Sample records for electric launch system

  1. n/a

    NASA Image and Video Library

    1970-02-04

    The Thorad-Agena launch vehicle with the SERT-2 (Space Electric Rocket Test-2) spacecraft on launch pad at the Western Test Range in California. The SERT-2 was launched on February 4, 1970 and tested the capability of an electric ion thruster system.

  2. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall Effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenarios eight Delta 7920 launch vehicles.

  3. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending, on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenario's eight Delta 7920 launch vehicles.

  4. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  5. Electric Propulsion Options for a Magnetospheric Mapping Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Russell, Chris; Hack, Kurt; Riehl, John

    1998-01-01

    The Twin Electric Magnetospheric Probes Exploring on Spiral Trajectories mission concept was proposed as a Middle Explorer class mission. A pre-phase-A design was developed which utilizes the advantages of electric propulsion for Earth scientific spacecraft use. This paper presents propulsion system analyses performed for the proposal. The proposed mission required two spacecraft to explore near circular orbits 0.1 to 15 Earth radii in both high and low inclination orbits. Since the use of chemical propulsion would require launch vehicles outside the Middle Explorer class a reduction in launch mass was sought using ion, Hall, and arcjet electric propulsion system. Xenon ion technology proved to be the best propulsion option for the mission requirements requiring only two Pegasus XL launchers. The Hall thruster provided an alternative solution but required two larger, Taurus launch vehicles. Arcjet thrusters did not allow for significant launch vehicle reduction in the Middle Explorer class.

  6. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  7. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  8. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  9. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  10. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  11. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

  12. Advanced Electric Propulsion for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steve

    1999-01-01

    The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.

  13. 112. VIEW OF SOUTH SIDE OF MECHANICAL AND ELECTRICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    112. VIEW OF SOUTH SIDE OF MECHANICAL AND ELECTRICAL ROOM (110), LSB (BLDG. 770). VEHICLE MECHANICAL SYSTEMS ROOM (111) AND PNEUMATIC SUPPLY PANEL VISIBLE AT SOUTH END OF MECHANICAL AND ELECTRICAL ROOM (110). PAYLOAD CABLE DISTRIBUTION BOX ON LEFT OF PHOTO, FACING WEST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  15. Design of an airborne launch vehicle for an air launched space booster

    NASA Astrophysics Data System (ADS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-12-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  16. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A view from underneath one of the vertical support posts for NASA's Space Launch System rocket. Two after skirt electrical umbilicals (ASEUs) and the first of the vertical support post were transported by flatbed truck from the Launch Equipment Test Facility to the Mobile Launcher Yard as NASA's Kennedy Space Center in Florida. The ASEUs and the VSP underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  17. Solar power satellite. System definition study. Part 1, volume 4: SPS transportation system requirements. [spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The best estimates of space transportation requirements for cargo launch vehicles, personnel launch carriers, high thrust orbit transfer, and electric orbit transfer systems are discussed, along with the rationale for each.

  18. Advanced Launch System (ALS) actuation and power systems impact operability and cost

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  19. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  20. Structural Analysis of Lightning Protection System for New Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cope, Anne; Moore, Steve; Pruss, Richard

    2008-01-01

    This project includes the design and specification of a lightning protection system for Launch Complex 39 B (LC39B) at Kennedy Space Center, FL in support of the Constellation Program. The purpose of the lightning protection system is to protect the Crew Launch Vehicle (CLV) or Cargo Launch Vehicle (CaLV) and associated launch equipment from direct lightning strikes during launch processing and other activities prior to flight. The design includes a three-tower, overhead catenary wire system to protect the vehicle and equipment on LC39B as described in the study that preceded this design effort: KSC-DX-8234 "Study: Construct Lightning Protection System LC3 9B". The study was a collaborative effort between Reynolds, Smith, and Hills (RS&H) and ASRC Aerospace (ASRC), where ASRC was responsible for the theoretical design and risk analysis of the lightning protection system and RS&H was responsible for the development of the civil and structural components; the mechanical systems; the electrical and grounding systems; and the siting of the lightning protection system. The study determined that a triangular network of overhead catenary cables and down conductors supported by three triangular free-standing towers approximately 594 ft tall (each equipped with a man lift, ladder, electrical systems, and communications systems) would provide a level of lightning protection for the Constellation Program CLV and CaLV on Launch Pad 39B that exceeds the design requirements.

