Science.gov

Sample records for electric impedance

  1. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  2. Electrical impedance of FCC

    NASA Technical Reports Server (NTRS)

    Liu, Y. S.

    1972-01-01

    The electrical characteristics of FCC are investigated in the context of multiple transmission lines theory. Analytical expressions for the coefficients of capacitance of conductors in a single cable are obtained. Numerical values calculated with these expressions are in good agreement with experimental data. Crosstalk, attenuation constants and phase angles of the current and voltage in flat conductor cable are also calculated.

  3. Calibration of electrical impedance tomography

    SciTech Connect

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  4. Electrical Impedance Tomography of Breast Cancer

    DTIC Science & Technology

    2005-06-01

    SUBJECT TERMS Diagnosis of Metastatic Cancer, Magnetic Resonance Imaging, Electrical Impedance Imaging, Electrical Impedance Scanning, MRI current...1) To develop and optimize the necessary hardware and software for Magnetic Resonance Electrical Impedance Tomography (MREIT) and interface it with...of Magnetic Resonance in Medicine (ISMRM) conference and included in the appendix for reference. 2.2.2. Second Year: A series of new phantom studies

  5. Electrical Impedance Tomography of Electrolysis

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686

  6. Electrical impedance tomography of electrolysis.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.

  7. Possibilities of electrical impedance tomography in gynecology

    NASA Astrophysics Data System (ADS)

    V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.

    2013-04-01

    The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.

  8. Electrical Impedance Tomography of Breast Cancer

    DTIC Science & Technology

    2004-06-01

    Resonance Research Systems, Guildford, UK) that has broadband RF transmit and receive channels. A 16 leg, quadrature, high-pass birdcage coil with 10...metastatic cancer, magnetic resonance imaging, 43 electrical impedance imaging, electrical impedance scanning, MRI 16. PRICE CODE current density imaging...tissue with high spatial resolution, by using it in conjunction with Magnetic Resonance Imaging (MRI) to improve diagnostic accuracy of screening. For

  9. FEM electrode refinement for electrical impedance tomography.

    PubMed

    Grychtol, Bartlomiej; Adler, Andy

    2013-01-01

    Electrical Impedance Tomography (EIT) reconstructs images of electrical tissue properties within a body from electrical transfer impedance measurements at surface electrodes. Reconstruction of EIT images requires the solution of an inverse problem in soft field tomography, where a sensitivity matrix, J, of the relationship between internal changes and measurements is calculated, and then a pseudo-inverse of J is used to update the image estimate. It is therefore clear that a precise calculation of J is required for solution accuracy. Since it is generally not possible to use analytic solutions, the finite element method (FEM) is typically used. It has generally been recommended in the EIT literature that FEMs be refined near electrodes, since the electric field and sensitivity is largest there. In this paper we analyze the accuracy requirement for FEM refinement near electrodes in EIT and describe a technique to refine arbitrary FEMs.

  10. Study of the Electrical Impedance Scanning

    DTIC Science & Technology

    2007-11-02

    exhibit conductive changes that cause an impedance variation between cancerous ant health tissues. Since there are very few commercial devices...contribute somehow in the evaluation of the parameters involved. Keywords – Electrical Transimpedance Scanning, Breast cancer I. INTRODUCTION The...Electrical Transimpedance Scanning (ETS) is a new technique, non-invasive, non-irradiant, used in the diagnosis of breast cancer . Combined with other

  11. Some boundary problems in electrical impedance tomography.

    PubMed

    Pidcock, M; Ciulli, S; Ispas, S

    1996-11-01

    Accurate mathematical modelling is important in the development of iterative image reconstruction algorithms for electrical impedance tomography (EIT). In such schemes the forward problem of calculating the electric potential from Neumann boundary data is solved many times. One aspect of this problem which has received some attention is the mathematical modelling of the electrodes used in the technique. In this paper we describe an integral equation formulation of a boundary value problem associated with this tissue and we indicate some of the ways in which this formulation can be used to obtain numerical and analytic results.

  12. ELECTRIC IMPEDANCE OF NITELLA DURING ACTIVITY

    PubMed Central

    Cole, Kenneth S.; Curtis, Howard J.

    1938-01-01

    The changes in the alternating current impedance which occur during activity of cells of the fresh water plant Nitella have been measured with the current flow normal to the cell axis, at eight frequencies from 0.05 to 20 kilocycles per second, and with simultaneous records of the action potential under the impedance electrodes. At each frequency the resting cell was balanced in a Wheatstone bridge with a cathode ray oscillograph, and after electrical stimulation at one end of the cell, the changes in the complex impedance were determined from the bridge unbalance recorded by motion pictures of the oscillograph figure. An extension of the previous technique of interpretation of the transverse impedance shows that the normal membrane capacity of 0.9 µf./cm.2 decreases about 15 per cent without change of phase angle, while the membrane resistance decreases from 105 ohm cm.2 to about 500 ohm cm.2 during the passage of the excitation wave. This membrane change occurs during the latter part of the rising phase of the action potential, and it is shown that the membrane electromotive force remains unchanged until nearly the same time. The part of the action potential preceding these membrane changes is probably a passive fall of potential ahead of a partial short circuit. PMID:19873091

  13. Electrical impedance spectroscopy and diagnosis of tendinitis.

    PubMed

    Yoon, Kisung; Lee, Kyeong Woo; Kim, Sang Beom; Han, Tai Ryoon; Jung, Dong Keun; Roh, Mee Sook; Lee, Jong Hwa

    2010-02-01

    There have been a number of studies that investigate the usefulness of bioelectric signals in diagnoses and treatment in the medical field. Tendinitis is a musculoskeletal disorder with a very high rate of occurrence. This study attempts to examine whether electrical impedance spectroscopy (EIS) can detect pathological changes in a tendon and find the exact location of the lesion. Experimental tendinitis was induced by injecting collagenase into one side of the patellar tendons in rabbits, while the other side was used as the control. After measuring the impedance in the tendinitis and intact tendon tissue, the dissipation factor was computed. The real component of impedance and the dissipation factor turned out to be lower in tendinitis than in intact tissues. Moreover, the tendinitis dissipation factor spectrum showed a clear difference from that of the intact tendon, indicating its usefulness as a tool for detecting the location of the lesion. Pathologic findings from the tissues that were obtained after measuring the impedance confirmed the presence of characteristics of tendinitis. In conclusion, EIS is a useful method for diagnosing tendinitis and detecting the lesion location in invasive treatment.

  14. Multifrequency electrical impedance tomography using spectral constraints.

    PubMed

    Malone, Emma; Sato Dos Santos, Gustavo; Holder, David; Arridge, Simon

    2014-02-01

    Multifrequency electrical impedance tomography (MFEIT) exploits the dependence of tissue impedance on frequency to recover an image of conductivity. MFEIT could provide emergency diagnosis of pathologies such as acute stroke, brain injury and breast cancer. We present a method for performing MFEIT using spectral constraints. Boundary voltage data is employed directly to reconstruct the volume fraction distribution of component tissues using a nonlinear method. Given that the reconstructed parameter is frequency independent, this approach allows for the simultaneous use of all multifrequency data, thus reducing the degrees of freedom of the reconstruction problem. Furthermore, this method allows for the use of frequency difference data in a nonlinear reconstruction algorithm. Results from empirical phantom measurements suggest that our fraction reconstruction method points to a new direction for the development of multifrequency EIT algorithms in the case that the spectral constraints are known, and may provide a unifying framework for static EIT imaging.

  15. Current injection electrodes for electrical impedance tomography.

    PubMed

    Armstrong, S; Jennings, D

    2004-08-01

    Current conveyors have been identified as a possible component within the current injection electrodes of an electrical impedance tomography system, where accurate current generation or precise measurement of the current injected is required. Several circuit configurations have been investigated through simulation to determine the most suitable to meet the specifications of the EIT system. A bipolar (floating source) circuit configuration employing the use of current conveyors has been designed, which achieves greater than 12 mA output current without saturation, over an accepted body impedance range. Simulations were performed over frequencies in excess of 1 MHz, and the output phase shift was less than 0.15 degrees up to 250 kHz, and 0.6 degrees up to 1 MHz.

  16. Advances in Magnetic Resonance Electrical Impedance Mammography

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Nataliya

    Magnetic Resonance Electrical Impedance Mammography (MREIM) is a new imaging technique under development by Wollin Ventures, Inc. in conjunction with the H. Lee Moffitt Cancer Center & Research Institute. MREIM addresses the problem of low specificity of magnetic resonance mammography and high false-positive rates, which lead to unnecessary biopsies. Because cancerous tissue has a higher electrical conductivity than benign tissue, it may serve as a biomarker for differentiation between malignant and benign lesions. The MREIM principle is based on measuring both magnetic resonance and electric properties of the breast by adding a quasi-steady-state electric field to the standard magnetic resonance breast image acquisition. This applied electric field produces a current density that creates an additional magnetic field that in turn alters the native magnetic resonance signal in areas of higher electrical conductivity, corresponding to cancerous tissue. This work comprises MREIM theory, computer simulations, and experimental developments. First, a general overview and background review of tissue modeling and electrical-impedance imaging techniques are presented. The experimental part of this work provides a description of the MREIM apparatus and the imaging results of a custom-made breast phantom. This phantom was designed and developed to mimic the magnetic resonance and electrical properties of the breast. The theoretical part of this work provides an extension to the initial MREIM theoretical developments to further understand the MREIM effects. MREIM computer simulations were developed for both idealized and realistic tumor models. A method of numerical calculation of electric potential and induced magnetic field distribution in objects with irregular boundaries and anisotropic conductivity was developed based on the Finite Difference Method. Experimental findings were replicated with simulations. MREIM effects were analyzed with contrast diagrams to show the

  17. Arts of electrical impedance tomographic sensing

    PubMed Central

    Wang, Mi; Wang, Qiang; Karki, Bishal

    2016-01-01

    This paper reviews governing theorems in electrical impedance sensing for analysing the relationships of boundary voltages obtained from different sensing strategies. It reports that both the boundary voltage values and the associated sensitivity matrix of an alternative sensing strategy can be derived from a set of full independent measurements and sensitivity matrix obtained from other sensing strategy. A new sensing method for regional imaging with limited measurements is reported. It also proves that the sensitivity coefficient back-projection algorithm does not always work for all sensing strategies, unless the diagonal elements of the transformed matrix, ATA, have significant values and can be approximate to a diagonal matrix. Imaging capabilities of few sensing strategies were verified with static set-ups, which suggest the adjacent electrode pair sensing strategy displays better performance compared with the diametrically opposite protocol, with both the back-projection and multi-step image reconstruction methods. An application of electrical impedance tomography for sensing gas in water two-phase flows is demonstrated. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185968

  18. Electric impedance spectroscopy of human atherosclerotic lesions.

    PubMed

    Streitner, Ines; Goldhofer, Markus; Cho, Sungbo; Thielecke, Hagen; Kinscherf, Ralf; Streitner, Florian; Metz, Jürgen; Haase, Karl K; Borggrefe, Martin; Suselbeck, Tim

    2009-10-01

    The aim of this in vitro study was to investigate the feasibility of a new highly flexible microelectrode on human tissue and its potential of differentiating atherosclerotic lesions by electric impedance spectroscopy (EIS). Electric impedance measurements (EIM) were performed on 148 spots of 7 aortic and 6 femoral human arteries at 1kHz, 10kHz and 100kHz. According to the AHA classification 33 (25%) grade I lesions (PI), 34 (26%) grade II (PII), 21 (16%) grade III (PIII), 21 (16%) grade IV (PIV), 13 (10%) grade Va (PVa) and 10 (8%) grade Vb (PVb) could be identified by histology. At 1kHz, 10kHz and 100kHz the mean electric impedance (MEI) of PI, PII, PIII and PIV was statistically not different. At 100kHz the MEI of PVa showed significantly higher values compared to the MEI of PI (455+/-66Omega vs. 375+/-47Omega, p=0.05), PII (455+/-66Omega vs. 358+/-63Omega, p=0.007), PIII (455+/-66Omega vs. 342+/-52Omega, p=0.003), PIV (455+/-66Omega vs. 356+/-41Omegap=0.013) and the MEI of PVb was significantly increased compared to the MEI of PI (698+/-239Omega vs. 375+/-47Omega, p<0.001), PII (698+/-239Omega vs. 358+/-63Omegap<0.001), PIII (698+/-239Omega vs. 342+/-52Omegap<0.001), PIV (698+/-239Omega vs. 356+/-41Omegap<0.001), PVa (698+/-239Omega vs. 455+/-66Omega, p<0.001). Performing ROC analyses for the detection of grouped PVa/PVb lesions, the largest AUC was found at 100kHz with a cut-off value of 441Omega presenting a sensitivity of 74% and a specificity of 94%. EIM could be performed on human aortic and femoral tissue. The results show that EIS has the potential to distinguish between different plaque types.

  19. The relationship between skin maturation and electrical skin impedance.

    PubMed

    Emery, M M; Hebert, A A; Aguirre Vila-Coro, A; Prager, T C

    1991-09-01

    When performing electrophysiological testing, high electrical impedance values are sometimes found in neonates. Since excessive impedance can invalidate test results, a study was conducted to delineate the relationship between skin maturation and electrical skin impedance. This study investigated the skin impedance in 72 infants ranging from 196 to 640 days of age from conception. Regression analyses demonstrated a significant relationship between impedance and age, with the highest impedance centered around full-term gestation with values falling precipitously at time points on either side. Clinically, impedance values fall to normal levels at approximately four months following full-term gestation. Skin impedance values are low in premature infants, but rapidly increase as the age approaches that of full-term neonates. Low impedance values in premature infants are attributed to greater skin hydration which results from immature skin conditions such as 1) thinner epidermal layers particularly at the transitional and cornified layers; 2) more blood flow to the skin; and 3) higher percentage of water composition. These factors facilitate the diffusion of water vapor through the skin. As the physical barrier to skin water loss matures with gestational age, the skin impedance reaches a maximum value at full term neonatal age. After this peak, a statistically significant inverse relationship exists between electrical skin impedance and age in the first year of life. This drop in skin impedance is attributed to an increase in skin hydration as a result of the greater functional maturity of eccrine sweat glands.

  20. Modified sparse regularization for electrical impedance tomography

    SciTech Connect

    Fan, Wenru Xue, Qian; Wang, Huaxiang; Cui, Ziqiang; Sun, Benyuan; Wang, Qi

    2016-03-15

    Electrical impedance tomography (EIT) aims to estimate the electrical properties at the interior of an object from current-voltage measurements on its boundary. It has been widely investigated due to its advantages of low cost, non-radiation, non-invasiveness, and high speed. Image reconstruction of EIT is a nonlinear and ill-posed inverse problem. Therefore, regularization techniques like Tikhonov regularization are used to solve the inverse problem. A sparse regularization based on L{sub 1} norm exhibits superiority in preserving boundary information at sharp changes or discontinuous areas in the image. However, the limitation of sparse regularization lies in the time consumption for solving the problem. In order to further improve the calculation speed of sparse regularization, a modified method based on separable approximation algorithm is proposed by using adaptive step-size and preconditioning technique. Both simulation and experimental results show the effectiveness of the proposed method in improving the image quality and real-time performance in the presence of different noise intensities and conductivity contrasts.

  1. Electrical Impedance Tomography During Mechanical Ventilation.

    PubMed

    Walsh, Brian K; Smallwood, Craig D

    2016-10-01

    Electrical impedance tomography (EIT) is a noninvasive, non-radiologic imaging modality that may be useful for the quantification of lung disorders and titration of mechanical ventilation. The principle of operation is based on changes in electrical conductivity that occur as a function of changes in lung volume during ventilation. EIT offers potentially important benefits over standard imaging modalities because the system is portable and non-radiologic and can be applied to patients for long periods of time. Rather than providing a technical dissection of the methods utilized to gather, compile, reconstruct, and display EIT images, the present article seeks to provide an overview of the clinical application of this technology as it relates to monitoring mechanical ventilation and providing decision support at the bedside. EIT has been shown to be useful in the detection of pneumothoraces, quantification of pulmonary edema and comparison of distribution of ventilation between different modes of ventilation and may offer superior individual titration of PEEP and other ventilator parameters compared with existing approaches. Although application of EIT is still primarily done within a research context, it may prove to be a useful bedside tool in the future. However, head-to-head comparisons with existing methods of mechanical ventilation titration in humans need to be conducted before its application in general ICUs can be recommended. Copyright © 2016 by Daedalus Enterprises.

  2. Electrical impedance myography in facioscapulohumeral muscular dystrophy.

    PubMed

    Statland, Jeffrey M; Heatwole, Chad; Eichinger, Katy; Dilek, Nuran; Martens, William B; Tawil, Rabi

    2016-10-01

    In this study we determined the reliability and validity of electrical impedance myography (EIM) in facioscapulohumeral muscular dystrophy (FSHD). We performed a prospective study of EIM on 16 bilateral limb and trunk muscles in 35 genetically defined and clinically affected FSHD patients (reliability testing on 18 patients). Summary scores based on body region were derived. Reactance and phase (50 and 100 kHz) were compared with measures of strength, FSHD disease severity, and functional outcomes. Participants were mostly men, mean age 53.0 years, and included a full range of severity. Limb and trunk muscles showed good to excellent reliability [intraclass correlation coefficients (ICC) 0.72-0.99]. Summary scores for the arm, leg, and trunk showed excellent reliability (ICC 0.89-0.98). Reactance was the most sensitive EIM parameter to a broad range of FSHD disease metrics. EIM is a reliable measure of muscle composition in FSHD that offers the possibility to serially evaluate affected muscles. Muscle Nerve 54: 696-701, 2016. © 2016 Wiley Periodicals, Inc.

  3. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    PubMed

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  4. Twelve years evolution of skin as seen by electrical impedance

    NASA Astrophysics Data System (ADS)

    Nicander, Ingrid; Emtestam, Lennart; Åberg, Peter; Ollmar, Stig

    2010-04-01

    Twelve years ago we reported an electrical impedance baseline study related to age, sex and body locations. The results showed significant differences between different anatomical locations and ages. In this study, the same participants were recalled to explore how the skin had evolved at the individual level over time. A total of 50 subjects, divided into an older and a younger group, were recalled for measurements of electrical impedance at eight anatomical locations. Readings were taken with an electrical impedance spectrometer. Information was extracted from the impedance spectra using indices based on magnitude and phase at two frequencies as in the earlier study. All included body sites had undergone alterations over time, and the size of the changes varied at different locations. The results also showed that changes in the younger group were different over time compared with the older group. In conclusion: Electrical impedance can be used to monitor skin evolution over time and baseline characteristics differ between various locations.

  5. Three-dimensional electrical impedance tomography of human brain activity.

    PubMed

    Tidswell, T; Gibson, A; Bayford, R H; Holder, D S

    2001-02-01

    Regional cerebral blood flow and blood volume changes that occur during human brain activity will change the local impedance of that cortical area, as blood has a lower impedance than that of brain. Theoretically, such impedance changes could be measured from scalp electrodes and reconstructed into images of the internal impedance of the head. Electrical Impedance Tomography (EIT) is a newly developed technique by which impedance measurements from the surface of an object are reconstructed into impedance images. It is fast, portable, inexpensive, and noninvasive, but has a relatively low spatial resolution. EIT images were recorded with scalp electrodes and an EIT system, specially optimized for recording brain function, in 39 adult human subjects during visual, somatosensory, or motor activity. Reproducible impedance changes of about 0.5% occurred in 51/52 recordings, which lasted from 6 s after the stimulus onset to 41 s after stimulus cessation. When these changes were reconstructed into impedance images, using a novel 3-D reconstruction algorithm, 19 data sets demonstrated significant impedance changes in the appropriate cortical region. This demonstrates, for the first time, that significant impedance changes, which could form the basis for a novel neuroimaging technology, may be recorded in human subjects with scalp electrodes. The final images contained spatial noise and strategies to reduce this in future work are presented.

  6. Cellular electrical impedance spectroscopy: an emerging technology of microscale biosensors.

    PubMed

    Gu, Wenwen; Zhao, Yi

    2010-11-01

    Electrical impedance spectroscopy, owing to its label-free, noninvasive and easy miniaturization nature, has shown great potential in cellular biochemical sensing and cell-based diagnostics. In this article, cutting-edge technologies of electrical impedance spectroscopy are reviewed according to different sensing mechanisms, including monitoring of ion release from live cells, utilization of nonconductive cellular membranes, and detection of the spatial distribution of cells. The most successful applications where the electrical impedance sensors have been proven effective are introduced, including investigation of anticancer drug therapies, wound healing, cytotoxicity evaluation and measurement of blood rheological behavior. Furthermore, the research advances that yield enhanced sensitivities and functionalities are introduced. Finally, the commercialization challenges and the critical barriers that hinder the sustaining development of cellular electrical impedance spectroscopy are discussed.

  7. Diagnostic criteria for mass lesions differentiating in electrical impedance mammography

    NASA Astrophysics Data System (ADS)

    A, Karpov; M, Korotkova

    2013-04-01

    The purpose of this research was to determine the diagnostic criteria for differentiating volumetric lesions in the mammary gland in electrical impedance mammography. The research was carried out utilizing the electrical impedance computer mammograph llMEIK v.5.6gg®, which enables to acquire images of 3-D conductivity distribution layers within mamma's tissues up to 5 cm depth. The weighted reciprocal projection method was employed to reconstruct the 3-D electric conductivity distribution of the examined organ. The results of 3,710 electrical impedance examinations were analyzed. The analysis of a volumetric lesion included assessment of its shape, contour, internal electrical structure and changes of the surrounding tissues. Moreover, mammary gland status was evaluated with the help of comparative and age-related electrical conductivity curves. The diagnostic chart is provided. Each criterion is measured in points. Using the numerical score for evaluation of mass and non-volumetric lesions within the mammary gland in electrical impedance mammography allowed comparing this information to BI-RADS categories developed by American College of Radiology experts. The article is illustrated with electrical impedance mammograms and tables.

  8. Protein Aggregation Measurement through Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Affanni, A.; Corazza, A.; Esposito, G.; Fogolari, F.; Polano, M.

    2013-09-01

    The paper presents a novel methodology to measure the fibril formation in protein solutions. We designed a bench consisting of a sensor having interdigitated electrodes, a PDMS hermetic reservoir and an impedance meter automatically driven by calculator. The impedance data are interpolated with a lumped elements model and their change over time can provide information on the aggregation process. Encouraging results have been obtained by testing the methodology on K-casein, a protein of milk, with and without the addition of a drug inhibiting the aggregation. The amount of sample needed to perform this measurement is by far lower than the amount needed by fluorescence analysis.

  9. Motion discrimination of throwing a baseball using forearm electrical impedance

    NASA Astrophysics Data System (ADS)

    Nakamura, Takao; Kusuhara, Toshimasa; Yamamoto, Yoshitake

    2013-04-01

    The extroversion or hyperextension of elbow joint cause disorders of elbow joint in throwing a baseball. A method, which is easy handling and to measure motion objectively, can be useful for evaluation of throwing motion. We investigated a possibility of motion discrimination of throwing a baseball using electrical impedance method. The parameters of frequency characteristics (Cole-Cole arc) of forearm electrical impedance were measured during four types of throwing a baseball. Multiple discriminant analysis was used and the independent variables were change ratios of 11 parameters of forearm electrical impedance. As results of 120 data with four types of throwing motion in three subjects, hitting ratio was very high and 95.8%. We can expect to discriminate throwing a baseball using multiple discriminant analysis of impedance parameters.

  10. Electrical Impedance Tomography Technology (EITT) Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.

  11. [Experimental study on electrical impedance properties of human hepatoma cells].

    PubMed

    Fang, Yun; Tang, Zhiyuan; Zhang, Qian; Zhao, Xin; Ma, Qing

    2014-10-01

    The AC impedance of human hepatoma SMMC-7721 cells were measured in our laboratory by Agilent 4294A impedance analyzer in the frequency range of 0.01-100 MHz. And then the effect of hematocrit on electrical impedance characteristics of hepatoma cells was observed by electrical impedance spectroscopy, Bode diagram, Nyquist diagram and Nichols diagram. The results showed that firstly, there is a frequency dependence, i.e., the increment of real part and the imaginary part of complex electrical impedance (δZ', δZ"), the increment of the amplitude modulus of complex electrical impedance (δ[Z *]) and phase angle (δθ) were all changed with the increasing frequency. Secondly, it showed cell volume fraction (CVF) dependence, i. e. , the increment of low-frequency limit (δZ'0, δ[Z*] 0), peak (δZ"(p), δθ(p)), area and radius (Nyquist diagram, Nichols diagram) were all increased along with the electric field frequency. Thirdly, there was the presence of two characteristic frequencies: the first characteristic frequency (f(c1)) and the second characteristic frequency (f(c2)), which were originated respectively in the polarization effects of two interfaces that the cell membrane and extracellular fluid, cell membrane and cytoplasm. A conclusion can be drawn that the electrical impedance spectroscopy is able to be used to observe the electrical characteristics of human hepatoma cells, and therefore this method can be used to investigate the electrophysiological mechanisms of liver cancer cells, and provide research tools and observation parameters, and it also has important theoretical value and potential applications for screening anticancer drugs.

  12. Statistical Properties of Antenna Impedance in an Electrically Large Cavity

    SciTech Connect

    WARNE,LARRY K.; LEE,KELVIN S.H.; HUDSON,H. GERALD; JOHNSON,WILLIAM A.; JORGENSON,ROY E.; STRONACH,STEPHEN L.

    2000-12-13

    This paper presents models and measurements of antenna input impedance in resonant cavities at high frequencies.The behavior of input impedance is useful in determining the transmission and reception characteristics of an antenna (as well as the transmission characteristics of certain apertures). Results are presented for both the case where the cavity is undermoded (modes with separate and discrete spectra) as well as the over moded case (modes with overlapping spectra). A modal series is constructed and analyzed to determine the impedance statistical distribution. Both electrically small as well as electrically longer resonant and wall mounted antennas are analyzed. Measurements in a large mode stirred chamber cavity are compared with calculations. Finally a method based on power arguments is given, yielding simple formulas for the impedance distribution.

  13. Studies on Electrical behavior of Glucose using Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Juansah, Jajang; Yulianti, Wina

    2016-01-01

    In this work we report the electrical characteristics of glucose at different frequencies. We show the correlation between electrical properties (impedance, reactance, resistance and conductance) of glucose and glucose concentration. Electrical property measurements on glucose solution were performed in order to formulate the correlation. The measurements were conducted for frequencies between 50 Hz and 1 MHz. From the measurements, we developed a single-pole Cole-Cole graph as a function of glucose concentration.

  14. Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system.

    PubMed

    Süselbeck, T; Thielecke, H; Köchlin, J; Cho, S; Weinschenk, I; Metz, J; Borggrefe, M; Haase, K K

    2005-09-01

    Newer techniques are required to identify atherosclerotic lesions that are prone to rupture. Electric impedance spectroscopy (EIS) can characterize biological tissues by measuring the electrical impedance over a frequency range. We tested a newly designed intravascular impedance catheter (IC) by measuring the impedance of different stages of atherosclerosis induced in an animal rabbit model. Six female New Zealand White rabbits were fed for 17 weeks with a 5% cholesterol-enriched diet to induce early forms of atherosclerotic plaques. All aortas were prepared from the aortic arch to the renal arteries and segments of 5-10 mm were marked by ink spots. A balloon catheter system with an integrated polyimide-based microelectrode structure was introduced into the aorta and the impedance was measured at each spot by using an impedance analyzer. The impedance was measured at frequencies of 1 kHz and 10 kHz and compared with the corresponding histomorphometric data of each aortic segment.Forty-four aortic segments without plaques and 48 segments with evolving atherosclerotic lesions could be exactly matched by the histomorphometric analysis. In normal aortic segments (P0) the change of the magnitude of impedance at 1 kHz and at 10 kHz (|Z|(1 kHz) - |Z|(10 kHz), = ICF) was 208.5 +/- 357.6 Omega. In the area of aortic segments with a plaque smaller than that of the aortic wall diameter (PI), the ICF was 137.7 +/- 192.8 Omega. (P 0 vs. P I; p = 0.52), whereas in aortic segments with plaque formations larger than the aortic wall (PII) the ICF was significantly lower -22.2 +/- 259.9 Omega. (P0 vs. PII; p = 0.002). Intravascular EIS could be successfully performed by using a newly designed microelectrode integrated onto a conventional coronary balloon catheter. In this experimental animal model atherosclerotic aortic lesions showed significantly higher ICF in comparison to the normal aortic tissue.

  15. Microbial Sulfate Reduction Measured by an Automated Electrical Impedance Technique

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Silverman, M. P.

    1979-01-01

    Electrical impedance measurements are used to investigate the rates of sulfate reduction by pure cultures of and sediments containing sulfur-reducing bacteria. Changes in the electrical impedance ratios of pure cultures of Desulfovibrio aestuarii and samples of reduced sediments from San Francisco Bay were measured by a Bactometer 32, and sulfate reduction was followed by measuring the incorporation of (S-35) sulfate into metal sulfides. The growth of the bacteria in pure culture is found to result in an increase of 0.2200 in the impedance ratio within 24 h, accompanied by increases in protein, ATP, sulfide and absorptance at 660 nm, all of which are inhibited by the addition of molybdate. Similar responses were observed in the sediments, although impedance ratio responses were not completely inhibited upon the addition of molybdate, due to the presence of nonsulfate-respiring microorganisms. Experiments conducted with sterile media and autoclaved sediments indicate that the presence of H2S together with iron is responsible for the impedance effect, and sulfate reduction rates ranging between 0.85 and 1.78 mmol/l per day are estimated for the sediments by the impedance technique.

  16. Electrical impedance imaging of water distribution in the root zone

    NASA Astrophysics Data System (ADS)

    Newill, P.; Karadaglić, D.; Podd, F.; Grieve, B. D.; York, T. A.

    2014-05-01

    The paper describes a technique that is proposed for imaging water transport in and around the root zone of plants using distributed measurements of electrical impedance. The technique has the potential to analyse sub-surface phenotypes, for instance drought tolerance traits in crop breeding programmes. The technical aim is to implement an automated, low cost, instrument for high-throughput screening. Ultimately the technique is targeted at in-field, on-line, measurements. For demonstration purposes the present work considers measurements on laboratory scale rhizotrons housing growing maize plants. Each rhizotron is fitted with 60 electrodes in a rectangular array. To reduce electrochemical effects the capacitively coupled contactless conductivity (C4D) electrodes have an insulating layer on the surface and the resistance of the bulk material is deduced from spectroscopic considerations. Electrical impedance is measured between pairs of electrodes to build up a two-dimensional map. A modified electrical model of such electrodes is proposed which includes the resistive and reactive components of both the insulating layer and the bulk material. Measurements taken on a parallel-plate test cell containing water confirm that the C4D technique is able to measure electrical impedance. The test cell has been used to explore the effects of water content, compaction and temperature on measurements in soil. Results confirm that electrical impedance measurements are very sensitive to moisture content. Impedance fraction changes up to 20% are observed due to compaction up to a pressure of 0.21 kg cm-2 and a temperature fraction sensitivity of about 2%/°C. The effects of compaction and temperature are most significant under dry conditions. Measurements on growing maize reveal the changes in impedance across the rhizotron over a period of several weeks. Results are compared to a control vessel housing only soil.

  17. Electrical impedance tomography of the 1995 OGI gasoline release

    SciTech Connect

    Daily, W.; Ramirez, A.

    1996-10-01

    Electrical impedance tomography (EIT) was used to image the plume resulting from a release of 378 liters (100 gallons) of gasoline into a sandy acquifer. Images were made in 5 planes before and 5 times during the release, to generate a detailed picture of the spatial as well as the temporal development of the plume as it spread at the water table. Information of the electrical impedance (both in phase and out of phase voltages) was used or several different frequencies to produce images. We observed little dispersion in the images either before or after the gasoline entered the acquifer. Likewise, despite some laboratory measurements of impedances, there was no evidence of a change in the reactance in the soil because of the gasoline.

  18. Cervical cancer detection by electrical impedance in a Colombian setting

    NASA Astrophysics Data System (ADS)

    Miranda, David A.; Corzo, Sandra P.; González Correa, C. A.

    2013-04-01

    Electrical properties of normal and neoplastic cervical tissues in a heterogeneous group of 56 Colombian women were studied by electrical impedance spectroscopy and a model based on the Generalized Effective-Medium Theory of Induced Polarization (GEMTIP). Differences between the electrical bioimpedance spectra were correlated with cellular and tissue parameters. The analysis performed by the proposed model suggest that the number of different types of cellular layers that form the biological tissue, the intracellular and extracellular conductivity could be used to explain the differences between electrical bioimpedance spectra in normal and neoplastic tissues.

  19. Electrical-Impedance-Based Ice-Thickness Gauges

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard

    2003-01-01

    Langley Research Center has developed electrical-impedance-based ice-thickness gauges and is seeking partners and collaborators to commercialize them. When used as parts of active monitoring and diagnostic systems, these gauges make it possible to begin deicing or to take other protective measures before ice accretes to dangerous levels. These gauges are inexpensive, small, and simple to produce. They can be adapted to use on a variety of stationary and moving structures that are subject to accumulation of ice. Examples of such structures include aircraft, cars, trucks, ships, buildings, towers, power lines (see figure), power-generating equipment, water pipes, freezer compartments, and cooling coils. A gauge of this type includes a temperature sensor and two or more pairs of electrically insulated conductors embedded in a surface on which ice could accumulate. The electrical impedances of the pairs of conductors vary with the thickness of any ice that may be present. Somewhat more specifically, when the pairs of conductors are spaced appropriately, the ratio between their impedances is indicative of the thickness of the ice. Therefore, the gauge includes embedded electronic circuits that measure the electrical impedances, plus circuits that process the combination of temperature and impedance measurements to determine whether ice is present and, if so, how thick it is. Of course, in the processing of the impedance measurements, the temperature measurements help the circuitry to distinguish between liquid water and ice. The basic design of a gauge of this type can be adapted to local conditions. For example, if there is a need to monitor ice over a wide range of thickness, then the gauge can include more than two sets of conductors having various spacings.

  20. [Electrical impedance tomography: standardizing the procedure in pneumology].

    PubMed

    de Lema, Bruno; Casan, Pere; Riu, Pere

    2006-06-01

    The following conditions are optimal for obtaining an adequate number of informative images by electric impedance tomography: a) patient seated or standing with hands at the nape of the neck; b) breathing at rest; c) recording of at least 300 images (at a frequency of 10 Hz), and d) readings taken at the sixth intercostal space.

  1. Some stable reconstruction algorithms for electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Berryman, J. G.

    1991-07-01

    An impedance camera or what is now more commonly called electrical impedance tomography -- attempts to image the electrical impedance (or just the conductivity) distribution inside a body using electrical measurements on its boundary. The method has been used successfully in both biomedical and geophysical applications but the analysis of optimal reconstruction algorithms is still progressing. The most common application is monitoring the influx or efflux of a highly conducting fluid (such as brine in a porous rock or blood in the human body) through the volume being imaged. For biomedical applications, this method does not have the resolution of radiological methods, but is is comparatively safe and inexpensive and therefore provides a valuable alternative when continuous monitoring of a patient or process is desired. The following discussion is intended first to summarize the physics of electrical impedance tomography, then to provide a few details of the data analysis and forward modeling requirements, and finally to outline some of the reconstruction algorithms that have proven to be most useful in practice. Pointers to the literature are provided throughout this brief narrative and the reader is encouraged to explore the references for more complete discussions of the variations issues raised here.

  2. Damage Diagnosis in Semiconductive Materials Using Electrical Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hinton, Yolanda L.

    2008-01-01

    Recent aerospace industry trends have resulted in an increased demand for real-time, effective techniques for in-flight structural health monitoring. A promising technique for damage diagnosis uses electrical impedance measurements of semiconductive materials. By applying a small electrical current into a material specimen and measuring the corresponding voltages at various locations on the specimen, changes in the electrical characteristics due to the presence of damage can be assessed. An artificial neural network uses these changes in electrical properties to provide an inverse solution that estimates the location and magnitude of the damage. The advantage of the electrical impedance method over other damage diagnosis techniques is that it uses the material as the sensor. Simple voltage measurements can be used instead of discrete sensors, resulting in a reduction in weight and system complexity. This research effort extends previous work by employing finite element method models to improve accuracy of complex models with anisotropic conductivities and by enhancing the computational efficiency of the inverse techniques. The paper demonstrates a proof of concept of a damage diagnosis approach using electrical impedance methods and a neural network as an effective tool for in-flight diagnosis of structural damage to aircraft components.

  3. Functional monitoring of peripheral nerves from electrical impedance measurements.

    PubMed

    Fouchard, Alexandre; Coizet, Véronique; Sinniger, Valérie; Clarençon, Didier; Pernet-Gallay, Karin; Bonnet, Stéphane; David, Olivier

    2016-11-01

    Medical electrical stimulators adapted to peripheral nerves use multicontact cuff electrodes (MCC) to provide selective neural interfaces. However, neuroprostheses are currently limited by their inability to locate the regions of interest to focus. Intended until now either for stimulation or recording, MCC can also be used as a means of transduction to characterize the nerve by impedancemetry. In this study, we investigate the feasibility of using electrical impedance (EI) measurements as an in vivo functional nerve monitoring technique. The monitoring paradigm includes the synchronized recording of both the evoked endogenous activity as compound action potentials (CAP) and the superimposed sine signal from the EI probe. Measurements were conducted on the sciatic nerve of rodents, chosen for its branchings towards the peroneal and tibial nerves, with both mono- and multi-contact per section electrodes. During stimulation phases, recordings showed CAP with consistent fiber conduction velocities. During coupled phases of both stimulation and sine perturbation, impedance variations were extracted using the mono-contact electrode type for certain frequencies, e.g. 2.941kHz, and were temporally coherent with the previous recorded CAP. Using a MCC, localized evoked CAP were also recorded but the signal to noise ratio (SNR) was too low to distinguish the expected associated impedance variation and deduce an image of impedance spatial changes within the nerve. The conducted in vivo measurements allowed to distinguish both evoked CAP and associated impedance variations with a strong temporal correlation. This indicates the feasibility of functional EI monitoring, aiming at detecting the impedance variations in relation to neural activity. Further work is needed to improve the in vivo system, namely in terms of SNR, and to integrate new multicontact devices in order to move towards EI tomography with the detection of spatially-localized impedance variations. Eventually

  4. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, Pol; Destrempes, François; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-05-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging.

  5. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography.

    PubMed

    Grasland-Mongrain, Pol; Destrempes, François; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-05-07

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an 'acousto-electrical speckle' in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging.

  6. Electric impedance microflow cytometry for characterization of cell disease states.

    PubMed

    Du, E; Ha, Sungjae; Diez-Silva, Monica; Dao, Ming; Suresh, Subra; Chandrakasan, Anantha P

    2013-10-07

    The electrical properties of biological cells have connections to their pathological states. Here we present an electric impedance microflow cytometry (EIMC) platform for the characterization of disease states of single cells. This platform entails a microfluidic device for a label-free and non-invasive cell-counting assay through electric impedance sensing. We identified a dimensionless offset parameter δ obtained as a linear combination of a normalized phase shift and a normalized magnitude shift in electric impedance to differentiate cells on the basis of their pathological states. This paper discusses a representative case study on red blood cells (RBCs) invaded by the malaria parasite Plasmodium falciparum. Invasion by P. falciparum induces physical and biochemical changes on the host cells throughout a 48-h multi-stage life cycle within the RBC. As a consequence, it also induces progressive changes in electrical properties of the host cells. We demonstrate that the EIMC system in combination with data analysis involving the new offset parameter allows differentiation of P. falciparum infected RBCs from uninfected RBCs as well as among different P. falciparum intraerythrocytic asexual stages including the ring stage. The representative results provided here also point to the potential of the proposed experimental and analysis platform as a valuable tool for non-invasive diagnostics of a wide variety of disease states and for cell separation.

  7. Electric Impedance Microflow Cytometry for Characterization of Cell Disease States†

    PubMed Central

    Diez-Silva, Monica; Dao, Ming; Suresh, Subra; Chandrakasan, Anantha P.

    2013-01-01

    The electrical properties of biological cells have connections to their pathological states. Here we present an electric impedance microflow cytometry (EIMC) platform for the characterization of disease states of single cells. This platform entails a microfluidic device for a label-free and non-invasive cell-counting assay through electric impedance sensing. We identified a dimensionless offset parameter δ obtained as a linear combination of a normalized phase shift and a normalized magnitude shift in electric impedance to differentiate cells on the basis of their pathological states. This paper discusses a representative case study on red blood cells (RBCs) invaded by Plasmodium falciparum malaria parasites. Invasion of P. falciparum induces physical and biochemical changes on the host cells throughout a 48-h multi-stage life cycle within the RBC. As a consequence, it also induces progressive changes in electrical properties of the host cells .We demonstrate that the EIMC system in combination with data analysis involving the new offset parameter allows differentiation of Pf–invaded RBCs from uninfected RBCs as well as among different P. falciparum intraerythrocytic asexual stages including the ring stage. The representative results provided here also point to the potential of the proposed experimental and analysis platform as a valuable tool for non-invasive diagnostics of a wide variety of disease states and for cell separation. PMID:23925122

  8. Three-dimensional electrical impedance tomography: a topology optimization approach.

    PubMed

    Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli

    2008-02-01

    Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.

  9. Electrical Impedance Myography: Background, Current State, and Future Directions

    PubMed Central

    Rutkove, Seward B.

    2010-01-01

    Electrical impedance myography (EIM) is a new non-invasive technique for the evaluation of neuromuscular disease that relies upon the application and measurement of high-frequency, low-intensity electrical current. EIM assesses disease-induced changes to muscle’s normal composition and architecture, including myocyte atrophy and loss, edema, reinnervation, and the deposition of endomysial connective tissue and fat. With application of single-frequency electrical current, EIM can be used to help grade the severity of neuromuscular disease. Assessing electrical impedance across a spectrum of applied frequencies and with current flow at multiple orientations relative to the major muscle fiber direction can provide a more complete picture of muscle condition. EIM holds the promise of serving as an indicator of disease status, thus being useful in clinical trials work and in monitoring effectiveness of treatment in individual patients; ultimately, it may also find diagnostic application. Ongoing efforts have been focused on obtaining a deeper understanding of the basic mechanisms of impedance change, studying EIM in a variety of clinical contexts, and further refining the methods of EIM data acquisition and analysis. PMID:19768754

  10. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Pliquett, Uwe

    2013-04-01

    Over recent years advanced measurement methods have facilitated outstanding achievements not only in medical instrumentation but also in biotechnology. Impedance measurement is a simple and innocuous way to characterize materials. For more than 40 years biological materials, most of them based on cells, have been characterized by means of electrical impedance for quality control of agricultural products, monitoring of biotechnological or food processes or in health care. Although the list of possible applications is long, very few applications successfully entered the market before the turn of the century. This was, on the one hand, due to the low specificity of electrical impedance with respect to other material properties because it is influenced by multiple factors. On the other hand, equipment and methods for many potential applications were not available. With the appearance of microcontrollers that could be easily integrated in applications at the beginning of the 1980s, impedance measurement advanced as a valuable tool in process optimization and lab automation. However, established methods and data processing were mostly used in a new environment. This has changed significantly during the last 10 years with a dramatic growth of the market for medical instrumentation and also for biotechnological applications. Today, advanced process monitoring and control require fast and highly parallel electrical characterization which in turn yields incredible data volumes that must be handled in real time. Many newer developments require miniaturized but precise sensing methods which is one of the main parts of Lab-on-Chip technology. Moreover, biosensors increasingly use impedometric transducers, which are not compatible with the large expensive measurement devices that are common in the laboratory environment. Following the achievements in the field of bioimpedance measurement, we will now witness a dramatic development of new electrode structures and electronics

  11. Single cell electric impedance topography: Mapping membrane capacitance

    PubMed Central

    Dharia, Sameera; Ayliffe, Harold E.

    2010-01-01

    Single-cell electric impedance topography (sceTopo), a technique introduced here, maps the spatial distribution of capacitance (i.e. displacement current) associated with the membranes of isolated, living cells. Cells were positioned in the center of a circular recording chamber surrounded by eight electrodes. Electrodes were evenly distributed on the periphery of the recording chamber. Electric impedance measured between adjacent electrode pairs (10 kHz–5 MHz) was used to construct topographical maps of the spatial distribution of membrane capacitance. Xenopus Oocytes were used as a model cell to develop sceTopo because these cells consist of two visually distinguishable hemispheres, each with distinct membrane composition and structure. Results showed significant differences in the imaginary component of the impedance between the two oocyte hemispheres. In addition, the same circumferential array was used to map the size of the extracellular electrical shunt path around the cell, providing a means to estimate the location and shape of the cell in the recording chamber. PMID:19904403

  12. Single cell electric impedance topography: mapping membrane capacitance.

    PubMed

    Dharia, Sameera; Ayliffe, Harold E; Rabbitt, Richard D

    2009-12-07

    Single-cell electric impedance topography (sceTopo), a technique introduced here, maps the spatial distribution of capacitance (i.e. displacement current) associated with the membranes of isolated, living cells. Cells were positioned in the center of a circular recording chamber surrounded by eight electrodes. Electrodes were evenly distributed on the periphery of the recording chamber. Electric impedance measured between adjacent electrode pairs (10 kHz-5 MHz) was used to construct topographical maps of the spatial distribution of membrane capacitance. Xenopus Oocytes were used as a model cell to develop sceTopo because these cells consist of two visually distinguishable hemispheres, each with distinct membrane composition and structure. Results showed significant differences in the imaginary component of the impedance between the two oocyte hemispheres. In addition, the same circumferential array was used to map the size of the extracellular electrical shunt path around the cell, providing a means to estimate the location and shape of the cell in the recording chamber.

  13. Singularities of mixed boundary value problems in electrical impedance tomography.

    PubMed

    Pidcock, M; Ciulli, S; Ispas, S

    1995-08-01

    The importance of accurate mathematical modelling in the development of image reconstruction algorithms for electrical impedance tomography (EIT) has been discussed in a number of recent papers. It is particularly important in iterative reconstruction schemes where the forward problem of calculating the electric potential from Neumann boundary data is solved many times. One area which needs to be considered it the mathematical modelling of the electrodes used in the technique. In this paper we discuss one of the more sophisticated models which has been proposed and present the results of a number of numerical and analytic calculations which we have made as a contribution to the understanding of this question.

  14. Imaging Local Electric Field Distribution by Plasmonic Impedance Microscopy.

    PubMed

    Wang, Yixian; Shan, Xiaonan; Wang, Shaopeng; Tao, Nongjian; Blanchard, Pierre-Yves; Hu, Keke; Mirkin, Michael V

    2016-02-02

    We report on imaging of local electric field on an electrode surface with plasmonic electrochemical impedance microscopy (P-EIM). The local electric field is created by putting an electrode inside a micropipet positioned over the electrode and applying a voltage between the two electrodes. We show that the distribution of the surface charge as well as the local electric field at the electrode surface can be imaged with P-EIM. The spatial distribution and the dependence of the local charge density and electric field on the distance between the micropipet and the surface are measured, and the results are compared with the finite element calculations. The work also demonstrates the possibility of integrating plasmonic imaging with scanning ion conductance microscopy (SICM) and other scanning probe microscopies.

  15. Embedded silver PDMS electrodes for single cell electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Xu, Zhensong; Cachia, Mark A.; Nguyen, John; Zheng, Yi; Wang, Chen; Sun, Yu

    2016-09-01

    This paper presents a microfluidic device with wide channels and embedded AgPDMS electrodes for measuring the electrical properties of single cells. The work demonstrates the feasibility of using a large channel design and embedded electrodes for impedance spectroscopy to circumvent issues such as channel clogging and limited device re-usability. AgPDMS electrodes were formed on channel sidewalls for impedance detection and cell electrical properties measurement. Equivalent circuit models were used to interpret multi-frequency impedance data to quantify each cell’s cytoplasm conductivity and specific membrane capacitance. T24 cells were tested to validate the microfluidic system and modeling results. Comparisons were then made by measuring two leukemia cell lines (AML-2 and HL-60) which were found to have different cytoplasm conductivity values (0.29  ±  0.15 S m-1 versus 0.47  ±  0.20 S m-1) and specific membrane capacitance values (41  ±  25 mF m-2 versus 55  ±  26 mF m-2) when the cells were flown through the wide channel and measured by the AgPDMS electrodes.

  16. Voltage biasing, cyclic voltammetry, & electrical impedance spectroscopy for neural interfaces.

    PubMed

    Wilks, Seth J; Richner, Tom J; Brodnick, Sarah K; Kipke, Daryl R; Williams, Justin C; Otto, Kevin J

    2012-02-24

    Electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measure properties of the electrode-tissue interface without additional invasive procedures, and can be used to monitor electrode performance over the long term. EIS measures electrical impedance at multiple frequencies, and increases in impedance indicate increased glial scar formation around the device, while cyclic voltammetry measures the charge carrying capacity of the electrode, and indicates how charge is transferred at different voltage levels. As implanted electrodes age, EIS and CV data change, and electrode sites that previously recorded spiking neurons often exhibit significantly lower efficacy for neural recording. The application of a brief voltage pulse to implanted electrode arrays, known as rejuvenation, can bring back spiking activity on otherwise silent electrode sites for a period of time. Rejuvenation alters EIS and CV, and can be monitored by these complementary methods. Typically, EIS is measured daily as an indication of the tissue response at the electrode site. If spikes are absent in a channel that previously had spikes, then CV is used to determine the charge carrying capacity of the electrode site, and rejuvenation can be applied to improve the interface efficacy. CV and EIS are then repeated to check the changes at the electrode-tissue interface, and neural recordings are collected. The overall goal of rejuvenation is to extend the functional lifetime of implanted arrays.

  17. Optimal multisine excitation design for broadband electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez, B.; Vandersteen, G.; Bragos, R.; Schoukens, J.

    2011-11-01

    Electrical impedance spectroscopy (EIS) can be used to characterize biological materials in applications ranging from cell culture to body composition, including tissue and organ state. The emergence of cell therapy and tissue engineering opens up a new and promising field of application. While in most cases classical measurement techniques based on a frequency sweep can be used, EIS based on broadband excitations enables dynamic biological systems to be characterized when the measuring time and injected energy are a constraint. Myocardial regeneration, cell characterization in micro-fluidic systems and dynamic electrical impedance tomography are all examples of such applications. The weakness of such types of fast EIS measuring techniques resides in their intrinsic loss of accuracy. However, since most of the practical applications have no restriction over the excitation used, the input power spectrum can be appropriately designed to maximize the accuracy obtained from the measurements. This paper deals with the problem of designing the optimal multisine excitation for electrical bioimpedance measurements. The optimal multisine is obtained by the minimization of the Cramer-Rao lower bound, or what is the same, by maximizing the accuracy obtained from the measurements. Furthermore, because no analytical solution exists for global optimization involving time and frequency domains jointly, this paper presents the multisine optimization approach partially in both domains and then combines the results. As regards the frequency domain approach, a novel contribution is made for the multisine amplitude power spectrum. In the time domain, multisine is optimized by reducing its crest factor. Moreover, the impact on the information and accuracy of the impedance spectrum obtained from using different multisine amplitude power spectra is discussed, as well as the number of frequencies and frequency distributions. The theory is supported by a set of validation measurements when

  18. Preliminary Results on Different Impedance Contrast Agents for Pulmonary Perfusion Imaging with Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Pouliopoulos, J.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    Recent studies in animal models suggest that the use of small volume boluses of NaCl as an impedance contrast agent can significantly improve pulmonary perfusion imaging by Electrical Impedance Tomography (EIT). However, these studies used highly concentrated NaCl solution (20%) which may have adverse effects on the patients. In a pilot experiment, we address this problem by comparing a number of different Impedance Contrast Boluses (ICBs). Conductivity changes in the lungs of a sheep after the injection of four different ICBs were compared, including three NaCl-based ICBs and one glucose-based ICB. The following procedure was followed for each ICB. Firstly, ventilation was turned off to provide an apneic window of approximately 40s to image the conductivity changes due to the ICB. Each ICB was then injected through a pig-tail catheter directly into the right atrium. EIT images were acquired throughout the apnea to capture the conductivity change. For each ICB, the experiment was repeated three times. The three NaCl-based ICB exhibited similar behaviour in which following the injection of each of these ICBs, the conductivity of each lung predictably increased. The effect of the ICB of 5% glucose solution was inconclusive. A small decrease in conductivity in the left lung was observed in two out of three cases and none was discernible in the right lung.

  19. Efficient Simultaneous Reconstruction of Time-Varying Images and Electrode Contact Impedances in Electrical Impedance Tomography

    PubMed Central

    Boverman, Gregory; Isaacson, David; Newell, Jonathan C.; Saulnier, Gary J.; Kao, Tzu-Jen; Amm, Bruce C.; Wang, Xin; Davenport, David M.; Chong, David H.; Sahni, Rakesh; Ashe, Jeffrey M.

    2016-01-01

    In Electrical Impedance Tomography (EIT), we apply patterns of currents on a set of electrodes at the external boundary of an object, measure the resulting potentials at the electrodes, and, given the aggregate data set, reconstruct the complex conductivity and permittivity within the object. It is possible to maximize sensitivity to internal conductivity changes by simultaneously applying currents and measuring potentials on all electrodes but this approach also maximizes sensitivity to changes in impedance at the interface. We have therefore developed algorithms to assess contact impedance changes at the interface as well as to efficiently and simultaneously reconstruct internal conductivity/permittivity changes within the body. We use simple linear algebraic manipulations, the generalized SVD, and a dual-mesh finite-element-based framework to reconstruct images in real time. We are also able to efficiently compute the linearized reconstruction for a wide range of regularization parameters and to compute both the Generalized Cross-Validation (GCV) parameter as well as the L-curve, objective approaches to determining the optimal regularization parameter, in a similarly efficient manner. Results are shown using data from a normal subject and from a clinical ICU patient, both acquired with the GE GENESIS prototype EIT system, demonstrating significantly reduced boundary artifacts due to electrode drift and motion artifact. PMID:27295649

  20. Imaging and characterizing root systems using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Kemna, A.; Weigand, M.; Kelter, M.; Pfeifer, J.; Zimmermann, E.; Walter, A.

    2011-12-01

    Root architecture, growth, and activity play an essential role regarding the nutrient uptake of roots in soils. While in recent years advances could be achieved concerning the modeling of root systems, measurement methods capable of imaging, characterizing, and monitoring root structure and dynamics in a non-destructive manner are still lacking, in particular at the field scale. We here propose electrical impedance tomography (EIT) for the imaging of root systems. The approach takes advantage of the low-frequency capacitive electrical properties of the soil-root interface and the root tissue. These properties are based on the induced migration of ions in an externally applied electric field and give rise to characteristic impedance spectra which can be measured by means of electrical impedance spectroscopy. The latter technique was already successfully applied in the 10 Hz to 1 MHz range by Ozier-Lafontaine and Bajazet (2005) to monitor root growth of tomato. We here apply the method in the 1 mHz to 45 kHz range, requiring four-electrode measurements, and demonstrate its implementation and potential in an imaging framework. Images of real and imaginary components of complex electrical conductivity are computed using a finite-element based inversion algorithm with smoothness-constraint regularization. Results from laboratory measurements on rhizotrons with different root systems (barley, rape) show that images of imaginary conductivity delineate the spatial extent of the root system under investigation, while images of real conductivity show a less clear response. As confirmed by numerical simulations, the latter could be explained by the partly compensating electrical conduction properties of epidermis (resistive) and inner root cells (conductive), indicating the limitations of conventional electrical resistivity tomography. The captured spectral behavior exhibits two distinct relaxation processes with Cole-Cole type signatures, which we interpret as the responses

  1. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOEpatents

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  2. Data recovery from reduced electrode connection in electrical impedance tomography.

    PubMed

    Taktak, A; Record, P; Gadd, R; Rolfe, P

    1996-09-01

    In electrical impedance tomography, a single channel failure causes distortion to the overall image. Mathematical modelling and curve-fitting techniques were used to recover corrupted data. A single channel was disconnected in two experiments on a saline-filled dish with one and two objects, respectively. Voltage gradient data were then synthesized from the overall shape of the curve and reconstructed. The technique demonstrated a considerable improvement in the image quality. We conclude that the technique can be adapted in applications where channel failure can occur regularly such as neonatal monitoring.

  3. Estimation of distance and electric impedance of capacitive objects in the weakly electric fish Gnathonemus petersii.

    PubMed

    Gottwald, Martin; Bott, Raya A; von der Emde, Gerhard

    2017-09-01

    During active electrolocation, the weakly electric fish Gnathonemus petersii judges the distance and impedance of nearby objects. Capacitive objects, which modulate local amplitude and waveform of the fish's electric probing signals, cast amplitude and waveform images onto the fish's electroreceptive skin. For an unambiguous estimation of the impedance and distance of an object, the animal has to deal with multiple dependencies of object and image parameters. Based on experimentally recorded amplitude and waveform images, we investigated possible strategies of the fish to unequivocally determine both the distance and the impedance of capacitive objects. We show that the relative slope in amplitude images, but not in waveform images, is independent of object impedance and is a measure of object distance. Distance-invariant impedance estimators were obtained by two different analytical strategies. The peak modulations of both image types were 'calibrated' with the relative slope of the amplitude image. Impedance estimators were obtained whenever these pairs of image features (peak and relative slope) were related dynamically over two consecutive distances. A static impedance estimator termed 'electric colour' is postulated to arise from the relationship of an amplitude and waveform image. Our results confirm that electric colour is indeed unaffected by object distance. For electric colour estimation we suggest a minimalistic approach of just relating the peak modulations of both image types to the basal amplitude and waveform condition. Our results are discussed with regard to the anatomical and physiological organization of the fish's electrosensory neuronal pathways and behavioural strategies of electrolocating fish. © 2017. Published by The Company of Biologists Ltd.

  4. Electrical impedance characterization of cell growth on interdigitated microelectrode array.

    PubMed

    Lee, Gi Hyun; Pyun, Jae-Chul; Cho, Sungbo

    2014-11-01

    Electrical cell-substrate impedance sensing is a method for label-free and real-time monitoring of biological cells, which has been increasingly employed in the diagnostic and pharmaceutical industries. In this study, we fabricated an interdigitated electrode (IDE) array, which consists of 10 fingers, with a length of 1.2 mm, width of 50 μm, spacing of 50 μm, and thickness of 75 nm. The impedance spectra of the fabricated IDE were measured without or with cells in the frequency range of 100 Hz to 100 kHz using a lock-in amplifier based system and characterized by equivalent circuit modelling. Regarding the total impedance as a series resistance (R) and capacitance (C) model, R and C parameters were traced at a selected frequency during cell growth. It was able to monitor cell adherence and proliferation dependent on the behaviours and characteristics of cells on the fabricated IDE array by monitoring RC parameters. The degree of changes in RC value during cell growth was dependent on the type of cells used.

  5. Body Fat Measurement: Weighing the Pros and Cons of Electrical Impedance.

    ERIC Educational Resources Information Center

    Nash, Heyward L.

    1985-01-01

    Research technologists have developed electrical impedance units in response to demand for a convenient and reliable method of measuring body fat. Accuracy of impedance measures versus calipers and underwater weighing are discussed. (MT)

  6. Body Fat Measurement: Weighing the Pros and Cons of Electrical Impedance.

    ERIC Educational Resources Information Center

    Nash, Heyward L.

    1985-01-01

    Research technologists have developed electrical impedance units in response to demand for a convenient and reliable method of measuring body fat. Accuracy of impedance measures versus calipers and underwater weighing are discussed. (MT)

  7. Studies of an Adaptive Kaczmarz Method for Electrical Impedance Imaging

    NASA Astrophysics Data System (ADS)

    Li, Taoran; Isaacson, David; Newell, Jonathan C.; Saulnier, Gary J.

    2013-04-01

    We present an adaptive Kaczmarz method for solving the inverse problem in electrical impedance tomography and determining the conductivity distribution inside an object from electrical measurements made on the surface. To best characterize an unknown conductivity distribution and avoid inverting the Jacobian-related term JTJ which could be expensive in terms of memory storage in large scale problems, we propose to solve the inverse problem by adaptively updating both the optimal current pattern with improved distinguishability and the conductivity estimate at each iteration. With a novel subset scheme, the memory-efficient reconstruction algorithm which appropriately combines the optimal current pattern generation and the Kaczmarz method can produce accurate and stable solutions adaptively compared to traditional Kaczmarz and Gauss-Newton type methods. Several reconstruction image metrics are used to quantitatively evaluate the performance of the simulation results.

  8. Adaptive Kaczmarz Method for Image Reconstruction in Electrical Impedance Tomography

    PubMed Central

    Li, Taoran; Kao, Tzu-Jen; Isaacson, David; Newell, Jonathan C.; Saulnier, Gary J.

    2013-01-01

    We present an adaptive Kaczmarz method for solving the inverse problem in electrical impedance tomography and determining the conductivity distribution inside an object from electrical measurements made on the surface. To best characterize an unknown conductivity distribution and avoid inverting the Jacobian-related term JTJ which could be expensive in terms of computation cost and memory in large scale problems, we propose solving the inverse problem by applying the optimal current patterns for distinguishing the actual conductivity from the conductivity estimate between each iteration of the block Kaczmarz algorithm. With a novel subset scheme, the memory-efficient reconstruction algorithm which appropriately combines the optimal current pattern generation with the Kaczmarz method can produce more accurate and stable solutions adaptively as compared to traditional Kaczmarz and Gauss-Newton type methods. Choices of initial current pattern estimates are discussed in the paper. Several reconstruction image metrics are used to quantitatively evaluate the performance of the simulation results. PMID:23718952

  9. Fully Parallel Electrical Impedance Tomography Using Code Division Multiplexing.

    PubMed

    Tšoeu, M S; Inggs, M R

    2016-06-01

    Electrical Impedance Tomography (EIT) has been dominated by the use of Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM) as methods of achieving orthogonal injection of excitation signals. Code Division Multiplexing (CDM), presented in this paper is an alternative that eliminates temporal data inconsistencies of TDM for fast changing systems. Furthermore, this approach eliminates data inconsistencies that arise in FDM when frequency bands of current injecting electrodes are chosen over frequencies that have large changes in the imaged object's impedance. To the authors knowledge no fully functional wideband system or simulation platform using simultaneous injection of Gold codes currents has been reported. In this paper, we formulate, simulate and develop a fully functional pseudo-random (Gold) code driven EIT system with 15 excitation currents and 16 separate voltage measurement electrodes. In the work we verify the use of CDM as a multiplexing modality in simultaneous injection EIT, using a prototype system with an overall bandwidth of 15 kHz, and attainable speed of 462 frames/s using codes with a period of 31 chips. Simulations and experiments are performed using the Electrical Impedance and Diffuse Optics Reconstruction Software (EIDORS). We also propose the use of image processing on reconstructed images to establish their quality quantitatively without access to raw reconstruction data. The results of this study show that CDM can be successfully used in EIT, and gives results of similar visual quality to TDM and FDM. Achieved performance shows average position error of 3.5% and size error of 6.2%.

  10. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.

    PubMed

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-04-29

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications.

  11. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  12. Magnetic resonance electrical impedance tomography for determining electric field distribution during electroporation

    NASA Astrophysics Data System (ADS)

    Kranjc, Matej; Bajd, Franci; Serša, Igor; Miklavčič, Damijan

    2013-04-01

    Electroporation is a phenomenon caused by externally applied electric field to cells that results in an increase of cell membrane permeability to various molecules. Accurate coverage of the tissue with a sufficiently large electric field presents one of the most important conditions for successful membrane permeabilization. Applications based on electroporation would greatly benefit with a method for monitoring the electric field, especially if it could be done in situ. As the membrane electroporation is a consequence of an induced transmembrane potential, which is directly proportional to the local electric field, we have been investigating current density imaging and magnetic resonance electrical impedance tomography techniques to determine the electric field distribution during electroporation. In this paper, we present comparison of current density and electric field distribution in an agar phantom and in a liver tissue exposed to electroporation pulses. As expected, a region of increased electrical conductivity was observed in the liver tissue exposed to sufficiently high electric field but not in agar phantom.

  13. Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance.

    PubMed

    Guermandi, Marco; Cardu, Roberto; Franchi Scarselli, Eleonora; Guerrieri, Roberto

    2015-02-01

    The IC presented integrates the front-end for EEG and Electrical Impedance Tomography (EIT) acquisition on the electrode, together with electrode-skin contact impedance monitoring and EIT current generation, so as to improve signal quality and integration of the two techniques for brain imaging applications. The electrode size is less than 2 cm(2) and only 4 wires connect the electrode to the back-end. The readout circuit is based on a Differential Difference Amplifier and performs single-ended amplification and frequency division multiplexing of the three signals that are sent to the back-end on a single wire which also provides power supply. Since the system's CMRR is a function of each electrode's gain accuracy, an analysis is performed on how this is influenced by mismatches in passive and active components. The circuit is fabricated in 0.35 μm CMOS process and occupies 4 mm(2), the readout circuit consumes 360 μW, the input referred noise for bipolar EEG signal acquisition is 0.56 μVRMS between 0.5 and 100 Hz and almost halves if only EEG signal is acquired.

  14. Fractional Calculus Model of Electrical Impedance Applied to Human Skin

    PubMed Central

    Vosika, Zoran B.; Lazovic, Goran M.; Misevic, Gradimir N.; Simic-Krstic, Jovana B.

