain, B

    2015-04-28

    To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber.

  8. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid.

    PubMed

    Oustadakis, P; Tsakiridis, P E; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues.

  9. Observations on Student Difficulties with Mathematics in Upper-Division Electricity and Magnetism

    ERIC Educational Resources Information Center

    Pepper, Rachel E.; Chasteen, Stephanie V.; Pollock, Steven J.; Perkins, Katherine K.

    2012-01-01

    We discuss common difficulties in upper-division electricity and magnetism (E&M) in the areas of Gauss's law, vector calculus, and electric potential using both quantitative and qualitative evidence. We also show that many of these topical difficulties may be tied to student difficulties with mathematics. At the junior level, some students…

  10. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    SciTech Connect

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O'Kane; Jonathan Dicker; Catherine Skidmore; David Knights

    2009-05-15

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  11. In vitro assessment of genotoxic effects of electric arc furnace dust on human lymphocytes using the alkaline comet assay.

    PubMed

    Garaj-Vrhovac, Vera; Orescanin, Visnja; Ruk, Damir; Gajski, Goran

    2009-02-15

    In vitro genotoxic effects of leachates of electric arc furnace dust (EAFD) on human peripheral lymphocytes, assessed prior and following the treatment with a strong alkaline solution were investigated using the alkaline comet assay. Prior and following the treatment, lymphocytes were incubated with leachate of EAFD for 6 and 24 hours at 37 degrees C. Negative controls were also included. Mean values of the tail lengths established in the samples treated with the leachate stemming from the original dust for 6 and 24 hours, were 15.70 microm and 16.78 microm, respectively, as compared to 12.33 microm found in the control sample. Slight, but significant increase in the tail length was also found with the dust treated with a strong alkaline solution (13.37 microm and 13.60 microm). In case of high heavy metal concentrations (the extract of the original furnace dust), the incubation period was revealed to be of significance as well. The obtained results lead to the conclusion that alkaline comet assay could be used as a rapid, sensitive and low-cost tool when assessing genotoxicity of various waste materials, such as leachates of the electric arc furnace dust.

  12. Identification and characterization of the atmospheric emission of polychlorinated naphthalenes from electric arc furnaces.

    PubMed

    Liu, Guorui; Zheng, Minghui; Du, Bing; Nie, Zhiqiang; Zhang, Bing; Hu, Jicheng; Xiao, Ke

    2012-09-01

    Electric arc furnaces (EAF) are well recognized as significant sources of dioxins. EAFs have also been speculated to be sources of polychlorinated naphthalenes (PCNs) due to the close correlation between dioxin and PCN formation. However, assessment on PCN emissions from EAFs has not been carried out. The primary aim of this preliminary study is to identify and characterize the atmospheric emission of PCNs from EAFs. In this preliminary study, stack gas samples from two typical EAFs with different scales (EAF-1, 160 t batch(-1); and EAF-2, 60 t batch(-1)) were collected by automatic isokinetic sampling technique, and PCN congeners in samples were analyzed by isotope dilution high-resolution gas chromatography combined with high-resolution mass spectrometry method. Emission concentrations of PCNs were 458 and 1,099 ng m(-3) for EAF-1 and EAF-2, respectively. The emission factors of PCNs to air were 21.6 and 30.1 ng toxic equivalent t(-1) for EAF-1 and EAF-2, respectively, which suggested that EAF is an important source of PCN release. With regard to the characteristics of PCNs from EAFs, lower chlorinated homologues were dominant. The PCN congeners comprised of CN27/30, CN52/60, CN66/67, and CN73 were the most abundant congeners for tetra-, penta-, hexa-, and hepta-chlorinated homologues, respectively. EAFs were identified to be an important PCN source, and the obtained data are useful for developing a PCN inventory. The congener profiles of PCNs presented here might provide helpful information for identifying the specific sources of PCNs emitted from EAFs.

  13. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling

    SciTech Connect

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R; Storey, John Morse

    2015-01-01

    This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in which hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.

  14. Polychlorinated naphthalene (PCN) emissions from scrap processing steel plants with electric-arc furnaces.

    PubMed

    Odabasi, Mustafa; Dumanoglu, Yetkin; Kara, Melik; Altiok, Hasan; Elbir, Tolga; Bayram, Abdurrahman

    2017-01-01

    Polychlorinated naphthalene (PCN) emissions of scrap iron processing steel plants were explored by measuring concentrations in stack gases of five plants, in the atmosphere (n=11) at a site close to those plants, and in soil at several sites in the region (n=40) in Aliaga, Izmir, Turkey. Observed stack-gas Σ32PCN levels from the plants without scrap preheating (189±157ngNm(-3), average±SD, n=4) showed that they are substantial PCN emitting sources. Stack-gas Σ32PCN level for the plant with scrap preheating was considerably higher (1262ngNm(-3)). Similarly, Σ32PCN emission factor for this plant was substantially higher (11.9mgton(-1)) compared to those without scrap preheating (1.30±0.98mgton(-1)). Results have also suggested that the investigated steel plants emit large quantities of fugitive particle-phase PCNs. Measured soil Σ32PCN concentrations that are considered to be representative of the atmospheric levels were greatly variable in the region, ranging between 0.003 and 10.02μgkg(-1) (dry wt). Their spatial distribution showed that main PCN sources in the region were the iron-steel plants. Ambient air levels (1620±800pgm(-3)) were substantially higher than ones observed around the world and in the study area verifying that the steel plants with electric arc furnaces (EAFs) are important PCN sources. Investigation of possible mechanisms suggested that the combustion processes also contribute to emissions from EAFs in addition to evaporation of PCNs present in the scrap iron.

  15. Solidification/stabilisation of electric arc furnace waste using low grade MgO.

    PubMed

    Cubukcuoglu, B; Ouki, S K

    2012-02-01

    This study aims to evaluate the potential of low grade MgO (LGMgO) for the stabilisation/solidification (S/S) of heavy metals in steel electric arc furnace wastes. Relevant characteristics such as setting time, unconfined compressive strength (UCS) and leaching behaviour assessed by acid neutralisation capacity (ANC), monolithic and granular leaching tests were examined in light of the UK landfill Waste Acceptance Criteria (WAC) for disposal. The results demonstrated that all studied mix designs with Portland cement type 1 (CEM1) and LGMgO, CEM1-LGMgO 1:2 and 1:4 at 40% and 70% waste addition met the WAC requirements by means of UCS, initial and final setting times and consistence. Most of the ANC results met the WAC limits where the threshold pH values without acid additions were stable and between 11.9 and 12.2 at 28d. Granular leaching results indicate fixation of most of the metals at all mix ratios. An optimum ratio was obtained at CEM1-LGMgO 1:4 at 40% waste additions where none of the metals leaching exceeded the WAC limits and hence may be considered for landfill disposal. The monolithic leaching test results showed that LGMgO performed satisfactorily with respect to S/S of Zn, as the metal component present at the highest concentration level in the waste exhibited very little leaching and passed the leaching test requirement at all mix ratios studied. However, its performance with respect to Pb, Cd and Cr was less effective in reducing their leaching suggesting a higher cumulative rate under those leaching regimes.

  16. Long and short-term performance of a stabilized/solidified electric arc furnace dust.

    PubMed

    Pereira, C Fernández; Galiano, Y Luna; Rodríguez-Piñero, M A; Parapar, J Vale

    2007-09-30

    The application of class F fly ash, cement and lime to the Stabilization/Solidification (S/S) of electric arc furnace dust containing hazardous metals such as Zn, Pb, Cd, and Cr is described. The aim of the study was to determine the influence of the setting conditions during the S/S treatment and to know the behaviour of an aged solidified and stabilized waste. In order to determine the efficiency attained by the S/S process, USEPA TCLP, and other leaching tests have been accomplished. In addition, the compressive strength of the solidified waste at different times has been determined. In order to study the influence of the environmental conditions in which setting occurs, experiments were carried out with samples of the same composition, under different setting conditions: laboratory environment, stove at a temperature of 40-60 degrees C and setting in a hermetically sealed plastic bag at room temperature. All the samples were subjected to the TCLP test at 28 days, and the metal content of the resulting leachates was analysed. The results show that in some cases the setting conditions of the mixtures have a noticeable influence on the characteristics of the leachate. The evolution with time of some S/S solids, one month after their manufacture and more than 9 years after that has also been evaluated, by means of their leaching behaviour. The results obtained in this work have shown, in all the laboratory cured samples that the leachate pH decrease in the course of time, and consequently the leaching behaviour is in general worse. This could be due to the carbonation of the S/S solid and the subsequent loss of alkalinity.

  17. Evaluation of the emission characteristics of PCDD/Fs from electric arc furnaces.

    PubMed

    Chang, Moo Been; Huang, Hung Chi; Tsai, Shian Sheng; Chi, Kai Hsien; Chang-Chien, Guo Ping

    2006-03-01

    Distribution of PCDD/F (polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran) congeners at two electric arc furnaces (EAFs) in Taiwan is evaluated via intensive stack sampling and analysis. Two kinds of exhaust system in EAFs including stack system and shutter system are selected for measuring dioxin emissions. In addition, dioxin emissions during oxidation and reduction stages at EAF-A were characterized. Results indicate that the PCDD/F concentration of stack gas in EAF-A was 4.39 ng/Nm(3) while total Toxic Equivalent Quantity (TEQ) concentration was 0.35 ng I-TEQ/Nm(3). The PCDD/F concentration of stack gas in EAF-B was 2.20 ng/Nm(3) and the TEQ concentration was 0.14 ng I-TEQ/Nm(3). 1,2,3,4,6,7,8-H(p)CDF, OCDD and OCDF are the major contributors of the dioxin concentrations for two EAFs investigated and the percentage of PCDD/F in particulate phase increases as the chlorination level of the PCDD/F congener increases. The results obtained on gas/particulate partitioning of PCDD/Fs in flue gases prior to the APCD in EAFs indicate that more than 90% exists in particulate phase. In EAF-A, the PCDD/F concentration during oxidation stage is slightly higher than that measured during reduction stage, including the sampling points of CO converter outlet, prior to bag filter and stack. Majority of PCDD/Fs emitted from steel-making processes exists in particulate-phase (about 60-70%) at both EAFs investigated.

  18. [Phosphorus adsorption and regeneration of electric arc furnace steel slag as wetland medium].

    PubMed

    Zhai, Li-hua; He, Lian-sheng; Xi, Bei-dou; Chen, Yue; Meng, Rui; Huo, Shou-liang; Liu, Hong-liang

    2008-12-01

    The long-term phosphorus (P) adsorption and retention capacities of electric arc furnace (EAF) steel slag materials derived from one batch and a 278-d column experiments with a synthetic P solution were compared. The investigations of the regeneration of the P adsorption capacity by water level decrease was conducted. It was revealed column experiment on a long-term basis can determine P saturation of EAF accurately. And the results can be used for realistic estimations of constructed wetland systems (CWS) longevity. EAF slag showed a high afinity for P, reaching a saturation value of 1.65 g/kg. Regeneration experiment of the P adsorbing capacity by this material showed that, after 4 weeks of water level decrease, EAF steel slag was able to increase its initial P adsorption capacity to 2.65 g/kg. A sequential P fractionation experiment was performed to quantify the proportion of P bound to mineral compounds in EAF. From the most loosely bound to the most strongly bound P fraction, P1 was associated with resin extractable (13%), Fe extractable (0.5 mol/L Na2CO3, 39%), Al extractable (0.1 mol/L NaOH, 21%), Ca extractable (1 mol/L HCl, 13%), and Ca in a stable residual pool (concentrated hot HCl, 14%). X-ray fluorescence analyses of EAF steel slag chemical composition revealed that the continuous application of a P solution resulted in 300% and 170% increases in K2O and P2O5, respectively. Al2O3 and FeO increased by 8%, while the portion of CaO remained unchanged. The investigated properties (P retention potential, regeneration of P adsorption, P fractionation) provide useful data about the suitability of slag material as a media for longterm P removal and dry-wet operation can improve P retention capacity of EAF to prolong the longevity of full-scale CWS.

  19. Electric arc furnaces for steel-making: hot spots for persistent organic pollutants.

    PubMed

    Odabasi, Mustafa; Bayram, Abdurrahman; Elbir, Tolga; Seyfioglu, Remzi; Dumanoglu, Yetkin; Bozlaker, Ayse; Demircioglu, Hulusi; Altiok, Hasan; Yatkin, Sinan; Cetin, Banu

    2009-07-15

    Persistent organic pollutant (POP) concentrations were measured in stack-gases of ferrous scrap processing steel plants with electric arc furnaces (EAFs) (n = 5) in Aliaga, Izmir, Turkey and in air (n = 11) at a site near those plants. Measured stack-gas concentrations for the four plants without scrap preheating (611 +/- 311, 165,000 +/- 285,000, and 33 +/- 3 ng m(-3), average +/- SD for sigma41PCBs, sigma16PAHs, and sigma7PBDEs, respectively) indicated that they are significant sources for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). POP emissions from the plant with scrap preheating were significantly higher (13 500, 445 000, and 91 ng m(-3) for sigma41PCBs, sigma16PAHs, and sigma7PBDEs, respectively). It was also shown that the steel plants emit considerable amounts of fugitive POPs in particle-phase. Estimated emissions using the emission factors generated in this study and the production amounts suggested that the steel plants with EAFs may significantly contribute to local and global PAH, PCB, and PBDE emissions. Several other compounds (aromatic and aliphatic hydrocarbons, oxygen, sulfur, nitrogen, and chlorine-containing organic compounds, n = 49) were identified and determined semiquantitatively in the stack-gas and ambient air samples. Ambient air concentrations (62 +/- 35, 320 +/- 134 ng m(-3), 1451 +/- 954 pg m(-3), for sigma41PCBs, sigma16PAHs, and sigma7PBDEs, respectively) were significantly higher than those measured previously around the world and in the region, further confirming that the steel plants with EAFs are "hot spots" for POPs.

  20. Heat treatment furnace

    SciTech Connect

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  1. Investigations on phosphorus recovery and reuse as soil amendment from electric arc furnace slag filters.

    PubMed

    Bird, Simon C; Drizo, Aleksandra

    2009-11-01

    Electric arc furnace (EAF) steel slag has been identified as an effective filter material for the removal of phosphorus (P) from both point and non-point sources. To determine the feasibility of land-applying P saturated EAF steel slag this study was undertaken to investigate (i) saturated EAF steel slag material's potential as a P fertilizer or soil amendment and (ii) P desorption and metals leachate from saturated EAF steel slag material to surface runoff. Medicago sativa (alfalfa) was planted in a nutrient depleted washed sand media. Phosphorus was added either as saturated EAF steel slag or as a standard commercial phosphate fertilizer in order to assess the plant availability of the P from saturated EAF steel slag. Four different P application levels were tested: a low (20 lbs acre furrow slice(-1) (5.5 g P m(-3))) two medium (40 and 60 lbs. acre f.s.(-1) (11 and 16.5 g P m(-3))) and a high (120 lbs. acre f.s.(-1) (33 g P m(-3))). The above-ground biomass of half of the plants was harvested after 5 weeks and the second half at 10 weeks. All treatments regardless of the P source used showed high rates of germination. At the first harvest period (5 weeks) significantly higher above-ground biomass (p < 0.01) was seen at the 3 highest P amendment rates in treatments with triple super phosphate fertilizer (TSP) than with EAF steel slag. However, by the second harvest (10 weeks) only the highest amendment rate of TSP showed a significantly higher amount of biomass (p < 0.01), suggesting that EAF steel slag might be an effective slow release P source. In a second experiment, a rain simulator was used to assess desorption of DRP, TP and metals from a saturated and semi-saturated EAF steel slag. The results revealed that the total amounts of DRP and TP released to surface runoff from EAF steel slag were negligible when compared to the total quantities of P retained by this material. Overall the results from this study demonstrated that once the EAF steel slag filter

  2. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    PubMed

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  3. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  4. Recovery of Zinc and Lead from Electric-Furnace Steelmaking Dust at Berzelius

    NASA Astrophysics Data System (ADS)

    Maczek, Helmut; Kola, Rolf

    1980-01-01

    The Waelz unit at the Berzelius Metallhütten GmbH plant in Duisburg, West Germany, was originally built to recover zinc and lead values in zinc retort residues and slags from lead shaft furnaces. The process has also proved suitable for recovering zinc and lead from steelmaking dusts. The metallurgical characteristics and information on operating costs encountered in the three decades over which this Waelz plant has been in operation at Berzelius are described and discussed.

  5. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    PubMed

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  6. Investigation of stabilization/solidification for treatment of electric arc furnace dust: Dynamic leaching of monolithic specimens

    SciTech Connect

    Laforest, Guylaine Duchesne, Josee

    2007-12-15

    Diffusion-controlled leaching of heavy metals (Cr, Ni, Pb and Zn) from electric arc furnace dust treated with ground granulated blast furnace slag (GGBFS) and with ordinary Portland cement (OPC) was evaluated. Monolithic specimens were evaluated under dynamic leaching conditions for 84 days with periodic leachant renewal. The influence of leaching time, nature of the leachant, binder type and the water/solid ratio of the monoliths were investigated. Results obtained showed both binders can immobilize heavy metals in the monoliths under dynamic leaching conditions, with cumulative quantity of leached metal under 0.138 mg (Cr). Alkaline leachant increased metal release from specimens and reducing the water/solid ratio of the monolith allowed for a decrease in the cumulative mass of metals leached. Chemical and mineralogical characterizations indicated that the metals were evenly distributed throughout the specimens for both binders. Decalcification was observed on the OPC monolith border following leaching. This decrease in Ca corresponded to an altered zone (20 {mu}m), identified by scanning electron microscopy. The GGBFS sample did not show an altered zone.

  7. Innovative Concept for the Recovery of Silver and Indium by a Combined Treatment of Jarosite and Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Wegscheider, S.; Steinlechner, S.; Leuchtenmüller, M.

    2017-02-01

    Industrial wastes such as slags, dust, or precipitation residues contain significant amounts of valuable metals like zinc, lead, and copper as well as precious metals like silver and indium. Nevertheless, a lot of these waste materials are not recycled, and therefore, many valuable metals end up being sent to landfills. Because of harmful components in the waste, it is often necessary to send it to specialized landfills for hazardous wastes, which leads to environmental problems as well as additional costs. Consequently, the recovery of the valuable metals from the residues represents a sensible task to decrease the negative impact on the environment and to reduce costs for maintaining a landfill. In addition, recycling helps to decrease the dependency from primary resources. The present study deals with the behavior of different metals in a pyro-metallurgical treatment for a mixture of jarosite and electric arc furnace dust with a special focus on indium and silver.

  8. Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags.

    PubMed

    Pasetto, Marco; Baldo, Nicola

    2010-09-15

    The paper presents the results of a laboratory study aimed at verifying the use of two types of electric arc furnace (EAF) steel slags as substitutes for natural aggregates, in the composition of base course and road base asphalt concrete (BBAC) for flexible pavements. The trial was composed of a preliminary study of the chemical, physical, mechanical and leaching properties of the EAF steel slags, followed by the mix design and performance characterization of the bituminous mixes, through gyratory compaction tests, permanent deformation tests, stiffness modulus tests at various temperatures, fatigue tests and indirect tensile strength tests. All the mixtures with EAF slags presented better mechanical characteristics than those of the corresponding asphalts with natural aggregate and satisfied the requisites for acceptance in the Italian road sector technical standards, thus resulting as suitable for use in road construction.

  9. Innovative Concept for the Recovery of Silver and Indium by a Combined Treatment of Jarosite and Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Wegscheider, S.; Steinlechner, S.; Leuchtenmüller, M.

    2016-11-01

    Industrial wastes such as slags, dust, or precipitation residues contain significant amounts of valuable metals like zinc, lead, and copper as well as precious metals like silver and indium. Nevertheless, a lot of these waste materials are not recycled, and therefore, many valuable metals end up being sent to landfills. Because of harmful components in the waste, it is often necessary to send it to specialized landfills for hazardous wastes, which leads to environmental problems as well as additional costs. Consequently, the recovery of the valuable metals from the residues represents a sensible task to decrease the negative impact on the environment and to reduce costs for maintaining a landfill. In addition, recycling helps to decrease the dependency from primary resources. The present study deals with the behavior of different metals in a pyro-metallurgical treatment for a mixture of jarosite and electric arc furnace dust with a special focus on indium and silver.

  10. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack gases of electric arc furnaces and secondary aluminum smelters.

    PubMed

    Lee, Wei-Shan; Chang-Chien, Guo-Ping; Wang, Lin-Chi; Lee, Wen-Jhy; Wu, Kuen-Yuh; Tsai, Perng-Jy

    2005-02-01

    This study investigates the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from four electric arc furnaces (EAFs) and eight secondary aluminum smelters (secondary ALSs) in Taiwan. The mean PCDD/F International-Toxicity Equivalents (I-TEQ) concentrations in the stack gases of these EAFs and secondary ALSs are 0.28 ng I-TEQ/Nm3 (relative standard deviation [RSD]= 100%) and 3.3 ng I-TEQ/Nm3 (RSD = 260%), respectively. The high RSDs, especially for those obtained from secondary ALSs, could be caused by the intrinsic differences in their involved feeding materials, furnace operating conditions, and air pollution control devices. The mean I-TEQ emission factor of PCDD/Fs for EAFs (1.8 microg I-TEQ/tonne-feedstock) is lower than that for secondary ALSs (37 microg I-TEQ/tonne-feedstock). This result might be because the involved furnace temperatures for secondary ALSs (650-750 degrees C) are lower than those for EAFs (1600-1700 degrees C), resulting in the deterioration of the combustion condition, leading to the formation of PCDD/Fs during the industrial process. This study found that the total PCDD/F emissions from EAFs (20 g I-TEQ/yr) and secondary ALSs (18 g I-TEQ/yr) are approximately 27, 53, and approximately 24, 49 times higher than those from municipal solid waste incinerators (MSWIs; 0.74 g I-TEQ/yr) and medical waste incinerators (MWIs; 0.37 g I-TEQ/yr), respectively; while those are 44 and 40% of total PCDD/F emission from sinter plants (45 g I-TEQ/ yr), respectively. Considering a more stringent emission limit has been applied to waste incinerators (0.1 ng I-TEQ/Nm3) in Taiwan lately, the results suggest that the control of the emissions from metallurgical processes has become the most important issue for reducing the total PCDD/F emission from industrial sectors to the ambient environment.

  11. [Design of gas and electric rotary furnaces for the glass industry]. Quarterly progress report, September 20--December 20, 1997

    SciTech Connect

    Pochan, D.

    1997-12-31

    The authors have continually stressed that the two most critical material parameters for the success of the rotary furnace are the hearth plate and the molding release powder. Both of these issues have been solidly addressed in this quarter. They have tested the three best candidates for hearth plate material this quarter. Although they had to use the in-house gas furnaces for the testing, one of the materials combines the best heating efficiency with the least sticking tendency. This material will be used for the electric prototype. The molding release powder is mainly used for preventing the glass from adhering to the hearth plate while the glass is softening for pressing. They recently visited several companies in Japan who also repress glass. The release agent that they use is Boron Nitride. They have identified a supplier within New York state, but their concern is the very high price of this material. They are bringing in samples of different grades for experimentation, but the focus continues to be to eliminate the need for any powder. An additional area for material testing was addressed during this quarter. Once the glass is in the tool (mold) for pressing, the glass has the potential to adhere to the metal that the tool and die are made from (usually steel). Both the powder and a spraying of a carbon product are currently used to reduce this problem. Alternate materials for the tooling and/or surface coatings of the steel need to be identified and tested. During this quarter, they conducted some off-site test runs on two candidate coating materials: platinum and titanium.

  12. Radioactively contaminated electric arc furnace dust as an addition to the immobilization mortar in low- and medium-activity repositories.