  1. Trajectory and System Analysis For Outer-Planet Solar-Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Woo, Byoungsam; Coverstone, Victoria L.; Hartmann, John W.

    2004-01-01

    Outer-planet mission and systems analyses are performed using three next generation solar-electric ion thruster models. The impact of variations in thruster model, flight time, launch vehicle, propulsion and power systems characteristics is investigated. All presented trajectories have a single Venus gravity assist and maximize the delivered mass to Saturn or Neptune. The effect of revolution ratio - the ratio of Venusian orbital period to the flight time between launch and flyby dates - is also discussed.

  2. Chemical and Solar Electric Propulsion Systems Analyses for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.; Green, Shaun E.; Coverstone, Victoria L.; Woo, Byoungsam

    2004-01-01

    Conceptual in-space transfer stages, including those utilizing solar electric propulsion, chemical propulsion, and chemical propulsion with aerobraking or aerocapture assist at Mars, were evaluated. Roundtrip Mars sample return mission vehicles were analyzed to determine how specific system technology selections influence payload delivery capability. Results show how specific engine, thruster, propellant, capture mode, trip time and launch vehicle technology choices would contribute to increasing payload or decreasing the size of the required launch vehicles. Heliocentric low-thrust trajectory analyses for Solar Electric Transfer were generated with the SEPTOP code.

  3. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  4. StarTram: An Ultra Low Cost Launch System to Enable Large Scale Exploration of the Solar System

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John

    2006-01-01

    StarTram is a new approach for low launch to space using Maglev technology. Spacecraft are magnetically levitated and accelerated without propellants to orbital speeds in an evacuated tunnel at ground level using only electrical energy. The cost of the electric energy for acceleration to 8 kilometers per second is only 60 cents per kilogram of payload. After reaching orbital speed, the StarTram spacecraft coast upwards inside an evacuated levitated launch tube to an altitude, of 10 kilometers or more, where they enter the low-pressure ambient atmosphere. The launch tube is magnetically levitated by the repulsive force between a set of high current superconducting cables on it and oppositely directed currents in a set of superconducting cables on the ground beneath. High strength Kevlar tethers anchor the launch tube against crosswinds and prevent it from moving laterally or vertically. A Magneto Hydro Dynamic (MHD) pump at the exit of the evacuated launch tube prevents air from entering the tube. Two StarTram systems are described, a high G (30G) system for cargo only launch and a moderate G (2.5 G) system for passenger/cargo spacecraft. StarTram's projected unit cost is $30 per kilogram of payload launched, including operating and amortization costs. A single StarTram facility could launch more than 100,000 tons of cargo per year and many thousands of passengers. StarTram would use existing superconductors and materials, together with Maglev technology similar to that now operating. The StarTram cargo launch system could be implemented by 2020 AD and the passenger system by 2030 AD.

  5. RATANA MEEKHAM, AN ELECTRICAL INTEGRATION TECHNICIAN FOR QUALIS CORP. OF HUNTSVILLE, ALABAMA, HELPS TEST AVIONICS -- COMPLEX VEHICLE SYSTEMS ENABLING NAVIGATION, COMMUNICATIONS AND OTHER FUNCTIONS CRITICAL TO HUMAN SPACEFLIGHT

    NASA Image and Video Library

    2015-01-08

    RATANA MEEKHAM, AN ELECTRICAL INTEGRATION TECHNICIAN FOR QUALIS CORP. OF HUNTSVILLE, ALABAMA, HELPS TEST AVIONICS -- COMPLEX VEHICLE SYSTEMS ENABLING NAVIGATION, COMMUNICATIONS AND OTHER FUNCTIONS CRITICAL TO HUMAN SPACEFLIGHT -- FOR THE SPACE LAUNCH SYSTEM PROGRAM AT NASA’S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA. HER WORK SUPPORTS THE NASA ENGINEERING & SCIENCE SERVICES AND SKILLS AUGMENTATION CONTRACT LED BY JACOBS ENGINEERING OF HUNTSVILLE. MEEKHAM WORKS FULL-TIME AT MARSHALL WHILE FINISHING HER ASSOCIATE'S DEGREE IN MACHINE TOOL TECHNOLOGY AT CALHOUN COMMUNITY COLLEGE IN DECATUR, ALABAMA. THE SPACE LAUNCH SYSTEM, NASA’S NEXT HEAVY-LIFT LAUNCH VEHICLE, IS THE WORLD’S MOST POWERFUL ROCKET, SET TO FLY ITS FIRST UNCREWED LUNAR ORBITAL MISSION IN 2018. ITS FIRST.