    2013-01-01

    Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders. Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The primary model introduces new generalizations of: 1) Weyl fractional derivative operator, 2) Cole equation, and 3) Constant Phase Element (CPE). These generalizations were described by the novel equation which presented parameter related to remnant memory and corrected four essential parameters We further generalized single generalized element by introducing specific partial sum of Maclaurin series determined by parameters We defined individual primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole equation is a special case of our generalized class of models for Previous bioimpedance data analyses of living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our models with new parameters presented in specific partial sum of Maclaurin series also extend representation, understanding and description of complex systems electrical properties in terms of remnant memory effects. PMID:23577065

  15. Fractional calculus model of electrical impedance applied to human skin.

    PubMed

    Vosika, Zoran B; Lazovic, Goran M; Misevic, Gradimir N; Simic-Krstic, Jovana B

    2013-01-01

    Fractional calculus is a mathematical approach dealing with derivatives and integrals of arbitrary and complex orders. Therefore, it adds a new dimension to understand and describe basic nature and behavior of complex systems in an improved way. Here we use the fractional calculus for modeling electrical properties of biological systems. We derived a new class of generalized models for electrical impedance and applied them to human skin by experimental data fitting. The primary model introduces new generalizations of: 1) Weyl fractional derivative operator, 2) Cole equation, and 3) Constant Phase Element (CPE). These generalizations were described by the novel equation which presented parameter [Formula: see text] related to remnant memory and corrected four essential parameters [Formula: see text] We further generalized single generalized element by introducing specific partial sum of Maclaurin series determined by parameters [Formula: see text] We defined individual primary model elements and their serial combination models by the appropriate equations and electrical schemes. Cole equation is a special case of our generalized class of models for[Formula: see text] Previous bioimpedance data analyses of living systems using basic Cole and serial Cole models show significant imprecisions. Our new class of models considerably improves the quality of fitting, evaluated by mean square errors, for bioimpedance data obtained from human skin. Our models with new parameters presented in specific partial sum of Maclaurin series also extend representation, understanding and description of complex systems electrical properties in terms of remnant memory effects.

  16. Controlling the electrical impedance of nanomechanical oscillators by electromigration

    NASA Astrophysics Data System (ADS)

    Sun, Fengpei; Zou, Jie; Chan, Ho Bun

    2015-03-01

    Detection of nanomechanical motion is of fundamental and practical interests. For doubly clamped nanobeams, a common method is the magnetomotive reflection technique. However, this technique usually suffers from large signal background due to the mismatch of the electrical resistance (Re) of the oscillators to the impedance (50ohm usually) of the cables for detection. The large signal background precludes the possibility of driving the device into self-sustaining oscillations using a phase-locked loop. We develop a reproducible method of minimizing the signal background in the magnetomotive reflection technique. A gold nanowire with a junction in the middle is fabricated on the top of a doubly-clamped SixNy nanobeam via e-beam lithography. By passing a large direct current through the nanowire, migration of the gold atoms around the junction is activated due to the heat dissipated. An analog feedback loop is designed to maintain a stable process of electromigration until the target Re is reached. Initially Re is smaller than 50ohm. The motional impedance of the nanowire shifts the total impedance closer to 50ohm so that the resonance of the nanobeam appears as a dip on a large background in the amplitude spectrum. As Re is increased to near 50ohm, the background reaches a minimum, and the resonance of the nanobeam turns into a peak. Self-sustaining oscillations of the nanobeam are successfully achieved via a phase-locked loop in this case. As Re is further increased, the background becomes higher again. The dependence of the background signal on Re agrees with calculations.

  17. Effect of borehole design on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Mozaffari, Amirpasha; Huisman, Johan Alexander; Treichel, Andrea; Zimmermann, Egon; Kelter, Matthias; Vereecken, Harry

    2015-04-01

    Electrical Impedance Tomography (EIT) is a sophisticated non-invasive tool to investigate the subsurface in engineering and environmental studies. To increase the depth of investigation, EIT measurements can be made in boreholes. However, the presence of the borehole may affect EIT measurements. Here, we aim to investigate the effect of different borehole components on EIT measurements using 2,5-D and 3D finite element modeling and unstructured meshes. To investigate the effect of different borehole components on EIT measurements, a variety of scenarios were designed. In particular, the effect of the water-filled borehole, the PVC casing, and the gravel filter were investigated relative to complex resistivity simulations for a homogenous medium with chain and electrode modules. It was found that the results of the complex resistivity simulations were best understood using the sensitivity distribution of the electrode configuration under consideration. In all simulations, the sensitivity in the vicinity of the borehole was predominantly negative. Therefore, the introduction of the water-filled borehole caused an increase in the real part of the impedance, and a decrease (more negative) in the imaginary part of the simulated impedance. The PVC casing mostly enhanced the effect of the water-filled borehole described above, although this effect was less clear for some electrode configuration. The effect of the gravel filter mostly reduced the effect of the water-filled borehole with PVC casing. For EIT measurements in a single borehole, the highest simulated phase error was 12% for a Wenner configuration with electrode spacing of 0.33 m. This error decreased with increasing electrode spacing. In the case of cross-well configurations, the error in the phase shit was as high as 6%. Here, it was found that the highest errors occur when both current electrodes are located in the same borehole. These results indicated that cross-well measurements are less affected by the

  18. Modeling the electric image produced by objects with complex impedance in weakly electric fish.

    PubMed

    Fujita, Kazuhisa; Kashimori, Yoshiki

    2010-08-01

    Weakly electric fish generate an electric field around their body by electric organ discharge (EOD). By measuring the modulation of the electric field produced by an object in the field these fish are able to accurately locate an object. Theoretical and experimental studies have focused on the amplitude modulations of EODs produced by resistive objects. However, little is known about the phase modulations produced by objects with complex impedance. The fish must be able to detect changes in object impedance to discriminate between food and nonfood objects. To investigate the features of electric images produced by objects with complex impedance, we developed a model that can be used to map the electric field around the fish body. The present model allows us to calculate the spatial distribution of the amplitude and phase shift in an electric image. This is the first study to investigate the changes in amplitude and phase shift of electric images induced by objects with complex impedance in wave-type fish. Using the model, we show that the amplitude of the electric image exhibits a sigmoidal change as the capacitance and resistance of an object are increased. Similarly, the phase shift exhibits a significant change within the object capacitance range of 0.1-100 nF. We also show that the spatial distribution of the amplitude and phase shifts of the electric image resembles a "Mexican hat" in shape for varying object distances and sizes. The spatial distribution of the phase shift and the amplitude was dependent on the object distance and size. Changes in the skin capacitance were associated with a tradeoff relationship between the magnitude of the amplitude and phase shift of the electric image. The specific range of skin capacitance (1-100 nF) allows the receptor afferents to extract object features that are relevant to electrolocation. These results provide a useful basis for the study of the neural mechanisms by which weakly electric fish recognize object features

  19. Determinants of pulmonary perfusion measured by electrical impedance tomography.

    PubMed

    Smit, Henk J; Vonk Noordegraaf, Anton; Marcus, J Tim; Boonstra, Anco; de Vries, Peter M; Postmus, Pieter E

    2004-06-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technique for detecting blood volume changes that can visualize pulmonary perfusion. The two studies reported here tested the hypothesis that the size of the pulmonary microvascular bed, rather than stroke volume (SV), determines the EIT signal. In the first study, the impedance changes relating to the maximal pulmonary pulsatile blood volume during systole (Delta Z(sys)) were measured in ten healthy subjects, ten patients diagnosed with chronic obstructive pulmonary disease, who were considered to have a reduced pulmonary vascular bed, and ten heart failure patients with an assumed low cardiac output but with a normal lung parenchyma. Mean Delta Z(sys) (SD) in these groups was 261 (34)x10(-5), 196 (39)x10(-5) ( P<0.001) and 233 (61)x10(-5) arbitrary units (AU) (P=NS), respectively. In the second study, including seven healthy volunteers, Delta Z(sys) was measured at rest and during exercise on a recumbent bicycle while SV was measured by means of magnetic resonance imaging. The Delta Z(sys) at rest was 352 (53)x10(-5 ) and 345 (112)x10(-5 )AU during exercise (P=NS), whereas SV increased from 83 (21) to 105 (34) ml (P<0.05). The EIT signal likely reflects the size of the pulmonary microvascular bed, since neither a low cardiac output nor a change in SV of the heart appear to influence EIT.

  20. Recording characteristics of electrical impedance myography needle electrodes.

    PubMed

    Kwon, H; Rutkove, S B; Sanchez, B

    2017-08-21

    Neurologists and physiatrists need improved tools for the evaluation of skeletal muscle condition. Here we evaluate needle electrical impedance myography (EIM), a new minimally invasive approach to determine muscle status that could ultimately become a bedside tool for the assessment of neuromuscular disorders. We design and study the recording characteristics of tetrapolar EIM needle electrodes combining theory and finite-element model simulations. We then use these results to build and pilot in vivo an EIM needle electrode in the rat gastrocnemius muscle ([Formula: see text]). The dielectric properties of muscle are reported (mean  ±  standard deviation). The numerical simulations show that the contribution of subcutaneous fat and muscle tissues to needle EIM data is <3% and >97%, respectively, and the sensed volume is [Formula: see text] cm(3). Apparent resistivity [Formula: see text] [Formula: see text] cm and relative permittivity [Formula: see text] (dimensionless) measured at 10 kHz are in good agreement with in vivo dielectric properties reported in the literature. The results presented show the feasibility of measuring muscle impedivity in vivo using a needle electrode from 10 kHz to 1 MHz. The development of needle EIM technology can open up a new field of study in electrodiagnostic medicine, with potential applications to both disease diagnosis and biomarker assessment of therapy.

  1. Handheld Electrical Impedance Myography Probe for Assessing Carpal Tunnel Syndrome.

    PubMed

    Li, Zhao; Chen, Lingfen; Zhu, Yu; Wei, Qingquan; Liu, Wenwen; Tian, Dong; Yu, Yude

    2017-03-30

    Electrical impedance myography (EIM) is a novel, noninvasive, and painless technique for quantitatively assessing muscle health as well as disease status and progression. The preparatory work for commercial adhesive electrodes used in previous EIM measurements is tedious, as the electrodes need to be cut, repeatedly applied, and removed. Moreover, the electrode distances need to be measured many times. To overcome these problems, we developed a convenient and practical handheld EIM probe for assessing carpal tunnel syndrome (CTS) in the small hand muscles. To reduce the electrode-skin contact impedance (ESCI), the micropillared and microholed stainless steel electrodes (SSEs) contained in the probe were fabricated using a laser processing technique. When covered with saline, these electrodes showed lower ESCIs than a smooth SSE and Ag/AgCl electrode. The probe was shown to have excellent test-retest reproducibility in both healthy subjects and CTS patients, with intraclass correlation coefficients exceeding 0.975. The reactance and phase values of the abductor pollicis brevis (affected muscle) for CTS patients were consistently lower than those for healthy subjects, with a 50-kHz difference of 37.1% (p < 0.001) and 31.0% (p < 0.001), respectively. Further, no significant differences were detected in the case of the abductor digiti minimi (unaffected muscle). These results indicate that EIM has considerable potential for CTS assessment and hence merits further investigation.

  2. Using electrical impedance spectroscopy to detect water in planetary regoliths.

    PubMed

    Seshadri, Suresh; Chin, Keith B; Buehler, Martin G; Anderson, Robert C

    2008-08-01

    We present data in examination of the utility of electrical impedance spectroscopy measurements for in situ surveys to determine the water content, distribution, and phase in unconsolidated planetary regolith. We conducted calibration experiments under conditions relevant to Mars: the concentration of electrolytes in solution was varied up to 1 M to simulate the effects of unsaturated dissolved minerals and brines. We also varied the water content of heterogeneous water/sand mixtures, made with these electrolytic solutions from 0.01 wt% to 10 wt%. Tests were performed at temperatures from +25 degrees C to -65 degrees C. Conductivity and dielectric permittivity calculated from the impedance measurements indicate an expected dependence on electrolyte concentration and relative independence from electrolyte type for both liquid water and water ice. Conductivity and calculated dielectric relaxation times for these aqueous solutions agree with existing data in the literature. The relative permittivity for heterogeneous water/sand mixtures is dominated by polarization effects for the electrode configuration used. However, the characteristic orientational relaxation of ice is still visible. The conductivity retains the strong dependence on electrolyte concentration, and the permittivity is still not affected by electrolyte type. A "universal" curve between conductivity and water content establishes detectability limits of <0.01 wt% and approximately 0.3 wt% for water/sand mixtures containing liquid water and ice, respectively.

  3. Multispectral Electrical Impedance Tomography using Optimization over Manifolds

    NASA Astrophysics Data System (ADS)

    Fouchard, A.; Bonnet, S.; David, O.

    2016-10-01

    Electrical impedance tomography under spectral constraints uses a material basis decomposition to combine the different information embedded in the tissue spectra. This approach offers an alternative to static imaging while benefiting from systemic error cancellation using difference data. It suits well cases where no prior solution is known and the contrast lies entirely between frequencies, e.g. to diagnose acute stroke or cancer. In this work, a computational framework is presented to deal with the extra frequency dimensions and the constraints during reconstruction. A fraction volume approach is demonstrated with explicit Euclidean gradient, usage of a finite volume element solver and minimization over the oblique manifold. It is applied to synthetic data. Parameter estimations are compared between a monofrequency inversion and the proposed multispectral implementation. Results suggest that the proposed workflow enables to reduce the computational workload of multispectral inversion while ensuring valid proportions of materials within each control volume.

  4. Assessment of breast tumor size in electrical impedance scanning

    NASA Astrophysics Data System (ADS)

    Kim, Sungwhan

    2012-02-01

    Electrical impedance scanning (EIS) is a newly introduced imaging technique for early breast cancer detection. In EIS, we apply a sinusoidal voltage between a hand-held electrode and a scanning probe placed on the breast skin to make current travel through the breast. We measure induced currents (Neumann data) through the scanning probe. In this paper, we investigate the frequency-dependent behavior of the induced complex potential and show how the frequency differential of the current measurement on the scanning probe reflects the contrast in complex conductivity values between surrounding and cancerous tissues. Furthermore, we develop the formula for breast tumor size using the frequency differential of the current measurement and provide its feasibility.

  5. Measurement of ion diffusion using magnetic resonance electrical impedance tomography.

    PubMed

    Hamamura, Mark J; Muftuler, L Tugan; Birgul, Ozlem; Nalcioglu, Orhan

    2006-06-07

    In magnetic resonance electrical impedance tomography (MREIT), currents are applied to an object, the resulting magnetic flux density measured using MRI and the conductivity distribution reconstructed using these MRI data. In this study, we assess the ability of MREIT to monitor changes in the conductivity distribution of an agarose gel phantom, using injected current pulses of 900 microA. The phantom initially contained a distinct region of high sodium chloride concentration which diffused into the background over time. MREIT data were collected over a 12 h span, and conductivity images were reconstructed using the iterative sensitivity matrix method with Tikhonov regularization. The results indicate that MREIT was able to monitor the changing conductivity and concentration distributions resulting from the diffusion of ions within the agarose gel phantom.

  6. Measurement of limb blood flow by electrical impedance plethysmography.

    PubMed Central

    Porter, J. M.; Swain, I. D.; Shakespeare, P. G.

    1985-01-01

    Limb blood flow has been measured in 72 individuals by the noninvasive technique of electrical impedance plethysmography. Venous occlusion was not used. Blood flow was measured in 230 limbs in which 195 limbs were either in normal individuals or the clinically normal limbs of patients (normal limbs). Thirty-five limbs were clinically abnormal. Measurements on limbs with clinical abnormalities showed that blood flow values often fell within the limits of the normal range. However 3 cases of known vascular injury and 2 cases studied after hand surgery under tourniquet showed lowered blood flow values by comparison with the unaffected limb. A simultaneously recorded range of cardiac output and stroke volume measurements gave similar results to those obtained in a previous, unconnected study. Images Fig. 1 PMID:4004047

  7. Recent Progress on the Factorization Method for Electrical Impedance Tomography

    PubMed Central

    Harrach, Bastian

    2013-01-01

    The Factorization Method is a noniterative method to detect the shape and position of conductivity anomalies inside an object. The method was introduced by Kirsch for inverse scattering problems and extended to electrical impedance tomography (EIT) by Brühl and Hanke. Since these pioneering works, substantial progress has been made on the theoretical foundations of the method. The necessary assumptions have been weakened, and the proofs have been considerably simplified. In this work, we aim to summarize this progress and present a state-of-the-art formulation of the Factorization Method for EIT with continuous data. In particular, we formulate the method for general piecewise analytic conductivities and give short and self-contained proofs. PMID:24069064

  8. [Image reconstruction in electrical impedance tomography based on genetic algorithm].

    PubMed

    Hou, Weidong; Mo, Yulong

    2003-03-01

    Image reconstruction in electrical impedance tomography (EIT) is a highly ill-posed, non-linear inverse problem. The modified Newton-Raphson (MNR) iteration algorithm is deduced from the strictest theoretic analysis. It is an optimization algorithm based on minimizing the object function. The MNR algorithm with regularization technique is usually not stable, due to the serious image reconstruction model error and measurement noise. So the reconstruction precision is not high when used in static EIT. A new static image reconstruction method for EIT based on genetic algorithm (GA-EIT) is proposed in this paper. The experimental results indicate that the performance (including stability, the precision and space resolution in reconstructing the static EIT image) of the GA-EIT algorithm is better than that of the MNR algorithm.

  9. Electrical impedance tomography of the 1995 OGI perchloroethelyne release

    SciTech Connect

    Dailey, W.; Ramirez, A.

    1996-10-01

    Goal is to determine if electrical impedance tomography (EIT) might be useful to map free product DNAPL (dense nonaqueous phase liquids) contamination. EIT was used to image the plume resulting from a release of 189 liters (50 gallons) of perchloroethylene (PCE) into a saturated aquifer constructed of sand with two layers of bentonite. Images were made in 4 planes, before, during, and after the release, to generate a detailed picture of the spatial and temporal development of the plume. Information of the EI (both in phase and out of phase voltages) was used at several different frequencies to produce images. Some frequency dispersion was observed in the images before and after the PCE release. Laboratory measurements of organic contamination in soil indicate detectable dispersion. A search for this effect in EIT images reveals weak evidence, the signal appearing just above the measurement uncertainty, of a change in the reactance in the soil because of the PCE.

  10. Dual frequency electrical impedance tomography to obtain functional image

    NASA Astrophysics Data System (ADS)

    Sapuan, Imam; Ain, Khusnul; Suryanto, Alif

    2017-05-01

    Electric Impedance Tomography with two frequencies is a system to detect the anomalies. This system is expected to detect the presence of a cancer in the breast. In this study, the objects are modelled in a circle phantom within 13 cm diameter. Those objects are equipped with 16 electrodes of copperplate. The objects, carrots, are functioned as a cancer and water as a medium of the normal breast. This electrode works to inject the current and to measure the voltage at a certain point. The position of the electrode current injection is controlled by a de-multiplexer, whereas the measurement of voltage at the electrodes is controlled by a multiplexer. The electric current source utilized has two frequencies; 10 kHz and 100 kHz. This electric current is generated from a circuit of Voltage Controlled Current Source using an oscillator XR2206. The microcontroller is utilized to control the current injection through a de-multiplexer and the measurement of output voltage through a multiplexer. This research has produced three images. Two images are obtained from both frequencies of 10 kHz and 100 kHz. Those two images cannot be achieved in the reality. The object condition of normal breast cannot be measured, since the normal breast of a person is different from others. In this study, the two images can be obtained when the potential background of the phantom can be measured. The third image is obtained from the reconstruction of the electrical potential difference between the low and high frequencies. This image is called as a functional image. This functional image makes the EIT system can be implemented, since it can be obtained without measuring the potential background. This functional image reveals that the anomalies are more obvious than the single frequency image.

  11. Tuning electrode impedance for the electrical recording of biopotentials.

    PubMed

    Fontes, M A; de Beeck, M; Van Hoof, C; Neves, H P

    2010-01-01

    Tuning the electrode impedance through the DC biasing of iridium oxide is presented. Impedance reduction of up to two orders of magnitude was reproducibly observed in 20 microm diameter microelectrodes at a biasing of 1V.

  12. Electrical impedance tomography system: an open access circuit design

    PubMed Central

    Soleimani, Manuchehr

    2006-01-01

    Background This paper reports a simple 2-D system for electrical impedance tomography EIT, which works efficiently and is low cost. The system has been developed in the Sharif University of Technology Tehran-Iran (for the author's MSc Project). Methods The EIT system consists of a PC in which an I/O card is installed with an external current generator, a multiplexer, a power supply and a phantom with an array of electrodes. The measurement system provides 12-bit accuracy and hence, suitable data acquisition software has been prepared accordingly. The synchronous phase detection method has been implemented for voltage measurement. Different methods of image reconstruction have been used with this instrument to generate electrical conductivity images. Results The results of simulation and real measurement of the system are presented. The reconstruction programs were written in MATLAB and the data acquisition software in C++. The system has been tested with both static and dynamic mode in a 2-D domain. Better results have been produced in the dynamic mode of operation, due to the cancellation of errors. Conclusion In the spirit of open access publication the design details of this simple EIT system are made available here. PMID:16672061

  13. In-Vivo Electrical Impedance Measurement in Mastoid Bone.

    PubMed

    Wyss Balmer, Thomas; Ansó, Juan; Muntane, Enric; Gavaghan, Kate; Weber, Stefan; Stahel, Andreas; Büchler, Philippe

    2017-04-01

    Nerve monitoring is a safety mechanism to detect the proximity between surgical instruments and important nerves during surgical bone preparation. In temporal bone, this technique is highly specific and sensitive at distances below 0.1 mm, but remains unreliable for distances above this threshold. A deeper understanding of the patient-specific bone electric properties is required to improve this range of detection. A sheep animal model has been used to characterize bone properties in vivo. Impedance measurements have been performed at low frequencies (<1 kHz) between two electrodes placed inside holes drilled into the sheep mastoid bone. An electric circuit composed of a resistor and a Fricke constant phase element was able to accurately describe the experimental measurements. Bone resistivity was shown to be linearly dependent on the inter-electrode distance and the local bone density. Based on this model, the amount of bone material between the electrodes could be predicted with an error of 0.7 mm. Our results indicate that bone could be described as an ideal resistor while the electrochemical processes at the electrode-tissue interface are characterized by a constant phase element. These results should help increasing the safety of surgical drilling procedures by better predicting the distance to critical nerve structures.

  14. Using independent component analysis for electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Yan, Peimin; Mo, Yulong

    2004-05-01

    Independent component analysis (ICA) is a way to resolve signals into independent components based on the statistical characteristics of the signals. It is a method for factoring probability densities of measured signals into a set of densities that are as statistically independent as possible under the assumptions of a linear model. Electrical impedance tomography (EIT) is used to detect variations of the electric conductivity of the human body. Because there are variations of the conductivity distributions inside the body, EIT presents multi-channel data. In order to get all information contained in different location of tissue it is necessary to image the individual conductivity distribution. In this paper we consider to apply ICA to EIT on the signal subspace (individual conductivity distribution). Using ICA the signal subspace will then be decomposed into statistically independent components. The individual conductivity distribution can be reconstructed by the sensitivity theorem in this paper. Compute simulations show that the full information contained in the multi-conductivity distribution will be obtained by this method.

  15. A multichannel continuously selectable multifrequency electrical impedance spectroscopy measurement system.

    PubMed

    Hartov, A; Mazzarese, R A; Reiss, F R; Kerner, T E; Osterman, K S; Williams, D B; Paulsen, K D

    2000-01-01

    There is increasing evidence that alterations in the electrical property spectrum of tissues below 10 MHz is diagnostic for tissue pathology and/or pathophysiology. Yet, the complexity associated with constructing a high-fidelity multichannel, multifrequency data acquisition instrument has limited widespread development of spectroscopic electrical impedance imaging concepts. To contribute to the relatively sparse experience with multichannel spectroscopy systems this paper reports on the design, realization and evaluation of a prototype 32-channel instrument. The salient features of the system include a continuously selectable driving frequency up to 1 MHz, either voltage or current source modes of operation and simultaneous measurement of both voltage and current on each channel in either of these driving configurations. Comparisons of performance with recently reported fixed-frequency systems is favorable. Volts dc (VDC) signal-to-noise ratios of 75-80 dB are achieved and the noise floor for ac signals is near 100 dB below the signal strength of interest at 10 kHz and 60 dB down at 1 MHz. The added benefit of being able to record multispectral information on source and sense signal amplitudes and phases has also been realized. Phase-sensitive detection schemes and multiperiod undersampling techniques have been deployed to ensure measurement fidelity over the full bandwidth of system operation.

  16. Lobe based image reconstruction in Electrical Impedance Tomography.

    PubMed

    Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Tawhai, Merryn; Adler, Andy; Mueller-Lisse, Ullrich; Moeller, Knut

    2017-02-01

    Electrical Impedance Tomography (EIT) is an imaging modality used to generate two-dimensional cross-sectional images representing impedance change in the thorax. The impedance of lung tissue changes with change in air content of the lungs; hence, EIT can be used to examine regional lung ventilation in patients with abnormal lungs. In lung EIT, electrodes are attached around the circumference of the thorax to inject small alternating currents and measure resulting voltages. In contrast to X-ray computed tomography (CT), EIT images do not depict a thorax slice of well defined thickness, but instead visualize a lens-shaped region around the electrode plane, which results from diffuse current propagation in the thorax. Usually, this is considered a drawback, since image interpretation is impeded if 'off-plane' conductivity changes are projected onto the reconstructed two-dimensional image. In this paper we describe an approach that takes advantage of current propagation below and above the electrode plane. The approach enables estimation of the individual conductivity change in each lung lobe from boundary voltage measurements. This could be used to monitor disease progression in patients with obstructive lung diseases, such as chronic obstructive pulmonary disease (COPD) or cystic fibrosis (CF) and to obtain a more comprehensive insight into the pathophysiology of the lung. Electrode voltages resulting from different conductivities in each lung lobe were simulated utilizing a realistic 3D finite element model (FEM) of the human thorax and the lungs. Overall 200 different patterns of conductivity change were simulated. A 'lobe reconstruction' algorithm was developed, applying patient-specific anatomical information in the reconstruction process. A standard EIT image reconstruction algorithm and the proposed 'lobe reconstruction' algorithm were used to estimate conductivity change in the lobes. The agreement between simulated and reconstructed conductivity change in

  17. Using impedance measurements for detecting pathogens trapped in an electric field

    DOEpatents

    Miles, Robin R.

    2004-07-20

    Impedance measurements between the electrodes in an electric field is utilized to detect the presence of pathogens trapped in the electric field. Since particles trapped in a field using the dielectiphoretic force changes the impedance between the electrodes by changing the dielectric material between the electrodes, the degree of particle trapping can be determined by measuring the impedance. This measurement is used to determine if sufficient pathogen have been collected to analyze further or potentially to identify the pathogen.

  18. Lactate threshold by muscle electrical impedance in professional rowers

    NASA Astrophysics Data System (ADS)

    Jotta, B.; Coutinho, A. B. B.; Pino, A. V.; Souza, M. N.

    2017-04-01

    Lactate threshold (LT) is one of the physiological parameters usually used in rowing sport training prescription because it indicates the transitions from aerobic to anaerobic metabolism. Assessment of LT is classically based on a series of values of blood lactate concentrations obtained during progressive exercise tests and thus has an invasive aspect. The feasibility of noninvasive LT estimative through bioelectrical impedance spectroscopy (BIS) data collected in thigh muscles during rowing ergometer exercise tests was investigated. Nineteen professional rowers, age 19 (mean) ± 4.8 (standard deviation) yr, height 187.3 ± 6.6 cm, body mass 83 ± 7.7 kg, and training experience of 7 ± 4 yr, were evaluated in a rowing ergometer progressive test with paired measures of blood lactate concentration and BIS in thigh muscles. Bioelectrical impedance data were obtained by using a bipolar method of spectroscopy based on the current response to a voltage step. An electrical model was used to interpret BIS data and to derive parameters that were investigated to estimate LT noninvasively. From the serial blood lactate measurements, LT was also determined through Dmax method (LTDmax). The zero crossing of the second derivative of kinetic of the capacitance electrode (Ce), one of the BIS parameters, was used to estimate LT. The agreement between the LT estimates through BIS (LTBIS) and through Dmax method (LTDmax) was evaluated using Bland-Altman plots, leading to a mean difference between the estimates of just 0.07 W and a Pearson correlation coefficient r = 0.85. This result supports the utilization of the proposed method based on BIS parameters for estimating noninvasively the lactate threshold in rowing.

  19. Transthoracic Electrical Impedance in Cases of High-altitude Hypoxia

    PubMed Central

    Roy, Sujoy B.; Balasubramanian, V.; Khan, M. R.; Kaushik, V. S.; Manchanda, S. C.; Guha, S. K.

    1974-01-01

    Changes in transthoracic electrical impedance (T.E.I.) due to high-altitude hypoxia (3,658 m) have been measured in 20 young, healthy Indian soldiers. They were first studied at sea level (198 m) and then rapidly transported by air to 3,658 m, where they were studied daily from day 1 to day 5 and then on days 8 and 10. The mean (±S.D.) T.E.I. at sea level (34·6±0·6Ω) fell sharply to 29·6±0·8Ω, 30·3±0·9Ω, and 30·5±1·1Ω on days 1, 2, and 3 (P <0·001) and levelled off at 31·5±0·7Ω on day 10, which was comparable to the mean value obtained in 13 persons permanently resident at high altitude (32·2±0·7Ω). Five sea-level residents who had acute mountain sickness (A.M.S.) or high-altitude pulmonary oedema (H.A.P.O.) had a still lower mean value (22·5±1·1Ω). One normal healthy subject who at sea level had a T.E.I. of 34·7Ω developed H.A.P.O. when the T.E.I. fell to 21·1Ω. Ninety minutes after the administration of 80 mg of intravenous frusemide the value increased to 35·5Ω. In another subject with A.M.S. who received 40 mg of frusemide intravenously the T.E.I. rose from 21·9 to 33·2Ω. Since the study was non-invasive the changes in impedance could not be correlated objectively with alterations in either pulmonary blood volume or pulmonary extravascular water space. In the subject, however, with x-ray evidence of H.A.P.O. and a low T.E.I. intravenous frusemide produced a marked rise in T.E.I. together with clearing of the chest x-ray picture within 24 hours, indicating an inverse relationship between impedance and thoracic fluid volume. It is suggested that with further objective verification in man the measurement of T.E.I. may be a potentially promising technique for the early detection of increased pulmonary fluid volume. ImagesFIG. 3FIG. 4 PMID:4416705

  20. Electrical cell counting process characterization in a microfluidic impedance cytometer.

    PubMed

    Hassan, Umer; Bashir, Rashid

    2014-10-01

    Particle counting in microfluidic devices with coulter principle finds many applications in health and medicine. Cell enumeration using microfluidic particle counters is fast and requires small volumes of sample, and is being used for disease diagnostics in humans and animals. A complete characterization of the cell counting process is critical for accurate cell counting especially in complex systems with samples of heterogeneous population interacting with different reagents in a microfluidic device. In this paper, we have characterized the electrical cell counting process using a microfluidic impedance cytometer. Erythrocytes were lysed on-chip from whole blood and the lysing was quenched to preserve leukocytes which subsequently pass through a 15 μm × 15 μm measurement channel used to electrically count the cells. We show that cell counting over time is a non-homogeneous Poisson process and that the electrical cell counts over time show the log-normal distribution, whose skewness can be attributed to diffusion of cells in the buffer that is used to meter the blood. We further found that the heterogeneous cell population (i.e. different cell types) shows different diffusion characteristics based on the cell size. Lymphocytes spatially diffuse more as compared to granulocytes and monocytes. The time difference between the cell occurrences follows an exponential distribution and when plotted over time verifies the cell diffusion characteristics. We also characterized the probability of occurrence of more than one cell at the counter within specified time intervals using Poisson counting statistics. For high cell concentration samples, we also derived the required sample dilution based on our particle counting characterization. Buffer characterization by considering the size based particle diffusion and estimating the required dilution are critical parameters for accurate counting results.

  1. [Electrical impedance spectroscopy for evaluation of the influence of simulated weightlessness on the electrical properties of rat blood].

    PubMed

    Gong, Yu; Chen, Lin; Shen, Bin; Ma, Qing

    2012-08-01

    In the present study, the AC impedance of rat blood was measured with Agilent 4294A impedance analyzer in the frequency range of 10(4)-10(8) Hz, and the effect of simulated weightlessness (SWL)on electrical properties of rat blood was investigated by analyzing the data characteristics with the use of electrical impedance spectroscopy, the Bode diagram, the Nyquist diagram and the Nichols diagram. The results demonstrated 60 days SWL caused some changes: (1) the electrical impedance of rat blood were reduced, mainly in the real part of complex impedance (Z'o and Z'infinity), the electrical impedance modulus amplitude (|Z*|o and |Z*|infinity), the impedance relaxation strength (deltaZ', delta|Z*|) and the logarithm of impedance modulus amplitude at low frequency (Log |Z*|o) were lower than that in the control (CON) group; (2) the characteristic frequency of the electrical impedance spectrum of rat blood and the phase angle were increases, mainly in the characteristic frequency (fc1, fc2) and the phase angle [theta(p) (degree), theta(p) (radian)] increased compared with that in the CON group. These data indicate that SWL leads to reduced resistivity and enhanced conductivity of blood.

  2. Characterisation of nano-particles in colloids: relationship between particle size and electrical impedance spectra.

    PubMed

    Zhao, Yanlin; Wang, Mi; Hammond, Robert B

    2013-02-01

    The nano-particles in colloidal dispersions usually carry an electrical charge and have an electrical double layer associated with their surfaces, however, while remaining electrically neutral overall. Under the effect of an external electric field, the electrical double layer is deformed or in other words, the suspension is polarized. The mechanism of electrochemical polarization is partially dependent on the surface charge and the size of particles. It is known that properties of nano-particles in suspensions may affect the colloids' electrical-impedance spectroscopic properties, e.g., the complex impedance, complex permittivity, complex conductivity, relaxation frequency, and phase angle. However, reports on colloids' electrical-impedance spectroscopic properties are very limited in the current literature. In this paper a simple system, aqueous silica suspensions, was studied using electrical impedance spectroscopy (EIS). A series of experiments were designed to reveal the effect of particle size on the electrical impedance spectra of silica suspensions. The size effect was studied on silica suspensions with the same concentration (10.0 wt%) but different principle particle size (12 nm, 35 nm, 70 nm, 90 nm and 220 nm). The EIS results show that the relaxation frequency decreased with increasing of particle size. This tendency is explained by the polarization effect of electrical double layer and two dispersion mechanisms were analysed in this study. The results provide supportive information for on-line characterisation of nano-particles using electrical impedance spectroscopy.

  3. Applications for Electrical Impedance Tomography (EIT) and Electrical Properties of the Human Body.

    PubMed

    Lymperopoulos, Georgios; Lymperopoulos, Panagiotis; Alikari, Victoria; Dafogianni, Chrisoula; Zyga, Sofia; Margari, Nikoletta

    2017-01-01

    Electrical Impedance Tomography (EIT) is a promising application that displays changes in conductivity within a body. The basic principle of the method is the repeated measurement of surface voltages of a body, which are a result of rolling injection of known and small-volume sinusoidal AC current to the body through the electrodes attached to its surface. This method finds application in biomedicine, biology and geology. The objective of this paper is to present the applications of Electrical Impedance Tomography, along with the method's capabilities and limitations due to the electrical properties of the human body. For this purpose, investigation of existing literature has been conducted, using electronic databases, PubMed, Google Scholar and IEEE Xplore. In addition, there was a secondary research phase, using paper citations found during the first research phase. It should be noted that Electrical Impedance Tomography finds use in a plethora of medical applications, as the different tissues of the body have different conductivities and dielectric constants. Main applications of EIT include imaging of lung function, diagnosis of pulmonary embolism, detection of tumors in the chest area and diagnosis and distinction of ischemic and hemorrhagic stroke. EIT advantages include portability, low cost and safety, which the method provide, since it is a noninvasive imaging method that does not cause damage to the body. The main disadvantage of the method, which blocks its wider spread, appears in the image composition from the voltage measurements, which are conducted by electrodes placed on the periphery of the body, because the injected currents are affected nonlinearly by the general distribution of the electrical properties of the body. Furthermore, the complex impedance of the skin-electrode interface can be modelled by using a capacitor and two resistor, as a result of skin properties. In conclusion, Electrical Impedance Tomography is a promising method for the

  4. Video rate electrical impedance tomography of vascular changes: preclinical development.

    PubMed

    Halter, Ryan; Hartov, Alex; Paulsen, Keith

    2008-03-01

    Peripheral vasculature disease is strongly correlated with cardiovascular-associated mortality. Monitoring circulation health, especially in the peripheral limbs, is vital to detecting clinically significant disease at a stage when it can still be addressed through medical intervention. Electrical impedance tomography (EIT) maps the electrical properties of tissues within the body and has been used to image dynamically varying physiology, including blood flow. Here, we suggest that peripheral vasculature health can be monitored with EIT by imaging the hemodynamics of peripheral vessels and the surrounding tissues during reactive hyperemia testing. An analysis based on distinguishability theory is presented that indicates that an EIT system capable of making measurements with a precision of 50 microV may be able to detect small changes in vessel size associated with variations in blood flow. An EIT system with these precision capabilities is presented that is able to collect data at frame rates exceeding 30 fps over a broad frequency range up to 10 MHz. The system's high speed imaging performance is verified through high contrast phantom experiments and through physiological imaging of induced ischemia with a human forearm. Region of interest analysis of the induced ischemia images shows a marked decrease in conductivity over time, changing at a rate of approximately -3 x 10(-7) S m(-1) s(-1), which is the same order of magnitude as reported in the literature. The distinguishability analysis suggests that a system such as the one developed here may provide a means to characterize the hemodynamics associated with blood flow through the peripheral vasculature.

  5. Comparison of total variation algorithms for electrical impedance tomography.

    PubMed

    Zhou, Zhou; Sato dos Santos, Gustavo; Dowrick, Thomas; Avery, James; Sun, Zhaolin; Xu, Hui; Holder, David S

    2015-06-01

    The applications of total variation (TV) algorithms for electrical impedance tomography (EIT) have been investigated. The use of the TV regularisation technique helps to preserve discontinuities in reconstruction, such as the boundaries of perturbations and sharp changes in conductivity, which are unintentionally smoothed by traditional l2 norm regularisation. However, the non-differentiability of TV regularisation has led to the use of different algorithms. Recent advances in TV algorithms such as the primal dual interior point method (PDIPM), the linearised alternating direction method of multipliers (LADMM) and the spilt Bregman (SB) method have all been demonstrated successful EIT applications, but no direct comparison of the techniques has been made. Their noise performance, spatial resolution and convergence rate applied to time difference EIT were studied in simulations on 2D cylindrical meshes with different noise levels, 2D cylindrical tank and 3D anatomically head-shaped phantoms containing vegetable material with complex conductivity. LADMM had the fastest calculation speed but worst resolution due to the exclusion of the second-derivative; PDIPM reconstructed the sharpest change in conductivity but with lower contrast than SB; SB had a faster convergence rate than PDIPM and the lowest image errors.

  6. Parallel hybrid algorithm for solution in electrical impedance equation

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr; Robles-Gonzalez, Marco; Bucio-Ramirez, Ariana; Ramirez-Tachiquin, Marco; Ramos-Diaz, Eduardo

    2015-02-01

    This work is dedicated to the analysis of the forward and the inverse problem to obtain a better approximation to the Electrical Impedance Tomography equation. In this case, we employ for the forward problem the numerical method based on the Taylor series in formal power and for the inverse problem the Finite Element Method. For the analysis of the forward problem, we proposed a novel algorithm, which employs a regularization technique for the stability, additionally the parallel computing is used to obtain the solution faster; this modification permits to obtain an efficient solution of the forward problem. Then, the found solution is used in the inverse problem for the approximation employing the Finite Element Method. The algorithms employed in this work are developed in structural programming paradigm in C++, including parallel processing; the time run analysis is performed only in the forward problem because the Finite Element Method due to their high recursive does not accept parallelism. Some examples are performed for this analysis, in which several conductivity functions are employed for two different cases: for the analytical cases: the exponential and sinusoidal functions are used, and for the geometrical cases the circle at center and five disk structure are revised as conductivity functions. The Lebesgue measure is used as metric for error estimation in the forward problem, meanwhile, in the inverse problem PSNR, SSIM, MSE criteria are applied, to determine the convergence of both methods.

  7. Frequency-difference electrical impedance tomography: Phantom imaging experiments

    NASA Astrophysics Data System (ADS)

    Ahn, Sujin; Jun, Sung Chan; Seo, Jin Keun; Lee, Jeehyun; Woo, Eung Je; Holder, David

    2010-04-01

    Frequency-difference electrical impedance tomography (fdEIT) using a weighted voltage difference has been proposed as a means to provide images of admittivity changes at different frequencies. This weighted difference method is an effective way to extract anomaly information while eliminating background effects by unknown boundary geometry, uncertainty in electrode positions and other systematic measurement artefacts. It also properly handles the interplay between conductivity and permittivity in measured boundary voltage data. Though the proposed fdEIT algorithm is promising for applications such as detection of hemorrhagic stroke and breast cancer, more validation studies are needed. In this paper, we performed two-and three-dimensional numerical simulations and phantom experiments. Backgrounds of imaging objects were either saline or carrot pieces suspended in saline. We used carrot pieces to simulate a more realistic frequency-dependent admittivity distribution. Test objects were banana, potato or conductive gel with known admittivity spectra. When the background was saline, both simple and weighted difference approaches produced reasonably accurate images. The weighted difference method yielded better images from two-dimensional imaging objects with background of carrot pieces. For the three-dimensional head-shaped phantom, the advantage of the weighted frequency difference method over the simple difference method is not as obvious as in the case of the two-dimensional phantom. It is unclear if this is due to measurement errors or limitations in the linear algorithm. Further refinement and validation of the frequency difference image reconstructions are currently in progress.

  8. Influence of volume and flow change on the electrical impedance signal (in vitro)

    NASA Astrophysics Data System (ADS)

    Bodo, M.; Garcia, A.; Pearce, F.; Van Albert, S.; Armonda, R.

    2010-04-01

    On the basis of preliminary results, rheoencephalography (REG) shows promise as a practical, noninvasive and continuous monitoring modality of brain injuries. However, REG literature reflects uncertainty about whether the signal reflects flow or volume. Presented here are results of in vitro studies manipulating flow/volume to model clinical conditions (such as brain ischemia and vasospasm) while recording the electrical impedance signal. A loop was created using tubing filled with 0.9 % NaCl. This loop was comprised of a Doppler in-line flow probe connected to an ultrasound flow meter, a peristaltic pump, a pressure transducer and home-made electrical impedance measuring cell, incorporating a balloon catheter. Bipolar impedance amplifiers were used for measuring impedance pulse waves. Data were stored on a PC and processed off-line. This in vitro study confirmed that 1) Doubling flow rate influenced the pulse amplitude and mean flow of the Doppler signal; 2) Doubling flow rate had no influence on the amplitudes of the pressure or electrical impedance signals; 3) An increase in amplitude was observed in the pressure and electrical impedance signals when the first derivative was taken. 4) Balloon inflation decreased electrical impedance and Doppler flow pulse amplitudes; 5) With balloon inflation, Doppler and electrical impedance signals showed an identical relationship to decreased flow (R2=0.966).

  9. A two electrode apparatus for electrical impedance measurements

    NASA Astrophysics Data System (ADS)

    Merriam, J. B.

    2009-12-01

    A two electrode cell for complex impedance measurements on core samples in the range 1 mHz - 0.3 kHz is described. Two electrode cells are more convenient than four electrode cells but some restrictions need to be observed. I will show that the contact impedance between the electrodes and the sample can be controlled and reduced to less than fifty ohms in most cases. The contact impedance is repeatable, with a peak phase near 10 Hz of less than one degree and a maximum change in impedance magnitude of less than fifty ohm. A model for the contact impedance is used to correct impedance measurements, leaving an un-modeled contact impedance of a few ohms. There is typically a drift of about 100 ohm during a measurement sequence due to diffusion between the ceramic frits at the ends of the sample. This is corrected by repeat measurements at 100 Hz. Un-modeled impedance changes due to drift are about ten ohm. The un-modeled impedance changes mean that the relative error on conductive samples is greater than on resistive samples. Repeat measurements on a sandstone sample with conductive pore water (0.14 S/m) yield a mean of 492 ohms with a standard deviation of 20 ohm, or about five percent. Measurements on mineralized core and on cells constructed from mixtures of silica sand and polarizable minerals demonstrate that the two electrode set up can be used even on heavily mineralized samples.

  10. Estimation of postmortem interval using an electric impedance spectroscopy technique: a preliminary study.

    PubMed

    Mao, Shiwei; Dong, Xiuzhen; Fu, Feng; Seese, Ronald R; Wang, Zhenyuan

    2011-09-01

    The objective of this study was to develop a rapid method for the estimation of postmortem interval (PMI) using electric impedance spectroscopy. Postmortem rat spleens were studied at 10°C, 20°C, and 30°C; The results obtained demonstrated that postmortem interval negatively correlated with the absolute value of Im Z(//) (capacitive reactance component) in electrical impedance. This suggests that electric impedance spectroscopy may be a sensitive tool to determine the postmortem interval. Copyright © 2010 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Optimal tissue types in the thoracic electrical impedance model for thoracic electrical bioimpedance (TEB) studies.

    PubMed

    Akhand, M; Trakic, A; Terril, P; Liu, F; Wilson, S; Crozier, S

    2009-01-01

    In this study we have identified the tissues required to be included in the thoracic electrical impedance model for studies relating to impedance cardiography. This is a useful finding, as it expedites and simplifies the segmentation process when employed to construct digital human models from a set of magnetic resonance or computed tomography images. Laplace equations with inhomogeneous boundary conditions were solved within an anatomically accurate thorax model. When the number of tissue types in the model was reduced to only 7 (i.e. blood, fat, liver, lung, muscle, skin and bone) the calculations indicated a 3.6% error in the result. Addition of internal air reduced the error to as small as 1.3%. Further reductions in the number of tissue types introduced larger errors in the measurement. It was therefore concluded that 8 tissue types are essential to acceptably preserve the computational accuracy while facilitating a simplification of the segmentation process.

  12. Accurate position estimation methods based on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less

  13. Theory and cardiac applications of electrical impedance measurements.

    PubMed

    Penney, B C

    1986-01-01

    The methodology of the two-electrode, four-electrode, and guard-ring techniques is presented following a brief history of impedance plethysmography. The theoretical basis for predicting the sampling fields for conductivity and volume changes is presented. Theoretical and experimental studies of the sampling field associated with various electrode arrays are reviewed. With this background, the use of impedance plethysmography for cardiac monitoring and diagnosis is reviewed. The basic methodology is presented and models used to interpret the signal are reviewed. Theoretical and experimental studies of what is sampled are summarized. The accuracy of impedance stroke volume estimates is evaluated by surveying the results of human studies and examining critical animal studies. The usefulness of impedance cardiography for ventricular performance evaluation is also reviewed. Additional uses for cardiopulmonary diagnosis are briefly presented.

  14. Electrical impedance measurements: rapid method for detecting and monitoring microorganisms.

    PubMed Central

    Cady, P; Dufour, S W; Shaw, J; Kraeger, S J

    1978-01-01

    A conceptually simple and east-to-use technique is described that uses continuous impedance measurements for automated monitoring of microbial growth and metabolism. The method has been applied to a wide range of microorganisms. Optical clarity is not required. The sensitivity and reproducibility of the method are demonstrated. The mechanism whereby microbial growth alters the impedance of the medium is discussed, as well as potential applications of the method to clinical microbiology. Images PMID:348718

  15. Imaging fast electrical activity in the brain with electrical impedance tomography

    PubMed Central

    Aristovich, Kirill Y.; Packham, Brett C.; Koo, Hwan; Santos, Gustavo Sato dos; McEvoy, Andy; Holder, David S.

    2016-01-01

    Imaging of neuronal depolarization in the brain is a major goal in neuroscience, but no technique currently exists that could image neural activity over milliseconds throughout the whole brain. Electrical impedance tomography (EIT) is an emerging medical imaging technique which can produce tomographic images of impedance changes with non-invasive surface electrodes. We report EIT imaging of impedance changes in rat somatosensory cerebral cortex with a resolution of 2 ms and < 200 μm during evoked potentials using epicortical arrays with 30 electrodes. Images were validated with local field potential recordings and current source-sink density analysis. Our results demonstrate that EIT can image neural activity in a volume 7 × 5 × 2 mm in somatosensory cerebral cortex with reduced invasiveness, greater resolution and imaging volume than other methods. Modeling indicates similar resolutions are feasible throughout the entire brain so this technique, uniquely, has the potential to image functional connectivity of cortical and subcortical structures. PMID:26348559

  16. Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes.

    PubMed

    Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Seligman, Peter; Cowan, Robert; Shepherd, Robert

    2011-06-01

    Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Z(t)) and access resistance (R(a)) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between R(a) and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to pre-stimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation, suggesting that the level of stimulation applied was creating localized changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation.

  17. Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes

    PubMed Central

    Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Seligman, Peter; Cowan, Robert; Shepherd, Robert

    2011-01-01

    Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Zt) and access resistance (Ra) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between Ra and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to pre-stimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation suggesting that the level of stimulation applied was creating localised changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation. PMID:21572219

  18. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    SciTech Connect

    Zhao, Yanlin; Wang, Mi; Yao, Jun

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles

  19. Electric impedance for evaluation of body fluid balance in cardiac surgical patients.

    PubMed

    Perko, M J; Jarnvig, I L; Højgaard-Rasmussen, N; Eliasen, K; Arendrup, H

    2001-02-01

    To evaluate whether electric impedance can be used to monitor body fluid balance and fluid distribution in cardiac surgical patients. Prospective clinical study. Heart Center, Rigshospital, Copenhagen. Sixteen consecutive patients scheduled for cardiac surgery. Body weight, fluid balance, central hemodynamics, and total and segmental body impedance were examined perioperatively. During semisupine rest before surgery, changes in impedance indicated relocation of fluid from the legs to the thorax, mostly in the extracellular space. After surgery, weight and fluid balance increased by 3.87 +/- 0.35 kg and 1.86 +/- 0.16 L (mean +/- SE, p < 0.01) and remained elevated through the next 2 days. Impedance decreased by 30% over the thorax, by 24% over the abdomen, by 2% over the leg, and by 4% over the entire body. Changes in total and thoracoabdominal impedances had the highest correlation to the fluid balance (r = -0.86 and r = -0.87). After correction of impedance values by the constant from the regression model, the mean difference in estimation of fluid changes obtained by electric impedance and by fluid balance was 0 +/- 0.1 L at the range of changes of 4.6 L. Alterations in electric impedance closely follow changes in fluid balance during the perioperative period. This method can be used in clinical practice to control postoperative body fluid balance in cardiac surgical patients.

  20. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation.

    PubMed

    Kranjc, M; Bajd, F; Serša, I; Miklavčič, D

    2014-06-01

    The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage-current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of voltage-current measurement was lacking in information on tissue heterogeneity, while EIT requires numerous additional electrodes and produces results with low spatial resolution and high noise. Magnetic resonance EIT (MREIT) is similar to EIT, as it is also used for reconstruction of conductivity images, though voltage and current measurements are not limited to the boundaries in MREIT, hence it yields conductivity images with better spatial resolution. The aim of this study was to investigate and demonstrate the feasibility of the MREIT technique for assessment of conductivity images of tissues undergoing electroporation. Two objects were investigated: agar phantoms and ex vivo liver tissue. As expected, no significant change of electrical conductivity was detected in agar phantoms exposed to pulses of all used amplitudes, while a considerable increase of conductivity was measured in liver tissue exposed to pulses of different amplitudes.

  1. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    PubMed

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  2. Electrical Impedance Spectroscopy of Microchannel-Nanochannel Interface Devices

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Park, Sinwook; Yossifon, Gilad

    2013-05-01

    We report experimental verification of the depression of the slope in the Warburg branch of the electrochemical impedance spectrum using a fabricated microchannel-nanochannel device. This was previously theoretically predicted to occur with increasing dc bias voltage as a result of nanochannel electro-osmotic flow and provides an example of the influence of net fluid flow on electrokinetic transport. The dominant influence of nanochannel polarization in the kHz range of the impedance response is also demonstrated experimentally. This latter effect may be significant in both fundamental electrokinetics of micronanochannel devices as well as in practical molecular sensing applications.

  3. Development of an electrical impedance tomography system for an air-water vertical bubble column

    SciTech Connect

    O`Hern, T.J.; Torczynski, J.R.; Ceccio, S.L.; Tassin, A.L.; Chahine, G.L.; Duraiswami, R.; Sarkar, K.

    1995-09-01

    Because the components of a multiphase flow often exhibit different electrical properties, a variety of probes have been developed to study such flows by measuring impedance in the region of interest. Researchers are now using electric fields to reconstruct the impedance distribution within a measurement volume via Electrical Impedance Tomography (EIT). EIT systems employ voltage and current measurements on the boundary of a domain to create a representation of the impedance distribution within the domain. The development of the Sandia EIT system (S-EIT) is reviewed The construction of the projection acquisition system is discussed and two specific EIT inversion algorithms are detailed. The first reconstruction algorithm employs boundary element methods, and the second utilizes finite elements. The benefits and limitations of EIT systems are also discussed. Preliminary results are provided.

  4. Measurements of electrical impedance and elastic wave velocity of reservoir rock under fluid-flow test

    NASA Astrophysics Data System (ADS)

    Sawayama, Kazuki; Kitamura, Keigo; Fujimitsu, Yasuhiro

    2017-04-01

    The estimation of water saturation under the ground is essential in geothermal fields, particularly for EGS (enhanced geothermal system). To estimate water saturation, recently, electromagnetic exploration using Magnetotelluric (MT) method has been applied in the geothermal fields. However, the relationship between electrical impedance obtained from this method and water saturation in the reservoir rock has not been well known. Our goal is to elucidate this basic relationship by fluid-flow experiments. As our first step to this goal, we developed the technique to measure and analyze the electrical impedance of the cracked rock in the geothermal reservoir. The fluid-flow test has been conducted as following procedures. At first, reservoir rock sample (pyroxene andesite, Makizono lava formation, Japan) was filled with nitrogen gas (Pp = 10 MPa) under 20 MPa of confining pressure. This nitrogen gas imitates the overheated steam in the geothermal fields. Then, brine (1wt.%-KCl, 1.75 S/m) which imitates the artificial recharge to the reservoir was injected to the samples. After flow rate of drainage fluid becomes stable, injection pressure was increased (11, 12, 14, 16, 18 MPa) and decreased (18, 16, 14, 12, 11 MPa) to vary the water saturation in the samples. During the test, water saturation, permeability, electrical impedance (10-2-105 Hz of frequency) and elastic wave velocity were measured. As a result of andesite, electrical impedance dramatically decreased from 105 to 103 Ω and P-wave velocity increased by 2% due to the brine injection. This remarkable change of the electrical impedance could be due to the replacement of pre-filled nitrogen gas to the brine. After the brine injection, electrical impedance decreased with injection pressure (small change of water saturation) by up to 40% while P-wave velocity was almost constant (less than 1%). This decrease of electrical impedance with injection pressure could be related to the flow to the narrow path (microcrack

  5. Electrical impedance measurements in reentrant Au-Fe alloys

    NASA Astrophysics Data System (ADS)

    Barco, R.; Fraga, G. L. F.; Pureur, P.

    2017-08-01

    We report on impedance experiments carried out in the reentrant alloys Au-Fe 18 at.% and Au-Fe 21 at.%. A spin-glass system Au-Fe 13.5 at.% was also studied for comparison. Measurements cover an extended temperature interval including the paramagnetic state, the intermediate ferromagnetic-like phase and the low temperature reentrant regime. Several frequencies in the range 0.1-1.8 MHz were applied. Magneto-impedance measurements were also performed in low magnetic fields applied parallel to the current orientation. From the impedance versus temperature data, the real and imaginary components of the circumferential permeability were extracted. A Hopkinson maximum is observed in both permeability components of the reentrant magnets. Also observed in these systems is a downwards inflexion in the permeability versus temperature curves at the canting temperature TK where the reentrant regime sets in. The anisotropy field HK was obtained from the magneto-impedance measurements in several temperatures spanning the ferromagnetic and reentrant states. A marked increase of the HK magnitude occurs in temperatures below TK , indicating the stabilization of the reentrant phase by the anisotropic Dzyaloshisnskii-Moriya coupling. These results are in agreement with predictions of the mean-field theory that explains canting and the reentrant state with basis on the freezing of the spin components which are transverse to the field orientation.

  6. Transthoracic electrical impedance: artifacts associated with electrode movement.

    PubMed

    Hull, E T; Irie, T; Heemstra, H; Wildevuur, R H

    1978-01-01

    The applicability of transthoracic impedance measurements for estimating thoracic fluid volume and tidal volume is limited by large variations associated with electrode movement, repeated application of electrodes and inter-individual differences. These sources of variation were studied with a four-electrode impedance-measuring device in anaesthetized dogs. Electrode movement artifacts affecting both the resting expiratory value of impedance (Zo) and the respiratory change of impedance (deltaZ/VT) could be largely eliminated by rigidly fixing the distances between the current-supplying and the potential-sensing electrodes. The reproducibility of Zo and deltaZ/VT was found to be affected adversely by local conductivity changes in the skin induced by repeated removal of the glued electrodes. Inter-individual variations in Zo and deltaZ/VT correlated with the thickness of thoracic subcutaneous fat (r = 0.86) and thoracic circumference (r = -0.95) respectively. Correction for these sources of inter-individual variation allowed the standard deviations of Zo and deltaZ/VT to be reduced from 18% to 7% and from 51% to 17% of their respective mean values.

  7. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.

    PubMed

    Dai, Yu; Du, Jun; Yang, Qing; Zhang, Jianxun

    2014-09-01

    Compared to traditional open surgery, minimally invasive surgery (MIS) allows for a more rapid and less painful recovery. However, the lack of significant haptic feedback in MIS can make tissue discrimination difficult. This paper tests a noninvasive electrical impedance sensor for in vivo discrimination of tissue types in MIS. The sensor consists of two stainless steel spherical electrodes used to measure the impedance spectra over the frequency range of 200 kHz to 5 MHz. The sensor helps ensure free movement on an organ surface and prevents soft tissues from being injured during impedance measurement. Since the recorded electrical impedance is correlated with the force pressed on the electrode and the mechanical property of the tissue, the electrode-tissue contact impedance is calculated theoretically. We show that the standard deviation of the impedance ratio at each frequency point is sufficient to distinguish different tissue types. Both in vitro experiment in a pig kidney and in vivo experiment in rabbit organs were performed to demonstrate the feasibility of the electrical impedance sensor. The experimental results indicated that the sensor, used with the proposed data-processing method, provides accurate and reliable biological tissue discrimination. © 2014 Wiley Periodicals, Inc.

  8. Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators

    PubMed Central

    Kim, Pil-Jong; Kim, Hong-Gee

    2015-01-01

    Objectives The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL). Materials and Methods The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC) in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Results Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Conclusions Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC. PMID:25984472

  9. Electric impedance imaging of the mammary gland in the case of mastitis

    NASA Astrophysics Data System (ADS)

    Korotkova, M.; Karpov, A.

    2010-04-01

    The electric impedance mammography technique has been applied for several years. The aim of the research in hand is to reveal the peculiarities of the electric impedance imaging in various stages of the inflammatory process in the mammary gland. We have conducted an examination of twenty six patients: five of them in the stage of arterial hyperemia, eight in the stage of infiltration, three of them in the stage of abscess and ten in the stage of cicatrization. The examination was carried out on the "MEIK" (version 5.6) potencial electric impedance computer mammograph. The weighted reciprocal projection method was used to reconstruct the 3-D electric conductivity distribution of the examined organ. Any inflammatory process is phasic and always attended by the complex vascular alterations with exudation of liquid components of plasma, blood cells outwandering and stromal cells proliferation. Pathophysiological and histopathological peculiarities of each stage of the inflammatory process are well reflected in the electric impedance images. This fact enabled the authors of the research to define the electric impedance imaging as the histofunctional scanning.

  10. Electrical impedance spectroscopy for electro-mechanical characterization of conductive fabrics.

    PubMed

    Bera, Tushar Kanti; Mohamadou, Youssoufa; Lee, Kyounghun; Wi, Hun; Oh, Tong In; Woo, Eung Je; Soleimani, Manuchehr; Seo, Jin Keun

    2014-06-02

    When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS). We found that their electrical impedance spectra depend not only on the electrical properties of the conductive yarns, but also on their weaving structures. When we apply a mechanical tension or compression, there occur structural deformations in the conductive fabrics altering their apparent electrical impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased or decreased under tension or compression, respectively. For an almost non-stretchable conductive fabric, both tension and compression resulted in decreased impedance values since the applied tension failed to elongate the fabric. To measure both tension and compression separately, it is desirable to use a stretchable conductive fabric. For any conductive fabric chosen as a pressure-sensing material, its resistivity under no loading conditions must be carefully chosen since it determines a measurable range of the impedance values subject to different amounts of loadings. We suggest the EIS method to characterize the electromechanical property of a conductive fabric in designing a thin and flexible fabric pressure sensor.

  11. Electrical Impedance Spectroscopy for Electro-Mechanical Characterization of Conductive Fabrics

    PubMed Central

    Bera, Tushar Kanti; Mohamadou, Youssoufa; Lee, Kyounghun; Wi, Hun; Oh, Tong In; Woo, Eung Je; Soleimani, Manuchehr; Seo, Jin Keun

    2014-01-01

    When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS). We found that their electrical impedance spectra depend not only on the electrical properties of the conductive yarns, but also on their weaving structures. When we apply a mechanical tension or compression, there occur structural deformations in the conductive fabrics altering their apparent electrical impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased or decreased under tension or compression, respectively. For an almost non-stretchable conductive fabric, both tension and compression resulted in decreased impedance values since the applied tension failed to elongate the fabric. To measure both tension and compression separately, it is desirable to use a stretchable conductive fabric. For any conductive fabric chosen as a pressure-sensing material, its resistivity under no loading conditions must be carefully chosen since it determines a measurable range of the impedance values subject to different amounts of loadings. We suggest the EIS method to characterize the electromechanical property of a conductive fabric in designing a thin and flexible fabric pressure sensor. PMID:24892493

  12. Electrical Impedance Spectroscopy-Based Defect Sensing Technique in Estimating Cracks

    PubMed Central

    Zhang, Tingting; Zhou, Liangdong; Ammari, Habib; Seo, Jin Keun

    2015-01-01

    A defect sensing method based on electrical impedance spectroscopy is proposed to image cracks and reinforcing bars in concrete structures. The method utilizes the frequency-dependent behavior of thin insulating cracks: low-frequency electrical currents are blocked by insulating cracks, whereas high-frequency currents can pass through thin cracks to probe the conducting bars. From various frequency-dependent electrical impedance tomography (EIT) images, we can show its advantage in terms of detecting both thin cracks with their thickness and bars. We perform numerical simulations and phantom experiments to support the feasibility of the proposed method. PMID:26007713

  13. Impedance spectroscopy and electric modulus behavior of Molybdenum doped Cobalt-Zinc ferrite

    NASA Astrophysics Data System (ADS)

    Pradhan, A. K.; Nath, T. K.; Saha, S.

    2017-07-01

    The complex impedance spectroscopy and the electric modulus of Mo doped Cobalt-Zinc inverse spinel ferrite has been investigated in detail. The conventional ceramic technique has been used to prepare the CZMO. The HRXRD technique has been used to study the structural analysis which confirms the inverse spinel structure of the material and also suggest the material have Fd3m space group. The complex impedance spectroscopic data and the electric modulus formalism have been used to understand the dielectric relaxation and conduction process. The contribution of grain and grain boundary in the electrical conduction process of CZMO has been confirmed from the Cole-Cole plot. The activation energy is calculated from both the IS (Impedance Spectroscopy) and electric modulus formalism and found to be nearly same for the materials.

  14. Electric impedance method for evaluation of the release property of calcein-encapsulated liposomes.

    PubMed

    Chen, Guoming; Jiang, Zhongwei; Yoshimoto, Makoto; Wei, Yunlong

    2009-11-01

    This paper is concerned with the study on development of a novel method for evaluation of the liposomes release property by measuring the electric impedance changes of liposome suspensions. Calcein/NaOH encapsulated liposomes (calcein-liposomes) were prepared with deionized water and were treated with ultrasonic irradiation in order to investigate the release property of the liposomes. To validate the proposed impedance measuring method, the calcein release rates were evaluated both by the impedance changes and the fluorescence intensity changes in calcein-liposome suspensions. With the comparison of these results obtained by the two methods, it is shown that the impedance method has much wider detecting concentration range than the fluorescence one. Furthermore, the impedance method can be efficiently used for evaluation of the release property on various ionic substances encapsulated within liposomes.

  15. Effects of steroids and lubricants on electrical impedance and tissue response following cochlear implantation.

    PubMed

    Huang, Christie Qi; Tykocinski, Michael; Stathopoulos, Dimitra; Cowan, Robert

    2007-09-01

    The present study examined the effects of steroids and lubricants on electrical impedance and tissue response following cochlear implantation in animal models. Guinea pigs were implanted following either no treatment, or intrascalar injection with dexamethasone, triamcinolone, sodium hyaluronate or saline. Cats were implanted following either no treatment, or intrascalar injection with dexamethasone, triamcinolone or a mixture of triamcinolone with sodium hyaluronate. In guinea pigs, impedance changes and intracochlear tissue response were less for the hyaluronate and saline groups. In cats, impedance in the dexamethasone group increased similar to non-treated cats. Impedance of triamcinolone treated cats remained low for about two months after implantation, before increasing to levels similar to the other groups. Significant fibrous tissue growth was observed histologically. The results of the present study indicate that a single intracochlear application of hyaluronate or triamcinolone may postpone, but will ultimately not prevent the rise in impedance following cochlear implantation.