    PubMed

    Castellote, Marta; Menéndez, Esperanza; Andrade, Carmen; Zuloaga, Pablo; Navarro, Mariano; Ordóñez, Manuel

    2004-05-15

    Electric arc furnace dust (EAFD), generated by the steel-making industry, is in itself an intrinsic hazardous waste; however, the case may also be that scrap used in the process is accidentally contaminated by radioactive elements such as cesium. In this case the resulting EAFD is to be handled as radioactive waste, being duly confined in low- and medium-activity repositories (LMAR). What this paper studies is the reliability of using this radioactive EAFD as an addition in the immobilization mortar of the containers of the LMAR, that is, from the point of view of the durability. Different mixes of mortar containing different percentages of EAFD have been subjected to flexural and compressive strength, initial and final setting time, XRD study, total porosity and pore size distribution, determination of the chloride diffusion coefficient, dimensional stability tests, hydration heat, workability of the fresh mix, and leaching behavior. What is deduced from the results is that for the conditions used in this research, (cement + sand) can be replaced by EAFD upto a ratio [EAFD/(cement + EAFD)] of 46% in the immobilization mortar of LMAR, apparently without any loss in the long-term durability properties of the mortar.

  13. A novel hydrothermal method for zinc extraction and separation from zinc ferrite and electric arc furnace dust

    NASA Astrophysics Data System (ADS)

    Wang, Hui-gang; Li, Yang; Gao, Jian-ming; Zhang, Mei; Guo, Min

    2016-02-01

    A novel hydrothermal process was developed to extract zinc from pure zinc ferrite (ZnFe2O4) nanopowder and zinc-containing electric arc furnace (EAF) dust using hexahydrated ferric chloride (FeCl3·6H2O) as a decomposing agent. The effects of solid FeCl3·6H2O to ZnFe2O4 ratio by mass ( R F/Z), hydrothermal reaction temperature, and time on zinc extraction were systematically investigated. In the results, when the hydrothermal reaction is conducted at 150°C for 2 h with R F/Z of 15:20, the efficiency of zinc extraction from ZnFe2O4 reaches 97.2%, and the concentration of ferric ions (Fe3+) in the leaching solution is nearly zero, indicating a high selectivity for zinc. In addition, the zinc extraction efficiency from the EAF dust reaches 94.5% in the case of the hydrothermal reaction performed at 200°C for 10 h with the solid FeCl3·6H2O to EAF dust ratio by mass ( R F/EAF dust) of 15:10. Zinc and iron separation is achieved by adjusting the pH value of the leaching solution according to the different precipitation pH values of metal hydroxides.

  14. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    PubMed

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant.

  15. Removal of hexavalent chromium in carbonic acid solution by oxidizing slag discharged from steelmaking process in electric arc furnace

    NASA Astrophysics Data System (ADS)

    Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu

    2014-02-01

    Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.

  16. Inertization of pyrite cinders and co-inertization with electric arc furnace flue dusts by pyroconsolidation at solid state.

    PubMed

    Viñals, J; Balart, M J; Roca, A

    2002-01-01

    The viability of a pyroconsolidation process to render pyrite cinders inert and to co-inert pyrite cinders with a hazardous polymetallic residue such as electric arc furnace flue dusts (EAF) containing Pb, Cu, Zn, As, Cr, Ni and Mo were investigated. The effects of pyroconsolidation temperature (800-1200 degrees C), milling pyrite cinders and additions of both CaO and EAF on the resulting microstructure of the pellets were determined. The microstructural changes were then compared with the results of the standard leaching tests. Full inertization of pyrite cinders was achieved after milling to < 100 micron followed by a pelletization and pyroconsolidation process at a temperature of 1200 degrees C. This process also allows co-inertization of pyrite cinders with controlled additions of EAF (up to approximately to 10%). Following pyroconsolidation at 1200 degrees C, the metallic elements were inert components in the four main phases: traces of Cr in hematite; Cr, Cu, Zn and Ni in spinel-phase; traces of Cr and Zn in calcium ferrites; and Pb and traces of Cu, Zn and Ba in K-Ca-Al-Fe glassy silicate.

  17. Citotoxicity status of electroplating wastewater prior/after neutralization/purification with alkaline solid residue of electric arc furnace dust.

    PubMed

    Orescanin, Visnja; Kopjar, Nevenka; Durgo, Ksenija; Elez, Loris; Gustek, Stefica Findri; Colic, Jasna Franekic

    2009-02-15

    Toxicological safety of new procedure for the neutralisation/purification of wastewater originated from zinc plating facility was investigated. Wastewater was treated with alkaline solid residue-by-product of zinc recovery from electric arc furnace dust. For determination of cytotoxic potential of untreated and purified wastewater MTT test on HEp2 (human laryngeal carcinoma) and HeLa (human cervical carcinoma) cells lines and alkaline comet assay on human leukocytes were used. Then 100% of the sample as well as different dilutions were tested. Compared to negative control 100, 75 and 50% of the sample of untreated wastewater significantly decreased survival of both HEp2 and HeLa cell lines. In the presence of undiluted sample survival percentage of HeLa and HEp2 cells were only 2.3 and 0.3% respectively. Only undiluted purified wastewater showed slight but insignificant decrease of the survival of both cell lines. Even 0.5% of the sample of original electroplating wastewater exhibited significantly higher value of all comet assay parameters compared to negative control. There was no significant difference between negative control and purified wastewater for any of comet assay parameters. Significantly lower level of primary DNA damage recorded after treatment with purified water, even comparable with negative control, confirmed effectiveness of the purification process.

  18. Distribution of air and serum PCDD/F levels of electric arc furnaces and secondary aluminum and copper smelters.

    PubMed

    Lee, Ching-Chang; Shih, Tung-Seng; Chen, Hsiu-Ling

    2009-12-30

    Metallurgical processes, such as smelting, can generate organic impurities such as organic chloride chemicals, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). The objective of this study was to elucidate the serum PCDD/F levels of 134 workers and ambient air levels around electric arc furnaces (EAF), secondary copper smelters and secondary aluminum smelters (ALSs) in Taiwan. The highest serum PCDD/F levels were found in the ALSs workers (21.9 pg WHO-TEQ/g lipid), with lower levels in copper smelter workers (21.5 pg WHO-TEQ/g lipid), and the lowest in the EAF plant workers (18.8 pg WHO-TEQ/g lipid). This was still higher than the levels for residents living within 5 km of municipal waste incinerators (14.0 pg WHO-TEQ/g lipid). For ambient samples, the highest ambient air PCDD/F level was in the copper smelters (12.4 pg WHO-TEQ/Nm(3)), with lower levels in ALSs (7.2 pg WHO-TEQ/Nm(3)), and the lowest in the EAF industry (1.8 pg WHO-TEQ/Nm(3)). The congener profiles were consistent in serum and in air samples collected in the copper smelters, but not for ALSs and EAF. In secondary copper smelters, the air PCDD/Fs levels might be directly linked to the PCDD/Fs accumulated in the workers due to the exceedingly stable congener pattern of the PCDD/F emission.

  19. Removal of vapour phase PCDD/Fs in electric arc furnace steelmaking emissions by sorption using plastics.

    PubMed

    Ooi, Tze Chean; Ewan, Bruce C R; Cliffe, Keith R; Anderson, David R; Fisher, Raymond; Thompson, Dennis

    2008-08-01

    Plastics are potentially suitable for the removal of vapour phase PCDD/Fs in emissions from the electric arc furnace (EAF) steelmaking process. Three different commercial plastics, i.e. polypropylene BE170MO (Borealis A/S, Denmark), polypropylene in the form of 5 mm spheres (The Precision Plastic Ball Co. Ltd., UK) and polyethylene LD605BA (ExxonMobil Chemical, Belgium), have been studied using a novel experimental apparatus for the removal of vapour phase PCDD/Fs. Polypropylene BE170MO was identified to be the most suitable product amongst the three plastics in terms of PCDD/F sorption and potential industrial application. The optimum temperature for PCDD/F sorption on polypropylene BE170MO was below 90 degrees C for a removal efficiency of >99% at an average vapour phase PCDD/F concentration of 3.5 ng I-TEQ/Nm(3). At 130 degrees C, 53% of the PCDD/Fs trapped on polypropylene BE170MO were desorbed.

  20. Application of alkaline solid residue of electric arc furnace dust for neutralization/purification of electroplating wastewaters.

    PubMed

    Elez, Loris; Orescanin, Visnja; Sofilic, Tahir; Mikulic, Nenad; Ruk, Damir

    2008-10-01

    The purpose of this work was development of an appropriate procedure for the neutralization/purification of electroplating wastewater (EWW) with alkaline solid residue (ASR) by-product of the alkaline extraction of zinc and lead from electric arc furnace dust (EAFD). Removal efficiency of ASR at optimum purification conditions (pH 8 and mixing time; 20 minutes) for the elements Pb, Cr (VI), Cr (III), Fe, Ni, Cu and Zn were 94.92%, 97.58%, 99.59%, 99.48%, 97.25% and 99.97%, respectively. The concentrations of all elements in the purified wastewater were significantly lower in relation to the upper permissible limit for wastewaters suitable for discharge into the environment. The remaining waste mud was regenerated in the strong alkaline medium and successfully applied once again for the neutralization/purification of EWW. Removal efficiencies of heavy metals accomplished with regenerated waste mud were comparable to these achieved by original ASR. Elemental concentrations in the leachates of the waste mud were in accordance with regulated values.

  1. Formation of hexachlorobenzene from dusts of an electric arc furnace used in steelmaking: effect of temperature and dust composition.

    PubMed

    Murakami, Taichi; Shimura, Mizuki; Kasai, Eiki

    2008-10-01

    A certain amount of hexachlorobenzene (HCB), designated a persistent organic pollutant (POP) by the Stockholm Convention, is emitted from an electric arc furnace (EAF) used in the steelmaking process. To understand the formation and decomposition behaviors of HCB during the treatment of waste gases from an EAF, characterization of dust samples from EAFs in different plants was conducted. Dusts 1 and 2 were bag filter dusts collected from a common steel plant and a special steel plant, respectively. The initial concentrations of HCB in dusts 1 and 2 were 62 and < 0.1 ng/g of dust, respectively. Then a series of heating experiments was carried out with these dust samples under various conditions. The formation of HCB from both dusts was not significant under an Ar atmosphere, although the amount of formation from dust 1 slightly increased with an increase in the holding temperature. Under an Ar--20% O2 atmosphere, however, a remarkable amount of HCB formed from dust 1 above 573 K. A certain amount of HCB was also formed from dust 2, even though the initial concentration of HCB was very low. Moreover, the coexistence of metallic compounds such as CuCl2 had a significant accelerating effect on the formation of HCB.

  2. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.

    PubMed

    Tsakiridis, P E; Oustadakis, P; Katsiapi, A; Agatzini-Leonardou, S

    2010-07-15

    The characterization and the agitation leaching of electric arc furnace dust (EAFD) by diluted sulphuric acid have been studied in Part I, as a separate article. The aim of the present research work (Part II) is the development of a purification process of the leach liquor for the recovery of high-purity zinc by electrowinning. The proposed hydrometallurgical process consists of the following four (4) unit operations: (1) Removal of iron as easily filterable crystalline basic sulphate salt of the jarosite type, at atmospheric pressure, by chemical precipitation at pH: 3.5 and 95 degrees C. (2) Zinc solvent extraction by Cyanex 272 at pH: 3.5, T: 40 degrees C, with 25% extractant concentration. (3) Stripping of the loaded organic phase by zinc spent electrolyte (62.5 g/L Zn(2+)) at T: 40 degrees C with diluted H(2)SO(4) (3 mol/L). (4) Zinc electrowinning from sulphate solutions (at 38 degrees C) using Al as cathode and Pb as anode. The acidity of the electrolyte was fixed at 180 g/L H(2)SO(4), while the current density was kept constant at 500 A/m(2).

  3. Preparation of C60(O)n-ZnO nanocomposite under electric furnace and photocatalytic degradation of organic dyes.

    PubMed

    Cho, Bum Hwi; Oh, Youn Jun; Mun, Sang Mi; Ko, Weon Bae

    2012-07-01

    Zinc oxide (ZnO) nanoparticles were synthesized sonochemically by applying ultrasonic irradiation to a mixed aqueous-alcoholic solution of zinc nitrate with sodium hydroxide at room temperature. The morphology and optical properties of the ZnO nanoparticles were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis spectroscopy. The C60(O)n nanoparticles were synthesized by heating a mixture of C60 and 3-chloroperoxybenzoic acid in a benzene solvent under the reflux system. The heated C60(O)n-ZnO nanocomposite was synthesized in an electric furnace at 700 degrees C for two hours. The heated C60(O)n-ZnO nanocomposite was characterized by XRD, SEM, and TEM, and examined as a catalyst in the photocatalytic degradation of organic dyes by UV-vis spectroscopy. The photocatalytic effect of the heated C60(O)n-ZnO nanocomposite was evaluated by a comparison with that of unheated C60(O)n nanoparticles, heated C60(O)n nanoparticles, and unheated C60(O)n-ZnO in organic dyes, such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultraviolet light at 365 nm.

  4. Synthesis of [60]fullerene-ZnO nanocomposite under electric furnace and photocatalytic degradation of organic dyes.

    PubMed

    Hong, Sung Kyu; Lee, Jeong Ho; Ko, Weon Bae

    2011-07-01

    Zinc oxide (ZnO) nanoparticles were synthesized by a reaction between an aqueous-alcoholic solution of zinc nitrate and sodium hydroxide under ultrasonic irradiation at room temperature. The morphology, optical properties of the ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The [60]fullerene and zinc oxide nanocomposite were synthesized in an electric furnace at 700 degrees C for two hours. The [60]fullerene-ZnO nanocomposite was characterized by XRD, SEM and TEM. In addition, the [60]fullerene-ZnO nanocomposite was investigated as a catalyst in the photocatalytic degradation of organic dyes using UV-vis spectroscopy. The photocatalytic activity of the [60]fullerene-ZnO nanocomposite was compared with that of ZnO nanoparticles, heated ZnO nanoparticles after synthesis, pure [60]fullerene, and heated pure [60]fullerene in organic dyes such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultraviolet light at 254 nm.

  5. Evaluation of ASD systems for electric arc furnace and argon oxygen decarburization refiner baghouse fans. Final report

    SciTech Connect

    1997-11-01

    Adjustable speed drive (ASD) control of the baghouse fans for Electric Arc Furnace (EAF) and Argon Oxygen Decarburization Vessel (AOD) can improve operations, reduce the degree of dust generation, and provide significant energy savings. The purpose of the project was to quantify the benefits, both in energy savings and other process improvements and to demonstrate the methodology of applying adjustable speed drives, to two baghouse fans from a system perspective. The report describes the approach to accomplishing the ASD equipment installation, the test procedure and methodology and provides the test results and economic return. The test results indicated that by using ASDs to control the extraction fan air flow for the EAF and AOD, the following benefits would be achieved on an annual basis: EAF annual energy savings, 267,929 kWh valued at $11,575; EAF dust reduction, overall, 2--3%; EAF dust reduction, during the flatbath period, 35%; and AOD annual energy savings, 1,443,078 kWh valued at $62,341.

  6. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    SciTech Connect

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  7. Electric Power Generation Using Low Bandgap TPV Cells in a Gas-fired Heating Furnace

    NASA Astrophysics Data System (ADS)

    Qiu, K.; Hayden, A. C. S.

    2003-01-01

    Low bandgap TPV cells are preferred for electric power generation in TPV cogeneration systems. Recently, significant progress has been made in fabrication of low bandgap semiconductor TPV devices, such as InGaAsSb and InGaAs cells. However, it appears that only limited data are available in the literature with respect to the performance of these TPV cells in combustion-driven TPV systems. In the research presented in this paper, power generation using recently-developed InGaAsSb TPV cells has been investigated in a gas-fired space heating appliance. The combustion performance of the gas burner associated with a broadband radiator was evaluated experimentally. The radiant power density and radiant efficiency of the gas-heated radiator were determined at different degrees of exhaust heat recuperation. Heat recuperation is shown to have a certain effect on the combustion operation and radiant power output. The electric output characteristics of the InGaAsSb TPV devices were investigated under various combustion conditions. It was found that the cell short circuit density was greater than 1 A/cm2 at a radiator temperature of 930°C when an optical filter was used. An electric power density of 0.54 W/cm2 was produced at a radiator temperature of 1190°C. Furthermore, modeling calculations were carried out to reveal the influence of TPV cell bandgap and radiator temperature on power output and conversion efficiency. Finally, the design aspects of combustion-driven TPV systems were analyzed, showing that development of a special combustion device with high conversion level of fuel chemical energy to useful radiant energy is required, to improve further the system efficiency.

  8. Physicochemical properties of the zinc-containing dusts of electric furnace steelmaking

    NASA Astrophysics Data System (ADS)

    Korneev, V. P.; Sirotinkin, V. P.; Petrakova, N. V.; Dyubanov, V. G.; Leont'ev, L. I.

    2013-07-01

    The properties of the dusts of electric-arc melting in the Severstal' metallurgical works are studied by X-ray diffraction, Mössbauer spectroscopy, and electron microscopy. The elemental compositions of dust particles of various sizes are determined, and the complex structural composition of iron-containing oxide phases is revealed. It is shown that, in these systems, the carbon reduction of zinc from zincite is possible in the solid state in the temperature range 600-1000°C. In this case, zinc passes into a gaseous phase and iron oxides are reduced to form metallic iron.

  9. [Health surveillance in a steel making industry with electric arc furnace: 15 years of experience].

    PubMed

    Corti, P

    2012-01-01

    This paper analyzes the results of health surveillance carried out in an electric steel mill for 15 years. We have analyzed the trend of audiometry, spirometry and main indicators of exposure to chemical risk: serum lead, urinary OH-pyrene, erythrocyte ZPP, and the results of risk assessment of stress work related. The analyses of the trend of audiometry, spirometry and biological monitoring shows an important improving in the working environment due to the progressive automation of production steps in the course of several years, consistent and correct use of DPI, information and training.

  10. Study of The Maximum Uptake Capacity on Various Sizes of Electric Arc Furnace Slag in Phosphorus Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Afnizan, W. M. W.; Hamdan, R.; Othman, N.

    2016-07-01

    The high content of uncontrolled phosphorus concentration in wastewater has emerged as a major problem recently. The excessive amount of phosphorus that is originated from domestic waste, unproper treated waste from septic tanks, as well as agricultural activities have led to the eutrophication problem. Therefore, a laboratory experiment was initiated to evaluate the potential of the Electric Arc Furnace Slag (EAFS), a by-product waste from steel making industry in removing phosphorus concentrations in aqueous solutions. In this work several particle sizes ranging from (9.5-12.4 mm, 12.5-15.9 mm, 16.0-19.9 mm, 20.0-24.9 mm, 25-37.4 mm) with a known weight (20±0.28 g, 40±0.27 g, 60±0.30 g, 80±0.29 g and 100±0.38 g) were used to study the effect of different particle sizes towards phosphorus removal. Each particle size of EAFS was shaken in synthetic phosphorus solutions (10 mg/l, 20 mg/l, 30 mg/l, 40 mg/l and 50 mg/l) at a contact time of 2 hours. Final concentrations of phosphorus were sampled and the measurement was made using WESTCO Discrete Analyzer equipment. Results showed that the highest of the maximum uptake capacity of each EAFS particle size distribution achieved at 0.287, 0.313, 0.266, 0.241 and 0.25 mg/g as particle size range was varied from 9.5-12.4 mm to 25-37.4 mm. In conclusion, the maximum uptake capacity of each EAFS mostly was determined to occur at adsorbent weight of 20 to 40 g in most conditions.

  11. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride.

    PubMed

    Leclerc, Nathalie; Meux, Eric; Lecuire, Jean Marie

    2002-04-26

    The purpose of this work was to study the feasibility at laboratory-scale of a new hydrometallurgical process for treating electric arc furnace dusts (EAFD). The proposed process is intended to extract zinc and lead from EAFD without destroying the iron oxides matrix. So, this material can be recycled by the steel industry. Independently of the origin of the samples, major mineralogical forms present in these wastes are Fe3O4, ZnO, ZnFe2O4 and PbOHCl. The proposed process consists of a hydrometallurgical treatment of wastes based on selective leaching of zinc and lead. Initially, a leaching is carried out utilizing a chelating agent, nitrilotriacetate anion (NTA3-), as the protonated form HNTA2-. Treatment of five EAFD samples for an hour at room temperature with a molar solution of reagent results in total leaching of the ZnO. In all cases the solubilized iron does not exceed 3 wt.%. The recovery of zinc and lead is performed by precipitation of metallic sulfides with a solution of Na2S4 sodium tetrasulfide 2M. These metallic sulfides can be used as metallurgical raw materials and the chelating reagent can be reused in the process after pH adjustment. The results of the normalized leaching test AFNOR X31-210 conducted on the leaching residues, shows that all the samples meet acceptance thresholds for hazardous wastes landfill. However, the residues contain a considerable amount of zinc as ZnFe2O4. The extraction of the zinc element requires the destruction of the ferrite structure. In this process, ZnFe2O4 is treated by FeCl3.6H2O. The reaction consists in a particle O2-/Cl- exchange allowing the recovery of zinc as ZnCl2 and iron as hematite Fe2O3. The separation of these products is accomplished by simple aqueous leaching. All of the zinc is extracted in a 8h treatment at 150 degrees C with a molar ratio FeCl3.6H2O/ZnFe2O4 equal to 10. Ultimate solid residues, which have been concentrated in iron, can be oriented towards the steel industry.

  12. [Energy efficient electric rotary furnace for class molding (repressing) precision optional blanks]. Quarterly progress report, 20 December 1997--20 August 1998

    SciTech Connect

    Pochan, D.

    1998-09-01

    The project objectives were: elimination/reduction of the use of mold release powder; improvement of temperature control and data acquisition; improve operator working conditions; and maximize energy efficiency. Electric rotary furnace prototype has been built and will be on-site by the end of September. Additional space has been leased to insure a clean environment for testing. Preliminary data for candidate hearth plate material supports the hypothesis that wetting of the glass may be controlled by temperature and surface chemistry. This report describes materials testing, prototype development, testing protocols and methods, and technical milestones.

  13. Modeling ohmic heating in the drying zone of the plasma shaft electric furnace, when recycling the technogenic waste

    NASA Astrophysics Data System (ADS)

    Aliferov, A. I.; Anshakov, A. S.; Sinitsyn, V. A.; Domarov, P. V.; Danilenko, A. A.

    2016-10-01

    Efficient use of ohmic heating in the drying zone of the plasma shaft furnace for gasification of organic and technogenic wastes is studied. It is shown that by using ohmic heating in the drying zone, energy release takes place in the filling along the entire zone.

  14. Assessing Student Reasoning in Upper-Division Electricity and Magnetism at Oregon State University

    ERIC Educational Resources Information Center

    Zwolak, Justyna P.; Manogue, Corinne A.

    2015-01-01

    Standardized assessment tests that allow researchers to compare the performance of students under various curricula are highly desirable. There are several research-based conceptual tests that serve as instruments to assess and identify students' difficulties in lower-division courses. At the upper-division level assessing students' difficulties…

  15. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    PubMed

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.

  16. Cupola Furnace Computer Process Model

    SciTech Connect

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  17. 78 FR 14784 - Delaware Division of the Public Advocate, Delaware Municipal Electric Corporation, Inc., Delaware...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... Columbia v. Baltimore Gas and Electric Company, Pepco Holdings, Inc., Potomac Electric Power Company, Delmarva Power & Light Company, Atlantic City Electric Company; Notice of Complaint Take notice that on... Holdings, Inc. (PHI), and affiliates; Potomac Electric Power Company, Delmarva Power & Light Company,...