  6. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A flatbed truck carries a vertical support post (VSP) for NASA's Space Launch System (SLS) rocket to the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. The two aft skirt electrical umbilicals (ASEUs) and the first of the vehicle support posts underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  7. 14 CFR 415.25 - Application requirements for policy review.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Identify the model and configuration of any launch vehicle proposed for launch by the applicant. (b) Identify structural, pneumatic, propellant, propulsion, electrical and avionics systems used in the launch vehicle and all propellants. (c) Identify foreign ownership of the applicant as follows: (1) For a sole...

  8. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers in the Payload Hazardous Servicing Facility remove the storage collar from a radioisotope thermoelectric generator (RTG) in preparation for installation on the Cassini spacecraft. Cassini will be outfitted with three RTGs. The power units are undergoing mechanical and electrical verification tests in the PHSF. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle.

  9. KSC-97PC1068

    NASA Image and Video Library

    1997-07-18

    Jet Propulsion Laboratory (JPL) workers Dan Maynard and John Shuping prepare to install a radioisotope thermoelectric generator (RTG) on the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF). The three RTGs which will provide electrical power to Cassini on its mission to the Saturnian system are undergoing mechanical and electrical verification testing in the PHSF. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL

  10. Electric propulsion for lunar exploration and lunar base development

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1992-01-01

    Using electric propulsion to deliver materials to lunar orbit for the development and construction of a lunar base was investigated. Because the mass of the base and its life-cycle resupply mass are large, high specific impulse propulsion systems may significantly reduce the transportation system mass and cost. Three electric propulsion technologies (arcjet, ion, and magnetoplasmadynamic (MPD) propulsion) were compared with oxygen/hydrogen propulsion for a lunar base development scenario. Detailed estimates of the orbital transfer vehicles' (OTV's) masses and their propellant masses are presented. The fleet sizes for the chemical and electric propulsion systems are estimated. Ion and MPD propulsion systems enable significant launch mass savings over O2/H2 propulsion. Because of the longer trip time required for the low-thrust OTV's, more of them are required to perform the mission model. By offloading the lunar cargo from the manned O2/H2 OTV missions onto the electric propulsion OTV's, a significant reduction of the low Earth orbit (LEO) launch mass is possible over the 19-year base development period.

  11. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A construction worker is in view as a flatbed truck passes by carrying a vertical support post (VSP) for NASA's Space Launch System (SLS) rocket to the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. The two aft skirt electrical umbilicals (ASEUs) and the first of the vehicle support posts underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  12. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    A flatbed truck carries a vertical support post (VSP) for NASA's Space Launch System (SLS) rocket to the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. In view is the mobile launcher. The two aft skirt electrical umbilicals (ASEUs) and the first of the vehicle support posts underwent a series of tests to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  13. KSC-2009-2252

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  14. KSC-2009-2251

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  15. KSC-2009-2255

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  16. KSC-2009-2254

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  17. KSC-2009-2253

    NASA Image and Video Library

    2009-03-19

    CAPE CANAVERAL, Fla. – On Launch Pad 39B at NASA's Kennedy Space Center in Florida, catenary wires are being suspended from the lighting masts on the lightning towers. The catenary wire system under development for the Constellation Program’s next-generation vehicles will significantly increase the shielding level, providing better protection, and further separate the electrical current from vital launch hardware. The system will help avoid delays to the launch schedule by collecting more information on the strike for analysis by launch managers. Photo credit: NASA/Jack Pfaller

  18. A Cubesat Asteroid Mission: Propulsion Trade-offs

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa L.; Bur, Michael J.; Burke, Laura M.; Fittje, James E.; Kohout, Lisa L.; Fincannon, James; Packard, Thomas W.; Martini, Michael C.

    2014-01-01

    A conceptual design was performed for a 6-U cubesat for a technology demonstration to be launched on the NASA Space Launch System (SLS) test launch EM-1, to be launched into a free-return translunar trajectory. The mission purpose was to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective chosen was a mission to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0.