  16. Electrical-Impedance Tomography for Opaque Multiphase Flows in Metallic (Electrically-Conducting) Vessels

    SciTech Connect

    LITER, SCOTT G.; TORCZYNSKI, JOHN R.; SHOLLENBERGER, KIM A.; CECCIO, STEVEN L.

    2002-10-01

    A novel electrical-impedance tomography (EIT) diagnostic system, including hardware and software, has been developed and used to quantitatively measure material distributions in multiphase flows within electrically-conducting (i.e., industrially relevant or metal) vessels. The EIT system consists of energizing and measuring electronics and seven ring electrodes, which are equally spaced on a thin nonconducting rod that is inserted into the vessel. The vessel wall is grounded and serves as the ground electrode. Voltage-distribution measurements are used to numerically reconstruct the time-averaged impedance distribution within the vessel, from which the material distributions are inferred. Initial proof-of-concept and calibration was completed using a stationary solid-liquid mixture in a steel bench-top standpipe. The EIT system was then deployed in Sandia's pilot-scale slurry bubble-column reactor (SBCR) to measure material distributions of gas-liquid two-phase flows over a range of column pressures and superficial gas flow rates. These two-phase quantitative measurements were validated against an established gamma-densitometry tomography (GDT) diagnostic system, demonstrating agreement to within 0.05 volume fraction for most cases, with a maximum difference of 0.15 volume fraction. Next, the EIT system was combined with the GDT system to measure material distributions of gas-liquid-solid three-phase flows in Sandia's SBCR for two different solids loadings. Accuracy for the three-phase flow measurements is estimated to be within 0.15 volume fraction. The stability of the energizing electronics, the effect of the rod on the surrounding flow field, and the unsteadiness of the liquid temperature all degrade measurement accuracy and need to be explored further. This work demonstrates that EIT may be used to perform quantitative measurements of material distributions in multiphase flows in metal vessels.

  17. Impedance of Polymer-Dispersed Liquid Crystals with Carbon Nanofibers in Weak Electric Fields

    NASA Astrophysics Data System (ADS)

    Zhdanov, K. R.; Romanenko, A. I.; Zharkova, G. M.; Podyacheva, O. Yu.

    2016-11-01

    Impedance of polymer-dispersed liquid crystals modified by carbon nanofibers is studied in fields lower than the threshold field of the director reorientation of a liquid crystal. It is shown that the real and imaginary parts of the impedance obey to the relationship (Zre - X0)2 + (Zim - Y0)2 = R 0 2 , where X0, Y0, and R0 are the fitting parameters depending on the frequency of the exciting electric field.

  18. Numerical analysis on effective electric field penetration depth for interdigital impedance sensor

    NASA Astrophysics Data System (ADS)

    Kim, Chon-ung; Li, Guofeng; Li, Jie; Jong, Hakchol; Ro, Cholwu; Song, Yunho; Pak, Gilhung; Im, Songil

    2013-03-01

    Interdigital (finger-like) electrodes are widely used for electrical impedance and capacitance tomography of composite dielectric materials and complex insulating structures. Because of their advantages, they are now effectively introduced as capacitance sensors into a variety of industrial branches, agriculture, medical science, biological engineering, military branches, etc. In order to effectively apply the so-called interdigital impedance sensors in practice, of great importance is to optimize the sensor design parameters such as the electric field penetration depth, signal strength and so on. The general design principles of the interdigital capacitance sensor have been discussed for a long time by many researchers. However, there is no consensus on the definition of the effective electric field penetration depth of interdigital electrode. This paper discusses how to determine the effective electric field penetration depth of interdigital sensor on the basis of the refractive principle of electric field intensity and the FEM analyses of electric field distribution and capacitance for the sensor model.

  19. Non-Contact Measurement of the Electrical Impedance of Biological Tissue

    DTIC Science & Technology

    2007-11-02

    NON-CONTACT MEASUREMENT OF THE ELECTRICAL IMPEDANCE OF BIOLOGICAL TISSUE C.H. Riedel and O.Dössel Institute of Biomedical Engineering, Universität...currents. Keywords—contact-free measurement, electrical im- pedance, coil systems I. Introduction The non-invasive method of measuring the impe- dance...can give information of the electrical characte- ristics of tissue. In some cases the conductivity gra- dient can be an important value. The

  20. Modeling of electrical impedance tomography to detect breast cancer by finite volume methods

    NASA Astrophysics Data System (ADS)

    Ain, K.; Wibowo, R. A.; Soelistiono, S.

    2017-05-01

    The properties of the electrical impedance of tissue are an interesting study, because changes of the electrical impedance of organs are related to physiological and pathological. Both physiological and pathological properties are strongly associated with disease information. Several experiments shown that the breast cancer has a lower impedance than the normal breast tissue. Thus, the imaging based on impedance can be used as an alternative equipment to detect the breast cancer. This research carries out by modelling of Electrical Impedance Tomography to detect the breast cancer by finite volume methods. The research includes development of a mathematical model of the electric potential field by 2D Finite Volume Method, solving the forward problem and inverse problem by linear reconstruction method. The scanning is done by 16 channel electrode with neighbors method to collect data. The scanning is performed at a frequency of 10 kHz and 100 kHz with three objects numeric includes an anomaly at the surface, an anomaly at the depth and an anomaly at the surface and at depth. The simulation has been successfully to reconstruct image of functional anomalies of the breast cancer at the surface position, the depth position or a combination of surface and the depth.

  1. An Analysis of Electrical Impedance Measurements Applied for Plant N Status Estimation in Lettuce (Lactuca sativa)

    PubMed Central

    Muñoz-Huerta, Rafael F.; de J. Ortiz-Melendez, Antonio; Guevara-Gonzalez, Ramon G.; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M.; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V.

    2014-01-01

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status. PMID:25057134

  2. An analysis of electrical impedance measurements applied for plant N status estimation in lettuce (Lactuca sativa).

    PubMed

    Muñoz-Huerta, Rafael F; Ortiz-Melendez, Antonio de J; Guevara-Gonzalez, Ramon G; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V

    2014-06-27

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status.

  3. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry.

    PubMed

    Kirkegaard, Julie; Clausen, Casper Hyttel; Rodriguez-Trujillo, Romen; Svendsen, Winnie Edith

    2014-09-01

    This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical impedance spectroscopy in order to perform a theoretical study to clarify our results. This study focuses on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy.

  4. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    PubMed Central

    Kirkegaard, Julie; Clausen, Casper Hyttel; Rodriguez-Trujillo, Romen; Svendsen, Winnie Edith

    2014-01-01

    This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical impedance spectroscopy in order to perform a theoretical study to clarify our results. This study focuses on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy. PMID:25587422

  5. Variable-Precision Arithmetic for Solving Inverse Problems of Electrical Impedance Tomography

    SciTech Connect

    Tian, H.; Yamada, S.; Iwahara, M.; Yang, H.

    2005-04-09

    Electrical Impedance Tomography (EIT) is a nondestructive imaging technique, which reconstructs the electrical characteristic tomographys by electrical measurement on the periphery of objects. EIT approximates the spatial distribution of impedance (or conductivity) within the detected objects via employing data of injected electrical currents and boundary electrical potentials. This technique would be used for detecting flaws inside metal materials or providing medical images. In theory EIT belongs to inverse problems of low frequency current field and its reconstruction calculation suffers from ill-posed nonlinear nature. This paper presents variable-precision arithmetic is effective to improve the precision of conventional finite-difference in Newton's method. Comparing with exact symbolic arithmetic and floating-point arithmetic, variable-precision arithmetic achieves a good tradeoff between accuracy and complexity of computing. The simulation results have illustrated that variable-precision arithmetic is valid for solving inverse problems of EIT.

  6. Spatial feature tracking impedence sensor using multiple electric fields

    DOEpatents

    Novak, James L.

    1998-01-01

    Linear and other features on a workpiece are tracked by measuring the fields generated between electrodes arrayed in pairs. One electrode in each pair operates as a transmitter and the other as a receiver, and both electrodes in a pair are arrayed on a carrier. By combining and subtracting fields between electrodes in one pair and between a transmitting electrode in one pair and a receiving electrode in another pair, information describing the location and orientation of the sensor relative to the workpiece in up to six degrees of freedom may be obtained. Typical applications will measure capacitance, but other impedance components may be measured as well. The sensor is designed to track a linear feature axis or a protrusion or pocket in a workpiece. Seams and ridges can be tracked by this non-contact sensor. The sensor output is useful for robotic applications.

  7. Spatial feature tracking impedence sensor using multiple electric fields

    DOEpatents

    Novak, J.L.

    1998-08-11

    Linear and other features on a workpiece are tracked by measuring the fields generated between electrodes arrayed in pairs. One electrode in each pair operates as a transmitter and the other as a receiver, and both electrodes in a pair are arrayed on a carrier. By combining and subtracting fields between electrodes in one pair and between a transmitting electrode in one pair and a receiving electrode in another pair, information describing the location and orientation of the sensor relative to the workpiece in up to six degrees of freedom may be obtained. Typical applications will measure capacitance, but other impedance components may be measured as well. The sensor is designed to track a linear feature axis or a protrusion or pocket in a workpiece. Seams and ridges can be tracked by this non-contact sensor. The sensor output is useful for robotic applications. 10 figs.

  8. Mapping Regional Differences of Local Pressure-Volume Curves With Electrical Impedance Tomography.

    PubMed

    Beda, Alessandro; Carvalho, Alysson R; Carvalho, Nadja C; Hammermüller, Sören; Amato, Marcelo B P; Muders, Thomas; Gittel, Claudia; Noreikat, Katharina; Wrigge, Hermann; Reske, Andreas W

    2017-04-01

    Lung-protective mechanical ventilation aims to prevent alveolar collapse and overdistension, but reliable bedside methods to quantify them are lacking. We propose a quantitative descriptor of the shape of local pressure-volume curves derived from electrical impedance tomography, for computing maps that highlight the presence and location of regions of presumed tidal recruitment (i.e., elastance decrease during inflation, pressure-volume curve with upward curvature) or overdistension (i.e., elastance increase during inflation, downward curvature). Secondary analysis of experimental cohort study. University research facility. Twelve mechanically ventilated pigs. After induction of acute respiratory distress syndrome by hydrochloric acid instillation, animals underwent a decremental positive end-expiratory pressure titration (steps of 2 cm H2O starting from ≥ 26 cm H2O). Electrical impedance tomography-derived maps were computed at each positive end-expiratory pressure-titration step, and whole-lung CT taken every second steps. Airway flow and pressure were recorded to compute driving pressure and elastance. Significant correlations between electrical impedance tomography-derived maps and positive end-expiratory pressure indicate that, expectedly, tidal recruitment increases in dependent regions with decreasing positive end-expiratory pressure (p < 0.001) and suggest that overdistension increases both at high and low positive end-expiratory pressures in nondependent regions (p < 0.027), supporting the idea of two different scenarios of overdistension occurrence. Significant correlations with CT measurements were observed: electrical impedance tomography-derived tidal recruitment with poorly aerated regions (r = 0.43; p < 0.001); electrical impedance tomography-derived overdistension with nonaerated regions at lower positive end-expiratory pressures and with hyperaerated regions at higher positive end-expiratory pressures (r ≥ 0.72; p < 0.003). Even for

  9. In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes.

    PubMed

    Süselbeck, Tim; Thielecke, Hagen; Weinschenk, Ines; Reininger-Mack, Alexandra; Stieglitz, Thomas; Metz, Jürgen; Borggrefe, Martin; Robitzki, Andrea; Haase, Karl K

    2005-01-01

    Interventional techniques are necessary, which allow the characterization of intravascular pathological processes. Electric impedance spectroscopy (EIS) can provide cellular information of biological tissue. We tested the feasibility of intravascular EIS by using a new impedance catheter system with integrated microelectrodes in an experimental animal model. Eighteen stents were implanted into the iliac arteries of female New Zealand White rabbits (n = 11) to induce intimal proliferation. After 14, 28 and 56 days the electric impedance was measured inside and outside of the stented arterial segments by using a balloon catheter with four integrated microelectrodes. The impedance was recorded at a frequency ranging from 1 Hz to 1 MHz. After the measurements, the stents were explanted and histomorphometry was performed. The impedance inside and outside the stent was analysed and compared with the histomorphometric data. Fourteen (n = 6), 28 (n = 5) and 56 (n = 6) days after stent implantation the difference of the electrical impedance between the native and the stented iliac artery segment increased from -924 +/- 715 Ohm to 3689 +/- 1385 Ohm (14 days vs. 28 days; p < 0.05) and 8637 +/- 2881 Ohm (14 days vs. 56 days; p < 0.05), respectively. The increase of the electrical impedance corresponded to an increased neointimal proliferation in the stented arterial segment of 3.6% +/-0.7% after 14 days, 8.4% +/- 4.8% after 28 days (14 days vs. 28 days; p < 0.05) and 10.0% +/- 4.1% after 56 days (14 days vs. 56 days; p < 0.01). Intravascular EIS can be performed by a balloon catheter with integrated microelectrodes and allows the detection of neointimal proliferation after stent implantation.

  10. Measuring the multi-frequency electrical impedance of the mouse gastrocnemius muscle using a tetrapolar technique

    NASA Astrophysics Data System (ADS)

    Li, J.; Fogerson, P. M.; Rutkove, S. B.

    2010-04-01

    Electrical impedance methods can be used to evaluate and monitor neuromuscular disease states. Recently, we have applied tetrapolar surface electrical impedance methods to the gastrocnemius muscle of the rat for this purpose and substantial changes in the impedance parameters after sciatic nerve crush can be identified. In order to be able to study additional animal models of nerve and muscle disease, however, it would highly desirable to be able to perform such impedance measurements in the mouse. Yet the small size of the mouse presents a substantial technical challenge. In this study, we evaluate a basic approach for performing such measurements. A series of thin, stainless steel strip electrodes affixed to the gastrocnemius and interfaced via a separate connector to the Imp SFB7® (Impedimed, Inc), provided an effective means for obtaining impedance data in the 20-500 kHz range. After two weeks, test-retest reproducibility was good, with intra-class correlation coefficients as high 0.84 and variability as low as 12.86 ± 6.18% in the 15 mice studied. Using this approach, it may now be possible to study impedance changes in a variety of mouse models of neuromuscular disease, including amyotrophic lateral sclerosis, spinal muscular atrophy, muscular dystrophy and Charcot-Marie-Tooth disease.

  11. Using of electrical impedance tomography for diagnostics of the cervix uteri diseases

    NASA Astrophysics Data System (ADS)

    Trokhanova, O. V.; Chijova, Y. A.; Okhapkin, M. B.; Korjenevsky, A. V.; Tuykin, T. S.

    2010-04-01

    The report presents results of investigation of the neck of the womb (cervix) of 64 women aged from 19 to 70, that formed 4 clinical groups (1st group: 15 women without any pathology of the cervix, 2nd group: 27 women with the erosion, 3rd group: 11 women with dysplasia, 4th group: 11 women with cancer of the cervix). The aim of this research is to assess the capabilities of electrical impedance tomography in the diagnostics of the cervix diseases. The methods of the research were: visual examination with the speculum, colposcopy, and biopsy of the cervix. Also the new method of visualization of the cervix was used - electrical impedance tomography with the help of gynecological impedance tomograph (GIT). The following results were obtained. The electrical conductivity of the cervix in norm and in different pathology has different indices, which allow differential diagnostics of benign and malignant diseases. Summary: the method of electrical impedance tomography allows not only visually estimate portio vaginalis, but receive indices of electrical conductivity of the cervix on the depth up to 0.8 cm and thereby reveal pathological changes in epithelium without invasive and operative intervention.

  12. Transthoracic electrical impedance during external defibrillation: comparison of measured and modelled waveforms.

    PubMed

    Al Hatib, F; Trendafilova, E; Daskalov, I

    2000-02-01

    The transthoracic electrical impedance is an important defibrillation parameter, affecting the defibrillating current amplitude and energy, and therefore the defibrillation efficiency. A close relationship between transthoracic impedance and defibrillation success rate was observed. Pre-shock measurements (using low amplitude high frequency current) of the impedance were considered a solution for selection of adequate shock voltages or for current-based defibrillation dosage. A recent approach, called 'impedance-compensating defibrillation' was implemented, where the pulse duration was controlled with respect to the impedance measured during the initial phase of the shock. These considerations raised our interest in reassessment of the transthoracic impedance characteristics and the corresponding measurement methods. The purpose of this work is to study the variations of the transthoracic impedance by a continuous measurement technique during the defibrillation shock and comparing the data with results obtained by modelling. Voltage and current impulse waveforms were acquired during cardioversion of patients with atrial fibrillation or flutter. The same type of defibrillation pulse was taken from dogs after induction of fibrillation. The electrodes were located in the anterior position, for both the patients and animals.

  13. Novel method to determine instantaneous blood volume in pulsatile blood pump using electrical impedance.

    PubMed

    Sasaki, E; Nakatani, T; Taenaka, Y; Takano, H; Hirose, H

    1994-08-01

    A novel real-time volumetric method was developed for a pulsatile pump. This method, the impedance method, used electrical impedance change in the blood chamber according to volume change while pumping. This method was evaluated with two kinds of air-driven diaphragm pumps. During in vitro tests, the impedance method indicated real-time volume change, and there was excellent correlation between computed stroke volume with the impedance method and measured stroke volume with the electromagnetic flowmeter. In chronic animal tests with goats and in a clinical case, the impedance method measured pump output accurately, and it detected diaphragm motion in real-time. In addition, excellent durability was seen. Full-fill to full-empty drive was realized accurately with this method. Application of the impedance method was easy, and it did not deteriorate native antithrombogencity of the pump. The impedance method is practical and useful to estimate the pumping condition of a pulsatile blood pump, especially a diaphragm pump. This method would be useful in clinical application.

  14. All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring.

    PubMed

    Ameri, Shideh Kabiri; Singh, Pramod K; Dokmeci, Mehmet R; Khademhosseini, Ali; Xu, Qiaobing; Sonkusale, Sameer R

    2014-04-15

    We present a portable lab-on-chip device for high-throughput trapping and lysis of single cells with in-situ impedance monitoring in an all-electronic approach. The lab-on-chip device consists of microwell arrays between transparent conducting electrodes within a microfluidic channel to deliver and extract cells using alternating current (AC) dielectrophoresis. Cells are lysed with high efficiency using direct current (DC) electric fields between the electrodes. Results are presented for trapping and lysis of human red blood cells. Impedance spectroscopy is used to estimate the percentage of filled wells with cells and to monitor lysis. The results show impedance between electrodes decreases with increase in the percentage of filled wells with cells and drops to a minimum after lysis. Impedance monitoring provides a reasonably accurate measurement of cell trapping and lysis. Utilizing an all-electronic approach eliminates the need for bulky optical components and cameras for monitoring.

  15. Detection and quantification of Alicyclobacillus acidoterrestris by electrical impedance in apple juice.

    PubMed

    Fernández, Pilar; Gabaldón, José Antonio; Periago, Mª Jesús

    2017-12-01

    Alicyclobacillus acidoterrestris is a thermotolerant bacterium able to grow in fruit juices and drinks, as the spoilage by Alicyclobacillus in the final product does not product any gas, but leads to a "medicine flavor" due to the formation of guaicol. Also, its detection is a challenge for the quality control departments, because it takes several days to get the results of traditional microbiology methods. This study aimed at developing a more accurate electrical impedance technique for the detection of A. acidoterrestris in concentrated apple juice. Samples of apple juice were inoculated with A. acidoterrestris spores isolated from a peach and grape juice. For the spore germination, several heat-shock treatments were tested (80 °C/10 min, 70 °C/20 min and 60 °C/30 min). Direct and indirect electrical impedance was applied to detect and quantify the microorganism in the inoculated apple juice, using BAT broth and Bimedia 002A (pH 4). The 80 °C/10 min treatment was selected for spore activation. The valid electrical impedance technique was the indirect method in BAT broth, which measured the changes in the impedance through the formation of CO2. In addition, a positive correlation (r = 0.98, R(2) = 0.97) was observed between the classical microbiology (BAM agar) and the indirect impedance method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    PubMed

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  17. Assessment of distraction callus in rabbits by monitoring of the electrical impedance of bone.

    PubMed

    Yoshida, Takashi; Kim, Wook-Cheol; Oka, Yoshinobu; Yamada, Naotake; Kubo, Toshikazu

    2010-10-01

    Evaluation of distraction callus is important for determination of the optimal time for removal of external fixation. We attempted to determine whether there might be a relationship between the electrical impedance of bone and callus maturation, with a view to using impedance as a way of knowing when to remove a fixator. We applied an external lengthener to the right tibia of 24 rabbits and performed distraction at 1 mm/day for 10 days. Radiographs were taken and measurement of overall impedance between fixation pins was performed weekly after distraction. At weeks 2, 4, 6, and 8 after distraction (n = 6 each), resistivity of the bone to electrical conductivity was measured before killing. Cross-sectional area of the conduction pathway in callus and maximum bending stress were measured after excision of the tibia. The overall impedance increased statistically significantly from 1 to 6 weeks after completion of distraction. The resistivity of bone decreased over 4 weeks and the cross-sectional area of callus decreased significantly over 6 weeks, while the maximum bending stress increased significantly over the same time. We observed a negative correlation between the cross-sectional area of callus and maximum bending stress. The impedance values, which are related to changes in electrical conductivity and the conduction pathway, increased due to the changes in the cross-sectional area of callus, despite the reduction in bone resistivity. Since the cross-sectional area of callus was correlated with maximum bending stress and the impedance values increased with the callus-remodeling process, we suggest that temporal increases in overall impedance reflect callus maturation.

  18. A Review of Electrical Impedance Spectrometry Methods for Parametric Estimation of Physiologic Fluid Volumes

    NASA Technical Reports Server (NTRS)

    Dewberry, B.

    2000-01-01

    Electrical impedance spectrometry involves measurement of the complex resistance of a load at multiple frequencies. With this information in the form of impedance magnitude and phase, or resistance and reactance, basic structure or function of the load can be estimated. The "load" targeted for measurement and estimation in this study consisted of the water-bearing tissues of the human calf. It was proposed and verified that by measuring the electrical impedance of the human calf and fitting this data to a model of fluid compartments, the lumped-model volume of intracellular and extracellular spaces could be estimated, By performing this estimation over time, the volume dynamics during application of stimuli which affect the direction of gravity can be viewed. The resulting data can form a basis for further modeling and verification of cardiovascular and compartmental modeling of fluid reactions to microgravity as well as countermeasures to the headward shift of fluid during head-down tilt or spaceflight.

  19. Some early results related to electrical impedance of normal and abnormal gastric tissue.

    PubMed

    Keshtkar, A; Salehnia, Z; Somi, M H; Eftekharsadat, A T

    2012-01-01

    Gastric cancer is the fourth most common cancer and most patients with gastric cancer are being diagnosed in advanced stages of the disease so they do not gain any survival chance from conventional surgical, chemotherapeutic or radiotherapeutic methods. These are relatively high cost procedures in terms of both time and money. This study considers the introduction of a novel minimally invasive diagnostic technique which shows the relationship between histopathology and the electrical impedance spectrum in the human stomach. In this study, 4 electrode technique was used to differentiate tissues from each other using Tabriz Mark 1 electrical impedance system (30 different frequencies in the range of 2 kHz to 1 MHz). A total of 97 points from 45 patients were studied in terms of their biopsy reports matching to the electrical impedance measurements (in vivo). After impedance measurements and applying calibration factors, a non-parametric statistical technique, the Kruskal-Wallis test was used to evaluate the difference among the groups. According to the calculation of respective data using this spectroscopy system, the resistivity of the normal group was higher than that of the benign group, and the resistivity of these groups were higher than that of the malignant group at frequencies between 470 kHz and 1 MHz (P < 0.05). In these frequencies, the impedivity of the dysplastic tissue was significantly lower than that of the other groups (P < 0.05). Also, Cole equation fitting procedure was used to generate a scatter plot of the malignant and benign points: it shows in general, benign points had higher values of R than the malignant points. Therefore, electrical impedance spectroscopy can be a useful technique to characterize the stomach tissue. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Interpulse multifrequency electrical impedance measurements during electroporation of adherent differentiated myotubes.

    PubMed

    García-Sánchez, Tomás; Azan, Antoine; Leray, Isabelle; Rosell-Ferrer, Javier; Bragós, Ramon; Mir, Lluis M

    2015-10-01

    In this study, electrical impedance spectroscopy measurements are performed during electroporation of monolayers of differentiated myotubes. The time resolution of the system (1 spectrum/ms) enable 860 full spectra (21 frequencies from 5 kHz to 1.3 MHz) to be acquired during the time gap between consecutive pulses (interpulse) of a classical electroporation treatment (8 pulses, 100 μs, 1 Hz). Additionally, the characteristics of the custom microelectrode assembly used allow the experiments to be performed directly in situ in standard 24 multi-well plates. The impedance response dynamics are studied for three different electric field intensities (400, 800 and 1200 V/cm). The multifrequency information, analysed with the Cole model, reveals a short-term impedance recovery after each pulse in accordance with the fast resealing of the cell membrane, and a long-term impedance decay over the complete treatment in accordance with an accumulated effect pulse after pulse. The analysis shows differences between the lowest electric field condition and the other two, suggesting that different mechanisms that may be related with the reversibility of the process are activated. As a result of the multifrequency information, the system is able to measure simultaneously the conductivity variations due to ion diffusion during electroporation. Finally, in order to reinforce the physical interpretation of the results, a complementary electrical equivalent model is used. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers

    PubMed Central

    Cha, Jung-Joon; Park, Yangkyu; Yun, Joho; Kim, Hyeon Woo; Park, Chang-Ju; Kang, Giseok; Jung, Minhyun; Pak, Boryeong; Jin, Suk-Won

    2016-01-01

    Senescence of cardiac myocytes is frequently associated with heart diseases. To analyze senescence in cardiac myocytes, a number of biomarkers have been isolated. However, due to the complex nature of senescence, multiple markers are required for a single assay to accurately depict complex physiological changes associated with senescence. In single cells, changes in both cytoplasm and cell membrane during senescence can affect the changes in electrical impedance. Based on this phenomenon, we developed MEDoS, a novel microelectrochemical impedance spectroscopy for diagnosis of senescence, which allows us to precisely measure quantitative changes in electrical properties of aging cells. Using cardiac myocytes isolated from 3-, 6-, and 18-month-old isogenic zebrafish, we examined the efficacy of MEDoS and showed that MEDoS can identify discernible changes in electrical impedance. Taken together, our data demonstrated that electrical impedance in cells at different ages is distinct with quantitative values; these results were comparable with previously reported ones. Therefore, we propose that MEDoS be used as a new biomarker-independent methodology to obtain quantitative data on the biological senescence status of individual cells. PMID:27812531

  2. On-line monitoring of the crystallization process: relationship between crystal size and electrical impedance spectra

    NASA Astrophysics Data System (ADS)

    Zhao, Yanlin; Yao, Jun; Wang, Mi

    2016-07-01

    On-line monitoring of crystal size in the crystallization process is crucial to many pharmaceutical and fine-chemical industrial applications. In this paper, a novel method is proposed for the on-line monitoring of the cooling crystallization process of L-glutamic acid (LGA) using electrical impedance spectroscopy (EIS). The EIS method can be used to monitor the growth of crystal particles relying on the presence of an electrical double layer on the charged particle surface and the polarization of double layer under the excitation of alternating electrical field. The electrical impedance spectra and crystal size were measured on-line simultaneously by an impedance analyzer and focused beam reflectance measurement (FBRM), respectively. The impedance spectra were analyzed using the equivalent circuit model and the equivalent circuit elements in the model can be obtained by fitting the experimental data. Two equivalent circuit elements, including capacitance (C 2) and resistance (R 2) from the dielectric polarization of the LGA solution and crystal particle/solution interface, are in relation with the crystal size. The mathematical relationship between the crystal size and the equivalent circuit elements can be obtained by a non-linear fitting method. The function can be used to predict the change of crystal size during the crystallization process.

  3. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography

    PubMed Central

    Ericsson, Elin; Tesselaar, Erik; Sjöberg, Folke

    2016-01-01

    Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion. PMID:27253433

  4. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography.

    PubMed

    Ericsson, Elin; Tesselaar, Erik; Sjöberg, Folke

    2016-01-01

    Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion.

  5. Piezo-sensor self-diagnostics using electrical impedance measurements.

    SciTech Connect

    Park, G. H.; Farrar, C. R.; Rutherford, A. C.; Robertson, A. N.

    2004-01-01

    This paper present the piezoelectric sensor self-diagnostic procedure that performs in-situ monitoring of the operational status of piezoelectric materials (PZT) used for sensors and actuators in structural health monitoring (SHM) applications. The use of active-sensing piezoelectric materials has received considerable attention in the SHM community. A critical aspect of the piezoelectric active-sensing technologies is that usually large numbers of distributed sensors and actuators are needed to perform the required monitoring process. The sensor/actuator self-diagnostic procedure, where the sensors/actuators are confirmed to be functioning properly during operation, is therefore a critical component to successfully complete the SHM process and to minimize the false indication regarding the structural health. The basis of this procedure is to track the changes in the capacitive value of piezoelectric materials resulting from the sensor failure, which is manifested in the imaginary part of the measured electrical admittances. Furthermore, through the analytical and experimental investigation, it is confirmed that the bonding layer between the PZT and a host structure significantly contributes to the measured capacitive values. Therefore, by monitoring the imaginary part of the admittances, one can quantitatively assess the degradation of the mechanical/electrical properties of the PZT and its attachment to a host structure. This paper concludes with an experimental example to demonstrate the feasibility of the proposed sensor-diagnostic procedure.

  6. Relationship between moisture content and electrical impedance of carrot slices during drying

    NASA Astrophysics Data System (ADS)

    Kertész, Ákos; Hlaváčová, Zuzana; Vozáry, Eszter; Staroňová, Lenka

    2015-01-01

    Electrical properties of food materials can give information about the inner structure and physiological state of biological tissues. Generally, the process of drying of fruits and vegetables is followed by weight loss. The aim of this study was to measure the impedance spectra of carrot slices during drying and to correlate impedance parameters to moisture content in different drying periods. Cylindrical slices were cut out from the carrot root along the axis. The slices were dried in a Venticell 111 air oven at 50°C. The weight of the slices was measured with a Denver SI-603 electronic analytical and precision balance. The weighing of the samples was performed every 30 min at the beginning of drying and every 60 min after the process. The moisture content of the samples was calculated on wet basis. The magnitude and phase angle of electrical impedance of the slices were measured with HP 4284A and 4285A precision LCR meters in the frequency range from 30 Hz to 1 MHz and from 75 kHz to 30 MHz, respectively, at voltage 1 V. The impedance measurement was performed after weighting. The change in the magnitude of impedance during drying showed a good correlation with the change in the moisture content.

  7. The use of electrical impedance spectroscopy in the detection of cervical intraepithelial neoplasia.

    PubMed

    Abdul, S; Brown, B H; Milnes, P; Tidy, J A

    2006-01-01

    The objective of this study was to assess the performance of cervical impedance spectroscopy in the detection of cervical intraepithelial neoplasia (CIN) using the new MKIII impedance probe. A prospective observational study recruited women referred to colposcopy with an abnormal Papanicolaou smear. A pencil probe incorporating four gold electrodes was used to measure electrical impedance spectra from cervical epithelium. Colposcopy examinations, including probe positioning, were video recorded to allow for correlation between results obtained from colposcopic impression, histopathologic examination of colposcopic punch biopsies, and impedance measurements. Cervical impedance-derived parameters R, S, R/S, C, and Fc were assessed to see if significant difference in values obtained in CIN and normal epithelium existed. The performance of the probe in identifying women with CIN was also assessed. One hundred seventy-six women were recruited and 1168 points analyzed. Parameters R, S, and Fc showed significant separation of CIN or squamous intraepithelial lesion (SIL) from squamous, mature metaplastic, and columnar epithelium. Sensitivities of 74% and specificity of 53% can be achieved in identifying CIN 2/3 (High-grade SIL) in screened women. We conclude that cervical impedance spectrometry provides a potentially promising real-time screening tool for CIN with similar sensitivity and specificity to currently used screening tests. Further research is ongoing to develop the probe for potential clinical use.

  8. Skin impedance is not a factor in transcutaneous electrical nerve stimulation effectiveness

    PubMed Central

    Vance, Carol GT; Rakel, Barbara A; Dailey, Dana L; Sluka, Kathleen A

    2015-01-01

    Objective Transcutaneous electrical nerve stimulation (TENS) is a nonpharmacological intervention used to manage pain using skin surface electrodes. Optimal electrode placement is unclear. We hypothesized that better analgesia would occur if electrodes were placed over sites with lower skin impedance. Optimal site selection (OSS) and sham site selection (SSS) electrode sites on the forearm were identified using a standard clinical technique. Methods Experiment 1 measured skin impedance in the forearm at OSS and SSS. Experiment 2 was a crossover design double-blind randomized controlled trial comparing OSS-TENS, SSS-TENS, and placebo TENS (P-TENS) to confirm differences in skin impedance between OSS and SSS, and measure change in pressure pain threshold (PPT) following a 30-minute TENS treatment. Healthy volunteers were recruited (ten for Experiment 1 [five male, five female] and 24 for Experiment 2 [12 male, 12 female]). TENS was applied for 30 minutes at 100 Hz frequency, 100 µs pulse duration, and “strong but nonpainful” amplitude. Results Experiment 1 results demonstrate significantly higher impedance at SSS (17.69±1.24 Ω) compared to OSS (13.53±0.57 Ω) (P=0.007). For Experiment 2, electrode site impedance was significantly higher over SSS, with both the impedance meter (P=0.001) and the TENS unit (P=0.012) compared to OSS. PPT change was significantly greater for both OSS-TENS (P=0.024) and SSS-TENS (P=0.025) when compared to P-TENS. PPT did not differ between the two active TENS treatments (P=0.81). Conclusion Skin impedance is lower at sites characterized as optimal using the described technique of electrode site selection. When TENS is applied at adequate intensities, skin impedance is not a factor in attainment of hypoalgesia of the forearm in healthy subjects. Further investigation should include testing in patients presenting with painful conditions. PMID:26316808

  9. Frequency-division multiplexing for electrical impedance tomography in biomedical applications.

    PubMed

    Granot, Yair; Ivorra, Antoni; Rubinsky, Boris

    2007-01-01

    Electrical impedance tomography (EIT) produces an image of the electrical impedance distribution of tissues in the body, using electrodes that are placed on the periphery of the imaged area. These electrodes inject currents and measure voltages and from these data, the impedance can be computed. Traditional EIT systems usually inject current patterns in a serial manner which means that the impedance is computed from data collected at slightly different times. It is usually also a time-consuming process. In this paper, we propose a method for collecting data concurrently from all of the current patterns in biomedical applications of EIT. This is achieved by injecting current through all of the current injecting electrodes simultaneously, and measuring all of the resulting voltages at once. The signals from various current injecting electrodes are separated by injecting different frequencies through each electrode. This is called frequency-division multiplexing (FDM). At the voltage measurement electrodes, the voltage related to each current injecting electrode is isolated by using Fourier decomposition. In biomedical applications, using different frequencies has important implications due to dispersions as the tissue's electrical properties change with frequency. Another significant issue arises when we are recording data in a dynamic environment where the properties change very fast. This method allows simultaneous measurements of all the current patterns, which may be important in applications where the tissue changes occur in the same time scale as the measurement. We discuss the FDM EIT method from the biomedical point of view and show results obtained with a simple experimental system.

  10. Dynamic Impedance Model of the Skin-Electrode Interface for Transcutaneous Electrical Stimulation

    PubMed Central

    Vargas Luna, José Luis; Krenn, Matthias; Cortés Ramírez, Jorge Armando; Mayr, Winfried

    2015-01-01

    Transcutaneous electrical stimulation can depolarize nerve or muscle cells applying impulses through electrodes attached on the skin. For these applications, the electrode-skin impedance is an important factor which influences effectiveness. Various models describe the interface using constant or current-depending resistive-capacitive equivalent circuit. Here, we develop a dynamic impedance model valid for a wide range stimulation intensities. The model considers electroporation and charge-dependent effects to describe the impedance variation, which allows to describe high-charge pulses. The parameters were adjusted based on rectangular, biphasic stimulation pulses generated by a stimulator, providing optionally current or voltage-controlled impulses, and applied through electrodes of different sizes. Both control methods deliver a different electrical field to the tissue, which is constant throughout the impulse duration for current-controlled mode or have a very current peak for voltage-controlled. The results show a predominant dependence in the current intensity in the case of both stimulation techniques that allows to keep a simple model. A verification simulation using the proposed dynamic model shows coefficient of determination of around 0.99 in both stimulation types. The presented method for fitting electrode-skin impedance can be simple extended to other stimulation waveforms and electrode configuration. Therefore, it can be embedded in optimization algorithms for designing electrical stimulation applications even for pulses with high charges and high current spikes. PMID:25942010

  11. Physics of a novel magnetic resonance and electrical impedance combination for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Kallergi, Maria; Heine, John J.; Wollin, Ernest

    2015-03-01

    A new technique is proposed and experimentally validated for breast cancer detection and diagnosis. The technique combines magnetic resonance with electrical impedance measurements and has the potential to increase the specificity of magnetic resonance mammography (MRM) thereby reducing false positive biopsy rates. The new magnetic resonance electrical impedance mammography (MREIM) adds a time varying electric field during a supplementary sequence to a standard MRM examination with an apparatus that is "invisible" to the patient. The applied electric field produces a current that creates an additional magnetic field with a component aligned with the bore magnetic field that can alter the native signal in areas of higher electrical conductivity. The justification for adding the electric field is that the electrical conductivity of cancerous breast tissue is approximately 3-40 times higher than normal breast tissue and, hence, conductivity of malignant tissue represents a known clinical disease biomarker. In a pilot study with custom-made phantoms and experimental protocols, it was demonstrated that MREIM can produce, as theoretically predicted, a detectable differential signal in areas of higher electrical conductivity (tumor surrogate regions); the evidence indicates that the differential signal is produced by the confluence of two different effects at full image resolution without gadolinium chelate contrast agent injection, without extraneous reconstruction techniques, and without cumbersome multi-positioned patient electrode configurations. This paper describes the theoretical model that predicts and explains the observed experimental results that were also confirmed by simulation studies.

  12. Use of low-frequency electrical impedance measurements to determine phospholipid content in amniotic fluid

    NASA Astrophysics Data System (ADS)

    DeLuca, F.; Cametti, C.; Zimatore, G.; Maraviglia, B.; Pachi', A.

    1996-09-01

    In this report we propose a new method for an in vitro test of the foetal lung maturity based on the measurement of the electrical conductivity of the overall amniotic fluid obtained from transabdominal amniocentesis, since this quantity can be linked to a first approximation in a very simple way to the phospholipid content. We have carried out measurements of 85 different samples of amniotic fluid as a function of gestation weeks and we have observed a pronounced change of the electrical conductivity that reflects the increase in the phospholipid concentration occurring at the end of normal pregnancies. The method could be further developed to obtain similar information on in vivo experiments by means of bioelectric impedance tomography, taking advantage of the frequency dependence of the tissue electrical impedance.

  13. Investigation of low frequency electrolytic solution behavior with an accurate electrical impedance method

    NASA Astrophysics Data System (ADS)

    Ho, Kung-Chu; Su, Vin-Cent; Huang, Da-Yo; Lee, Ming-Lun; Chou, Nai-Kuan; Kuan, Chieh-Hsiung

    2017-01-01

    This paper reports the investigation of strong electrolytic solutions operated in low frequency regime through an accurate electrical impedance method realized with a specific microfluidic device and high resolution instruments. Experimental results show the better repeatability and accuracy of the proposed impedance method. Moreover, all electrolytic solutions appear the so-called relaxation frequency at each peak value of dielectric loss due to relaxing total polarization inside the device. The relaxation frequency of concentrated electrolytes becomes higher owing to the stronger total polarization behavior coming from the higher conductivity as well as the lower resistance in the electrolytic solutions.

  14. Electrical impedance imaging in two-phase, gas-liquid flows: 1. Initial investigation

    NASA Technical Reports Server (NTRS)

    Lin, J. T.; Ovacik, L.; Jones, O. C.

    1991-01-01

    The determination of interfacial area density in two-phase, gas-liquid flows is one of the major elements impeding significant development of predictive tools based on the two-fluid model. Currently, these models require coupling of liquid and vapor at interfaces using constitutive equations which do not exist in any but the most rudimentary form. Work described herein represents the first step towards the development of Electrical Impedance Computed Tomography (EICT) for nonintrusive determination of interfacial structure and evolution in such flows.

  15. Lorentz force electrical impedance tomography using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  16. Application of stochastic Galerkin FEM to the complete electrode model of electrical impedance tomography

    SciTech Connect

    Leinonen, Matti Hakula, Harri Hyvönen, Nuutti

    2014-07-15

    The aim of electrical impedance tomography is to determine the internal conductivity distribution of some physical body from boundary measurements of current and voltage. The most accurate forward model for impedance tomography is the complete electrode model, which consists of the conductivity equation coupled with boundary conditions that take into account the electrode shapes and the contact resistances at the corresponding interfaces. If the reconstruction task of impedance tomography is recast as a Bayesian inference problem, it is essential to be able to solve the complete electrode model forward problem with the conductivity and the contact resistances treated as a random field and random variables, respectively. In this work, we apply a stochastic Galerkin finite element method to the ensuing elliptic stochastic boundary value problem and compare the results with Monte Carlo simulations.

  17. Electric impedance tomography for monitoring volume and size of the urinary bladder.

    PubMed

    Leonhardt, Steffen; Cordes, Axel; Plewa, Harry; Pikkemaat, Robert; Soljanik, Irina; Moehring, Klaus; Gerner, Hans J; Rupp, Rüdiger

    2011-12-01

    A novel non-invasive technique for monitoring fluid content in the human bladder is described. Specifically, a precommercial electric impedance tomograph (EIT) was applied to measure and visualize impedance changes in the lower torso due to changes in bladder volume. Preliminary measurements were conducted during routine urodynamic tests of nine male paraplegic patients, in whom a contrast agent was slowly infused into the bladder for diagnostic purposes. In some patients, a good correlation between bladder volume and EIT measurements was found, whereas in others the correlation was still good but inverted, presumably due to a poor electrode positioning. These preliminary results indicate that a sufficiently accurate finite element modeling of the impedance distribution in the abdomen, and proper electrode positioning aids, are important prerequisites to enable this technology to be used for routine measurement of bladder volume.

  18. Cellular imaging of human atherosclerotic lesions by intravascular electric impedance spectroscopy.

    PubMed

    Streitner, Ines; Goldhofer, Markus; Cho, Sungbo; Kinscherf, Ralf; Thielecke, Hagen; Borggrefe, Martin; Süselbeck, Tim; Streitner, Florian

    2012-01-01

    Newer techniques are required to identify atherosclerotic lesions that are prone to rupture. Electric impedance spectroscopy (EIS) is able to provide information about the cellular composition of biological tissue. The present study was performed to determine the influence of inflammatory processes in type Va (lipid core, thick fibrous cap) and Vc (abundant fibrous connective tissue while lipid is minimal or even absent) human atherosclerotic lesions on the electrical impedance of these lesions measured by EIS. EIS was performed on 1 aortic and 3 femoral human arteries at 25 spots with visually heavy plaque burden. Severely calcified lesions were excluded from analysis. A highly flexible micro-electrode mounted onto a balloon catheter was placed on marked regions to measure impedance values at 100 kHz. After paraffin embedding, visible marked cross sections (n = 21) were processed. Assessment of lesion types was performed by Movats staining. Immunostaining for CD31 (marker of neovascularisation), CD36 (scavenger cells) and MMP-3 (matrix metalloproteinase-3) was performed. The amount of positive cells was assessed semi-quantitatively. 15 type Va lesions and 6 type Vc lesions were identified. Lesions containing abundant CD36-, CD31- and MMP-3-positive staining revealed significantly higher impedance values compared to lesions with marginal or without positive staining (CD36 + 455 ± 50 Ω vs. CD36- 346 ± 53 Ω, p = 0.001; CD31 + 436 ± 43 Ω vs. CD31- 340 ± 55 Ω, p = 0.001; MMP-3 + 400 ± 68 Ω vs. MMP-3- 323 ± 33 Ω, p = 0.03). Atherosclerotic lesions with abundant neovascularisation (CD31), many scavenger receptor class B expressing cells (CD36) or high amount of MMP-3 immunoreactivity reveal significantly higher impedance values compared to lesions with marginal or no detection of immunoreactivity. Findings suggest that inflammatory processes in vulnerable plaques affect the impedance of atherosclerotic lesions and might therefore be detected by EIS.

  19. Tongue electrical impedance in amyotrophic lateral sclerosis modeled using the finite element method

    PubMed Central

    Pacheck, Adam; Mijailovic, Alex; Yim, Sung; Li, Jia; Green, Jordan R.; McIlduff, Courtney E.; Rutkove, Seward B.

    2016-01-01

    Objective Electrical impedance myography (EIM) of the tongue has demonstrated alterations in patients with amyotrophic lateral sclerosis (ALS) compared to normal subjects. Whether these differences are due to reduced tongue size or diseased-associated alterations in the electrical characteristics of intrinsic tongue muscles is uncertain. Methods We employed computer simulations using the finite element method, inputting data from healthy and ALS mouse muscle, to help answer that question, comparing our modeled results to human data. Results The models revealed that much of the electrical current flows superficially in the tongue and that tongue thickness only begins to have a major impact on the measured impedance when substantial atrophy is present. Modeled values paralleled the human tongue data. Conclusions These findings suggest that the observed changes in tongue impedance in ALS are mainly due to alterations in the electrical properties of the tongue and are not a mere consequence of tongue volume loss. Significance Further development of EIM for evaluation of bulbar dysfunction in ALS may provide useful information on drug efficacy and could serve as a biomarker in future clinical trials. PMID:26750579

  20. Tongue electrical impedance in amyotrophic lateral sclerosis modeled using the finite element method.

    PubMed

    Pacheck, Adam; Mijailovic, Alex; Yim, Sung; Li, Jia; Green, Jordan R; McIlduff, Courtney E; Rutkove, Seward B

    2016-03-01

    Electrical impedance myography (EIM) of the tongue has demonstrated alterations in patients with amyotrophic lateral sclerosis (ALS) compared to normal subjects. Whether these differences are due to reduced tongue size or diseased-associated alterations in the electrical characteristics of intrinsic tongue muscles is uncertain. We employed computer simulations using the finite element method, inputting data from healthy and ALS mouse muscle, to help answer that question, comparing our modeled results to human data. The models revealed that much of the electrical current flows superficially in the tongue and that tongue thickness only begins to have a major impact on the measured impedance when substantial atrophy is present. Modeled values paralleled the human tongue data. These findings suggest that the observed changes in tongue impedance in ALS are mainly due to alterations in the electrical properties of the tongue and are not a mere consequence of tongue volume loss. Further development of EIM for evaluation of bulbar dysfunction in ALS may provide useful information on drug efficacy and could serve as a biomarker in future clinical trials. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Magnetic resonance electrical impedance tomography (MREIT): conductivity and current density imaging

    NASA Astrophysics Data System (ADS)

    Seo, Jin Keun; Kwon, Ohin; Woo, Eung Je

    2005-01-01

    This paper reviews the latest impedance imaging technique called Magnetic Resonance Electrical Impedance Tomography (MREIT) providing information on electrical conductivity and current density distributions inside an electrically conducting domain such as the human body. The motivation for this research is explained by discussing conductivity changes related with physiological and pathological events, electromagnetic source imaging and electromagnetic stimulations. We briefly summarize the related technique of Electrical Impedance Tomography (EIT) that deals with cross-sectional image reconstructions of conductivity distributions from boundary measurements of current-voltage data. Noting that EIT suffers from the ill-posed nature of the corresponding inverse problem, we introduce MREIT as a new conductivity imaging modality providing images with better spatial resolution and accuracy. MREIT utilizes internal information on the induced magnetic field in addition to the boundary current-voltage measurements to produce three-dimensional images of conductivity and current density distributions. Mathematical theory, algorithms, and experimental methods of current MREIT research are described. With numerous potential applications in mind, future research directions in MREIT are proposed.

  2. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.

    PubMed

    Mamouni, Jaouad; Yang, Liju

    2011-12-01

    In this study, electric/electrochemical impedance spectroscopy and cyclic voltammetry were used to study the cellular activities of oral cancer cell line CAL 27, including the kinetics of cell adhesion, spreading, and cell proliferation on interdigitated microelectrodes (IMEs). Impedance spectra of CAL 27 cells on IMEs electrodes were obtained in cell growth medium and in 0.1 M PBS with 50 mM [Fe(CN)₆]³⁻/⁴⁻ as redox probe. Equivalent circuits were used to model both cases. In cell growth medium, impedance spectra allowed us to analyze the changes in capacitance and resistance due to cell attachment on the IMEs over the entire experiment period. It was found that cell spreading caused the most significant decrease in capacitance component and slight increase in resistance component. Impedance change at given frequencies (between 10 kHz to 100 kHz) was found to be linearly increased with increasing cell number of CAL 27 on the IMEs. In comparison with non-cancer oral epithelial cells (Het-1A), at equal cell number, cancer cells always generated impedance several folds higher than that of non-cancer cells. In the presence of [Fe(CN)₆]³⁻/⁴⁻, impedance spectra allowed us to analyze the change in electron transfer resistance of IMEs due to cell attachment, in which an increase trend was observed at 24 h with increasing cell number from 2500 cells to 10,000 cells on IMEs. Double layer capacitance was also affected by cell attachment, and a decrease in double layer capacitance was observed with increasing cell number on the electrodes. Cyclic voltammetric measurements correlated well with the impedance results. The results of this study demonstrated the use of electrochemical approaches to obtain and understand cellular behaviors/activities of oral cancer cells, potentially providing useful tools for cancer cell research.

  3. A Chicken Tissue Phantom for Studying an Electrical Impedance Tomography (EIT) System Suitable for Clinical Imaging

    NASA Astrophysics Data System (ADS)

    Bera, Tushar Kanti; Nagaraju, J.

    2011-12-01

    The study of practical phantoms is essential for assessing the reconstruction algorithms and instrumentation used in Electrical Impedance Tomography (EIT). Responses of saline phantoms with insulator inhomogeneities differ from the real tissue phantoms in several aspects. Also, it is difficult to reconstruct the actual resistivity of the insulator inhomogeneity in a saline background because of their large resistivity difference. A practical biological phantom consisting of two different materials with low resistivity difference is more suitable for impedance imaging studies. In order to demonstrate this, a chicken tissue phantom was developed to study the resistivity imaging in EIT. A 16-electrode array was placed inside the phantom tank filled with chicken muscle tissue paste and chicken tissue. A 1 mA, 50 kHz sinusoidal current was injected at the phantom boundary and the boundary potentials are measured using opposite current injection protocol. Resistivity images were reconstructed from the boundary data using Electrical Impedance and Diffuse Optical Reconstruction Software (EIDORS) and the reconstruction was evaluated by calculating the contrast parameters of the images. Results show that the resistivity of the chicken fat is successfully reconstructed with a proper background resistivity. Impedance spectroscopic studies show that the chicken tissue phantom can be suitably used to evaluate a multifrequency EIT system.

  4. Linearity of electrical impedance tomography during maximum effort breathing and forced expiration maneuvers.

    PubMed

    Ngo, Chuong; Leonhardt, Steffen; Zhang, Tony; Lüken, Markus; Misgeld, Berno; Vollmer, Thomas; Tenbrock, Klaus; Lehmann, Sylvia

    2017-01-01

    Electrical impedance tomography (EIT) provides global and regional information about ventilation by means of relative changes in electrical impedance measured with electrodes placed around the thorax. In combination with lung function tests, e.g. spirometry and body plethysmography, regional information about lung ventilation can be achieved. Impedance changes strictly correlate with lung volume during tidal breathing and mechanical ventilation. Initial studies presumed a correlation also during forced expiration maneuvers. To quantify the validity of this correlation in extreme lung volume changes during forced breathing, a measurement system was set up and applied on seven lung-healthy volunteers. Simultaneous measurements of changes in lung volume using EIT imaging and pneumotachography were obtained with different breathing patterns. Data was divided into a synchronizing phase (spontaneous breathing) and a test phase (maximum effort breathing and forced maneuvers). The EIT impedance changes correlate strictly with spirometric data during slow breathing with increasing and maximum effort ([Formula: see text]) and during forced expiration maneuvers ([Formula: see text]). Strong correlations in spirometric volume parameters [Formula: see text] ([Formula: see text]), [Formula: see text]/FVC ([Formula: see text]), and flow parameters PEF, [Formula: see text], [Formula: see text], [Formula: see text] ([Formula: see text]) were observed. According to the linearity during forced expiration maneuvers, EIT can be used during pulmonary function testing in combination with spirometry for visualisation of regional lung ventilation.

  5. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes

    PubMed Central

    Gandhi, Saurabh V; Walker, Dawn C; Brown, Brian H; Anumba, Dilly OC

    2006-01-01

    Background We sought to compare uterine cervical electrical impedance spectroscopy measurements employing two probes of different sizes, and to employ a finite element model to predict and compare the fraction of electrical current derived from subepithelial stromal tissue. Methods Cervical impedance was measured in 12 subjects during early pregnancy using 2 different sizes of the probes on each subject. Results Mean cervical resistivity was significantly higher (5.4 vs. 2.8 Ωm; p < 0.001) with the smaller probe in the frequency rage of 4–819 kHz. There was no difference in the short-term intra-observer variability between the two probes. The cervical impedance measurements derived in vivo followed the pattern predicted by the finite element model. Conclusion Inter-electrode distance on the probes for measuring cervical impedance influences the tissue resistivity values obtained. Determining the appropriate probe size is necessary when conducting clinical studies of resistivity of the cervix and other human tissues. PMID:17125510

  6. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    NASA Astrophysics Data System (ADS)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  7. Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements.

    PubMed

    García-Sánchez, P; Ramos, A; Green, N G; Morgan, H

    2008-09-02

    An array of microelectrodes covered in an electrolyte and energized by a traveling-wave potential produces net movement of the fluid. Arrays of platinum microelectrodes of two different characteristic sizes have been studied. For both sizes of arrays, at low voltages (<2 V pp) the electrolyte flow is in qualitative agreement with the linear theory of ac electroosmosis. At voltages above a threshold, the direction of fluid flow is reversed. The electrical impedance of the electrode-electrolyte system was measured after the experiments, and changes in the electrical properties of the electrolyte were observed. Measurements of the electrical current during pumping of the electrolyte are also reported. Transient behaviors in both electrical current and fluid velocity were observed. The Faradaic currents probably generate conductivity gradients in the liquid bulk, which in turn give rise to electrical forces. These effects are discussed in relation to the fluid flow observations.

  8. Electrical impedance and HV plasma images of high dilutions of sodium chloride.

    PubMed

    Assumpção, R

    2008-07-01

    This paper reports impedance data and high voltage plasma photographic plates of high dilutions of sodium chloride in water submitted to the homeopathic dilution and succession up to 30cH. Extremely low concentrations of the original salt, even beyond Avogadro number, clearly differ from 'pure' water and; the action of sodium chloride on the electrical properties of water is inverted at high dilution.

  9. Unilateral atelectasis in a preterm infant monitored with electrical impedance tomography: a case report.

    PubMed

    van der Burg, P S; Miedema, M; de Jongh, F H; van Kaam, A H

    2014-12-01

    Electrical impedance tomography (EIT) is a non-invasive, radiation-free tool to monitor regional changes in ventilation. This report describes, for the first time, that unilateral atelectasis in an extremely low birth weight infant results in a loss of regional ventilation measured by EIT in the affected lung. EIT is currently the most promising technique to monitor regional lung aeration continuously at the bedside in this vulnerable population.

  10. Biological Cell Identification by Integrating Micro-Fluidics, Electrical Impedance Spectroscopy and Stochastic Estimation

    DTIC Science & Technology

    2007-03-01

    Manipulation and Analisis ..�The 21st International Conference on Solid State Sensors, Actuators and Microsystems.1 . 1055�1058. IEEE, June 2003. 33...Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be...BIOENGINEERING, IMPEDANCE (ELECTRICAL), 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON Juan R. Vasquez, Lt Col, USAF (ENG) REPORT

  11. Electric impedance of human embryonic stem cell-derived retinal pigment epithelium.

    PubMed

    Onnela, Niina; Savolainen, Virpi; Juuti-Uusitalo, Kati; Vaajasaari, Hanna; Skottman, Heli; Hyttinen, Jari

    2012-02-01

    The barrier properties of epithelium are conventionally defined by transepithelial resistance (TER). TER provides information about the tightness of the epithelium. Electrical impedance spectroscopy (EIS) provides additional information regarding cell membrane properties, such as changes in electric capacitance and possible parallel or serial pathways that may correlate with the morphology of the cell layer. This study presents EIS of retinal pigment epithelial (RPE) cell model of the putative RPE differentiated from human embryonic stem cells (hESC-RPE). The generally utilized RPE cell model, ARPE-19, was used as immature control. The measured EIS was analyzed by fitting an equivalent electrical circuit model describing the resistive and capacitive properties of the RPE. Our results indicated that TER of hESC-RPE cells was close to the values of human RPE presented in the literature. This provides evidence that the stem cell-derived RPE in vitro can reach high-barrier function. Furthermore, hESC-RPE cells produced impedance spectra that can be modeled by the equivalent circuit of one time constant. ARPE-19 cells produced low-barrier properties, that is, an impedance spectra that suggested poor maturation of ARPE-19 cells. To conclude, EIS could give us means for non-invasively estimating the functionality and maturation of differentiated-RPE cells.

  12. Automated electrical impedance technique for rapid enumeration of fecal coliforms in effluents from sewage treatment plants.

    PubMed

    Silverman, M P; Munoz, E F

    1979-03-01

    Fecal coliforms growing in a selective lactose-based broth medium at 44.5 degrees C generate a change in the electrical impedance of the culture relative to a sterile control when populations reach 10(6) to 10(7) per ml. The ratio of these changes was measured automatically, and the data were processed by computer. A linear relation was found between the log10 of the number of fecal coliforms in an inoculum and the time required for an electrical impedance ratio signal to be detected. Pure culture inocula consisting of 100 fecal coliforms in log phase or stationary phase were detected in 6.5 and 7.7 h, respectively. Standard curves of log10 fecal coliforms in wastewater inocula versus detection time, based on samples collected at a sewage treatment plant over a 4-month period, were found to vary from one another with time. Nevertheless, detection times were rapid and ranged from 5.8 to 7.9 h for 200 fecal coliforms to 8.7 to 11.4 h for 1 fecal coliform. Variations in detection times for a given number of fecal coliforms were also found among sewage treatment plants. A strategy is proposed which takes these variations into account and allows for rapid, automated enumeration of fecal coliforms in wastewater by the electrical impedance ratio technique.

  13. A dynamic oppositional biogeography-based optimization approach for time-varying electrical impedance tomography.

    PubMed

    Rashid, A; Kim, S; Liu, D; Kim, K Y

    2016-06-01

    Dynamic electrical impedance tomography-based image reconstruction using conventional algorithms such as the extended Kalman filter often exhibits inferior performance due to the presence of measurement noise, the inherent ill-posed nature of the problem and its critical dependence on the selection of the initial guess as well as the state evolution model. Moreover, many of these conventional algorithms require the calculation of a Jacobian matrix. This paper proposes a dynamic oppositional biogeography-based optimization (OBBO) technique to estimate the shape, size and location of the non-stationary region boundaries, expressed as coefficients of truncated Fourier series, inside an object domain using electrical impedance tomography. The conductivity of the object domain is assumed to be known a priori. Dynamic OBBO is a novel addition to the family of dynamic evolutionary algorithms. Moreover, it is the first such study on the application of dynamic evolutionary algorithms for dynamic electrical impedance tomography-based image reconstruction. The performance of the algorithm is tested through numerical simulations and experimental study and is compared with state-of-the-art gradient-based extended Kalman filter. The dynamic OBBO is shown to be far superior compared to the extended Kalman filter. It is found to be robust to measurement noise as well as the initial guess, and does not rely on a priori knowledge of the state evolution model.

  14. Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility.

    PubMed

    Szulcek, Robert; Bogaard, Harm Jan; van Nieuw Amerongen, Geerten P

    2014-03-28

    Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.

  15. Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility

    PubMed Central

    Szulcek, Robert; Bogaard, Harm Jan; van Nieuw Amerongen, Geerten P.

    2014-01-01

    Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells. PMID:24747269

  16. Automated electrical impedance technique for rapid enumeration of fecal coliforms in effluents from sewage treatment plants.

    PubMed Central

    Silverman, M P; Munoz, E F

    1979-01-01

    Fecal coliforms growing in a selective lactose-based broth medium at 44.5 degrees C generate a change in the electrical impedance of the culture relative to a sterile control when populations reach 10(6) to 10(7) per ml. The ratio of these changes was measured automatically, and the data were processed by computer. A linear relation was found between the log10 of the number of fecal coliforms in an inoculum and the time required for an electrical impedance ratio signal to be detected. Pure culture inocula consisting of 100 fecal coliforms in log phase or stationary phase were detected in 6.5 and 7.7 h, respectively. Standard curves of log10 fecal coliforms in wastewater inocula versus detection time, based on samples collected at a sewage treatment plant over a 4-month period, were found to vary from one another with time. Nevertheless, detection times were rapid and ranged from 5.8 to 7.9 h for 200 fecal coliforms to 8.7 to 11.4 h for 1 fecal coliform. Variations in detection times for a given number of fecal coliforms were also found among sewage treatment plants. A strategy is proposed which takes these variations into account and allows for rapid, automated enumeration of fecal coliforms in wastewater by the electrical impedance ratio technique. PMID:378128

  17. Static imaging of the electrical impedance tomography on cylinder physical phantom.

    PubMed

    Liu, Ruigang; Fu, Feng; You, Fusheng; Shi, Xuetao; Dong, Xiuzhen

    2015-01-01

    Static imaging of the electrical impedance tomography can obtain the absolute electrical conductivity distribution at one section of the subject. The test is performed on a cylinder physical phantom in which slim rectangle, hollow cylinder, small rectangle or three cylinders are selected to simulate complex conductivity perturbation objects. The measurement data is obtained by a data acquisition system with 32 compound electrodes. A group of static images of conductivity distribution in the cylinder phantom are reconstructed by the modified Newton-Raphson algorithm with two kinds of regularization methods. The results show correct position, size, conductivity difference, and similar shape of the perturbation objects in the images.

  18. Use of Electrical Impedance Tomography to Monitor Regional Cerebral Edema during Clinical Dehydration Treatment

    PubMed Central

    Hu, Shi-Jie; Li, Xia; Xu, Can-Hua; Wang, Bing; Yang, Bin; Tang, Meng-Xing; Dong, Xiu-Zhen; Fei, Zhou; Shi, Xue-Tao

    2014-01-01

    Objective Variations of conductive fluid content in brain tissue (e.g. cerebral edema) change tissue impedance and can potentially be measured by Electrical Impedance Tomography (EIT), an emerging medical imaging technique. The objective of this work is to establish the feasibility of using EIT as an imaging tool for monitoring brain fluid content. Design a prospective study. Setting In this study EIT was used, for the first time, to monitor variations in cerebral fluid content in a clinical model with patients undergoing clinical dehydration treatment. The EIT system was developed in house and its imaging sensitivity and spatial resolution were evaluated on a saline-filled tank. Patients 23 patients with brain edema. Interventions The patients were continuously imaged by EIT for two hours after initiation of dehydration treatment using 0.5 g/kg intravenous infusion of mannitol for 20 minutes. Measurement and Main Results Overall impedance across the brain increased significantly before and after mannitol dehydration treatment (p = 0.0027). Of the all 23 patients, 14 showed high-level impedance increase and maintained this around 4 hours after the dehydration treatment whereas the other 9 also showed great impedance gain during the treatment but it gradually decreased after the treatment. Further analysis of the regions of interest in the EIT images revealed that diseased regions, identified on corresponding CT images, showed significantly less impedance changes than normal regions during the monitoring period, indicating variations in different patients' responses to such treatment. Conclusions EIT shows potential promise as an imaging tool for real-time and non-invasive monitoring of brain edema patients. PMID:25474474

  19. Monitoring and Characterizing Crop Root Systems Using Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Kemna, A.

    2016-12-01

    A better understanding of root-soil interactions and associated processes is essential to achieve progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. Such methods are still lacking, in particular for characterizing root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which provides images of the low-frequency electrical conduction and polarization properties and thus can be used to investigate polarization processes occurring within and in the direct vicinity of roots under the influence of an external alternating electric field. This approach takes advantage of the well-known polarization properties associated with electrical double layers forming at membranes of cells and cell clusters. However, upscaling these processes to the scale of an impedance, or complex conductivity, spectrum of the whole root system is not trivial given the lack of electrical root models, the complexity of root systems, and the occurrence of additional larger-scale, ion-selective, and therefore polarizable, structures such as the Casparian strip. We here present results from several EIT laboratory studies on rhizotrons with crop root systems in aqueous solutions. Based on optimized experimental and data analysis procedures, enabling the imaging of the weak signals encountered in our studies, we found systematic spatial and temporal changes of both the magnitude and the shape of the spectral polarization signatures during nutrient deprivation and in response to the decapitation of plants. Consistent, but relatively weak, spectral impedance changes were also observed over diurnal cycles. Our results provide evidence for the capability of EIT to non-invasively image and monitor root systems at the rhizotron scale. They further suggest that EIT is a promising tool for imaging, characterizing, and monitoring crop roots at the field scale.