  18. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  19. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  20. SOUTHERN DUCTILE CASTING COMPANY, BACK SIDE OF FURNACE AND MOLDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTHERN DUCTILE CASTING COMPANY, BACK SIDE OF FURNACE AND MOLDING BUILDINGS SHOWING CONNECTIONS TO LOCAL POWER GRID, PRIMARILY FOR ELECTRIC FURNACES. - Southern Ductile Casting Company, Bessemer Foundry, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  1. INTERIOR VIEW LOOKING NORTHEAST, SHOWING FURNACE NO. 1 (ca. 1910. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING NORTHEAST, SHOWING FURNACE NO. 1 (ca. 1910. Nameplate reads: "Heroult Electric Furnace, Capacity 6 tons, Built by American Bridge Company, Pencoyd, PA, No. 33") - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  2. Assessing student reasoning in upper-division electricity and magnetism at Oregon State University

    NASA Astrophysics Data System (ADS)

    Zwolak, Justyna P.; Manogue, Corinne A.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Standardized assessment tests that allow researchers to compare the performance of students under various curricula are highly desirable. There are several research-based conceptual tests that serve as instruments to assess and identify students' difficulties in lower-division courses. At the upper-division level assessing students' difficulties is a more challenging task. Although several research groups are currently working on such tests, their reliability and validity are still under investigation. We analyze the results of the Colorado Upper-Division Electrostatics diagnostic from Oregon State University and compare it with data from the University of Colorado. In particular, we show potential shortcomings in the Oregon State University curriculum regarding separation of variables and boundary conditions, as well as uncover weaknesses of the rubric to the free-response version of the diagnostic. We also demonstrate how the diagnostic can be used to obtain information about student learning during a gap in instruction. Our work complements and extends the previous findings from the University of Colorado by highlighting important differences in student learning that may be related to the curriculum, illuminating difficulties with the rubric for certain problems and verifying decay in post-test results over time.

  3. Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station

    SciTech Connect

    Not Available

    1982-03-01

    A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

  4. 75 FR 47644 - General Electric Company, Transportation Division, Including On-Site Leased Workers From Adecco...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... 3, 2010, the USCIT remanded United Electrical, Radio and Machine Workers of America, Local 506 v..., Pennsylvania (hereafter referred to as the subject facility). On July 1, 2009, United Electrical, Radio and... the subject facility. In accordance with section 223 of the Act, 19 U.S.C. 2273, I make the...

  5. Standard operating procedure: Gas atmosphere MELCO brazing furnace

    SciTech Connect

    Waller, C.R.

    1988-08-01

    A hydrogen and argon gas atmosphere furnace facility using electric furnaces is located at the Clinton P. Anderson Meson Physics Facility (LAMPF). This furnace system was acquired to handle smaller jobs with a more rapid response time than was possible with the larger furnaces. Accelerator- and experimental-related components best assembled by atmosphere brazing techniques are routinely processed by this facility in addition to special heat treatment and bakeout heats. The detailed operation sequence and description of the MELCO furnace system are covered by this report. This document is to augment LA-10231-SOP, which describes the operation of the large furnace systems. 6 figs.

  6. Measurement of airflow in residential furnaces

    SciTech Connect

    Biermayer, Peter J.; Lutz, James; Lekov, Alex

    2004-01-24

    In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

  7. Maintaining vacuum furnaces

    SciTech Connect

    Kowalewski, J.

    2000-04-01

    A preventive maintenance program is essential for safe and consistent vacuum furnace operation. The program should be developed in cooperation with safety, maintenance, and furnace operators, implemented as soon as the furnace is commissioned, and adhered to throughout the life of the furnace. This article serves as an introduction to the topic of vacuum furnace preventive maintenance. Basic information about installing a new vacuum furnace also is provided.

  8. Interior of shop, showing the reheat furnaces; the vehicle in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of shop, showing the reheat furnaces; the vehicle in the center is a charging machine the operator of which manipulates steel ingots in the furnace, as well as in the adjacent forging hammers - Bethlehem Steel Corporation, South Bethlehem Works, Tool Steel-Electric Furnace Shop, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  9. Removable preheater elements improve oxide induction furnace

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1964-01-01

    Heat and corrosion resistant preheater elements are used in oxide induction furnaces to raise the temperature to the level for conducting electricity. These preheater elements are then removed and the induction coil energized.

  10. Activated electric arc furnace slag as an effective and reusable Fenton-like catalyst for the photodegradation of methylene blue and acid blue 29.

    PubMed

    Nasuha, N; Ismail, S; Hameed, B H

    2017-03-14

    In this work, an activated electric arc furnace slag (A-EAFS) was investigated as an effective Fenton catalyst for the photodegradation of methylene blue (MB) and acid blue 29 (AB29). Fourier transform infrared spectroscopy and UV-visible absorption analyses indicated that A-EAFS offers additional Fe3O4 because of the changes in the iron oxide phase and the favorable response to visible light. It has been found that the highest degradation efficiency can reach up to 94% for MB under optimal conditions of 1 g L(-1) of A-EAFS, 20 mM H2O2, and pH 3. The optimal conditions for AB29 were 0.1 g L(-1) A-EAFS, 4 mM H2O2, and pH 3 to reach 98% degradation efficiency. Visible light enhanced the degradation of both dyes. In addition, A-EAFS, could be easily separated magnetically, exhibited good chemical stability after seven successive photodegradation cycles.

  11. Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag.

    PubMed

    Li, Yang; Liu, Lulu; Guo, Min; Zhang, Mei

    2016-09-01

    TiO2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag (Ti-bearing EAF slag) by using a simple acidolysis process. The effects of the pH of the HCl solution, liquid to solid ratio (RL/S, HCl solution to the residue ratio, mL/g) and acidolysis time on the micro-morphology and crystalline phase of as-prepared TiO2 photocatalysts were systematically investigated. The results indicated that with decreasing pH in the HCl solution and increasing RL/S, the crystalline phase and micro-morphology of the obtained TiO2 nanostructures tended to transform from anatase type TiO2 with spherical nanoparticle structures to rutile type TiO2 with needle-like nanorod structures. The acidolysis time had little influence on the crystalline phase but great impact on the size of the obtained TiO2. The growth mechanism of TiO2 from Ti-bearing EAF slag during the acidolysis process was also discussed. In addition, the influence of RL/S on the photocatalytic properties of the synthesized nanostructured TiO2 was studied. The results showed that the photodegradation efficiency for Rhodamine B solution could reach 91.00% in 120min when the RL/S was controlled at 50:1.

  12. On the distribution and bonding environment of Zn and Fe in glasses containing electric arc furnace dust: a mu-XAFS and mu-XRF study.

    PubMed

    Pinakidou, F; Katsikini, M; Paloura, E C; Kavouras, P; Kehagias, Th; Komninou, Ph; Karakostas, Th; Erko, A

    2007-04-02

    We apply synchrotron radiation assisted X-ray fluorescence (SR-XRF), SR-XRF mapping as well as micro- and conventional X-ray absorption fine structure (mu-XAFS and XAFS) spectroscopies in order to study the bonding environment of Fe and Zn in vitrified samples that contain electric arc furnace dust from metal processing industries. The samples are studied in the as-cast state as well as after annealing at 900 degrees C. The SR-XRF results demonstrate that annealing does not induce any significant changes in the distribution of either Fe or Zn, in both the as-cast and annealed glasses. The mu-XAFS spectra recorded at the Fe-K and Zn-K edges reveal that the structural role of both Fe and Zn remains unaffected by the annealing procedure. More specifically, Fe forms both FeO(6) and FeO(4) polyhedra, i.e. acts as an intermediate oxide while Zn occupies tetrahedral sites.

  13. Chemical characterization of dust particles recovered from bag filters of electric arc furnaces for steelmaking: some factors influencing the formation of hexachlorobenzene.

    PubMed

    Tsubouchi, Naoto; Hashimoto, Hiroyuki; Ohtaka, Noriaki; Ohtsuka, Yasuo

    2010-11-15

    To make clear some factors controlling the formation of hexachlorobenzene (HCB) in the process of electric arc furnace (EAF) steelmaking, six dust samples recovered from different bag filters in commercial EAF steelmaking plants have been characterized with XRD, SEM-EPMA, XPS and temperature-programmed desorption (TPD) techniques. These dust samples contain 1.9-8.0 mass% of chlorine element, and the XPS and TPD measurements exhibit that the Cl is enriched at the dust surface and composed of the inorganic and organic functionalities, part of the Cl being evolved as HCl in the temperature region of flue gas treatment. All of the samples also include 2.1-6.4 mass% of carbon element, and some of the C can release CO(2) in the TPD up to 300°C to form active carbon sites. The number is related closely to HCB concentration of each dust. Further, it is suggested that the Zn present in the samples consists of ZnFe(2)O(4), ZnO and surface ZnCO(3), and the dust with a larger content of the ZnCO(3) has a higher concentration of HCB. It is possible that HCB formation occurs via gas-solid-solid interactions among gaseous Cl-containing compounds in flue gas, active carbon sites and surface Zn-species produced in exhaust ducts and bag filters.

  14. Industrial furnace

    SciTech Connect

    Shostak, V.M.; Tolochko, A.I.; Volkov, V.P.; Maradudin, G.I.; Schekin, N.G.; Popov, M.I.; Shepelev, D.N.; Matveev, A.I.; Butnyakov, A.I.; Rzhavichev, A.P.

    1986-09-02

    An industrial furnace is described which consists of: a bath made of a refractory material for filling with a melt; a direct current source; main current-carrying elements having free ends extending to an operating area of the refractory material of the bath below and above the melt, and the main current-carrying elements extending to the operating area below the melt being connected with opposite terminals of the current source from the main current-carrying elements extending to the operating area above the melt; and additional current-carrying elements having free ends sunk in the refractory material of the bath below and above the melt and the additional current-carrying elements being connected with the terminals of the power source of opposite polarity with respect to the connection of the main current-carrying elements of a corresponding part of the operating area.

  15. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry.

    PubMed

    Quijorna, N; de Pedro, M; Romero, M; Andrés, A

    2014-01-01

    Waelz slag is an industrial by-product from the recovery of electric arc furnace (EAF) dust which is mainly sent to landfills. Despite the different chemical and mineralogical compositions of Waelz slag compared to traditional clays, previous experiments have demonstrated its potential use as a clay substitute in ceramic processes. Indeed, clayey products containing Waelz slag could improve mechanical and environmental performance, fixing most of the metallic species and moreover decreasing the release of some potential pollutants during firing. However, a deeper understanding of the complex phase transformations during its thermal treatment and the connection of this behaviour with the end properties is desirable in order to explain the role that is played by the Waelz slag and its potential contribution to the ceramic process. For this purpose, in the present study, the chemical, mineralogical, thermal and environmental behaviour of both (i) unfired powdered samples, and (ii) pressed specimen of Waelz slag fired up to different temperatures within the typical range of clay based ceramic production, has been studied. The effect of the heating temperature on the end properties of the fired samples has been assessed. In general, an increase of the firing temperature promotes sintering and densification of the products and decreases the open porosity and water absorption which also contributes to the fixation of heavy metals. On the contrary, an increase in the leaching of Pb, Cr and Mo from the fired specimens is observed. This can be attributed to the creation of Fe and Ca molybdates and chromates that are weakly retained in the alkali matrix. On the other side, at temperature above 950 °C a weight gain related to the emission of evolved gases is observed. In conclusion, the firing temperature of the ceramic process is a key parameter that affects not only the technical properties but also strongly affects the leaching behaviour and the process emissions.

  16. Silicon smelting in a closed furnace

    SciTech Connect

    Dosaj, V.; Brumels, M.D.; Haines, C.M.; May, J.B. )

    1991-01-01

    Dow Corning has been working towards the advancement of silicon smelting in a closed furnace over the past four years. A 200 kVA closed furnace pilot plant unit was built to investigate the operating parameters for smelting silicon. The single electrode furnace is operated under totally sealed conditions. The feed from the feed hoppers is fed through air locks to the furnace. The off-gas from the furnace, consisting of by-product CO as well as volatiles from the feeds, pass through a venturi scrubber, where water is introduced to scrub out the fume from the furnace and cool the gas. The mixed scrubber water and off-gas pass into a centrifugal mist eliminator where the water and fume disengage from the gas. The fume slurry is passed through bag filters where the fume is separated from the water. The clean off-gas from the furnace was evaluated for its calorific value and evaluated for conversion to useful products. A number of silicon smelting tests were conducted during this program. Various levels of charcoal and coal mixtures were evaluated to determine the optimum mix. A low volatile coal was preferred over typical Blue Gem coal. The coal amount in the mix was maximized without compromising the smelting performance. A raw material mix consisting of 30% charcoal and 70% low volatile coal was determined to be an optimum mix for closed furnace operation. Silicon recoveries in the low nineties were demonstrated using this mix. Four quartz sources were also evaluated in the closed furnace. The closed furnace operation for silicon smelting was identified to offer significant advantages over an open furnace from the standpoint of reduced carbon oxidation losses, electrode consumption, electrical energy consumption and silicon yield improvement. Other advantages in addition to process off-gas recovery included improved safety from reduced heat and fume exposure, and improved pollution control to the environment. 1 ref.

  17. Silicon smelting in a closed furnace

    SciTech Connect

    Dosaj, V.; Brumels, M.D.; Haines, C.M.; May, J.B.

    1991-12-31

    Dow Corning has been working towards the advancement of silicon smelting in a closed furnace over the past four years. A 200 kVA closed furnace pilot plant unit was built to investigate the operating parameters for smelting silicon. The single electrode furnace is operated under totally sealed conditions. The feed from the feed hoppers is fed through air locks to the furnace. The off-gas from the furnace, consisting of by-product CO as well as volatiles from the feeds, pass through a venturi scrubber, where water is introduced to scrub out the fume from the furnace and cool the gas. The mixed scrubber water and off-gas pass into a centrifugal mist eliminator where the water and fume disengage from the gas. The fume slurry is passed through bag filters where the fume is separated from the water. The clean off-gas from the furnace was evaluated for its calorific value and evaluated for conversion to useful products. A number of silicon smelting tests were conducted during this program. Various levels of charcoal and coal mixtures were evaluated to determine the optimum mix. A low volatile coal was preferred over typical Blue Gem coal. The coal amount in the mix was maximized without compromising the smelting performance. A raw material mix consisting of 30% charcoal and 70% low volatile coal was determined to be an optimum mix for closed furnace operation. Silicon recoveries in the low nineties were demonstrated using this mix. Four quartz sources were also evaluated in the closed furnace. The closed furnace operation for silicon smelting was identified to offer significant advantages over an open furnace from the standpoint of reduced carbon oxidation losses, electrode consumption, electrical energy consumption and silicon yield improvement. Other advantages in addition to process off-gas recovery included improved safety from reduced heat and fume exposure, and improved pollution control to the environment. 1 ref.

  18. Exposure assessment of workers to airborne PCDD/Fs, PCBs and PAHs at an electric arc furnace steelmaking plant in the UK.

    PubMed

    Aries, Eric; Anderson, David R; Fisher, Raymond

    2008-06-01

    Occupational exposure studies were undertaken at a UK electric arc furnace (EAF) steelmaking plant to investigate the exposure of workers via inhalation to dioxins, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) including benzo[a]pyrene (B[a]P). Surveys were undertaken in areas including the melting shop, the casting department and a furnace control cabin. The highest concentrations of dioxins and PCBs were found inside the melting shop nearby EAFs, whereas dioxin and PCB concentrations in the casting department and inside the control cabin were significantly lower. Risk characterization was carried out by comparing the daily intake of dioxins and PCBs through inhalation with the recommended tolerable daily intake (TDI). Health risk assessments were also carried out by combining exposure data with inhalation cancer potency factors to quantify the cancer risk. For the most exposed category of workers (melting shop workers), the estimated daily intake via inhalation was 0.35 pg WHO-TEQ kg(-1) body weight (bw) in the worst case scenario. Considering that the average UK adult exposure to dioxins from the diet is 1.8 pg WHO-TEQ kg(-1) bw day(-1), the results indicated that the estimated daily intake of dioxins via inhalation at the EAF would not result in the recommended range of the TDI (1-4 pg WHO-TEQ kg(-1) bw day(-1)) being exceeded. Cancer risks for a 40-year occupational exposure period were determined by multiplying the inhalation dose by the inhalation cancer potency factor for 2,3,7,8-tetrachlorodibenzo-p-dioxin. For melting shop workers, cancer risks from exposure to dioxins and PCBs ranged from 2.05 x 10(-5) to 7.54 x 10(-5). Under most regulatory programmes, excess cancer risks between 1.0 x 10(-4) and 1.0 x 10(-6) indicate an acceptable range of excess cancer risk, suggesting a limited risk from dioxin exposure for workers in the EAF plant. For the calculation of excess cancer risks, no account has been taken of the protection

  19. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  20. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  1. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  2. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  3. High temp vacuum furnace offers new option

    SciTech Connect

    1995-12-11

    Vacuum furnaces operating up to 2,350 F are commonly used for metallurgical processes such as hardening tool steels, treating super alloys, power metal sintering, and brazing. Traditionally electric, these furnaces are costly to operate and maintain. They are often sensitivity to impurities driven off work pieces in the heating chamber because the vapors condense on the walls of the heating chamber and negatively effect operation. The gas-fired vacuum furnace now in development by Surface Combustion, with support from the Gas Research Institute (GRI) will, however, have none of the drawbacks of the electric models while maintaining or improving on performance. Costly electric operating and demand charges will be avoided through the use of natural gas as a fuel. Its ``hot wall`` furnace design means that impurities driven off the work piece can be pulled out of the chamber before they condense. Because ceramic radiant tubes will be used in conjunction with the hot wall design, temperature uniformity and productivity are expected to equal, or surpass, that of the electric furnaces.

  4. 5. Photocopied August 1978. FRONT OF A HORRY ROTARY FURNACE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photocopied August 1978. FRONT OF A HORRY ROTARY FURNACE, SHOWING INTERIOR ELECTRODES. THE RAW MATERIALS FOR CALCIUM CARBIDE PRODUCTION--LIMESTONE AND COKE--WERE FED BY HOPPERS PLACED BETWEEN THESE ELECTRODES INTO THE ELECTRIC ARC. THE REMOVABLE PLATES ON THE EXTERNAL CIRCUMSTANCE OF THE HORRY FURNACE ARE SHOWN ON THE FIRST THREE FURNACES. (M) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  5. Electromelt furnace evaluation

    SciTech Connect

    Reimann, G.A.; Welch, J.M.

    1981-09-01

    An electromelt furnace was designed, built, and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high.

  6. Electromelt furnace evaluation

    NASA Astrophysics Data System (ADS)

    Reimann, G. A.; Welch, J. M.

    1981-09-01

    An electromelt furnace was designed, built and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high.

  7. EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. 3 CAST HOUSE TO THE LEFT, WEST ORE BRIDGE TO THE RIGHT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  8. 8. VIEW OF FOUNDRY INDUCTION FURNACES, MODULE J. THE FOUNDRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF FOUNDRY INDUCTION FURNACES, MODULE J. THE FOUNDRY CASTING PROCESS WAS CONDUCTED IN A VACUUM. PLUTONIUM METAL WAS MELTED IN ONE OF FOUR ELECTRIC INDUCTION FURNACES TO FORM INGOTS. - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  9. Application of AI techniques to blast furnace operations

    SciTech Connect

    Iida, Osamu; Ushijima, Yuichi; Sawada, Toshiro

    1995-10-01

    It was during the first stages of application of artificial intelligence (AI) to industrial fields, that the ironmaking division of Mizushima works at Kawasaki Steel recognized its potential. Since that time, the division has sought applications for these techniques to solve various problems. AI techniques applied to control the No. 3 blast furnace operations at the Mizushima works include: Blast furnace control by a diagnostic type of expert system that gives guidance to the actions required for blast furnace operation as well as control of furnace heat by automatically setting blast temperature; Hot stove combustion control by a combination of fuzzy inference and a physical model to insure good thermal efficiency of the stove; and blast furnace burden control using neural networks makes it possible to connect the pattern of gas flow distribution with the condition of the furnace. Experience of AI to control the blast furnace and other ironmaking operations has proved its capability for achieving automation and increased operating efficiency. The benefits are very high. For these reasons, the applications of AI techniques will be extended in the future and new techniques studied to further improve the power of AI.

  10. Solar Convective Furnace for Metals Processing

    NASA Astrophysics Data System (ADS)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  11. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    SciTech Connect

    Lu, Wei-Kao; Debski, Paul

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  12. 76 FR 37407 - Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... ] b. Standby Mode and Off Mode for Electric Furnaces c. Standby Mode and Off Mode for Mobile Home Oil... product that provides cooling only. It is often paired with a separate electric or gas furnace...%........ AFUE = 75%. . Weatherized oil-fired AFUE = 78%........ AFUE = 78%. . Electric ....... AFUE =...

  13. 19. DETAILED OBLIQUE VIEW SOUTHSOUTHEAST OF FURNACE 2, SHOWING PLATFORM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAILED OBLIQUE VIEW SOUTH-SOUTHEAST OF FURNACE 2, SHOWING PLATFORM AT UPPER LEFT HOLDING PULLEY SYSTEM AND ELECTRIC MOTOR TO ACTIVATE DOORS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  14. INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS EVERY TWENTY MINUTES TO DETERMINE SIZE AND TEXTURE OF BATCH AND OTHER VARIABLES. FAN IN FRONT COOLS WORKERS AS THEY CONDUCT REPAIRS. FURNACE TEMPERATURE AT 1572 DEGREES FAHRENHEIT. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  15. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  16. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  17. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  18. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  19. An update on blast furnace granular coal injection

    SciTech Connect

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  20. Looking Northwest at Furnace Control Panels and Gas Control Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  1. An improved gas extraction furnace

    NASA Technical Reports Server (NTRS)

    Wilkin, R. B.

    1972-01-01

    Design of glass furnace for analysis of rocks to determine nature and amount of trapped gas is described. Furnace heats specimen in vacuum conditions by radio frequency induction. Diagram of apparatus to show construction and operation is provided.

  2. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  3. Strengthen flame stability during the furnace`s load decrease

    SciTech Connect

    Zhang Zhiguo; Sun Xuexin; Li Fujin; Qiu Jihua; Chen Gang

    1996-12-31

    This paper presents the result of the study of the coal combustion characteristic and flame stability during the load decrease of PCFF (corner burner arrangement). Considering the relation between flame stability and furnace load during the furnace load change, some method must be used to strengthen the pulverized coal ignition and combustion for the furnace to maintain the flame stability especially for the furnace which fires low rank anthracite. Experimental results show that when the furnace load decreased, the temperature distribution in furnace decreased and the flame stability in furnace had changed because of the load changing. This paper also introduces a new pulverized coal burner: Bluff-body with cavity burner. According to the result of application of this burner, this kind of pulverized coal burner can improve the coal ignition and combustion efficiency. Especially for low load operation of furnace the bluff-body with cavity burner has demonstrated its ability in strengthening coal ignition and improving the flame stability for furnace operation. Experimental results show that using bluff-body with cavity burner, the lowest load for furnace fired bituminous is 40% MCR and 50% MCr for low rank anthracite (V{sup r} < 12%, A{sup f} > 45%). This burner has simple structure and is very easy to set up for furnace.

  4. Investigation of energy parameters of the plasma-resistive furnace

    NASA Astrophysics Data System (ADS)

    Anshakov, A. S.; Aliferov, A. I.; Domarov, P. V.

    2016-09-01

    The electrical and thermal characteristics of plasma-resistive furnace in the drying zone at a recycling manmade waste were studied. The dependences of power output in the drying zone at different specific electrical resistances of the charge were derived. It is shown that introduction of additional resistance heating in the drying zone reduces the load on plasmatorch, increasing the lifetime of electrodes.

  5. Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and trace metals in the blood of nonoccupationally exposed residents living in the vicinity of a municipal solid waste incinerator and electric arc furnace.