  19. Mars sample return mission architectures utilizing low thrust propulsion

    NASA Astrophysics Data System (ADS)

    Derz, Uwe; Seboldt, Wolfgang

    2012-08-01

    The Mars sample return mission is a flagship mission within ESA's Aurora program and envisioned to take place in the timeframe of 2020-2025. Previous studies developed a mission architecture consisting of two elements, an orbiter and a lander, each utilizing chemical propulsion and a heavy launcher like Ariane 5 ECA. The lander transports an ascent vehicle to the surface of Mars. The orbiter performs a separate impulsive transfer to Mars, conducts a rendezvous in Mars orbit with the sample container, delivered by the ascent vehicle, and returns the samples back to Earth in a small Earth entry capsule. Because the launch of the heavy orbiter by Ariane 5 ECA makes an Earth swing by mandatory for the trans-Mars injection, its total mission time amounts to about 1460 days. The present study takes a fresh look at the subject and conducts a more general mission and system analysis of the space transportation elements including electric propulsion for the transfer. Therefore, detailed spacecraft models for orbiters, landers and ascent vehicles are developed. Based on that, trajectory calculations and optimizations of interplanetary transfers, Mars entries, descents and landings as well as Mars ascents are carried out. The results of the system analysis identified electric propulsion for the orbiter as most beneficial in terms of launch mass, leading to a reduction of launch vehicle requirements and enabling a launch by a Soyuz-Fregat into GTO. Such a sample return mission could be conducted within 1150-1250 days. Concerning the lander, a separate launch in combination with electric propulsion leads to a significant reduction of launch vehicle requirements, but also requires a large number of engines and correspondingly a large power system. Therefore, a lander performing a separate chemical transfer could possibly be more advantageous. Alternatively, a second possible mission architecture has been developed, requiring only one heavy launch vehicle (e.g., Proton). In that case the lander is transported piggyback by the electrically propelled orbiter.

  20. Electric Propulsion System Selection Process for Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Landau, Damon; Chase, James; Kowalkowski, Theresa; Oh, David; Randolph, Thomas; Sims, Jon; Timmerman, Paul

    2008-01-01

    The disparate design problems of selecting an electric propulsion system, launch vehicle, and flight time all have a significant impact on the cost and robustness of a mission. The effects of these system choices combine into a single optimization of the total mission cost, where the design constraint is a required spacecraft neutral (non-electric propulsion) mass. Cost-optimal systems are designed for a range of mass margins to examine how the optimal design varies with mass growth. The resulting cost-optimal designs are compared with results generated via mass optimization methods. Additional optimizations with continuous system parameters address the impact on mission cost due to discrete sets of launch vehicle, power, and specific impulse. The examined mission set comprises a near-Earth asteroid sample return, multiple main belt asteroid rendezvous, comet rendezvous, comet sample return, and a mission to Saturn.

  1. Electric power system test and verification program

    NASA Technical Reports Server (NTRS)

    Rylicki, Daniel S.; Robinson, Frank, Jr.

    1994-01-01

    Space Station Freedom's (SSF's) electric power system (EPS) hardware and software verification is performed at all levels of integration, from components to assembly and system level tests. Careful planning is essential to ensure the EPS is tested properly on the ground prior to launch. The results of the test performed on breadboard model hardware and analyses completed to date have been evaluated and used to plan for design qualification and flight acceptance test phases. These results and plans indicate the verification program for SSF's 75-kW EPS would have been successful and completed in time to support the scheduled first element launch.

  2. eLaunch Hypersonics: An Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley

    2010-01-01

    This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.

  3. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This radioisotope thermoelectric generator (RTG), at center, is ready for electrical verification testing now that it has been installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. A handling fixture, at far left, remains attached. This is the third and final RTG to be installed on Cassini for the prelaunch tests. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle.

  4. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Carrying a neutron radiation detector, Fred Sanders (at center), a health physicist with the Jet Propulsion Laboratory (JPL), and other health physics personnel monitor radiation in the Payload Hazardous Servicing Facility after three radioisotope thermoelectric generators (RTGs) were installed on the Cassini spacecraft for mechanical and electrical verification tests. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  5. Space nuclear power applied to electric propulsion

    NASA Technical Reports Server (NTRS)

    Vicente, F. A.; Karras, T.; Darooka, D.; Isenberg, L.

    1989-01-01

    Space reactor power systems with characteristics ideal for advanced spacecraft systems applications are discussed. These characteristics are: high power-to-weight ratio (15 to 33 W/kg); high volume density (high ballistic coefficient); no preferential orientation in orbit; long operational life; high reliability; and total launch and operational safety. These characteristics allow the use of electric propulsion to raise spacecraft from low earth parking orbits to operational orbits, greatly increasing the useful orbit payload for a given launch vehicle by eliminating the need for a separation injection stage. A proposed demonstration mission is described.