  20. Frequency-Division Multiplexing for Electrical Impedance Tomography in Biomedical Applications

    PubMed Central

    Granot, Yair; Ivorra, Antoni; Rubinsky, Boris

    2007-01-01

    Electrical impedance tomography (EIT) produces an image of the electrical impedance distribution of tissues in the body, using electrodes that are placed on the periphery of the imaged area. These electrodes inject currents and measure voltages and from these data, the impedance can be computed. Traditional EIT systems usually inject current patterns in a serial manner which means that the impedance is computed from data collected at slightly different times. It is usually also a time-consuming process. In this paper, we propose a method for collecting data concurrently from all of the current patterns in biomedical applications of EIT. This is achieved by injecting current through all of the current injecting electrodes simultaneously, and measuring all of the resulting voltages at once. The signals from various current injecting electrodes are separated by injecting different frequencies through each electrode. This is called frequency-division multiplexing (FDM). At the voltage measurement electrodes, the voltage related to each current injecting electrode is isolated by using Fourier decomposition. In biomedical applications, using different frequencies has important implications due to dispersions as the tissue's electrical properties change with frequency. Another significant issue arises when we are recording data in a dynamic environment where the properties change very fast. This method allows simultaneous measurements of all the current patterns, which may be important in applications where the tissue changes occur in the same time scale as the measurement. We discuss the FDM EIT method from the biomedical point of view and show results obtained with a simple experimental system. PMID:18274653

  1. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).

    PubMed

    Price, Dorielle T; Rahman, Abdur Rub Abdur; Bhansali, Shekhar

    2009-03-15

    This paper presents an experimentally derived design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS) up to 10MHz. The effect of change in electrode design (through electrode sensor area, lead trace widths, and passivation coating thickness) on electrode characteristics was experimentally evaluated using electrochemical impedance spectroscopy (EIS) measurements and analyzed using equivalent circuit models. A parasitic passivation coating impedance was successfully minimized by designing electrodes with either a thicker passivation layer or a smaller lead trace area. It was observed that the passivated lead trace area to passivation coating thickness ratio has a critical value of 5.5, under which the impedance contribution of the coating is minimized. The optimized design of ECIS-based microelectrode devices reported in this work will make it possible to probe the entire beta dispersion region of adherent biological cell layers by reducing measurement artifacts and improving the quality of data across the beta-dispersion region. The new design will enable the use of the commonly used ECIS technique to measure real-time cellular properties in high frequency ranges (beta dispersion) that was not possible thus far.

  2. Electric impedance sensing during the inhibition of cell-cell adhesion.

    PubMed

    Wiertz, R F; Rutten, W C; Marani, E

    2008-01-01

    Electric cell impedance sensing (ECIS) was used to monitor the change of in vitro neuron-neuron adhesion in response to the blocking of N-Cam, N-Cadherin and L1. ECIS is a method in which cell morphology and cell mobility can be indirectly measured by changes in intercellular resistance. Antibodies and soluble extracellular domains of the cell adhesion molecules N-Cam, N-Cadherin and L1 were used as blockers of these adhesion molecules on the cell surface. In a 96 hour aggregation assay on a low adhesive substrate, the effect of mentioned blockers on the aggregation was investigated. The N-Cadherin antibody showed effective in aggregation inhibition at concentrations of 3 and 10 micrograms/ml. Up to 96 hours no aggregation occurred. A similar effect was achieved by the N-Cadherin protein, although less distinct. Blocking of N-CAM and L1 revealed no inhibition of aggregation. Results from impedance measurements correspond to those of the aggregation assays. The neuron-neuron adhesion in monolayers was inhibited by blocking of cell adhesion molecules and monitored by ECIS. Impedances of neuron covered electrodes were significantly lower in the presence of N-Cadherin antibody and protein at concentrations of 1, 3 and 10 micrograms/ml, indicating a less profound binding between adjacent neuron.The results from both the aggregation assays and the impedance measurements demonstrate the applicability of CAM blocking for the regulation of culture topography.

  3. Electrical transport properties of Mn-Ni-Zn ferrite using complex impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Azizar Rahman, M.; Hossain, A. K. M. Akther

    2014-02-01

    Polycrystalline Mn0.45Ni0.05Zn0.50Fe2O4 was prepared by a standard solid state reaction technique. We report the electrical properties of this ferrite using ac impedance spectroscopy as a function of frequency (20 Hz-10 MHz) at different temperatures (50-350 °C). X-ray diffraction patterns reveal the formation of cubic spinel structure. Complex impedance analysis has been used to separate the grain and grain boundary resistance of this ferrite. The variation of grain and grain boundary conductivities with temperature confirms semiconducting behavior. The dielectric permittivity shows dielectric dispersion at lower frequency and reveals that it has almost the same value on the high-frequency side. The non-coincidence of peaks corresponding to modulus and impedance indicates deviation from Debye-type relaxation. A similar value of activation energy is obtained from impedance and modulus spectra, indicating that charge carriers overcome the same energy barrier during relaxation. Electron hopping is responsible for ac conduction in this ferrite. The electron hopping shifts toward higher frequency with increasing temperature, below which the conductivity is frequency independent. The frequency-independent ac conductivity has been observed at and above 300 °C in the frequency range 20 Hz-1 MHz. This frequency-independent ac conductivity is due to the long-range movement of the mobile charge carriers.

  4. Determination of plasma impedance of microwave plasma system by electric field simulation

    NASA Astrophysics Data System (ADS)

    Shuto, Mitsutoshi; Ohmi, Hiromasa; Kakiuchi, Hiroaki; Yamada, Takahiro; Yasutake, Kiyoshi

    2017-07-01

    A simple method has been proposed to determine the plasma impedance based on the electric field simulation of the whole microwave plasma system including the matching network. The plasma impedance can be determined by the experimental parameters in the matching network (positions of the three stub tuner). From the real part of the plasma impedance, the conductivity of the plasma can be deduced. When a reasonable model is assumed to relate the plasma conductivity and the electron density (ne), the average ne independent of any plasma condition may be obtained. To show the possible procedure to extract the information on the average ne, the present method has been applied for the high-pressure hydrogen plasma generated between a narrow gap (<0.5 mm) where the usual Langmuir probe method is not applicable. The obtained average ne is on the order of 1012 cm-3, which is consistent with the available experimental results. The present attempt to extract information on the plasma impedance and ne based on the positions of the three stub tuner may be potentially useful in the control of industrial plasma processes.

  5. A physics-based model of the electrical impedance of ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Cha, Youngsu; Aureli, Matteo; Porfiri, Maurizio

    2012-06-01

    In this paper, we analyze the chemoelectrical behavior of ionic polymer metal composites (IPMCs) in the small voltage range with a novel hypothesis on the charge dynamics in proximity of the electrodes. In particular, we homogenize the microscopic properties of the interfacial region through a so-called composite layer which extends between the polymer membrane and the metal electrode. This layer accounts for the dissimilar properties of its constituents by describing the charge distribution via two species of charge carriers, that is, electrons and mobile counterions. We model the charge dynamics in the IPMC by adapting the multiphysics formulation based on the Poisson-Nernst-Planck (PNP) framework, which is enriched through an additional term to capture the electron transport in the composite layer. Under the hypothesis of small voltage input, we use the linearized PNP model to derive an equivalent IPMC circuit model with lumped elements. The equivalent model comprises a resistor connected in series with the parallel of a capacitor and a Warburg impedance element. These elements idealize the phenomena of charge build up in the double layer region and the faradaic impedance related to mass transfer, respectively. We validate the equivalent model through measurements on in-house fabricated samples addressing both IPMC step response and impedance, while assessing the influence of repeated plating cycles on the electrical properties of IPMCs. Experimental results are compared with theoretical findings to identify the equivalent circuit parameters. Findings from this study are compared with alternative impedance models proposed in the literature.

  6. Development of an electrical impedance computed tomographic two-phase flows analyzer. Annual technical report for program renewal

    SciTech Connect

    Jones, O.C.

    1993-05-01

    This progress report details the theoretical development, numerical results, experimental design (mechanical), experimental design (electronic), and experimental results for the research program for the development of an electrical impedance computed tomographic two-phase flow analyzer.

  7. Exploratory study on the methodology of fast imaging of unilateral stroke lesions by electrical impedance asymmetry in human heads.

    PubMed

    Ma, Jieshi; Xu, Canhua; Dai, Meng; You, Fusheng; Shi, Xuetao; Dong, Xiuzhen; Fu, Feng

    2014-01-01

    Stroke has a high mortality and disability rate and should be rapidly diagnosed to improve prognosis. Diagnosing stroke is not a problem for hospitals with CT, MRI, and other imaging devices but is difficult for community hospitals without these devices. Based on the mechanism that the electrical impedance of the two hemispheres of a normal human head is basically symmetrical and a stroke can alter this symmetry, a fast electrical impedance imaging method called symmetrical electrical impedance tomography (SEIT) is proposed. In this technique, electrical impedance tomography (EIT) data measured from the undamaged craniocerebral hemisphere (CCH) is regarded as reference data for the remaining EIT data measured from the other CCH for difference imaging to identify the differences in resistivity distribution between the two CCHs. The results of SEIT imaging based on simulation data from the 2D human head finite element model and that from the physical phantom of human head verified this method in detection of unilateral stroke.

  8. Clinical application of Electrical Impedance Tomography in the Present Health Scenario of India

    NASA Astrophysics Data System (ADS)

    Chakraborti, K. L., Dr; Selvamurthy, W., Dr

    2010-04-01

    Early detection of Breast Cancer is currently emerging as a big clinical entity requiring a non invasive, radiation less, harmless, cost effective diagnostic technique. Survival is improved if detected early. Breast Cancer is the second most common cancer in India. Health corporate system of India is urgently requiring a cost effective, noninvasive novel technique like "Electrical Impedance Tomography (EIT)" for screening large poor rural population of India for early diagnosis of Breast Cancer. EIT is the technique to visualize spatial distribution of Electro-impedance (or conductivity) inside the object, such as human body. A medical device which allows imaging of the distribution of conductivity in 3D in regions below the skin surface has been developed and tested. Its purpose is to enable early detection and preliminary diagnosis of breast tumors. The system uses a planar array consisting of 256 electrodes and enables obtaining images of the three-dimensional conductivity distribution in regions below the skin's surface up to several centimeters deep. The developed measuring system and image reconstruction algorithm can be used for breast tissue imaging and diagnostic, in particular for malignant tumor detection. Initially ten patients as control and ten patients with breast lesions have been studied with this new technique. It was found that electrical impedance mammograms from different groups has clear visual distinctions and statistically significant difference in breast glands conductivity. The results are quiet encouraging. EIT may emerge as the first line noninvasive imaging method of choice for screening large population for early detection of breast cancer.

  9. Breast cancer detection using high-density flexible electrode arrays and electrical impedance tomography.

    PubMed

    Campisi, Matthew S; Barbre, Curtis; Chola, Aditya; Cunningham, Gisselle; Woods, Virginia; Viventi, Jonathan

    2014-01-01

    While mammography remains the gold standard for breast cancer screening, additional adjunctive tools for early detection of breast cancer are needed especially for young women, women with dense breast tissue and those at increased risk due to genetic factors. These patient populations, along with those populations for whom mammography is not readily available, require alternative technologies capable of effectively detecting breast cancer. One such adjunctive modality for breast cancer detection is Electrical Impedance Tomography (EIT). It is a non-invasive technique that measures tissue conductivity by injecting a small current through a surface electrode while measuring electrode voltage(s). The surface measurements are then used to reconstruct a conductivity mapping of the tissue. The difference in conductivities between healthy tissue and that of carcinoma enable EIT to detect cancer. Electrical Impedance Tomography does not subject the patient to ionizing radiation, and offers significant potential for detecting very small tumors in early stages of development at a low cost. While prior systems have demonstrated success using EIT for breast cancer detection, the resolution of the reconstructed image was limited by the spatial resolution of the sensing electrode array. Here, we report the use of higher density (3mm spacing) flexible micro-electrode arrays to obtain tissue impedance maps. Accurate EIT reconstruction is highly dependent on the spatial resolution and fidelity of the surface measurements. High-density, flexible arrays that conform to the breast surface can offer great potential in reconstructing higher resolution conductivity maps than have been previously achieved.

  10. Body fat estimations by electrical impedance and infra-red interactance.

    PubMed

    Brodie, D A; Eston, R G

    1992-05-01

    The purpose of this study was to examine body fat estimation using three methods of electrical impedance (the BIA-103 Body Composition Analyser--RJL Systems, Detroit; the BMR 2000 Body Composition Analyzer--Berkeley Medical Research, San Leandro; the BC300 Body Composition Analyzer--Spacelabs, Dallas) and an infra-red interactance method (Futrex 5000 Analyzer--Futrex Inc. Gaithersburg) as an alternative to hydrodensitometry. Five different groups were examined using at least one of the electrical systems and in all cases utilising hydrodensitometry as the criterion method. The results produced highly significant correlations between all methods, but caution is recommended due to the limited common variance in some cases. The individual electrical methods differed from hydrodensitometry by a maximum of 1.1% in obese women, by 21.6% in athletic adults, by 6.2% in the slightly obese group, by 8.1% in normal women and by 56.0% in normal children. Significant mean differences between one of the impedance methods and hydrodensitometry were only noted in two of the groups tested. This suggests, allowing for the limitations of hydrodensitometry itself, that the other three electrical methods appear to be reasonably valid alternatives to underwater weighing, especially for field work of an epidemiological nature.

  11. A combined complex electrical impedance and acoustic emission study in limestone samples under uniaxial loading

    NASA Astrophysics Data System (ADS)

    Saltas, V.; Fitilis, I.; Vallianatos, F.

    2014-12-01

    In the present work, complex electrical impedance measurements in the frequency range of 10 mHz to 1 MHz were carried out in conjunction with acoustic emission monitoring in limestone samples subjected to linear and stepped-like uniaxial loading, up to ultimate failure. Cole-Cole plots of the complex impedance during the stepped loading of limestone have been used to discriminate the contributions of grains interior, grain boundaries and electrode polarization effects to the overall electrical behavior. The latter is well-described with an equivalent-circuit model which comprises components of constant phase elements and resistances in parallel connection. Electrical conductivity increases upon uniaxial loading giving rise to negative values of effective activation volume. This is a strong experimental evidence for the generation of transient electric signals recorded prior to seismic events and may be attributed to charge transfer (proton conduction) due to cracks generation and propagation as a result of the applied stress. The time-series of ac-conductivity at two distinct frequencies (10 kHz, 200 kHz) during linear loading of limestone samples exhibits a strong correlation with the acoustic emission activity obeying the same general self-similar law for critical phenomena that has been reported for the energy release before materials fracture.

  12. Anatomically informed mesoscale electrical impedance spectroscopy in southern pine and the electric field distribution for pin-type electric moisture metres

    Treesearch

    Samuel L. Zelinka; Alex C. Wiedenhoeft; Samuel V. Glass; Flavio Ruffinatto

    2015-01-01

    Electrical impedance spectra of wood taken at macroscopic scales below the fibre saturation point have led to inferences that the mechanism of charge conduction involves a percolation phenomenon. The pathways responsible for charge conduction would necessarily be influenced by wood structure at a variety of sub-macroscopic scales – at a mesoscale – but these questions...

  13. Transrectal electrical impedance tomography of the prostate: Spatially coregistered pathological findings for prostate cancer detection

    PubMed Central

    Wan, Yuqing; Borsic, Andrea; Heaney, John; Seigne, John; Schned, Alan; Baker, Michael; Wason, Shaun; Hartov, Alex; Halter, Ryan

    2013-01-01

    Purpose: Prostate cancer ranks as one of the most common malignancies and currently represents the second leading cancer-specific cause of death in men. The current use of single modality transrectal ultrasound (TRUS) for biopsy guidance has a limited sensitivity and specificity for accurately identifying cancerous lesions within the prostate. This study introduces a novel prostate cancer imaging method that combines TRUS with electrical impedance tomography (EIT) and reports on initial clinical findings based on in vivo measurements. Methods: The ultrasound system provides anatomic information, which guides EIT image reconstruction. EIT reconstructions are correlated with semiquantitative pathological findings. Thin plate spline warping transformations are employed to overlay electrical impedance images and pathological maps describing the spatial distribution of prostate cancer, with the latter used as reference for data analysis. Clinical data were recorded from a total of 50 men prior to them undergoing radical prostatectomy for prostate cancer treatment. Student's t-tests were employed to statistically examine the electrical property difference between cancerous tissue and benign tissue as defined through histological assessment of the excised gland. Results: Example EIT reconstructions are presented along with a statistical analysis comparing EIT and pathology. An average transformation error of 1.67% is found when 381 spatially coregistered pathological images are compared with their target EIT reconstructed counterparts. At EIT signal frequencies of 0.4, 3.2, and 25.6 kHz, paired-testing demonstrated that the conductivity of cancerous regions is significantly greater than that of benign regions ( p < 0.0304). Conclusions: These preliminary clinical findings suggest the potential benefits electrical impedance measurements might have for prostate cancer detection. PMID:23718610

  14. Modeling of lung's electrical impedance using fractional calculus for analysis of heat generation during RF-ablation.

    PubMed

    Yamazaki, Nozomu; Kobayashi, Yo; Kikuchi, Hayato; Isobe, Yosuke; Lu, XiaoWei; Miyashita, Tomoyuki; Fujie, Masakatsu G

    2014-01-01

    Recently, Radio Frequency Ablation (RFA) is becoming a popular therapy for various cancers such as liver, breast, or lung cancer. RFA is one kinds of thermal therapy. However, it has been often reported about excessive ablation or non-ablation due to difficult control of ablation energy. In order to solve these difficulties, we have been proposed robotized RF-ablation system for precise cancer treatment. We have been tried to control heat energy by control of electromagnetic-wave frequency. In this paper, we reported about relation among electrical impedance of lung, lung's internal air volumes, and heat energy by use of electromagnetic-wave. In case of RFA for lung cancer, heat energy depends on electrical impedance and lung's internal air volumes. Electrical impedance has the dependence of electromagnetic-wave frequency and the dependence of lung's internal air volumes. Therefore, firstly we considered about fractional calculus model between lung's internal air volumes and electrical impedance. Secondly, we measured electric impedance frequency characteristic of lung with change of lung's internal air volumes. The measured and modeled results showed that use of fractional calculus realized high accurate model for electrical impedance of lung. And, from the results of numerical analysis of heat energy, it is supposed that control of electromagnetic-wave frequency has a small effectiveness for lung tissue ablation even if lung includes abundant air.

  15. Patterns of gas and liquid reflux during transient lower oesophageal sphincter relaxation: a study using intraluminal electrical impedance

    PubMed Central

    Sifrim, D; Silny, J; Holloway, R; Janssens, J

    1999-01-01

    Background—Belching has been proposed as a major mechanism underlying acid gastro-oesophageal reflux in normal subjects. However, the presence of oesophageal gas has not been measured directly but only inferred from manometry. 
Aims—To investigate, using intraluminal electrical impedance, the patterns of gas and liquid reflux during transient lower oesophageal sphincter (LOS) relaxations, the main mechanism of acid reflux in normal subjects. 
Methods—Impedance changes associated with the passage of gas were studied in vitro, and in vivo in cats. Oesophageal manometry, pH, and intraluminal electrical impedance measurements were performed in 11 normal subjects after a meal. 
Results—Gas reflux caused a sudden increase in impedance that propagated rapidly to the proximal oesophagus whereas liquid reflux induced a retrogressively propagated fall in impedance. Impedance showed gas or liquid reflux during most (102/141) transient LOS relaxations. When acid reflux occurred, impedance showed evidence of intraoesophageal retrograde flow of liquid in the majority (78%) of events. Evidence of gas retroflow was found in almost half (47%) of acid reflux episodes. When present together, however, liquid preceded gas on 44% of occasions. Overall, gas reflux occurred as the initial event in only 25% of acid reflux episodes. 
Conclusions—These findings suggest that in upright normal subjects, although belching can precipitate acid reflux, most acid reflux occurs as a primary event. 

 Keywords: belching; gastro-oesophageal reflux disease; oesophageal manometry; intraluminal electrical impedance; lower oesophageal sphincter PMID:9862825

  16. Direct imaging of two-phase flows by electrical impedance measurements

    NASA Astrophysics Data System (ADS)

    Seleghim, Paulo, Jr.; Hervieu, Eric

    1998-09-01

    This paper presents a two-phase flow direct imaging sensor, based on multiple electrical impedance measurements. The electrode configuration is optimized to provide imaged information on the phase distribution within the probe's sensing volume. As a consequence, the time evolution of the flow topology can be represented by simply plotting the signals corresponding to the peripheral impedance measurements, and therefore needs no numerical reconstruction from the experimental data. Several transient tests are performed in a two-phase air-water loop. They demonstrate that the sensor exhibits not only large structures such as slugs and plugs, but also some finer details such as the wavy or rugged interface in stratified flow, or liquid film drainage during the transition between intermittent and annular flows. The methodology proposed in this work constitutes a simple and inexpensive alternative to tomographic imaging techniques, and is thus fully adapted to online process monitoring of multiphase flow systems.

  17. Over-zero switching scheme for fast data collection operation in electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ma, Y.

    2006-08-01

    An electrical impedance tomography (EIT) sensor's model for analyses of the behaviour of the coupling circuits and electrode-electrolyte interface is presented. With transient time analyses of the model, a novel switching scheme, termed the over-zero switching (OZS) scheme, was designed to eliminate both the dc offset potential and the charged residual potential of measurements. The effects of the transient time in conventional and OZS coupling circuits were simulated. Both analyses and simulations revealed that the coupling time can be dramatically reduced by the employment of the OZS scheme. The technique has been used in a fast impedance tomography system to achieve a speed of more than 1000 dual-frames per second.

  18. Influence of torso and arm positions on chest examinations by electrical impedance tomography.

    PubMed

    Vogt, B; Mendes, L; Chouvarda, I; Perantoni, E; Kaimakamis, E; Becher, T; Weiler, N; Tsara, V; Paiva, R P; Maglaveras, N; Frerichs, I

    2016-06-01

    Electrical impedance tomography (EIT) is increasingly used in patients suffering from respiratory disorders during pulmonary function testing (PFT). The EIT chest examinations often take place simultaneously to conventional PFT during which the patients involuntarily move in order to facilitate their breathing. Since the influence of torso and arm movements on EIT chest examinations is unknown, we studied this effect in 13 healthy subjects (37  ±  4 years, mean age  ±  SD) and 15 patients with obstructive lung diseases (72  ±  8 years) during stable tidal breathing. We carried out the examinations in an upright sitting position with both arms adducted, in a leaning forward position and in an upright sitting position with consecutive right and left arm elevations. We analysed the differences in EIT-derived regional end-expiratory impedance values, tidal impedance variations and their spatial distributions during all successive study phases. Both the torso and the arm movements had a highly significant influence on the end-expiratory impedance values in the healthy subjects (p  =  0.0054 and p  <  0.0001, respectively) and the patients (p  <  0.0001 in both cases). The global tidal impedance variation was affected by the torso, but not the arm movements in both study groups (p  =  0.0447 and p  =  0.0418, respectively). The spatial heterogeneity of the tidal ventilation distribution was slightly influenced by the alteration of the torso position only in the patients (p  =  0.0391). The arm movements did not impact the ventilation distribution in either study group. In summary, the forward torso movement and the arms' abduction exert significant effects on the EIT waveforms during tidal breathing. We recommend strict adherence to the upright sitting position during PFT when EIT is used.

  19. Considerations on electrical impedance measurements of electrolyte solutions in a four-electrode cell

    NASA Astrophysics Data System (ADS)

    Chaparro, C. V.; Herrera, L. V.; Meléndez, A. M.; Miranda, D. A.

    2016-02-01

    A tetrapolar probe to measure the electrical properties of electrolyte solutions was implemented with gold electrodes according to the van der Pauw method. Electrical impedance spectroscopy (EIS) measurements of different concentrations of phosphate buffer saline (PBS) solution and an oral mucosal tissue sample dispersed in PBS were performed in the galvanostatic mode using a four-electrode cell (tetrapolar probe). Taking advantage of using a potentiostat/galvanostat for carrying out the electrical measurements, a simple and rapid method using a three-electrode electrochemical cell is described for: a) cleaning of electrodes, b) verification of surface chemical state of electrode material and c) choice of current supplied to electrodes for EIS measurements. Results of this research shown a depolarization effect due to the addition of oral mucosa tissue cells into the PBS solution.

  20. Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Loh, Kenneth J.; Lynch, Jerome P.

    2007-08-01

    This paper describes the application of electrical impedance tomography (EIT) to demonstrate the multifunctionality of carbon nanocomposite thin films under various types of environmental stimuli. Carbon nanotube (CNT) thin films are fabricated by a layer-by-layer (LbL) technique and mounted with electrodes along their boundaries. The response of the thin films to various stimuli is investigated by relying on electric current excitation and corresponding boundary potential measurements. The spatial conductivity variations are reconstructed based on a mathematical model for the EIT technique. Here, the ability of the EIT method to provide two-dimensional mapping of the conductivity of CNT thin films is validated by (1) electrically imaging intentional structural defects in the thin films and (2) mapping the film's response to various pH environments. The ability to spatially image the conductivity of CNT thin films holds many promises for developing multifunctional CNT-based sensing skins.

  1. Electric field imaging of a high impedance surface for GNSS array decoupling application

    NASA Astrophysics Data System (ADS)

    Prost, Daniel; Issac, François; Martel, Cédric; Capet, Nicolas; Sokoloff, Jérôme; Pascal, Olivier

    2015-10-01

    An original method of characterization of high impedance surfaces (HIS) is presented to exhibit electric field patterns. The electric field frames are obtained through a resistive film located in the near field domain of the HIS. The film heating is recorded using an infrared camera and gives after post-processing electric field magnitude profiles. We applied this technique to a HIS specially tuned for reducing mutual coupling in a global navigation satellite systems (GNSS) array designed for the E5 Galileo band. The mushroom-like HIS, designed and realized with the help of simulation, is located near the ground plane of a micro-strip line which allows S parameter characterization. Present measurement enables near field characterization and field structure analysis, and is therefore a complement to usual analysis. Moreover, the technique shows the very special field structure, including sub-lambda details, created by the HIS and more generally by metamaterial structures.

  2. Cellular Imaging of Human Atherosclerotic Lesions by Intravascular Electric Impedance Spectroscopy

    PubMed Central

    Streitner, Ines; Goldhofer, Markus; Cho, Sungbo; Kinscherf, Ralf; Thielecke, Hagen; Borggrefe, Martin; Süselbeck, Tim; Streitner, Florian

    2012-01-01

    Background Newer techniques are required to identify atherosclerotic lesions that are prone to rupture. Electric impedance spectroscopy (EIS) is able to provide information about the cellular composition of biological tissue. The present study was performed to determine the influence of inflammatory processes in type Va (lipid core, thick fibrous cap) and Vc (abundant fibrous connective tissue while lipid is minimal or even absent) human atherosclerotic lesions on the electrical impedance of these lesions measured by EIS. Methods and Results EIS was performed on 1 aortic and 3 femoral human arteries at 25 spots with visually heavy plaque burden. Severely calcified lesions were excluded from analysis. A highly flexible micro-electrode mounted onto a balloon catheter was placed on marked regions to measure impedance values at 100 kHz. After paraffin embedding, visible marked cross sections (n = 21) were processed. Assessment of lesion types was performed by Movats staining. Immunostaining for CD31 (marker of neovascularisation), CD36 (scavenger cells) and MMP-3 (matrix metalloproteinase-3) was performed. The amount of positive cells was assessed semi-quantitatively. 15 type Va lesions and 6 type Vc lesions were identified. Lesions containing abundant CD36-, CD31- and MMP-3-positive staining revealed significantly higher impedance values compared to lesions with marginal or without positive staining (CD36+455±50 Ω vs. CD36- 346±53 Ω, p = 0.001; CD31+436±43 Ω vs. CD31- 340±55 Ω, p = 0.001; MMP-3+ 400±68 Ω vs. MMP-3- 323±33 Ω, p = 0.03). Conclusions Atherosclerotic lesions with abundant neovascularisation (CD31), many scavenger receptor class B expressing cells (CD36) or high amount of MMP-3 immunoreactivity reveal significantly higher impedance values compared to lesions with marginal or no detection of immunoreactivity. Findings suggest that inflammatory processes in vulnerable plaques affect the impedance of atherosclerotic lesions and

  3. A new bioimpedance research device (BIRD) for measuring the electrical impedance of acupuncture meridians.

    PubMed

    Wong, Felix Wu Shun; Lim, Chi Eung Danforn; Smith, Warren

    2010-03-01

    The aim of this article is to introduce an electrical bioimpedance device that uses an old and little-known impedance measuring technique to study the impedance of the meridian and nonmeridian tissue segments. Three (3) pilot experimental studies involving both a tissue phantom (a cucumber) and 3 human subjects were performed using this BIRD-I (Bioimpedance Research Device) device. This device consists of a Fluke RCL meter, a multiplexer box, a laptop computer, and a medical-grade isolation transformer. Segment and surface sheath (or local) impedances were estimated using formulae first published in the 1930s, in an approach that differs from that of the standard four-electrode technique used in most meridian studies to date. Our study found that, when using a quasilinear four-electrode arrangement, the reference electrodes should be positioned at least 10 cm from the test electrodes to ensure that the segment (or core) impedance estimation is not affected by the proximity of the reference electrodes. A tissue phantom was used to determine the repeatability of segment (core) impedance measurement by the device. An applied frequency of 100 kHz was found to produce the best repeatability among the various frequencies tested. In another preliminary study, with a segment of the triple energizer meridian on the lower arm selected as reference segment, core resistance-based profiles around the lower arm showed three of the other five meridians to exist as local resistance minima relative to neighboring nonmeridian segments. The profiles of the 2 subjects tested were very similar, suggesting that the results are unlikely to be spurious. In electrical bioimpedance studies, it is recommended that the measuring technique and device be clearly defined and standardized to provide optimal working conditions. In our study using the BIRD I device, we defined our standard experimental conditions as a test frequency of 100 kHz and the position of the reference electrodes of at

  4. Simulation method for cardiac stroke volume estimation by intracardiac electrical impedance measurement.

    PubMed

    Barak, C; Leviatan, Y; Inbar, G F; Hoekstein, K N

    1992-09-01

    Using the electrical impedance measurement technique to investigate stroke volume estimation, three models of the ventricle were simulated. A four-electrode impedance catheter was used; two electrodes to set up an electric field in the model and the other two to measure the potential difference. A new approach, itself an application of the quasi-static case of a method used to solve electromagnetic field problems, was used to solve the electric field in the model. The behaviour of the estimation is examined with respect to the electrode configuration on the catheter and to catheter location with respect to the ventricle walls. Cardiac stroke volume estimation was found to be robust to catheter location generating a 10 per cent error for an offset of 40 per cent of the catheter from the chamber axis and rotation of 20 degrees with respect to the axis. The electrode configuration has a dominant effect on the sensitivity and accuracy of the estimation. Certain configurations gave high accuracy, whereas in others high sensitivity was found with lower accuracy. This led to the conclusion that the electrode configuration should be carefully chosen according to the desired criteria.

  5. Use of electrical impedance spectroscopy to detect malignant and potentially malignant oral lesions

    PubMed Central

    Murdoch, Craig; Brown, Brian H; Hearnden, Vanessa; Speight, Paul M; D’Apice, Katy; Hegarty, Anne M; Tidy, John A; Healey, T Jamie; Highfield, Peter E; Thornhill, Martin H

    2014-01-01

    The electrical properties of tissues depend on their architecture and cellular composition. We have previously shown that changes in electrical impedance can be used to differentiate between different degrees of cervical dysplasia and cancer of the cervix. In this proof-of-concept study, we aimed to determine whether electrical impedance spectroscopy (EIS) could distinguish between normal oral mucosa; benign, potentially malignant lesions (PML); and oral cancer. EIS data were collected from oral cancer (n=10), PML (n=27), and benign (n=10) lesions. EIS from lesions was compared with the EIS reading from the normal mucosa on the contralateral side of the mouth or with reference spectra from mucosal sites of control subjects (n=51). Healthy controls displayed significant differences in the EIS obtained from different oral sites. In addition, there were significant differences in the EIS of cancer and high-risk PML versus low-risk PML and controls. There was no significant difference between benign lesions and normal controls. Study subjects also deemed the EIS procedure considerably less painful and more convenient than the scalpel biopsy procedure. EIS shows promise at distinguishing among malignant, PML, and normal oral mucosa and has the potential to be developed into a clinical diagnostic tool. PMID:25285005

  6. A new experimental device to evaluate eye ulcers using a multispectral electrical impedance technique

    NASA Astrophysics Data System (ADS)

    Bellotti, Mariela I.; Bast, Walter; Berra, Alejandro; Bonetto, Fabián J.

    2011-07-01

    We present a novel experimental technique to determine eye ulcers in animals using a spectral electrical impedance technique. We expect that this technique will be useful in dry eye syndrome. We used a sensor that is basically a platinum (Pt) microelectrode electrically insulated by glass from a cylindrical stainless steel counter-electrode. This sensor was applied to the naked eye of New Zealand rabbits (2.0-3.5 kg in weight). Whereas half of the eyes were normal (control), we applied to the remainder a few drops of 20% (v/v) alcohol to produce an ulcer in the eye. Using a multispectral electrical impedance system we measured ulcerated and control eyes and observed significant difference between normal and pathological samples. We also investigated the effects of different applied pressures and natural degradation of initially normal eyes as a function of time. We believe that this technique could be sufficiently sensitive and repetitive to help diagnose ocular surface diseases such as dry eye syndrome.

  7. Use of electrical impedance spectroscopy to detect malignant and potentially malignant oral lesions.

    PubMed

    Murdoch, Craig; Brown, Brian H; Hearnden, Vanessa; Speight, Paul M; D'Apice, Katy; Hegarty, Anne M; Tidy, John A; Healey, T Jamie; Highfield, Peter E; Thornhill, Martin H

    2014-01-01

    The electrical properties of tissues depend on their architecture and cellular composition. We have previously shown that changes in electrical impedance can be used to differentiate between different degrees of cervical dysplasia and cancer of the cervix. In this proof-of-concept study, we aimed to determine whether electrical impedance spectroscopy (EIS) could distinguish between normal oral mucosa; benign, potentially malignant lesions (PML); and oral cancer. EIS data were collected from oral cancer (n=10), PML (n=27), and benign (n=10) lesions. EIS from lesions was compared with the EIS reading from the normal mucosa on the contralateral side of the mouth or with reference spectra from mucosal sites of control subjects (n=51). Healthy controls displayed significant differences in the EIS obtained from different oral sites. In addition, there were significant differences in the EIS of cancer and high-risk PML versus low-risk PML and controls. There was no significant difference between benign lesions and normal controls. Study subjects also deemed the EIS procedure considerably less painful and more convenient than the scalpel biopsy procedure. EIS shows promise at distinguishing among malignant, PML, and normal oral mucosa and has the potential to be developed into a clinical diagnostic tool.

  8. Investigation of critical shear stress with simultaneous measurement of electrical impedance, capacitance and light backscattering.

    PubMed

    Lee, Byoung-Kwon; Ko, Jae-yong; Lim, Hyun-jung; Nam, Jeong-Hun; Shin, Sehyun

    2012-01-01

    Recent electrical investigation of hemorheology provided useful information on the kinetics of red blood cell (RBC) aggregation. However, because of the inconsistent results in the electrical measurements, we need to understand the electrical characteristics of RBC aggregation at various flow conditions. In the present study, AC electrical-capacitance (EC) and -impedance (EI) and light backscattering (LB) were simultaneously measured for transient shear-decreasing blood flow in a microchannel. EI, EC and LB signals of RBCs in plasma show similar time-varying curves, both yielding either a peak or a minimal point in the optimal frequency range (10~500 kHz). Critical shear stress (CSS) determined from EC showed the nearly same results as that determined from LB, with yielding hematocrits-independence and dextran-concentration dependence. However, the high concentration of fibrinogen caused electrical saturation, which resulted in different results of CSS determined from between LB and EC. These results suggest that electrical properties of RBC suspensions should be further examined to replace the optical method of measurement of RBC aggregation.

  9. The in-situ characterization of a transesterification reaction using electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin

    Impedance Spectroscopy has been used in the in-situ monitoring of a transesterfication reaction of soybean biodiesel. This paper describes the application of Electrical Impedance Spectroscopy (EIS) to observe and characterize the transesterfication reaction and its interfacial behavior phenomena electrically. In particular, the dielectric properties of soybean biodiesel were measured at broad range frequencies from 10-2 to 106 Hz at different temperatures, methanol molar ratio to biodiesel, concentration of catalyst and reaction time. Measurement of dielectric property have provided an important approach to understanding the structure of matter. Measurements of the dielectric properties are a reliable and efficient method for evaluating the biodiesel production to determine their quality and yield for reducing the production cost. The dielectric constant (epsilon') and loss (epsilon") are the most convenient indicators for quality control in commercial biodiesel manufacturing. Dielectric properties were correlated with chemically measured changes in soybean oil such as free fatty acids, amount of catalyst and alcohols at different temperatures as well as reaction times. It was observed that there is a good correlation between the dielectric constant (epsilon') and loss (epsilon") in soybean biodiesel. The result indicated that the dielectric properties increased with the (1) increasing temperature (2) increasing methanol; (3) increasing catalyst; (4) increasing reaction time. Dielectric properties was a useful index for the rapid quality evaluation of soybean biodiesel. Dielectric properties were compared to conventional methods of analysis (Infrared Spectroscopy) for evaluating the quality of soybean biodiesel. The results indicated that dielectric constant and dielectric loss are essential measurement for predicting the best biodiesel yield. Moreover, the electrical impedance parameters such as bulk resistance (Rb), bulk capacitance (Cb) and time constant(tau b

  10. A Wide Bandwidth Model for the Electrical Impedance of Magnetic BearingS

    NASA Technical Reports Server (NTRS)

    Meeker, David C.; Maslen, Eric H.; Noh, Myounggyu D.

    1996-01-01

    Magnetic bearings are often designed using magnetic circuit theory. When these bearings are built, however, effects not included in the usual circuit theory formulation have a significant influence on bearing performance. Two significant sources of error in the circuit theory approach are the neglect of leakage and fringing effects and the neglect of eddy current effects. This work formulates an augmented circuit model in which eddy current and flux leakage and fringing effects are included. Through the use of this model, eddy current power losses and actuator bandwidth can be derived. Electrical impedance predictions from the model are found to be in good agreement with experimental data from a typical magnetic bearing.

  11. Utilization of Electrical Impedance Tomography to Detect Internal Anomalies in Southern Pine Logs

    NASA Astrophysics Data System (ADS)

    Steele, Philip; Cooper, Jerome

    2006-03-01

    A large body of research has shown that knowledge of internal defect location in logs prior to sawing has the potential to significantly increase lumber value yield. This paper describes a relatively low-capital log scanning technique based on Electrical Impedance Tomography (EIT) to image anomalies interior to sawlogs. Static testing results showed that knots, juvenile and compression wood internal to logs can be detected. Although resolution is lower than that of CT and NMR technologies, the low cost of this EIT application should render it competitive.

  12. A GMM-based breast cancer risk stratification using a resonance-frequency electrical impedance spectroscopy.

    PubMed

    Lederman, Dror; Zheng, Bin; Wang, Xingwei; Sumkin, Jules H; Gur, David

    2011-03-01

    The authors developed and tested a multiprobe-based resonance-frequency-based electrical impedance spectroscopy (REIS) system. The purpose of this study was to preliminarily assess the performance of this system in classifying younger women into two groups, those ultimately recommended for biopsy during imaging-based diagnostic workups that followed screening and those rated as negative during mammography. A seven probe-based REIS system was designed, assembled, and is currently being tested in the breast imaging facility. During an examination, contact is made with the nipple and six concentric points on the breast skin. For each measurement channel between the center probe and one of the six external probes, a set of electrical impedance spectroscopy (EIS) signal sweeps is performed and signal outputs ranging from 200 to 800 kHz at 5 kHz interval are recorded. An initial subset of 174 examinations from an ongoing prospective clinical study was selected for this preliminary analysis. An initial set of 35 features, 33 of which represented the corresponding EIS signal differences between the left and right breasts, was established. A Gaussian mixture model (GMM) classifier was developed to differentiate between "positive" (biopsy recommended) cases and "negative" (nonbiopsy) cases. Selecting an optimal feature set was performed using genetic algorithms with an area under a receiver operating characteristic curve (AUC) as the fitness criterion. The recorded EIS signal sweeps showed that, in general, negative (nonbiopsy) examinations have a higher level of electrical impedance symmetry between the two breasts than positive (biopsy) examinations. Fourteen features were selected by genetic algorithm and used in the optimized GMM classifier. Using a leave-one-case-out test, the GMM classifier yielded a performance level of AUC = 0.78, which compared favorably to other three widely used classifiers including support vector machine, classification tree, and linear

  13. Ex vivo Time Evolution of Thrombus Growth through Optical and Electrical Impedance data fusion

    NASA Astrophysics Data System (ADS)

    Affanni, A.; Specogna, R.; Trevisan, F.

    2013-09-01

    We designed a novel sensor specifically aimed at ex vivo measurements of white thrombus volume growth; a white thrombus is induced within an artificial micro-channel where hemostasis takes place starting from whole blood under flow conditions. The advantage of the proposed methodology is to identify the time evolution of the thrombus volume by means of an original data fusion methodology based on 2D optical and electrical impedance data simultaneously processed. On the contrary, the present state of the art optical imaging methodologies allow the thrombus volume estimation only at the end of the hemostatic process.

  14. Measurement of lung function using Electrical Impedance Tomography (EIT) during mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Noshiro, Makoto; Brown, Brian H.; Soma, Kazui

    2010-04-01

    The consistency of regional lung density measurements as estimated by Electrical Impedance Tomography (EIT), in eleven patients supported by a mechanical ventilator, was validated to verify the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities between the normal lung and diseased lungs associated with pneumonia, atelectasis and pleural effusion (Steel-Dwass test, p < 0.05). Temporal changes in regional lung density of patients with atelectasis were observed to be in good agreement with the results of clinical diagnosis. These results indicate that it is feasible to obtain a quantitative value for regional lung density using EIT.

  15. Electrical impedance measurements in the arm and the leg during a thirty day bed rest study

    NASA Technical Reports Server (NTRS)

    Cardus, David; Jaweed, Mazher; McTaggart, Wesley

    1995-01-01

    The need to detect, follow, and understand the effects of gravity on body fluid distribution is a constant stimulus to the quest for new techniques in this area of research. One of these techniques is electrical bioimpedance spectroscopy (BIS). Although not new, this is a technique whose applications to biomedical research are fairly recent. What is new is the development of instrumentation that has made practical the use of impedance spectroscopy in the biomedical setting, particularly in studies involving human subjects. The purpose of this paper is to report impedance spectroscopy observations made on a subject who was submitted to bed rest for a period of thirty days. These observations were made as part of a study on muscle atrophy during a thirty day head down bed rest. Since bed rest studies are very costly in human and financial terms, and technically difficult to realize, we felt that even though the present study deals only with a single case it was worthy of reporting because it illustrates kinds of questions impedance spectroscopy may help to answer in microgravity research.

  16. Electrical impedance spectroscopy of the cervix in non-pregnant and pregnant women.

    PubMed

    Gandhi, Saurabh V; Walker, Dawn; Milnes, Pete; Mukherjee, Soma; Brown, Brian H; Anumba, Dilly O C

    2006-12-01

    We sought to validate and measure the electrical impedance of the uterine cervix in non-pregnant and pregnant women by spectroscopy. Cervical stromal impedance (CSI) was measured in 50 non-pregnant, 20 1st, 20 2nd and 50 3rd trimester pregnant women. The technique was also validated by comparing in vivo data to a finite element (FE) model of cervical tissue. CSI agreed well with the FE model and was highly reproducible in all study groups. Mean (S.E.) CSI at 4-819 kHz was higher in pregnant (2.78 +/- 0.09 Omega m) compared to non-pregnant (2.38 +/- 0.07, p < 0.01) women, and in the 3rd trimester (3.08 +/- 0.13) compared to non-pregnant (p < 0.01), 1st trimester (2.42 +/- 0.12, p < 0.001) and 2nd trimester (2.20 +/- 0.05, p < 0.001) pregnant women. Measurement of CSI provides a non-invasive method of assessing cervical tissue characteristics. Cervical extracellular matrix synthesis and leukocyte infiltration may account for the increased tissue impedance noted in the 3rd trimester.

  17. Real-time imaging of cerebral infarction in rabbits using electrical impedance tomography.

    PubMed

    Yang, Bin; Shi, Xuetao; Dai, Meng; Xu, Canhua; You, Fushen; Fu, Feng; Liu, Ruigang; Dong, Xiuzhen

    2014-02-01

    To investigate the possible use of electrical impedance tomography (EIT) in monitoring focal cerebral infarction in a rabbit model. A model of focal cerebral infarction was established in eight New Zealand rabbits using a photochemical method without craniectomy. Focal cerebral infarction was confirmed by histopathological examination. Intracranial impedance variation was measured using 16 electrodes placed in a circle on the scalp. EIT images were obtained using a damped least-squares reconstruction algorithm. The average resistivity value (ARV) of the infarct region on EIT images was calculated to quantify relative resistivity changes. A symmetry index was calculated to evaluate the relative difference in resistivity between the two sides of the cerebrum. EIT images and ARV curves showed that impedance changes caused by cerebral infarction increased linearly with irradiation time. A difference in ARV was found between measurements taken before and after infarct induction. Focal cerebral infarction can be monitored by EIT in the proposed animal model. The results are sufficiently encouraging that the authors plan to extend this study to humans, after further technical improvements.

  18. A simple mathematical model for electric cell-substrate impedance sensing with extended applications.

    PubMed

    Xiao, Caide; Luong, John H T

    2010-03-15

    This paper presents a simple mathematical model to predict the impedance data acquired by electric cell-substrate impedance sensing (ECIS) at frequencies between 25 Hz and 60 kHz. With this model, the equivalent resistance (R) and capacitance (C) of biological samples adhered on gold surfaces could be more precisely measured at 4 kHz. ECIS applications were extended for real-time monitoring of living bacteria cultivated in Luria Bertani (LB) culture medium by two different approaches. In the former, we used a ferri/ferrocyanide redox couple in LB medium as an indicator for bacterial multiplication. Because the redox couple was toxic to some bacteria, we developed a second approach, in which l-cysteine self-assembled monolayers (SAM) on gold electrodes were used to detect living bacteria. The l-cysteine SAM could also be detected by ECIS. Unlike traditional impedance microbiological methods which need special culture media with low ions, our procedures significantly enhanced signal/noise ratios so bacteria could be detected in general purpose culture media. It was easy and convenient to obtain bacterial doubling times and evaluate the resistance of bacteria to antibiotics from ECIS spectra. (c) 2009. Published by Elsevier B.V. All rights reserved.

  19. Real-time monitoring of flavivirus induced cytopathogenesis using cell electric impedance technology.

    PubMed

    Fang, Ying; Ye, Peifang; Wang, Xiaobo; Xu, Xiao; Reisen, William

    2011-05-01

    A real-time cell analysis (RTCA) system based on cell-substrate electric impedance technology was used to monitor cytopathic effects (CPE) in Vero cell cultures infected with West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) at infectious doses ranging from 10(1) to 10(6) plaque forming units (PFU) of virus. A kinetic parameter characterizing virus-induced CPE, CIT(50) or the time to 50% decrease in cell impedance, was inversely proportional to virus infectious dose. In WNV-infected cells, the onset and rate of CPE was earlier and faster than in SLEV-infected cells, which was consistent with viral cytolytic activity. A mathematical model simulating impedance-based CPE kinetic curves indicated that the replication rate of WNV was about 3 times faster than SLEV. The RTCA system also was used for quantifying the level of cell protection by specific neutralizing antibodies against WNV and SLEV. The onset of WNV or SLEV-induced CPE was delayed in the presence of specific anti-sera, and this delay in the CIT(50) was well correlated with the titer of the neutralizing antibody as measured independently by plaque reduction neutralization tests (PRNT). The RTCA system provided a high throughput and quantitative method for real-time monitoring viral growth in cell culture and its inhibition by neutralizing antibodies. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Monitoring of regional lung ventilation using electrical impedance tomography after cardiac surgery in infants and children.

    PubMed

    Krause, Ulrich; Becker, Kristin; Hahn, Günter; Dittmar, Jörg; Ruschewski, Wolfgang; Paul, Thomas

    2014-08-01

    Electrical impedance tomography (EIT) is a noninvasive method to monitor regional lung ventilation in infants and children without using radiation. The objective of this prospective study was to determine the value of EIT as an additional monitoring tool to assess regional lung ventilation after pediatric cardiac surgery for congenital heart disease in infants and children. EIT monitoring was performed in a prospective study comprising 30 pediatric patients who were mechanically ventilated after cardiac surgery. Data were analyzed off-line with respect to regional lung ventilation in different clinical situations. EIT data were correlated with respirator settings and arterial carbon dioxide (CO2) partial pressure in the blood. In 29 of 30 patients, regional ventilation of the lung could sufficiently and reliably be monitored by means of EIT. The effects of the transition from mechanical ventilation to spontaneous breathing after extubation on regional lung ventilation were studied. After extubation, a significant decrease of relative impedance changes was evident. In addition, a negative correlation of arterial CO2 partial pressure and relative impedance changes could be shown. EIT was sufficient to discriminate differences of regional lung ventilation in children and adolescents after cardiac surgery. EIT reliably provided additional information on regional lung ventilation in children after cardiac surgery. Neither chest tubes nor pacemaker wires nor the intensive care unit environment interfered with the application of EIT. EIT therefore may be used as an additional real-time monitoring tool in pediatric cardiac intensive care because it is noninvasive.

  1. Transmural versus nontransmural in situ electrical impedance spectrum for healthy, ischemic, and healed myocardium.

    PubMed

    Salazar, Yolocuauhtli; Bragos, Ramon; Casas, Oscar; Cinca, Juan; Rosell, Javier

    2004-08-01

    Electrical properties of myocardial tissue are anisotropic due to the complex structure of the myocardial fiber orientation and the distribution of gap junctions. For this reason, measured myocardial impedance may differ depending on the current distribution and direction with respect to myocardial fiber orientation and, consequently, according to the measurement method. The objective of this study is to compare the specific impedance spectra of the myocardium measured using two different methods. One method consisted of transmural measurements using an intracavitary catheter and the other method consisted of nontransmural measurements using a four-needle probe inserted into the epicardium. Using both methods, we provide the in situ specific impedance spectrum (magnitude and phase angle) of normal, ischemic, and infarcted pig myocardium tissue from 1 kHz to 1 MHz. Magnitude spectra showed no significant differences between the measurement techniques. However, the phase angle spectra showed significant differences for normal and ischemic tissues according to the measurement technique. The main difference is encountered after 60 min of acute ischeimia in the phase angle spectrum. Healed myocardial tissue showed a small and flat phase angle spectrum in both methods due tothe low content of cells in the transmural infarct scar. In conclusion, both transmural and nontransmural measurements of phase angle spectrum allow the differentiation among normal, ischemic, and infarcted tissue.

  2. Recognition of Fibrotic Infarct Density by the Pattern of Local Systolic-Diastolic Myocardial Electrical Impedance

    PubMed Central

    Amorós-Figueras, Gerard; Jorge, Esther; García-Sánchez, Tomás; Bragós, Ramón; Rosell-Ferrer, Javier; Cinca, Juan

    2016-01-01

    Myocardial electrical impedance is a biophysical property of the heart that is influenced by the intrinsic structural characteristics of the tissue. Therefore, the structural derangements elicited in a chronic myocardial infarction should cause specific changes in the local systolic-diastolic myocardial impedance, but this is not known. This study aimed to characterize the local changes of systolic-diastolic myocardial impedance in a healed myocardial infarction model. Six pigs were successfully submitted to 150 min of left anterior descending (LAD) coronary artery occlusion followed by reperfusion. 4 weeks later, myocardial impedance spectroscopy (1–1000 kHz) was measured at different infarction sites. The electrocardiogram, left ventricular (LV) pressure, LV dP/dt, and aortic blood flow (ABF) were also recorded. A total of 59 LV tissue samples were obtained and histopathological studies were performed to quantify the percentage of fibrosis. Samples were categorized as normal myocardium (<10% fibrosis), heterogeneous scar (10–50%) and dense scar (>50%). Resistivity of normal myocardium depicted phasic changes during the cardiac cycle and its amplitude markedly decreased in dense scar (18 ± 2 Ω·cm vs. 10 ± 1 Ω·cm, at 41 kHz; P < 0.001, respectively). The mean phasic resistivity decreased progressively from normal to heterogeneous and dense scar regions (285 ± 10 Ω·cm, 225 ± 25 Ω·cm, and 162 ± 6 Ω·cm, at 41 kHz; P < 0.001 respectively). Moreover, myocardial resistivity and phase angle correlated significantly with the degree of local fibrosis (resistivity: r = 0.86 at 1 kHz, P < 0.001; phase angle: r = 0.84 at 41 kHz, P < 0.001). Myocardial infarcted regions with greater fibrotic content show lower mean impedance values and more depressed systolic-diastolic dynamic impedance changes. In conclusion, this study reveals that differences in the degree of myocardial fibrosis can be detected in vivo by local measurement of phasic systolic

  3. Detection of small bleeds in the brain with electrical impedance tomography.

    PubMed

    Boverman, Gregory; Kao, Tzu-Jen; Wang, Xin; Ashe, Jeffrey M; Davenport, David M; Amm, Bruce C

    2016-06-01

    In this paper, we describe and assess feasibility of instrumentation and algorithms for detecting bleeding due to hemorrhagic strokes and traumatic brain injury using electrical impedance tomography, a novel biomedical diagnostic modality in which the body is probed noninvasively with generally imperceptible alternating currents applied in patterns to a set of electrodes placed in contact with the skin. We focus on the GENESIS instrument developed by GE Global Research and on the achievability of our goal to detect a bleed in the center of the head with a volume of several ml. Our main topic is compensation for the large changes in voltages that tend to occur when the electrodes are in contact with biological media, specifically either human subjects or with vegetable matter proxies which seem to exhibit the same 'drift' phenomenon. We show that these changes in voltages can be modeled by assuming that each electrode is attached to the body via a discrete complex impedance whose value is time-varying and describe how this discrete component value can be estimated and largely compensated-for. We compare this discrete model with changes in contact impedances estimated using the complete electrode model showing that the two models are roughly comparable in their ability to explain the data from a single human subject experiment with electrodes attached to the head. In a simulation study, we demonstrate that it is possible to detect a small bleed in the center of the head even in the case of large changes in electrode impedances, which can be treated as nuisance parameters.

  4. Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy

    PubMed Central

    Valente, Virgilio; Demosthenous, Andreas

    2016-01-01

    This paper presents a multi-channel dual-mode CMOS analogue front-end (AFE) for electrochemical and bioimpedance analysis. Current-mode and voltage-mode readouts, integrated on the same chip, can provide an adaptable platform to correlate single-cell biosensor studies with large-scale tissue or organ analysis for real-time cancer detection, imaging and characterization. The chip, implemented in a 180-nm CMOS technology, combines two current-readout (CR) channels and four voltage-readout (VR) channels suitable for both bipolar and tetrapolar electrical impedance spectroscopy (EIS) analysis. Each VR channel occupies an area of 0.48 mm2, is capable of an operational bandwidth of 8 MHz and a linear gain in the range between −6 dB and 42 dB. The gain of the CR channel can be set to 10 kΩ, 50 kΩ or 100 kΩ and is capable of 80-dB dynamic range, with a very linear response for input currents between 10 nA and 100 μA. Each CR channel occupies an area of 0.21 mm2. The chip consumes between 530 μA and 690 μA per channel and operates from a 1.8-V supply. The chip was used to measure the impedance of capacitive interdigitated electrodes in saline solution. Measurements show close matching with results obtained using a commercial impedance analyser. The chip will be part of a fully flexible and configurable fully-integrated dual-mode EIS system for impedance sensors and bioimpedance analysis. PMID:27463721

  5. Design and simulation of superconducting Lorentz Force Electrical Impedance Tomography (LFEIT)

    NASA Astrophysics Data System (ADS)

    Shen, Boyang; Fu, Lin; Geng, Jianzhao; Zhang, Xiuchang; Zhang, Heng; Dong, Qihuan; Li, Chao; Li, Jing; Coombs, T. A.

    2016-05-01

    Lorentz Force Electrical Impedance Tomography (LFEIT) is a hybrid diagnostic scanner with strong capability for biological imaging, particularly in cancer and haemorrhages detection. This paper presents the design and simulation of a novel combination: a superconducting magnet together with LFEIT system. Superconducting magnets can generate magnetic field with high intensity and homogeneity, which could significantly enhance the imaging performance. The modelling of superconducting magnets was carried out using Finite Element Method (FEM) package, COMSOL Multiphysics, which was based on Partial Differential Equation (PDE) model with H-formulation coupling B-dependent critical current density and bulk approximation. The mathematical model for LFEIT system was built based on the theory of magneto-acoustic effect. The magnetic field properties from magnet design were imported into the LFEIT model. The basic imaging of electrical signal was developed using MATLAB codes. The LFEIT model simulated two samples located in three different magnetic fields with varying magnetic strength and homogeneity.

  6. Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach.

    PubMed

    Laufer, Shlomi; Solomon, Stephen B; Rubinsky, Boris

    2012-06-01

    In this study, we use a new linear algebra manipulation on electrical impedance spectroscopy measurements to provide real-time information regarding the nature of the tissue surrounding the needle in minimal invasive procedures. Using a Comsol Multiphysics three-dimensional model, a phantom based on ex vivo animal tissue and in vivo animal data, we demonstrate how tissue inhomogeneity can be characterized without any previous knowledge of the electrical properties of the different tissues, except that they should not be linearly dependent on a certain frequency range. This method may have applications in needle biopsies, radiation seeds, or minimally invasive surgery and can reduce the number of computer tomography or magnetic resonance imaging images. We conclude by demonstrating how this mathematical approach can be useful in other applications.

  7. TOPICAL REVIEW: Electrical impedance tomography and Calderón's problem

    NASA Astrophysics Data System (ADS)

    Uhlmann, G.

    2009-12-01

    We survey mathematical developments in the inverse method of electrical impedance tomography which consists in determining the electrical properties of a medium by making voltage and current measurements at the boundary of the medium. In the mathematical literature, this is also known as Calderón's problem from Calderón's pioneer contribution (Calderón 1980 Seminar on Numerical Analysis and its Applications to Continuum Physics (Río de Janeiro, 1980) p 65 (Soc. Brasil. Mat.)). We concentrate this review around the topic of complex geometrical optics solutions that have led to many advances in the field. In the last section, we review some counterexamples to Calderón's problems that have attracted a lot of interest because of connections with cloaking and invisibility.

  8. A real time affinity biosensor on an insulated polymer using electric impedance spectroscopy in dielectric microchips.

    PubMed

    Kechadi, Mohammed; Sotta, Bruno; Chaal, Lila; Tribollet, Bernard; Gamby, Jean

    2014-06-21

    This paper presents development of real time monitoring of binding events on flexible plastic in microchips. Two planar carbon microelectrodes are integrated into an insulated polyethylene terephthalate microchip without direct electrical contact with the solution in the microchannel. It has been possible to probe the electric impedance changes through the interface constituted by the microelectrode/PET microchannel/solution when a biomolecular interaction takes place on the polymer surface. This new transduction for biosensing was demonstrated for the molecular recognition of BSA immobilized on the polymer microchannel surface using the corresponding rabbit anti-BSA antibodies as an analyte in the flow microchannel at the nanomolar range concentration. The equilibrium association constant was determined for the affinity reaction between both ligands and was obtained equal to 5 × 10(7) M(-1). The promising results obtained with this new device make it a competitive biosensor.

  9. Influence of neutron flux, frequency and temperature to electrical impedance of nano silica particles

    SciTech Connect

    Huseynov, Elchin E-mail: hus.elchin@gmail.com; Garibov, Adil; Mehdiyeva, Ravan; Andreja, Eršte; Rustamov, Anar

    2014-11-15

    We studied electric impedance of SiO{sub 2} nanomaterial at its initial state and after being exposed to continuous neutron irradiation for up to 20 hours. In doing so we employed a flux of neutrons of 2x10{sup 13} n⋅cm{sup −2}s{sup −1} while the frequency and temperature ranges amounted to 0,09 – 2.3 MHz and 100 – 400 K correspondingly. Analysis in terms of the Cole-Cole expression revealed that with increasing irradiation period the polarization and relaxation times decrease as a result of combination of nanoparticles. Moreover, it is demonstrated that the electric conductivity of samples, on the other hand, increases with the increasing irradiation period. At low temperatures formations of clusters at three distinct states with different energies were resolved.

  10. Measurement of Two-Phase Flow Fields by Application of Dynamic Electrical Impedance Imaging

    SciTech Connect

    Kim, KyungYoun; Kang, Sook In; Kim, Ho Chan; Kim, Sin; Lee, Yoon Joon; Kim, Min Chan; Anghaie, Samim

    2002-07-01

    This study presents a visualization technique for the phase distribution in a two-phase flow field with an electrical impedance imaging technique, which reconstructs the resistivity distribution with electrical responses that are determined by corresponding excitations. Special emphasis is placed on the development of dynamic imaging technique for two-phase system undergoing a rapid transient, which could not be visualized with conventional static imaging techniques. The proposed algorithm treats the image reconstruction problem as a nonlinear state estimation problem and the unknown state (resistivity distribution, i.e. phase distribution) is estimated with the aid of a Kalman filter in a minimum mean square error sense. Several illustrative examples with computer simulations are successfully provided to verify the reconstruction performance of the proposed algorithm. (authors)

  11. A Multilayer MEMS Platform for Single-Cell Electric Impedance Spectroscopy and Electrochemical Analysis

    PubMed Central

    Dittami, Gregory M.; Ayliffe, H. Edward; King, Curtis S.; Rabbitt, Richard D.

    2008-01-01

    The fabrication and characterization of a microchamber electrode array for electrical and electrochemical studies of individual biological cells are presented. The geometry was tailored specifically for measurements from sensory hair cells isolated from the cochlea of the mammalian inner ear. Conventional microelectromechanical system (MEMS) fabrication techniques were combined with a heat-sealing technique and polydimethylsiloxane micromolding to achieve a multilayered microfluidic system that facilitates cell manipulation and selection. The system allowed for electrical stimulation of individual living cells and interrogation of excitable cell membrane dielectric properties as a function of space and time. A three-electrode impedimetric system was incorporated to provide the additional ability to record the time-dependent concentrations of specific biochemicals in microdomain volumes near identified regions of the cell membrane. The design and fabrication of a robust fluidic and electrical interface are also described. The interface provided the flexibility and simplicity of a “cartridge-based” approach in connecting to the MEMS devices. Cytometric measurement capabilities were characterized by using electric impedance spectroscopy (1 kHz–10 MHz) of isolated outer hair cells. Chemical sensing capability within the microchannel recording chamber was characterized by using cyclic voltammetry with varying concentrations of potassium ferricyanide (K3Fe(CN)6). Chronoamperometric recordings of electrically stimulated PC12 cells highlight the ability of the platform to resolve exocytosis events from individual cells. PMID:19756255

  12. Modification of polysulfone membranes with polyethylene glycol and lignosulfate: electrical characterization by impedance spectroscopy measurements.

    PubMed

    Benavente, J; Zhang, X; Garcia Valls, R

    2005-05-01

    Two sets of composite membranes having an asymmetric sulfonated polysulfone membrane as support layer have been obtained and electrically characterized (membranes SPS-PEG and PA-LIGS). The skin layer of the membrane SPS-PEG contains different percentages of polyethylene glycol in the casting solution (5, 25, 40, and 60 wt%), while lignosulfonate was used for manufacturing PA-LIGS membranes (5, 10, 20, and 40 wt%). Membrane electrical characterization was done by means of impedance spectroscopy (IS) measurements, which were carried out with the membranes in contact with NaCl solutions at different concentrations (10(-3) < or = c(M) < or = 5x10(-2)). Electrical resistance and equivalent capacitance of the different membrane samples were determined from IS plots by using equivalent circuits as models. Results show a clear decrease in the membrane electrical resistance as a result of both polysulfone sulfonation and the increase of the concentration of modifying substances, although a kind of limit concentration was obtained for both polyethylene glycol and lignosulfonate (40 and 20%, respectively). Results also show a decrease of around 90% in electrical resistance due to polysulfone sulfonation, while the value of the dielectric constant (hydrated state) clearly increases.

  13. Non-invasive assessment of radiation injury with electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sunshine Osterman, K.; Hoopes, P. Jack; DeLorenzo, Christine; Gladstone, David J.; Paulsen, Keith D.