    PubMed

    Chen, Yan-Min; Lin, Yuan-Chung; Wu, Tzi-Yi; Chang-Chien, Guo-Ping; Ma, Wen-Feng

    2010-06-01

    This study examines levels of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and trace metals in the blood of the nonoccupationally exposed residents living in the vicinity of municipal solid waste incinerators (MSWIs) and electric arc furnaces (EAFs). The analysis found that older females had higher concentrations of PCDD/Fs and older males had higher body mass index (BMI) values and higher concentrations of PCDD/Fs. Moreover, sex appeared to affect the levels of PCDD/Fs because, overall, females showed higher levels of PCDD/Fs. The results of a principal component analysis indicated that the characteristics of the blood were more similar to the characteristics of the stack flux gas in MSWIs than those in EAFs. When sex, age, and BMI values were taken into consideration, none of the factors appeared to significantly affect PCDD/F and trace metal blood levels. However, when participants were divided into eight categories and analyzed, it was found that sex was the most important factor affecting levels of trace metals in blood and that males had higher concentrations of Pb, Al, Cd, and Cu.

  6. Molten metal holder furnace and casting system incorporating the molten metal holder furnace

    DOEpatents

    Kinosz, Michael J.; Meyer, Thomas N.

    2003-02-11

    A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

  7. Laboratory Evaluation of Residential Furnace BlowerPerformance

    SciTech Connect

    Walker, Iain S.; Lutz, Jim D.

    2005-09-01

    A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility (Pacific Gas and Electric Co.) to compare the performance of furnace blowers. This laboratory testing program was undertaken to support potential changes to California Building Standards regarding in-field furnace blower energy use. This technical support includes identifying suitable performance metrics and target performance levels for use in standards. Five different combinations of blowers and residential furnaces were tested for air moving performance. Three different types of blower and motor combinations were tested in two different furnace cabinets. The blowers were standard forward--curved impellors and a prototype impeller with reverse-inclined blades. The motors were two 6-pole permanent split capacitor (PSC) single-phase induction motors, a brushless permanent magnet (BPM) motor and a prototype BPM designed for use with a prototype reverse-inclined impellor. The laboratory testing operated each blower and furnace combination over a range of air flows and pressure differences to determine air flow performance, power consumption and efficiency. Additional tests varied the clearance between the blower housing and the furnace cabinet, and the routing of air flow into the blower cabinet.

  8. Blast Furnace Granulated Coal Injection

    SciTech Connect

    1998-09-30

    Production levels on each furnace exceeded 7000 NTHM/day during July. The combined production of 14,326 was a result of lower coke rates and below average delay rates on both furnaces, The combined production was at its highest level since September 1997. In August, the combined productivity declined to less than 13,500 NTHM/day. Although D furnace maintained a production rate in excess of 7000 NTHM/day, C furnace was lower because of a castfloor breakout and subsequent five day repair from August 26-30. Despite the lower productivity in August, injected coal and furnace coke rates were very good during the month. During September, the operation was difficult as a result of higher delays on both furnaces. The combined average monthly delay rate was considerably above the twenty-month average of 113 minutes per day and the combined average monthly production was less than 14,000 NTHM/day. Higher furnace coke rates at lower coal injection levels also contributed to the decrease. Additionally, the coke rate on both furnaces was increased substantially and the injected coal rate was decreased in preparation for the high volatile Colorado coal trial that started on September 28. The furnace process results for this quarter are shown in Tables 1A and 1B. In addition, the last twelve months of injected coal and coke rates for each furnace are shown in Figures 1 and 2.

  9. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  10. Residential Two-Stage Gas Furnaces - Do They Save Energy?

    SciTech Connect

    Lekov, Alex; Franco, Victor; Lutz, James

    2006-05-12

    Residential two-stage gas furnaces account for almost a quarter of the total number of models listed in the March 2005 GAMA directory of equipment certified for sale in the United States. Two-stage furnaces are expanding their presence in the market mostly because they meet consumer expectations for improved comfort. Currently, the U.S. Department of Energy (DOE) test procedure serves as the method for reporting furnace total fuel and electricity consumption under laboratory conditions. In 2006, American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) proposed an update to its test procedure which corrects some of the discrepancies found in the DOE test procedure and provides an improved methodology for calculating the energy consumption of two-stage furnaces. The objectives of this paper are to explore the differences in the methods for calculating two-stage residential gas furnace energy consumption in the DOE test procedure and in the 2006 ASHRAE test procedure and to compare test results to research results from field tests. Overall, the DOE test procedure shows a reduction in the total site energy consumption of about 3 percent for two-stage compared to single-stage furnaces at the same efficiency level. In contrast, the 2006 ASHRAE test procedure shows almost no difference in the total site energy consumption. The 2006 ASHRAE test procedure appears to provide a better methodology for calculating the energy consumption of two-stage furnaces. The results indicate that, although two-stage technology by itself does not save site energy, the combination of two-stage furnaces with BPM motors provides electricity savings, which are confirmed by field studies.

  11. Carbon-free induction furnace

    DOEpatents

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  12. Non-carbon induction furnace

    DOEpatents

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  13. Materials support for the development of high temperature advanced furnaces (HITAF): A comparison of selected mechanical properties for three SiC-based ceramics

    SciTech Connect

    Breder, K.; Tennery, V.J.

    1994-09-01

    Purpose of this project is to compare structural ceramic materials proposed for use in the air heater of a coal fired high temperature advanced furnace (HITAF) for power generation. The work will provide necessary initial strength and statistical material parameters for design of a prototype system. Two teams are currently funded by Pittsburgh Energy Technology Center (PETC) under the Combustion 2000 program to develop such a system. One team is led by the United Technologies Research Corporation, and consists of UTC Turbo Power and Marine Division, Bechtel, Oak Ridge National Laboratory (ORNL) and a Joint Venture of Physical Sciences Inc. (PSI) Technologies, Reaction Engineering International (REI) and University of North Dakota Energy & Environmental Research Center (UNDEERC); the other team is led by Foster Wheeler Development Corporation, and members are AiResearch Division of AlliedSignal Aerospace Systems & Equipment, Research Cottrell, TRW, General Electric and Bechtel.

  14. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from both of point and area sources of an electric-arc furnace-dust treatment plant and their impacts to the vicinity environments.

    PubMed

    Yu, Kuei-Min; Lee, Wen-Jhy; Tsai, Perng-Jy; Fang, Kenneth; Lin, Mark

    2010-08-01

    This study was set out to investigate emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from both the stack (i.e., point source) and plant fugitives (i.e., area source) of an electric-arc furnace-dust treatment plant (EAFDTP) and their impact to the vicinity environments. The emission rate of the point source (2,360 ng I-TEQh(-1)) was determined directly by measuring PCDD/F concentrations of the stack flue gas. The emission rate of the area source (1,080 ng I-TEQ m(-2)h(-1)) was estimated by using the Industrial Sources Complex Short-Term (ISCST3) model based on concentrations measured at the downwind side of the plant. The mean emission factors of 785 and 893 ng I-TEQ ton(-1) ZnO were found for the point and area source, respectively. The above results suggest that the area source accounted for more than 50% of total PCDD/F emissions for the selected EAFDTP. The contribution of the point source to the atmospheric PCDD/F concentrations of the upwind site and downwind site of the EAFDTP were 0 and 0.27 fg I-TEQ Nm(-3), respectively. The contributions of the area source were 0.020 and 3.3 fg I-TEQ Nm(-3), respectively. The total contribution of the selected EAFDTP (including both the point and area sources) to the concentrations in both upwind and downwind side vicinities were all less than 10%. Finally, the impact of PCDD/F emissions from the selected EAFDTP to the vicinity atmospheric environments was discussed in the present study.

  15. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  16. Water gas furnace

    SciTech Connect

    Gallaro, C.

    1985-12-03

    A water gas furnace comprising an outer container to provide a housing in which coke is placed into its lower part. A water container is placed within the housing. The coke is ignited and heats the water in the container converting it into steam. The steam is ejected into the coke, which together with air, produces water gas. Preferably, pumice stones are placed above the coke. The water gas is accepted into the pores of the pumice stones, where the heated pumice stones ignite the water gas, producing heat. The heat is extracted by a heat exchanger provided about the housing.

  17. Magnetically Damped Furnace (MDF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.

  18. Heat treatment of nuclear reactor pump part in integrated furnace facility

    SciTech Connect

    Not Available

    1983-08-01

    A flexible heat treating system is meeting strict work specifications while accommodating the production flow pattern requirements and floor space needs of Advanced Metal Treating, Inc., Butler, Wis. Modular design and appropriate furnace configurations allow realization of the most efficient heat treat processing and energy use in a relatively small production area. The totally-integrated system (Pacemaker--manufactured by Lindberg, A Unit of General Signal, Chicago) consists of an electric integral-quench furnace with companion draw furnaces, washer unit and a material transfer car. With its one-side, inout configuration, the furnace operates with a minimum of drawing and washing equipment. The integral-quench furnace has a work chamber dimension of 30 by 48 by 30 inches (76.2 x 122 x 76.2 cm). The firm has two of these units, plus three in-out draw furnaces, one washer, one transfer car and two endothermic gas generators.

  19. Blast furnace injection symposium: Proceedings

    SciTech Connect

    1996-12-31

    These proceedings contain 14 papers related to blast furnace injection issues. Topics include coal quality, coal grinding, natural gas injection, stable operation of the blast furnace, oxygen enrichment, coal conveying, and performance at several steel companies. All papers have been processed separately for inclusion on the data base.

  20. Fuel stoker and furnace

    SciTech Connect

    Schafer, T.L.; Schafer, G.L.; Swett, H.D.

    1984-02-14

    A furnace having a primary heat exchange unit also providing a combustion chamber, a secondary heat exchange unit connected by an upper crossover conduit to the primary heat exchange unit, and a tertiary heat exchange unit connected by a lower V-shaped crossover conduit to the secondary heat exchange unit. A third crossover conduit connects the V-shaped crossover conduit with the primary heat exchange unit. Vibrating means are provided between the secondary and tertiary heat exchange units to vibrate the walls thereof and dislodge clinging fly ash so that it falls into the V-shaped crossover conduit for removal by the screw conveyor. A burner assembly of a furnace includes a combustion air housing carrying a circular, stationary grate with an annular valley for carrying fuel during combustion. A central opening is connected to a fuel conveyor for introduction of fuel to the grate through the lower portion of the housing. Combustion air introduction conduits on the housing are remote from the fuel introduction passages and introduce air under pressure at the lower portion of the grate. An agitator and discharge ring is provided on the grate and is rotated on the grate by a suitable drive sprocket mechanism to agitate the fuel for more complete burning thereof and to remove burned ash. A horizontal burner plate is supported by a plurality of legs connected to the agitator and discharge ring over the grate to promote more complete combustion of the fuel.

  1. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  2. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  3. TPV Tube Generators for Apartment Building and Industrial Furnace Applications

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis M.; Avery, James E.; Daniels, Wilbert E.; Huang, Huang X.; Malfa, Enrico; Venturino, Matteo; Testi, Giandomenico; Mascalzi, Gianni; Wuenning, Joachim G.

    2003-01-01

    Major changes in the regulation of electric and natural gas industries during recent years have forced energy companies to explore opportunities in small-size Combined Heat and Power systems. These differ fundamentally from the traditional model of central generation and delivery since small, modular electric generators can be located very close to end-users inside a building or a single house within an industrial area, combined with the production of heat and cold. In particular, interest is growing in the new technologies for sub-100kWe units, including systems based on thermophotovoltaic (TPV) technology. TPV generator tubes can be inserted into hot furnaces to generate electricity and low-grade heat. In this generator tube, a water-cooled GaSb photovoltaic converter array inside the tube faces outward toward an infrared emitter liner mounted on the inside surface of the closed-end tube. Each tube can be sized to generate several kW and a given furnace can heat several tubes. We have conducted pilot experiments on key components in order to develop the concept just described. This includes a pilot scale array tested in an electrical furnace that heat a 3″ diameter alumina tube with an infrared emitting liner. Also, a silicon carbide tube with a water-cooling system was tested in a ceramic fiber lined furnace equipped with a commercial 200 kW flameless regenerative burner, simulating a TPV generator tube in such a system.

  4. GENERAL VIEW FROM THE SOUTHWEST, SHOWING THE #2 BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW FROM THE SOUTHWEST, SHOWING THE #2 BLAST FURNACE IN THE RIGHT; THE CENTRAL COMPLEX WITH STOVES IN THE CENTER. ELECTRICAL POWER HOUSE IS ON THE LEFT BEYOND THE CONVEYOR LIFT. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  5. Blast furnaces make way for new steel technology

    SciTech Connect

    Ondrey, G.; Parkinson, G.; Moore, S.

    1995-03-01

    Increasingly stringent environmental regulations, aging production units, and a competitive market are forcing iron and steelmakers to improve the environmental performance and cost efficiencies of their processes. The traditional integrated steel unit isn`t obsolete -- yet. Blast furnaces will be around for at least another 15 years. However, traditional technology is in for some changes, and stepped up rivalry from electric arc furnace minimills and ironmaking processes that use gas or coal. The paper discusses direct iron making processes, the DRI-minimill connection, the iron carbide process, and reclaiming iron from waste.

  6. Structures Division

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.

  7. DEVELOPMENT OF ELECTRONIC VERNEUIL FURNACE

    DTIC Science & Technology

    HIGH TEMPERATURE, *PLASMA JETS, *REFRACTORY MATERIALS, ALTERNATING CURRENT, CELLULOSE ACETATES, CRYSTAL STRUCTURE, CRYSTALS , GAS DISCHARGES, GROWTH ...PHYSIOLOGY), LABORATORY FURNACES, PLASMAS(PHYSICS), RADIOFREQUENCY GENERATORS, RADIOFREQUENCY POWER, SINGLE CRYSTALS , THEORY.

  8. Furnace brazing under partial vacuum

    NASA Technical Reports Server (NTRS)

    Mckown, R. D.

    1979-01-01

    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  9. Rebuilding of Rautaruukki blast furnaces

    SciTech Connect

    Kallo, S.; Pisilae, E.; Ojala, K.

    1997-12-31

    Rautaruukki Oy Raahe Steel rebuilt its blast furnaces in 1995 (BF1) and 1996 (BF2) after 10 year campaigns and production of 9,747 THM/m{sup 3} (303 NTHM/ft{sup 3}) and 9,535 THM/m{sup 3} (297 NTHM/ft{sup 3}), respectively. At the end of the campaigns, damaged cooling system and shell cracks were increasingly disturbing the availability of furnaces. The goal for rebuilding was to improve the cooling systems and refractory quality in order to attain a 15 year campaign. The furnaces were slightly enlarged to meet the future production demand. The blast furnace control rooms and operations were centralized and the automation and instrumentation level was considerably improved in order to improve the operation efficiency and to reduce manpower requirements. Investments in direct slag granulation and improved casthouse dedusting improved environmental protection. The paper describes the rebuilding.

  10. VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER STATION IN THE CASTING SHOP. (OTHER UNITS MELT BRASS ALLOYS.) THIS IS THE SOUTHERNMOST FURNACE OF THE FOUR PRESENTLY IN SITU. THE CURRENT CASTING SHOP WAS CONSTRUCTED DURING THE EARLY 1970'S, REPLACING THE ORIGINAL PRE-WWI FACILITY. STATIONS #02,03, AND 04 EACH CONSIST OF A HOLDER FLANKED BY A PAIR OF 800 KW ELECTRIC MELTERS. THE HOLDER IS RATED AT 85,000 LBS. SHAKER BOXES, LOCATED AT THE REAR OF EACH MELTER SUPPLY THE MIXTURE OF INGREDIENTS REQUIRED FOR EACH PARTICULAR ALLOY. ONE MEMBER OF THE THREE-MAN CASTING TEAMS IS RESPONSIBLE FOR SHAKING METAL INTO THE MELTERS. IN THE LOWER RIGHT ARE SHOWN THE MOLD STORAGE AREA AND THE FURNACE BUILDERS' AREA FOR CHIPPING AND REBRICKING OFF-LINE UNITS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  11. VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER STATION IN THE CASTING SHOP. (OTHER UNITS MELT BRASS ALLOYS.) THIS IS THE SOUTHERNMOST FURNACE OF THE FOUR PRESENTLY IN SITU. THE CURRENT CASTING SHOP WAS CONSTRUCTED DURING THE EARLY 1970'S, REPLACING THE ORIGINAL PRE-WWI FACILITY. STATIONS #02, 03, AND 04 EACH CONSIST OF A HOLDER FLANKED BY A PAIR OF 800 KW ELECTRIC MELTERS. THE HOLDER IS REHEATED AT 85,000 LBS. SHAKER BOX, LOCATED AT THE REAR OF EACH MELTER SUPPLY THE MIXTURE OF INGREDIENTS REQUIRED FOR EACH PARTICULAR ALLOY. ONE MEMBER OF THE THREE-MAN CASTING TEAMS IS RESPONSIBLE FOR SHAKING METAL INTO THE MELTERS. IN THE LOWER RIGHT ARE SHOWN THE MOLD STORAGE AREA AND THE FURNACE BUILDERS' AREA FOR CHIPPING AND REBRICKING OFF-LINE UNITS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  12. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    NASA Astrophysics Data System (ADS)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  13. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    NASA Astrophysics Data System (ADS)

    Reynolds, Quinn G.

    2016-11-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  14. Electricity

    SciTech Connect

    Sims, B.

    1983-01-01

    Historical aspects of electricity are reviewed with individual articles on hydroelectric dams, coal-burning power plants, nuclear power plants, electricity distribution, and the energy future. A glossary is included. (PSB)

  15. Lip-hung retort furnace

    SciTech Connect

    Mackenzie, P.B.

    1986-08-05

    A fluidized bed furnace is described which consists of: a furnace housing including an outer shell; a furnace base and an outer top plate secured to the respective lower and upper ends of the furnace housing; a vertical retort having an opened upper end and an opened lower end, the retort being disposed in an opening formed in the outer top plate and extending downwardly into the center of the furnace housing; heat insulating material disposed between the outer shell and the vertical retort; a retort base assembly being adapted for closing the lower end of the vertical retort; upper support means for supporting the upper end of the vertical retort on top of the outer top plate so as to permit downward growth only during thermal expansion; the upper support means including an annular flange formed integrally with the sidewalls of the retort at the upper end thereof and being adapted to be fixedly mounted to the outer surface of the outer top plate; lower support means interposed between the lower surface of the retort base assembly and the upper surface of the furnace base for supporting substantially all the weight of the retort, the weight of the load of a fluidizable media, and the weight of a load of material to be heat treated.

  16. Variable frequency microwave furnace system

    DOEpatents

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  17. Variable frequency microwave furnace system

    DOEpatents

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  18. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  19. Wood burning furnace

    SciTech Connect

    Lillo, A.D.

    1986-03-25

    An improved furnace for burning wood is described which is resistant to creosote deposits from smoke. It consists of: an upright frame; a fire box carried by the frame and having a door for the insertion of the wood; a heat exchanger carried on the fire box and having an interior chamber with a top and bottom; means connecting the fire box and the heat exchanger and directing smoke from the fire box into the exchanger chamber; a chimney stack fixed to and extending upwardly from the exchanger to discharge smoke, the stack also extending substantially downwardly within the exchanger chamber to receive smoke from adjacent the bottom of the chamber to thereby retain hot smoke adjacent the top of the exchanger for an increased time interval to allow additional heat transfer from the smoke to the exchanger; an insulative housing carried on the frame to define an air plenum within the housing and about the fire box and exchanger to permit air in the plenum to be heated by contact with the fire box and the exchanger; and an air inlet for cold air to enter the plenum and an air outlet by which heated air may leave the plenum.

  20. EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH SIDE OF SINGLE FURNACE, SOUTHWEST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  1. Short vertical tube furnace for the fabrication of doped glass microsphere lasers.

    PubMed

    Ward, Jonathan M; Wu, Yuqiang; Khalfi, Krimo; Nic Chormaic, Síle

    2010-07-01

    We report on the design of an electric tube furnace that can be used for the fabrication of doped glass microsphere lasers. The tube furnace has a short hot zone of length 133 mm and is based on a quartz tube design. Doped laser glass particles, specifically Er:Yb phosphate glass (IOG-2), of approximately 1 microm diameter are blown into the furnace using a 60 ml syringe and microspheres ranging in size from 10 to 400 microm are collected at the output of the tube furnace in a Petri dish. The furnace operates at a wall temperature of approximately 900 degrees C and is capable of making microspheres from glasses with glass transition temperatures of at least 375 degrees C. High quality (Q approximately 10(5)) whispering gallery modes have been excited within the microspheres by optically pumping at 978 nm via a tapered optical fiber.

  2. Reactivation of granular carbon in an infrared traveling-belt furnace

    SciTech Connect

    Nur, R.; Horvath, R.W.

    1987-07-01

    An all-electrical Shirco carbon regeneration furnace and its air pollution control system were evaluated for cost and process effectiveness in carbon reactivation at the Pomona Advanced Wastewater Treatment Research Facility. The granular activated carbon used for the Shirco Furnace evaluation study was exhausted in three 1.8 m (6 ft) diameter steel carbon adsorption columns connected in series. The columns treated unchlorinated and unfiltered activated sludge effluent from the 0.44 cu m/sec (10 MGD) Ponoma Water Reclamation Plant. The Shirco carbon regeneration system was found to be as effective as the multiple hearth and rotary-kiln furnaces in reactivating the exhausted granular activated carbon. The operation and maintenance cost for the Shirco furnace was, however, found to be higher than those for both the multiple hearth and the rotary-kiln furnaces.

  3. Summary Technical Report of Division 6, NDRC. Volume 20. Fluid Dynamics

    DTIC Science & Technology

    1946-01-01

    Division It-Transportation Division 13— Electrical Communication Division U—Radar Division 1&—Radio Coordination Division 16—Optics and Camouflage...addition to the general basic laboratory layout available for use, the following important components were available: 1. The electric dynamometer...horsepower in the electric dynamometer has permitted maximum speeds of 75 fps. DIMENSIONS OF WORKING SECTION A closed-type working section was decided upon

  4. 9. STATION 'L', LOOKING NORTHWEST FROM SOUTHEAST DIVISION, LINCOLN SUBSTATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. STATION 'L', LOOKING NORTHWEST FROM SOUTHEAST DIVISION, LINCOLN SUBSTATION IN FOREGROUND - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  5. 8. STATION 'L' FROM SOUTHEAST DIVISION STREET LOOKING NORTHWEST, LINCOLN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. STATION 'L' FROM SOUTHEAST DIVISION STREET LOOKING NORTHWEST, LINCOLN SUBSTATION IN FOREGROUND - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  6. Automated, High Temperature Furnace for Glovebox Operation

    SciTech Connect

    Neikirk, K.

    2001-01-03

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment.

  7. The startup of coal injection on Bethlehem Steel`s Burns Harbor blast furnaces

    SciTech Connect

    Hill, D.G.; Strayer, T.J.; Durko, D.P.; Dwelly, M.J.

    1996-12-31

    Despite the simplicity of operation and the excellent results from natural gas injection at Bethlehem Steel, there were concerns about future supply and price stability. Furthermore, the maximum projected gas rates still required coke consumption in excess of Burns Harbor`s coke production capacity. Thus in 1990 Bethlehem Steel entered into an agreement to participate in the DOE Clean Coal Technology demonstration project by installing a granular coal injection facility at Burns Harbor. This agreement called for a facility to be constructed which was capable of processing and injecting a wide range of coal types in either granular or pulverized form. Tests were to be conducted to assess the effects of a range of coal properties, coal sizing, and injection rates on a number of key blast furnace parameters. During all the transitioning from natural gas injection to coal injection and subsequent tests it was essential that the blast furnaces maintain their historic operating performance in support of the Burns Harbor Division`s product market requirements. Unlike many coal injection facilities, the Burns Harbor installation is owned by Bethlehem Steel and the operation and maintenance from raw coal unloading through the tuyeres is the responsibility of the Blast Furnace Department. As the authors will discuss, the start-up of this major installation involved significant challenges, the most critical of which was maintaining historically high blast furnace operating standards while commissioning a new facility and adapting the furnace process to coal injection.