  6. KSC-97PC1090

    NASA Image and Video Library

    1997-07-19

    Workers in the Payload Hazardous Servicing Facility remove the storage collar from a radioisotope thermoelectric generator (RTG) in preparation for installation on the Cassini spacecraft. Cassini will be outfitted with three RTGs. The power units are undergoing mechanical and electrical verification tests in the PHSF. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle

  7. Shuttle Hitchhiker Experiment Launcher System (SHELS)

    NASA Technical Reports Server (NTRS)

    Daelemans, Gerry

    1999-01-01

    NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.

  8. Aft Skirt Electrical Umbilical (ASEU) and Vehicle Support Post (

    NASA Image and Video Library

    2016-12-09

    Construction workers assist as a crane is used to lower a vertical support post for NASA's Space Launch System (SLS) onto a platform at the Mobile Launcher Yard at NASA's Kennedy Space Center in Florida. Two ASEUs and the first of the vertical support posts underwent a series of tests at the Launch Equipment Test Facility to confirm they are functioning properly and ready to support the SLS for launch. The ASEUs will connect to the SLS rocket at the bottom outer edge of each booster and provide electrical power and data connections to the rocket until it lifts off from the launch pad. The eight VSPs will support the load of the solid rocket boosters, with four posts for each of the boosters. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  9. Microspacecraft and Earth observation: Electrical field (ELF) measurement project

    NASA Technical Reports Server (NTRS)

    Olsen, Tanya; Elkington, Scot; Parker, Scott; Smith, Grover; Shumway, Andrew; Christensen, Craig; Parsa, Mehrdad; Larsen, Layne; Martinez, Ranae; Powell, George

    1990-01-01

    The Utah State University space system design project for 1989 to 1990 focuses on the design of a global electrical field sensing system to be deployed in a constellation of microspacecraft. The design includes the selection of the sensor and the design of the spacecraft, the sensor support subsystems, the launch vehicle interface structure, on board data storage and communications subsystems, and associated ground receiving stations. Optimization of satellite orbits and spacecraft attitude are critical to the overall mapping of the electrical field and, thus, are also included in the project. The spacecraft design incorporates a deployable sensor array (5 m booms) into a spinning oblate platform. Data is taken every 0.1 seconds by the electrical field sensors and stored on-board. An omni-directional antenna communicates with a ground station twice per day to down link the stored data. Wrap-around solar cells cover the exterior of the spacecraft to generate power. Nine Pegasus launches may be used to deploy fifty such satellites to orbits with inclinations greater than 45 deg. Piggyback deployment from other launch vehicles such as the DELTA 2 is also examined.

  10. A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Coverstone, Vicki

    2003-01-01

    Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.

  11. Electric rail gun projectile acceleration to high velocity

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  12. Spaceflight 101: Explorer 1

    NASA Image and Video Library

    2018-05-09

    Aerospace pioneers who worked on the launch of Explorer 1 participate in a panel discussion with NASA Kennedy Space Center Director Bob Cabana at the center's Training Auditorium on Wednesday, May 9, 2018. Panelists, from left are William "Curly" Chandler, firing room engineer; Lionel (Ed) Fannin, mechanical and propulsion systems; Terry Greenfield, blockhouse engineer; Carl Jones, measuring branch engineer; and Ike Rigell, electrical networks systems chief. Explorer 1 was the first satellite launched by the U.S. It was launched by the Army Ballistic Missile Agency on Jan. 31, 1958 on a Juno I rocket from Launch Complex-26.

  13. Magnetic Launch Assist System-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  14. NASA Propulsion Investments for Exploration and Science

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Free, James M.; Klem, Mark D.; Priskos, Alex S.; Kynard, Michael H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high specific impulse chemical engine is in development that will add additional capability to performance-demanding space science missions. In summary, the paper provides a survey of current NASA development and risk reduction propulsion investments for exploration and science.