    2004-03-01

    A detailed understanding of non-targeted normal tissue response is necessary for the optimization of radiation treatment plans in cancer therapy. In this study, we evaluate the ability of electrical impedance spectroscopy (EIS) to non-invasively determine and quantify the injury response in soft tissue after high dose rate (HDR) irradiation, which is characterized by large localized dose distributions possessing steep spatial gradients. The HDR after-loading technique was employed to irradiate small volumes of muscle tissue with single doses (26-52 Gy targeted 5 mm away from the source). Impedance measurements were performed on 29 rats at 1, 2 and 3 month post-irradiation, employing 31 frequencies in the 1 kHz to 1 MHz range. Over the first 3 months, conductivity increased by 48% and 26% following target doses of 52 Gy and 26 Gy 5 mm from the HDR source, respectively. Injury, assessed independently through a grid-based scoring method showed a quadratic dependence on distance from source. A significant injury (50% of cells atrophied, necrotic or degenerating) in 1.2% of the volume, accompanied by more diffuse injury (25% of cells atrophied, necrotic or degenerating) in 9% of the tissue produced a conductivity increase of 0.02 S m-1 (8% over a baseline of 0.24 S m-1). This was not statistically significant at p = 0.01. Among treatment groups, injury differences in 22% of the volume led to statistically significant differences in conductivity of 0.07 S m-1 (23% difference in conductivity). Despite limitations, the success of EIS in detecting responses in a fraction of the tissue probed, during these early post-irradiation time-points, is encouraging. Electrical impedance spectroscopy may provide a useful metric of atrophy and the development of fibrosis secondary to radiation that could be further developed into a low-cost imaging method for radiotherapy monitoring and assessment.

  14. What the electrical impedance can tell about the intrinsic properties of an electrodynamic shaker

    PubMed Central

    Lütkenhöner, Bernd

    2017-01-01

    Small electrodynamic shakers are becoming increasingly popular for diagnostic investigations of the human vestibular system. More specifically, they are used as mechanical stimulators for eliciting a vestibular evoked myogenic potential (VEMP). However, it is largely unknown how shakers perform under typical measurement conditions, which considerably differ from the normal use of a shaker. Here, it is shown how the basic properties of a shaker can be determined without requiring special sensors such as accelerometers or force gauges. In essence, the mechanical parts of the shaker leave a signature in the electrical impedance, and an interpretation of this signature using a simple model allows for drawing conclusions about the properties of the shaker. The theory developed (which is quite general so that it is usable also in other contexts) is applied to experimental data obtained for the minishaker commonly used in VEMP measurements. It is shown that the experimental conditions substantially influence the properties of the shaker. Relevant factors are, in particular, the spatial orientation of the shaker (upright, horizontal or upside-down) and the static force acting on the table of the shaker (which in a real measurement corresponds to the force by which the shaker is pressed against the test person’s head). These results underline the desirability of a proper standardization of VEMP measurements. Direct measurements of displacement and acceleration prove the consistency of the conclusions derived from the electrical impedance. PMID:28328999

  15. Rapid, electrical impedance detection of bacterial pathogens using immobilized antimicrobial peptides.

    PubMed

    Lillehoj, Peter B; Kaplan, Christopher W; He, Jian; Shi, Wenyuan; Ho, Chih-Ming

    2014-02-01

    The detection of bacterial pathogens plays an important role in many biomedical applications, including clinical diagnostics, food and water safety, and biosecurity. Most current bacterial detection technologies, however, are unsuitable for use in resource-limited settings where the highest disease burdens often exist. Thus, there is an urgent need to develop portable, user-friendly biosensors capable of rapid detection of multiple pathogens in situ. We report a microfluidic chip for multiplexed detection of bacterial cells that uses antimicrobial peptides (AMPs) with species-specific targeting and binding capabilities. The AMPs are immobilized onto an electrical impedance microsensor array and serve as biorecognition elements for bacterial cell detection. Characterization of peptide immobilization on the sensors revealed robust surface binding via cysteine-gold interactions and vertical alignment relative to the sensor surface. Samples containing Streptococcus mutans and Pseudomonas aeruginosa were loaded in the chip, and both microorganisms were detected at minimum concentrations of 10⁵ cfu/mL within 25 min. Measurements performed in a variety of solutions revealed that high-conductivity solutions produced the largest impedance values. By integrating a highly specific bacterial cell capture scheme with rapid electrical detection, this device demonstrates great potential as a next-generation, point-of-care diagnostic platform for the detection of disease-causing pathogenic agents.

  16. FPGA Based High Speed Data Acquisition System for Electrical Impedance Tomography.

    PubMed

    Khan, S; Borsic, A; Manwaring, Preston; Hartov, Alexander; Halter, Ryan

    2013-03-01

    Electrical Impedance Tomography (EIT) systems are used to image tissue bio-impedance. EIT provides a number of features making it attractive for use as a medical imaging device including the ability to image fast physiological processes (>60 Hz), to meet a range of clinical imaging needs through varying electrode geometries and configurations, to impart only non-ionizing radiation to a patient, and to map the significant electrical property contrasts present between numerous benign and pathological tissues. To leverage these potential advantages for medical imaging, we developed a modular 32 channel data acquisition (DAQ) system using National Instruments' PXI chassis, along with FPGA, ADC, Signal Generator and Timing and Synchronization modules. To achieve high frame rates, signal demodulation and spectral characteristics of higher order harmonics were computed using dedicated FFT-hardware built into the FPGA module. By offloading the computing onto FPGA, we were able to achieve a reduction in throughput required between the FPGA and PC by a factor of 32:1. A custom designed analog front end (AFE) was used to interface electrodes with our system. Our system is wideband, and capable of acquiring data for input signal frequencies ranging from 100 Hz to 12 MHz. The modular design of both the hardware and software will allow this system to be flexibly configured for the particular clinical application.

  17. Electrical-Impedance Tomography for Measuring Material Distributions of Multiphase Flows in Conducting Vessels

    NASA Astrophysics Data System (ADS)

    Liter, S. G.; Torczynski, J. R.; Shollenberger, K. A.; Ceccio, S. L.

    2001-11-01

    An implementation of resistive electrical-impedance tomography (EIT) for measuring material distributions of two-phase flows in vessels with electrically conducting walls is presented. A thin nonconducting rod, with N-1 ring electrodes wrapped around its exterior at equally-spaced axial positions, is inserted into the vessel (i.e., into the interior of the flow). The vessel wall is grounded and serves as the N-th electrode. Current is injected from a ring electrode and exits to the vessel wall, and the resulting voltages at all ring electrodes are recorded. Each ring electrode is used in turn for current injection, and the collection of all measured voltages comprises a data set. Multiple data sets are used to numerically reconstruct the time-averaged impedance distribution within the vessel, from which the material distribution is inferred. Design issues, including the size, spacing, and number of the ring electrodes, are considered. An experiment in which the rod is inserted coaxially into a vertical pipe is presented, and bubble-column applications are discussed. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  18. What the electrical impedance can tell about the intrinsic properties of an electrodynamic shaker.

    PubMed

    Lütkenhöner, Bernd

    2017-01-01

    Small electrodynamic shakers are becoming increasingly popular for diagnostic investigations of the human vestibular system. More specifically, they are used as mechanical stimulators for eliciting a vestibular evoked myogenic potential (VEMP). However, it is largely unknown how shakers perform under typical measurement conditions, which considerably differ from the normal use of a shaker. Here, it is shown how the basic properties of a shaker can be determined without requiring special sensors such as accelerometers or force gauges. In essence, the mechanical parts of the shaker leave a signature in the electrical impedance, and an interpretation of this signature using a simple model allows for drawing conclusions about the properties of the shaker. The theory developed (which is quite general so that it is usable also in other contexts) is applied to experimental data obtained for the minishaker commonly used in VEMP measurements. It is shown that the experimental conditions substantially influence the properties of the shaker. Relevant factors are, in particular, the spatial orientation of the shaker (upright, horizontal or upside-down) and the static force acting on the table of the shaker (which in a real measurement corresponds to the force by which the shaker is pressed against the test person's head). These results underline the desirability of a proper standardization of VEMP measurements. Direct measurements of displacement and acceleration prove the consistency of the conclusions derived from the electrical impedance.

  19. Magnetic field influence on electrical properties of human blood measured by impedance spectroscopy.

    PubMed

    Sosa, M; Bernal-Alvarado, J; Jiménez-Moreno, M; Hernández, J C; Gutiérrez-Juárez, G; Vargas-Luna, M; Huerta, R; Villagómez-Castro, J C; Palomares, P

    2005-10-01

    The impedance spectroscopy technique (IST) was used for studying the effect of a 0.5 T magnetic field on the electrical properties of whole human blood. A Solartron SI 1260 spectrometer was used to measure the impedance spectra of magnetic field exposed blood samples compared to non-exposed samples. An equivalent electrical circuit model, consisting in a resistance Rs in series with a parallel circuit formed by a constant phase element (CPE) and another resistance Rp, is proposed to fit the data in both cases. The experiment used 3 ml human blood samples from 160 healthy donors. A Wilcoxon matched pairs statistical test was applied to the data. The data analysis seems to show a statistically significant increase of the values of resistance Rp (Z = 5.06, P < 0.001) and capacitance CT (Z = 3.32, P < 0.001) of the blood exposed to magnetic field, by approximately 10.4% and 1.9%, respectively. (c) 2005 Wiley-Liss, Inc.

  20. Bias-dependent model of the electrical impedance of ionic polymer-metal composites.

    PubMed

    Cha, Youngsu; Porfiri, Maurizio

    2013-02-01

    In this paper, we analyze the charge dynamics of ionic polymer-metal composites (IPMCs) in response to voltage inputs composed of a large dc bias and a small superimposed time-varying voltage. The IPMC chemoelectrical behavior is described through the modified Poisson-Nernst-Planck framework, in which steric effects are taken into consideration. The physics of charge build-up and mass transfer in the proximity of the high surface electrodes is modeled by schematizing the IPMC as the stacked sequence of five layers, in which the ionomeric membrane is separated from the metal electrodes by two composite layers. The method of matched asymptotic expansions is used to derive a semianalytical solution for the concentration of mobile counterions and the electric potential in the IPMC, which is, in turn, used to establish an equivalent circuit model for the IPMC electrical response. The circuit model consists of the series connection of a resistor and two complex elements, each constituted by the parallel connection of a capacitor and a Warburg impedance. The resistor is associated with ion transport in the ionomeric membrane and is independent of the dc bias. The capacitors and the Warburg impedance idealize charge build-up and mass transfer in the vicinity of the electrodes and their value is controlled by the dc bias. The proposed approach is validated against experimental results on in-house fabricated IPMCs and the accuracy of the equivalent circuit is assessed through comparison with finite element results.

  1. Global tidal variations, regional distribution of ventilation, and the regional onset of filling determined by electrical impedance tomography: reproducibility.

    PubMed

    Caruana, L R; Barnett, A G; Tronstad, O; Paratz, J D; Chang, A T; Fraser, J F

    2017-03-01

    The reproducibility of the regional distribution of ventilation and the timing of onset of regional filling as measured by electrical impedance tomography lacks evidence. This study investigated whether electrical impedance tomography measurements in healthy males were reproducible when electrodes were replaced between measurements. Part 1: Recordings of five volunteers lying supine were made using electrical impedance tomography and a pneumotachometer. Measurements were repeated at least three hours later. Skin marking ensured accurate replacement of electrodes. No stabilisation period was allowed. Part 2: Electrical impedance tomography recordings of ten volunteers; a 15 minute stabilisation period, extra skin markings, and time-averaging were incorporated to improve the reproducibility. Reproducibility was determined using the Bland-Altman method. To judge the transferability of the limits of agreement, a Pearson correlation was used for electrical impedance tomography tidal variation and tidal volume. Tidal variation was judged to be reproducible due to the significant correlation between tidal variation and tidal volume (r(2) = 0.93). The ventilation distribution was not reproducible. A stabilisation period, extra skin markings and time-averaging did not improve the outcome. The timing of regional onset of filling was reproducible and could prove clinically valuable. The reproducibility of the tidal variation indicates that non-reproducibility of the ventilation distribution was probably a biological difference and not measurement error. Other causes of variability such as electrode placement variability or lack of stabilisation when accounted for did not improve the reproducibility of the ventilation distribution.

  2. The time taken for the regional distribution of ventilation to stabilise: an investigation using electrical impedance tomography.

    PubMed

    Caruana, L; Paratz, J D; Chang, A; Barnett, A G; Fraser, J F

    2015-01-01

    Electrical impedance tomography is a novel technology capable of quantifying ventilation distribution in the lung in real time during various therapeutic manoeuvres. The technique requires changes to the patient's position to place the electrical impedance tomography electrodes circumferentially around the thorax. The impact of these position changes on the time taken to stabilise the regional distribution of ventilation determined by electrical impedance tomography is unknown. This study aimed to determine the time taken for the regional distribution of ventilation determined by electrical impedance tomography to stabilise after changing position. Eight healthy, male volunteers were connected to electrical impedance tomography and a pneumotachometer. After 30 minutes stabilisation supine, participants were moved into 60 degrees Fowler's position and then returned to supine. Thirty minutes was spent in each position. Concurrent readings of ventilation distribution and tidal volumes were taken every five minutes. A mixed regression model with a random intercept was used to compare the positions and changes over time. The anterior-posterior distribution stabilised after ten minutes in Fowler's position and ten minutes after returning to supine. Left-right stabilisation was achieved after 15 minutes in Fowler's position and supine. A minimum of 15 minutes of stabilisation should be allowed for spontaneously breathing individuals when assessing ventilation distribution. This time allows stabilisation to occur in the anterior-posterior direction as well as the left-right direction.

  3. Effect of electrode impedance on spread of excitation and pitch perception using electrically coupled "dual-electrode" stimulation.

    PubMed

    Hughes, Michelle L; Baudhuin, Jacquelyn L; Goehring, Jenny L

    2015-01-01

    In newer-generation Cochlear Ltd. cochlear implants, two adjacent electrodes can be electrically coupled to produce a single contact or "dual electrode" (DE). The goal of the present study was to evaluate whether relatively large impedance differences (>3.0 kOhms) between coupled electrodes affect the excitation pattern and pitch percepts produced by the DE. Fifteen electrode pairs in six recipients were tested. Neural spread-of-excitation patterns and pitch perception were measured for adjacent physical electrodes (PEs) and the resulting DE to determine if the lower-impedance PE in the pair dominates the DE response pattern. The results were compared with a "normative sample" (impedance differences <3.0 kOhms) from two earlier studies. In general, spread-of-excitation patterns for DEs more closely approximated those of the lower-impedance PE in each pair. The DE was more easily distinguished in pitch from the higher-impedance PE than the lower-impedance PE. The electrically evoked compound action potential and perceptual results generally differed from those of the normative group. Impedance differences between adjacent PEs should be considered if DE stimulation is implemented in future research studies or clinical coding strategies.

  4. Ionic conductivity and electrical relaxation of nanocrystalline scandia-stabilized c-zirconia using complex impedance analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Manna, I.

    2008-07-01

    A solid solution of 8 mol% of scandia-stabilized cubic-zirconia (8ScSZ) has been prepared by co-precipitation technique. The synthesized powder has an average crystallite size ∼40 nm, surface area of 8.49 m 2/g, and agglomerated particle size of 150 nm. The activation energy of 8ScSZ has been calculated from impedance loss spectra; electrical modulus spectra are in the range of 0.90-1.30 eV. The frequency and temperature-dependent conductivities and impedance were measured in range of 50 Hz-1 MHz and 300-900 K, respectively. Complex impedance spectra, complex modulus formalism and complex conductivity spectra have been carefully analyzed in order to separate the grain, grain boundary and electrode-electrolyte effects. Analysis of ac impedance data using complex impedance indicates a typical negative temperature coefficient of resistance (NTCR) behavior of the materials. The intrinsic conductivity is mainly due to hopping of mobile ions among the available localized site. Relaxation time obtained from complex conductivity spectra are matched well with the impedance loss and modulus loss spectra. Impedance analysis suggests the presence of temperature-dependent electrical relaxation process in the material.

  5. Vertical impedance measurements of concrete bridge deck cover condition without a direct electrical connection to the reinforcing steel

    NASA Astrophysics Data System (ADS)

    Mazzeo, Brian A.; Baxter, Jared; Barton, Jeffrey; Guthrie, W. Spencer

    2017-02-01

    Vertical impedance measurements provide significant quantitative information about the ability of concrete cover to slow the penetration of chloride ions that can corrode steel reinforcement in a bridge deck. The primary limitations preventing the widespread adoption of vertical impedance for assessment of concrete bridge decks are (1) the necessity to have a direct electrical connection to the embedded steel reinforcement and (2) the low speeds of data acquisition. This work presents solutions to both limitations. A method using a large-area electrode as a reference electrode for vertical impedance testing is validated using both simulations and measurements in the field.

  6. THE ELECTRICAL IMPEDANCE OF MUSCLE DURING THE ACTION OF NARCOTICS AND OTHER AGENTS

    PubMed Central

    Guttman, Rita

    1939-01-01

    1. The effect of certain inorganic cations upon the electrical impedance of the sartorius muscle of the frog was investigated. While Na, K, and Mg have little effect upon the resistance of muscle, Ba and Ca cause it to fall. The use of physiologically "unbalanced" salt solution does not in itself seem to affect muscle impedance. 2. The time course of the effect upon muscle impedance of the penetration of substances into the intercellular spaces was studied by treating the muscle with sugar solutions. Half of the effect is over in three-quarters of a minute when the sugar solution is permitted to circulate past both sides of the muscle. This sets an upper limit for the time necessary for inorganic cations and organic narcotics to reach the cell surfaces. The action of inorganic cations and organic narcotics upon muscle is slow compared to the time necessary for them to reach the scene of action. The penetration of the sugar solutions into the intercellular spaces of muscle was found to follow the well known diffusion law, the amount diffusing in being proportional to the square root of the time. Average values of 77.7 per cent for ρ, the volume concentration of fibers; 231 ohms specific resistance for r2, the resistance of the interior of the fibers; and 71.0° for θ, the phase angle of the impedance locus, were obtained for the muscle in Ringer's solution. How these values change when the muscle is placed in various concentrations of sugar was also studied. 3. The action of a number of organic narcotics upon muscle was studied. All decrease 1000 cycle resistance if the concentration is sufficiently high. A detailed analysis of the action of the narcotic, iso-amyl carbamate, was made, and it was noted that low concentrations increase resistance while higher concentrations decrease it. By investigating the effect of narcotics upon muscle impedance over a wide frequency range, it was found that during narcosis the resistance of the fiber membranes first increases

  7. THE ELECTRICAL IMPEDANCE OF MUSCLE DURING THE ACTION OF NARCOTICS AND OTHER AGENTS.

    PubMed

    Guttman, R

    1939-05-20

    1. The effect of certain inorganic cations upon the electrical impedance of the sartorius muscle of the frog was investigated. While Na, K, and Mg have little effect upon the resistance of muscle, Ba and Ca cause it to fall. The use of physiologically "unbalanced" salt solution does not in itself seem to affect muscle impedance. 2. The time course of the effect upon muscle impedance of the penetration of substances into the intercellular spaces was studied by treating the muscle with sugar solutions. Half of the effect is over in three-quarters of a minute when the sugar solution is permitted to circulate past both sides of the muscle. This sets an upper limit for the time necessary for inorganic cations and organic narcotics to reach the cell surfaces. The action of inorganic cations and organic narcotics upon muscle is slow compared to the time necessary for them to reach the scene of action. The penetration of the sugar solutions into the intercellular spaces of muscle was found to follow the well known diffusion law, the amount diffusing in being proportional to the square root of the time. Average values of 77.7 per cent for rho, the volume concentration of fibers; 231 ohms specific resistance for r(2), the resistance of the interior of the fibers; and 71.0 degrees for theta, the phase angle of the impedance locus, were obtained for the muscle in Ringer's solution. How these values change when the muscle is placed in various concentrations of sugar was also studied. 3. The action of a number of organic narcotics upon muscle was studied. All decrease 1000 cycle resistance if the concentration is sufficiently high. A detailed analysis of the action of the narcotic, iso-amyl carbamate, was made, and it was noted that low concentrations increase resistance while higher concentrations decrease it. By investigating the effect of narcotics upon muscle impedance over a wide frequency range, it was found that during narcosis the resistance of the fiber membranes first

  8. Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete

    NASA Astrophysics Data System (ADS)

    Hallaji, Milad; Seppänen, Aku; Pour-Ghaz, Mohammad

    2014-08-01

    This paper outlines the development of a large-area sensing skin for damage detection in concrete structures. The developed sensing skin consists of a thin layer of electrically conductive copper paint that is applied to the surface of the concrete. Cracking of the concrete substrate results in the rupture of the sensing skin, decreasing its electrical conductivity locally. The decrease in conductivity is detected with electrical impedance tomography (EIT) imaging. In previous works, electrically based sensing skins have provided only qualitative information on the damage on the substrate surface. In this paper, we study whether quantitative imaging of the damage is possible. We utilize application-specific models and computational methods in the image reconstruction, including a total variation (TV) prior model for the damage and an approximate correction of the modeling errors caused by the inhomogeneity of the painted sensing skin. The developed damage detection method is tested experimentally by applying the sensing skin to polymeric substrates and a reinforced concrete beam under four-point bending. In all test cases, the EIT-based sensing skin provides quantitative information on cracks and/or other damages on the substrate surface: featuring a very low conductivity in the damage locations, and a reliable indication of the lengths and shapes of the cracks. The results strongly support the applicability of the painted EIT-based sensing skin for damage detection in reinforced concrete elements and other substrates.

  9. Dynamic imaging in electrical impedance tomography of the human chest with online transition matrix identification.

    PubMed

    Moura, Fernando Silva; Aya, Julio Cesar Ceballos; Fleury, Agenor Toledo; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez

    2010-02-01

    One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.

  10. Influence of heart motion on cardiac output estimation by means of electrical impedance tomography: a case study.

    PubMed

    Proença, Martin; Braun, Fabian; Rapin, Michael; Solà, Josep; Adler, Andy; Grychtol, Bartłomiej; Bohm, Stephan H; Lemay, Mathieu; Thiran, Jean-Philippe

    2015-06-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technique that can measure cardiac-related intra-thoracic impedance changes. EIT-based cardiac output estimation relies on the assumption that the amplitude of the impedance change in the ventricular region is representative of stroke volume (SV). However, other factors such as heart motion can significantly affect this ventricular impedance change. In the present case study, a magnetic resonance imaging-based dynamic bio-impedance model fitting the morphology of a single male subject was built. Simulations were performed to evaluate the contribution of heart motion and its influence on EIT-based SV estimation. Myocardial deformation was found to be the main contributor to the ventricular impedance change (56%). However, motion-induced impedance changes showed a strong correlation (r = 0.978) with left ventricular volume. We explained this by the quasi-incompressibility of blood and myocardium. As a result, EIT achieved excellent accuracy in estimating a wide range of simulated SV values (error distribution of 0.57 ± 2.19 ml (1.02 ± 2.62%) and correlation of r = 0.996 after a two-point calibration was applied to convert impedance values to millilitres). As the model was based on one single subject, the strong correlation found between motion-induced changes and ventricular volume remains to be verified in larger datasets.

  11. A new application of electrical impedance spectroscopy for measuring glucose metabolism: a phantom study

    NASA Astrophysics Data System (ADS)

    Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Liu, Hong; Zheng, Bin

    2015-03-01

    Glucose metabolism relates to biochemical processes in living organisms and plays an important role in diabetes and cancer-metastasis. Although many methods are available for measuring glucose metabolism-activities, from simple blood tests to positron emission tomography, currently there is no robust and affordable device that enables monitoring of glucose levels in real-time. In this study we tested feasibility of applying a unique resonance-frequency based electronic impedance spectroscopy (REIS) device that has been, recently developed to measure and monitor glucose metabolism levels using a phantom study. In this new testing model, a multi-frequency electrical signal sequence is applied and scanned through the subject. When the positive reactance of an inductor inside the device cancels out the negative reactance of the capacitance of the subject, the electrical impedance reaches a minimum value and this frequency is defined as the resonance frequency. The REIS system has a 24-bit analog-to-digital signal convertor and a frequency-resolution of 100Hz. In the experiment, two probes are placed inside a 100cc container initially filled with distilled water. As we gradually added liquid-glucose in increments of 1cc (250mg), we measured resonance frequencies and minimum electrical signal values (where A/D was normalized to a full scale of 1V). The results showed that resonance frequencies monotonously decreased from 243kHz to 178kHz, while the minimum voltages increased from 405mV to 793mV as the added amount of glucose increased from 0 to 5cc. The study demonstrated the feasibility of applying this new REIS technology to measure and/or monitor glucose levels in real-time in future.

  12. Comparison of Wired and Wireless Bio-Electrical Impedance Fluid Status Monitoring Devices and Validation to Body Mass and Urine Specific Gravity Changes Following Mild Dehydration

    DTIC Science & Technology

    2008-01-18

    status assessment method, ZOE2, is FDA approved for fluid status monitoring. The ZOE2 measures thoracic bio -electrical impedance. A new wireless version...impedance as a valid measure of hydration status in clinical or controlled settings. However, there is speculation as to the utility of bio -electrical...no significant differences were detected between pre- to post-practice for the ZOE2 or ZOEW device. Bio -electrical impedance, as measured by the ZOEW

  13. In vitro differential diagnosis of clavus and verruca by a predictive model generated from electrical impedance.

    PubMed

    Hung, Chien-Ya; Sun, Pei-Lun; Chiang, Shu-Jen; Jaw, Fu-Shan

    2014-01-01

    Similar clinical appearances prevent accurate diagnosis of two common skin diseases, clavus and verruca. In this study, electrical impedance is employed as a novel tool to generate a predictive model for differentiating these two diseases. We used 29 clavus and 28 verruca lesions. To obtain impedance parameters, a LCR-meter system was applied to measure capacitance (C), resistance (Re), impedance magnitude (Z), and phase angle (θ). These values were combined with lesion thickness (d) to characterize the tissue specimens. The results from clavus and verruca were then fitted to a univariate logistic regression model with the generalized estimating equations (GEE) method. In model generation, log ZSD and θSD were formulated as predictors by fitting a multiple logistic regression model with the same GEE method. The potential nonlinear effects of covariates were detected by fitting generalized additive models (GAM). Moreover, the model was validated by the goodness-of-fit (GOF) assessments. Significant mean differences of the index d, Re, Z, and θ are found between clavus and verruca (p<0.001). A final predictive model is established with Z and θ indices. The model fits the observed data quite well. In GOF evaluation, the area under the receiver operating characteristics (ROC) curve is 0.875 (>0.7), the adjusted generalized R2 is 0.512 (>0.3), and the p value of the Hosmer-Lemeshow GOF test is 0.350 (>0.05). This technique promises to provide an approved model for differential diagnosis of clavus and verruca. It could provide a rapid, relatively low-cost, safe and non-invasive screening tool in clinic use.

  14. Prototype development of an electrical impedance based simultaneous respiratory and cardiac monitoring system for gated radiotherapy.

    PubMed

    Kohli, Kirpal; Liu, Jeff; Schellenberg, Devin; Karvat, Anand; Parameswaran, Ash; Grewal, Parvind; Thomas, Steven

    2014-10-14

    In radiotherapy, temporary translocations of the internal organs and tumor induced by respiratory and cardiac activities can undesirably lead to significantly lower radiation dose on the targeted tumor but more harmful radiation on surrounding healthy tissues. Respiratory and cardiac gated radiotherapy offers a potential solution for the treatment of tumors located in the upper thorax. The present study focuses on the design and development of simultaneous acquisition of respiratory and cardiac signal using electrical impedance technology for use in dual gated radiotherapy. An electronic circuitry was developed for monitoring the bio-impedance change due to respiratory and cardiac motions and extracting the cardiogenic ECG signal. The system was analyzed in terms of reliability of signal acquisition, time delay, and functionality in a high energy radiation environment. The resulting signal of the system developed was also compared with the output of the commercially available Real-time Position Management™ (RPM) system in both time and frequency domains. The results demonstrate that the bioimpedance-based method can potentially provide reliable tracking of respiratory and cardiac motion in humans, alternative to currently available methods. When compared with the RPM system, the impedance-based system developed in the present study shows similar output pattern but different sensitivities in monitoring different respiratory rates. The tracking of cardiac motion was more susceptible to interference from other sources than respiratory motion but also provided synchronous output compared with the ECG signal extracted. The proposed hardware-based implementation was observed to have a worst-case time delay of approximately 33 ms for respiratory monitoring and 45 ms for cardiac monitoring. No significant effect on the functionality of the system was observed when it was tested in a radiation environment with the electrode lead wires directly exposed to high-energy X

  15. Electrical impedance map (EIM) for margin assessment during robot-assisted laparoscopic prostatectomy (RALP) using a microendoscopic probe

    NASA Astrophysics Data System (ADS)

    Mahara, Aditya; Khan, Shadab; Schned, Alan R.; Hyams, Elias S.; Halter, Ryan J.

    2015-03-01

    Positive surgical margins (PSMs) found following prostate cancer surgery are a significant risk factor for post-operative disease recurrence. Noxious adjuvant radiation and chemical-based therapies are typically offered to men with PSMs. Unfortunately, no real-time intraoperative technology is currently available to guide surgeons to regions of suspicion during the initial prostatectomy where immediate surgical excisions could be used to reduce the chance of PSMs. A microendoscopic electrical impedance sensing probe was developed with the intention of providing real-time feedback regarding margin status to surgeons during robot-assisted laparoscopic prostatectomy (RALP) procedures. A radially configured 17-electrode microendoscopic probe was designed, constructed, and initially evaluated through use of gelatin-based phantoms and an ex vivo human prostate specimen. Impedance measurements are recorded at 10 frequencies (10 kHz - 100 kHz) using a high-speed FPGA-based electrical impedance tomography (EIT) system. Tetrapolar impedances are recorded from a number of different electrode configurations strategically chosen to sense tissue in a pre-defined sector underlying the probe face. A circular electrical impedance map (EIM) with several color-coded pie-shaped sectors is created to represent the impedance values of the probed tissue. Gelatin phantom experiments show an obvious distinction in the impedance maps between high and low impedance regions. Similarly, the EIM generated from the ex vivo prostate case shows distinguishing features between cancerous and benign regions. Based on successful development of this probe and these promising initial results, EIMs of additional prostate specimens are being collected to further evaluate this approach for intraoperative surgical margin assessment during RALP procedures.

  16. Volume of extravascular lung fluid determined by blood ultrasound velocity and electrical impedance dilution.

    PubMed

    Krivitski, N M; Kislukhin, V V; Dobson, A; Gleed, R D; Rawson, R E; Robertshaw, D

    1998-01-01

    A hypertonic sodium chloride bolus passing through the lung has a sound velocity transient that is biphasic when it reaches the carotid artery. This transient is compatible with water moving into the hypertonic bolus from the lung parenchyma, thereby leaving the lung parenchyma hypertonic. Subsequently, as the bolus leaves the lung vasculature, water passes from the blood into the tissue to return the lung tonicity to baseline, giving a moment when net movement is zero, an instant of osmotic equilibrium. Concurrent measurements of impedance track the sodium chloride transient. A theoretic basis for the calculation of extravascular lung water is derived from the water transferred to the blood, the amount of sodium chloride moved from blood to the lung, and the increase in blood osmolarity measured at the moment of equilibrium. Examples from measurements on sheep suggest that two intravenous injections of hypertonic and isotonic sodium chloride, with observations of sound velocity and electrical impedance in the systemic arterial circulation (which could also provide the cardiac output), provide a basis for calculation of lung permeability, water and salt movements, and extravascular lung water estimation.

  17. A new resonance-frequency based electrical impedance spectroscopy and its application in biomedical engineering

    NASA Astrophysics Data System (ADS)

    Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Zheng, Bin

    2014-03-01

    Electrical Impedance Spectroscopy (EIS) has shown promising results for differentiating between malignant and benign tumors, which exhibit different dielectric properties. However, the performance of current EIS systems has been inadequate and unacceptable in clinical practice. In the last several years, we have been developing and testing a new EIS approach using resonance frequencies for detection and classification of suspicious tumors. From this experience, we identified several limitations of current technologies and designed a new EIS system with a number of new characteristics that include (1) an increased A/D (analog-to-digital) sampling frequency, 24 bits, and a frequency resolution of 100 Hz, to increase detection sensitivity (2) automated calibration to monitor and correct variations in electronic components within the system, (3) temperature sensing and compensation algorithms to minimize impact of environmental change during testing, and (4) multiple inductor-switching to select optimum resonance frequencies. We performed a theoretical simulation to analyze the impact of adding these new functions for improving performance of the system. This system was also tested using phantoms filled with variety of liquids. The theoretical and experimental test results are consistent with each other. The experimental results demonstrated that this new EIS device possesses the improved sensitivity and/or signal detection resolution for detecting small impedance or capacitance variations. This provides the potential of applying this new EIS technology to different cancer detection and diagnosis tasks in the future.

  18. Guidelines to electrode positioning for human and animal electrical impedance myography research

    PubMed Central

    Sanchez, Benjamin; Pacheck, Adam; Rutkove, Seward B.

    2016-01-01

    The positioning of electrodes in electrical impedance myography (EIM) is critical for accurately assessing disease progression and effectiveness of treatment. In human and animal trials for neuromuscular disorders, inconsistent electrode positioning adds errors to the muscle impedance. Despite its importance, how the reproducibility of resistance and reactance, the two parameters that define EIM, are affected by changes in electrode positioning remains unknown. In this paper, we present a novel approach founded on biophysical principles to study the reproducibility of resistance and reactance to electrode misplacements. The analytical framework presented allows the user to quantify a priori the effect on the muscle resistance and reactance using only one parameter: the uncertainty placing the electrodes. We also provide quantitative data on the precision needed to position the electrodes and the minimum muscle length needed to achieve a pre-specified EIM reproducibility. The results reported here are confirmed with finite element model simulations and measurements on five healthy subjects. Ultimately, our data can serve as normative values to enhance the reliability of EIM as a biomarker and facilitate comparability of future human and animal studies. PMID:27585740

  19. A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System

    PubMed Central

    Avery, James; Dowrick, Thomas; Faulkner, Mayo; Goren, Nir; Holder, David

    2017-01-01

    A highly versatile Electrical Impedance Tomography (EIT) system, nicknamed the ScouseTom, has been developed. The system allows control over current amplitude, frequency, number of electrodes, injection protocol and data processing. Current is injected using a Keithley 6221 current source, and voltages are recorded with a 24-bit EEG system with minimum bandwidth of 3.2 kHz. Custom PCBs interface with a PC to control the measurement process, electrode addressing and triggering of external stimuli. The performance of the system was characterised using resistor phantoms to represent human scalp recordings, with an SNR of 77.5 dB, stable across a four hour recording and 20 Hz to 20 kHz. In studies of both haeomorrhage using scalp electrodes, and evoked activity using epicortical electrode mats in rats, it was possible to reconstruct images matching established literature at known areas of onset. Data collected using scalp electrode in humans matched known tissue impedance spectra and was stable over frequency. The experimental procedure is software controlled and is readily adaptable to new paradigms. Where possible, commercial or open-source components were used, to minimise the complexity in reproduction. The hardware designs and software for the system have been released under an open source licence, encouraging contributions and allowing for rapid replication. PMID:28146122

  20. Guidelines to electrode positioning for human and animal electrical impedance myography research

    NASA Astrophysics Data System (ADS)

    Sanchez, Benjamin; Pacheck, Adam; Rutkove, Seward B.

    2016-09-01

    The positioning of electrodes in electrical impedance myography (EIM) is critical for accurately assessing disease progression and effectiveness of treatment. In human and animal trials for neuromuscular disorders, inconsistent electrode positioning adds errors to the muscle impedance. Despite its importance, how the reproducibility of resistance and reactance, the two parameters that define EIM, are affected by changes in electrode positioning remains unknown. In this paper, we present a novel approach founded on biophysical principles to study the reproducibility of resistance and reactance to electrode misplacements. The analytical framework presented allows the user to quantify a priori the effect on the muscle resistance and reactance using only one parameter: the uncertainty placing the electrodes. We also provide quantitative data on the precision needed to position the electrodes and the minimum muscle length needed to achieve a pre-specified EIM reproducibility. The results reported here are confirmed with finite element model simulations and measurements on five healthy subjects. Ultimately, our data can serve as normative values to enhance the reliability of EIM as a biomarker and facilitate comparability of future human and animal studies.

  1. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    PubMed Central

    Botaya, Luis; Coromina, Xavier; Samitier, Josep; Puig-Vidal, Manel; Otero, Jorge

    2016-01-01

    Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs) and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution) with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips. PMID:27231911

  2. Circuit modeling of the electrical impedance: part III. Disuse following bone fracture.

    PubMed

    Shiffman, C A

    2013-05-01

    Multifrequency measurements of the electrical impedance of muscle have been extended to the study of disuse following bone fracture, and analyzed using the five-element circuit model used earlier in the study of the effects of disease. Eighteen subjects recovering from simple fractures on upper or lower limbs were examined (ten males, eight females, aged 18-66). Muscles on uninjured contralateral limbs were used as comparison standards, and results are presented in terms of the ratios p(injured)/p(uninjured), where p stands for the circuit parameter r1, r2, r3, 1/c1 or 1/c2. These are strikingly similar to the diseased-to-healthy ratios for patients with neuromuscular disease, reported in part I of this series. In particular, r1 is virtually unaffected and the ratios for r2, r3, 1/c1 and 1/c2 can be as large as in serious disease. Furthermore, the same pattern of relationships between the parameters is found, suggesting that there is a common underlying mechanism for the impedance changes. Atrophy and fibrosis are examined as candidates for that mechanism, but it is argued that their effects are too small to explain the observed changes. Fundamental considerations aside, the sensitivity, reproducibility and technical simplicity of the technique recommend its use for in-flight assessments of muscles during orbital or interplanetary missions.

  3. Microneedle Electrode Array for Electrical Impedance Myography to Characterize Neurogenic Myopathy.

    PubMed

    Li, Zhao; Li, Yi; Liu, Mingsheng; Cui, Liying; Yu, Yude

    2016-05-01

    Electrical impedance myography (EIM) is a noninvasive technique for neuromuscular assessment, wherein a low-intensity alternating current is applied to a muscle, and the consequent surface voltage patterns are evaluated. Commercial wet electrodes are most commonly used for EIM. However, these electrodes are not suitable for use on small muscles, as they do not effectively solve the problem of high electrode-skin contact impedance (ESCI) that negatively influences the quality of recorded biopotentials. To address this problem, we fabricated a novel microneedle electrode array (MEA) that consists of 124-µm-long microneedles. Compared to wet electrodes, the MEA could pierce through the outer skin surface in a painless and micro-invasive manner, and could thus effectively reduce ESCI. The MEA has excellent test-retest reproducibility, with intraclass correlation coefficients exceeding 0.920. When used in combination with EIM, the MEA differentiated the affected muscles from the unaffected muscles in patients with neurogenic myopathy, by using EIM parameters of reactance and phase (p = 0.023 and 0.008, respectively). Thus, the novel MEA is a practical and reusable device for EIM assessment in cases of neurogenic myopathy. However, further refinement of the electrode is needed to enhance the clinical application of the system.

  4. Lung recruitment and endotracheal suction in ventilated preterm infants measured with electrical impedance tomography.

    PubMed

    Hough, Judith L; Shearman, Andrew D; Liley, Helen; Grant, Caroline A; Schibler, Andreas

    2014-11-01

    Although suctioning is a standard airway maintenance procedure, there are significant associated risks, such as loss of lung volume due to high negative suction pressures. This study aims to assess the extent and duration of change in end-expiratory level (EEL) resulting from endotracheal tube (ETT) suction and to examine the relationship between EEL and regional lung ventilation in ventilated preterm infants with respiratory distress syndrome. A prospective observational clinical study of the effect of ETT suction on 20 non-muscle-relaxed preterm infants with respiratory distress syndrome (RDS) on conventional mechanical ventilation was conducted in a neonatal intensive care unit. Ventilation distribution was measured with regional impedance amplitudes and EEL using electrical impedance tomography. ETT suction resulted in a significant increase in EEL post-suction (P < 0.01). Regionally, anterior EEL decreased and posterior EEL increased post-suction, suggesting heterogeneity. Tidal volume was significantly lower in volume-guarantee ventilation compared with pressure-controlled ventilation (P = 0.04). ETT suction in non-muscle-relaxed and ventilated preterm infants with RDS results in significant lung volume increase that is maintained for at least 90 min. Regional differences in distribution of ventilation with ETT suction suggest that the behaviour of the lung is heterogeneous in nature. © 2014 The Authors. Journal of Paediatrics and Child Health © 2014 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  5. Automated, Multiplexed Electrical Impedance Spectroscopy Platform for Continuous Monitoring of Microtissue Spheroids.

    PubMed

    Bürgel, Sebastian C; Diener, Laurin; Frey, Olivier; Kim, Jin-Young; Hierlemann, Andreas

    2016-11-15

    Microtissue spheroids in microfluidic devices are increasingly used to establish novel in vitro organ models of the human body. As the spheroids are comparably sizable, it is difficult to monitor larger numbers of them by optical means. Therefore, electrical impedance spectroscopy (EIS) emerges as a viable alternative to probing spheroid properties. Current spheroid EIS systems are, however, not suitable for investigating multiple spheroids in parallel over extended time in an automated fashion. Here we address this issue by presenting an automated, multiplexed EIS (AMEIS) platform for impedance analysis in a microfluidic setting. The system was used to continuously monitor the effect of the anticancer drug fluorouracil (5-FU) on HCT116 cancer spheroids. Simultaneous EIS monitoring of up to 15 spheroids was performed in parallel over 4 days at a temporal resolution of 2 min without any need for pumps. The measurements were continuous in nature, and the setup was kept in a standard incubator under controlled conditions during the measurements. A baseline normalization method to improve robustness and to reduce the influence of slow changes in the medium conductivity on the spheroid EIS readings has been developed and validated by experiments and means of a finite-element model. The same method and platform was then used for online monitoring of cardiac spheroids. The beating frequency of each cardiac spheroid could be read out in a completely automated fashion. The developed system constitutes a promising method for simultaneously evaluating drug impact and/or toxic effects on multiple microtissue spheroids.

  6. Electrical properties and impedance spectroscopy of pure and copper-oxide-added potassium sodium niobate ceramics.

    PubMed

    Alkoy, Ebru Mensur; Berksoy-Yavuz, Ayse

    2012-10-01

    Pure and 1 mol% CuO-added lead-free potassium sodium niobate K0.5Na0.5NbO3 (KNN) ceramics were prepared by the conventional solid-state calcination method. Copper oxide was mainly used as a sintering aid in the KNN structure. Microstructural analyses clearly showed that the CuO formed a secondary phase at the grain boundaries. Impedance spectroscopy was used as a tool to analyze the electrical behavior of KNN ceramics as a function of frequency from 100 Hz to 10 MHz at various temperatures. The impedance studies proved that CuO led to the formation of a secondary grain boundary phase, as well as creation of highly mobile point defects. The relaxation time of copper-added samples was less than that of pure KNN. This shorter time indicated a higher space charge mobility for CuO-added samples. The thermal activation energy for relaxation of charge carriers (Eg) was calculated as 0.73 eV for CuO-added samples.

  7. Lateral mode coupling to reduce the electrical impedance of small elements required for high power ultrasound therapy phased arrays

    PubMed Central

    Hynynen, Kullervo; Yin, Jianhua

    2011-01-01

    A method that uses lateral coupling to reduce the electrical impedance of small transducer elements in generating ultrasound waves was tested. Cylindrical, radially-polled transducer elements were driven at their length resonance frequency. Computer simulation and experimental studies showed that the electrical impedance of the transducer element could be controlled by the cylinder wall thickness, while the operation frequency was determined by the cylinder length. Acoustic intensity (averaged over the cylinder diameter) over 10 W/cm2 (a therapeutically relevant intensity) was measured from these elements. PMID:19411214

  8. Reconstruction of apparent orthotropic conductivity tensor image using magnetic resonance electrical impedance tomography

    SciTech Connect

    Sajib, Saurav Z. K.; Kim, Ji Eun; Jeong, Woo Chul; Kim, Hyung Joong; Woo, Eung Je; Kwon, Oh In

    2015-03-14

    Magnetic resonance electrical impedance tomography visualizes current density and/or conductivity distributions inside an electrically conductive object. Injecting currents into the imaging object along at least two different directions, induced magnetic flux density data can be measured using a magnetic resonance imaging scanner. Without rotating the object inside the scanner, we can measure only one component of the magnetic flux density denoted as B{sub z}. Since the biological tissues such as skeletal muscle and brain white matter show strong anisotropic properties, the reconstruction of anisotropic conductivity tensor is indispensable for the accurate observations in the biological systems. In this paper, we propose a direct method to reconstruct an axial apparent orthotropic conductivity tensor by using multiple B{sub z} data subject to multiple injection currents. To investigate the anisotropic conductivity properties, we first recover the internal current density from the measured B{sub z} data. From the recovered internal current density and the curl-free condition of the electric field, we derive an over-determined matrix system for determining the internal absolute orthotropic conductivity tensor. The over-determined matrix system is designed to use a combination of two loops around each pixel. Numerical simulations and phantom experimental results demonstrate that the proposed algorithm stably determines the orthotropic conductivity tensor.

  9. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    NASA Astrophysics Data System (ADS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-04-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.

  10. Reconstruction of apparent orthotropic conductivity tensor image using magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Kim, Ji Eun; Jeong, Woo Chul; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-03-01

    Magnetic resonance electrical impedance tomography visualizes current density and/or conductivity distributions inside an electrically conductive object. Injecting currents into the imaging object along at least two different directions, induced magnetic flux density data can be measured using a magnetic resonance imaging scanner. Without rotating the object inside the scanner, we can measure only one component of the magnetic flux density denoted as Bz. Since the biological tissues such as skeletal muscle and brain white matter show strong anisotropic properties, the reconstruction of anisotropic conductivity tensor is indispensable for the accurate observations in the biological systems. In this paper, we propose a direct method to reconstruct an axial apparent orthotropic conductivity tensor by using multiple Bz data subject to multiple injection currents. To investigate the anisotropic conductivity properties, we first recover the internal current density from the measured Bz data. From the recovered internal current density and the curl-free condition of the electric field, we derive an over-determined matrix system for determining the internal absolute orthotropic conductivity tensor. The over-determined matrix system is designed to use a combination of two loops around each pixel. Numerical simulations and phantom experimental results demonstrate that the proposed algorithm stably determines the orthotropic conductivity tensor.

  11. An image reconstruction framework based on boundary voltages for ultrasound modulated electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2016-11-01

    A new image reconstruction framework based on boundary voltages is presented for ultrasound modulated electrical impedance tomography (UMEIT). Combining the electric and acoustic modalities, UMEIT reconstructs the conductivity distribution with more measurements with position information. The proposed image reconstruction framework begins with approximately constructing the sensitivity matrix of the imaging object with inclusion. Then the conductivity is recovered from the boundary voltages of the imaging object. To solve the nonlinear inverse problem, an optimization method is adopted and the iterative method is tested. Compared with that for electrical resistance tomography (ERT), the newly constructed sensitivity matrix is more sensitive to the inclusion, even in the center of the imaging object, and it contains more effective information about the inclusions. Finally, image reconstruction is carried out by the conjugate gradient algorithm, and results show that reconstructed images with higher quality can be obtained for UMEIT with a faster convergence rate. Both theory and image reconstruction results validate the feasibility of the proposed framework for UMEIT and confirm that UMEIT is a potential imaging technique.

  12. A new non-iterative reconstruction method for the electrical impedance tomography problem

    NASA Astrophysics Data System (ADS)

    Ferreira, A. D.; Novotny, A. A.

    2017-03-01

    The electrical impedance tomography (EIT) problem consists in determining the distribution of the electrical conductivity of a medium subject to a set of current fluxes, from measurements of the corresponding electrical potentials on its boundary. EIT is probably the most studied inverse problem since the fundamental works by Calderón from the 1980s. It has many relevant applications in medicine (detection of tumors), geophysics (localization of mineral deposits) and engineering (detection of corrosion in structures). In this work, we are interested in reconstructing a number of anomalies with different electrical conductivity from the background. Since the EIT problem is written in the form of an overdetermined boundary value problem, the idea is to rewrite it as a topology optimization problem. In particular, a shape functional measuring the misfit between the boundary measurements and the electrical potentials obtained from the model is minimized with respect to a set of ball-shaped anomalies by using the concept of topological derivatives. It means that the objective functional is expanded and then truncated up to the second order term, leading to a quadratic and strictly convex form with respect to the parameters under consideration. Thus, a trivial optimization step leads to a non-iterative second order reconstruction algorithm. As a result, the reconstruction process becomes very robust with respect to noisy data and independent of any initial guess. Finally, in order to show the effectiveness of the devised reconstruction algorithm, some numerical experiments into two spatial dimensions are presented, taking into account total and partial boundary measurements.

  13. Propagation of measurement noise through backprojection reconstruction in electrical impedance tomography.

    PubMed

    Frangi, Alejandro F; Riu, Pere J; Rosell, Javier; Viergever, Max A

    2002-06-01

    A framework to analyze the propagation of measurement noise through backprojection reconstruction algorithms in electrical impedance tomography (EIT) is presented. Two measurement noise sources were considered: noise in the current drivers and in the voltage detectors. The influence of the acquisition system architecture (serial/semi-parallel) is also discussed. Three variants of backprojection reconstruction are studied: basic (unweighted), weighted and exponential backprojection. The results of error propagation theory have been compared with those obtained from simulated and experimental data. This comparison shows that the approach provides a good estimate of the reconstruction error variance. It is argued that the reconstruction error in EIT images obtained via backprojection can be approximately modeled as a spatially nonstationary Gaussian distribution. This methodology allows us to develop a spatial characterization of the reconstruction error in EIT images.

  14. Basic setup for breast conductivity imaging using magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Lee, Byung Il; Oh, Suk Hoon; Kim, Tae-Seong; Woo, Eung Je; Lee, Soo Yeol; Kwon, Ohin; Seo, Jin Keun

    2006-01-01

    We present a new medical imaging technique for breast imaging, breast MREIT, in which magnetic resonance electrical impedance tomography (MREIT) is utilized to get high-resolution conductivity and current density images of the breast. In this work, we introduce the basic imaging setup of the breast MREIT technique with an investigation of four different imaging configurations of current-injection electrode positions and pathways through computer simulation studies. Utilizing the preliminary findings of a best breast MREIT configuration, additional numerical simulation studies have been carried out to validate breast MREIT at different levels of SNR. Finally, we have performed an experimental validation with a breast phantom on a 3.0 T MREIT system. The presented results strongly suggest that breast MREIT with careful imaging setups could be a potential imaging technique for human breast which may lead to early detection of breast cancer via improved differentiation of cancerous tissues in high-resolution conductivity images.

  15. Validation of Electrical-Impedance Tomography for Measurements of Material Distribution in Two-Phase Flows

    SciTech Connect

    Ceccio, S.L.; George, D.L.; O'Hern, T.J.; Shollenberger, K.A.; Torczynski, J.R.

    1998-10-16

    A series of studies is presented in which an electrical-impedance tomography (EXT) system is validated for two-phase flow measurements. The EIT system, developed at Sandia National Laboratories, is described along with the computer algorithm used for reconstructing phase volume fraction profiles. The algorithm is first tested using numerical data and experimental phantom measurements, with good results. The EIT system is then applied to solid-liquid and gas-liquid flows, and results are compared to an established gamma-densitometry tomography (GDT) system. In the solid-liquid flows, the average solid volume fractions measured by EIT are in good agreement with nominal values; in the gas-liquid flows, average gas volume fractions and radial gas volume fraction profiles from GDT and EIT are also in good agreement.

  16. Electrical impedance myography in the evaluation of the tongue musculature in amyotrophic lateral sclerosis.

    PubMed

    Shellikeri, Sanjana; Yunusova, Yana; Green, Jordan R; Pattee, Gary L; Berry, James D; Rutkove, Seward B; Zinman, Lorne

    2015-10-01

    Electrical impedance myography (EIM) quantifies muscle health and is used as a biomarker of muscle abnormalities in neurogenic and myopathic diseases. EIM has yet to be evaluated in the tongue musculature in patients with amyotrophic lateral sclerosis (ALS), who often show clinical bulbar signs. The lingual musculature of 19 subjects with motor neuron disease and 21 normal participants was assessed using EIM, strength and endurance testing, and clinical assessment. Tongue musculature in the ALS group was characterized by significantly smaller phase (Ph) and greater resistance (R) when compared with the healthy cohort. Ph and tongue endurance were correlated in the ALS group. EIM of tongue musculature could distinguish those with ALS from healthy controls. The demonstrated relationship between tongue function and Ph supports further testing of EIM of the tongue as a potential biomarker in ALS. © 2015 Wiley Periodicals, Inc.

  17. Compensation for geometric modeling errors by positioning of electrodes in electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Hyvönen, N.; Majander, H.; Staboulis, S.

    2017-03-01

    Electrical impedance tomography aims at reconstructing the conductivity inside a physical body from boundary measurements of current and voltage at a finite number of contact electrodes. In many practical applications, the shape of the imaged object is subject to considerable uncertainties that render reconstructing the internal conductivity impossible if they are not taken into account. This work numerically demonstrates that one can compensate for inaccurate modeling of the object boundary in two spatial dimensions by finding compatible locations and sizes for the electrodes as a part of a reconstruction algorithm. The numerical studies, which are based on both simulated and experimental data, are complemented by proving that the employed complete electrode model is approximately conformally invariant, which suggests that the obtained reconstructions in mismodeled domains reflect conformal images of the true targets. The numerical experiments also confirm that a similar approach does not, in general, lead to a functional algorithm in three dimensions.

  18. Biological impedance cross evaluation and imaging from composite measurements of magnetic and electrical methods.

    PubMed

    Ran, Peng; Xiao, Xiaoming; He, Wei; Li, Zhangyong

    2015-01-01

    Because of the need for rapid detection and location of diseases in clinical applications, this work proposes a composite measurement of magnetic induction tomography (MIT) and electrical impedance tomography (EIT). This paper is composed of the following aspects: portable and integral hardware design, stable dual constant-current sources, the composite detection method, cross-plane data acquirement, 3-dimensional image reconstruction and so on. A qualitative evaluation of conductivity, resolution and relative position error were taken by combining the EIT and MIT methods via the experiment model. The sensitivities of both methods were analyzed to improve the imaging results. The reconstruction results reveal that the system is capable of obtaining better physiological measurements, which is very useful in clinical monitoring, quick medical diagnosing and preliminary screening of community health.

  19. Assessment of Optimized Electrode Configuration for Electrical Impedance Myography Using Genetic Algorithm via Finite Element Model

    PubMed Central

    Baidya, Somen

    2016-01-01

    Electrical Impedance Myography (EIM) is a noninvasive neurophysiologic technique to diagnose muscle health. Besides muscle properties, the EIM measurements vary significantly with the change of some other anatomic and nonanatomic factors such as skin fat thickness, shape and thickness of muscle, and electrode size and spacing due to its noninvasive nature of measurement. In this study, genetic algorithm was applied along with finite element model of EIM as an optimization tool in order to figure out an optimized EIM electrode setup, which is less affected by these factors, specifically muscle thickness variation, but does not compromise EIM's ability to detect muscle diseases. The results obtained suggest that a particular arrangement of electrodes and minimization of electrode surface area to its practical limit can overcome the effect of undesired factors on EIM parameters to a larger extent. PMID:27843937

  20. Electrical impedance spectroscopy device for measurement of moisture gradients in wood

    NASA Astrophysics Data System (ADS)

    Tiitta, M.; Olkkonen, H.

    2002-08-01

    A prototype of the electrical impedance spectroscopy (EIS) device for the measurement of internal moisture gradients in wood was developed. The EIS device consists of a hand-held probe connected to a control unit interfaced with a portable personal computer and a power unit. In the measurement, parallel flat electrodes of the measuring probe are laid against the wood specimen and the sine wave excitation is applied in the frequency range 1-100 kHz. The measured amplitude and phase spectral data were analyzed using the model based on constant phase elements. A spectral analysis software package was designed for measurement of subsurface transverse moisture gradients. The EIS device was tested with many types of uniform, desorption, and absorption gradients in lumber, pulpwood, and log specimens from spruce, pine, and birch. The EIS device can be easily transferred in a small case allowing field measurements.

  1. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes.

    PubMed

    Widge, Alik S; Jeffries-El, Malika; Cui, Xinyan; Lagenaur, Carl F; Matsuoka, Yoky

    2007-03-15

    There is continued interest in the development of conductive polymer coatings to improve the electrical properties and biocompatibility of electrodes for neural prostheses. We present here a new type of coating, based on mixed self-assembled monolayers (SAMs) of thiolated poly(alkylthiophene)s and functionalized alkanethiols. When assembled as a SAM on electrodes designed for in vitro electrophysiology, these polymers are able to significantly lower electrode impedance at 1 kHz. The same mixed formulation is able to promote the outgrowth of neurites from primary mouse cortical neurons when the alkanethiol component is functionalized with a neural cell adhesion molecule (NCAM) binding antibody. Atomic force microscopy of the SAMs shows that they exert their effect through the well-known mechanism of increasing electrode surface area. These new covalently bound films have the potential to be more robust and are more controllable in their composition than existing electrodeposited conductive polymer coatings.

  2. State estimation and inverse problems in electrical impedance tomography: observability, convergence and regularization

    NASA Astrophysics Data System (ADS)

    Sbarbaro, D.; Vauhkonen, M.; Johansen, T. A.

    2015-04-01

    Solving electrical impedance tomography (EIT) inverse problems in real-time is a challenging task due to their dimension, the nonlinearities involved and the fact that they are ill-posed. Thus, efficient algorithms are required to address the application of tomographic technologies in process industry. In practical applications the EIT inverse problem is often linearized for fast and robust reconstruction. The aim of this paper is to analyse the solution of linearized EIT inverse problem from the perspective of a state estimation problem, providing links between regularization, observability and convergence of the algorithms. In addition, also a new way to define the fictitious outputs is proposed, leading to observers with fewer parameters than with the approach widely used in literature. Simulation of EIT examples illustrate the main ideas and algorithmic improvements of the proposed approaches.

  3. Sampling of finite elements for sparse recovery in large scale 3D electrical impedance tomography.

    PubMed

    Javaherian, Ashkan; Soleimani, Manuchehr; Moeller, Knut

    2015-01-01

    This study proposes a method to improve performance of sparse recovery inverse solvers in 3D electrical impedance tomography (3D EIT), especially when the volume under study contains small-sized inclusions, e.g. 3D imaging of breast tumours. Initially, a quadratic regularized inverse solver is applied in a fast manner with a stopping threshold much greater than the optimum. Based on assuming a fixed level of sparsity for the conductivity field, finite elements are then sampled via applying a compressive sensing (CS) algorithm to the rough blurred estimation previously made by the quadratic solver. Finally, a sparse inverse solver is applied solely to the sampled finite elements, with the solution to the CS as its initial guess. The results show the great potential of the proposed CS-based sparse recovery in improving accuracy of sparse solution to the large-size 3D EIT.

  4. Kernel ridge regression for volume fraction prediction in electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Goldswain, G.; Tapson, J.

    2006-10-01

    We investigate using a kernel learning machine, specifically kernel ridge regression (KRR), to predict volume fractions in typical industrial electrical impedance tomography (EIT) applications. The 'curse of dimensionality' associated with applying such methods to physically captured EIT training data is overcome with a new training method, involving sampling of training data during rapid random repositioning of a set of physical objects in the measurement plane. We compare the performance to multi-layer perceptron (MLP) neural networks which appear to be the most common computational intelligence approach to the EIT reconstruction problem. We use empirically trained static situations so as to compare the results to previous research. Dynamic situations are also investigated, and KRR is shown to outperform MLP methods in both cases. Furthermore, KRR is shown to be a useful tool in EIT for extracting process information from industrial flows without first performing conventional image reconstruction.

  5. A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance

    PubMed Central

    Watterson, Daniel; Robinson, Jodie; Chappell, Keith J.; Butler, Mark S.; Edwards, David J.; Fry, Scott R.; Bermingham, Imogen M.; Cooper, Matthew A.; Young, Paul R.

    2016-01-01

    Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324

  6. A Gold Sensors Array for Imaging The Real Tissue Phantom in Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Kanti Bera, Tushar; Nagaraju, J.

    2015-02-01

    Surface electrodes in Electrical Impedance Tomography (EIT) phantoms usually reduce the SNR of the boundary potential data due to their design and development errors. A novel gold sensors array with high geometric precision is developed for EIT phantoms to improve the resistivity image quality. Gold thin films are deposited on a flexible FR4 sheet using electro-deposition process to make a sixteen electrode array with electrodes of identical geometry. A real tissue gold electrode phantom is developed with chicken tissue paste and the fat cylinders as the inhomogeneity. Boundary data are collected using a USB based high speed data acquisition system in a LabVIEW platform for different inhomogeneity positions. Resistivity images are reconstructed using EIDORS and compared with identical stainless steel electrode systems. Image contrast parameters are calculated from the resistivity matrix and the reconstructed images are evaluated for both the phantoms. Image contrast and image resolution of resistivity images are improved with gold electrode array.

  7. A partially reflecting random walk on spheres algorithm for electrical impedance tomography

    SciTech Connect

    Maire, Sylvain; Simon, Martin

    2015-12-15

    In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias and the variance of the new estimator both theoretically and experimentally. Subsequently, the variance of the new estimator is considerably reduced via a novel control variate conditional sampling technique which yields a highly efficient hybrid forward solver coupling probabilistic and deterministic algorithms.

  8. Neural network based approach for anomaly detection in the lungs region by electrical impedance tomography.

    PubMed

    Minhas, Atul S; Reddy, M Ramasubba

    2005-08-01

    In this paper, we have shown a simple procedure to detect anomalies in the lungs region by electrical impedance tomography. The main aim of the present study is to investigate the possibility of anomaly detection by using neural networks. Radial basis function neural networks are used as classifiers to classify the anomaly as belonging to the anterior or posterior region of the left lung or the right lung. The neural networks are trained and tested with the simulated data obtained by solving the mathematical model equation governing current flow through the simulated thoracic region. The equation solution and model simulation are done with FEMLAB. The effect of adding a higher number of neurons to the hidden layer can be clearly seen by the reduction in classification error. The study shows that there is interaction between the size (radius) and conductivity of anomalies and for some combination of these two factors the classification error of neural networks will be very small.

  9. Electrical Impedance Myography (EIM) in the Evaluation of the Tongue Musculature in Amyotrophic Lateral Sclerosis (ALS)

    PubMed Central

    Shellikeri, Sanjana; Yunusova, Yana; Green, Jordan R.; Pattee, Gary L.; Berry, James D.; Rutkove, Seward B.; Zinman, Lorne

    2015-01-01

    Introduction Electrical impedance myography (EIM) quantifies muscle health and is used as a biomarker of muscle abnormalities in neurogenic and myopathic diseases. EIM has yet to be evaluated in the tongue musculature in people with amyotrophic lateral sclerosis (ALS), who often show clinical bulbar signs. Methods The lingual musculature of 19 subjects with motor neuron disease and 21 of normal participants were assessed using EIM, strength and endurance testing, and clinical observation. Results Tongue musculature in the ALS group was characterized by significantly smaller phase (Ph) and larger resistance (R) when compared to the healthy cohort. Ph and tongue endurance were correlated in the ALS group. Discussion EIM of tongue musculature could distinguish people with ALS from healthy controls. The demonstrated relationship between tongue function and Ph supports further testing of EIM of the tongue as a potential biomarker in ALS. PMID:25580728

  10. Electrical Impedance Tomography-guided PEEP Titration in Patients Undergoing Laparoscopic Abdominal Surgery.

    PubMed

    He, Xingying; Jiang, Jingjing; Liu, Yuli; Xu, Haitao; Zhou, Shuangqiong; Yang, Shibo; Shi, Xueyin; Yuan, Hongbin

    2016-04-01

    The aim of the study is to utilize electrical impedance tomography (EIT) to guide positive end-expiratory pressure (PEEP) and to optimize oxygenation in patients undergoing laparoscopic abdominal surgery.Fifty patients were randomly assigned to the control (C) group and the EIT (E) group (n = 25 each). We set the fraction of inspired oxygen (FiO2) at 0.30. The PEEP was titrated and increased in a 2-cm H2O stepwise manner, from 6 to 14 cm H2O. Hemodynamic variables, respiratory mechanics, EIT images, analysis of blood gas, and regional cerebral oxygen saturation were recorded. The postoperative pulmonary complications within the first 5 days were also observed.We chose 10 cm H2O and 8 cm H2O as the "ideal" PEEP for the C and the E groups, respectively. EIT-guided PEEP titration led to a more dorsal shift of ventilation. The PaO2/FiO2 ratio in the E group was superior to that in the C group in the pneumoperitoneum period, though the difference was not significant (330 ± 10 vs 305.56 ± 4 mm Hg; P = 0.09). The C group patients experienced 8.7% postoperative pulmonary complications versus 5.3% among the E group patients (relative risk 1.27, 95% confidence interval 0.31-5.3, P = 0.75).Electrical impedance tomography represents a new promising technique that could enable anesthesiologists to assess regional ventilation of the lungs and optimize global oxygenation for patients undergoing laparoscopic abdominal surgery.