  8. Electrostatic Levitation Furnace for the ISS

    NASA Technical Reports Server (NTRS)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  9. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  10. Hopewell Furnace National Historic Site. Teacher's Guide.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    This teacher's guide contains activities to use in conjunction with a site visit to the Hopewell Furnace National Historic Site (Elverson, Pennsylvania). The guide provides diagrams of the furnace, a cold-blast smelting operation, and the furnace operation. It presents a timeline of iron production from ancient times through contemporary times.…

  11. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  12. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  13. Training Guidelines: Glass Furnace Operators.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    Technological development in the glass industry is constantly directed towards producing high quality glass at low operating costs. Particularly, changes have taken place in melting methods which mean that the modern furnace operator has greater responsibilities than any of his predecessors. The complexity of control systems, melting rates, tank…

  14. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  15. Blast furnace repairs, relines and modernizations

    SciTech Connect

    Carpenter, J.A.; Swanson, D.E; Chango, R.F. . Burns Harbor Div.)

    1994-09-01

    Bethlehem Steel's Burns Harbor Div. operates two 89,000-cu ft blast furnaces, D and C, built in 1969 and 1972. These furnaces have been in the forefront of blast furnace performance since they were blown-in. To maintain a credible operation throughout the past 25 years their performance has been improved continuously. Production was increased approximately 3%/year while fuel rate decreased 1%/year. This presentation summarizes the early repairs, relines and improvements that have sustained and enhanced the furnace's performance. The fourth reline of both furnaces will be discussed in detail. As part of the 1991 reline of D furnace its lines were improved and modern penstocks installed. The bosh, tuyere jacket, hearth jacket and both cast floors were replaced. The furnace now has a larger hearth making it easier to control and, liquid level is no longer a problem when pulling the wind to shut down. The new cast floor with its increased trough length has much improved separation of slag from iron and lowered refractory consumption. Since the cast floors on D furnace were changed, there has been a reduction in accidents and absenteeism. This may be related to the change in work practices on the new cast floors. The 1994 reline of C furnace incorporates those improvements made on D furnace in 1991. In addition, C furnace will have high-density cooling which is expected to double its campaign from 6 to 12 years, without interim repairs.

  16. Direct current, closed furnace silicon technology

    SciTech Connect

    Dosaj, V.D.; May, J.B.; Arvidson, A.N.

    1994-05-01

    The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

  17. Automated, High Temperature Furnace for Glovebox Operation

    SciTech Connect

    Neikirk, K.

    2001-01-26

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant.

  18. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  19. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, Vishu D.; May, James B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.

  20. Crystal growth furnace with trap doors

    DOEpatents

    Sachs, Emanual M.; Mackintosh, Brian H.

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  1. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, V.D.; May, J.B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

  2. Looking southwest at blast furnaces no. 5 and no. 6 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southwest at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  3. 3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT LOOKING NORTH. DOROTHY SIX IS THE CLOSEST FURNACE IN THE PHOTOGRAPH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  4. 56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST HOUSE IN FOREGROUND AND DUSTCATCHER AT RIGHT OF FURNACE (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  5. Looking southeast at blast furnaces no. 5 and no. 6 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  6. 41. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; photo taken from furnace operator's booth. Looking south/southwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  7. 19. Inside the cast house at Furnace A. Molten iron ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Inside the cast house at Furnace A. Molten iron flowed into eight ladles. The furnace was cast (or tapped) six times each day. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  8. INTERIOR VIEW OF FURNACE NO. 2, DRAWING ROOM, SHOWING A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FURNACE NO. 2, DRAWING ROOM, SHOWING A FLOOR INDICATING FOURCAULT DRAWING MACHINE AND FURNACE. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  9. INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. 1 AND BLAST FURNACE NO. 2. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  10. 50. Taken from highline; "B" furnace slag pots, pipe is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Taken from high-line; "B" furnace slag pots, pipe is main blast furnace gas line from "C" furnace dust catcher; levy, slag hauler, removing slag. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  11. List of EPA Certified Forced-Air Furnaces

    EPA Pesticide Factsheets

    The EPA-Certified Forced-Air Furnace list contains EPA-certified forced-air furnaces that meet the 2015 NSPS for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces.

  12. Refractories for lining blast furnaces

    SciTech Connect

    Fedoruk, R.M.; Baksheeva, V.S.; Karyakina, E.L.; Khmelenko, T.P.; Pitak, N.V.

    1986-01-01

    The authors develop and introduce a technology for the production of chamotte kaolin refractories with a porosity of not more than 12% and a mass proportion of not less than 42% A1/sub 2/O/sub 3/ on the basis of chamotte from high-grade Polozhe kaolin, and also additions to the batch of finely milled mullite-corundum chamotte. Using the new technology, a batch of goods designated ShPD-42 was produced for lining the shafts, bosh, and upper parts of blast furnaces of large capacity.

  13. VAPOR SHIELD FOR INDUCTION FURNACE

    DOEpatents

    Reese, S.L.; Samoriga, S.A.

    1958-03-11

    This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

  14. Regularities of heat transfer in the gas layers of a steam boiler furnace flame. Part II. Gas layer radiation laws and the procedure for calculating heat transfer in furnaces, fire boxes, and combustion chambers developed on the basis of these laws

    NASA Astrophysics Data System (ADS)

    Makarov, A. N.

    2014-10-01

    The article presents the results stemming from the scientific discovery of laws relating to radiation from the gas layers generated during flame combustion of fuel and when electric arc burns in electric-arc steel-melting furnaces. The procedure for calculating heat transfer in electric-arc and torch furnaces, fire-boxes, and combustion chambers elaborated on the basis of this discovery is described.

  15. A rotary arc furnace for aluminum dross processing

    SciTech Connect

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C.

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally non-acceptable because of the production of salt slags. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tonnes of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  16. SOUTH END OF FURNACE WITH CAST AND ENGINE SHED IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH END OF FURNACE WITH CAST AND ENGINE SHED IN FOREGROUND, LOOKING NORTH-NORTHEAST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  17. GENERAL VIEW OF EAST (FRONT) OF DOUBLE FURNACE FROM ACROSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF EAST (FRONT) OF DOUBLE FURNACE FROM ACROSS THE CREEK, LOOKING SOUTHWEST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  18. WEST (FRONT) OF FURNACE COMPLEX, INCLUDING STACKS, WITH CHARGING BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST (FRONT) OF FURNACE COMPLEX, INCLUDING STACKS, WITH CHARGING BRIDGE AND TRESSLE, LOOKING SOUTHEAST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  19. Energy Saving Devices on Gas Furnaces.

    DTIC Science & Technology

    1980-03-01

    AO-A082 0715 JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND DEV--ETC FIG 1311 ENERGY SAVING DEVICES ON GAS FURNACES.(U) MAR B0 T E BRISBANE, P B...DEVICES FOR GAS FURNACES THOMAS E. BRISBANE ,o"’ P. B. SHEPHERD JOHNS - MANVILLE SALES CORPORATION RESEARCH & DEVELOPMENT CENTER KEN-CARYL RANCH, DENVER

  20. Existing and prospective blast-furnace conditions

    SciTech Connect

    I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk

    2009-07-15

    Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

  1. Developmental testing of a programmable multizone furnace

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Larson, D. J., Jr.

    1986-01-01

    A multizone furnace was evaluated for its potential utilization for process experimentation on board the Space Shuttle. A temperature gradient can be created through the use of a series of connected temperature zones and can be translated by the coordinated sequencing of zone temperatures. The Bridgman-Stockbarger thermal configuration for directional solidification was implemented so that neither the sample nor furnace was translated. The thermal behavior of the furnace was measured and characterized. Limitations due to both thermal and electronic (computer) factors are identified. The results indicate that the multizone design is limited to low temperature gradients because of the indirect furnace-to-sample thermal coupling needed to blend the discrete thermal zones. The multizone furnace design inherently consumes more power than a similar (two temperature) conventional Bridgman type directional solidification furnace because every zone must be capable of the high cooling rates needed to produce the maximum desired temperature drop. Typical achievable static temperature gradients for the furnace tested were between 6 and 75 C/in. The maximum gradient velocity was approximately 10 in./hr. Several aspects of the tested system could be improved, but the dependence of the multizone design on high heat loss will limit Space Shuttle applications in the form tested unless additional power is available. The multizone furnace offers great flexibility but requires a high level of operator understanding for full advantage to be obtained.

  2. Crystal growth furnace safety system validation

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.

    1994-01-01

    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).

  3. Blast furnace injection developments in British Steel

    SciTech Connect

    Jukes, M.H.

    1996-12-31

    British Steel has four integrated steel works, i.e., Llanwern, Port Talbot, Scunthorpe, Teesside, with a total of ten blast furnaces, nine of which are currently operating. The furnaces range in size from the 14 meters (45 feet 11 inches) hearth diameter Redcar No. 1 furnace at Teesside (a single furnace works) to the 8.33 meters (27 feet 4 inches) hearth Queen Mary and Queen Bess furnaces at Schunthorpe, with a total of four furnaces at that works. All have injection systems installed, those at Scunthorpe being equipped with granular coal injection and all others currently working with oil injection. The driving force behind the development of blast furnace injection has been as a means for introducing reducing agents (British Steel now refers to coke plus hydrocarbon injectants as total reductants) into the process as a part substitute/supplement for top charged coke and the technology is still being developed and used for that purpose. By utilizing practical experience and observing the work of others, British Steel has been assessing blast furnace injection technology experimentally for purposes other than the introduction of reducing agents.

  4. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  5. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  6. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  7. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1988-01-01

    Analytical, numerical and experimental studies were performed on two classes of high temperature materials processing furnaces. The research concentrates on a commercially available high temperature furnace using zirconia as the heating element and an arc furnace based on a ST International tube welder. The zirconia furnace was delivered and work is progressing on schedule. The work on the arc furnace was initially stalled due to the unavailability of the NASA prototype, which is actively being tested aboard the KC-135 experimental aircraft. A proposal was written and funded to purchase an additional arc welder to alleviate this problem. The ST International weld head and power supply were received and testing will begin in early November. The first 6 months of the grant are covered.

  8. A multi-zone muffle furnace design

    NASA Technical Reports Server (NTRS)

    Rowe, Neil D.; Kisel, Martin

    1993-01-01

    A Multi-Zone Muffle-Tube Furnace was designed, built, and tested for the purpose of providing an in-house experience base with tubular furnaces for materials processing in microgravity. As such, it must not only provide the desired temperatures and controlled thermal gradients at several discrete zones along its length but must also be capable of sustaining the rigors of a Space Shuttle launch. The furnace is insulated to minimize radial and axial heat losses. It is contained in a water-cooled enclosure for purposes of dissipating un-wanted residual heat, keeping the outer surfaces of the furnace at a 'touch-safe' temperature, and providing a rugged housing. This report describes the salient features of the furnace, testing procedures and results, and concluding remarks evaluating the overall design.

  9. Division Chief Meeting, April, 1929

    NASA Technical Reports Server (NTRS)

    1929-01-01

    Caption: 'LMAL division chiefs confer with the engineer-in-charge in April 1929. Left to right: E.A. Myers, Personnel Division; Edward R. Sharp, Property and Clerical Division; Thomas Carroll, Flight Test Division; Henry J.E. Reid, engineer in chief; Carlton Kemper, Power Plants Division; Elton Miller, aerodynamics division.'

  10. Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor

    NASA Astrophysics Data System (ADS)

    Stenberg, J.; Frederick, W. J.; Boström, S.; Hernberg, R.; Hupa, M.

    1996-05-01

    A specialized two-color pyrometric method has been developed for the measurement of particle surface temperatures in hot, radiating environments. In this work, the method has been applied to the measurement of surface temperatures of single reacting black liquor char particles in an electrically heated muffle furnace. Black liquor was introduced into the hot furnace as wet droplets. After drying, the resulted particles were processed in different atmospheres corresponding to combustion, pyrolysis, and gasification at furnace temperatures of 700-900 °C. The pyrometric measurement is performed using two silicon photodiode detectors and 10 nm bandpass filters centered at 650 and 1050 nm. Thermal radiation is transferred using an uncooled fiberoptic probe brought into the vicinity of the char particle. The key features of the pyrometric apparatus and analysis method are: (1) Single particle temperature is resolved temporally at high speed. (2) The thermal radiation originating from the furnace and reflected by the particle is accounted for in the measurement of the surface temperature. (3) Particle temperatures above or below the furnace temperature can be measured without the need of a cooled background assisting the measurement in the hot furnace. To accomplish this, a minimum particle size is needed that is a function of the temperature difference between the particle and furnace. Particles cooler than the furnace can be measured if their diameter is more than 0.7 mm. Surface temperatures of 300-400 °C above the furnace temperature were measured during combustion of black liquor char particles in air. In atmospheres corresponding to gasification, endothermic reactions occurred, and char temperature remained typically 40° below the furnace temperature.

  11. Single-Heater, Three-Zone Furnace

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J.; Shauback, Robert M.

    1993-01-01

    Temperature profile shaped with help of thermal barriers. Proposed furnace for use in experiments on growth of crystals of highly pure material in ampoule provides three temperature zones, yet contains only one heat-pipe liner and one heater and operates with only one controller. Three temperature zones established as thermal resistances of wicks and noncondensible gas reduces flows of heat into channel containing ampoule. Motion of ampoule along channel causes gradients of temperature to move along specimen in ampoule. Variety of three-zone temperature profiles in furnace created by changing thermal resistances of zones and injecting noncondensible gas at appropriate point. Furnace used for variety of experiments.

  12. Toxic-Waste Disposal by Drain-in-Furnace Technique

    NASA Technical Reports Server (NTRS)

    Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.

    1986-01-01

    Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls

  13. 21. Photocopy of ca. 1951 view (when furnaces were still ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of ca. 1951 view (when furnaces were still in blast) looking north at central furnace complex with railroad cars of furnace charging materials in foreground and No. 2 Furnace at left. Photo marked on back 'David W. Corson from A. Devaney, N.Y.' - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  14. 20. Detail, Furnace A, shows the drill used to tap ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail, Furnace A, shows the drill used to tap the furnace (at center left) and the 'mud gun' used to close it up with a clay plug (at lower right). Metal chute at center (next to drill) was used to clean out furnace prior to its abandonment. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  15. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  16. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  17. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  18. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  19. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  20. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  1. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  2. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  3. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  4. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  5. Division: The Sleeping Dragon

    ERIC Educational Resources Information Center

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  6. Transitional Division Algorithms.

    ERIC Educational Resources Information Center

    Laing, Robert A.; Meyer, Ruth Ann

    1982-01-01

    A survey of general mathematics students whose teachers were taking an inservice workshop revealed that they had not yet mastered division. More direct introduction of the standard division algorithm is favored in elementary grades, with instruction of transitional processes curtailed. Weaknesses in transitional algorithms appear to outweigh…

  7. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x

  8. 1. GENERAL VIEW OF BLAST FURNACE PLANT, KNOWN AS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF BLAST FURNACE PLANT, KNOWN AS THE CARRIE FURNACES, FROM THE TOP OF WATER TOWER. CARRIE FURNACES No. 6 AND No. 7 ARE ON THE LEFT, AND FURNACES No. 3 AND No. 4 ARE ON THE RIGHT. THE TOWN OF RANKIN IS IN THE BACKGROUND. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  9. The UMass wind furnace blade design

    NASA Technical Reports Server (NTRS)

    Cromack, D. E.

    1978-01-01

    A brief description of the wind furnace concept is presented along with some preliminary performance data. Particular emphasis is placed on the design, construction, and manufacturing procedure for the 32.5 foot diameter GRP blades.

  10. Blast furnace supervision and control system

    SciTech Connect

    Remorino, M.; Lingiardi, O.; Zecchi, M.

    1997-12-31

    On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

  11. Redesigned Electron-Beam Furnace Boosts Productivity

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    1995-01-01

    Redesigned electron-beam furnace features carousel of greater capacity so more experiments conducted per loading, and time spent on reloading and vacuum pump-down reduced. Common mounting plate for electron source and carousel simplifies installation and reduces vibration.

  12. Multiple hearth furnace for reducing iron oxide

    DOEpatents

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  13. Chamberless residential warm air furnace design

    SciTech Connect

    Godfree, J.

    1996-07-01

    This brief paper is an introduction to the concept of designing residential warm air furnaces without combustion chambers. This is possible since some small burners do not require the thermal support of a combustion chamber to complete the combustion process.

  14. Apparatus having inductively coupled coaxial coils for measuring buildup of slay or ash in a furnace

    DOEpatents

    Mathur, Mahendra P.; Ekmann, James M.

    1989-01-01

    The buildup of slag or ash on the interior surface of a furnace wall is monitored by disposing two coils to form a transformer which is secured adjacent to the inside surface of the furnace wall. The inductive coupling between the two coils of the transformer is affected by the presence of oxides of iron in the slag or ash which is adjacent to the transformer, and the application of a voltage to one winding produces a voltage at the other winding that is related to the thickness of the slag or ash buildup on the inside surface of the furnace wall. The output of the other winding is an electrical signal which can be used to control an alarm or the like or provide an indication of the thickness of the slag or ash buildup at a remote location.

  15. Translating Furnace For Fast Melting And Freezing

    NASA Technical Reports Server (NTRS)

    Workman, F.; Suggs, R. J.; Curreri, P. A.; Ethridge, E. C.; Perkinson, D. T.; Tucker, S.; Smith, G. A.

    1988-01-01

    Developmental translating-furnace apparatus used to make ceramic/metal composite materials during parabolic trajectories of KC-135 airplane simulating low gravity. Mathematical modeling shows apparatus able both to melt metal alloys and to solidify resulting composite specimens during 22-to-30-second low-gravity intervals. Furnace assembly moves along crucible in programmed manner to preheat, melt, and solidfy specimen during interval to less than 22 second.

  16. Copper staves in the blast furnace

    SciTech Connect

    Helenbrook, R.G.; Kowalski, W.; Grosspietsch, K.H.; Hille, H.

    1996-08-01

    Operational data for stave cooling systems for two German blast furnaces show good correlation with predicted thermal results. Copper staves have been installed in blast furnaces in the zones exposed to the highest thermal loads. The good operational results achieved confirm the choice of copper staves in the areas of maximum heat load. Both temperature measurements and predictions establish that the MAN GHH copper staves do not experience large temperature fluctuations and that the hot face temperatures will be below 250 F. This suggests that the copper staves maintain a more stable accretion layer than the cast iron staves. Contrary to initial expectations, heat flux to the copper staves is 50% lower than that to cast iron staves. The more stable accretion layer acts as an excellent insulator for the stave and greatly reduces the number of times the hot face of the stave is exposed to the blast furnace process and should result in a more stable furnace operation. In the future, it may be unnecessary to use high quality, expensive refractories in front of copper staves because of the highly stable accretion layer that appears to rapidly form due to the lower operating temperature of the staves. There is a balance of application regions for cast iron and copper staves that minimizes the capital cost of a blast furnace reline and provides an integrated cooling system with multiple campaign life potential. Cast iron staves are proven cooling elements that are capable of multiple campaign life in areas of the blast furnace which do not experience extreme heat loads. Copper staves are proving to be an effective and reliable blast furnace cooling element that are subject to virtually no wear and are projected to have a longer campaign service life in the areas of highest thermal load in the blast furnace.

  17. Quality of coal for blast furnace injection

    SciTech Connect

    Hutny, W.P.; Giroux, L.; MacPhee, J.A.; Price, J.T.

    1996-12-31

    CANMET Energy Technology Centre (CETC) has been involved in a research program to evaluate the suitability of various coals for blast furnace injection. The primary objectives of this program are to provide essential information on coal combustion in the blast furnace and to establish proper criteria for evaluating and selecting coals for blast furnace injection. The program comprises three parts. Parts one and two have been completed. To date, the program has encompassed both a theoretical assessment of cooling and coke replacement characteristics of coals using CETC`s computer model and an experimental determination of the combustibility of coals of different ranks and particle sizes as well as the influence of oxygen enrichment on burnout. The experimental part was conducted in CETC`s pilot-scale injection unit that simulates blast furnace blowpipe-tuyere conditions. Part three now being developed will incorporate results of experimental trials into a blast furnace raceway model in order to predict total combustibility of coals at different blast furnace operating conditions. This paper describes CETC`s facility and methodology of work, and presents and discusses results.

  18. Firing temperature accuracy of four dental furnaces.

    PubMed

    Haag, Per; Ciber, Edina; Dérand, Tore

    2011-01-01

    In spite of using recommended firing and displayed temperatures, low-fired dental porcelain more often demonstrates unsatisfactory results after firing than porcelain fired at higher temperatures. It could therefore be anticipated that temperatures shown on the display are incorrect, implying that the furnace does not render correct firing programs for low-fired porcelain. The purpose of this study is to investigate deviations from the real temperature during the firing process and also to illustrate the service and maintenance discipline of furnaces at dental laboratories. Totally 20 units of four different types of dental furnaces were selected for testing of temperature accuracy with usage of a digital temperature measurement apparatus, Therma 1. In addition,the staffs at 68 dental laboratories in Sweden were contacted for a telephone interview on furnace brand and on service and maintenance program performed at their laboratories. None of the 20 different dental furnaces in the study could generate the firing temperatures shown on the display, indicating that the hypothesis was correct. Multimat MCII had the least deviation of temperature compared with displayfigures. 62 out of 68 invited dental laboratories chose to participate in the interviews and the result was that very few laboratories had a service and maintenance program living up to quality standards. There is room for improving the precision of dental porcelain furnaces as there are deviations between displayed and read temperatures during the different steps of the firing process.

  19. Information modeling system for blast furnace control

    NASA Astrophysics Data System (ADS)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  20. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  1. Division Iv: Stars

    NASA Astrophysics Data System (ADS)

    Corbally, Christopher; D'Antona, Francesca; Spite, Monique; Asplund, Martin; Charbonnel, Corinne; Docobo, Jose Angel; Gray, Richard O.; Piskunov, Nikolai E.

    2012-04-01

    This Division IV was started on a trial basis at the General Assembly in The Hague 1994 and was formally accepted at the Kyoto General Assembly in 1997. Its broad coverage of ``Stars'' is reflected in its relatively large number of Commissions and so of members (1266 in late 2011). Its kindred Division V, ``Variable Stars'', has the same history of its beginning. The thinking at the time was to achieve some kind of balance between the number of members in each of the 12 Divisions. Amid the current discussion of reorganizing the number of Divisions into a more compact form it seems advisable to make this numerical balance less of an issue than the rationalization of the scientific coverage of each Division, so providing more effective interaction within a particular field of astronomy. After all, every star is variable to a certain degree and such variability is becoming an ever more powerful tool to understand the characteristics of every kind of normal and peculiar star. So we may expect, after hearing the reactions of members, that in the restructuring a single Division will result from the current Divisions IV and V.

  2. A Pottery Electric Kiln Using Decompression

    NASA Astrophysics Data System (ADS)

    Naoe, Nobuyuki; Yamada, Hirofumi; Nakayama, Tetsuo; Nakayama, Minoru; Minamide, Akiyuki; Takemata, Kazuya

    This paper presents a novel type electric kiln which fires the pottery using the decompression. The electric kiln is suitable for the environment and the energy saving as the pottery furnace. This paper described the baking principle and the baking characteristic of the novel type electric kiln.

  3. Increasing blast furnace productivity. Is there a universal solution for all blast furnaces?

    SciTech Connect

    Chaubal, P.C.; Ranade, M.G.