  15. 121. VIEW OF CABINETS ON WEST SIDE OF LANDLINE INSTRUMENTATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. VIEW OF CABINETS ON WEST SIDE OF LANDLINE INSTRUMENTATION ROOM (206), LSB (BLDG. 751). FEATURES LEFT TO RIGHT: FACILITY DISTRIBUTION CONSOLE FOR WATER CONTROL SYSTEMS, PROPULSION ELECTRICAL CHECKOUT SYSTEM (PECOS), LOGIC CONTROL AND MONITOR UNITS FOR BOOSTER AND FUEL SYSTEMS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Operationally Responsive Spacecraft Using Electric Propulsion

    DTIC Science & Technology

    2012-09-13

    Although this may not pose a problem for communications , it certainly does limit the amount of useful time for optical and radio frequency systems that...Wideband Global SATCOM (WGS), Defense Satellite Communication System (DSCS), and Advanced Extremely High Frequency (AEHF). An alternative method...consequently, they urgently attempted to launch an additional Defense Satellite Communications System III spacecraft. That mission finally launched on 11

  17. Computer-Assisted Monitoring Of A Complex System

    NASA Technical Reports Server (NTRS)

    Beil, Bob J.; Mickelson, Eric M.; Sterritt, John M.; Costantino, Rob W.; Houvener, Bob C.; Super, Mike A.

    1995-01-01

    Propulsion System Advisor (PSA) computer-based system assists engineers and technicians in analyzing masses of sensory data indicative of operating conditions of space shuttle propulsion system during pre-launch and launch activities. Designed solely for monitoring; does not perform any control functions. Although PSA developed for highly specialized application, serves as prototype of noncontrolling, computer-based subsystems for monitoring other complex systems like electric-power-distribution networks and factories.

  18. Round-Trip Solar Electric Propulsion Missions for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.

    2014-01-01

    Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.

  19. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) worker Mary Reaves mates connectors on a radioisotope thermoelectric generator (RTG) to power up the Cassini spacecraft, while quality assurance engineer Peter Sorci looks on. The three RTGs which will be used on Cassini are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  20. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) workers carefully roll into place a platform with a second radioisotope thermoelectric generator (RTG) for installation on the Cassini spacecraft. In background at left, the first of three RTGs already has been installed on Cassini. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. The power units are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL.

  1. Cassini's RTGs undergo mechanical and electrical verification testing in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) engineers examine the interface surface on the Cassini spacecraft prior to installation of the third radioisotope thermoelectric generator (RTG). The other two RTGs, at left, already are installed on Cassini. The three RTGs will be used to power Cassini on its mission to the Saturnian system. They are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL.

  2. KSC-97PC1069

    NASA Image and Video Library

    1997-07-18

    Jet Propulsion Laboratory (JPL) workers David Rice, at left, and Johnny Melendez rotate a radioisotope thermoelectric generator (RTG) to the horizontal position on a lift fixture in the Payload Hazardous Servicing Facility. The RTG is one of three generators which will provide electrical power for the Cassini spacecraft mission to the Saturnian system. The RTGs will be installed on the powered-up spacecraft for mechanical and electrical verification testing. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL

  3. KSC-97PC1067

    NASA Image and Video Library

    1997-07-18

    This radioisotope thermoelectric generator (RTG), at center, will undergo mechanical and electrical verification testing now that it has been installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. A handling fixture, at far left, is still attached. Three RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by the Jet Propulsion Laboratory

  4. KSC-97PC1088

    NASA Image and Video Library

    1997-07-18

    This radioisotope thermoelectric generator (RTG), at center, is ready for electrical verification testing now that it has been installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. A handling fixture, at far left, remains attached. This is the third and final RTG to be installed on Cassini for the prelaunch tests. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle

  5. KSC-97PC1537

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  6. KSC-97PC1535

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  7. KSC-97PC1533

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  8. KSC-97PC1538

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  9. Lightning Protection System for Space Shuttle

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The suitability and cost effectiveness of using a lightning mast for the shuttle service and access tower (SSAT) similar to the type used for the Apollo Soyuz Test Project (ASTP) mobile launcher (ML) was evaluated. Topics covered include: (1) ASTP launch damage to mast, mast supports, grounded overhead wires, and the instrumentation system; (2) modifications required to permit reusing the ASTP mast on the SSAT; (3) comparative costing factors per launch over a 10 year period in repetitive maintenance and refurbishment of the existing and modified masts, mast supports, grounded overhead wires, and ground instrumentation required to sustain mechanical and electrical integrity of the masts; (4) effects of blast testing samples of the ASTP ML type mast (corrosion and electrical flashover); (5) comparison of damages from ASTP launch and from blast testing.

  10. Launch vehicle and power level impacts on electric GEO insertion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Myers, Roger M.