  11. Assessing risk of thyroid cancer using resonance-frequency based electrical impedance measurements

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Tublin, Mitchell E.; Lederman, Dror; Klym, Amy H.; Brown, Erica D.; Gur, David

    2011-03-01

    The incidence of thyroid cancer has risen faster than many malignancies and has nearly doubled in the USA over the past 30 years. Palpable nodules and subclinical nodules detected by imaging are found in a large percentage of the USA population. Most of these (.>95%) are fortunately benign. This vast reservoir of nodules makes the detection and diagnosis of thyroid cancer a diagnostic dilemma. Ultrasound guided Fine Needle Aspiration Biopsy (FNAB) is excellent for triaging patients but up to 25% of FNABs are inconclusive. As a result, definitive diagnosis is often only possible with a diagnostic lobectomy; many thousands of these are performed in the USA annually for ultimately benign disease. It would be extremely beneficial if we could develop a non-invasive procedure that could assist the diagnostician in reliably predicting the likelihood of malignancy of otherwise indeterminate thyroid nodules, thereby reducing the number of these "exploratory/diagnostic" lobectomies performed under general anesthesia. Electrical Impedance Spectroscopy (EIS) was considered as a possible approach to address this problem. However, the diagnostic accuracy of EIS is too low for routine clinical use to date. In our group, we developed a substantially modified technology termed Resonance-frequency Electrical Impedance Spectroscopy (REIS), which yields usable information for classifying risk of having breast abnormalities. We preliminarily applied REIS to measure signals on participants having thyroid nodules aiming to assess whether we can assist in improving diagnosis of indeterminate thyroid nodules. In this study we present a new multi-probe based REIS device specifically designed for the assessment of indeterminate thyroid nodules. Our preliminary assessment presented here demonstrates the feasibility of using this proposed REIS device in a busy tertiary care center.

  12. Electrical Impedance Tomography-guided PEEP Titration in Patients Undergoing Laparoscopic Abdominal Surgery

    PubMed Central

    He, Xingying; Jiang, Jingjing; Liu, Yuli; Xu, Haitao; Zhou, Shuangqiong; Yang, Shibo; Shi, Xueyin; Yuan, Hongbin

    2016-01-01

    Abstract The aim of the study is to utilize electrical impedance tomography (EIT) to guide positive end-expiratory pressure (PEEP) and to optimize oxygenation in patients undergoing laparoscopic abdominal surgery. Fifty patients were randomly assigned to the control (C) group and the EIT (E) group (n = 25 each). We set the fraction of inspired oxygen (FiO2) at 0.30. The PEEP was titrated and increased in a 2-cm H2O stepwise manner, from 6 to 14 cm H2O. Hemodynamic variables, respiratory mechanics, EIT images, analysis of blood gas, and regional cerebral oxygen saturation were recorded. The postoperative pulmonary complications within the first 5 days were also observed. We chose 10 cm H2O and 8 cm H2O as the “ideal” PEEP for the C and the E groups, respectively. EIT-guided PEEP titration led to a more dorsal shift of ventilation. The PaO2/FiO2 ratio in the E group was superior to that in the C group in the pneumoperitoneum period, though the difference was not significant (330 ± 10 vs 305.56 ± 4 mm Hg; P = 0.09). The C group patients experienced 8.7% postoperative pulmonary complications versus 5.3% among the E group patients (relative risk 1.27, 95% confidence interval 0.31–5.3, P = 0.75). Electrical impedance tomography represents a new promising technique that could enable anesthesiologists to assess regional ventilation of the lungs and optimize global oxygenation for patients undergoing laparoscopic abdominal surgery. PMID:27057904

  13. SU-E-I-52: Validation of Multi-Frequency Electrical Impedance Tomography Using Computed Tomography

    SciTech Connect

    Kohli, K; Liu, F; Krishnan, K

    2014-06-01

    Purpose: Multi-frequency EIT has been reported to be a potential tool in distinguishing a tissue anomaly from background. In this study, we investigate the feasibility of acquiring functional information by comparing multi-frequency EIT images in reference to the structural information from the CT image through fusion. Methods: EIT data was acquired from a slice of winter melon using sixteen electrodes around the phantom, injecting a current of 0.4mA at 100, 66, 24.8 and 9.9 kHz. Differential EIT images were generated by considering different combinations of pair frequencies, one serving as reference data and the other as test data. The experiment was repeated after creating an anomaly in the form of an off-centered cavity of diameter 4.5 cm inside the melon. All EIT images were reconstructed using Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS) package in 2-D differential imaging mode using one-step Gaussian Newton minimization solver. CT image of the melon was obtained using a Phillips CT Scanner. A segmented binary mask image was generated based on the reference electrode position and the CT image to define the regions of interest. The region selected by the user was fused with the CT image through logical indexing. Results: Differential images based on the reference and test signal frequencies were reconstructed from EIT data. Result illustrated distinct structural inhomogeneity in seeded region compared to fruit flesh. The seeded region was seen as a higherimpedance region if the test frequency was lower than the base frequency in the differential EIT reconstruction. When the test frequency was higher than the base frequency, the signal experienced less electrical impedance in the seeded region during the EIT data acquisition. Conclusion: Frequency-based differential EIT imaging can be explored to provide additional functional information along with structural information from CT for identifying different tissues.

  14. Comparison of electrical impedance tomography inverse solver approaches for damage sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Yingjun; Wang, Long; Gupta, Sumit; Loh, Kenneth J.; Schagerl, Martin

    2017-04-01

    Electrical impedance tomography (EIT) has been recently applied as a structural health monitoring (SHM) technique to many different kinds of structures. In short, EIT is an algorithm that reconstructs the spatial conductivity response of a conductive body using only voltage measurement along its boundaries. For a conductive structure with its electrical properties being sensitive to damages and/or strains, mapping the distribution of its conductivity allows one to obtain its corresponding damage and/or strain distribution. To date, the EIT inverse problem has been solved using different techniques. This study compared the performance of two different approaches using four evaluation criteria. The first technique is based on EIDORS, which is an open-source EIT solver based on the maximum a posteriori (MAP) approach. It can rapidly, using a one-step linear approach, evaluate the relative impedance change of a given region when a baseline measurement (i.e., the response collected under its initial state) is provided. The second approach is a two-step iterative shrinkage thresholding (TwIST) method that compresses a signal's sparsity in preserving sharp edges of an image. Both methods were evaluated using a 16-electrode 2D square shape with a simulated "point" damage at different locations. The evaluation results suggested that TwIST outperforms MAP in terms of the resolution and accuracy of the reconstructed results, and MAP wins over TwIST in causing minor shape deformation and less ringing. Results from both methods exhibit position-dependency. These results are significant in promoting EIT becoming a powerful technique for in situ health monitoring.

  15. Individual thorax geometry reduces position and size differences in reconstructed images of electrical impedance tomography.

    PubMed

    Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut

    2014-01-01

    Due to the ill-posed problem, the electrical impedance within the thorax cannot be exactly reconstructed. The aim of our study was to prove that reconstruction with individual thorax geometry improved the quality of EIT (electrical impedance tomography) images. Seven mechanically ventilated patients with acute respiratory distress syndrome were examined by EIT. The thorax contours were determined from routine computed tomography (CT) images based on automatic threshold filtering. EIT raw data was reconstructed offline with (1) back-projection with circular forward model; (2) GREIT reconstruction method with circular forward model and (3) GREIT with individual thorax geometry. The resulting EIT images were compared to rescaled CT images. The distance between the lung contour and the thorax contour was calculated for each method and the differences to that in CT were denoted as position differences. Shape differences was defined as the ratio of thorax (or lungs) size in EIT and that in rescaled CT. Method (3) has the smallest position differences (6.6 ± 2.8, 5.3 ± 3.3, 2.3 ± 1.4 in pixel, for each reconstruction method respectively; mean ± SD). The thorax and lungs sizes in the transformed CT images were 514 ± 73 and 177 ± 39. Shape differences of thorax were 1.81 ± 0.26, 1.81 ± 0.26, 1.10 ± 0.12 and that of lungs were 1.69 ± 0.45, 1.52 ± 0.45, 1.34 ± 0.35 for each method respectively. The reconstructed images using the GREIT method with individual thorax geometry were more realistic. Improvement of EIT image quality may foster the acceptance of EIT in routine clinical use.

  16. Signaling properties of the human chemokine receptors CXCR4 and CXCR7 by cellular electric impedance measurements.

    PubMed

    Doijen, Jordi; Van Loy, Tom; De Haes, Wouter; Landuyt, Bart; Luyten, Walter; Schoofs, Liliane; Schols, Dominique

    2017-01-01

    The chemokine receptor 4 (CXCR4) and 7 (CXCR7) are G-protein-coupled receptors involved in various diseases including human cancer. As such, they have become important targets for therapeutic intervention. Cell-based receptor assays, able to detect agents that modulate receptor activity, are of key importance for drug discovery. We evaluated the potential of cellular electric impedance for this purpose. Dose-dependent and specific stimulation of CXCR4 was detected upon addition of its unique chemokine ligand CXCL12. The response magnitude correlated with the CXCR4 expression level. Gαi coupling and signaling contributed extensively to the impedance response, whereas Gαq- and Gβγ-related events had only minor effects on the impedance profile. CXCR7 signaling could not be detected using impedance measurements. However, increasing levels of CXCR7 expression significantly reduced the CXCR4-mediated impedance readout, suggesting a regulatory role for CXCR7 on CXCR4-mediated signaling. Taken together, cellular electric impedance spectroscopy can represent a valuable alternative pharmacological cell-based assay for the identification of molecules targeting CXCR4, but not for CXCR7 in the absence of CXCR4.

  17. Pulsatile electrical impedance response from cerebrally dead adult patients is not a reliable tool for detecting cerebral perfusion changes.

    PubMed

    Basano, L; Ottonello, P; Nobili, F; Vitali, P; Pallavicini, F B; Ricca, B; Prastaro, T; Robert, A; Rodriguez, G

    2001-05-01

    The original objective of this work was to verify the possibility of using electrical pulsatile cerebral impedance measurements as a diagnostic aid for assessing the brain-death condition in adults; a subordinate target was to validate a simple method for detecting perfusional changes in the brain. To this end, impedance signals were recorded, for a comparative study, from both live subjects and brain-dead patients, using a simple four-electrode arrangement. Rather unexpectedly, pulsatile transcephalic impedance waveforms exhibiting a temporal dependance similar to those of live subjects were detected in artificially ventilated, cerebrally dead, adult subjects; distributions of the time delays between impedance peaks and ECG peaks were also recorded for the two groups (dead and live subjects). These data provided no evidence, at the 1% significance level, against the hypothesis that the two sample groups are drawn from identical populations. The detection of impedance variations from brain-dead patients can be explained by the residual persistence of blood flow through the scalp, by mechanical variations synchronous with the heart beat and by the presence of the oscillating flow and the systolic spikes that precede the final blood flow arrest. The fact that impedance variations can be traced back to a multiplicity of causes, unrelated to the normal unidirectional flow, renders the transcephalic impedance method inappropriate for detecting cerebral perfusion changes in adults. This conclusion is also strengthened by some theoretical results recently derived from a multilayer model of the head.

  18. Effect of electrode impedance on spread of excitation and pitch perception using electrically coupled “dual-electrode” stimulation

    PubMed Central

    Hughes, Michelle L.; Baudhuin, Jacquelyn L.; Goehring, Jenny L.

    2014-01-01

    Objective In newer-generation Cochlear Ltd. cochlear implants, two adjacent electrodes can be electrically coupled to produce a single contact or “dual electrode” (DE). The goal of the present study was to evaluate whether relatively large impedance differences (>3.0 kOhms) between coupled electrodes affect the excitation pattern and pitch percepts produced by the DE. Design Fifteen electrode pairs in six recipients were tested. Neural spread-of-excitation (SOE) patterns and pitch perception were measured for adjacent physical electrodes (PEs) and the resulting DE to determine if the lower-impedance PE in the pair dominates the DE response pattern. Results were compared to a “normative sample” (impedance differences <3.0 kOhms) from two earlier studies. Results In general, SOE patterns for DEs more closely approximated those of the lower-impedance PE in each pair. The DE was more easily distinguished in pitch from the higher-impedance PE than the lower-impedance PE. The ECAP and perceptual results generally differed from those of the normative group. Conclusions Impedance differences between adjacent PEs should be considered if DE stimulation is implemented in future research studies or clinical coding strategies. PMID:25250960

  19. Impedance spectroscopy as an indicator for successful in vivo electric field mediated gene delivery in a murine model.

    PubMed

    Atkins, Reginald M; Fawcett, Timothy J; Gilbert, Richard; Hoff, Andrew M; Connolly, Richard; Brown, Douglas W; Llewellyn, Anthony J; Jaroszeski, Mark J

    2017-06-01

    In vivo gene electro transfer technology has been very successful both in animal models and in clinical trials over the past 20years. However, variable transfection efficiencies can produce inconsistent outcomes. This can be due to differences in tissue architecture and/or chemical composition which may effectively create unique biological environments from subject to subject that may respond differently to the identical electric pulses. This study investigates the integration of impedance spectroscopy into the gene electro transfer process to measure murine skin impedance spectra before, during (after pulse delivery), and after gene electro transfer pulse application to determine if changes in impedance correlate with reporter gene expression. Both post-treatment impedance spectra and gene expression were dependent upon the applied electric field strength. These results indicate that alterations in tissue impedance produced by the applied electric field represent an excellent parameter to predict degrees of transfection and gene expression. These results could ultimately be used to alter pulsing parameters in order to optimize delivery/expression. Copyright © 2017. Published by Elsevier B.V.

  20. Electrical properties of rat muscle after sciatic nerve injury: Impact on surface impedance measurements assessed via finite element analysis

    NASA Astrophysics Data System (ADS)

    Ahad, M. A.; Rutkove, S. B.

    2010-04-01

    Tetrapolar surface electrical impedance methods are sensitive to changes in muscle status and can therefore provide a means for studying neuromuscular disease noninvasively. In order to better understand the relationship between surface impedance measurements and the actual muscle electrical properties, we performed measurements on 20 adult Wistar rats, 8 of which underwent sciatic nerve crush. Surface impedance measurements were performed on the left hind limb both before injury and out to 2 weeks after injury. In addition, both normal and sciatic crush animals were sacrificed and the dielectric properties of the extracted gastrocnemius muscle measured. We found that 50 kHz conductivities were greater in the animals that underwent crush than in the animals that did not. The permittivities in both directions, however, showed non-significant differences. In order to analyze the effect of these changes as well as the accompanying reduction in muscle volume, a finite element model of the hind limb was developed based on computerized tomographic imaging. The model successfully predicted the surface impedance values in the animals after crush injury and, by its inverse application, may be used to help determine the underlying electrical properties of muscle in various neuromuscular diseases based on surface impedance data.

  1. Electron Impedances

    SciTech Connect

    P Cameron

    2011-12-31

    It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

  2. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    SciTech Connect

    Oh, Tong In; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kim, Hyung Joong Woo, Eung Je; Kim, Hyun Bum; Kyung, Eun Jung; Kwon, Oh In

    2015-07-13

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  3. Sub-millimeter resolution electrical conductivity images of brain tissues using magnetic resonance-based electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Oh, Tong In; Kim, Hyun Bum; Jeong, Woo Chul; Sajib, Saurav Z. K.; Kyung, Eun Jung; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-07-01

    Recent magnetic resonance (MR)-based electrical impedance tomography (MREIT) of in vivo animal and human subjects enabled the imaging of electromagnetic properties, such as conductivity and permittivity, on tissue structure and function with a few millimeter pixel size. At those resolutions, the conductivity contrast might be sufficient to distinguish different tissue type for certain applications. Since the precise measurement of electrical conductivity under the tissue levels can provide alternative information in a wide range of biomedical applications, it is necessary to develop high-resolution MREIT technique to enhance its availability. In this study, we provide the experimental evaluation of sub-millimeter resolution conductivity imaging method using a 3T MR scanner combined with a multi-echo MR pulse sequence, multi-channel RF coil, and phase optimization method. From the phantom and animal imaging results, sub-millimeter resolution exhibited similar signal-to-noise ratio of MR magnitude and noise levels in magnetic flux density comparing to the existing millimeter resolution. The reconstructed conductivity images at sub-millimeter resolution can distinguish different brain tissues with a pixel size as small as 350 μm.

  4. A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.

    PubMed

    Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru

    2009-02-01

    A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.

  5. Quantifying Muscle Asymmetries in Cervical Dystonia with Electrical Impedance: A Preliminary Assessment

    PubMed Central

    Lungu, Codrin; Tarulli, Andrew W; Tarsy, Daniel; Mongiovi, Phillip; Vanderhorst, Veronique G; Rutkove, Seward B

    2010-01-01

    Objective Cervical Dystonia (CD) lacks an objective quantitative measure. Electrical impedance myography (EIM) is a non-invasive assessment method sensitive to changes in muscle structure and physiology. We evaluate the potential role of EIM in quantifying CD, hypothesizing that patients would demonstrate differences in the symmetry of muscle electrical resistance compared to controls, and that this asymmetry would decrease after botulinum neurotoxin (BoNT) treatment. Methods EIM was performed on the sternocleidomastoid (SCM) and cervical paraspinal (PS) muscles of CD patients and age-matched controls. 50kHz Resistance was analyzed, comparing side-to-side asymmetry in patients and controls, and, in patients, before and after BoNT treatment. Results 16 patients and 10 controls were included. Resistance asymmetry was on average 3-5 times higher in patients than controls. Receiver operating characteristic analysis demonstrated 91% accuracy of discriminating CD from normal. From pre-treatment to maximum BoNT effect, asymmetry decreased from 20.8 (13.9-26.1)% to 6.2 (3.1-9.9)% (SCM), and from 16.0(14.3-16.0)% to 8.4(7.0-9.2)% (PS), p<0.05 (median, interquartile range). Conclusions EIM effectively differentiates normal subjects from CD patients by revealing asymmetries in resistance values and detects improvement in muscle symmetry after treatment. Significance These results suggest that EIM, a painless, non-invasive measure, can provide a useful quantitative metric in CD evaluation and deserves further study. PMID:20943436

  6. Nanoparticle-enhanced electrical impedance detection and its potential significance in image tomography.

    PubMed

    Liu, Ran; Jin, Cuiyun; Song, Fengjuan; Liu, Jing

    2013-01-01

    The conductivity and permittivity of tumors are known to differ significantly from those of normal tissues. Electrical impedance tomography (EIT) is a relatively new imaging method for exploiting these differences. However, the accuracy of data capture is one of the difficult problems urgently to be solved in the clinical application of EIT technology. A new concept of EIT sensitizers is put forward in this paper with the goal of expanding the contrast ratio of tumor and healthy tissue to enhance EIT imaging quality. The use of nanoparticles for changing tumor characteristics and determining the infiltration vector for easier detection has been widely accepted in the biomedical field. Ultra-pure water, normal saline, and gold nanoparticles, three kinds of material with large differences in electrical characteristics, are considered as sensitizers and undergo mathematical model analysis and animal experimentation. Our preliminary results suggest that nanoparticles are promising for sensitization work. Furthermore, in experimental and simulation results, we found that we should select different sensitizers for the detection of different types and stages of tumor.

  7. Spatial-temporal modeling for electrical impedance imaging of a mixing process

    NASA Astrophysics Data System (ADS)

    West, R. M.; Meng, S.; Aykroyd, R. G.; Williams, R. A.

    2005-07-01

    The use of electrical tomography techniques for process visualization and investigation is a well-known example of a nonlinear, ill-posed, and underdetermined inverse problem. Hence stable and reliable solution is not possible using measured data alone, but requires regularization through prior information. The rôle of a Bayesian approach is therefore of fundamental importance, and when coupled with Markov chain Monte Carlo (MCMC) sampling, it can provide valuable statistical information about solution behavior and reliability, which is in contrast to most current approaches which provide only a single image reconstruction with unquantified errors. For many applications of dynamic electrical impedance imaging, some degree of both spatial and temporal smoothness is expected. Often temporal smoothness is ignored and only spatial smoothing is used. In the current application, the addition of an aliquot to a mixing vessel, smoothness is not appropriate prior information. Instead an aliquot prior is proposed, parameterized in terms of location, size, and resistivity. This approach leads to data-driven and adaptive smoothing, in contrast to the more usual global smoothing of standard regularization methods. Of further interest is the inclusion of temporal prior information: it is known that the aliquot moves and disperses in a specific manner. With this added temporal information, imaging is improved as are derived process parameters.

  8. Linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography.

    PubMed

    Fernández-Corazza, M; von Ellenrieder, N; Muravchik, C H

    2015-02-01

    We localize dynamic electrical conductivity changes and reconstruct their time evolution introducing the spatial filtering technique to electrical impedance tomography (EIT). More precisely, we use the unit-noise-gain constrained variation of the distortionless-response linearly constrained minimum variance spatial filter. We address the effects of interference and the use of zero gain constraints. The approach is successfully tested in simulated and real tank phantoms. We compute the position error and resolution to compare the localization performance of the proposed method with the one-step Gauss-Newton reconstruction with Laplacian prior. We also study the effects of sensor position errors. Our results show that EIT spatial filtering is useful for localizing conductivity changes of relatively small size and for estimating their time-courses. Some potential dynamic EIT applications such as acute ischemic stroke detection and neuronal activity localization may benefit from the higher resolution of spatial filters as compared to conventional tomographic reconstruction algorithms. Copyright © 2015 John Wiley & Sons, Ltd.

  9. A motion-compensated cone-beam CT using electrical impedance tomography imaging.

    PubMed

    Pengpan, T; Smith, N D; Qiu, W; Yao, A; Mitchell, C N; Soleimani, M

    2011-01-01

    Cone-beam CT (CBCT) is an imaging technique used in conjunction with radiation therapy. For example CBCT is used to verify the position of lung cancer tumours just prior to radiation treatment. The accuracy of the radiation treatment of thoracic and upper abdominal structures is heavily affected by respiratory movement. Such movement typically blurs the CBCT reconstruction and ideally should be removed. Hence motion-compensated CBCT has recently been researched for correcting image artefacts due to breathing motion. This paper presents a new dual-modality approach where CBCT is aided by using electrical impedance tomography (EIT) for motion compensation. EIT can generate images of contrasts in electrical properties. The main advantage of using EIT is its high temporal resolution. In this paper motion information is extracted from EIT images and incorporated directly in the CBCT reconstruction. In this study synthetic moving data are generated using simulated and experimental phantoms. The paper demonstrates that image blur, created as a result of motion, can be reduced through motion compensation with EIT.

  10. Measuring the electric properties of planetary environments with Mutual Impedance (MI) Probes

    NASA Astrophysics Data System (ADS)

    Trautner, R.; Grard, R.

    2002-10-01

    Mutual Impedance Probes measure the complex permittivity of material by means of a quadrupolar array of electrodes and associated electronics for generating, recording and processing waveforms. MI instruments have been developed for a number of ongoing space missions. The HASI/PWA MI probe will determine the electric properties of the atmosphere of Titan, Saturn's largest moon, during the descent of the Huygens probe. After landing, the instrument will provide data on the properties of Titan's surface materials. The permittivity probe PP, as part of the SESAME instrument package for the Rosetta Lander, will determine the electrical properties of comet Wirtanen's surface. The main features of MI probes are first recapitulated. Instrument architectures for atmospheric, surface and subsurface investigations are described. Results from recent field test campaigns in harsh environments are presented. A new MI probe prototype employing a linear electrode array for application on mobile platforms or on penetrator devices is described. New application areas for future MI probes and relevant technology requirements are discussed.

  11. Harmonic decomposition in PDE-based denoising technique for magnetic resonance electrical impedance tomography.

    PubMed

    Lee, Byung Il; Lee, Suk-Ho; Kim, Tae-Seong; Kwon, Ohin; Woo, Eung Je; Seo, Jin Keun

    2005-11-01

    Recent progress in magnetic resonance electrical impedance tomography (MREIT) research via simulation and biological tissue phantom studies have shown that conductivity images with higher spatial resolution and accuracy are achievable. In order to apply MREIT to human subjects, one of the important remaining problems to be solved is to reduce the amount of the injection current such that it meets the electrical safety regulations. However, by limiting the amount of the injection current according to the safety regulations, the measured MR data such as the z-component of magnetic flux density Bz in MREIT tend to have low SNR and get usually degraded in their accuracy due to the nonideal data acquisition system of an MR scanner. Furthermore, numerical differentiations of the measured Bz required by the conductivity image reconstruction algorithms tend to further deteriorate the quality and accuracy of the reconstructed conductivity images. In this paper, we propose a denoising technique that incorporates a harmonic decomposition. The harmonic decomposition is especially suitable for MREIT due to the physical characteristics of Bz. It effectively removes systematic and random noises, while preserving important key features in the MR measurements, so that improved conductivity images can be obtained. The simulation and experimental results demonstrate that the proposed denoising technique is effective for MREIT, producing significantly improved quality of conductivity images. The denoising technique will be a valuable tool in MREIT to reduce the amount of the injection current when it is combined with an improved MREIT pulse sequence.

  12. Utilization of electrical impedance imaging for estimation of in-vivo tissue resistivities

    NASA Astrophysics Data System (ADS)

    Eyuboglu, B. Murat; Pilkington, Theo C.

    1993-08-01

    In order to determine in vivo resistivity of tissues in the thorax, the possibility of combining electrical impedance imaging (EII) techniques with (1) anatomical data extracted from high resolution images, (2) a prior knowledge of tissue resistivities, and (3) a priori noise information was assessed in this study. A Least Square Error Estimator (LSEE) and a statistically constrained Minimum Mean Square Error Estimator (MiMSEE) were implemented to estimate regional electrical resistivities from potential measurements made on the body surface. A two dimensional boundary element model of the human thorax, which consists of four different conductivity regions (the skeletal muscle, the heart, the right lung, and the left lung) was adopted to simulate the measured EII torso potentials. The calculated potentials were then perturbed by simulated instrumentation noise. The signal information used to form the statistical constraint for the MiMSEE was obtained from a prior knowledge of the physiological range of tissue resistivities. The noise constraint was determined from a priori knowledge of errors due to linearization of the forward problem and to the instrumentation noise.

  13. Classification of Thyroid Nodules Using a Resonance-Frequency–Based Electrical Impedance Spectroscopy: A Preliminary Assessment

    PubMed Central

    Tublin, Mitchell E.; Klym, Amy H.; Gur, David

    2013-01-01

    Background Ultrasound and ultrasound-guided fine-needle aspiration biopsy are considered the most effective approaches for both identifying and classifying thyroid nodules. However, despite continuing improvements in scanner technology and refinements in ultrasound/cytological classification guidelines, indeterminate findings still lead to diagnostic lobectomy under general anesthesia. This study aims to investigate the feasibility of applying a modified noninvasive electrical impedance spectroscopy (EIS) approach to classifying thyroid nodules. Method To increase nodule classification sensitivity, we developed a new EIS-based model that introduces an optimized inductance component, which increases the measured signal-to-noise ratio of capacitance variation in and about thyroid nodules. Our model then measures the change of resonance frequency when the positive reactance of the system inductor cancels out the negative reactance of the nodule capacitance in a multi-frequency electrical signal scan. The system is termed “resonance-frequency–based electrical impedance spectroscopy” (REIS). A portable REIS system with multiple probes was assembled and preliminarily tested in our clinical facility. From an ongoing prospective study, an initial data set of 160 REIS examinations including 27 verified cancer cases was used. From the data set, a number of EIS signal features was extracted and analyzed. A multi-feature–based Bayesian Belief Network was built to classify the detected thyroid nodules. A receiver operating characteristic data analysis method was applied to evaluate classification performance. Results The results showed that (i) the median resonance frequency measured by the probe nearest to malignant nodules was in general lower than that measured in benign cases, and (ii) the median descending slope of EIS signal sweep curves computed from cancer cases was larger than that computed from benign cases. The Bayesian Belief Network yielded a classification

  14. Investigation of potential artefactual changes in measurements of impedance changes during evoked activity: implications to electrical impedance tomography of brain function

    PubMed Central

    Aristovich, Kirill Y; Dos Santos, Gustavo S; Holder, David S

    2015-01-01

    Abstract Electrical impedance tomography (EIT) could provide images of fast neural activity in the adult human brain with a resolution of 1 ms and 1 mm by imaging impedance changes which occur as ion channels open during neuronal depolarization. The largest changes occur at dc and decrease rapidly over 100 Hz. Evoked potentials occur in this bandwidth and may cause artefactual apparent impedance changes if altered by the impedance measuring current. These were characterized during the compound action potential in the walking leg nerves of Cancer pagurus, placed on Ag/AgCl hook electrodes, to identify how to avoid artefactual changes during brain EIT. Artefact-free impedance changes (δZ) decreased with frequency from −0.045 ± 0.01% at 225 Hz to −0.02 ± 0.01% at 1025 Hz (mean ± 1 SD, n = 24 in 12 nerves) which matched changes predicted by a finite element model. Artefactual δZ reached c.300% and 50% of the genuine membrane impedance change at 225 Hz and 600 Hz respectively but decreased with frequency of the applied current and was negligible above 1 kHz. The proportional amplitude (δZ (%)) of the artefact did not vary significantly with the amplitude of injected current of 5–20 µA pp. but decreased significantly from −0.09 ± 0.024 to −0.03 ± 0.023% with phase of 0 to 45°. For fast neural EIT of evoked activity in the brain, artefacts may arise with applied current of >10 µA. Independence of δZ with respect to phase but not the amplitude of applied current controls for them; they can be minimized by randomizing the phase of the applied measuring current and excluded by recording at >1 kHz. PMID:26009486

  15. Investigation of potential artefactual changes in measurements of impedance changes during evoked activity: implications to electrical impedance tomography of brain function.

    PubMed

    Aristovich, Kirill Y; Dos Santos, Gustavo S; Holder, David S

    2015-06-01

    Electrical impedance tomography (EIT) could provide images of fast neural activity in the adult human brain with a resolution of 1 ms and 1 mm by imaging impedance changes which occur as ion channels open during neuronal depolarization. The largest changes occur at dc and decrease rapidly over 100 Hz. Evoked potentials occur in this bandwidth and may cause artefactual apparent impedance changes if altered by the impedance measuring current. These were characterized during the compound action potential in the walking leg nerves of Cancer pagurus, placed on Ag/AgCl hook electrodes, to identify how to avoid artefactual changes during brain EIT. Artefact-free impedance changes (δZ) decreased with frequency from -0.045 ± 0.01% at 225 Hz to -0.02 ± 0.01% at 1025 Hz (mean ± 1 SD, n = 24 in 12 nerves) which matched changes predicted by a finite element model. Artefactual δZ reached c.300% and 50% of the genuine membrane impedance change at 225 Hz and 600 Hz respectively but decreased with frequency of the applied current and was negligible above 1 kHz. The proportional amplitude (δZ (%)) of the artefact did not vary significantly with the amplitude of injected current of 5-20 µA pp. but decreased significantly from -0.09 ± 0.024 to -0.03 ± 0.023% with phase of 0 to 45°. For fast neural EIT of evoked activity in the brain, artefacts may arise with applied current of >10 µA. Independence of δZ with respect to phase but not the amplitude of applied current controls for them; they can be minimized by randomizing the phase of the applied measuring current and excluded by recording at >1 kHz.

  16. Electrical impedance myography to assess outcome in amyotrophic lateral sclerosis clinical trials

    PubMed Central

    Rutkove, Seward B.; Zhang, Hui; Schoenfeld, David A.; Raynor, Elizabeth M.; Shefner, Jeremy M.; Cudkowicz, Merit E.; Chin, Anne B.; Aaron, Ronald; Shiffman, Carl A.

    2007-01-01

    Objective Standard outcome measures used for amyotrophic lateral sclerosis (ALS) clinical trials, including the ALS Functional Rating Scale-revised (ALSFRS-R), maximal voluntary isometric contraction testing (MVICT), and manual muscle testing (MMT) are limited in their ability to detect subtle disease progression. Electrical impedance myography (EIM) is a new non-invasive technique that provides quantitative data on muscle health by measuring localized tissue impedance. This study investigates whether EIM could provide a new outcome measure for use in ALS clinical trials work. Methods Fifteen ALS patients underwent repeated EIM measurements of one or more muscles over a period of up to 18 months and the primary outcome variable, θz-max, measured. The θz-max megascore was then calculated using the same approach as has been applied in the past for MVICT. This and the MMT data were then used to assess each measure’s statistical power to detect a given effect on disease progression in a hypothetical planned clinical therapeutic trial. Results θz-max showed a mean decline of about 21% for the test period, averaged across all patients and all tested muscles. The θz-max megascore had a power of 73% to detect a 10% treatment effect in our planned hypothetical trial, as compared to a 28% power for MMT. These results also compared favorably to historical data for ALSFRS-R and MVICT arm megascore from the trial of celecoxib in ALS, where both measures had only a 23% power to detect the same 10% treatment effect. Conclusions The θz-max megascore may provide a powerful new outcome measure for ALS clinical trials. Significance The application of EIM to future ALS trials may allow for smaller, faster studies with an improved ability to detect subtle treatment effects. PMID:17897874

  17. An electric impedance based microelectromechanical system flow sensor for ionic solutions

    PubMed Central

    Ayliffe, H Edward; Rabbitt, RD

    2008-01-01

    Microfluidic devices with channel cross sections measuring 4 × 10 μm2 instrumented with gold microelectrodes were used to sense flow rates of ionic solutions on the basis of electric impedance (EI) measured perpendicular to the flow. Negative pressures were applied to access ports of the microdevices to generate flow of saline solutions (physiologic concentrations 0.9%) through the micro-EI recording zone with flow rates between 2.4 and 4.8 μl min−1. The EI spectra (100 Hz–20 MHz) recorded under flow conditions were compared with the no-flow condition. Changes in the magnitude of EI (at 350 Hz) for flow rates as low as 2.4 μl min−1 were statistically significant compared with the no-flow condition. The observed dependence of EI on flow rate is attributed to the relative difference between the rate of migration of charge-balancing electrolyte ions to the electrode surface and the rate of removal of the same ions by forced convection. An electrochemical convection–diffusion model was used to study the observed dependence on flow. Simulations support the conceptual model that passing DC current from the gold electrodes into the ionic solution results in an increase in ionic concentration near the electrode surface (due to the inward migration of counter-balancing ions). When the fluid flow rates increase, these counter-balancing ions are replaced by the bulk solution, thereby lowering the average ionic concentration within the recording zone. This local concentration drop results in an increase in the real part of the impedance. PMID:19672321

  18. An electric impedance based microelectromechanical system flow sensor for ionic solutions.

    PubMed

    Ayliffe, H Edward; Rabbitt, Rd

    2003-08-01

    Microfluidic devices with channel cross sections measuring 4 × 10 μm(2) instrumented with gold microelectrodes were used to sense flow rates of ionic solutions on the basis of electric impedance (EI) measured perpendicular to the flow. Negative pressures were applied to access ports of the microdevices to generate flow of saline solutions (physiologic concentrations 0.9%) through the micro-EI recording zone with flow rates between 2.4 and 4.8 μl min(-1). The EI spectra (100 Hz-20 MHz) recorded under flow conditions were compared with the no-flow condition. Changes in the magnitude of EI (at 350 Hz) for flow rates as low as 2.4 μl min(-1) were statistically significant compared with the no-flow condition. The observed dependence of EI on flow rate is attributed to the relative difference between the rate of migration of charge-balancing electrolyte ions to the electrode surface and the rate of removal of the same ions by forced convection. An electrochemical convection-diffusion model was used to study the observed dependence on flow. Simulations support the conceptual model that passing DC current from the gold electrodes into the ionic solution results in an increase in ionic concentration near the electrode surface (due to the inward migration of counter-balancing ions). When the fluid flow rates increase, these counter-balancing ions are replaced by the bulk solution, thereby lowering the average ionic concentration within the recording zone. This local concentration drop results in an increase in the real part of the impedance.

  19. An electric impedance based microelectromechanical system flow sensor for ionic solutions

    NASA Astrophysics Data System (ADS)

    Ayliffe, H. Edward; Rabbitt, R. D.

    2003-08-01

    Microfluidic devices with channel cross sections measuring 4 × 10 µm2 instrumented with gold microelectrodes were used to sense flow rates of ionic solutions on the basis of electric impedance (EI) measured perpendicular to the flow. Negative pressures were applied to access ports of the microdevices to generate flow of saline solutions (physiologic concentrations 0.9%) through the micro-EI recording zone with flow rates between 2.4 and 4.8 µl min-1. The EI spectra (100 Hz-20 MHz) recorded under flow conditions were compared with the no-flow condition. Changes in the magnitude of EI (at 350 Hz) for flow rates as low as 2.4 µl min-1 were statistically significant compared with the no-flow condition. The observed dependence of EI on flow rate is attributed to the relative difference between the rate of migration of charge-balancing electrolyte ions to the electrode surface and the rate of removal of the same ions by forced convection. An electrochemical convection-diffusion model was used to study the observed dependence on flow. Simulations support the conceptual model that passing DC current from the gold electrodes into the ionic solution results in an increase in ionic concentration near the electrode surface (due to the inward migration of counter-balancing ions). When the fluid flow rates increase, these counter-balancing ions are replaced by the bulk solution, thereby lowering the average ionic concentration within the recording zone. This local concentration drop results in an increase in the real part of the impedance.

  20. Impedance measurements on lead-acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Blanke, Holger; Bohlen, Oliver; Buller, Stephan; De Doncker, Rik W.; Fricke, Birger; Hammouche, Abderrezak; Linzen, Dirk; Thele, Marc; Sauer, Dirk Uwe

    Various attempts have been made to use impedance measurements for online analysis and offline modelling of lead-acid batteries. This presentation gives an overview on the latest and successful approaches based on impedance measurements to assess state-of-charge (SoC), state-of-health (SoH) and cranking capability of lead-acid batteries. Furthermore, it is shown that impedance data can serve as a basis for dynamic battery models for the simulation of vehicle power-supply systems. The methods and procedures aim for a reliable prediction of battery performance in electric vehicles, hybrid cars and classical automotive applications. Although, it will become obvious that impedance measurements give valuable information on the battery state, typically the information needs to be combined with other conventional algorithms or self-learning tools to achieve reliable and stable results for real-world applications.

  1. Development of a combined ultrasound and electrical impedance imaging system for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Wan, Yuqing

    Approximately 240,890 men were diagnosed with prostate cancer and 33,720 men were expected to die from it in the year of 2011 in the United States. Unfortunately, the current clinical diagnostic methods (e.g. prostate-specific antigen (PSA), digital rectal examination, ultrasound guided biopsy) used for detecting and staging prostate cancer are limited. It has been shown that cancerous prostate tissue has significantly different electrical properties when compared to benign tissues. Based on these electrical property findings, a transrectal electrical impedance tomography (TREIT) system is proposed as a novel prostate imaging modality. An ultrasound probe is incorporated with TREIT to achieve anatomic information of the prostate and guide electrical property reconstruction. Without the guidance of the ultrasound, the TREIT system can easily discern high contrast inclusions of 1 cm in diameter at distances centered at two times the radius of the TREIT probe away from the probe surface. Furthermore, we have demonstrated that our system is able to detect low contrast inclusions. With the guidance of the ultrasound, our system is capable of detecting a plastic inclusion embedded in a gelatin phantom, indicating the potential to detect cancer. In addition, the results of preliminary in vivo clinical trials using the imaging system are also presented in the thesis. After collecting data for a total 66 patients, we demonstrated that the in vivo conductivity of cancerous tissue is significantly greater than that of benign tissue (p=0.0015 at 400 Hz) and the conductivity of BPH tissue is significantly lower than that of normal tissue (p=0.0009 at 400 Hz). Additionally at 25.6 kHz, the dual-modal imaging system is able to differentiate cancerous tissue from benign tissue with sensitivity of 0.6012 and specificity of 0.5498, normal tissue from BPH tissue with sensitivity of 0.6085 and specificity of 0.5813 and differentiate cancerous tissue from BPH tissue with sensitivity of

  2. Constraints on the Fe-S melt connectivity in mantle silicates from electrical impedance measurements

    NASA Astrophysics Data System (ADS)

    Bagdassarov, N.; Golabek, G. J.; Solferino, G.; Schmidt, M. W.

    2009-12-01

    The connectivity of FeS melts in olivine and in a fertile peridotite matrix has been addressed through in situ electric impedance spectroscopy (IS) measurements at 1 GPa. A first series of experiments used sintered powder samples of a fertile peridotite xenolith mixed with 5-15 vol.% Fe70S30 of eutectic composition. The sheared high-T garnet peridotite with Mg# ˜ 0.90 is composed of 60 vol.% olivine, 15% orthopyroxene, 5.3% clinopyroxene and 19% garnet, the powder grain size was 20-30 μm, similar to the one employed by Yoshino et al. (2003). For a second series, San Carlos olivine aggregates were used as solid matrix and 10-20 vol.% of eutectic Fe70S30 were added. For these, the average grain size was 3 μm, much smaller than in the experiments by Yoshino et al. (2003). The powder mixtures of peridotite + Fe70S30 and olivine aggregates + Fe70S30 were first annealed for 2-5 days in a conventional piston cylinder at 1 GPa and 950-970 °C. The electrical conductivity of samples has been measured using the impedance spectroscopy method in a BN-graphite-CaF2 pressure cell with concentric cylindrical electrodes made from Mo- or Re-foil (the estimated oxygen fugacity was close to the IW-buffer). The results indicate that up to 15 vol.% of Fe70S30 the melt phase does not built a stable interconnected network in a peridotite matrix, as was recently indicated by Walte et al. (2007). The percolation threshold for a stable FeS network in olivine matrix lies at 17.5 vol.%, much higher the 6 vol.% found by Yoshino et al. (2003). Our result is in line with the high dihedral angles of typically 70-100° for Fe-S melts in mantle materials. The higher interconnectivity threshold of this study, as compared to previous studies (Yoshino et al., 2003, 2004; Roberts et al., 2007) is a result of our smaller starting grain sizes (for olivine) in combination with much longer run durations. Both these experimental conditions result in enhanced grain growth and thus to a higher degree of

  3. Lung volume changes during cleaning of closed endotracheal suction catheters: a randomized crossover study using electrical impedance tomography.

    PubMed

    Corley, Amanda; Sharpe, Nicola; Caruana, Lawrence R; Spooner, Amy J; Fraser, John F

    2014-04-01

    Airway suctioning in mechanically ventilated patients is required to maintain airway patency. Closed suction catheters (CSCs) minimize lung volume loss during suctioning but require cleaning post-suction. Despite their widespread use, there is no published evidence examining lung volumes during CSC cleaning. The study objectives were to quantify lung volume changes during CSC cleaning and to determine whether these changes were preventable using a CSC with a valve in situ between the airway and catheter cleaning chamber. This prospective randomized crossover study was conducted in a metropolitan tertiary ICU. Ten patients mechanically ventilated via volume-controlled synchronized intermittent mandatory ventilation (SIMV-VC) and requiring manual hyperinflation (MHI) were included in this study. CSC cleaning was performed using 2 different brands of CSC (one with a valve [Ballard Trach Care 72, Kimberly-Clark, Roswell, Georgia] and one without [Portex Steri-Cath DL, Smiths Medical, Dublin, Ohio]). The maneuvers were performed during both SIMV-VC and MHI. Lung volume change was measured via impedance change using electrical impedance tomography. A mixed model was used to compare the estimated means. During cleaning of the valveless CSC, significant decreases in lung impedance occurred during MHI (-2563 impedance units, 95% CI 2213-2913, P < .001), and significant increases in lung impedance occurred during SIMV (762 impedance units, 95% CI 452-1072, P < .001). In contrast, cleaning of the CSC with a valve in situ resulted in non-significant lung volume changes and maintenance of normal ventilation during MHI and SIMV-VC, respectively (188 impedance units, 95% CI -136 to 511, P = .22; and 22 impedance units, 95% CI -342 to 299, P = .89). When there is no valve between the airway and suction catheter, cleaning of the CSC results in significant derangements in lung volume. Therefore, the presence of such a valve should be considered essential in preserving lung volumes

  4. The potential of electrical impedance on the performance of galloping systems for energy harvesting and control applications

    NASA Astrophysics Data System (ADS)

    Abdelmoula, H.; Abdelkefi, A.

    2016-05-01

    Performances of galloping-based piezoelectric systems for energy harvesting and control applications when considering complex electrical impedance are investigated. The aeroelastic system is composed of a unimorph piezoelectric cantilever beam with a square cylinder attached at its tip and subjected to a uniform flow speed. A quasi-steady representation is used to model the aerodynamic force. A nonlinear distributed-parameter model is developed when considering various scenarios of connections between electrical resistance, capacitance, and inductance. Theoretical strategies are developed in order to determine the relation between the onset speed of galloping and the components of the electrical impedance. The results show that the presence of the electrical capacitance and inductance is not beneficial in terms of improving the levels of the harvested power crossing the load resistance. On the other hand, it is shown that the inclusion of these electrical components may be useful for energy harvesting purposes when charging/discharging batteries. One of the important findings of this research study is that including an electrical inductance in connection to a load resistance is very beneficial for control purposes because a significant increase in the onset speed of instability can be obtained for well-defined values of the electrical components. Analytical predictions of these optimum values of the electrical inductance and resistance are determined and compared with numerical simulations. It is also demonstrated that supercritical Hopf bifurcations take place at this controlled optimal configuration without having any hysteresis and jumps when increasing and decreasing the wind speeds.

  5. Computational modelling of blood-flow-induced changes in blood electrical conductivity and its contribution to the impedance cardiogram.

    PubMed

    Trakic, A; Akhand, M; Wang, H; Mason, D; Liu, F; Wilson, S; Crozier, S

    2010-01-01

    Studies have shown that blood-flow-induced change in electrical conductivity is of equal importance in assessment of the impedance cardiogram (ICG) as are volumetric changes attributed to the motion of heart, lungs and blood vessels. To better understand the sole effect of time-varying blood conductivity on the spatiotemporal distribution of trans-thoracic electric fields (i.e. ICG), this paper presents a segmented high-resolution (1 mm(3)) thoracic cardiovascular system, in which the time-varying pressures, flows and electrical conductivities of blood in different vessels are evaluated using a set of coupled nonlinear differential equations, red blood cell orientation and cardiac cycle functions. Electric field and voltage simulations are performed using two and four electrode configurations delivering a small alternating electric current to an anatomically realistic and electrically accurate model of modelled human torso. The simulations provide a three-dimensional electric field distribution and show that the time-varying blood conductivity alters the voltage potential difference between the electrodes by a maximum of 0.28% for a cardiac output of about 5 L min(-1). As part of a larger study, it is hoped that this initial model will be useful in providing improved insights into blood-flow-related spatiotemporal electric field variations and assist in the optimal placement of electrodes in impedance cardiography experiments.

  6. Different approaches to the completion of the back-projection algorithm in image monitoring by electrical impedance tomography.

    PubMed

    Wanjun, Shuai; Xiuzhen, Dong; Feng, Fu; Fusheng, You; Xiaodong, Liu; Canhua, Xu

    2005-01-01

    It is found that Electrical Impedance Tomography(EIT) is promising in its application to the clinical image monitoring and that the Back-Projection algorithm of EIT can meet the preliminary requirements of the real-time monitoring through our work. In order to improve the computed speed and the imaged resolution, different ways of completing the algorithm were tried in this paper. Moreover, it is shown that the impedance change due to physiological saline with the concentration of not more than 50 milliliter 0.9% can be detected and imaged by our system. The above result is helpful for our further work of image monitoring by EIT.

  7. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers

    PubMed Central

    Lewis, George K; Lewis, George K; Olbricht, William

    2008-01-01

    This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2−5 MHz piezoelectrics, but the methodology applies for 700 kHz–20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost. PMID:19081773

  8. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers.

    PubMed

    Lewis, George K; Lewis, George K; Olbricht, William

    2008-10-01

    This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2-5 MHz piezoelectrics, but the methodology applies for 700 kHz-20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost.

  9. Cost-effective broad-band electrical impedance spectroscopy measurement circuit and signal analysis for piezo-materials and ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Lewis, George K., Jr.; Lewis, George K., Sr.; Olbricht, William

    2008-10-01

    This paper explains the circuitry and signal processing to perform electrical impedance spectroscopy on piezoelectric materials and ultrasound transducers. Here, we measure and compare the impedance spectra of 2-5 MHz piezoelectrics, but the methodology applies for 700 kHz-20 MHz ultrasonic devices as well. Using a 12 ns wide 5 volt pulsing circuit as an impulse, we determine the electrical impedance curves experimentally using Ohm's law and fast Fourier transform (FFT), and compare results with mathematical models. The method allows for rapid impedance measurement for a range of frequencies using a narrow input pulse, digital oscilloscope and FFT techniques. The technique compares well to current methodologies such as network and impedance analyzers while providing additional versatility in the electrical impedance measurement. The technique is theoretically simple, easy to implement and completed with ordinary laboratory instrumentation for minimal cost.

  10. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria.

    PubMed

    Yang, Liju; Bashir, Rashid

    2008-01-01

    The realization of rapid, sensitive, and specific methods to detect foodborne pathogenic bacteria is central to implementing effective practice to ensure food safety and security. As a principle of transduction, the impedance technique has been applied in the field of microbiology as a means to detect and/or quantify foodborne pathogenic bacteria. The integration of impedance with biological recognition technology for detection of bacteria has led to the development of impedance biosensors that are finding wide-spread use in the recent years. This paper reviews the progress and applications of impedance microbiology for foodborne pathogenic bacteria detection, particularly the new aspects that have been added to this subject in the past few years, including the use of interdigitated microelectrodes, the development of chip-based impedance microbiology, and the use of equivalent circuits for analysis of the impedance systems. This paper also reviews the significant developments of impedance biosensors for bacteria detection in the past 5 years, focusing on microfabricated microelectrodes-based and microfluidic-based Faradaic electrochemical impedance biosensors, non-Faradaic impedance biosensors, and the integration of impedance biosensors with other techniques such as dielectrophoresis and electropermeabilization.

  11. Anatomically accurate hard priors for transrectal electrical impedance tomography (TREIT) of the prostate.

    PubMed

    Syed, H; Borsic, A; Hartov, A; Halter, R J

    2012-05-01

    Current prostate biopsy procedures entail sampling tissues at template-based locations that are not patient specific. Ultrasound (US)-coupled transrectal electrical impedance tomography (TREIT), featuring an endorectal US probe retrofitted with electrodes, has been developed for prostate imaging. This multi-modal imaging system aims to identify suspicious tumor regions based on their electrical properties and ultimately provide additional patient-specific locations where to take biopsy samples. Unfortunately, the open-domain geometry associated with TREIT results in a severely ill-posed problem due to the small number of measurements and unbounded imaging domain. Furthermore, reconstructing contrasts within the prostate volume is challenging because the conductivity differences between the prostate and surrounding tissues are much larger than the conductivity differences between benign and malignant tissues within the prostate. To help overcome these problems, anatomically accurate hard priors can be employed to limit estimation of the electrical property distribution to within the prostate volume; however, this requires the availability of structural information. Here, a method that extracts the prostate surface from US images and incorporates this surface into the image reconstruction algorithm has been developed to enable estimation of electrical parameters within the prostate volume. In this paper, the performance of this algorithm is evaluated against a more traditional EIT algorithm that does not use anatomically accurate structural information, in the context of numerical simulations and phantom experiments. The developed anatomically accurate hard-prior algorithm demonstrably identifies contrasts within the prostate volume while an algorithm that does not rely on anatomically accurate structural information is unable to localize these contrasts. While inclusions are identified in the correct locations, they are found to be smaller in size than the actual

  12. Analytical solutions of electric potential and impedance for a multilayered spherical volume conductor excited by time-harmonic electric current source: application in brain EIT

    NASA Astrophysics Data System (ADS)

    Xiao, Chunyan; Lei, Yinzhao

    2005-06-01

    A model of a multilayered spherical volume conductor with four electrodes is built. In this model, a time-harmonic electric current is injected into the sphere through a pair of drive electrodes, and electric potential is measured by the other pair of measurement electrodes. By solving the boundary value problem of the electromagnetic field, the analytical solutions of electric potential and impedance in the whole conduction region are derived. The theoretical values of electric potential on the surface of the sphere are in good accordance with the experimental results. The analytical solutions are then applied to the simulation of the forward problem of brain electrical impedance tomography (EIT). The results show that, for a real human head, the imaginary part of the electric potential is not small enough to be ignored at above 20 kHz, and there exists an approximate linear relationship between the real and imaginary parts of the electric potential when the electromagnetic parameters of the innermost layer keep unchanged. Increase in the conductivity of the innermost layer leads to a decrease of the magnitude of both real and imaginary parts of the electric potential on the scalp. However, the increase of permittivity makes the magnitude of the imaginary part of the electric potential increase while that of the real part decreases, and vice versa.

  13. FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography.

    PubMed

    Khan, Shadab; Manwaring, Preston; Borsic, Andrea; Halter, Ryan

    2015-04-01

    Electrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones. To this end, we developed a modular and reconfigurable data acquisition (DAQ) system using National Instruments' (NI) hardware and software modules, which offer inherent compatibility over generations of hardware and software revisions. The system can be configured to use up to 32-channels. This EIT system can be used to interchangeably apply current or voltage signal, and measure the tissue response in a semi-parallel fashion. A novel signal averaging algorithm, and 512-point fast Fourier transform (FFT) computation block was implemented on the FPGA. FFT output bins were classified as signal or noise. Signal bins constitute a tissue's response to a pure or mixed tone signal. Signal bins' data can be used for traditional applications, as well as synchronous frequency-difference imaging. Noise bins were used to compute noise power on the FPGA. Noise power represents a metric of signal quality, and can be used to ensure proper tissue-electrode contact. Allocation of these computationally expensive tasks to the FPGA reduced the required bandwidth between PC, and the FPGA for high frame rate EIT. In 16-channel configuration, with a signal-averaging factor of 8, the DAQ frame rate at 100 kHz exceeded 110 frames s (-1), and signal-to-noise ratio exceeded 90 dB across the spectrum. Reciprocity error was found to be for frequencies up to 1 MHz. Static imaging experiments were performed on a high-conductivity inclusion placed in a saline filled tank; the inclusion was clearly localized in the reconstructions obtained for both absolute current and voltage mode data.

  14. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.

    PubMed

    Wagenaar, Justin; Adler, Andy

    2016-06-01

    Electrical impedance tomography (EIT) uses body surface electrical stimulation and measurements to create conductivity images; it shows promise as a non-invasive technology to monitor the distribution of lung ventilation. Most applications of EIT have placed electrodes in a 2D ring around the thorax, and thus produced 2D cross-sectional images. These images are unable to distinguish out-of-plane contributions, or to image volumetric effects. Volumetric EIT can be calculated using multiple electrode planes and a 3D reconstruction algorithm. However, while 3D reconstruction algorithms are available, little has been done to understand the performance of 3D EIT in terms of the measurement configurations available. The goal of this paper is to characterize the phantom and in vivo performance of 3D EIT with two electrode planes. First, phantom measurements are used to measure the reconstruction characteristics of seven stimulation and measurement configurations. Measurements were then performed on eight healthy volunteers as a function of body posture, postures, and with various electrode configurations. Phantom results indicate that 3D EIT using two rings of electrodes provides reasonable resolution in the electrode plane but low vertical resolution. For volunteers, functional EIT images are created from inhalation curve features to analyze the effect of posture (standing, sitting, supine and decline) on regional lung behaviour. An ability to detect vertical changes in lung volume distribution was shown for two electrode configurations. Based on tank and volunteer results, we recommend the use of the 'square' stimulation and measurement pattern for two electrode plane EIT.

  15. Electrical Impedance Tomography: a new study method for neonatal Respiratory Distress Syndrome?

    PubMed

    Chatziioannidis, I; Samaras, T; Nikolaidis, N

    2011-07-01

    Treatment of cardiorespiratory system diseases is a procedure that usually demands data collection on terms of the anatomy and the operation of the organs that are under study. Electrical Impedance Tomography (EIT) is an alternative approach, in comparison to existing techniques. With EIT electrodes are placed in the perimeter of the human body and images of the estimated organ are reconstructed, using the measurement of its impendence (or resistance) distribution and determining its alteration through time, while at the same time the patient is not exposed to ionizing radiation. Its clinical use presupposes the correct placement of the electrodes over the perimeter of the human body, the rapid data collection and electrical safety. It is a low cost technique and it is implemented near the patient. It is able to determine the distribution of ventilation, blood supply, diffused or localized lung defects, but it can also estimate therapeutic interventions or alteration to assisted ventilation of the neonate. EIT was developed at the beginning of the 1980s, but it has only recently begun to be implemented on neonates, and especially in the study of their respiratory system function. The low rate of image analysis is considered to be a drawback, but it is offset by the potential offered for the estimation of lungs' function (both under normal and pathological conditions), since ventilation and resistance are two quite similar concepts. In this review the most important studies about EIT are mentioned as a method of estimating respiratory distress syndrome in neonates. In terms of the above mentioned development, it is supposed that this technique will offer a great amount of help to the doctor in his / her estimations of the cardiorespiratory system and to his / her selection of the best intervening strategies.

  16. Respiratory-gated electrical impedance tomography: a potential technique for quantifying stroke volume

    NASA Astrophysics Data System (ADS)

    Arshad, Saaid H.; Murphy, Ethan K.; Halter, Ryan J.

    2016-03-01

    Telemonitoring is becoming increasingly important as the proportion of the population living with cardiovascular disease (CVD) increases. Currently used health parameters in the suite of telemonitoring tools lack the sensitivity and specificity to accurately predict heart failure events, forcing physicians to play a reactive versus proactive role in patient care. A novel cardiac output (CO) monitoring device is proposed that leverages a custom smart phone application and a wearable electrical impedance tomography (EIT) system. The purpose of this work is to explore the potential of using respiratory-gated EIT to quantify stroke volume (SV) and assess its feasibility using real data. Simulations were carried out using the 4D XCAT model to create anatomically realistic meshes and electrical conductivity profiles representing the human thorax and the intrathoracic tissue. A single 5-second period respiration cycle with chest/lung expansion was modeled with end-diastole (ED) and end-systole (ES) heart volumes to evaluate how effective EIT-based conductivity changes represent clinically significant differences in SV. After establishing a correlation between conductivity changes and SV, the applicability of the respiratory-gated EIT was refined using data from the PhysioNet database to estimate the number of useful end-diastole (ED) and end-systole (ES) heart events attained over a 3.3 minute period. The area associated with conductivity changes was found to correlate to SV with a correlation coefficient of 0.92. A window of 12.5% around peak exhalation was found to be the optimal phase of the respiratory cycle from which to record EIT data. Within this window, ~47 useable ED and ES were found with a standard deviation of 28 using 3.3 minutes of data for 20 patients.

  17. Indirect measurement of lung density and air volume from electrical impedance tomography (EIT) data.

    PubMed

    Nebuya, Satoru; Mills, Gary H; Milnes, Peter; Brown, Brian H

    2011-12-01

    This paper describes a method for estimating lung density, air volume and changes in fluid content from a non-invasive measurement of the electrical resistivity of the lungs. Resistivity in Ω m was found by fitting measured electrical impedance tomography (EIT) data to a finite difference model of the thorax. Lung density was determined by comparing the resistivity of the lungs, measured at a relatively high frequency, with values predicted from a published model of lung structure. Lung air volume can then be calculated if total lung weight is also known. Temporal changes in lung fluid content will produce proportional changes in lung density. The method was implemented on EIT data, collected using eight electrodes placed in a single plane around the thorax, from 46 adult male subjects and 36 adult female subjects. Mean lung densities (±SD) of 246 ± 67 and 239 ± 64 kg m(-3), respectively, were obtained. In seven adult male subjects estimates of 1.68 ± 0.30, 3.42 ± 0.49 and 4.40 ± 0.53 l in residual volume, functional residual capacity and vital capacity, respectively, were obtained. Sources of error are discussed. It is concluded that absolute differences in lung density of about 30% and changes over time of less than 30% should be detected using the current technology in normal subjects. These changes would result from approximately 300 ml increase in lung fluid. The method proposed could be used for non-invasive monitoring of total lung air and fluid content in normal subjects but needs to be assessed in patients with lung disease.

  18. Non-invasive determination of absolute lung resistivity in adults using electrical impedance tomography.

    PubMed

    Zhang, Jie; Patterson, Robert

    2010-08-01

    Lung resistivity is a physiological parameter that describes the electrical characteristics of the lungs. Lung composition changes due to changes in the lung tissues, fluid and air volume. Various diseases that can cause a change in lung composition may be monitored by measuring lung resistivity. Currently, there is no accepted non-invasive method to measure lung resistivity. In this study, we presented a method and framework to non-invasively determine lung resistivity using electrical impedance tomography (EIT). By comparing actual measurements from subjects with data from a 3D human thorax model, an EIT image can be reconstructed to show a resistivity difference between the model and the subject. By adjusting the lung resistivity in the model, the resistivity difference in the lung regions can be reduced to near zero. This resistivity value then is the estimation of the lung resistivity of the subject. Using the proposed method, the lung resistivities of four normal adult males (43 +/- 13 years, 78 +/- 10 kg) in the supine position at air volumes starting at functional residual capacity (FRC--end expiration) and increasing in 0.5 l steps to 1.5 l were studied. The averaged lung resistivity changes 12.59%, from 1406 Omega cm to 1583 Omega cm, following the inspiration of 1.5 l air from FRC. The coefficients of variation (CV) of precision for the four subjects are less than 10%. The experiment was repeated five times at each air volume on a subject to test the reproducibility. The CVs are less than 3%. The results show that it is feasible to determine absolute lung resistivity using an EIT-based method.

  19. Novel microfluidic system for online monitoring of biofilm dynamics by electrical impedance spectroscopy and amperometry

    NASA Astrophysics Data System (ADS)

    Bruchmann, Julia; Sachsenheimer, Kai; Schwartz, Thomas; Rapp, Bastian E.

    2016-03-01

    Biofilm formation is ubiquitous in nature where microorganisms attach to surfaces and form highly adapted and protected communities. In technical and industrial systems like drinking water supply, food production or shipping industry biofilms are a major cause of product contamination, biofouling, and biocorrosion. Therefore, understanding of biofilm formation and means of preventing biofilm formation is important to develop novel biofilm treatment strategies. A system allowing directly online detection and monitoring biofilm formation is necessary. However, until today, there are little to none technical systems featuring a non-destructive real-time characterization of biofilm formation in a highthroughput manner. This paper presents such a microfluidic system based on electrical impedance spectroscopy (EIS) and amperomertic current measurement. The sensor consists of four modules, each housing 24 independent electrodes within 12 microfluidic channels. Attached biomass on the electrodes is monitored as increased inhibition in charge transfer by EIS and a change in metabolic activity is measured as change in produced electric current by amperometry. This modular sensor system is highly adaptable and suitable for a broad range of microbiological applications. Among others, biofilm formation processes can be characterized online, biofilm manipulation like inactivation or destabilization can be monitored in real-time and gene expression can be analyzed in parallel. The use of different electrode designs allows effective biofilm studies during all biofilm phases. The whole system was recently extended by an integrated pneumatic microfluidic pump which enables easy handling procedures. Further developments of this pumping module will allow a fully- automated computer-controlled valving and pumping.

  20. Static conductivity imaging using variational gradient Bz algorithm in magnetic resonance electrical impedance tomography.

    PubMed

    Park, Chunjae; Park, Eun-Jae; Woo, Eung Je; Kwon, Ohin; Seo, Jin Keun

    2004-02-01

    A new image reconstruction algorithm is proposed to visualize static conductivity images of a subject in magnetic resonance electrical impedance tomography (MREIT). Injecting electrical current into the subject through surface electrodes, we can measure the induced internal magnetic flux density B = (Bx, By, Bz) using an MRI scanner. In this paper, we assume that only the z-component Bz is measurable due to a practical limitation of the measurement technique in MREIT. Under this circumstance, a constructive MREIT imaging technique called the harmonic Bz algorithm was recently developed to produce high-resolution conductivity images. The algorithm is based on the relation between inverted delta2Bz and the conductivity requiring the computation of inverted delta2Bz. Since twice differentiations of noisy Bz data tend to amplify the noise, the performance of the harmonic Bz algorithm is deteriorated when the signal-to-noise ratio in measured Bz data is not high enough. Therefore, it is highly desirable to develop a new algorithm reducing the number of differentiations. In this work, we propose the variational gradient Bz algorithm where Bz is differentiated only once. Numerical simulations with added random noise confirmed its ability to reconstruct static conductivity images in MREIT. We also found that it outperforms the harmonic Bz algorithm in terms of noise tolerance. From a careful analysis of the performance of the variational gradient Bz algorithm, we suggest several methods to further improve the image quality including a better choice of basis functions, regularization technique and multilevel approach. The proposed variational framework utilizing only Bz will lead to different versions of improved algorithms.

  1. A fast parallel solver for the forward problem in electrical impedance tomography.

    PubMed

    Jehl, Markus; Dedner, Andreas; Betcke, Timo; Aristovich, Kirill; Klöfkorn, Robert; Holder, David

    2015-01-01

    Electrical impedance tomography (EIT) is a noninvasive imaging modality, where imperceptible currents are applied to the skin and the resulting surface voltages are measured. It has the potential to distinguish between ischaemic and haemorrhagic stroke with a portable and inexpensive device. The image reconstruction relies on an accurate forward model of the experimental setup. Because of the relatively small signal in stroke EIT, the finite-element modeling requires meshes of more than 10 million elements. To study the requirements in the forward modeling in EIT and also to reduce the time for experimental image acquisition, it is necessary to reduce the run time of the forward computation. We show the implementation of a parallel forward solver for EIT using the Dune-Fem C++ library and demonstrate its performance on many CPU's of a computer cluster. For a typical EIT application a direct solver was significantly slower and not an alternative to iterative solvers with multigrid preconditioning. With this new solver, we can compute the forward solutions and the Jacobian matrix of a typical EIT application with 30 electrodes on a 15-million element mesh in less than 15 min. This makes it a valuable tool for simulation studies and EIT applications with high precision requirements. It is freely available for download.