    1997-12-31

    In the past few years there has been a major effort in the integrated plants in the US to increase blast furnace productivity. Record production levels have been reported by AK Steel using direct reduced/hot briquetted iron (DRI/HBI) and high levels of natural gas (NG)-oxygen injection at their Middletown blast furnace. Similarly, US Steel-Gary No. 13 reported high productivity levels with PCI and oxygen enrichment. A productivity of 6 NTHM/day/100 ft{sup 3}WV was the norm in the past, but today levels higher than 11 NTHM/day/100ft{sup 3}WV have been reached on a sustained basis. These high productivity levels have been an important aspect of facility rationalization efforts, as companies seek to maximize their throughput while reducing costs. Hot metal demand in a particular plant depends on downstream capabilities in converting hot metal to saleable steel. Single vs. multi-furnace plants may have different production requirements for each facility. Business cycles may influence productivity requirements from different furnaces of a multiple furnace plant, more so for those considered as swing furnaces. Therefore, the production requirement for individual blast furnaces is different for different plants. In an effort to understand productivity improvement methods, calculations were made for a typical 8 m hearth diameter furnace using data and experience gathered on Inland`s operation. Here the authors present the results obtained in the study.

  4. Oriented divisions, fate decisions

    PubMed Central

    Williams, Scott E.; Fuchs, Elaine

    2013-01-01

    During development, the establishment of proper tissue architecture depends upon the coordinated control of cell divisions not only in space and time, but also direction. Execution of an oriented cell division requires establishment of an axis of polarity and alignment of the mitotic spindle along this axis. Frequently, the cleavage plane also segregates fate determinants, either unequally or equally between daughter cells, the outcome of which is either an asymmetric or symmetric division, respectively. The last few years have witnessed tremendous growth in understanding both the extrinsic and intrinsic cues that position the mitotic spindle, the varied mechanisms in which the spindle orientation machinery is controlled in diverse organisms and organ systems, and the manner in which the division axis influences the signaling pathways that direct cell fate choices. PMID:24021274

  5. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    1999-01-01

    The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.

  6. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    2001-01-01

    The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.

  7. Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells

    NASA Astrophysics Data System (ADS)

    Fraas, L. M.; Avery, J. E.; Huang, H. X.

    2003-05-01

    It is well known that distributed combined heat and power (CHP) systems for commercial and industrial buildings are economically desirable because they conserve energy. Here, a thermophotovoltaic (TPV) unit is described that brings CHP into the home providing both heat and electric power by replacing the typical home heating furnace with a combined TPV furnace-generator. First, the design of a 1.5 kWelectric/12.2 kWthermal TPV furnace-generator is described along with the key components that make it possible. Diffused junction GaSb cells are one of these key components. Secondly, an economic cost target is determined for this system where the cost of the photovoltaic array will be key to the economical implementation of this concept. Finally, it is argued that the GaSb cells and arrays can be manufactured at the required low cost. The cost target can be reached because the GaSb cells in the TPV furnace-generator can produce an electrical power density of 1 W cm-2 which is 100 times higher than the typical solar cell. The cost target can also be reached because the GaSb cell fabrication process parallels the silicon solar cell process where no toxic gases are used, no wafer polish is required and cast polycrystalline cells can be used.

  8. Computational simulations and experimental validation of a furnace brazing process

    SciTech Connect

    Hosking, F.M.; Gianoulakis, S.E.; Malizia, L.A.

    1998-12-31

    Modeling of a furnace brazing process is described. The computational tools predict the thermal response of loaded hardware in a hydrogen brazing furnace to programmed furnace profiles. Experiments were conducted to validate the model and resolve computational uncertainties. Critical boundary conditions that affect materials and processing response to the furnace environment were determined. {open_quotes}Global{close_quotes} and local issues (i.e., at the furnace/hardware and joint levels, respectively) are discussed. The ability to accurately simulate and control furnace conditions is examined.

  9. 94. Photocopied August 1978. THE FURNACE ROOM ON THE SECOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. Photocopied August 1978. THE FURNACE ROOM ON THE SECOND FLOOR OF THE POWER HOUSE AT SAULT STE. MARIE. THE ROWS OF ROTARY FURNACES SHOWN HERE WERE REPLACED C. 1915-1920 BY 10,000 TO 20,000 H.P. TAPPING FURNACES. ONE TAPPING FURNACE WAS LOCATED TO THE WEST OF THE ROW OF HORRY FURNACES, THE OTHER WAS LOCATED IN A SEPARATE FURNACE HOUSE BUILT ON THE EAST OF THE POWER HOUSE. (E) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  10. The Dlr Solar Furnace - A Facility For Astrophysical and Mineralogical Experiments

    NASA Astrophysics Data System (ADS)

    Sauerborn, M.; Neumann, A.; Seboldt, W.; Klerner, S.

    The energy of solar radiation can be used to cause thermal or photochemical effects in the irradiated materials. The DLR Solar Furnace in Cologne is a facility that concentrates the direct solar radiation (concentration factor up to 5200 suns) for research experiments. It offers many different possibilities of using concentrated solar radiation to scientists and industrial users. For astrophysical and mineralogical applications a vacuum chamber with a special design and different instruments for measurements were developed, installed in the solar furnace and tested in experiments with small solid samples. The goal of the first project was to simulate the formation of so-called `chondrules' - constituents of meteorites - by "flash- heating" appropriate mineral samples with the concentrated beam of the solar furnace. The samples were melted and solidified subsequently by controlled cooling. The experiments had to be carried out under vacuum or controlled oxygen fugacity. Some results are presented as part of the paper "DYNAMIC CRYSTALLIZATION EXPERIMENTS USING CONVENTIONAL and SOLAR FURNACE TECHNIQUES - IMPLICATIONS FOR THE FORMATION of REFRACTORY FORSTERITE IN CHONDRITES", submitted to this conference. In a second series of experiments a slightly varied design was used to cause thermal reduction of samples of metal oxide and of lunar regolith simulate. The goal of this ongoing activity is to produce oxygen by pyrolysis. The process is conducted under high vacuum. The paper describes the facility with its properties and presents first results of the mentioned experiments. The two projects are co-operations between the High Flux Solar Furnace of DLR in Cologne (a department of the Solar Technology Division) and the Mission Architecture and Advanced Technologies Section (a department of the Institute of Space Sensor Technology and Planetary Exploration of DLR). In the first experiments and in the sample analysis the Institute of Mineralogy and Geochemistry of the

  11. Carbon monoxide exposure in blast furnace workers.

    PubMed

    Lewis, S; Mason, C; Srna, J

    1992-09-01

    This study investigated the occupational exposure to carbon monoxide (CO) of a group of blast furnace workers from an integrated steelworks, compared to a control group having no significant occupational CO exposure from other areas in the same works. The study was undertaken in 1984 at Port Kembla, New South Wales. Carboxyhaemoglobin (COHb) levels before and after an eight-hour work shift were measured in 98 male steelworkers: 52 from two CO-exposed iron blast furnaces and 46 controls from production areas in the same steelworks. The sample was stratified by smoking habits. Environmental air CO levels had been found to be consistently higher on one furnace than on the other. Absorption of CO from the working environment occurred in workers on the blast furnace with higher CO levels, regardless of smoking habits. On this blast furnace, some readings of COHb levels after a workshift in nonsmokers approached the proposed Australian occupational limit of 5 per cent COHb saturation. Overall, workers with the highest occupational exposure who smoked most heavily had the highest absorption of CO over a work shift. Biological monitoring gives an accurate measure of individual worker 'dose' of CO from all sources. Both environmental monitoring and biological monitoring need to be included as part of a program for controlling occupational CO exposure.

  12. Electric sales and revenue 1997

    SciTech Connect

    1998-10-01

    The Electric Sales and Revenue is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1997. 16 figs., 17 tabs.

  13. Electric sales and revenue 1994

    SciTech Connect

    1995-11-01

    The Electric Sales and Revenue is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the United States. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1994.

  14. Preparation of Ceramic-Bonded Carbon Block for Blast Furnace

    NASA Astrophysics Data System (ADS)

    Li, Yiwei; Li, Yawei; Sang, Shaobai; Chen, Xilai; Zhao, Lei; Li, Yuanbing; Li, Shujing

    2014-01-01

    Traditional carbon blocks for blast furnaces are mainly produced with electrically calcined anthracite owing to its good hot metal corrosion resistance. However, this kind of material shows low thermal conductivity and does not meet the demands for cooling of the hearth and the bottom of blast furnaces. In this article, a new kind of a high-performance carbon block has been prepared via ceramic-bonded carbon (CBC) technology in a coke bed at 1673 K (1400 °C) using artificial graphite aggregate, alumina, metallic aluminum, and silicon powders as starting materials. The results showed that artificial graphite aggregates were strongly bonded by the three-dimensional network of ceramic phases in carbon blocks. In this case, the good resistance of the CBC blocks against erosion/corrosion by the hot metal is provided by the ceramic matrix and the high thermal conductivity by the graphite aggregates. The microstructure of this carbon block resembles that of CBC composites with a mean pore size of less than 0.1 μm, and up to 90 pct of the porosity shows a pore size <1 μm. Its thermal conductivity is higher than 30 W · m-1 · K-1 [293 K (20 °C)]. Meanwhile, its hot metal corrosion resistance is better than that of traditional carbon blocks.

  15. Division i: Fundamental Astronomy

    NASA Astrophysics Data System (ADS)

    McCarthy, Dennis D.; Klioner, Sergei A.; Vondrák, Jan; Evans, Dafydd Wyn; Hohenkerk, Catherine Y.; Hosokawa, Mizuhiko; Huang, Cheng-Li; Kaplan, George H.; Knežević, Zoran; Manchester, Richard N.; Morbidelli, Alessandro; Petit, Gérard; Schuh, Harald; Soffel, Michael H.; Zacharias, Norbert

    2012-04-01

    The goal of the division is to address the scientific issues that were developed at the 2009 IAU General Assembly in Rio de Janeiro. These are:•Astronomical constants-Gaussian gravitational constant, Astronomical Unit, GMSun, geodesic precession-nutation•Astronomical software•Solar System Ephemerides-Pulsar research-Comparison of dynamical reference frames•Future Optical Reference Frame•Future Radio Reference Frame•Exoplanets-Detection-Dynamics•Predictions of Earth orientation•Units of measurements for astronomical quantities in relativistic context•Astronomical units in the relativistic framework•Time-dependent ecliptic in the GCRS•Asteroid masses•Review of space missions•Detection of gravitational waves•VLBI on the Moon•Real time electronic access to UT1-UTCIn pursuit of these goals Division I members have made significant scientific and organizational progress, and are organizing a Joint Discussion on Space-Time Reference Systems for Future Research at the 2012 IAU General Assembly. The details of Division activities and references are provided in the individual Commission and Working Group reports in this volume. A comprehensive list of references related to the work of the Division is available at the IAU Division I website at http://maia.usno.navy.mil/iaudiv1/.

  16. Cogeneration from glass furnace waste heat recovery

    SciTech Connect

    Hnat, J.G.; Cutting, J.C.; Patten, J.S.

    1982-06-01

    In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

  17. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi

  18. GENERAL VIEW OF TURBOBLOWER BUILDING (LEFT), BLAST FURNACE (CENTER), AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF TURBO-BLOWER BUILDING (LEFT), BLAST FURNACE (CENTER), AND HOT BLAST STOVES (RIGHT). - Republic Iron & Steel Company, Youngstown Works, Haselton Blast Furnaces, West of Center Street Viaduct, along Mahoning River, Youngstown, Mahoning County, OH

  19. 1. LOOKING EAST AT BLAST FURNACES NO. 3 AND No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING EAST AT BLAST FURNACES NO. 3 AND No. 4 FROM CRAWFORD STREET IN THE CITY OF DUQUESNE. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  20. 13. SOUTHWEST VIEW OF CAST HOUSE No. 1, BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SOUTHWEST VIEW OF CAST HOUSE No. 1, BLAST FURNACE No. 1, AND HOIST HOUSE No. 1. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  1. 35. CARRIE FURNACE No. 6 AND CAST HOUSE. THE CARRIE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. CARRIE FURNACE No. 6 AND CAST HOUSE. THE CARRIE BOILER SHOP IS ON THE RIGHT, IN FRONT OF HOT BLAST STOVES. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  2. Looking east at blast furnace no. 5 between the hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at blast furnace no. 5 between the hot blast stoves (left) and the dustcatcher (right). - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  3. 33. BOILER HOUSE FURNACE AND BOILER Close view of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BOILER HOUSE - FURNACE AND BOILER Close view of the Dorward Engineering Company furnace and boiler which provided steam to the cooking retorts in the adjacent room. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  4. 42. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; operator takes temperature of iron in trough during pout. Looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  5. 20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME BOXES FOR COUNTERWEIGHTS, AND FURNACE HEATING PIPES AT RIGHT. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  6. 22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL CONSTRUCTION. CONCRETE PAD AT LEFT IS SITE OF FORMER FURNACE USED TO HEAT URANIUM BILLETS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  7. 6. Photocopy of a drawing of the lead blast furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of a drawing of the lead blast furnace from J.L. Bray, The Principles of Metallurgy, Ginn & Co. New York, 1929. - International Smelting & Refining Company, Tooele Smelter, Blast Furnace Building, State Route 178, Tooele, Tooele County, UT

  8. 14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  9. 12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  10. 13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  11. 15. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE GROUND FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. 3. INSIDE BATCH FURNACE BUILDING, VIEW LOOKING NORTH AT REGENERATIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INSIDE BATCH FURNACE BUILDING, VIEW LOOKING NORTH AT REGENERATIVE BATCH FURNACES ON LEFT AND 5 TON CAPACITY CHARGING MACHINE ON RIGHT. - U.S. Steel Duquesne Works, 22-Inch Bar Mill, Along Monongahela River, Duquesne, Allegheny County, PA

  13. TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I

    EPA Science Inventory

    A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...

  14. 58. LOOKING EAST DOROTHY SIX BLAST FURNACE WITH BRICK SHED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. LOOKING EAST DOROTHY SIX BLAST FURNACE WITH BRICK SHED No. 3 IN FOREGROUND ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. 31. VIEW OF TRIPPER CAR ON TOP OF BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF TRIPPER CAR ON TOP OF BLAST FURNACE STOCKING TRESTLE LOOKING EAST. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. 55. GENERAL NORTHEASTERN VIEW OF DOROTHY SIX BLAST FURNACE COMPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. GENERAL NORTHEASTERN VIEW OF DOROTHY SIX BLAST FURNACE COMPLEX WITH LADLE HOUSE AND IRON DESULPHERIZATION BUILDING ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  17. INTERIOR VIEW OF BLAST FURNACE NO. 3 LOOKING EAST, SLAG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF BLAST FURNACE NO. 3 LOOKING EAST, SLAG RUNNERS & GATES IN FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  18. VIEW LOOKING NORTHWEST WITH OPENHEARTH TO LEFT WITH BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHWEST WITH OPEN-HEARTH TO LEFT WITH BLAST FURNACE NO. 2 AND CAST HOUSE TO THE RIGHT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  19. 70. CONTROL PANEL INSIDE OF THE DOROTHY SIX BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. CONTROL PANEL INSIDE OF THE DOROTHY SIX BLAST FURNACE STOCKHOUSE LOOKING NORTH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  20. INTERIOR VIEW LOOKING EAST, BLAST FURNACE NO. 1 CLOSEUP, IRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING EAST, BLAST FURNACE NO. 1 CLOSE-UP, IRON NOTCH IN CENTER. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  1. 59. REMAINS OF THE DOROTHY SIX BLAST FURNACE COMPLEX LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. REMAINS OF THE DOROTHY SIX BLAST FURNACE COMPLEX LOOKING NORTHEAST. THE LADLE HOUSE IS ON THE RIGHT. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  2. 50. IRON RUNNERS FOR CARRIE FURNACE No. 6 THE TUBES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. IRON RUNNERS FOR CARRIE FURNACE No. 6 THE TUBES IN THE FOREGROUND ARE PART OF THE TUYERE ASSEMBLY. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  3. 36. REDUCTION PLANT CLOSE VIEW OF FURNACE AND BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. REDUCTION PLANT - CLOSE VIEW OF FURNACE AND BOILER Reduction Plant furnace and boiler used to provide heat for drying the fish and fish offal, in their conversion to meal. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  4. Prototype Furnace for Automatic Production of Silicon Ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Stickel, W. B.

    1985-01-01

    Single-crystal material grown under precise control. New furnace permits sustained growth of single-crystal silicon ribbon by dendritic-web growth process. Furnace brings together mechanisms necessary for continuous automatic operation.

  5. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  6. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  7. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, Andrew H.; Holcombe, Cressie E.

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  8. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  9. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1991-01-01

    A two dimensional conduction/radiation problem for an alumina crucible in a zirconia heater/muffle tube enclosing a liquid iron sample was solved numerically. Variations in the crucible wall thickness were numerically examined. The results showed that the temperature profiles within the liquid iron sample were significantly affected by the crucible wall thicknesses. New zirconia heating elements are under development that will permit continued experimental investigations of the zirconia furnace. These elements have been designed to work with the existing furnace and have been shown to have longer lifetimes than commercially available zirconia heating elements. The first element has been constructed and tested successfully.

  10. Identification and modelling of a three phase arc furnace for voltage disturbance simulation

    SciTech Connect

    Collantes-Bellido, R.; Gomez, T.

    1997-10-01

    This paper presents a new arc furnace model which copes with the two main voltage disturbances normally associated with arc furnaces: voltage fluctuations and harmonics. The model is based on the stochastic nature of the electric arc current-voltage characteristic. The model has been estimated from measurements made in two actual electric plants. Although a single-phase model has been normally proposed, this paper develops a three-phase model in order to fully represent the unbalances that are present in real plants and which play a central role in the behavior of compensation devices such as SVCs. The model has been implemented using the SIMULINK environment in order to facilitate later simulation of advanced disturbance control systems. Finally, the simulation results are compared with actual data in order to validate the accuracy of the model.

  11. Electric sales and revenue 1996

    SciTech Connect

    1997-12-01

    Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1996. 16 figs., 20 tabs.

  12. Analysis of heat transfer in the furnace of the P-67 boiler P-67 furnace and improvement of its design

    NASA Astrophysics Data System (ADS)

    Shishkanov, O. G.; Kovalev, Yu. V.; Sryvkov, S. V.

    1993-03-01

    The results of experimental study of heat transfer in the furnace of the P-67 boiler (under the Russian trademark) burning Kansk-Achinsk coal are presented. Means of improving the design of the furnace device are proposed.

  13. 8. Copy of a photograph taken c. 1912 of Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Copy of a photograph taken c. 1912 of Furnace 'D' blown-in 17 July 1911, the fourth experimental 'thin-lined furnace' to be built in the United States. Photo courtesy Ralph A. Dise, Cleveland Heights, Ohio. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  14. 6. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' PLATE MILL. FURNACE SHOWING DURING DEMOLITION. C HOOK USED TO CHANGE ROLLS IS VISIBLE IN FRONT OF FURNACE. - U.S. Steel Homestead Works, 160" Plate Mill, Along Monongahela River, Homestead, Allegheny County, PA

  15. 57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  16. VIEW LOOKING NORTH, VIEW OF BLAST FURNACE NO. 2 (LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTH, VIEW OF BLAST FURNACE NO. 2 (LEFT) SHARING THE SAME CAST HOUSE WITH BLAST FURNACE NO. 1. ORE BRIDGE & BLOWER HOUSE TO RIGHT, HULETT CAR DUMPER IS IN LEFT FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  17. 6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES ARE THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  18. 18. Furnace D, looking north. At far left is the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Furnace D, looking north. At far left is the 'tripper' car, which distributed ore and limestone into trestle bins below. The 'larryman' then weighed and discharged these materials into skip cars, which carried them to the top of the furnace. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  19. 29. Blast furnace plant, looking southeast. The Machine Shop and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Blast furnace plant, looking southeast. The Machine Shop and Turbo Blower Building are at left, the pig-casting machine and Furnace A at center right. In foregound are the 50-ton ladle cars used to transport hot metal to Valley Mould & Iron Co. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  20. 56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  1. EXTERIOR VIEW, NO. 3 CAST HOUSE CENTER AND BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, NO. 3 CAST HOUSE CENTER AND BLAST FURNACE NO. 3 (JANE FURNACE)/ORE BRIDGE TO THE RIGHT, WITH SINTERING PLANT CONVEYORS & TRANSFER HOUSE IN FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  2. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  3. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  4. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  5. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  6. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  7. Water-cooled furnace heads for use with standard muffle tube furnaces

    NASA Technical Reports Server (NTRS)

    Williams, R. J.; Mullins, O.

    1975-01-01

    The design of water-cooled furnace seals for use in high-temperature controlled-atmosphere gas and vacuum studies is presented in detailed engineering drawings. Limiting design factors and advantages are discussed.

  8. Solid State Division

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  9. Order Division Automated System.

    ERIC Educational Resources Information Center

    Kniemeyer, Justin M.; And Others

    This publication was prepared by the Order Division Automation Project staff to fulfill the Library of Congress' requirement to document all automation efforts. The report was originally intended for internal use only and not for distribution outside the Library. It is now felt that the library community at-large may have an interest in the…

  10. | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  11. Protecting brazing furnaces from air leaks

    NASA Technical Reports Server (NTRS)

    Armenoff, C. T.; Mckown, R. D.

    1980-01-01

    Inexpensive inert-atmosphere shielding protects vacuum brazing-furnace components that are likely to spring leak. Pipefittings, gages, and valves are encased in transparent plastic shroud inflated with argon. If leak develops, harmless argon will enter vacuum chamber, making it possible to finish ongoing brazing or heat treatment before shutting down for repair.

  12. A Solar Furnace for Your School

    ERIC Educational Resources Information Center

    Meyer, Edwin C.

    1978-01-01

    Industrial arts students at Litchfield (Minnesota) High School designed and built a solar furnace for research and experimentation and to help heat the industrial arts department. A teacher describes the construction process and materials and the temperature record keeping by the physics classes. Student and community interest has been high. (MF)

  13. Laser Vacuum Furnace for Zone Refining

    NASA Technical Reports Server (NTRS)

    Griner, D. B.; Zurburg, F. W.; Penn, W. M.

    1986-01-01

    Laser beam scanned to produce moving melt zone. Experimental laser vacuum furnace scans crystalline wafer with high-power CO2-laser beam to generate precise melt zone with precise control of temperature gradients around zone. Intended for zone refining of silicon or other semiconductors in low gravity, apparatus used in normal gravity.

  14. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  15. Tube-Furnace Production of Silicon

    NASA Technical Reports Server (NTRS)

    Farrier, E. G.; Rexer, J.; Timmel, P. J.

    1982-01-01

    Packed-bed reactor produces silicon by decomposing ultrapure silane gas in temperature gradient. Based on previous experiments with relatively low decomposition temperatures and with temperature gradients, heterogeneous decomposition will produce few fines. Fines produced are screened out and reinserted into furnace.

  16. Large-Scale Evaluation of Nickel Aluminide Rools In A Heat-Treat Furnace at Bethlehem Steel's (now ISG) Burns Harbor Plate Mill

    SciTech Connect

    John Mengel; Anthony Martocci; Larry Fabina; RObert Petrusha; Ronald Chango

    2003-09-01

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry, Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system.

  17. [Application to dental casting machine of the rapid heating infrared image furnace (author's transl)].

    PubMed

    Etchu, Y; Noguchi, H

    1980-10-01

    The authors tried to manufacture a casting machine in dentistry by application of the infrared image furnace with a high heating speed and an easy control of a heating temperature. This machine melts an alloy in a carbon crucible set in the furnace, held in the horizontal position. Then, the furnace is turned to the vertical position to drop a melted alloy on the casting mold, and the alloy is cast in the mold by the pressure of Argon gas. The functions of trial casting machine were follows. 1. The trial casting machine was capable of heating to 1250 degrees C within one minute under 4 kW electric power. 2. The castability of the 20% Au-Pd-Ag commercial alloy cast in all casting conditions by the trial casting machine was higher than that of Thermotrol D-2 automatic centrifugal casting machine. 3. Castings of the trial casting machine showed higher tensile strength and elongation than those of the centrifugal casting machine, and the deviation of values got by the trial casting machine was small. In particular, some casting of the trial casting machine showed three times or over elongation values as compared with those of the centrifugal casting machine. 4. When casting conditions (casting temperature, casting pressure) of the trial casting machine changed, the physical properties of castings did not change so much. However, when the mold was not prevented from heating by the furnace in casting, the elongation of castings increased.