    1996-01-01

    Solar Electric Propulsion (SEP) has been shown to increase net geosynchronous spacecraft mass when used for station keeping and final orbit insertion. The impact of launch vehicle selection and power level on the benefits of this approach were examined for 20 and 25 kW systems launched using the Ariane 5, Atlas IIAR, Long March, Proton, and Sea Launch vehicles. Two advanced on-board propulsion technologies, 5 kW ion and Hall thruster systems, were used to establish the relative merits of the technologies and launch vehicles. GaAs solar arrays were assumed. The analysis identifies the optimal starting orbits for the SEP orbit raising/plane changing while considering the impacts of radiation degradation in the Van Allen belts, shading, power degradation, and oblateness. This use of SEP to provide part of the orbit insertion results in net mass increases of 15 - 38% and 18 - 46% for one to two month trip times, respectively, over just using SEP for 15 years of north/south station keeping. SEP technology was shown to have a greater impact on net masses of launch vehicles with higher launch latitudes when avoidance of solar array and payload degradation is desired. This greater impact of SEP could help reduce the plane changing disadvantage of high latitude launch sites. Comparison with results for 10 and 15 kW systems show clear benefits of incremental increases in SEP power level, suggesting that an evolutionary approach to high power SEP for geosynchronous spacecraft is possible.

  11. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Back dropped by a cloudless blue sky, Space Shuttle Endeavor stands ready for launch after the rollback of the Rotating Service Structure, at left. The orbiter launched that night carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electric system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  12. The effect of technology advancements on the comparative advantages of electric versus chemical propulsion for a large cargo orbit transfer vehicle

    NASA Technical Reports Server (NTRS)

    Rehder, J. J.; Wurster, K. E.

    1978-01-01

    Techniques for sizing electrically or chemically propelled orbit transfer vehicles and analyzing fleet requirements are used in a comparative analysis of the two concepts for various levels of traffic to geosynchronous orbit. The vehicle masses, fuel requirements, and fleet sizes are determined and translated into launch vehicle payload requirements. Technology projections beyond normal growth are made and their effect on the comparative advantages of the concepts is determined. A preliminary cost analysis indicates that although electric propulsion greatly reduces launch vehicle requirements substantial improvements in the cost and reusability of power systems must occur to make an electrically propelled vehicle competitive.

  13. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Clark, John S.; George, Jeffrey A.; Gefert, Leon P.; Doherty, Michael P.; Sefcik, Robert J.

    1994-01-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power, and small NEP systems for interplanetary probes. System upgrades are expected to evolve that will result in even shorter trip times, improved payload capabilities, and enhanced safety and reliability.

  14. Spaceflight 101: Explorer 1

    NASA Image and Video Library

    2018-05-09

    Aerospace pioneers who worked on the launch of Explorer 1 participate in a panel discussion with NASA Kennedy Space Center Director Bob Cabana, at far left, at the center's Training Auditorium on Wednesday, May 9, 2018. Panelists, from left are William "Curly" Chandler, firing room engineer; Lionel (Ed) Fannin, mechanical and propulsion systems; Terry Greenfield, blockhouse engineer; Carl Jones, measuring branch engineer; and Ike Rigell, electrical networks systems chief. Explorer 1 was the first satellite launched by the U.S. It was launched by the Army Ballistic Missile Agency on Jan. 31, 1958 on a Juno I rocket from Launch Complex-26.

  15. Advanced Concept

    NASA Image and Video Library

    1999-01-01

    This illustration is an artist’s concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth’s gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  16. Advanced Concept

    NASA Image and Video Library

    1999-10-21

    This artist’s concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  17. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lockheed Martin Missile and Space Co. employees Joe Collingwood, at right, and Ken Dickinson retract pins in the storage base to release a radioisotope thermoelectric generator (RTG) in preparation for hoisting operations. This RTG and two others will be installed on the Cassini spacecraft for mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by NASA's Jet Propulsion Laboratory.

  18. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) employees bolt a radioisotope thermoelectric generator (RTG) onto the Cassini spacecraft, at left, while other JPL workers, at right, operate the installation cart on a raised platform in the Payload Hazardous Servicing Facility (PHSF). Cassini will be outfitted with three RTGs. The power units are undergoing mechanical and electrical verification tests in the PHSF. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  19. Cassini's RTGs undergo mechanical and electrical verification tests in the PHSF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jet Propulsion Laboratory (JPL) employees Norm Schwartz, at left, and George Nakatsukasa transfer one of three radioisotope thermoelectric generators (RTGs) to be used on the Cassini spacecraft from the installation cart to a lift fixture in preparation for returning the power unit to storage. The three RTGs underwent mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL.