  2. A Novel Method for Monitoring Data Quality in Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Adler, Andy; Grychtol, Bartłomiej; Gaggero, Pascal; Justiz, Jörn; Koch, Volker; Mamatjan, Yasin

    2013-04-01

    Electrical impedance tomography (EIT) has the promise to help improve care for patients undergoing ventilation therapy by providing real-time bed-side information on the distribution of ventilation in their lungs. To realise this potential, it is important for an EIT system to provide a reliable and meaningful signal at all times, or alert clinicians when this is not possible. Because the reconstructed images in EIT are sensitive to system instabilities (including electrode connection problems) and artifacts caused by e.g. movement or sweat, there is a need for EIT systems to continuously monitor, recognize and, if possible, correct for such errors. Motivated by this requirement, our paper describes a novel approach to quantitatively measure EIT data quality suitable for online and offline applications. We used a publicly available data set of ventilation data from two pediatric patients with lung disease to evaluate the data quality on clinical data. Results suggest that the developed data quality could be a useful tool for real-time assessment of the quality of EIT data and, hence, to indicate the reliability of any derived physiological information.

  3. Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Lian, Zhijie; Wang, Jianming; Chen, Qingliang; Sun, Yukuan; Li, Xiuyan; Duan, Xiaojie; Cui, Ziqiang; Wang, Huaxiang

    2016-11-01

    Electrical impedance tomography (EIT) reconstruction is a nonlinear and ill-posed problem. Exact reconstruction of an EIT image inverts a high dimensional mathematical model to calculate the conductivity field, which causes significant problems regarding that the computational complexity will reduce the achievable frame rate, which is considered as a major advantage of EIT imaging. The single-step method, state estimation method, and projection method were always used to accelerate reconstruction process. The basic principle of these methods is to reduce computational complexity. However, maintaining high resolution in space together with not much cost is still challenging, especially for complex conductivity distribution. This study proposes an idea to accelerate image reconstruction of EIT based on compressive sensing (CS) theory, namely, CSEIT method. The novel CSEIT method reduces the sampling rate through minimizing redundancy in measurements, so that detailed information of reconstruction is not lost. In order to obtain sparse solution, which is the prior condition of signal recovery required by CS theory, a novel image reconstruction algorithm based on patch-based sparse representation is proposed. By applying the new framework of CSEIT, the data acquisition time, or the sampling rate, is reduced by more than two times, while the accuracy of reconstruction is significantly improved.

  4. Compressed sampling for boundary measurements in three-dimensional electrical impedance tomography.

    PubMed

    Javaherian, Ashkan; Soleimani, Manuchehr

    2013-09-01

    Electrical impedance tomography (EIT) utilizes electrodes on a medium's surface to produce measured data from which the conductivity distribution inside the medium is estimated. For the cases that relocation of electrodes is impractical or no a priori assumptions can be made to optimize the electrodes placement, a large number of electrodes may be needed to cover all possible imaging volume. This may occur in dynamically varying conductivity distribution in 3D EIT. Three-dimensional EIT then requires inverting very large linear systems to calculate the conductivity field, which causes significant problems regarding storage space and reconstruction time in addition to that data acquisition for a large number of electrodes will reduce the achievable frame rate, which is considered as major advantage of EIT imaging. This study proposes an idea to reduce the reconstruction complexity based on the well-known compressed sampling theory. By applying the so-called model-based CoSaMP algorithm to large size data collected by a 256 channel system, the size of forward operator and data acquisition time is reduced to those of a 32 channel system, while accuracy of reconstruction is significantly improved. The results demonstrate great capability of compressed sampling for overriding the challenges arising in 3D EIT.

  5. Visualization of the meridian of traditional Chinese medicine with electrical impedance tomography: An initial experience

    NASA Astrophysics Data System (ADS)

    Cao, Yanli; Lu, Xiaozuo; Wang, Xuemin

    2010-04-01

    The meridian is a concept central to traditional Chinese medical techniques such as acupuncture. There is no physically verifiable anatomical or histological basis for the existence of meridians. In Chinese medicine, the meridians are channels along which the energy of the psychological system is considered to flow. It has been proven that the resistance along the meridian channels is lower compared to other paths. Based on this knowledge, we proposed using electrical impedance tomography (EIT) to visualize the meridians of human being. A simplified three dimensional (3D) mathematical model of the forearm developed. Current was injected in the direction perpendicular to the cross-section where eight electrodes were equally placed around the surface of the forearm for the voltage measurements. The model was solved using Finite Element Method (FEM) and dynamic image was reconstructed using truncated singular value decomposition (TSVD) regularization method. The conductivity distributions were compared with different current injections, along the meridian channel and channels around respectively. We also conducted experiments on models and the meridians were shown in final reconstructed images.

  6. Electrical Impedance Monitoring of C2C12 Myoblast Differentiation on an Indium Tin Oxide Electrode

    PubMed Central

    Park, Ilhwan; Hong, Yeonhee; Jun, Young-Hoo; Lee, Ga-Yeon; Jun, Hee-Sook; Pyun, Jae-Chul; Choi, Jeong-Woo; Cho, Sungbo

    2016-01-01

    Electrical cell-substrate impedance sensing is increasingly being used for label-free and real-time monitoring of changes in cell morphology and number during cell growth, drug screening, and differentiation. In this study, we evaluated the feasibility of using ECIS to monitor C2C12 myoblast differentiation using a fabricated indium tin oxide (ITO) electrode-based chip. C2C12 myoblast differentiation on the ITO electrode was validated based on decreases in the mRNA level of MyoD and increases in the mRNA levels of myogenin and myosin heavy chain (MHC). Additionally, MHC expression and morphological changes in myoblasts differentiated on the ITO electrode were comparable to those in cells in the control culture dish. From the monitoring the integration of the resistance change at 21.5 kHz, the cell differentiation was label-free and real-time detectable in 30 h of differentiation (p < 0.05). PMID:27929401

  7. Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint.

    PubMed

    Cohen-Bacrie, C; Goussard, Y; Guardo, R

    1997-10-01

    This paper describes a new approach to reconstruction of the conductivity field in electrical impedance tomography. Our goal is to improve the tradeoff between the quality of the images and the numerical complexity of the reconstruction method. In order to reduce the computational load, we adopt a linearized approximation to the forward problem that describes the relationship between the unknown conductivity and the measurements. In this framework, we focus on finding a proper way to cope with the ill-posed nature of the problem, mainly caused by strong attenuation phenomena; this is done by devising regularization techniques well suited to this particular problem. First, we propose a solution which is based on Tikhonov regularization of the problem. Second, we introduce an original regularized reconstruction method in which the regularization matrix is determined by space-uniformization of the variance of the reconstructed condictivities. Both methods are nonsupervised, i.e., all tuning parameters are automatically determined from the measured data. Tests performed on simulated and real data indicate that Tikhonov regularization provides results similar to those obtained with iterative methods, but with a much smaller amount of computations. Regularization using a variance uniformization constraint yields further improvements, particularly in the central region of the unknown object where attenuation is most severe. We anticipate that the variance uniformization approach could be adapted to iterative methods that preserve the nonlinearity of the forward problem. More generally, it appears as a useful tool for solving other severely ill-posed reconstruction problems such as eddy current tomography.

  8. Optimizing electrical impedance myography of the tongue in amyotrophic lateral sclerosis.

    PubMed

    Mcilduff, Courtney E; Yim, Sung J; Pacheck, Adam K; Rutkove, Seward B

    2017-04-01

    Electrical impedance myography (EIM) can quantify muscle health at a range of frequencies, including that most commonly employed, 50 kHz. However, disease-related changes in EIM data suggest the distinction between normal and patient EIM values could be more apparent at frequencies of >50 kHz. We investigated at what other selected frequencies tongue EIM may differentiate healthy individuals and amyotrophic lateral sclerosis (ALS) patients, remain reliable, and correlate with a standard metric of bulbar function. Tongue EIM phase data from 30 volunteers and 11 ALS patients were analyzed at 6 discrete frequencies from 50 to 500 kHz. Of the frequencies assessed, EIM demonstrated maximal separation and reliability at 100 kHz, where phase value was also significantly correlated with the bulbar subscore on the revised version of the ALS Functional Rating Scale. One hundred kilohertz could serve as an optimal frequency at which to measure EIM phase values of the tongue in ALS. Muscle Nerve 55: 539-543, 2017. © 2016 Wiley Periodicals, Inc.

  9. Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Shah, Pratikkumar; Narayanan, Tharangattu N.; Li, Chen-Zhong; Alwarappan, Subbiah

    2015-08-01

    Transition metal dichalgogenides such as MoS2 have recently emerged as hot two-dimensional (2D) materials due to their superior electronic and catalytic properties. Recently, we have reported the usefulness of MoS2 nanosheets toward the electrochemical detection of neurotransmitters and glucose (Narayanan et al 2014 Nanotechnology 25 335702). Furthermore, there are reports available in the literature that demonstrate the usefulness of MoS2 nanosheets for biosensing and energy storage applications (Zhu et al 2013 J. Am. Chem. Soc. 135 5998-6001 Pumera and Loo 2014 Trends Anal. Chem. 61 49-53 Lee et al 2014 Sci. Rep. 4 7352; Stephenson et al 2014 Energy Environ. Sci. 7 209-31). Understanding the cytotoxic effect of any material is very important prior to employing them for any in vivo biological applications such as implantable sensors, chips, or carriers for drug delivery and cell imaging purposes. Herein, we report the cytotoxicity of the MoS2 nanosheets based on the cytotoxic assay results and electrical impedance analysis using rat pheochromocytoma cells (PC12) and rat adrenal medulla endothelial cells (RAMEC). Our results indicated that the MoS2 nanosheets synthesized in our work are safe 2D nanosheets for futuristic biomedical applications.

  10. Electrical impedance myography for the assessment of children with muscular dystrophy: a preliminary study

    NASA Astrophysics Data System (ADS)

    Rutkove, S. B.; Darras, B. T.

    2013-04-01

    Electrical impedance myography (EIM) provides a non-invasive approach for quantifying the severity of neuromuscular disease. Here we determine how well EIM data correlates to functional and ultrasound (US) measures of disease in children with Duchenne muscular dystrophy (DMD) and healthy subjects. Thirteen healthy boys, aged 2-12 years and 14 boys with DMD aged 4-12 years underwent both EIM and US measurements of deltoid, biceps, wrist flexors, quadriceps, tibialis anterior, and medial gastrocnemius. EIM measurements were performed with a custom-designed probe using a commercial multifrequency bioimpedance device. US luminosity data were quantified using a gray-scale analysis approach. Children also underwent the 6-minute walk test, timed tests and strength measurements. EIM and US data were combined across muscles. EIM 50 kHz phase was able to discriminate DMD children from healthy subjects with 98% accuracy. In the DMD patients, average EIM phase measurements also correlated well with standard functional measures. For example the 50 kHz phase correlated with the Northstar Ambulatory Assessment test (R = 0.83, p = 0.02). EIM 50 kHz phase and US correlated as well, with R = -0.79 (p < 0.001). These results show that EIM provides valuable objective measures Duchenne muscular dystrophy severity.

  11. Electrical Impedance Tomography for pulmonary oedema extent monitoring: review and updated design

    NASA Astrophysics Data System (ADS)

    Santos, Eduardo; Simini, Franco

    2012-12-01

    Monitoring pulmonary oedema would be greatly facilitated by the availability of a graphical representation of its size and density to guide therapeutic interventions. Currently the clinician has only indirect estimations because X-ray imaging or computed tomography can not be repeated often. To avoid the transfer of critically ill patients and to have continuous information Electrical Impedance Tomography (EIT) is suggested. Circuit designs for EIT are reviewed, including wave generators, current sources, differential amplifiers, synchronous voltmeters, multiplexers and control modules. Nine designs are studied, the characteristics of five of them are presented (UK 2005, Uruguay 2002, Iran 2006, China 2007 and Switzerland 2012). Three different solutions are compared (components cost range from) and an optimal design is proposed which includes a direct digital synthesizer (DDS) for signal generation, a modified Howland configuration for current source, 16 bits for the analog to digital conversion, and a digital signal processor (DSP) for the synchronous demodulation as well as to process the measurements for the reconstruction algorithm. This allows us to design low cost, gross graphical representations for oedema extent monitoring, with little anatomical accuracy.

  12. Process techniques for human thoracic electrical bio-impedance signal in remote healthcare systems.

    PubMed

    Rahman, Muhammad Zia Ur; Mirza, Shafi Shahsavar

    2016-06-01

    Analysis of thoracic electrical bio-impedance (TEB) facilitates heart stroke volume in sudden cardiac arrest. This Letter proposes several efficient and computationally simplified adaptive algorithms to display high-resolution TEB component. In a clinical environment, TEB signal encounters with various physiological and non-physiological phenomenon, which masks the tiny features that are important in identifying the intensity of the stroke. Moreover, computational complexity is an important parameter in a modern wearable healthcare monitoring tool. Hence, in this Letter, the authors propose a new signal conditioning technique for TEB enhancement in remote healthcare systems. For this, the authors have chosen higher order adaptive filter as a basic element in the process of TEB. To improve filtering capability, convergence speed, to reduce computational complexity of the signal conditioning technique, the authors apply data normalisation and clipping the data regressor. The proposed implementations are tested on real TEB signals. Finally, simulation results confirm that proposed regressor clipped normalised higher order filter is suitable for a practical healthcare system.

  13. A shape-based quality evaluation and reconstruction method for electrical impedance tomography.

    PubMed

    Antink, Christoph Hoog; Pikkemaat, Robert; Malmivuo, Jaakko; Leonhardt, Steffen

    2015-06-01

    Linear methods of reconstruction play an important role in medical electrical impedance tomography (EIT) and there is a wide variety of algorithms based on several assumptions. With the Graz consensus reconstruction algorithm for EIT (GREIT), a novel linear reconstruction algorithm as well as a standardized framework for evaluating and comparing methods of reconstruction were introduced that found widespread acceptance in the community. In this paper, we propose a two-sided extension of this concept by first introducing a novel method of evaluation. Instead of being based on point-shaped resistivity distributions, we use 2759 pairs of real lung shapes for evaluation that were automatically segmented from human CT data. Necessarily, the figures of merit defined in GREIT were adjusted. Second, a linear method of reconstruction that uses orthonormal eigenimages as training data and a tunable desired point spread function are proposed. Using our novel method of evaluation, this approach is compared to the classical point-shaped approach. Results show that most figures of merit improve with the use of eigenimages as training data. Moreover, the possibility of tuning the reconstruction by modifying the desired point spread function is shown. Finally, the reconstruction of real EIT data shows that higher contrasts and fewer artifacts can be achieved in ventilation- and perfusion-related images.

  14. Bipolar current injection methods for electrical impedance tomography: a comparative study

    NASA Astrophysics Data System (ADS)

    Alex, Anitha; Ramasubba Reddy, M.

    2017-03-01

    A comparative study of different bipolar current injection methods viz. Adjacent method, Cross method and Opposite method used in Electrical Impedance Tomography(EIT) is reported in this paper. Different electrode configurations are considered for current injection and voltage measurement to identify the one which yields better signal strength. Sensitivity of different current injection methods to inhomogeneity at different locations is examined. The effect of conductivity contrast on boundary voltages is studied by varying the conductivity of the inhomogeneity from 0.01mS/cm to 9.1mS/cm. Ill-posedness of the inverse problem is analyzed in terms of condition number for the aforementioned methods. Reconstruction of two closely placed inhomogeneities is done using Levenberg Marquardt method for different current injection methods to compare the resolution and corresponding error voltage is determined. Experiments are conducted using agar phantoms to validate some of the results obtained from the simulations. Based on the simulation studies and experimental validations, cross method is found to be the optimal current injection method to attain better data acquisition and image reconstruction.

  15. Evaluation and real-time monitoring of data quality in electrical impedance tomography.

    PubMed

    Mamatjan, Yasin; Grychtol, Bartlomiej; Gaggero, Pascal; Justiz, Jorn; Koch, Volker M; Adler, Andy

    2013-11-01

    Electrical impedance tomography (EIT) is a noninvasive method to image conductivity distributions within a body. One promising application of EIT is to monitor ventilation in patients as a real-time bedside tool. Thus, it is essential that an EIT system reliably provide meaningful information, or alert clinicians when this is impossible. Because the reconstructed images are very sensitive to system instabilities (primarily from electrode connection variability and movement), EIT systems should continuously monitor and, if possible, correct for such errors. Motivated by this requirement, we describe a novel approach to quantitatively measure EIT data quality. Our goals are to define the requirements of a data quality metric, develop a metric q which meets these requirements, and an efficient way to calculate it. The developed metric q was validated using data from saline tank experiments and a retrospective clinical study. Additionally, we show that q may be used to compare the performance of EIT systems using phantom measurements. Results suggest that the calculated metric reflects well the quality of reconstructed EIT images for both phantom and clinical data. The proposed measure can thus be used for real-time assessment of EIT data quality and, hence, to indicate the reliability of any derived physiological information.

  16. Parametric electrical impedance tomography for measuring bone mineral density in the pelvis using a computational model.

    PubMed

    Kimel-Naor, Shani; Abboud, Shimon; Arad, Marina

    2016-08-01

    Osteoporosis is defined as bone microstructure deterioration resulting a decrease of bone's strength. Measured bone mineral density (BMD) constitutes the main tool for Osteoporosis diagnosis, management, and defines patient's fracture risk. In the present study, parametric electrical impedance tomography (pEIT) method was examined for monitoring BMD, using a computerized simulation model and preliminary real measurements. A numerical solver was developed to simulate surface potentials measured over a 3D computerized pelvis model. Varying cortical and cancellous BMD were simulated by changing bone conductivity and permittivity. Up to 35% and 16% change was found in the real and imaginary modules of the calculated potential, respectively, while BMD changes from 100% (normal) to 60% (Osteoporosis). Negligible BMD relative error was obtained with SNR>60 [dB]. Position changes errors indicate that for long term monitoring, measurement should be taken at the same geometrical configuration with great accuracy. The numerical simulations were compared to actual measurements that were acquired from a healthy male subject using a five electrodes belt bioimpedance device. The results suggest that pEIT may provide an inexpensive easy to use tool for frequent monitoring BMD in small clinics during pharmacological treatment, as a complementary method to DEXA test.

  17. A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography.

    PubMed

    Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji

    2016-11-16

    In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point.

  18. Ramp-preserving denoising for conductivity image reconstruction in magnetic resonance electrical impedance tomography.

    PubMed

    Lee, Chang-Ock; Jeon, Kiwan; Ahn, Seonmin; Kim, Hyung Joong; Woo, Eung Je

    2011-07-01

    In magnetic resonance electrical impedance tomography, among several conductivity image reconstruction algorithms, the harmonic B(z) algorithm has been successfully applied to B(z) data from phantoms and animals. The algorithm is, however, sensitive to measurement noise in B(z) data. Especially, in in vivo animal and human experiments where injection current amplitudes are limited within a few milliampere at most, measured B(z) data tend to have a low SNR. In addition, magnetic resonance (MR) signal void in outer layers of bones and gas-filled organs, for example, produces salt-pepper noise in the MR phase and, consequently, B(z) images. The B(z) images typically present areas of sloped transitions, which can be assimilated to ramps. Conductivity contrasts change ramp slopes in B(z) images and it is critical to preserve positions of those ramps to correctly recover edges in conductivity images. In this paper, we propose a ramp-preserving denoising method utilizing a structure tensor. Using an eigenvalue analysis, we identified local regions of salt-pepper noise. Outside the identified local regions, we applied an anisotropic smoothing to reduce noise while preserving their ramp structures. Inside the local regions of salt-pepper noise, we used an isotropic smoothing. After validating the proposed denoising method through numerical simulations, we applied it to in vivo animal imaging experiments. Both numerical simulation and experimental results show significant improvements in the quality of reconstructed conductivity images. © 2011 IEEE

  19. Measuring The Electric Properties of Planetary Surface Materials With Mutual Impedance (mi) Probes

    NASA Astrophysics Data System (ADS)

    Trautner, R.; Grard, R.

    Mutual Impedance Probes have been developed for a number of ongoing space mis- sions. The HASI/PWA MI probe will determine the electric properties of the atmo- sphere and surface of Saturn's largest moon, Titan, in 2004. The Permittivity Probe of the SESAME instrument package on the Rosetta Lander will attempt to measure the conductivity and permittivity of the cometary surface material. While both instruments have similar objectives, their architecture (design and integration into the spacecraft, electrode geometry) and properties (measurement range and precision) differ signif- icantly. The main features of the Huygens PWA and Rosetta Lander SESAME MI probes are first recapitulated and their expected performances are assessed. A new MI probe prototype employing a linear electrode array for application on mobile platforms or penetrator devices is then described. Results from a recent field test campaign in the Australian desert are presented and the prototype performance is evaluated. New application areas for future MI probes and relevant technology requirements are dis- cussed.

  20. Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution?

    PubMed

    Frerichs, Inéz; Dargaville, Peter A; Dudykevych, Taras; Rimensberger, Peter C

    2003-12-01

    To demonstrate the monitoring capacity of modern electrical impedance tomography (EIT) as an indicator of regional lung aeration and tidal volume distribution. Short-term ventilation experiment in an animal research laboratory. One newborn piglet (body weight: 2 kg). Surfactant depletion by repeated bronchoalveolar lavage, surfactant administration. EIT scanning was performed at an acquisition rate of 13 images/s during two ventilatory manoeuvres performed before and after surfactant administration. During the scanning periods of 120 s the piglet was ventilated with a tidal volume of 10 ml/kg at positive end-expiratory pressures (PEEP) in the range of 0-30 cmH(2)O, increasing and decreasing in 5 cmH(2)O steps. Local changes in aeration and ventilation with PEEP were visualised by EIT scans showing the regional shifts in end-expiratory lung volume and distribution of tidal volume, respectively. In selected regions of interest EIT clearly identified the changes in local aeration and tidal volume distribution over time and after surfactant treatment as well as the differences between stepwise inflation and deflation. Our data indicate that modern EIT devices provide an assessment of regional lung aeration and tidal volume and allow evaluation of immediate effects of a change in ventilation or other therapeutic intervention. Future use of EIT in a clinical setting is expected to optimise the selection of appropriate ventilation strategies.

  1. Effect of Applying Force to Self-Adhesive Electrodes on Transthoracic Impedance: Implications for Electrical Cardioversion.

    PubMed

    Ramirez, F Daniel; Fiset, Sandra L; Cleland, Mark J; Zakutney, Timothy J; Nery, Pablo B; Nair, Girish M; Redpath, Calum J; Sadek, Mouhannad M; Birnie, David H

    2016-10-01

    Current guidelines disagree on the role for applying force to electrodes during electrical cardioversion (ECV) for atrial fibrillation, particularly when using self-adhesive pads. We evaluated the impact of this practice on transthoracic impedance (TTI) with varying force and in individuals with differing body mass indices (BMI). We additionally assessed whether specific prompts could improve physicians' ECV technique. The study comprised three parts: (1) TTI was measured in 11 participants throughout the respiratory cycle and with variable force applied to self-adhesive electrodes in anteroposterior (AP) and anterolateral (AL) configurations. (2) Three participants in different BMI classes then had TTI measured with prespecified incremental force applied. (3) Ten blinded cardiology trainees simulated ECV on one participant with and without prompting (guideline reminders and force analogies) while force applied and TTI were measured. The AP approach was associated with 13% lower TTI than AL (P < 0.001). Strongly negative correlations were observed between force applied and TTI in the AL position, irrespective of BMI (P ≤ 0.003). In all cases, 80% of the total reduction in TTI observed was achieved with 8 kg-force (∼80 N). All prompts resulted in significantly greater force applied and modest reductions in TTI. Applying force to self-adhesive electrodes reduces TTI and should be considered as a means of improving ECV success. Numerically greater mean force applied with a "push-up" force analogy suggests that "concrete" cues may be useful in improving ECV technique. © 2016 Wiley Periodicals, Inc.

  2. Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography.

    PubMed

    Nissinen, Antti; Kolehmainen, Ville Petteri; Kaipio, Jari P

    2011-02-01

    Electrical impedance tomography is a highly unstable problem with respect to measurement and modeling errors. This instability is especially severe when absolute imaging is considered. With clinical measurements, accurate knowledge about the body shape is usually not available, and therefore an approximate model domain has to be used in the computational model. It has earlier been shown that large reconstruction artefacts result if the geometry of the model domain is incorrect. In this paper, we adapt the so-called approximation error approach to compensate for the modeling errors caused by inaccurately known body shape. This approach has previously been shown to be applicable to a variety of modeling errors, such as coarse discretization in the numerical approximation of the forward model and domain truncation. We evaluate the approach with a simulated example of thorax imaging, and also with experimental data from a laboratory setting, with absolute imaging considered in both cases. We show that the related modeling errors can be efficiently compensated for by the approximation error approach. We also show that recovery from simultaneous discretization related errors is feasible, allowing the use of computationally efficient reduced order models.

  3. The Bayesian approximation error approach for electrical impedance tomography—experimental results

    NASA Astrophysics Data System (ADS)

    Nissinen, A.; Heikkinen, L. M.; Kaipio, J. P.

    2008-01-01

    Inverse problems can be characterized as problems that tolerate measurement and modelling errors poorly. While the measurement error issue has been widely considered as a solved problem, the modelling errors have remained largely untreated. The approximation and modelling errors can, however, be argued to dominate the measurement errors in most applications. There are several applications in which the temporal and memory requirements dictate that the computational complexity of the forward solver be radically reduced. For example, in process tomography the reconstructions have to be carried out typically in a few tens of milliseconds. Recently, a Bayesian approach for the treatment of approximation and modelling errors for inverse problems has been proposed. This approach has proven to work well in several classes of problems, but the approach has not been verified in any problem with real data. In this paper, we study two different types of modelling errors in the case of electrical impedance tomography: one related to model reduction and one concerning partially unknown geometry. We show that the approach is also feasible in practice and may facilitate the reduction of the computational complexity of the nonlinear EIT problem at least by an order of magnitude.

  4. Real time three-dimensional electrical impedance tomography applied in multiphase flow imaging

    NASA Astrophysics Data System (ADS)

    Heikkinen, L. M.; Kourunen, J.; Savolainen, T.; Vauhkonen, P. J.; Kaipio, J. P.; Vauhkonen, M.

    2006-08-01

    In many industrial applications the aim is to obtain information on three-dimensional (3D) material distribution within the process vessels. With standard two-dimensional (2D) techniques only vague cross-sectional information can be obtained. It could be possible to carry out several 2D reconstructions on different layers and in this way to obtain 3D information. However, in this approach errors are induced since no real 3D information is utilized in the image reconstruction. In this paper we describe an approach to measure, reconstruct and visualize three-dimensional electrical impedance tomography images in real time. The reconstruction is based on a difference imaging scheme. An efficient current injection and voltage measurement protocol is used in order to increase the sensitivity and reduce the data collection time. The proposed approach can produce and visualize up to 15 3D EIT images per second when 80 measurement electrodes are used. Imaging results from a stirred vessel and a flow loop will be shown. The reconstructions show, for example, that 3D air/liquid distribution in the stirred vessel can reliably be visualized in real time and material flow can be monitored in a 3D section of the flow loop. Reconstructions can be visualized and analysed in many different ways in order to produce essential information on the behaviour of the processes.

  5. On the influence of spread constant in radial basis networks for electrical impedance tomography.

    PubMed

    Martin, Sébastien; Choi, Charles T M

    2016-06-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technique. The main task of this work is to solve a non-linear inverse problem, for which several techniques have been suggested, but none of which gives a very high degree of accuracy. This paper introduces a novel approach, based on radial basis function (RBF) artificial neural networks (ANNs), to solve this problem, and uses several ANNs to obtain the best solution to the EIT inverse problem. ANNs have the potential to directly estimate the solution of the inverse problem with a high degree of accuracy. While different radial basis neural networks do not always perform well on different problems, they usually give good results on some specific problems. This paper evidences a strong correlation between the area of the target and the spread constant of the RBF network that gives the best reconstruction. A solution to automatically estimate the size of the target and pick the best neural network directly from voltage measurements is presented, making the reconstruction process automatic. By automatically selecting the best ANN for each specific set of voltage measurements, the proposed solution gives a more accurate reconstruction of both small and large targets.

  6. An implantable left ventricular assist system with an electrical impedance monitoring and control system.

    PubMed

    Nakatani, T; Anai, H; Taenaka, Y; Akagi, H; Masuzawa, T; Baba, Y; Sakaki, M; Araki, K; Inoue, K; Matsuo, Y

    1993-01-01

    The authors developed an implantable left ventricular assist system (LVAS) for bridge to transplant of rather small sized adults. The pump was made of segmented polyether polyurethane and was 86 mm in diameter, 50 mm in height, with a 70 ml nominal stroke volume. A percutaneous drive line was connected with an external pneumatic control drive unit (CDU). In chronic animal experiments using 11 adult goats, the pump was installed between the LV apex and the descending aorta and was placed in the abdominal wall. Five goats were killed after 4 to 14 weeks while in good physical condition, and one is ongoing. There were no prominent thromboembolic symptoms despite no anti-thrombogenic agent being used. The new electrical impedance-based monitoring and control system (Z system) was installed in the CDU. In this Z system, automatic calibration was performed periodically for several seconds while the drive condition was changed to ensure full-fill of the blood pump. The full-fill to full-empty drive was well controlled by this Z system. In conclusion, the new Z system is practical and useful for monitoring and control of an implantable pump, giving this LVAS a promising place in clinical use.

  7. The Effect of Subcutaneous Fat on Electrical Impedance Myography: Electrode Configuration and Multi-Frequency Analyses

    PubMed Central

    Li, Le; Li, Xiaoyan; Hu, Huijing; Shin, Henry

    2016-01-01

    This study investigates the impact of the subcutaneous fat layer (SFL) thickness on localized electrical impedance myography (EIM), as well as the effects of different current electrodes, varying in distance and direction, on EIM output. Twenty-three healthy subjects underwent localized multi-frequency EIM on their biceps brachii muscles with a hand-held electrode array. The EIM measurements were recorded under three different configurations: wide (or outer) longitudinal configuration 6.8 cm, narrow (or inner) longitudinal configuration 4.5 cm, and narrow transverse configuration 4.5 cm. Ultrasound was applied to measure the SFL thickness. Coefficients of determination (R2) of three EIM variables (resistance, reactance, and phase) and SFL thickness were calculated. For the longitudinal configuration, the wide distance could reduce the effects of the subcutaneous fat when compared with the narrow distance, but a significant correlation still remained for all three EIM parameters. However, there was no significant correlation between SFL thickness and reactance in the transverse configuration (R2 = 0.0294, p = 0.434). Utilizing a ratio of 50kHz/100kHz phase was found to be able to help reduce the correlation with SFL thickness for all the three configurations. The findings indicate that the appropriate selection of the current electrode distance, direction and the multi-frequency phase ratio can reduce the impact of subcutaneous fat on EIM. These settings should be evaluated for future clinical studies using hand-held localized arrays to perform EIM. PMID:27227876

  8. Ultrasound guided electrical impedance tomography for 2D free-interface reconstruction

    NASA Astrophysics Data System (ADS)

    Liang, Guanghui; Ren, Shangjie; Dong, Feng

    2017-07-01

    The free-interface detection problem is normally seen in industrial or biological processes. Electrical impedance tomography (EIT) is a non-invasive technique with advantages of high-speed and low cost, and is a promising solution for free-interface detection problems. However, due to the ill-posed and nonlinear characteristics, the spatial resolution of EIT is low. To deal with the issue, an ultrasound guided EIT is proposed to directly reconstruct the geometric configuration of the target free-interface. In the method, the position of the central point of the target interface is measured by a pair of ultrasound transducers mounted at the opposite side of the objective domain, and then the position measurement is used as the prior information for guiding the EIT-based free-interface reconstruction. During the process, a constrained least squares framework is used to fuse the information from different measurement modalities, and the Lagrange multiplier-based Levenberg-Marquardt method is adopted to provide the iterative solution of the constraint optimization problem. The numerical results show that the proposed ultrasound guided EIT method for the free-interface reconstruction is more accurate than the single modality method, especially when the number of valid electrodes is limited.

  9. A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography

    PubMed Central

    Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji

    2016-01-01

    In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point. PMID:27854325

  10. A Local Region of Interest Imaging Method for Electrical Impedance Tomography with Internal Electrodes

    PubMed Central

    Kwon, Hyeuknam; McEwan, Alistair L.; Oh, Tong In; Farooq, Adnan; Woo, Eung Je

    2013-01-01

    Electrical Impedance Tomography (EIT) is a very attractive functional imaging method despite the low sensitivity and resolution. The use of internal electrodes with the conventional reconstruction algorithms was not enough to enhance image resolution and accuracy in the region of interest (ROI). We propose a local ROI imaging method with internal electrodes developed from careful analysis of the sensitivity matrix that is designed to reduce the sensitivity of the voxels outside the local region and optimize the sensitivity of the voxel inside the local region. We perform numerical simulations and physical measurements to demonstrate the localized EIT imaging method. In preliminary results with multiple objects we show the benefits of using an internal electrode and the improved resolution due to the local ROI image reconstruction method. The sensitivity is further increased by allowing the surface electrodes to be unevenly spaced with a higher density of surface electrodes near the ROI. Also, we analyse how much the image quality is improved using several performance parameters for comparison. While these have not yet been studied in depth, it convincingly shows an improvement in local sensitivity in images obtained with an internal electrode in comparison to a standard reconstruction method. PMID:23935705

  11. Direct inversion from partial-boundary data in electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Hauptmann, Andreas; Santacesaria, Matteo; Siltanen, Samuli

    2017-02-01

    In electrical impedance tomography (EIT) one wants to image the conductivity distribution of a body from current and voltage measurements carried out on its boundary. In this paper we consider the underlying mathematical model, the inverse conductivity problem, in two dimensions and under the realistic assumption that only a part of the boundary is accessible to measurements. In this framework our data are modeled as a partial Neumann-to-Dirichlet map (ND map). We compare this data to the full-boundary ND map and prove that the error depends linearly on the size of the missing part of the boundary. The same linear dependence is further proved for the difference of the reconstructed conductivities—from partial and full boundary data. The reconstruction is based on a truncated and linearized D-bar method. Auxiliary results include an extrapolation method to estimate the full-boundary data from the measured one, an approximation of the complex geometrical optics solutions computed directly from the ND map as well as an approximate scattering transform for reconstructing the conductivity. Numerical verification of the convergence results and reconstructions are presented for simulated test cases.

  12. Ex vivo characterization of age-associated impedance changes of single vascular endothelial cells using micro electrical impedance spectroscopy with a cell trap.

    PubMed

    Park, Yangkyu; Cha, Jung-Joon; Seo, Seungwan; Yun, Joho; Woo Kim, Hyeon; Park, Changju; Gang, Giseok; Lim, Juhun; Lee, Jong-Hyun

    2016-01-01

    We aimed to characterize aging of single vascular endothelial cells, which are indicators of senescence, using micro electrical impedance spectroscopy (μEIS) for the first time. The proposed μEIS was equipped with two barriers under the membrane actuator near the sensing electrodes, increasing its cell-trapping capability and minimizing the interference between the target cell and subsequent cells. The cell-trapping capability in μEIS with barriers was considerably improved (90%) with a capture time of 5 s or less, compared to μEIS without barriers (30%). Cells were extracted from transgenic zebrafish to minimize an initial discrepancy originating from genetic differences. In order to estimate useful parameters, cytoplasm resistance and membrane capacitance were estimated by fitting an electrical equivalent circuit to the data of ex vivo sensor output. The estimated cytoplasm resistance and membrane capacitance in the younger vascular endothelial cells were 20.16 ± 0.79 kΩ and 17.46 ± 0.76 pF, respectively, whereas those in the older cells were 17.81 ± 0.98 kΩ and 20.08 ± 1.38 pF, respectively. Discrimination of each group with different aging showed statistical significance in terms of cytoplasm resistance (p < 0.001) and membrane capacitance (p < 0.001). Considering both of the sensor and cellular level, the optimal frequency was determined as 1 MHz at which the electrical impedance of each group was clearly discriminated (p < 0.001).

  13. A feasibility study for evaluation of mechanical properties of articular cartilage with a two-electrode electrical impedance method.

    PubMed

    Morita, Yusuke; Kondo, Hideo; Tomita, Naohide; Suzuki, Shigehiko

    2012-05-01

    Since articular cartilage has important mechanical properties such as load-bearing, shock absorption and lubrication for activities in daily life, it is important to evaluate the mechanical properties of repaired cartilage in terms of whether those properties are the same as those of natural cartilage. The purpose of this study was to investigate the effectiveness of an electrical impedance method for quantitatively measuring the mechanical properties of cartilage. Cartilage specimens were harvested from porcine knee joint, and two kinds of enzyme-treated cartilages were prepared to investigate the correlation between mechanical and electrical properties resulting from changes in the structure of the extracellular matrix. Collagenase solution and hyaluronidase solution were used to digest the collagen fibril and proteoglycan, respectively. Electrical impedance measurement, indentation test and biochemical analysis were carried out for the enzyme-treated cartilages. The water content increased with enzyme treatment time, and the permeability of the treated cartilages increased with decreasing glycosaminoglycan content for both types of enzyme-treated cartilages. The aggregate modulus and the electrical resistivity for both types of enzyme-treated cartilages decreased with increasing permeability after 12-h treatment. The aggregate modulus and the electrical resistivity for both types of treated cartilages decreased with increasing water content and permeability after 24-h treatment. The electrical resistivity and the aggregate modulus of articular cartilage depended not only on the water content, but also on the permeability, and the electrical resistivity for both types of enzyme-treated cartilages was found to be significantly linearly correlated with the aggregate modulus. These results showed that the aggregate modulus of articular cartilage can be estimated by measuring its electrical impedance.

  14. Lumped Element Electrical Model based on Three Resistors for Electrical Impedance in Radiofrequency Cardiac Ablation: Estimations from Analytical Calculations and Clinical Data

    PubMed Central

    Berjano, Enrique; d'Avila, Andre

    2013-01-01

    The electrical impedance measured during radiofrequency cardiac ablation (RFCA) is widely used in clinical studies to predict the heating evolution and hence the success of the procedure. We hypothesized that a model based on three resistors in series can mimic the total electrical impedance measured during RFCA. The three resistors or impedances are given by: impedance associated with the tissue around the active electrode (myocardium and circulating blood) (Z-A), that associated with the tissue around the dispersive electrode (Z-DE) and that associated with the rest of the body (Z-B). Our objective was to quantify the values associated with these three impedance types by an analytical method, after which the values obtained would be compared to those estimated from clinical data from previous studies. The results suggest that an RFCA using a 7 Fr 4-mm electrode would give a Z-A of around 75 ohms, a Z-DE around 20 ohms, and Z-B would be 15±10 ohms (for body surface area variations between 1.5 and 2.5 m^2). Finally, adaptations of the proposed model were used to explain the results of previous clinical studies using a different electrode arrangement, such as in bipolar ablation of the ventricular septum. PMID:23961299

  15. The Use of Electrical Impedance to Identify Intraneural Needle Placement in Human Peripheral Nerves: A Study on Amputated Human Limbs.

    PubMed

    Vydyanathan, Amaresh; Kosharskyy, Boleslav; Nair, Singh; Gritsenko, Karina; Kim, Ryung S; Wang, Dan; Shaparin, Naum

    2016-07-01

    Even as the use of peripheral nerve blockade in the perioperative setting is increasing, neural injury secondary to accidental intraneural injection remains a significant patient safety concern. Current modalities, including electrical stimulation and ultrasound imaging, still lack consistency and absolute reliability in both the detection and prevention of this complication. The measurement of electrical impedance (EI) could be an easy and valuable additional tool to detect intraneural needle placement. Our objectives in this study were to measure the change in EI with intraneural needle advancement in recently amputated human limbs. The study was conducted within 45 minutes of amputation. The nerves that were studied were the sciatic nerve in the popliteal fossa in above-knee amputations or the tibial nerve below the calf in below-knee amputations. The amputated limb was placed on a tray and under ultrasound imaging guidance, an insulated peripheral block needle connected to a nerve stimulator was placed extraneurally and subsequently advanced intraneurally. The experiment was repeated on the same nerve after exposure by surgical dissection. The differences in impedance measurements between intraneural and extraneural needle placement were compared. In the below-knee amputated extremity (tibial nerve, n = 6) specimens based on the ultrasound methods, mean ± SD for ultrasound-guided intraneural impedance was 10 ± 2 kΩ compared with an extraneural impedance of 6 ± 1.6 kΩ (P = 0.005). The difference between intraneural and extraneural impedance after open dissection was also significant when we repeated the analysis based on the same specimens (P = 0.005). Similarly, in the above-the-knee amputated extremity (sciatic nerve, n = 5) specimens, mean intraneural impedance was 35.2 ± 7.9 kΩ compared with an extraneural impedance of 25.2 ± 5.3 kΩ (P = 0.037). The difference between intraneural and extraneural impedance obtained after open dissection was also

  16. Current threshold for nerve stimulation depends on electrical impedance of the tissue: a study of ultrasound-guided electrical nerve stimulation of the median nerve.

    PubMed

    Sauter, Axel R; Dodgson, Michael S; Kalvøy, Håvard; Grimnes, Sverre; Stubhaug, Audun; Klaastad, Oivind

    2009-04-01

    Understanding the mechanisms causing variation in current thresholds for electrical nerve stimulation may improve the safety and success rate of peripheral nerve blocks. Electrical impedance of the tissue surrounding a nerve may affect the response to nerve stimulation. In this volunteer study, we investigated the relationship between impedance and current threshold needed to obtain a neuromuscular response. Electrical nerve stimulation and impedance measurements were performed for the median nerve in the axilla and at the elbow in 29 volunteers. The needletip was positioned at a distance of 5, 2.5, and 0 mm from the nerve as judged by ultrasound. Impulse widths of 0.1 and 0.3 ms were used for nerve stimulation. A significant inverse relationship between impedance and current threshold was found at the elbow, at nerve-to-needle distances of 5 and 2.5 mm (P = 0.001 and P = 0.036). Impedance values were significantly lower in the axilla (mean 21.1, sd 9.7 kohm) than at the elbow (mean 36.6, sd 13.4 kohm) (P < 0.001). Conversely, current thresholds for nerve stimulation were significantly higher in the axilla than at the elbow (P < 0.001, P < 0.001, P = 0.024). A mean ratio of 1.82 was found for the measurements of current thresholds with 0.1 versus 0.3 ms impulse duration. Our results demonstrate an inverse relationship between impedance measurements and current thresholds and suggest that current settings used for nerve stimulation may require adjustment based on the tissue type. Further studies should be performed to investigate the clinical impact of our findings.

  17. Time course of electrical impedance during red blood cell aggregation in a glass tube: comparison with light transmittance.

    PubMed

    Baskurt, Oguz K; Uyuklu, Mehmet; Meiselman, Herbert J

    2010-04-01

    Red blood cells (RBC) in normal human blood undergo reversible aggregation at low flow or stasis. The extent and kinetics of this phenomenon have been studied using various optical and electrical methods, yet results using such methods are not always in concordance. This study employed a horizontal glass tube in which blood flow could be established, then abruptly stopped. Normal blood and RBC suspensions with enhanced or decreased aggregation were studied. Light transmittance (LT) and electrical impedance at 100 kHz were recorded during high-shear flow and for 120 s after flow was abruptly stopped during which RBC aggregation occurs. Capacitance values were also obtained based on the imaginary part of impedance data and recorded. Various aggregation parameters were calculated, using the time course of LT, impedance, and capacitance, then compared with each other and with results from laboratory aggregometers. RBC aggregation parameters were calculated, using the time course of impedance data often failed to correlate with known changes of aggregation, even reporting aggregation for cells in nonaggregating media (i.e., RBC in buffered saline). Alternatively, RBC aggregation parameters based upon the time course of capacitance data are in general agreement with those derived from LT data and with RBC aggregation indexes, measured using commercial instruments.

  18. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.

    PubMed

    Justin, Gusphyl; Nasir, Mansoor; Ligler, Frances S

    2011-05-01

    A four-electrode impedance-based microfluidic device has been designed with tunable sensitivity for future applications to the detection of pathogens and functionalized microparticles specifically bound to molecular recognition molecules on the surface of a microfluidic channel. In order to achieve tunable sensitivity, hydrodynamic focusing was employed to confine the electric current by simultaneous introduction of two fluids (high- and low-conductivity solutions) into a microchannel at variable flow-rate ratios. By increasing the volumetric flow rate of the low-conductivity solution (sheath fluid) relative to the high-conductivity solution (sample fluid), increased focusing of the high-conductivity solution over four coplanar electrodes was achieved, thereby confining the current during impedance interrogation. The hydrodynamic and electrical properties of the device were analyzed for optimization and to resolve issues that would impact sensitivity and reproducibility in subsequent biosensor applications. These include variability in the relative flow rates of the sheath and sample fluids, changes in microchannel dimensions, and ionic concentration of the sample fluid. A comparative analysis of impedance measurements using four-electrode versus two-electrode configurations for impedance measurements also highlighted the advantages of using four electrodes for portable sensor applications.

  19. Supplementary pathway for vitality of wounds and wound age estimation in bruises using the electric impedance spectroscopy technique.

    PubMed

    Mao, Shiwei; Fu, Feng; Dong, Xiuzhen; Wang, Zhenyuan

    2011-07-01

    Determination of wound vitality and estimation of wound age are central issues in daily forensic practice. The objective of this study was to develop a new and rapid method for determining wound vitality and estimating wound age in bruises using electric impedance spectroscopy. Forty Sprague-Dawley rats (140-170 g) were divided into five groups: group 1 (n=8): controls, group 2 (n=8): postmortem bruises, group 3 (n=8): bruises 1 h before death, group 4 (n=8): bruises 3 h before death, group 5 (n=8): bruises 6 h before death. Measurements of the right gluteus maximus muscle were taken at 6, 24, and 48 h after the rats were sacrificed by cervical dislocation. The results from this study indicate that electric impedance spectroscopy is clearly sensitive enough to differentiate between vital and postmortem wound infliction and to determine the survival time after the infliction of an injury. © 2011 American Academy of Forensic Sciences.

  20. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device

    PubMed Central

    Zhou, Ying; Basu, Srinjan; Laue, Ernest; Seshia, Ashwin A.

    2016-01-01

    Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic channels with the possibility of precise environmental control and high throughput of experiments with minimal usage of samples and reagents. In recent years, label-free techniques such as electrical impedance spectroscopy have emerged as a non-invasive approach to studying cell properties. In this study, we have designed and fabricated a microfluidic device that combines hydrodynamic trapping of single cells in pre-defined locations with the capability of running electrical impedance measurements within the same device. We have measured mouse embryonic stem cells (mESCs) at different states during differentiation (t=0 h, 24 h and 48 h) and quantitatively analysed the changes in electrical parameters of cells during differentiation. A marked increase in the magnitude of the cell impedance is found during cell differentiation, which can be attributed to an increase in cell size. The analysis of the measurements shows that the nucleus-to-cytoplasm ratio decreases during this process. The degree of cell heterogeneity is observed to be the highest when the cells are at the transition state (24 h), compare with cells at undifferentiated (0 h) and fully differentiated (48 h) states. The device enables highly efficient single cell trapping and provides sensitive, label-free electrical impedance measurements of individual cells, enabling the possibility of quantitatively analysing their physical state as well as studying the associated heterogeneity of a cell population. PMID:26963790

  1. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device.

    PubMed

    Zhou, Ying; Basu, Srinjan; Laue, Ernest; Seshia, Ashwin A

    2016-07-15

    Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic channels with the possibility of precise environmental control and high throughput of experiments with minimal usage of samples and reagents. In recent years, label-free techniques such as electrical impedance spectroscopy have emerged as a non-invasive approach to studying cell properties. In this study, we have designed and fabricated a microfluidic device that combines hydrodynamic trapping of single cells in pre-defined locations with the capability of running electrical impedance measurements within the same device. We have measured mouse embryonic stem cells (mESCs) at different states during differentiation (t=0h, 24h and 48h) and quantitatively analysed the changes in electrical parameters of cells during differentiation. A marked increase in the magnitude of the cell impedance is found during cell differentiation, which can be attributed to an increase in cell size. The analysis of the measurements shows that the nucleus-to-cytoplasm ratio decreases during this process. The degree of cell heterogeneity is observed to be the highest when the cells are at the transition state (24h), compare with cells at undifferentiated (0h) and fully differentiated (48h) states. The device enables highly efficient single cell trapping and provides sensitive, label-free electrical impedance measurements of individual cells, enabling the possibility of quantitatively analysing their physical state as well as studying the associated heterogeneity of a cell population.

  2. Electrical Impedance Myography to Detect the Effects of Electrical Muscle Stimulation in Wild Type and Mdx Mice

    PubMed Central

    Li, Jia; Yim, Sung; Pacheck, Adam; Sanchez, Benjamin; Rutkove, Seward B.

    2016-01-01

    Objective Tools to better evaluate the impact of therapy on nerve and muscle disease are needed. Electrical impedance myography (EIM) is sensitive to neuromuscular disease progression as well as to therapeutic interventions including myostatin inhibition and antisense oligonucleotide-based treatments. Whether the technique identifies the impact of electrical muscle stimulation (EMS) is unknown. Methods Ten wild-type (wt) C57B6 mice and 10 dystrophin-deficient (mdx) mice underwent 2 weeks of 20 min/day EMS on left gastrocnemius and sham stimulation on the right gastrocnemius. Multifrequency EIM data and limb girth were obtained before and at the conclusion of the protocol. Muscle weight, in situ force measurements, and muscle fiber histology were also assessed at the conclusion of the study. Results At the time of sacrifice, muscle weight was greater on the EMS-treated side than on the sham-stimulated side (p = 0.018 for wt and p = 0.007 for mdx). Similarly, in wt animals, EIM parameters changed significantly compared to baseline (resistance (p = 0.009), reactance (p = 0.0003) and phase (p = 0.002); these changes were due in part to reductions in the EIM values on the EMS-treated side and elevations on the sham-simulated side. Mdx animals showed analogous but non-significant changes (p = 0.083, p = 0.064, and p = 0.57 for resistance, reactance and phase, respectively). Maximal isometric force trended higher on the stimulated side in wt animals only (p = 0.06). Myofiber sizes in wt animals were also larger on the stimulated side than on the sham-stimulated side (p = 0.034); no significant difference was found in the mdx mice (p = 0.79). Conclusion EIM is sensitive to stimulation-induced muscle alterations in wt animals; similar trends are also present in mdx mice. The mechanisms by which these EIM changes develop, however, remains uncertain. Possible explanations include longer-term trophic effects and shorter-term osmotic effects. PMID:26986564

  3. Positive End-expiratory Pressure Titration after Alveolar Recruitment Directed by Electrical Impedance Tomography

    PubMed Central

    Long, Yun; Liu, Da-Wei; He, Huai-Wu; Zhao, Zhan-Qi

    2015-01-01

    Background: Electrical impedance tomography (EIT) is a real-time bedside monitoring tool, which can reflect dynamic regional lung ventilation. The aim of the present study was to monitor regional gas distribution in patients with acute respiratory distress syndrome (ARDS) during positive-end-expiratory pressure (PEEP) titration using EIT. Methods: Eighteen ARDS patients under mechanical ventilation in Department of Critical Care Medicine of Peking Union Medical College Hospital from January to April in 2014 were included in this prospective observational study. After recruitment maneuvers (RMs), decremental PEEP titration was performed from 20 cmH2O to 5 cmH2O in steps of 3 cmH2O every 5–10 min. Regional over-distension and recruitment were monitored with EIT. Results: After RMs, patient with arterial blood oxygen partial pressure (PaO2) + carbon dioxide partial pressure (PaCO2) >400 mmHg with 100% of fractional inspired oxygen concentration were defined as RM responders. Thirteen ARDS patients was diagnosed as responders whose PaO2 + PaCO2 were higher than nonresponders (419 ± 44 mmHg vs. 170 ± 73 mmHg, P < 0.0001). In responders, PEEP mainly increased recruited pixels in dependent regions and over-distended pixels in nondependent regions. PEEP alleviated global inhomogeneity of tidal volume and end-expiratory lung volume. PEEP levels without significant alveolar derecruitment and over-distension were identified individually. Conclusions: After RMs, PEEP titration significantly affected regional gas distribution in lung, which could be monitored with EIT. EIT has the potential to optimize PEEP titration. PMID:26021494

  4. Classification of thyroid nodules using a resonance-frequency-based electrical impedance spectroscopy: progress assessment

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Tublin, Mitchell E.; Lederman, Dror; Klym, Amy H.; Brown, Erica D.; Gur, David

    2012-02-01

    The incidence of thyroid cancer is rising faster than other malignancies and has nearly doubled in the United States (U.S.) in the last 30 years. However, classifying between malignant and benign thyroid nodules is often difficult. Although ultrasound guided Fine Needle Aspiration Biopsy (FNAB) is considered an excellent tool for triaging patients, up to 25% of FNABs are inconclusive. As a result, definitive diagnosis requires an exploratory surgery and a large number of these are performed in the U.S. annually. It would be extremely beneficial to develop a non-invasive tool or procedure that could assist in assessing the likelihood of malignancy of otherwise indeterminate thyroid nodules, thereby reducing the number of exploratory thyroidectomies that are performed under general anesthesia. In this preliminary study we demonstrate a unique hand-held Resonance-frequency based Electrical Impedance Spectroscopy (REIS) device with six pairs of detection probes to detect and classify thyroid nodules using multi-channel EIS output signal sweeps. Under an Institutional Review Board (IRB)-approved case collection protocol, this REIS device is being tested in our clinical facility and we have been collecting an initial patient data set since March of this year. Between March and August of 2011, 65 EIS tests were conducted on 65 patients. Among these cases, six depicted pathology-verified malignant cells. Our initial assessment indicates the feasibility of easily applying this REIS device and measurement approach in a very busy clinical setting. The measured resonance frequency differences between malignant and benign nodules could potentially make it possible to accurately classify indeterminate thyroid nodules.

  5. Fast conductivity imaging in magnetic resonance electrical impedance tomography (MREIT) for RF ablation monitoring.

    PubMed

    Kwon, Oh In; Chauhan, Munish; Kim, Hyung Joong; Jeong, Woo Chul; Wi, Hun; Oh, Tong In; Woo, Eung Je

    2014-11-01

    This study shows the potential of magnetic resonance electrical impedance tomography (MREIT) as a non-invasive RF ablation monitoring technique. We prepared bovine muscle tissue with a pair of needle electrodes for RF ablation, a temperature sensor, and two pairs of surface electrodes for conductivity image reconstructions. We used the injected current non-linear encoding with multi-echo gradient recalled echo (ICNE-MGRE) pulse sequence in a series of MREIT scans for conductivity imaging. We acquired magnetic flux density data induced by externally injected currents, while suppressing other phase artefacts. We used an 8-channel RF head coil and 8 echoes to improve the signal-to-noise ratio (SNR) in measured magnetic flux density data. Using the measured data, we reconstructed a time series of 180 conductivity images at every 10.24 s during and after RF ablation. Tissue conductivity values in the lesion increased with temperature during RF ablation. After reaching 60 °C, a steep increase in tissue conductivity values occurred with relatively little temperature increase. After RF ablation, tissue conductivity values in the lesion decreased with temperature, but to values different from those before ablation due to permanent structural changes of tissue by RF ablation. We could monitor temperature and also structural changes in tissue during RF ablation by producing spatio-temporal maps of tissue conductivity values using a fast MREIT conductivity imaging method. We expect that the new monitoring method could be used to estimate lesions during RF ablation and improve the efficacy of the treatment.

  6. Real-Time Electrical Impedance Variations in Women With and Without Breast Cancer

    PubMed Central

    Hartov, Alex; Poplack, Steven P.; diFlorio-Alexander, Roberta; Wells, Wendy A.; Rosenkranz, Kari M.; Barth, Richard J.; Kaufman, Peter A.; Paulsen, Keith D.

    2015-01-01

    The chaotic vascular network surrounding malignant tumors leads to pulsatile blood flow patterns that differ from those in benign regions of the breast. This study aimed to determine if high-speed electrical impedance tomography (EIT) is able to detect conductivity changes associated with cyclic blood-volume changes and to gauge the potential of using these signatures to differentiate malignant from benign regions within the breast. EIT imaging of pulsating latex membranes submerged in saline baths provided initial validation of its use for tracking temporally varying conductivities. Nineteen women (10 with cancer, nine without) were imaged with EIT over the course of several heartbeats in synchrony with pulse-oximetry acquisition. Eight parameters (rs, φ(rt,max), rt,max, Plow:full, Phigh:full, Plow:high) relating the conductivity images and pulse-oximeter signatures were extracted and used as a means of comparing malignant and benign regions of the breast. Significant differences (p < 0.01) between malignant and benign regions of interest were noted in seven of the eight parameters. The maximum correlation between conductivity and pulse-oximeter signals, rt,max, was observed to be the optimal discriminating parameter with a receiver operating characteristic area under the curve of 0.8 and a specificity of 81% at a sensitivity of 77%. Assessing the dynamic conductivity of breast may provide additional clinical utility to that of standard imaging modalities, but further investigation is necessary to better understand the biophysical mechanisms leading to the observed conductivity changes. PMID:25073168

  7. Electric impedance platelet aggregometry in cardiac surgery patients: A comparative study of two technologies.

    PubMed

    Ranucci, Marco; Baryshnikova, Ekaterina; Crapelli, Giulia Beatrice; Ranucci, Matteo; Meloni, Silvia; Pistuddi, Valeria

    2016-01-01

    Platelet function tests are suggested to assess platelet reactivity before cardiac and major non-cardiac surgery. Different point-of-care platelet function tests are available. Among these, electric impedance platelet aggregometry (EIPA) (Multiplate®, MP) is one of the most widely used techniques. Recently, a new EIPA system (Rotem Platelet®, RP) was released. This is a comparative study of platelet function measured with MP and RP. Fifty cardiac surgery patients were admitted to this study. All the patients received a preoperative platelet function test with both the MP and the RP; for each technology, two tests were performed: the ADPtest (investigating P2Y12 receptor platelet reactivity) and the TRAPtest (investigating the thrombin-dependent platelet reactivity). ADP-based platelet reactivity values demonstrated a significant (p = 0.019) correlation between the MP and the RP; and a marginally significant (p = 0.042) correlation for TRAP-based tests. The Bland-Altman analysis of the ADPtest demonstrated a positive bias of 5.94 units (MP > RP) and a percentage error of 88%. For the TRAPtest, there was a positive bias of 12 units (MP > RP) and a percentage error of 89%. In patients who were preoperatively treated with P2Y12 receptor inhibitors, only the MP ADPtest was positively associated with the days from drug discontinuation (p = 0.003). Platelet function assessment with RP greatly differs from the equivalent MP measure, and no correction value can be applied due to the low level of precision. This applies both to ADPtest and TRAPtest. The MP ADPtest is more reliable for platelet reactivity after discontinuation of P2Y12 receptor inhibitors.

  8. Signal-to-Noise Ratio Analysis of a Phase-Sensitive Voltmeter for Electrical Impedance Tomography.

    PubMed

    Murphy, Ethan K; Takhti, Mohammad; Skinner, Joseph; Halter, Ryan J; Odame, Kofi

    2017-04-01

    In this paper, thorough analysis along with mathematical derivations of the matched filter for a voltmeter used in electrical impedance tomography systems are presented. The effect of the random noise in the system prior to the matched filter, generated by other components, are considered. Employing the presented equations allow system/circuit designers to find the maximum tolerable noise prior to the matched filter that leads to the target signal-to-noise ratio (SNR) of the voltmeter, without having to over-design internal components. A practical model was developed that should fall within 2 dB and 5 dB of the median SNR measurements of signal amplitude and phase, respectively. In order to validate our claims, simulation and experimental measurements have been performed with an analog-to-digital converter (ADC) followed by a digital matched filter, while the noise of the whole system was modeled as the input referred at the ADC input. The input signal was contaminated by a known value of additive white Gaussian noise (AWGN) noise, and the noise level was swept from 3% to 75% of the least significant bit (LSB) of the ADC. Differences between experimental and both simulated and analytical SNR values were less than 0.59 and 0.35 dB for RMS values ≥ 20% of an LSB and less than 1.45 and 2.58 dB for RMS values < 20% of an LSB for the amplitude and phase, respectively. Overall, this study provides a practical model for circuit designers in EIT, and a more accurate error analysis that was previously missing in EIT literature.

  9. Accuracy of two osmometers on standard samples: electrical impedance technique and freezing point depression technique

    NASA Astrophysics Data System (ADS)

    García-Resúa, Carlos; Pena-Verdeal, Hugo; Miñones, Mercedes; Gilino, Jorge; Giraldez, Maria J.; Yebra-Pimentel, Eva

    2013-11-01

    High tear fluid osmolarity is a feature common to all types of dry eye. This study was designed to establish the accuracy of two osmometers, a freezing point depression osmometer (Fiske 110) and an electrical impedance osmometer (TearLab™) by using standard samples. To assess the accuracy of the measurements provided by the two instruments we used 5 solutions of known osmolarity/osmolality; 50, 290 and 850 mOsm/kg and 292 and 338 mOsm/L. Fiske 110 is designed to be used in samples of 20 μl, so measurements were made on 1:9, 1:4, 1:1 and 1:0 dilutions of the standards. Tear Lab is addressed to be used in tear film and only a sample of 0.05 μl is required, so no dilutions were employed. Due to the smaller measurement range of the TearLab, the 50 and 850 mOsm/kg standards were not included. 20 measurements per standard sample were used and differences with the reference value was analysed by one sample t-test. Fiske 110 showed that osmolarity measurements differed statistically from standard values except those recorded for 290 mOsm/kg standard diluted 1:1 (p = 0.309), the 292 mOsm/L H2O sample (1:1) and 338 mOsm/L H2O standard (1:4). The more diluted the sample, the higher the error rate. For the TearLab measurements, one-sample t-test indicated that all determinations differed from the theoretical values (p = 0.001), though differences were always small. For undiluted solutions, Fiske 110 shows similar performance than TearLab. However, for the diluted standards, Fiske 110 worsens.

  10. Reproducible 3D printed head tanks for electrical impedance tomography with realistic shape and conductivity distribution.

    PubMed

    Avery, James; Aristovich, Kirill; Low, Barney; Holder, David

    2017-05-22

    Electrical impedance tomography (EIT) has many promising applications in brain injury monitoring. To evaluate both instrumentation and reconstruction algorithms, experiments are first performed in head tanks. Existing methods, whilst accurate, produce a discontinuous conductivity, and are often made by hand, making it hard for other researchers to replicate. We have developed a method for constructing head tanks directly in a 3D printer. Conductivity was controlled through perforations in the skull surface, which allow for saline to pass through. Varying the diameter of the holes allowed for the conductivity to be controlled with 3% error for the target conductivity range. Taking CT and MRI segmentations as a basis, this method was employed to create an adult tank with a continuous conductivity distribution, and a neonatal tank with fontanelles. Using 3D scanning a geometric accuracy of 0.21 mm was recorded, equal to that of the precision of the 3D printer used. Differences of 6.1%  ±  6.4% (n  =  11 in 4 tanks) compared to simulations were recorded in c. 800 boundary voltages. This may be attributed to the morphology of the skulls increasing tortuosity effects and hole misalignment. Despite significant differences in errors between three repetitions of the neonatal tank, images of a realistic perturbation could still be reconstructed with different tanks used for the baseline and perturbation datasets. These phantoms can be reproduced by any researcher with access to a 'hobbyist' 3D printer in a matter of days. All design files have been released using an open source license to encourage reproduction and modification.

  11. Computational method for estimating boundary of abdominal subcutaneous fat for absolute electrical impedance tomography.

    PubMed

    Yamaguchi, Tohru F; Okamoto, Yoshiwo

    2017-06-14

    Abdominal fat accumulation is considered an essential indicator of human health. Electrical impedance tomography has considerable potential for abdominal fat imaging because of the low specific conductivity of human body fat. In this paper, we propose a robust reconstruction method for high-fidelity conductivity imaging by abstraction of the abdominal cross section using a relatively small number of parameters. Toward this end, we assume homogeneous conductivity in the abdominal subcutaneous fat area and characterize its geometrical shape by parameters defined as the ratio of the distance from the center to boundary of subcutaneous fat to the distance from the center to outer boundary in 64 equiangular directions. To estimate the shape parameters, the sensitivity of the noninvasively measured voltages with respect to the shape parameters is formulated for numerical optimization. Numerical simulations are conducted to demonstrate the validity of the proposed method. A 3-dimensional finite element method is used to construct a computer model of the human abdomen. The inverse problems of shape parameters and conductivities are solved concurrently by iterative forward and inverse calculations. As a result, conductivity images are reconstructed with a small systemic error of less than 1% for the estimation of the subcutaneous fat area. A novel method is devised for estimating the boundary of the abdominal subcutaneous fat. The fidelity of the overall reconstructed image to the reference image is significantly improved. The results demonstrate the possibility of realization of an abdominal fat scanner as a low-cost, radiation-free medical device. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Comparison of human tear film osmolarity measured by electrical impedance and freezing point depression techniques.