  18. Painless Division with Doc Spitler's Magic Division Estimator.

    ERIC Educational Resources Information Center

    Spitler, Gail

    1981-01-01

    An approach to teaching pupils the long division algorithm that relies heavily on a consistent and logical approach to estimation is reviewed. Once learned, the division estimator can be used to support the standard repeated subtraction algorithm. (MP)

  19. In-service testing of Ni{sub 3}Al coupons and trays in carburizing furnaces at Delphi Saginaw. CRADA final report

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Viswanathan, S.; Swindeman, R.W.; Chatterjee, M.

    1998-08-01

    This Cooperative Research and Development Agreement (CRADA) report deals with the development of nickel aluminide alloy for improved longer life heat-resistant fixture assemblies for batch and continuous pusher carburizing furnaces. The nickel aluminide development was compared in both coupon and component testing with the currently used Fe-Ni-Cr heat-resisting alloy known as HU. The specific goals of the CRADA were: (1) casting process development, (2) characterization and possible modification of the alloy composition to optimize its manufacturing ability and performance under typical furnace operating conditions, and (3) testing and evaluation of specimens and prototype fixtures. In support of the CRADA objectives, coupons of nickel aluminide and the HU alloy were installed in both batch and pusher furnaces. The coupons were taken from two silicon levels and contained welds made with two different filler compositions (IC-221LA and IC-221W). Both nickel-aluminide and HU coupons were removed from the batch and pusher carburizing furnace at time intervals ranging from one month to one year. The exposed coupons were cut and mounted for metallographic, hardness, and microprobe analysis. The results of the microstructural analysis have been transmitted to General Motors Corporation, Saginaw Division (Delphi Saginaw) through reports that were presented at periodic CRADA review meetings. Based on coupon testing and verification of the coupon results with the testing of trays, Delphi Saginaw moved forward with the use of six additional trays in a batch furnace and two assemblies in a pusher furnace. Fifty percent of the trays and fixtures are in the as-cast condition and the remaining trays and fixtures are in the preoxidized condition. The successful operating experience of two assemblies in the pusher furnace for nearly a year formed the basis for a production run of 63 more assemblies. The production run required melting of 94 heats weighing 500 lb. each. Twenty

  20. 6. Photocopied August 1978. LINEUP OF HORRY ROTARY FURNACES ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopied August 1978. LINE-UP OF HORRY ROTARY FURNACES ON THE SECOND FLOOR OF THE MICHIGAN LAKE SUPERIOR POWER COMPANY POWER HOUSE. THE HOPPERS WHICH FED THE RAW MATERIALS INTO THE FURNACES ARE SHOWN ABOVE THE FURNACES. AS THE 'SPOOL' OF THE FURNACE ROTATED PAST THE ELECTRODES PLATES WERE ADDED TO HOLD THE FINISHED PRODUCT AND THE DESCENDING RAW MATERIALS IN PLACE. THE DIRECTION OF ROTATION OF THE FURNACES SHOWN IN THIS PHOTO IS CLOCKWISE, (M). - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  1. Process control techniques for the Sidmar blast furnaces

    SciTech Connect

    Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van

    1995-12-01

    The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

  2. 2016 T Division Lightning Talks

    SciTech Connect

    Ramsey, Marilyn Leann; Adams, Luke Clyde; Ferre, Gregoire Robing; Grantcharov, Vesselin; Iaroshenko, Oleksandr; Krishnapriyan, Aditi; Kurtakoti, Prajvala Kishore; Le Thien, Minh Quan; Lim, Jonathan Ng; Low, Thaddeus Song En; Lystrom, Levi Aaron; Ma, Xiaoyu; Nguyen, Hong T.; Pogue, Sabine Silvia; Orandle, Zoe Ann; Reisner, Andrew Ray; Revard, Benjamin Charles; Roy, Julien; Sandor, Csanad; Slavkova, Kalina Polet; Weichman, Kathleen Joy; Wu, Fei; Yang, Yang

    2016-11-29

    These are the slides for all of the 2016 T Division lightning talks. There are 350 pages worth of slides from different presentations, all of which cover different topics within the theoretical division at Los Alamos National Laboratory (LANL).

  3. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2003-06-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi

  4. Electric Power Monthly

    EIA Publications

    2017-01-01

    Provides monthly statistics at the state, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold.

  5. Energy Systems Divisions

    NASA Technical Reports Server (NTRS)

    Applewhite, John

    2011-01-01

    This slide presentation reviews the JSC Energy Systems Divisions work in propulsion. Specific work in LO2/CH4 propulsion, cryogenic propulsion, low thrust propulsion for Free Flyer, robotic and Extra Vehicular Activities, and work on the Morpheus terrestrial free flyer test bed is reviewed. The back-up slides contain a chart with comparisons of LO2/LCH4 with other propellants, and reviewing the advantages especially for spacecraft propulsion.

  6. Biorepositories | Division of Cancer Prevention

    Cancer.gov

    Carefully collected and controlled high-quality human biospecimens, annotated with clinical data and properly consented for investigational use, are available through the Division of Cancer Prevention Biorepositories listed in the charts below. Biorepositories Managed by the Division of Cancer Prevention Biorepositories Supported by the Division of Cancer Prevention Related Biorepositories | Information about accessing biospecimens collected from DCP-supported clinical trials and projects.

  7. Division Quilts: A Measurement Model

    ERIC Educational Resources Information Center

    Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri

    2015-01-01

    As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…

  8. 78 FR 1252 - Schneider Electric, U.S.A., Subsidiary of Schneider Electric, Power Business Unit, Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Employment and Training Administration Schneider Electric, U.S.A., Subsidiary of Schneider Electric, Power... Electric, Power Business Unit, Power Solutions Division, including on-site leased workers from Volt... location of Schneider Electric, U.S.A., Power Business Unit, Power Solutions Division. The Department...

  9. Control method for a reclamation furnace

    SciTech Connect

    Kelly, S.B.

    1981-06-02

    A method is presented for preventing fires and explosions and thus controlling excess temperature within a burn-off or reclamation furnace including a water injection nozzle within the furnace, an automatic valve assembly connected to a source of water under pressure to turn the water on and off, an input burner to heat contaminate materials, an afterburner to burn volatile gases given off by the contaminate materials as they are heated, a temperature sensor located in the discharge from the afterburner to actuate the automatic valve assembly open and closed responsive to the temperature of the discharge. The temperature of the discharge depends on the rate of emission of volatile gases from the contaminate material so that if a high emission rate causes a predetermined temperature to be exceeded the valve assembly opens and the water injection nozzle sprays water on the contaminate materials to cool them and decrease the emission rate until the valve assembly closes.

  10. Glass furnace with heat sensing means

    SciTech Connect

    Canfield, D.M.

    1986-07-22

    A furnace is described for the heat treatment of glass including, annealing, heat-strengthening, tempering and bending of glass which comprises: a housing defining an elongated furnace chamber having an inlet and an outlet; a roller conveyor between the inlet and the outlet and including a row of stub rollers disposed along each side of the housing flanking a path between the inlet and the outlet, a drive conveyor belt extending over and under alternate stub rollers on one side of the conveyor, and fused silica support rollers spanning the conveyor with each support roller resting upon two stub rollers overshot by the belt; means for driving the belt to oscillate glass articles carried by the support rollers back and forth in the housing; an array of infrared heaters mounted in the housing above the conveyor; and a computer for displaying parameters for the operation of the heaters in a pattern on a screen corresponding to the array.

  11. Waste combustion in boilers and industrial furnaces

    SciTech Connect

    1996-12-31

    This publication contains technical papers published as they were presented at a recent specialty conference sponsored by the Air & Waste Management Association, titled Waste Combustion in Boilers and Industrial Furnaces, held March 26-27, 1996, in Kansas City, Missouri. Papers touch on compilance concerns for air pollution, air monitoring methodologies, risk assessment, and problems related to public anxiety. Separate abstracts have been indexed into the database from this proceedings.

  12. Induction graphitizing furnace acceptance test report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The induction furnace was designed to provide the controlled temperature and environment required for the post-cure, carbonization and graphitization processes for the fabrication of a fibrous graphite NERVA nozzle extension. The acceptance testing required six tests and a total operating time of 298 hrs. Low temperature mode operations, 120 to 850 C, were completed in one test run. High temperature mode operations, 120 to 2750 C, were completed during five tests.

  13. Electric power monthly, April 1993

    SciTech Connect

    Not Available

    1993-05-07

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  14. Electric power monthly, May 1993

    SciTech Connect

    Not Available

    1993-05-25

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  15. Ultra-high vacuum compatible image furnace.

    PubMed

    Neubauer, A; Boeuf, J; Bauer, A; Russ, B; Löhneysen, H v; Pfleiderer, C

    2011-01-01

    We report the design of an optical floating-zone furnace for single-crystal growth under ultra-high vacuum (UHV) compatible conditions. The system is based on a commercial image furnace, which has been refurbished to be all-metal sealed. Major changes concern the use of UHV rotary feedthroughs and bespoke quartz-metal seals with metal-O-rings at the lamp stage. As a consequence, the procedure of assembling the furnace for crystal growth is changed completely. Bespoke heating jackets permit to bake the system. For compounds with elevated vapor pressures, the ultra-high vacuum serves as a precondition for the use of a high-purity argon atmosphere up to 10 bar. In the ferromagnetic Heusler compound Cu(2)MnAl, the improvements of purity result in an improved stability of the molten zone, grain selection, and, hence, single-crystal growth. Similar improvements are observed in traveling-solvent floating-zone growth of the antiferromagnetic Heusler compound Mn(3)Si. These improvements underscore the great potential of optical float-zoning for the growth of high-purity single crystals of intermetallic compounds.

  16. Ultra-high vacuum compatible image furnace

    NASA Astrophysics Data System (ADS)

    Neubauer, A.; BÅ`uf, J.; Bauer, A.; Russ, B.; Löhneysen, H. v.; Pfleiderer, C.

    2011-01-01

    We report the design of an optical floating-zone furnace for single-crystal growth under ultra-high vacuum (UHV) compatible conditions. The system is based on a commercial image furnace, which has been refurbished to be all-metal sealed. Major changes concern the use of UHV rotary feedthroughs and bespoke quartz-metal seals with metal-O-rings at the lamp stage. As a consequence, the procedure of assembling the furnace for crystal growth is changed completely. Bespoke heating jackets permit to bake the system. For compounds with elevated vapor pressures, the ultra-high vacuum serves as a precondition for the use of a high-purity argon atmosphere up to 10 bar. In the ferromagnetic Heusler compound Cu _2MnAl, the improvements of purity result in an improved stability of the molten zone, grain selection, and, hence, single-crystal growth. Similar improvements are observed in traveling-solvent floating-zone growth of the antiferromagnetic Heusler compound Mn _3Si. These improvements underscore the great potential of optical float-zoning for the growth of high-purity single crystals of intermetallic compounds.

  17. A virtual crystallization furnace for solar silicon

    SciTech Connect

    Steinbach, I.; Franke, D.; Krumbe, W.; Liebermann, J.

    1994-12-31

    Blocks of silicon for photovoltaic applications are economically crystallized in large casting furnaces. The quality of the material is determined by the velocity of the crystallization front, the flatness of the liquid-solid interface and the thermal gradients in the solid during cooling. The process cycle time, which is determined by the rate of crystallization and cooling, has a large effect on the process economic viability. Traditionally trial and error was used to determine the process control parameters, the success of which depended on the operator`s experience and intuition. This paper presents a numerical model, which when completed by a fitted data set, constitutes a virtual model of a real crystallization furnace, the Virtual Crystallization Furnace (VCF). The time-temperature distribution during the process cycle is the main output, which includes a display of actual liquid-solid front position. Moreover, solidification velocity, temperature gradients and thermal stresses can be deduced from this output. The time needed to run a simulation on a modern work-station is approximately 1/6 of real process time, thereby allowing the user to make many process variations at very reasonable costs. Therefore the VCF is a powerful tool for optimizing the process in order to reduce cycle time and to increase product quality.

  18. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature

  19. A thermodynamic investigation into reactive-metal melting-furnace explosions

    NASA Astrophysics Data System (ADS)

    Evans, Steven C.; McLaughlin, David F.

    2005-10-01

    Western Zirconium, a plant in the Nuclear Fuels Business Unit of Westinghouse Electric Company, recently embarked on a significant safety-centered improvement to its vacuum-arc remelting (VAR) process. The improvement involved the relocation of the control room and installation of a programmable logic controller control strategy for the VAR furnaces. A critical consideration for the control strategy involved the implementation of the correct response to a breach in the water containment system that would allow water to contact the molten reactive metal in the furnace. Western Zirconium performed a random sampling of reactive metal melters in the United States to ascertain and evaluate the range of industry responses. Two distinct, and differing, approaches were discovered. In order to develop a better understanding and evaluate the responses, Western Zirconium, in conjunction with the Westinghouse Science and Technology Department, evaluated the thermodynamics involved in the reactions of molten reactive metals with water.

  20. Method for processing aluminum spent potliner in a graphite electrode ARC furnace

    SciTech Connect

    O'Connor, William K.; Turner, Paul C.; Addison, Gerald W.

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

  1. Method for processing aluminum spent potliner in a graphite electrode arc furnace

    DOEpatents

    O'Connor, William K.; Turner, Paul C.; Addison, G.W.

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

  2. Expendable Electric Landrover (EEL)

    DTIC Science & Technology

    2004-07-01

    DAHLGREN DIVISION NAVAL SURFACE WARFARE CENTER Panama City, Florida 32407-7001 NSWC PC/MP-04/07 EXPENDABLE ELECTRIC LANDROVER (EEL) MITCH GAVRILASH...COVERED JULY 2004 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS EXPENDABLE ELECTRIC LANDROVER (EEL) 6. AUTHOR(S) MITCH GAVRILASH 7. PERFORMING ORGANIZATION NAME...generations of Expendable Electric Landrover (EEL) robots were developed during fiscal year 2003 at the Naval Surface Warfare Center, Panama City (NSWC-PC

  3. Artificial cell division.

    PubMed

    Mange, Daniel; Stauffer, André; Petraglio, Enrico; Tempesti, Gianluca

    2004-01-01

    After a survey of the theory and some realizations of self-replicating machines, this paper presents a novel self-replicating loop endowed with universal construction and computation properties. Based on the hardware implementation of the so-called Tom Thumb algorithm, the design of this loop leads to a new kind of cellular automaton made of a processing and a control units. The self-replication of the Swiss flag serves as an artificial cell division example of the loop which, according to autopoietic evaluation criteria, corresponds to a cell showing the phenomenology of a living system.

  4. Ground Control Setup of the (LIF) Large Isothermal Furnace

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Large Isothermal Furnace (LIF) was flown on a mission in cooperation with the National Space Development Agency (NASDA) of Japan. LIF is a vacuum-heating furnace designed to heat large samples uniformly. The furnace consists of a sample container and heating element surrounded by a vacuum chamber. A crewmemeber will insert a sample cartridge into the furnace. The furnace will be activated and operations will be controlled automatically by a computer in response to an experiment number entered on the control panel. At the end of operations, helium will be discharged into the furnace, allowing cooling to start. Cooling will occur through the use of a water jacket while rapid cooling of samples can be accomplished through a controlled flow of helium. Data from experiments will help scientists better understand this important process which is vital to the production of high-quality semiconductor crystals.

  5. Sealed rotary hearth furnace with central bearing support

    DOEpatents

    Docherty, James P.; Johnson, Beverly E.; Beri, Joseph

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  6. Deconstructing Calculation Methods, Part 4: Division

    ERIC Educational Resources Information Center

    Thompson, Ian

    2008-01-01

    In the final article of a series of four, the author deconstructs the primary national strategy's approach to written division. The approach to division is divided into five stages: (1) mental division using partition; (2) short division of TU / U; (3) "expanded" method for HTU / U; (4) short division of HTU / U; and (5) long division.…

  7. Assessment of selected furnace technologies for RWMC waste

    SciTech Connect

    Batdorf, J.; Gillins, R.; Anderson, G.L.

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

  8. Comparison of predictive control methods for high consumption industrial furnace.

    PubMed

    Stojanovski, Goran; Stankovski, Mile

    2013-01-01

    We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions have been drawn.

  9. Method for treating reactive metals in a vacuum furnace

    DOEpatents

    Hulsey, W.J.

    1975-10-28

    The invention is directed to a method for reducing the contamination of reactive metal melts in vacuum furnaces due to the presence of residual gaseous contaminants in the furnace atmosphere. This reduction is achieved by injecting a stream of inert gas directly over the metal confined in a substantially closed crucible with the flow of the gas being sufficient to establish a pressure differential between the interior of the crucible and the furnace atmosphere.

  10. Anomaly detection of blast furnace condition using tuyere cameras

    NASA Astrophysics Data System (ADS)

    Yamahira, Naoshi; Hirata, Takehide; Tsuda, Kazuro; Morikawa, Yasuyuki; Takata, Yousuke

    2016-09-01

    We present a method of anomaly detection using multivariate statistical process control(MSPC) to detect the abnormal behaviors of a blast furnace. Tuyere cameras attached circumferentially at the lower side of a blast furnace are used to monitor the inside of the furnace and this method extracts abnormal behaviors of intensities. It is confirmed that with our method, detecting timing is earlier than operators' notice. Besides, misalignment of cameras doesn't affect detecting performance, which is important property in actual use.

  11. Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity

    SciTech Connect

    Stuart E. Strand

    2001-12-06

    The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

  12. Moving-Gradient Furnace With Constant-Temperature Cold Zone

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J.; Shaubach, Robert M.

    1993-01-01

    Outer heat pipe helps in controlling temperature of cold zone of furnace. Part of heat-pipe furnace that includes cold zone surrounded by another heat pipe equipped with heater at one end and water cooling coil at other end. Temperature of heat pipe maintained at desired constant value by controlling water cooling. Serves as constant-temperature heat source or heat sink, as needed, for gradient of temperature as gradient region moved along furnace. Proposed moving-gradient heat-pipe furnace used in terrestrial or spaceborne experiments on directional solidification in growth of crystals.

  13. 12. ANGLED VIEW OF THE SCOTT FURNACE WITH PRIMARY CONDENSER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. ANGLED VIEW OF THE SCOTT FURNACE WITH PRIMARY CONDENSER AND SOUTH SECONDARY CONDENSER IN BACKGROUND, LOOKING SOUTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  14. A 1800 K furnace designed for in situ synchrotron microtomography.

    PubMed

    Grupp, R; Henkel, F; Nöthe, M; Banhart, J; Kieback, B; Haibel, A

    2009-07-01

    A radiation furnace that covers the temperature range from room temperature up to 1800 K has been designed and constructed for in situ synchrotron microtomography. The furnace operates under a vacuum or under any inert gas atmosphere. The two 1000 W halogen heating lamps are water- and air-cooled. The samples are located at the focus of these lamp reflectors on a rotary feedthrough that is connected to a driving rotation stage below the furnace. The X-ray beam penetrates the furnace through two X-ray-transparent vacuum-sealed windows. Further windows can be used for temperature control, sample changing and gas inflow and outflow.

  15. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  16. Control of carbon balance in a silicon smelting furnace

    DOEpatents

    Dosaj, Vishu D.; Haines, Cathryn M.; May, James B.; Oleson, John D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  17. VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, CONDENSERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, CONDENSERS AND ORE BIN FOUNDATION ABOVE, LOOKING NORTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  18. 18. VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, CONDENSERS, AND ORE BIN FOUNDATION ABOVE, LOOKING NORTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  19. INTERIOR VIEW SHOWING QBOP FURNACE IN BLOW. OXYGEN AND NATURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING Q-BOP FURNACE IN BLOW. OXYGEN AND NATURAL GAS ARE BLOWN INTO THE FURNACE THROUGH THE TUYERES TO CHARGE 460,000 LBS. OF HOT METAL, 100,000 LBS. OF SCRAP WITH 30,000 LBS. OF LIME. BLOW TIME IS 16 MINUTES. THE TIME TO BLOW AND TAP THE FURNACES OF THE RESULTING 205,000 TONS OF STEEL AND SLAG IS 35 MINUTES. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL

  20. Environmental Chemistry Division annual report, 1989

    SciTech Connect

    Newman, L.

    1990-01-01

    The research activities making up the programs in the Environmental Chemistry Division of the Department of Applied Science are presented. Some of the more significant accomplishments during 1989 are described and plans for 1990 are discussed briefly. Publications for the period are listed and abstracts are provided. Research objectives and principal investigators are given for each of the active programs. A list of personnel and collaborators during the past year is presented. The support distribution of FY 1989 is approximately 85% from the Department of Energy (65% Office of Health and Environmental Research), and 15% other agencies (principally from the Electric Power Research Institute).

  1. Electric power monthly

    SciTech Connect

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  2. Understanding Microbial Divisions of Labor

    PubMed Central

    Zhang, Zheren; Claessen, Dennis; Rozen, Daniel E.

    2016-01-01

    Divisions of labor are ubiquitous in nature and can be found at nearly every level of biological organization, from the individuals of a shared society to the cells of a single multicellular organism. Many different types of microbes have also evolved a division of labor among its colony members. Here we review several examples of microbial divisions of labor, including cases from both multicellular and unicellular microbes. We first discuss evolutionary arguments, derived from kin selection, that allow divisions of labor to be maintained in the face of non-cooperative cheater cells. Next we examine the widespread natural variation within species in their expression of divisions of labor and compare this to the idea of optimal caste ratios in social insects. We highlight gaps in our understanding of microbial caste ratios and argue for a shift in emphasis from understanding the maintenance of divisions of labor, generally, to instead focusing on its specific ecological benefits for microbial genotypes and colonies. Thus, in addition to the canonical divisions of labor between, e.g., reproductive and vegetative tasks, we may also anticipate divisions of labor to evolve to reduce the costly production of secondary metabolites or secreted enzymes, ideas we consider in the context of streptomycetes. The study of microbial divisions of labor offers opportunities for new experimental and molecular insights across both well-studied and novel model systems. PMID:28066387

  3. Accelerator Technology Division

    NASA Astrophysics Data System (ADS)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  4. Energy Division progress report, fiscal years 1994--1995

    SciTech Connect

    Moser, C.I.

    1996-06-01

    At ORNL, the Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this progress report for FY 1994 and FY 1995. The Division`s expenditures in FY 1995 totaled 44.9 million. Sixty percent of the divisions work was supported by the US DOE. Other significant sponsors include the US DOT, the US DOD, other federal agencies, and some private organizations. The Division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) transportation systems, and (3) energy use and delivery technologies. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, and impact statements, research on emergency preparedness, analysis of energy and environmental needs in developing countries, and transportation analysis. Transportation systems research seeks to improve the quality of both civilian and military transportation efforts. Energy use and delivery technologies focus on building equipment, building envelopes, (walls, roofs, attics, and materials), improvement of energy efficiency in buildings, and electric power systems.

  5. When Your Furnace Kicks On, Be Sure Poison Gas Isn't Coming Out

    MedlinePlus

    ... Gas- and oil-burning furnaces produce carbon monoxide (CO). CO is an invisible, odorless, poison gas that kills ... GAS FURNACES ✔ Have your furnace inspected every year. CO DETECTORS ✔ Install battery-operated or battery back-up ...

  6. Radiative heat transfer in coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-01-01

    A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.

  7. Radiative heat transfer in coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-09-01

    A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.