    PubMed

    Tomlinson, Alan; McCann, Louise C; Pearce, Edward I

    2010-09-01

    Tear hyperosmolarity is diagnostic of dry eye disease (DED), yet difficulty in measurement has limited its utility; development of new instruments could facilitate its clinical application. This study compares the new OcuSense TearLab osmometer (OcuSense, Inc, San Diego, CA), based on electrical impedance "lab-on-a-chip" nanoliter technology, with the freezing point depression Clifton Osmometer (Clifton Technical Physics, Hartford, NY). Thirty-six subjects were recruited: 15 DED (9 women, 6 men age: 41 +/- 16 years) and 21 controls (12 women, 9 men age: 35 +/- 12 years); criteria for DED were noninvasive tear breakup time <10 seconds, Schirmer I test <5 mm, and positive symptoms. Samples were collected from the inferior tear meniscus for testing with both osmometers. Osmolarity values measured with OcuSense TearLab were 308 +/- 6 and 321 +/- 16 mOsm/L for controls and dry eye, respectively, and those measured with Clifton were 310 +/- 7 and 323 +/- 14 mOsm/L for controls and dry eye, respectively; these values were significantly different. Significant correlation was found between OcuSense and Clifton measurements (r = 0.904; P = 0.006). Bland-Altman analysis revealed agreement between techniques; the majority of points fell within the 95% confidence limits, and actual values differed by less than 1%. A cutoff value of >316 mOsm/L, derived from the distribution of osmolarity values, was used to diagnose DED with an effectiveness of 73% sensitivity, 90% specificity, and 85% positive predictive value for the OcuSense and 73% sensitivity, 71% specificity, and 65% positive predictive value for the Clifton in the study samples. Tear film osmolarity measured with the OcuSense TearLab system correlates well with the Clifton Osmometer. The new instrument has the potential to provide clinicians with a readily available clinically applicable measure, which could become the gold standard in DED.

  13. Lack of Agreement among Electrical Impedance and Freezing-Point Osmometers.

    PubMed

    García, Noelia; Melvi, Giovanna; Pinto-Fraga, José; Calonge, Margarita; Maldonado, Miguel J; González-García, María J

    2016-05-01

    To assess the interchangeability of tear osmolarity measurements between electrical impedance and freezing-point depression osmometers and to analyze inter-eye tear osmolarity variability measured with these osmometers in healthy subjects. Tear osmolarity was measured using the TearLab osmometer (OcuSense Inc., San Diego, CA) and the Fiske 210 microsample osmometer (Advanced Instruments Inc., Norwood, MA). We randomly selected one eye in 50 subjects (29 women, 21 men; mean age, 33.16 ± 6.11 years) to analyze whether osmolarity measurements by these osmometers were interchangeable. Both eyes of 25 patients (15 women, 10 men; mean age, 34.32 ± 6.37 years) were included to analyze inter-eye osmolarity variability. The mean tear osmolarity values measured with the TearLab osmometer were higher (305.22 ± 16.06 mOsm/L) than those with the Fiske 210 osmometer (293.40 ± 12.22 mOsm/L), with the intraclass correlation coefficient being 0.23 (p = 0.051). A Bland-Altman plot showed that the systems were not interchangeable because there was a systematic difference, with the limits of agreement being -17.93 to 41.57 mOsm/L. There were no statistically significant differences (p = 0.5006 and p = 0.6533, respectively) between an individual's eyes measured with either osmometer. Because the TearLab tear osmolarity measurements were higher than those of the Fiske 210 measurements and the limits of agreement were too wide, the two osmolarity values cannot be used interchangeably. In healthy subjects, there is no difference in tear osmolarity between right and left eyes of the same individual measured with both instruments.

  14. Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography.

    PubMed

    Oh, Suk Hoon; Lee, Byung Il; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Seo, Jin Keun

    2003-10-07

    Magnetic resonance electrical impedance tomography (MREIT) is to provide cross-sectional images of the conductivity distribution sigma of a subject. While injecting current into the subject, we measure one component Bz of the induced magnetic flux density B = (Bx, By, Bz) using an MRI scanner. Based on the relation between (inverted delta)2 Bz and inverted delta sigma, the harmonic Bz algorithm reconstructs an image of sigma using the measured Bz data from multiple imaging slices. After we obtain sigma, we can reconstruct images of current density distributions for any given current injection method. Following the description of the harmonic Bz algorithm, this paper presents reconstructed conductivity and current density images from computer simulations and phantom experiments using four recessed electrodes injecting six different currents of 26 mA. For experimental results, we used a three-dimensional saline phantom with two polyacrylamide objects inside. We used our 0.3 T (tesla) experimental MRI scanner to measure the induced Bz. Using the harmonic Bz algorithm, we could reconstruct conductivity and current density images with 82 x 82 pixels. The pixel size was 0.6 x 0.6 mm2. The relative L2 errors of the reconstructed images were between 13.8 and 21.5% when the signal-to-noise ratio (SNR) of the corresponding MR magnitude images was about 30. The results suggest that in vitro and in vivo experimental studies with animal subjects are feasible. Further studies are requested to reduce the amount of injection current down to less than 1 mA for human subjects.

  15. Automatic protective ventilation using the ARDSNet protocol with the additional monitoring of electrical impedance tomography

    PubMed Central

    2014-01-01

    Introduction Automatic ventilation for patients with respiratory failure aims at reducing mortality and can minimize the workload of clinical staff, offer standardized continuous care, and ultimately save the overall cost of therapy. We therefore developed a prototype for closed-loop ventilation using acute respiratory distress syndrome network (ARDSNet) protocol, called autoARDSNet. Methods A protocol-driven ventilation using goal-oriented structural programming was implemented and used for 4 hours in seven pigs with lavage-induced acute respiratory distress syndrome (ARDS). Oxygenation, plateau pressure and pH goals were controlled during the automatic ventilation therapy using autoARDSNet. Monitoring included standard respiratory, arterial blood gas analysis and electrical impedance tomography (EIT) images. After 2-hour automatic ventilation, a disconnection of the animal from the ventilator was carried out for 10 seconds, simulating a frequent clinical scenario for routine clinical care or intra-hospital transport. Results This pilot study of seven pigs showed stable and robust response for oxygenation, plateau pressure and pH value using the automated system. A 10-second disconnection at the patient-ventilator interface caused impaired oxygenation and severe acidosis. However, the automated protocol-driven ventilation was able to solve these problems. Additionally, regional ventilation was monitored by EIT for the evaluation of ventilation in real-time at bedside with one prominent case of pneumothorax. Conclusions We implemented an automatic ventilation therapy using ARDSNet protocol with seven pigs. All positive outcomes were obtained by the closed-loop ventilation therapy, which can offer a continuous standard protocol-driven algorithm to ARDS subjects. PMID:24957974

  16. Static resistivity image of a cubic saline phantom in magnetic resonance electrical impedance tomography (MREIT).

    PubMed

    Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyeong; Kwon, Ohin; Seo, Jin Keun; Baek, Woon Sik

    2003-05-01

    In magnetic resonance electrical impedance tomography (MREIT) we inject currents through electrodes placed on the surface of a subject and try to reconstruct cross-sectional resistivity (or conductivity) images using internal magnetic flux density as well as boundary voltage measurements. In this paper we present a static resistivity image of a cubic saline phantom (50 x 50 x 50 mm3) containing a cylindrical sausage object with an average resistivity value of 123.7 ohms cm. Our current MREIT system is based on an experimental 0.3 T MRI scanner and a current injection apparatus. We captured MR phase images of the phantom while injecting currents of 28 mA through two pairs of surface electrodes. We computed current density images from magnetic flux density images that are proportional to the MR phase images. From the current density images and boundary voltage data we reconstructed a cross-sectional resistivity image within a central region of 38.5 x 38.5 mm2 at the middle of the phantom using the J-substitution algorithm. The spatial resolution of the reconstructed image was 64 x 64 and the reconstructed average resistivity of the sausage was 117.7 ohms cm. Even though the error in the reconstructed average resistivity value was small, the relative L2-error of the reconstructed image was 25.5% due to the noise in measured MR phase images. We expect improvements in the accuracy by utilizing an MRI scanner with higher SNR and increasing the size of voxels scarifying the spatial resolution.

  17. Regional ventilation distribution determined by electrical impedance tomography: reproducibility and effects of posture and chest plane.

    PubMed

    Reifferscheid, Florian; Elke, Gunnar; Pulletz, Sven; Gawelczyk, Barbara; Lautenschläger, Ingmar; Steinfath, Markus; Weiler, Norbert; Frerichs, Inéz

    2011-04-01

    Reliable assessment of regional lung ventilation and good reproducibility of electrical impedance tomography (EIT) data are the prerequisites for the future application of EIT in a clinical setting. The aims of our study were to determine (i) the reproducibility of repeated EIT measurements and (ii) the effect of the studied transverse chest plane on ventilation distribution in different postures. Ten healthy adult subjects were studied in three postures on two separate days. EIT and spirometric data were obtained during tidal breathing and slow vital capacity (VC) manoeuvres. EIT data were acquired in two chest planes at 13 scans/s. Reproducibility of EIT findings was assessed by Bland-Altman analysis and Pearson correlation in 16 regions of interest in each plane. Regional ventilation distribution during tidal breathing and deep expiration was determined as fractional ventilation in four quadrants of the studied chest cross-sections. Our study showed a good reproducibility of EIT measurements repeated after an average time interval of 8 days. Global tidal volumes and VCs determined by spirometry on separate days were not significantly different. Regional ventilation in chest quadrants assessed by EIT was also unaffected. Posture exerted a significant effect on ventilation distribution among the chest quadrants during spontaneous breathing and deep expiration in both planes. The spatial distribution patterns in the two planes were not identical. We conclude that regional EIT ventilation findings are reproducible and recommend that the EIT examination location on the chest is carefully chosen especially during repeated measurements and follow-up. © 2011 The Authors. Respirology © 2011 Asian Pacific Society of Respirology.

  18. Impedance spectroscopy applied to the fast wounding dynamics of an electrical wound-healing assay in mammalian cells

    NASA Astrophysics Data System (ADS)

    Bellotti, Mariela I.; Giana, Fabián E.; Bonetto, Fabián J.

    2015-08-01

    Electrical wound-healing assays are often used as a means to study in vitro cell migration and proliferation. In such analysis, a cell monolayer that sits on a small electrode is electrically wounded and its spectral impedance is then continuously measured in order to monitor the healing process. The relatively slow dynamics of the cell healing have been extensively studied, while those of the much faster wounding phase have not yet been investigated. An analysis of the electrical properties of a particular cell type during this phase could give extra information about the changes in the cell membrane due to the application of the wounding current, and could also be useful to optimize the wounding regime for different cell types. The main issue when trying to register information about these dynamics is that the traditional measurement scheme employed in typical wound-healing assays doesn’t allow the simultaneous application of the wounding signal and measurement of the system’s impedance. In this paper, we overcome this limitation by implementing a measurement strategy consisting of cycles of fast alternating low- and high-voltage signals applied on electrodes covered with mammalian cells. This approach is capable of registering the fast impedance changes during the transient regime corresponding to the cell wounding process. Furthermore, these quasi-simultaneous high- and low-voltage measurements can be compared in order to obtain an empirical correlation between both quantities.

  19. Enhanced Absorption Performance of Carbon Nanostructure Based Metamaterials and Tuning Impedance Matching Behavior by an External AC Electric Field.

    PubMed

    Gholipur, Reza; Khorshidi, Zahra; Bahari, Ali

    2017-04-12

    Metamaterials have surprisingly broadened the range of available practical applications in new devices such as shielding, microwave absorbing, and novel antennas. More research has been conducted related to tuning DNG frequency bands of ordered or disordered metamaterials, and far less research has focused on the importance of impedance matching behavior, with little effort and attention given to adjusting the magnitude of negative permittivity values. This is particularly important if devices deal with low-amplitude signals such as radio or TV antennas. The carbon/hafnium nickel oxide (C/Hf0.9Ni0.1Oy) nanocomposites with simultaneously negative permittivity and negative permeability, excellent metamaterial performance, and good impedance matching could become an efficient alternative for the ordered metamaterials in wave-transparent, microwave absorbing, and solar energy harvesting fields. In this study, we prepared C/Hf0.9Ni0.1Oy nanocomposites by the solvothermal method, and we clarified how the impedance matching and double-negative (DNG) behaviors of C/Hf0.9Ni0.1Oy can be tuned by an external AC electric field created by an electric quadrupole system. An external electric field allows for the alignment of the well-dispersed nanoparticles of carbon with long-range orientations order. We believe that this finding broadens our understanding of moderate conductive material-based random metamaterials (MCMRMs) and provides a novel strategy for replacing high-loss ordered or disordered metamaterials with MCMRMs.

  20. In vivo and in situ measurement of electrical impedance for determination of distention in proximal stomach of rats.

    PubMed

    Garay, L; Ramos, E G; Cardiel, E; Muñoz, R; Hernández, P R

    2006-09-01

    We present a non-invasive, in vivo and in situ study of proximal stomach (PS) distention based on electrical impedance measurements that could be used together with distal stomach (DS) motility measurements as a response to different boluses. Stomach motility has been reported in the literature, as a response to different boluses, under in vivo conditions. However, previous studies on stomach motility have been mainly considered clinical parameters of the digestive process. The physiological complexity of the stomach requires the use of biological models when a detailed analysis of stomach function due to bolus ingestion is required. In this work, the determination of the PS distention in rats is presented. It is based on electrical resistive impedance measurements of the external stomach wall, related to different liquid bolus volumes. Trials were performed under in vivo and in situ conditions. A four-point technique with a vacuum-affixed linear electrode array was used for impedance measurements. A pouch was created in the stomach to retain the saline solution bolus in the PS for a longer time. Resulting impedance changes were directly related to the bolus volumes introduced into the PS and dependent on initial conditions and compensation mechanisms of the in vivo system. With the stomach pouch, a direct relationship between resistive impedance and bolus volume was obtained in all measurements. With no stomach pouch, 93% of the cases showed this relationship. Therefore, the obtained relationship will permit new non-invasive studies in the stomach about the effects of different types of bolus on the distention in the PS of rats.

  1. Electrical impedance properties of the body and the problem of alternate-site burns during electrosurgery.

    PubMed

    Neufeld, G R; Foster, K R

    1985-01-01

    The radiofrequency (RF) impedance at 500 kHz was measured between multiple contact points on the bodies of six healthy volunteers by a tetrapolar measurement technique. The impedance between various contact points was predictable and could increase by a factor of two, depending on the sites selected for electrode application. These results were related to a simple resistive model of RF current distribution through the body. Based on the model and on data from human subjects, a hierarchy of optimal locations was developed to minimize the impedance between a surgical site and a dispersive electrode site and to reduce the potential for alternate-site burns from electrosurgery.

  2. Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study.

    PubMed

    Karsten, Jan; Stueber, Thomas; Voigt, Nicolas; Teschner, Eckhard; Heinze, Hermann

    2016-01-08

    Electrical impedance tomography (EIT) is a non-invasive bedside tool which allows an individualized ventilator strategy by monitoring tidal ventilation and lung aeration. EIT can be performed at different cranio-caudal thoracic levels, but data are missing about the optimal belt position. The main goal of this prospective observational study was to evaluate the impact of different electrode layers on tidal impedance variation in relation to global volume changes in order to propose a proper belt position for EIT measurements. EIT measurements were performed in 15 mechanically ventilated intensive care patients with the electrode belt at different thoracic layers (L1-L7). All respiratory and hemodynamic parameters were recorded. Blood gas analyses were obtained once at the beginning of EIT examination. Off-line tidal impedance variation/tidal volume (TV/VT) ratio was calculated, and specific patterns of impedance distribution due to automatic and user-defined adjustment of the colour scale for EIT images were identified. TV/VT ratio is the highest at L1. It decreases in caudal direction. At L5, the decrease of TV/VT ratio is significant. We could identify patterns of diaphragmatic interference with ventilation-related impedance changes, which owing to the automatically adjusted colour scales are not obvious in the regularly displayed EIT images. The clinical usability and plausibility of EIT measurements depend on proper belt position, proper impedance visualisation, correct analysis and data interpretation. When EIT is used to estimate global parameters like VT or changes in end-expiratory lung volume, the best electrode plane is between the 4th and 5th intercostal space. The specific colour coding occasionally suppresses user-relevant information, and manual rescaling of images is necessary to visualise this information.

  3. Spatial analysis of slowly oscillating electric activity in the gut of mice using low impedance arrayed microelectrodes.

    PubMed

    Taniguchi, Mizuki; Kajioka, Shunichi; Shozib, Habibul B; Sawamura, Kenta; Nakayama, Shinsuke

    2013-01-01

    Smooth and elaborate gut motility is based on cellular cooperation, including smooth muscle, enteric neurons and special interstitial cells acting as pacemaker cells. Therefore, spatial characterization of electric activity in tissues containing these electric excitable cells is required for a precise understanding of gut motility. Furthermore, tools to evaluate spatial electric activity in a small area would be useful for the investigation of model animals. We thus employed a microelectrode array (MEA) system to simultaneously measure a set of 8×8 field potentials in a square area of ∼1 mm(2). The size of each recording electrode was 50×50 µm(2), however the surface area was increased by fixing platinum black particles. The impedance of microelectrode was sufficiently low to apply a high-pass filter of 0.1 Hz. Mapping of spectral power, and auto-correlation and cross-correlation parameters characterized the spatial properties of spontaneous electric activity in the ileum of wild-type (WT) and W/W(v) mice, the latter serving as a model of impaired network of pacemaking interstitial cells. Namely, electric activities measured varied in both size and cooperativity in W/W(v) mice, despite the small area. In the ileum of WT mice, procedures suppressing the excitability of smooth muscle and neurons altered the propagation of spontaneous electric activity, but had little change in the period of oscillations. In conclusion, MEA with low impedance electrodes enables to measure slowly oscillating electric activity, and is useful to evaluate both histological and functional changes in the spatio-temporal property of gut electric activity.

  4. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes.

    PubMed

    Nguyen, Tien Anh; Yin, Tsung-I; Reyes, Diego; Urban, Gerald A

    2013-11-19

    Cell migration has been recognized as one hallmark of malignant tumor progression. By integrating the method of electrical cell-substrate impedance sensing (ECIS) with the Boyden chamber design, the state-of-the-art techniques provide kinetic information about cell migration and invasion processes in three-dimensional (3D) extracellular matrixes. However, the information related to the initial stage of cell migration with single-cell resolution, which plays a unique role in the metastasis-invasion cascade of cancer, is not yet available. In this paper, we present a microfluidic device integrated with ECIS for investigating single cancer cell migration in 3D matrixes. Using microfluidics techniques without the requirement of physical connections to off-chip pneumatics, the proposed sensor chip can efficiently capture single cells on microelectrode arrays for sequential on-chip 2D or 3D cell culture and impedance measurement. An on-chip single-cell migration assay was successfully demonstrated within several minutes. Migration of single metastatic MDA-MB-231 cells in their initial stage can be monitored in real time; it shows a rapid change in impedance magnitude of approximately 10 Ω/s, whereas no prominent impedance change is observed for less-metastasis MCF-7 cells. The proposed sensor chip, allowing for a rapid and selective detection of the migratory properties of cancer cells at the single-cell level, could be applied as a new tool for cancer research.

  5. Computerized detection of breast cancer using resonance-frequency-based electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Fan, Ming; Zhao, Weijie; Zheng, Bin; Li, Lihua

    2017-03-01

    This study developed and tested a multi-probe resonance-frequency-based electrical impedance spectroscopy (REIS) system aimed at detection of breast cancer. The REIS system consists of specially designed mechanical supporting device that can be easily lifted to fit women of different height, a seven probe sensor cup, and a computer providing software for system control and management. The sensor cup includes one central probe for direct contact with the nipple, and other six probes uniformly distributed at a distance of 35mm away from the center probe to enable contact with breast skin surface. It takes about 18 seconds for this system to complete a data acquisition process. We utilized this system for examination of breast cancer, collecting a dataset of 289 cases including biopsy verified 74 malignant and 215 benign tumors. After that, 23 REIS based features, including seven frequency, fifteen magnitude features were extracted, and an age feature. To reduce redundancy we selected 6 features using the evolutionary algorithm for classification. The area under a receiver operating characteristic curve (AUC) was computed to assess classifier performance. A multivariable logistic regression method was performed for detection of the tumors. The results of our study showed for the 23 REIS features AUC and ACC, Sensitivity and Specificity of 0.796, 0.727, 0.731 and 0.726, respectively. The AUC and ACC, Sensitivity and Specificity for the 6 REIS features of 0.840, 0.80, 0.703 and 0.833, respectively, and AUC of 0.662 and 0.619 for the frequency and magnitude based REIS features, respectively. The performance of the classifiers using all the 6 features was significantly better than solely using magnitude features (p=3.29e-08) and frequency features (5.61e-07). Smote algorithm was used to expand small samples to balance the dataset, the AUC after data balance of 0.846 increased than the original data classification performance. The results indicated that the REIS system is

  6. Behaviour of the electrical impedance myography in isometric contraction of biceps brachii at different elbow joint angles

    NASA Astrophysics Data System (ADS)

    Coutinho, A. B. B.; Jotta, B.; Pino, A. V.; Souza, M. N.

    2012-12-01

    Electrical impedance myography (EIM) can be understood as an experimental technique applied to evaluate bioelectrical impedance associated to the muscular activity. With the development of technique, some studies are trying to associate the EIM parameters with the morphological and physiological changes that occur in the muscle during contraction. In this context this work sought to associate EIM parameters observed during isometric contractions of the biceps brachii muscle at different elbow joint angles with the correspondent muscular force. Differently from previous works that did not observe significant correlation between those data, our findings point to high correlations between the some EIM resistive parameters and the muscle force. Despite the need of further investigation, our results indicated that EIM technique can be used to estimate muscle force in a noninvasive way.

  7. Tissue electrical properties measured by bioelectrical impedance analysis among healthy and sportsmen population

    NASA Astrophysics Data System (ADS)

    Kapica, Dominik; Warchulińska, Joanna; Jakubiak, Monika; Teter, Mariusz; Mlak, Radosław; Hałabiś, Magdalena; Wójcik, Waldemar; Małecka-Massalska, Teresa

    2015-09-01

    Introduction: Bioelectrical impedance analysis (BIA) is a useful tool to asses human body composition and nutrition status; multi-frequency BIA has a higher accuracy than single-frequency BIA. In our study a difference of impedance values (Z) at 5, 100 and 200 kHz and Z200/Z5 index between professional athletes and control group were determined. Methods: In this research 105 people were tested, divided into control group (72 people: 35 males and 37 females) and professional athletes (33 people: 16 males and 17 females). Impedance was measured at three frequency values - 5, 100 and 200 kHz; with received values the Z200/Z5 index was calculated. Results: In most compared subgroups impedance values showed significantly lower values in athletes than in control group (5 kHz - males: p=0.136, females: p=0.001, 100 kHz - males: p=0.039, females: p<0.0001, 200 kHz - males: p=0.047, females: p<0.0001) Z200/Z5 index also showed lower value in athletes than in control group (p=0.016 for males, p<0.0001 for females). Conclusion: Lower values of impedance and Z200/Z5 index indicates a better nutrition status and general health condition of athletes than in control group.

  8. Electrical Cell-Substrate Impedance Spectroscopy Can Monitor Age-Grouped Human Adipose Stem Cell Variability During Osteogenic Differentiation.

    PubMed

    Nordberg, Rachel C; Zhang, Jianlei; Griffith, Emily H; Frank, Matthew W; Starly, Binil; Loboa, Elizabeth G

    2017-02-01

    Human adipose stem cells (hASCs) are an attractive cell source for bone tissue engineering applications. However, a critical issue to be addressed before widespread hASC clinical translation is the dramatic variability in proliferative capacity and osteogenic potential among hASCs isolated from different donors. The goal of this study was to test our hypothesis that electrical cell-substrate impedance spectroscopy (ECIS) could track complex bioimpedance patterns of hASCs throughout proliferation and osteogenic differentiation to better understand and predict variability among hASC populations. Superlots composed of hASCs from young (aged 24-36 years), middle-aged (aged 48-55 years), and elderly (aged 60-81 years) donors were seeded on gold electrode arrays. Complex impedance measurements were taken throughout proliferation and osteogenic differentiation. During osteogenic differentiation, four impedance phases were identified: increase, primary stabilization, drop phase, and secondary stabilization. Matrix deposition was first observed 48-96 hours after the impedance maximum, indicating, for the first time, that ECIS can identify morphological changes that correspond to late-stage osteogenic differentiation. The impedance maximum was observed at day 10.0 in young, day 6.1 in middle-aged, and day 1.3 in elderly hASCs, suggesting that hASCs from younger donors require a longer time to differentiate than do hASCs from older donors, but young hASCs proliferated more and accreted more calcium long-term. This is the first study to use ECIS to predict osteogenic potential of multiple hASC populations and to show that donor age may temporally control onset of osteogenesis. These findings could be critical for development of patient-specific bone tissue engineering and regenerative medicine therapies. Stem Cells Translational Medicine 2017;6:502-511.

  9. Intracranial Electrical Impedance Tomography: A Method of Continuous Monitoring in an Animal Model of Head Trauma

    PubMed Central

    Manwaring, Preston K.; Moodie, Karen L.; Hartov, Alexander; Manwaring, Kim H.; Halter, Ryan J.

    2013-01-01

    Background Electrical impedance tomography (EIT) is a method that can render continuous graphical cross-sectional images of the brain’s electrical properties. Because these properties can be altered by variations in water content, shifts in Na+ concentration, bleeding, and mass deformation, EIT has promise as a sensitive instrument for head injury monitoring to improve early recognition of deterioration, and to observe the benefits of therapeutic intervention. This study presents a swine model of head injury used to determine the detection capabilities of an inexpensive bed side EIT monitoring system with a novel intracranial pressure (ICP)/EIT electrode combination sensor on induced intraparenchymal mass effect, intraparenchymal hemorrhage, and cessation of brain blood flow. Conductivity difference images are shown in conjunction with ICP data, confirming the effects. Methods Eight domestic piglets (3–4 weeks old, mean 10kg), under general anesthesia, were subjected to four injuries: induced intraparenchymal mass effect using an inflated, and later, deflated 0.15mL Fogarty catheter; hemorrhage by intraparenchymal injection of 1mL arterial blood; and ischemia/infarction by euthanasia. EIT and ICP data were recorded 10 minutes prior to inducing the injury until 10 minutes post-injury. Continuous EIT and ICP monitoring were facilitated by a ring of circumferentially disposed cranial Ag/AgCl electrodes and one intraparenchymal ICP/EIT sensor-electrode combination. Data were recorded at 100 Hz. Two-dimensional tomographic conductivity difference (Δσ) images, rendered using data before and after an injury, were displayed in real-time on an axial circular mesh. Regions of interest (ROI) within the images were automatically selected as the upper or lower 5% of conductivity data depending upon the nature of the injury. Mean Δσ within the ROIs and background were statistically analyzed. ROI Δσ was compared to the background Δσ after an injury event using an

  10. A systematic investigation into the electrical properties of single HeLa cells via impedance measurements and COMSOL simulations.

    PubMed

    Wang, Min-Haw; Jang, Ling-Sheng

    2009-05-15

    The electrical properties of single cells provide fundamental insights into their pathological condition and are therefore of immense interest to medical practitioners. Accordingly, this study captures single HeLa cells using a microfluidic device and then measures their impedance properties using a commercial impedance spectroscopy system. The experimental system is modeled by an equivalent electrical circuit and COMSOL simulations are then performed to establish the conductivity, permittivity and impedance of single HeLa cells under various operational frequencies and voltages. At an operational voltage of 0.2 V, the maximum deviation between the experimental and simulation results for the magnitude and phase of the HeLa cell impedance is found to be 9.5% and 4.2%, respectively. In general, both sets of results show that the conductivity and permittivity of single HeLa cells increase with an increasing operational voltage. Moreover, an increasing frequency is found to increase the conductivity of HeLa cells at all values of the operational voltage, but to reduce the permittivity for operational voltages in the range 0.6-1.0 V. Based upon the simulation and experimental results, empirical equations are constructed to predict the conductivity and permittivity of single HeLa cells under specified values of the operational voltage and frequency, respectively. The maximum discrepancy between the predicted results and the simulation results for the permittivity and conductivity of the HeLa cells at an operational voltage of 0.2 V is found to be just 0.5% and 4.5%, respectively.

  11. Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery.

    PubMed

    Erlandsson, K; Odenstedt, H; Lundin, S; Stenqvist, O

    2006-08-01

    Morbidly obese patients have an increased risk for peri-operative lung complications and develop a decrease in functional residual capacity (FRC). Electric impedance tomography (EIT) can be used for continuous, fast-response measurement of lung volume changes. This method was used to optimize positive end-expiratory pressure (PEEP) to maintain FRC. Fifteen patients with a body mass index of 49 +/- 8 kg/m(2) were studied during anaesthesia for laparoscopic gastric bypass surgery. Before induction, 16 electrodes were placed around the thorax to monitor ventilation-induced impedance changes. Calibration of the electric impedance tomograph against lung volume changes was made by increasing the tidal volume in steps of 200 ml. PEEP was titrated stepwise to maintain a horizontal baseline of the EIT curve, corresponding to a stable FRC. Absolute FRC was measured with a nitrogen wash-out/wash-in technique. Cardiac output was measured with an oesophageal Doppler method. Volume expanders, 1 +/- 0.5 l, were given to prevent PEEP-induced haemodynamic impairment. Impedance changes closely followed tidal volume changes (R(2) > 0.95). The optimal PEEP level was 15 +/- 1 cmH(2)O, and FRC at this PEEP level was 1706 +/- 447 ml before and 2210 +/- 540 ml after surgery (P < 0.01). The cardiac index increased significantly from 2.6 +/- 0.5 before to 3.1 +/- 0.8 l/min/m(2) after surgery, and the alveolar dead space decreased. P(a)O2/F(i)O2, shunt and compliance remained unchanged. EIT enables rapid assessment of lung volume changes in morbidly obese patients, and optimization of PEEP. High PEEP levels need to be used to maintain a normal FRC and to minimize shunt. Volume loading prevents circulatory depression in spite of a high PEEP level.

  12. Evaluation of Electrical Impedance as a Biomarker of Myostatin Inhibition in Wild Type and Muscular Dystrophy Mice

    PubMed Central

    Sanchez, Benjamin; Li, Jia; Yim, Sung; Pacheck, Adam; Widrick, Jeffrey J.; Rutkove, Seward B.

    2015-01-01

    Objectives Non-invasive and effort independent biomarkers are needed to better assess the effects of drug therapy on healthy muscle and that affected by muscular dystrophy (mdx). Here we evaluated the use of multi-frequency electrical impedance for this purpose with comparison to force and histological parameters. Methods Eight wild-type (wt) and 10 mdx mice were treated weekly with RAP-031 activin type IIB receptor at a dose of 10 mg kg−1 twice weekly for 16 weeks; the investigators were blinded to treatment and disease status. At the completion of treatment, impedance measurements, in situ force measurements, and histology analyses were performed. Results As compared to untreated animals, RAP-031 wt and mdx treated mice had greater body mass (18% and 17%, p < 0.001 respectively) and muscle mass (25% p < 0.05 and 22% p < 0.001, respectively). The Cole impedance parameters in treated wt mice, showed a 24% lower central frequency (p < 0.05) and 19% higher resistance ratio (p < 0.05); no significant differences were observed in the mdx mice. These differences were consistent with those seen in maximum isometric force, which was greater in the wt animals (p < 0.05 at > 70 Hz), but not in the mdx animals. In contrast, maximum force normalized by muscle mass was unchanged in the wt animals and lower in the mdx animals by 21% (p < 0.01). Similarly, myofiber size was only non-significantly higher in treated versus untreated animals (8% p = 0.44 and 12% p = 0.31 for wt and mdx animals, respectively). Conclusions Our findings demonstrate electrical impedance of muscle reproduce the functional and histological changes associated with myostatin pathway inhibition and do not reflect differences in muscle size or volume. This technique deserves further study in both animal and human therapeutic trials. PMID:26485280

  13. Advances in imaging and quantification of electrical properties at the nanoscale using Scanning Microwave Impedance Microscopy (sMIM)

    NASA Astrophysics Data System (ADS)

    Friedman, Stuart; Yang, Yongliang; Amster, Oskar

    2015-03-01

    Scanning Microwave Impedance Microscopy (sMIM) is a mode for Atomic Force Microscopy (AFM) enabling imaging of unique contrast mechanisms and measurement of local permittivity and conductivity at the 10's of nm length scale. Recent results will be presented illustrating high-resolution electrical features such as sub 15 nm Moire' patterns in Graphene, carbon nanotubes of various electrical states and ferro-electrics. In addition to imaging, the technique is suited to a variety of metrology applications where specific physical properties are determined quantitatively. We will present research activities on quantitative measurements using multiple techniques to determine dielectric constant (permittivity) and conductivity (e.g. dopant concentration) for a range of materials. Examples include bulk dielectrics, low-k dielectric thin films, capacitance standards and doped semiconductors. Funded in part by DOE SBIR DE-SC0009586.

  14. The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans

    SciTech Connect

    Cruz, J.M.; Fita, I.C.; Soriano, L.; Payá, J.; Borrachero, M.V.

    2013-08-15

    In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration and allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid–solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.

  15. An improved statistical model for linear antenna input impedance in an electrically large cavity.

    SciTech Connect

    Johnson, William Arthur; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Lee, Kelvin S. H.

    2005-03-01

    This report presents a modification of a previous model for the statistical distribution of linear antenna impedance. With this modification a simple formula is determined which yields accurate results for all ratios of modal spectral width to spacing. It is shown that the reactance formula approaches the known unit Lorentzian in the lossless limit.

  16. Sensing of NO2 with Zirconium Hydroxide via Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harris, Coleman; Soliz, Jennifer; Klevitch, Andrew; Rossin, Joseph; Fountain, Augustus, III; Peterson, Gregory; Hauser, Adam

    Nitrogen Dioxide (NO2) is a brown gas mainly produced as a byproduct of burning fossil fuels, such as automobiles and power plants. Nitrogen oxides can form acid rain and smog by reacting with air, can form toxic organic nitrates by reacting with soil, and can react with oxygen in water, destroying marine life due to a lack of breathable oxygen. Any concentration beyond 53 ppb (air quality standard) can cause irritation to the lungs and respiratory infections, and higher dosages can be fatal. As such, research in NO2 detection is incredibly important to human welfare. Zirconium hydroxide (Zr(OH)4) has been investigated as a candidate NO2 dielectric sensor using impedance spectroscopy analysis. Impedance changes of several orders of magnitude are seen down to our dosage minimum of 50 ppmhr. Changes in impedance correlate with nitrogen and oxygen atomic ratio increases observed via X-ray photoelectron spectroscopy (XPS). The results indicate that Zr(OH)4 may be a strong candidate for use in impedance-based NO2 detection devices. A.J.H., J.R.S., A.W.F. and G.W. P. acknowledge funding under Army Research Office STIR Award #W911F-15-1-0104. J.R.S. acknowledges funding under a NRC fellowship and is advised by Dr. Christopher Karwacki, ECBC.

  17. Highly sensitive three-dimensional interdigitated microelectrode for microparticle detection using electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chang, Fu-Yu; Chen, Ming-Kun; Wang, Min-Haw; Jang, Ling-Sheng

    2016-02-01

    Cell impedance analysis is widely used for monitoring biological and medical reactions. In this study, a highly sensitive three-dimensional (3D) interdigitated microelectrode (IME) with a high aspect ratio on a polyimide (PI) flexible substrate was fabricated for microparticle detection (e.g. cell quantity detection) using electroforming and lithography technology. 3D finite element simulations were performed to compare the performance of the 3D IME (in terms of sensitivity and signal-to-noise ratio) to that of a planar IME for particles in the sensing area. Various quantities of particles were captured in Dulbecco’s modified Eagle medium and their impedances were measured. With the 3D IME, the particles were arranged in the gap, not on the electrode, avoiding the noise due to particle position. For the maximum particle quantities, the results show that the 3D IME has at least 5-fold higher sensitivity than that of the planar IME. The trends of impedance magnitude and phase due to particle quantity were verified using the equivalent circuit model. The impedance (1269 Ω) of 69 particles was used to estimate the particle quantity (68 particles) with 98.6% accuracy using a parabolic regression curve at 500 kHz.

  18. Time-lapse electrical impedance spectroscopy for monitoring the cell cycle of single immobilized S. pombe cells

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Frey, Olivier; Haandbaek, Niels; Franke, Felix; Rudolf, Fabian; Hierlemann, Andreas

    2015-11-01

    As a complement and alternative to optical methods, wide-band electrical impedance spectroscopy (EIS) enables multi-parameter, label-free and real-time detection of cellular and subcellular features. We report on a microfluidics-based system designed to reliably capture single rod-shaped Schizosaccharomyces pombe cells by applying suction through orifices in a channel wall. The system enables subsequent culturing of immobilized cells in an upright position, while dynamic changes in cell-cycle state and morphology were continuously monitored through EIS over a broad frequency range. Besides measuring cell growth, clear impedance signals for nuclear division have been obtained. The EIS system has been characterized with respect to sensitivity and detection limits. The spatial resolution in measuring cell length was 0.25 μm, which corresponds to approximately a 5-min interval of cell growth under standard conditions. The comprehensive impedance data sets were also used to determine the occurrence of nuclear division and cytokinesis. The obtained results have been validated through concurrent confocal imaging and plausibilized through comparison with finite-element modeling data. The possibility to monitor cellular and intracellular features of single S. pombe cells during the cell cycle at high spatiotemporal resolution renders the presented microfluidics-based EIS system a suitable tool for dynamic single-cell investigations.

  19. Regional distribution of ventilation in patients with obstructive sleep apnea: the role of thoracic electrical impedance tomography (EIT) monitoring.

    PubMed

    Bongiovanni, Filippo; Mura, Benedetta; Tagliaferri, Chiara; Bisanti, Alessandra; Testani, Elisa; Maviglia, Riccardo; Della Marca, Giacomo

    2016-12-01

    The aim of our study was to apply the electrical impedance tomography (EIT) technique to the study of ventilation during wake and NREM and REM sleep in patients with obstructive sleep apneas (OSA). This is a prospective, observational, monocentric, pilot study in a neurology department with a sleep disorder center. Inclusion criteria were age ≥18 years, both gender, and diagnosis of OSA. Exclusion criteria were the contraindications to the thoracic EIT. All patients underwent laboratory-based polysomnography (PSG) alongside thoracic EIT. Primary endpoint was to compare the global impedance (GI) among the conditions: "Wake" vs "Sleep," "NREM" vs "REM," and "OSA" vs "Non-OSA." Secondary endpoint was to measure the regional distribution of impedance in the four regions of interest (ROIs), in each condition. Of the 17 consecutive patients enrolled, two were excluded because of poor-quality EIT tracings. Fifteen were analyzed, 10 men and 5 women, mean age 51.6 ± 14.4 years. GI was higher in Wake vs Sleep (Wake 13.24 ± 11.23; Sleep 12.56 ± 13.36; p < 0.01), in NREM vs REM (NREM 13.48 ± 13.43; REM 0.59 ± 0.01; p < 0.01), and in Non-OSA vs OSA (Non-OSA 10.50 ± 12.99; OSA 18.98 ± 10.06; p < 0.01). No significant differences were observed in the regional distribution of impedance between Wake and Sleep (χ (2) = 3.66; p = 0.299) and between Non-OSA and OSA (χ (2) = 1.00; p = 0.799); conversely, a significant difference was observed between NREM and REM sleep (χ (2) = 62.94; p < 0.001). To our knowledge, this is the first study that addresses the issue of regional ventilation in OSA patients during sleep. Thoracic electrical impedance changes through the sleep-wake cycle and during obstructive events. The application of thoracic EIT can prove a valuable additional strategy for the evaluation of OSA patients.

  20. Impedance spectroscopy of composites based on waste polymeric materials for electrical engineering purposes

    NASA Astrophysics Data System (ADS)

    Zubko, V. I.; Zubko, D. V.

    2012-07-01

    We have developed a high-sensitivity capacitance transducer and a method for measuring the complex of electrical indices of composites based on waste polymeric materials in the frequency range from 100 Hz to 1 MHz. The electrical properties of composites depending on the electric field frequency and the content and type of the filler have been investigated.

  1. Cross-sectional evaluation of electrical impedance myography and quantitative ultrasound for the assessment of Duchenne muscular dystrophy in a clinical trial setting.

    PubMed

    Rutkove, Seward B; Geisbush, Tom R; Mijailovic, Aleksandar; Shklyar, Irina; Pasternak, Amy; Visyak, Nicole; Wu, Jim S; Zaidman, Craig; Darras, Basil T

    2014-07-01

    Electrical impedance myography and quantitative ultrasound are two noninvasive, painless, and effort-independent approaches for assessing neuromuscular disease. Both techniques have potential to serve as useful biomarkers in clinical trials in Duchenne muscular dystrophy. However, their comparative sensitivity to disease status and how they relate to one another are unknown. We performed a cross-sectional analysis of electrical impedance myography and quantitative ultrasound in 24 healthy boys and 24 with Duchenne muscular dystrophy, aged 2 to 14 years with trained research assistants performing all measurements. Three upper and three lower extremity muscles were studied unilaterally in each child, and the data averaged for each individual. Both electrical impedance myography and quantitative ultrasound differentiated healthy boys from those with Duchenne muscular dystrophy (P < 0.001 for both). Quantitative ultrasound values correlated with age in Duchenne muscular dystrophy boys (rho = 0.45; P = 0.029), whereas electrical impedance myography did not (rho = -0.31; P = 0.14). However, electrical impedance myography phase correlated with age in healthy boys (rho = 0.51; P = 0.012), whereas quantitative ultrasound did not (rho = -0.021; P = 0.92). In Duchenne muscular dystrophy boys, electrical impedance myography phase correlated with the North Star Ambulatory Assessment (rho = 0.65; P = 0.022); quantitative ultrasound revealed a near-significant association (rho = -0.56; P = 0.060). The two technologies trended toward a moderate correlation with one another in the Duchenne muscular dystrophy cohort but not in the healthy group (rho = -0.40; P = 0.054 and rho = -0.32; P = 0.13, respectively). Electrical impedance myography and quantitative ultrasound are complementary modalities for the assessment of boys with Duchenne muscular dystrophy; further study and application of these two modalities alone or in combination in a longitudinal fashion are warranted. Copyright

  2. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency

    PubMed Central

    Park, Yangkyu; Kim, Hyeon Woo; Yun, Joho; Seo, Seungwan; Park, Chang-Ju; Lee, Jeong Zoo; Lee, Jong-Hyun

    2016-01-01

    Purpose. To distinguish between normal (SV-HUC-1) and cancerous (TCCSUP) human urothelial cell lines using microelectrical impedance spectroscopy (μEIS). Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF) was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT) was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p < 0.001), was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p < 0.001). Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF. PMID:26998490

  3. In situ characterization of fouling in reverse osmosis membranes using electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chilcott, Terry; Antony, Alice; Coster, Hans; Leslie, Greg

    2013-04-01

    Analytical solutions of the Nernst-Planck, Poisson and continuity equations for a membrane undergoing reverse osmosis in a cross-flow system reveal that the flow of alternating ionic charge induced in the membrane during impedance measurements is actively assisted by the flow of water. The actively driven current manifested "inductive" responses in impedance measurements of a Filmtec BW30 reverse osmosis membrane mounted in an Inphaze flat-bed cross-flow module after 16 hours of filtering a mineral salt solution seeded with CaCl2 and NaHCO3 at pressure of 900 kPa. Fitted transfer functions resolved conduction and capacitive properties of four membrane layers, diffusion/concentration phenomenon and a pseudo "inductor" shunted by a conductor. A 10-fold decrease in the shunt conductance correlated with smaller increases in the conductance values for the filtrate and membranous layers, and the onset of fouling diagnosed by a rapid increase in flux decline.

  4. Monitoring the spreading stage of lung cells by silicon nanowire electrical cell impedance sensor for cancer detection purposes.

    PubMed

    Abiri, Hamed; Abdolahad, Mohammad; Gharooni, Milad; Hosseini, Seyed Ali; Janmaleki, Mohsen; Azimi, Soheil; Hosseini, Mohammad; Mohajerzadeh, Shams

    2015-06-15

    We developed a silicon nanowire based electrical cell impedance sensor (SiNW-ECIS) as an instrument that detects cancerous cultured living lung cells by monitoring their spreading state at which the cells stretched and become extended on nanowires. Further current penetration into the extended membrane of malignant cells in respect to normal ones (In the first 6h after cells interaction with surface) are the key mechanism in our diagnosis procedure. The developed device applied to monitor the spreading-induced electrical differences between cancerous and normal lung cells in an integral fashion. Detection was performed so faster than the time required to complete cells mitosis. Morphology and architecture of doped Si nanowires covered microelectrodes observably enhance the contact area between cells and electrodes which support accurate signal recording from stretched cells as indicated by SEM and florescent images. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Reduced electrical impedance of SiO{sub 2}, deposited through focused ion beam based systems, due to impurity percolation

    SciTech Connect

    Faraby, H.; DiBattista, M.; Bandaru, P. R.

    2014-11-28

    The electrical impedance (both the resistive and capacitive aspects) of focused ion beam (FIB) deposited SiO{sub 2} has been correlated to the specific composition of the ion beam, in Ga- and Xe-based FIB systems. The presence of electrically percolating Ga in concert with carbon (inevitably found as the product of the hydrocarbon precursor decomposition) has been isolated as a major cause for the observed decrease in the resistivity of the deposited SiO{sub 2}. Concomitant with the decreased resistivity, an increased capacitance and effective dielectric constant was observed. Our study would be useful to understand the constraints to the deposition of high quality insulator films through FIB based methodologies.

  6. Investigation of the electrical impedance of acupuncture points and non-acupuncture points before and after acupuncture, using a four-electrode device.

    PubMed

    Khorsand, Ali; Zhu, Jiang; Bahrami-Taghanaki, Hamidreza; Baghani, Sara; Ma, Liangxiao; Rezaei, Shima

    2015-06-01

    To evaluate the effect of acupuncture on skin electrical impedance of selected points, before and after acupuncture on one acupuncture point (PC6), using a four-electrode device. Six acupuncture and non-acupuncture points on both sides of the body were selected to evaluate the effects of acupuncture on electrical properties of these points. There were no results significant differences of electrical impedance before and after acupuncture in the selected points. According to our experimental set-up, acupuncture at one point without stimulation does not alter skin electrical impedance in healthy volunteers and there is no difference between acupuncture points and non-acupuncture points. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Electric impedance sensing in cell-substrates for rapid and selective multipotential differentiation capacity monitoring of human mesenchymal stem cells.

    PubMed

    Reitinger, Stephan; Wissenwasser, Jürgen; Kapferer, Werner; Heer, Rudolf; Lepperdinger, Günter

    2012-04-15

    Biosensor systems which enable impedance measurements on adherent cell layers under label-free conditions are considered powerful tools for monitoring specific biological characteristics. A radio frequency identification-based sensor platform was adopted to characterize cultivation and differentiation of human bone marrow-derived multipotent stem cells (bmMSC) over periods of up to several days and weeks. Electric cell-substrate impedance sensing was achieved through fabrication of sensitive elements onto glass substrates which comprised two comb-shaped interdigitated gold electrodes covering an area of 1.8 mm×2 mm. The sensing systems were placed into the wells of a 6-well tissue culture plate, stacked onto a reader unit and could thus be handled and operated under sterile conditions. Continuous measurements were carried out with a sinusoidal voltage of 35 mV at a frequency of 10 kHz. After seeding of human bmMSC, this sensor was able to trace significant impedance changes contingent upon cell spreading and adhesion. The re-usable system was further proven suitable for live examination of cell-substrate attachment or continuous cell monitoring up to several weeks. Induction of either osteogenic or adipogenic differentiation could be validated in bmMSC cultures within a few days, in contrast to state-of-the-art protocols, which require several weeks of cultivation time. In the context of medical cell production in a GMP-compliant process, the here presented interdigitated electric microsensor technology allows the documentation of MSC quality in a fast, efficient and reliable fashion. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Towards on line monitoring the evolution of the myocardium infarction scar with an implantable electrical impedance spectrum monitoring system.

    PubMed

    Sanchez, B; Guasch, A; Bogonez, P; Galvez, C; Puig, V; Prat, C; Semino, C E; Bayes-Genis, A; Bragos, R

    2012-01-01

    The human heart tissue has a limited capacity for regeneration. Tissue and cellular therapies based on the use of stem cells may be useful alternatives to limit the size of myocardial infarction. In this paper, the preliminary results from an experimental campaign for on-line monitoring of myocardium scar infarction are presented. This study has been carried out under a research project that has as main objective the development and application of a bioactive patch implant for regeneration of myocardial infarction. Electrical Impedance Spectroscopy (EIS) has been chosen as a tissue state monitoring technique. What is presented in this communication is the first results of an implantable EIS measurement system which has been implanted in a subset of the animals corresponding to the control group, along one month. In all the animals, the myocardial infarction was induced by the ligation of the first circumflex marginal artery. In the animal group presented, the bioactive patch scaffold and the electrodes were implanted without the stem cells load. The scaffold is a piece of decellularized human pericardium, lyophilized and rehydrated with hydrogel RAD16-I. Nanogold particles were also placed near the electrodes to improve the electrode area conductivity. The results presented correspond to the subset of animals (n = 5), which had implanted the bioimpedance system monitoring the electrical impedance spectrum in vivo during 1 month. Two electrodes were connected to the bioactive patch implant. A total of 14 logarithmically spaced frequencies were measured every 5 minutes, from 100 Hz to 200 kHz. Results show a convergence of low-frequency and high frequency impedance magnitudes along the measurement period, which is coherent with the scar formation.

  9. Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity

    PubMed Central

    García-Arribas, Alfredo; Gutiérrez, Jon; Kurlyandskaya, Galina V.; Barandiarán, José M.; Svalov, Andrey; Fernández, Eduardo; Lasheras, Andoni; de Cos, David; Bravo-Imaz, Iñaki

    2014-01-01

    The outstanding properties of selected soft magnetic materials make them successful candidates for building high performance sensors. In this paper we present our recent work regarding different sensing technologies based on the coupling of the magnetic properties of soft magnetic materials with their electric or elastic properties. In first place we report the influence on the magneto-impedance response of the thickness of Permalloy films in multilayer-sandwiched structures. An impedance change of 270% was found in the best conditions upon the application of magnetic field, with a low field sensitivity of 140%/Oe. Second, the magneto-elastic resonance of amorphous ribbons is used to demonstrate the possibility of sensitively measuring the viscosity of fluids, aimed to develop an on-line and real-time sensor capable of assessing the state of degradation of lubricant oils in machinery. A novel analysis method is shown to sensitively reveal the changes of the damping parameter of the magnetoelastic oscillations at the resonance as a function of the oil viscosity. Finally, the properties and performance of magneto-electric laminated composites of amorphous magnetic ribbons and piezoelectric polymer films are investigated, demonstrating magnetic field detection capabilities below 2.7 nT. PMID:24776934

  10. An approach to fouling characterization of an ion-exchange membrane using current-voltage relation and electrical impedance spectroscopy.

    PubMed

    Park, Jin-Soo; Choi, Jae-Hwan; Yeon, Kyeong-Ho; Moon, Seung-Hyeon

    2006-02-01

    Fouling phenomena of an anion-exchange membrane by bovine serum albumin (BSA) were investigated using current-voltage relation and electrical impedance spectroscopy (EIS) in this study. Electrochemical parameters of the Neosepta CMX cation- and AMX anion-exchange membrane (Tokuyama Corp., Japan) such as limiting current density (LCD), transport number, plateau length, and fraction of the conducting phase were measured. Fraction of the conducting phase of the ion-exchange membranes, calculated from the modified Sand equation, played an important role in determining the electrochemical parameters in the presence of foulants such as BSA. Fraction of the conducting phase of the AMX membrane significantly decreased in the presence of BSA. Two distinguishable slopes were observed in the over-LCD region of the current-voltage (I-V) curve, indicating the change of resistance. To further elucidate the phenomena, the electrical impedance spectroscopic study was carried out using the offset alternating current. It was found that the negatively charged loose fouling layer changed to the dense deposited BSA on the surface of the AMX membrane occurring along with enhanced water dissociation phenomena at the surface of the fouled AMX membrane at a higher current density. This result was confirmed by water dissociation experiments in a six-compartment electrodialysis cell.

  11. A quantitative cell modeling and wound-healing analysis based on the Electric Cell-substrate Impedance Sensing (ECIS) method.

    PubMed

    Yang, Jen Ming; Chen, Szi-Wen; Yang, Jhe-Hao; Hsu, Chih-Chin; Wang, Jong-Shyan

    2016-02-01

    In this paper, a quantitative modeling and wound-healing analysis of fibroblast and human keratinocyte cells is presented. Our study was conducted using a continuous cellular impedance monitoring technique, dubbed Electric Cell-substrate Impedance Sensing (ECIS). In fact, we have constructed a mathematical model for quantitatively analyzing the cultured cell growth using the time series data directly derived by ECIS in a previous work. In this study, the applicability of our model into the keratinocyte cell growth modeling analysis was assessed first. In addition, an electrical "wound-healing" assay was used as a means to evaluate the healing process of keratinocyte cells at a variety of pressures. Two innovative and new-defined indicators, dubbed cell power and cell electroactivity, respectively, were developed for quantitatively characterizing the biophysical behavior of cells. We then employed the wavelet transform method to perform a multi-scale analysis so the cell power and cell electroactivity across multiple observational time scales may be captured. Numerical results indicated that our model can well fit the data measured from the keratinocyte cell culture for cell growth modeling analysis. Also, the results produced by our quantitative analysis showed that the wound healing process was the fastest at the negative pressure of 125mmHg, which consistently agreed with the qualitative analysis results reported in previous works. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation

    PubMed Central

    Yun, Joho; Kim, Hyeon Woo; Lee, Jong-Hyun

    2016-01-01

    A micro electrical impedance spectroscopy (EIS)-on-a-needle for depth profiling (μEoN-DP) with a selective passivation layer (SPL) on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs) to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS) at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle) were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL), were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output. PMID:28009845

  13. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.

    PubMed

    Song, Junho; Lucht, Benjamin; Hynynen, Kullervo

    2012-07-01

    With a change in phased-array configuration from one dimension to two, the electrical impedance of the array elements is substantially increased because of their decreased width (w)-to-thickness (t) ratio. The most common way to compensate for this impedance increase is to employ electrical matching circuits at a high cost of fabrication complexity and effort. In this paper, we introduce a multilayer lateral-mode coupling method for phased-array construction. The direct comparison showed that the electrical impedance of a single-layer transducer driven in thickness mode is 1/(n²(1/(w/t))²) times that of an n-layer lateral mode transducer. A large reduction of the electrical impedance showed the impact and benefit of the lateral-mode coupling method. A one-dimensional linear 32-element 770-kHz imaging array and a 42-element 1.45-MHz high-intensity focused ultrasound (HIFU) phased array were fabricated. The averaged electrical impedances of each element were measured to be 58 Ω at the maximum phase angle of -1.2° for the imaging array and 105 Ω at 0° for the HIFU array. The imaging array had a center frequency of 770 kHz with an averaged -6-dB bandwidth of approximately 52%. For the HIFU array, the averaged maximum surface acoustic intensity was measured to be 32.8 W/cm² before failure.

  14. Micro electrical impedance spectroscopy on a needle for ex vivo discrimination between human normal and cancer renal tissues.

    PubMed

    Yun, Joho; Kim, Hyeon Woo; Park, Yangkyu; Cha, Jung-Joon; Lee, Jeong Zoo; Shin, Dong Gil; Lee, Jong-Hyun

    2016-05-01

    The ex-vivo discrimination between human normal and cancer renal tissues was confirmed using μEoN (micro electrical impedance spectroscopy-on-a-needle) by measuring and comparing the electrical impedances in the frequency domain. To quantify the extent of discrimination between dissimilar tissues and to determine the optimal frequency at which the discrimination capability is at a maximum, discrimination index (DI) was employed for both magnitude and phase. The highest values of DI for the magnitude and phase were 5.15 at 1 MHz and 3.57 at 1 kHz, respectively. The mean magnitude and phase measured at the optimal frequency for normal tissues were 5013.40 ± 94.39 Ω and -68.54 ± 0.72°, respectively; those for cancer tissues were 4165.19 ± 70.32 Ω and -64.10 ± 0.52°, respectively. A statistically significant difference (p< 0.05) between the two tissues was observed at all the investigated frequencies. To extract the electrical properties (resistance and capacitance) of these bio-tissues through curve fitting with experimental results, an equivalent circuit was proposed based on the μEoN structure on the condition that the μEoN was immersed in the bio-tissues. The average and standard deviation of the extracted resistance and capacitance for the normal tissues were 6.22 ± 0.24 kΩ and 280.21 ± 32.25 pF, respectively, and those for the cancer tissues were 5.45 ± 0.22 kΩ and 376.32 ± 34.14 pF, respectively. The electrical impedance was higher in the normal tissues compared with the cancer tissues. The μEoN could clearly discriminate between normal and cancer tissues by comparing the results at the optimal frequency (magnitude and phase) and those of the curve fitting (extracted resistance and capacitance).

  15. Sensing method based on impedance variation of minicolumn packed with cation-exchanger under electric field.

    PubMed

    Tsuji, Tadasuke; Kitagawa, Shinya; Ohtani, Hajime

    2009-06-01

    Voltage-induced impedance variation of the minicolumn (i.d. 0.53 mm, length 2 mm) packed with cation exchanger was investigated to develop a sensing method. An aqueous sample solution containing the metal cations was continuously supplied to the minicolumn during the impedance measurement with the simultaneous application of both alternating current voltage (amplitude, 1.0 V; frequency, 200 kHz to 6 Hz) and direct current (DC) offset voltage (0.1 to 1.0 V). On a complex plane plot, the profile of the column impedance consisted of a semicircle (200 kHz to 100 Hz) and a straight line (<100 Hz), of which slope varied with the magnitude of the applied DC offset voltage (V(DC)). The slope-V(DC) relation depended on the kind of the metal cation and its concentration; in particular, the slope-V(DC) relations of monovalent cations (Na(+) and K(+)) and divalent ones (Mg(2+) and Ca(2+)) were significantly different. With the change in the concentration of minor divalent salt of MgCl(2) or CaCl(2) (60 to 140 microM) in the sample solution containing 10 mM NaCl, the slopes showed almost linear relationships between those with application of V(DC) = 0.1 V and 1.0 V both for magnesium and calcium additions. In the case of plural addition of both MgCl(2) and CaCl(2) to the solution, the data points in the slope(0.1 V)-slope(1.0 V) plot were located between the two proportional lines for single additions of magnesium and calcium, reflecting both the mixing ratio and net concentrations of the divalent cations. Thus, simulations determination of Mg(2+) and Ca(2+) can be attained on the basis of the slope(0.1 V)-slope(1.0 V) relation obtained by the impedance measurements of the minicolumn. Actually, the contents of both magnesium and calcium cations in the bottled mineral waters determined simultaneously using the proposed method were almost equivalent to those obtained by the atomic absorption spectrometric measurement.

  16. Input impedance of coaxially fed rectangular microstrip antenna on electrically thick substrate

    NASA Technical Reports Server (NTRS)

    Chen, Wei; Lee, Kai-Fong; Lee, R. Q.

    1993-01-01

    A full-wave spectral domain analysis has been used to obtain input-impedance results for a probe-fed rectangular-patch antenna, modeling the source as a magnetic-current frill. Multiple modes are used in the probe surface current to account for axial and azimuthal variations. It is established that maximum resistance is dependent on the substrate loss tangent. The axial variation of the probe current must be taken into account for substrate thicknesses greater than about 0.02 wavelengths.

  17. The performance of integrated transconductance amplifiers as variable current sources for bio-electric impedance measurements.

    PubMed

    Smith, D N

    1992-01-01

    Multiple applied current impedance measurement systems require numbers of current sources which operate simultaneously at the same frequency and within the same phase but at variable amplitudes. Investigations into the performance of some integrated operational transconductance amplifiers as variable current sources are described. Measurements of breakthrough, non-linearity and common-mode output levels for LM13600, NE5517 and CA3280 were carried out. The effects of such errors on the overall performance and stability of multiple current systems when driving floating loads are considered.

  18. Light-induced changes in the electrical impedance of the isolated frog retina

    PubMed Central

    Coles, J. A.

    1972-01-01

    1. An isolated frog retina was mounted in an impedance chamber and superfused on its vitread surface. 2. Changes in the real part of the impedance (ΔR) and also in the imaginary part were measured using alternating current in the frequency range 1-300 kHz passed from one surface of the retina to the other. 3. Under most conditions, the response to a flash of light, measured at frequencies below about 100 kHz, was a decrease in the real part of the impedance (ΔR < 0). 4. The geometry of the electrodes was such that the system was particularly sensitive to changes in the impedance of the layer of photo-receptor outer segments. It was confirmed that most of ΔR did arise here and that it was mediated by the absorption of light in rod photo-pigment. 5. The magnitude of ΔR increased when the channels between the outer segments were constricted, e.g. by osmotic swelling of the outer segments. In addition to this increase, a further increase was seen following the commencement of recording in most of the experiments from which usable measurements were obtained. 6. In such retinas, the magnitude of ΔR was greatest when measured at a frequency in the range 3-32 kHz, the largest changes being of the order of 0·1% of the resting value. A light flash bleaching about 1% of the pigment was sufficient to produce this. The onset of ΔR was apparent within 1 msec of the flash (at 15° C); it reached a maximum in 0·5-4 sec and then returned towards the base line. 7. The main component of ΔR was attributed to a decrease in the resistance of the spaces between the outer segments. In addition, there was a resistance increase which occurred at some other site, probably the surface membrane. The first of these components had an onset slightly more rapid than the second, and both occurred irrespective of whether the major cation in the superfusate was sodium or potassium. PMID:4539862

  19. Transfer impedance simulation and measurement methods to analyse shielding behaviour of HV cables used in Electric-Vehicles and Hybrid-Electric-Vehicles

    NASA Astrophysics Data System (ADS)

    Mushtaq, Abid; Frei, Stephan

    2016-09-01

    In the power drive system of the Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs), High Voltage (HV) cables play a major role in evaluating the EMI of the whole system. Transfer impedance (ZT) is the most commonly used performance parameter for the HV cable. To analyse and design HV cables and connectors with better shielding effectiveness (SE), appropriate measurement and simulation methods are required. In this paper, Ground Plate Method (GPM) with improvements has been proposed to measure ZT. Use of low-frequency ferrites to avoid ground-loop effects has also been investigated. Additionally, a combination of analytical model with a circuit model has been implemented to simulate limitations (frequency response) of the test setup. Also parametrical studies using the analytical model have been performed to analyse the shielding behaviour of HV cables.

  20. [Optimal electrode array for ambulatory measuring of cardiac output based on the electrical impedance method].

    PubMed

    Song, Yilin; Gao, Shumei; Ikrashi, Akira; Yamakoshi, Ken-ichi

    2011-02-01

    Principle of ambulatory cardiac output (CO) measuring technique is introduced in this paper. A lot of experimental studies of the current distribution on the thorax under the condition that the current injection electrodes were adhered to different positions were carried out by using a developed multi-channel impedance mapping system. The static impedance contour maps (Zo-map) and its pulsatile component contour maps (deltaZ-map) under different measuring conditions were analyzed, and the applicability of a two-compartment coaxial cylindrical model using a spot-electrode array instead of the conventional band-electrode array for ambulatory CO measurement, as well as the optimal spot-electrode array, were discussed. Based on the experimental results and the daily use of the ambulatory CO measuring technique, the optimal spot-electrode array meeting the condition of the two-compartment coaxial cylindrical model was determined as that a pair of spot-electrodes for current injection was located on the positions behind the ears and on the right lower abdomen, and a pair of spot-electrodes for voltage pick-up places on the medial portion at the level of clavicle and on the portion above the xiphisternum.

  1. [Experimental study on electric impedance of acupuncture based on the midnight-noon ebb-flow theory].

    PubMed

    Yang, Yue; Zhou, Gui-Tong

    2011-08-01

    Relationship among three point selection methods based on the midnight-noon ebb-flow theory, namely Najia fa (day- prescription of acupoints), Nazi fa (hour-prescription of acupoints) and Yangzi Shike Zhuxue fa (point-open method based on the mother and son relation as well as the hours and its divisions), were approved in the article, which provided the scientific validity of the correlation among three point selection methods of midnight-noon ebb-flow theory. Electric impedance on relevant acupoints of 30 health subjects on the period of the day of Zishi (from 11:00 p.m. to 1:00 a.m.), Maoshi (from 5:00 a.m. to 7:00 a.m.), Wushi (from 11:00 a.m. to 1:00 p.m.) and Youshi (from 5:00 p.m. to 7:00 p.m.) were tested with NQ-1B conductivity meter. And statistical analysis was made on the testing results. The daily average value of the method of Najia fa in 1 circle of the midnight-noon ebb-flow theory was 0.459omega, the value of the method of Nazi fa was 0.553omega, and the Yangzi Shike Zhuxue fa was 0.533omega. At the same time, it presented a tendency of first raising and then declining from Zishi to Youshi with the peak appears at Maoshi and the valley at Youshi. The differences of comparison of the average electric impedance between Najia fa and Nazi fa, Najia fa and Yangzi Shike Zhuxue fa were considered statistical significant (both P < 0.001). When 2 values of different methods within the same hours were compared, the value difference between Najia fa and Nazi fa in the time period of Wushi and the difference between Najia fa and Yangzi Shike Zhuxue fa in the time period of Wushi were considered statistical significant (P < 0.001, P < 0.01). The changing tendency of electric impedance of different point selection methods based on midnight-noon ebb-flow theory is similar, however, with weak relevance. Moreover, obvious differences can still be found in point location and time selection.

  2. In vivo bioimpedance changes during haemorrhagic and ischaemic stroke in rats: towards 3D stroke imaging using electrical impedance tomography.

    PubMed

    Dowrick, T; Blochet, C; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) could be used as a portable non-invasive means to image the development of ischaemic stroke or haemorrhage. The purpose of this study was to examine if this was possible using time difference imaging, in the anesthetised rat using 40 spring-loaded scalp electrodes