  8. 21. OFFICE OF THE QUARTERMASTER GENERAL; CONSTRUCTION DIVISION; PLAN NUMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. OFFICE OF THE QUARTERMASTER GENERAL; CONSTRUCTION DIVISION; PLAN NUMBER 800-446. MOBILIZATION BUILDINGS; 74 & 63 MAN BARRACKS, TYPES BKS-74 & BKS-63; PRISON BARRACKS - GUARDS, TYPES PBG-74 & PBG-63; 29'-6' WIDE BUILDING; ELECTRICAL & PLUMBING. (modified at Fort McCoy). - Fort McCoy, Building T-1129, Sparta, Monroe County, WI

  9. Energy and Environmental Systems Division's publications publications 1968-1982

    SciTech Connect

    1982-03-01

    Books, journal articles, conference papers, and technical reports produced by the Energy and Environmental Systems Division of Argonne National Laboratory are listed in this bibliography. Subjects covered are energy resources (recovery and use); energy-efficient technology; electric utilities, and environments. (MCW)

  10. DC graphite arc furnace, a simple system to reduce mixed waste volume

    SciTech Connect

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE) complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.

  11. Advanced steel reheat furnaces: Research and development. Final report

    SciTech Connect

    Nguyen, Q.; Koppang, R.; Maly, P.; Moyeda, D.; Li, X.

    1999-01-14

    The purpose of this report is to present the results of two phases of a three-phase project to develop and evaluate an Advanced Steel Reheat Furnace (SSRF) concept which incorporates two proven and commercialized technologies, oxy-fuel enriched air (OEA) combustion and gas reburning (GR). The combined technologies aim to improve furnace productivity with higher flame radiant heat transfer in the heating zones of a steel reheat furnace while controlling potentially higher NOx emissions from these zones. The project was conducted under a contract sponsored by the Department of Energy (DOE). Specifically, this report summarizes the results of a modeling study and an experimental study to define and evaluate the issues which affect the integration and performance of the combined technologies. Section 2.0 of the report describes the technical approach uses in the development and evaluation of the advanced steel reheat furnace. Section 3.0 presents results of the modeling study applied to a model steel furnace. Experimental validation of the modeling results obtained from EER`s Fuel Evaluation Facility (FEF) pilot-scale furnace discussed in Section 4.0. Section 5.0 provides an economic evaluation on the cost effectiveness of the advanced reheat furnace concept. Section 6.0 concludes the report with recommendations on the applicability of the combined technologies of steel reheat furnaces.

  12. 11. Photocopied June 1978. HOT BLAST STOVE ON 'NEW' FURNACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopied June 1978. HOT BLAST STOVE ON 'NEW' FURNACE. NOTE DOWNCOMER ON LEFT AND DAMPERS ON CHIMNEYS. CA. 1906. SOURCE: MACINTYRE DEVELOPMENT, NL INDUSTRIES, TAHAWUS, N.Y. - Adirondack Iron & Steel Company, New Furnace, Hudson River, Tahawus, Essex County, NY

  13. 15. Photocopied June 1978. WHEEL HOUSE RUINS OF 'NEW' FURNACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopied June 1978. WHEEL HOUSE RUINS OF 'NEW' FURNACE. SEGMENT GEAR REMNANTS VISIBLE STANDING IN WHEEL PIT IN FOREGROUND. SOURCE: MCINTYRE DEVELOPMENT, NL INDUSTRIES, TAHAWUS, N.Y. - Adirondack Iron & Steel Company, New Furnace, Hudson River, Tahawus, Essex County, NY

  14. NORTH END OF DOUBLE FURNACE AND CAST AND ENGINE SHED, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH END OF DOUBLE FURNACE AND CAST AND ENGINE SHED, WITH BLOWER HOUSE TO THE EAST AND CHARGING BRIDGE AND TRESSLE TO THE WEST, LOOKING SOUTH-SOUTHEAST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  15. Hydrogen-atmosphere induction furnace has increased temperature range

    NASA Technical Reports Server (NTRS)

    Caves, R. M.; Gresslin, C. H.

    1966-01-01

    Improved hydrogen-atmosphere induction furnace operates at temperatures up to 5,350 deg F. The furnace heats up from room temperature to 4,750 deg F in 30 seconds and cools down to room temperature in 2 minutes.

  16. DEMONSTRATION BULLETIN: CYCLONE FURNACE SOIL VITRI- FICATION TECHNOLOGY - BABCOCK & WILCOX

    EPA Science Inventory

    Babcock and Wilcox's (B&W) cyclone furnace is an innovative thermal technology which may offer advantages in treating soils containing organics, heavy metals, and/or radionuclide contaminants. The furnace used in the SITE demonstration was a 4- to 6-million Btu/hr pilot system....

  17. 17. DETAIL OF THE REMAINS OF BLAST FURNACE No. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL OF THE REMAINS OF BLAST FURNACE No. 2 LOOKING EAST. THE BUSTLE PIPE IS VISIBLE ACROSS THE CENTER OF THE IMAGE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  18. 15. NORTHERN VIEW OF THE REMAINS OF BLAST FURNACE No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NORTHERN VIEW OF THE REMAINS OF BLAST FURNACE No. 2 IN LOWER CENTER OF PHOTO AT THE BASE OF HOT BLAST STOVES. HOIST HOUSE No. 2 IS ON THE LEFT. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  19. 5. SOUTHERN VIEW OF BLAST FURNACES No. 3, No. 4, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTHERN VIEW OF BLAST FURNACES No. 3, No. 4, AND No. 6, WITH ORE YARD IN THE FOREGROUND. BUILDING ON THE LEFT IS THE CENTRAL BOILER HOUSE. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  20. VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND CASTING SEED ON THE LEFT, THE #1 BLAST FURNACE AND CASTING SHED ON THE RIGHT, AND THE STOVES, BOILERS, AND AUXILIARY EQUIPMENT IN THE CENTER. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  1. High temperature furnace system for vacuum ultraviolet spectroscopic studies.

    PubMed

    Brown, C M; Naber, R H; Tilford, S G; Ginter, M L

    1973-08-01

    An improved furnace system for use in vacuum ultraviolet spectroscopic studies of atomic and molecular species stable at high temperatures (800-2500 degrees C) is described in detail. A new and improved high resolution spectrum of Mg I and several impurity spectra produced in the furnace are presented.

  2. C AND M BOTTOM LOADING FURNACE TEST DATA

    SciTech Connect

    Lemonds, D

    2005-08-01

    The test was performed to determine the response of the HBL Phase III Glovebox during C&M Bottom Loading Furnace operations. In addition the data maybe used to benchmark a heat transfer model of the HBL Phase III Glovebox and Furnace.

  3. 9. GENERAL INTERIOR VIEW OF THE VERTICAL FURNACE BUILDING (PART ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. GENERAL INTERIOR VIEW OF THE VERTICAL FURNACE BUILDING (PART OF MACHINE SHOP No. 2). TWO FURNACES, WITH THEIR SUPPORT FRAMEWORK, ARE VISIBLE TO THE RIGHT. THE TALL STRUCTURE IN THE CENTER TOWARD THE BACKGROUND IS THE VERTICAL QUENCH TOWER. - U.S. Steel Homestead Works, Machine Shop No. 2, Along Monongahela River, Homestead, Allegheny County, PA

  4. Heat pipes and use of heat pipes in furnace exhaust

    DOEpatents

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  5. 8. INTERIOR VIEW, LOOKING WEST, WITH GREY IRON HOLDING FURNACES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. INTERIOR VIEW, LOOKING WEST, WITH GREY IRON HOLDING FURNACES AND AN IRON POUR IN PROCESS, CUPOLA TENDER RICHARD SLAUGHTER SUPERVISING THE POUR. MOLTEN DUCTILE IRON IS POURED FROM THIS 25-TON HOLDING FURNACE INTO LADLES FOR TRANSPORT TO CASTING STATIONS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  6. 41. INTERIOR VIEW, LOOKING WEST, WITH GREY IRON HOLDING FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. INTERIOR VIEW, LOOKING WEST, WITH GREY IRON HOLDING FURNACE AND AN IRON POUR IN PROCESS. MOLTEN DUCTILE IRON IS POURED FROM THIS 25-TON HOLDING FURNACE INTO LADLES FOR TRANSPORT TO CASTING STATIONS - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  7. 42. INTERIOR VIEW, LOOKING WEST, WITH GREY IRON HOLDING FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. INTERIOR VIEW, LOOKING WEST, WITH GREY IRON HOLDING FURNACE AND AN IRON POUR IN PROCESS. MOLTEN DUCTILE IRON IS POURED FROM THIS 25-TON HOLDING FURNACE INTO LADLES FOR TRANSPORT TO CASTING STATIONS - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  8. 7. INTERIOR VIEW, LOOKING WEST, WITH GREY IRON HOLDING FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR VIEW, LOOKING WEST, WITH GREY IRON HOLDING FURNACE AND AN IRON POUR IN PROCESS. MOLTEN DUCTILE IRON IS POURED FROM THIS 25-TON HOLDING FURNACE INTO LADLES FOR TRANSPORT TO CASTING STATIONS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  9. 4. RW Meyer Sugar Mill: 18761889. Furnace doer for sugar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. RW Meyer Sugar Mill: 1876-1889. Furnace doer for sugar boiling range. Manufactured by Honolulu Iron Works, Honolulu, 1879. Cost: $15.30. View: the furnace for the sugar boiling range was stoked from outside of the east wall of the boiling house. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  10. GENERAL VIEW OF FURNACE BUILDING NO. 2 BEHIND CONVEYOR ASSOCIATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF FURNACE BUILDING NO. 2 BEHIND CONVEYOR ASSOCIATED WITH BURRELL CONSTRUCTION COMPANY; TO RIGHT IS AMERICAN WINDOW GLASS COMPANY BATCH PLANT, LOOKING SOUTHEAST - Chambers Window Glass Company, Furnace No. 2, North of Drey (Nineteenth) Street, West of Constitution Boulevard, Arnold, Westmoreland County, PA

  11. Looking east at the basic oxygen furnace building with gas ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at the basic oxygen furnace building with gas cleaning plants in foreground on the left and the right side of the furnace building. - U.S. Steel Edgar Thomson Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA

  12. 11. SOUTHWEST VIEW OF BASIC OXYGEN FURNACES No. 1 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SOUTHWEST VIEW OF BASIC OXYGEN FURNACES No. 1 AND No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  13. EMISSIONS FROM OUTDOOR WOOD-BURNING RESIDENTIAL HOT WATER FURNACES

    EPA Science Inventory

    The report gives results of measurements of emissions from a single-pass and a double-pass furnace at average heat outputs of 15,000 and 30,000 Btu/hr (4.4 and 8.8 kW) while burning typical oak cordwood fuel. One furnace was also tested once at each heat output while fitted with ...

  14. General view of blast furnace "A"; looking southeast; The building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of blast furnace "A"; looking southeast; The building to the right is the crucible steel building - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  15. Blast furnace lining and cooling technology: experiences at Corus IJmuiden

    SciTech Connect

    Stokman, R.; van Stein Cellenfels, E.; van Laar, R.

    2004-11-01

    This article describes the blast furnace lining and cooling concept as originally developed and applied by Hoogovens (Corus IJmuiden). The technology has also been applied by Danieli Corus in all its blast furnace projects executed in the last 25 years. The technology has helped Corus increase its PCI rate to over 200 kg/thm. 4 refs., 13 figs., 1 tab.

  16. Blast-furnace performance with coal-dust injection

    SciTech Connect

    G.G. Vasyura

    2007-07-01

    For the blast furnace shop at OAO Alchevskii Metallurgicheskii Kombinat (AMK) the injection of pulverized fuel is promising. Preliminary steps toward its introduction are underway, including analytical research. In this context, blast furnace performance when using pulverized coal is calculated in this study.

  17. 11. VIEW OF THE MANIPULATOR AND THE PARTS HEATING FURNACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF THE MANIPULATOR AND THE PARTS HEATING FURNACE. THE PARTS OR METALS WERE HEATED PRIOR TO BEING PRESSED. THE MANIPULATOR ARM WAS USED TO INSERT AND REMOVE PARTS OR METALS FROM THE FURNACE. (2/9/79) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  18. Glass Furnace Combustion and Melting Research Facility.

    SciTech Connect

    Connors, John J.; McConnell, John F.; Henry, Vincent I.; MacDonald, Blake A.; Gallagher, Robert J.; Field, William B.; Walsh, Peter M.; Simmons, Michael C.; Adams, Michael E.; Leadbetter, James M.; Tomasewski, Jack W.; Operacz, Walter J.; Houf, William G.; Davis, James W.; Marvin, Bart G.; Gunner, Bruce E.; Farrell, Rick G.; Bivins, David P.; Curtis, Warren; Harris, James E.

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  19. Mercury in dumped blast furnace sludge.

    PubMed

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2014-03-01

    Blast furnace sludge (BFS) is a waste generated in the production of pig iron and was dumped in sedimentation ponds. Sixty-five samples from seven BFS locations in Europe were investigated regarding the toxic element mercury (Hg) for the first time. The charge material of the blast furnace operations revealed Hg contents from 0.015 to 0.097mgkg(-1). In comparison, the Hg content of BFS varied between 0.006 and 20.8mgkg(-1) with a median of 1.63mgkg(-1), which indicates enrichment with Hg. For one site with a larger sample set (n=31), Hg showed a stronger correlation with the total non-calcareous carbon (C) including coke and graphite (r=0.695; n=31; p<0.001). It can be assumed that these C-rich compounds are hosting phases for Hg. The solubility of Hg was rather low and did not exceed 0.43% of total Hg. The correlation between the total Hg concentration and total amount of NH4NO3-soluble Hg was relatively poor (r=0.496; n=27; p=0.008) indicating varying hazard potentials of the different BFS. Finally, BFS is a mercury-containing waste and dumped BFS should be regarded as potentially mercury-contaminated sites.

  20. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  1. The Advanced Automated Directional Solidification Furnace

    NASA Technical Reports Server (NTRS)

    Gillies, D. C.; Reeves, F. A.; Jeter, L. B.; Sledd, J. D.; Cole, J. M.; Lehoczky, S. L.

    1996-01-01

    The Advanced Automated Directional Solidification Furnace (AADSF) is a five zone tubular furnace designed for Bridgman-Stockbarger, other techniques of crystal growth involving multiple temperature zones such as vapor transport experiments and other materials science experiments. The five zones are primarily designed to produce uniform hot and cold temperature regions separated by an adiabatic region constructed of a heat extraction plate and an insert to reduce radiation from the hot to the cold zone. The hot and cold zone temperatures are designed to reach 1600 C and 1100 C, respectively. AADSF operates on a Multi-Purpose Experiment Support Structure (MPESS) within the cargo bay of the Space Shuttle on the United States Microgravity Payload (USMP) missions. Two successful flights, both employing the directional solidification or Bridgman Stockbarger technique for crystal growth have been made, and crystals of HgCdTe and PbSnTe grown in microgravity have been produced on USMP-2 and USMP-3, respectively. The addition of a Sample Exchange Mechanism (SEM) will enable three different samples to be processed on future flights including the USMP-4 mission.

  2. The Division of Household Labor.

    ERIC Educational Resources Information Center

    Spitze, Glenna D.; Huber, Joan

    A study was conducted to test the following hypotheses concerning division of household labor (DOHL) between husbands and wives: (1) the division of household labor is somewhat affected by the availability of time, especially the wife's time; (2) there are strong effects of relative power, as measured by market-related resources, marital…

  3. Lightning Talks 2015: Theoretical Division

    SciTech Connect

    Shlachter, Jack S.

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  4. A controlled atmosphere tube furnace was designed for thermal CVD

    NASA Astrophysics Data System (ADS)

    Rashid, M.; Bhatti, J. A.; Hussain, F.; Imran, M.; Khawaja, I. U.; Chaudhary, K. A.; Ahmad, S. A.

    2013-06-01

    High quality materials were used for the fabrication of hi-tech tube furnace. The furnace was especially suitable for thermal Chemical Vapor Deposition (CVD). High density alumina tube was used for the fabrication of furnace. The tube furnace was found to have three different temperature zones with maximum temperature at central zone was found to be 650°C. The flexible heating tape with capacity of 760°C was wrapped on the tube. To minimize the heat losses, asbestos and glass wool were used on heating tape. The temperature of the tube furnace was controlled by a digital temperature controller had accuracy of ±1°C. Methanol was taken as the representative of hydrocarbon sources, to give thin film of carbon. The a-C: H structure was investigated by conventional techniques using optical microscopy, FT-IR and SEM.

  5. Pulverized coal injection operation on CSC No. 3 blast furnace

    SciTech Connect

    Chan, C.M.; Hsu, C.H.

    1996-12-31

    The pulverized coal injection system was introduced for the first time in No. 1 and No. 2 blast furnace at China Steel Corporation (CSC) in 1988. Currently the coal injection rate for both blast furnaces has steadily risen to 70--89 kg/thm (designed value). No 3 blast furnace (with an inner volume of 3400 m3) was also equipped with a PCI system of Armco type and started coal injection on November 17, 1993. During the early period, some problems such as injection lance blocking, lance-tip melting down, flexible hose wear, grind mill tripping occasionally interrupted the stable operation of blast furnace. After a series of efforts offered on equipment improvement and operation adjustment, the PC rate currently reaches to 90--110 kg/thm and furnace stable operation is still being maintained with productivity more than 2.20.

  6. 29. RW Meyer Sugar Mill: 18761889. Boilingrange furnace and clarifier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. RW Meyer Sugar Mill: 1876-1889. Boiling-range furnace and clarifier position. View: In the boiling range all of the concentration, evaporation, and concentration of cane juice took place in open pans over the continous flue leaving this furnace. The furnace door through the exterior wall is at the end of the furnace. In the original installation two copper clarifiers, manufactured by John Nott & Co. occupied this space directly above the furnace. In the clarifier lime was added to the cane juice so that impurities would coagulate into a scum on top of the near-boiling juice. The clarifiers have been removed since the closing of the mill. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  7. 28. RW Sugar Mill: 18761889. Boilingrange Furnace and Clarifier position. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. RW Sugar Mill: 1876-1889. Boiling-range Furnace and Clarifier position. View: In the boiling range all of the clarification, evaporation, and concentration of cane juice took place in open pans over the Continuous flue leading from this furnace. The furnace door through the exterior wall is at the end of the furnace. In the original installation, two copper clarifiers, manufactured by John Nott & Co. occupied this space directly above the furnace. In the clarifiers, lime was added to the cane juice so that impurities would coagulate into a scum on top of the near-boiling juice. The clarifiers have been removed since the closing of the mill. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  8. Method of operating a centrifugal plasma arc furnace

    DOEpatents

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  9. Method of operating a centrifugal plasma arc furnace

    DOEpatents

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  10. Recent improvements in casthouse practices at the Kwangyang blast furnaces

    SciTech Connect

    Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

    1997-12-31

    POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

  11. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    SciTech Connect

    Aldrich, R.; Williamson, J.

    2014-01-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3™ replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost effectiveness. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Results indicate that BPM replacement motors will be most cost effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

  12. Physics Division computer facilities

    SciTech Connect

    Cyborski, D.R.; Teh, K.M.

    1995-08-01

    The Physics Division maintains several computer systems for data analysis, general-purpose computing, and word processing. While the VMS VAX clusters are still used, this past year saw a greater shift to the Unix Cluster with the addition of more RISC-based Unix workstations. The main Divisional VAX cluster which consists of two VAX 3300s configured as a dual-host system serves as boot nodes and disk servers to seven other satellite nodes consisting of two VAXstation 3200s, three VAXstation 3100 machines, a VAX-11/750, and a MicroVAX II. There are three 6250/1600 bpi 9-track tape drives, six 8-mm tapes and about 9.1 GB of disk storage served to the cluster by the various satellites. Also, two of the satellites (the MicroVAX and VAX-11/750) have DAPHNE front-end interfaces for data acquisition. Since the tape drives are accessible cluster-wide via a software package, they are, in addition to replay, used for tape-to-tape copies. There is however, a satellite node outfitted with two 8 mm drives available for this purpose. Although not part of the main cluster, a DEC 3000 Alpha machine obtained for data acquisition is also available for data replay. In one case, users reported a performance increase by a factor of 10 when using this machine.

  13. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  14. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.

    PubMed

    Blevins, Linda G; Shaddix, Christopher R; Sickafoose, Shane M; Walsh, Peter M

    2003-10-20

    Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coal, or both; (2) at the exit of a glass-melting furnace burning natural gas and oxygen; and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

  15. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces

    NASA Astrophysics Data System (ADS)

    Blevins, Linda G.; Shaddix, Christopher R.; Sickafoose, Shane M.; Walsh, Peter M.

    2003-10-01

    Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coal, or both; (2) at the exit of a glass-melting furnace burning natural gas and oxygen; and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

  16. Crystal Growth Furnace System Configuration and Planned Experiments on the Second United States Microgravity Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Srinivas, R.; Hambright, G.; Ainsworth, M.; Fiske, M.; Schaefer, D.

    1995-01-01

    The Crystal Growth Furnace (CGF) is currently undergoing modifications and refurbishment and is currently undergoing modifications and refurbishment and is manifested to refly on the Second United States Microgravity Laboratory (USML-2) mission scheduled for launch in September 1995. The CGF was developed for the National Aeronautics and Space Administration (NASA) under the Microgravity Science and Applications Division (MSAD) programs at NASA Headquarters. The refurbishment and reflight program is being managed by the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Funding and program support for the CGF project is provided to MSFC by the office of Life and Microgravity Sciences and Applications at NASA Headquarters. This paper presents an overview of the CGF system configuration for the USML-2 mission, and provides a brief description of the planned on-orbit experiment operation.

  17. Evaluation of Retrofit Variable-Speed Furnace Fan Motors

    SciTech Connect

    Aldrich, R.; Williamson, J.

    2014-01-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) has evaluated the Concept 3 (tm) replacement motors for residential furnaces. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. The project includes eight homes in and near Syracuse, NY. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh. Average cost savings were $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load. There are millions of cold-climate, U.S. homes that meet these criteria, but the savings in most homes tested in this study were modest.

  18. Division rules for polygonal cells.

    PubMed

    Cowan, R; Morris, V B

    1988-03-07

    A number of fascinating mathematical problems concerning the division of two-dimensional space are formulated from questions about the planes of cell division in embryonic epithelia. Their solution aids in the quantitative description of cellular arrangement in epithelia. Cells, considered as polygons, site their division line according to stochastic rules, eventually forming a tessellation of the plane. The equilibrium distributions for the resulting mix of polygonal types are explored for a range of stochastic rules. We find surprising links with some classical distributions from the theory of probability.

  19. Physics division annual report 2006.

    SciTech Connect

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  20. Large-scale Evaluation of Nickel Aluminide Rolls in a Heat-Treat Furnace at Bethelehem Steel's (Now ISG) Burns Harbor Plate Mill

    SciTech Connect

    Mengel, J.

    2003-12-16

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry. Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system. Many challenges were involved in this project, including developing welding procedures for joining nickel aluminide intermetallic alloys with H-series austenitic alloys, developing commercial cast roll manufacturing specifications, working with several commercial suppliers to produce a quantity of high quality, reproducible nickel aluminide rolls for a large steel industrial annealing furnace, installing and demonstrating the capability of the rolls in this furnace, performing processing trials to evaluate the benefits of new equipment and processes, and documenting the findings. Updated furnace equipment including twenty-five new automated furnace control dampers have been installed replacing older design, less effective units. These dampers, along with upgraded flame-safety control equipment and new AC motors and roll-speed control equipment, are providing improved furnace control and additional energy efficiency. Energy data shows up to a 34% energy reduction from baseline after the installation of upgraded furnace damper controls along with up to a 34% reduction in greenhouse gases, potential for an additional 3 to 6% energy reduction per campaign of light-up and shutdown, and a 46% energy reduction from baseline for limited trials of a combination of improved damper control and straight-through plate processing. The straight-through processing