  20. Tail Service Mast Umbilical Arrival

    NASA Image and Video Library

    2016-08-02

    A heavy-lift transport truck arrives at the Launch Equipment Test Facility (LETF) at NASA’s Kennedy Space Center in Florida, with the first of two Tail Service Mast Umbilicals (TSMU) for NASA’s Space Launch System (SLS). Two TSMUs will provide liquid propellants and power to the Space Launch System (SLS) rocket’s core stage engine. Both TSMUs will connect to the zero-level deck on the mobile launcher, providing fuel and electricity to the SLS rocket before it launches on Exploration Mission 1. The TSMU will undergo testing and validation at the LETF to verify it is functioning properly. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  1. Tail Service Mast Umbilical Arrival

    NASA Image and Video Library

    2016-08-02

    A crane is prepared to help lift the first Tail Service Mast Umbilical (TSMU) for NASA’s Space Launch System (SLS) at the Launch Equipment Test Facility (LETF) at NASA’s Kennedy Space Center in Florida. Two TSMUs will provide liquid propellants and power to the Space Launch System (SLS) rocket’s core stage engine. Both TSMUs will connect to the zero-level deck on the mobile launcher, providing fuel and electricity to the SLS rocket before it launches on Exploration Mission 1. The TSMU will undergo testing and validation at the LETF to verify it is functioning properly. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  2. Tail Service Mast Umbilical Arrival

    NASA Image and Video Library

    2016-08-02

    A crane is attached to the first Tail Service Mast Umbilical (TSMU) for NASA’s Space Launch System (SLS) at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. Two TSMUs will provide liquid propellants and power to the Space Launch System (SLS) rocket’s core stage engine. Both TSMUs will connect to the zero-level deck on the mobile launcher, providing fuel and electricity to the SLS rocket before it launches on Exploration Mission 1. The TSMU will undergo testing and validation at the LETF to verify it is functioning properly. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  3. KSC-97PC1534

    NASA Image and Video Library

    1997-10-10

    At Launch Complex 40 on Cape Canaveral Air Station, one of three Radioisotope Thermoelectric Generators (RTGs) is being installed on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  4. KSC-97PC1532

    NASA Image and Video Library

    1997-10-10

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  5. KSC-97PC1536

    NASA Image and Video Library

    1997-10-10

    KENNEDY SPACE CENTER, FLA. -- At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13

  6. Workers install the RTGs on the Cassini spacecraft at LC 40, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13.

  7. KSC-97PC1092

    NASA Image and Video Library

    1997-07-19

    Jet Propulsion Laboratory (JPL) worker Mary Reaves mates connectors on a radioisotope thermoelectric generator (RTG) to power up the Cassini spacecraft, while quality assurance engineer Peter Sorci looks on. The three RTGs which will be used on Cassini are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL

  8. KSC-97PC1070

    NASA Image and Video Library

    1997-07-18

    Jet Propulsion Laboratory (JPL) workers use a borescope to verify pressure relief device bellows integrity on a radioisotope thermoelectric generator (RTG) which has been installed on the Cassini spacecraft in the Payload Hazardous Servicing Facility. The activity is part of the mechanical and electrical verification testing of RTGs during prelaunch processing. RTGs use heat from the natural decay of plutonium to generate electric power. The three RTGs on Cassini will enable the spacecraft to operate far from the Sun where solar power systems are not feasible. They will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL

  9. KSC-97PC1064

    NASA Image and Video Library

    1997-07-18

    Jet Propulsion Laboratory (JPL) workers carefully roll into place a platform with a second radioisotope thermoelectric generator (RTG) for installation on the Cassini spacecraft. In background at left, the first of three RTGs already has been installed on Cassini. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. The power units are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL

  10. KSC-97PC1087

    NASA Image and Video Library

    1997-07-18

    Carrying a neutron radiation detector, Fred Sanders (at center), a health physicist with the Jet Propulsion Laboratory (JPL), and other health physics personnel monitor radiation in the Payload Hazardous Servicing Facility after three radioisotope thermoelectric generators (RTGs) were installed on the Cassini spacecraft for mechanical and electrical verification tests. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL

  11. Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement

    NASA Technical Reports Server (NTRS)

    Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.

    2007-01-01

    The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.

  12. KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transportation (CT) number 2 shows the new muffler system on the vehicle. The CT also recently underwent modifications to the cab. The CT is transporting a Mobile Launch Platform (MLP). The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transportation (CT) number 2 shows the new muffler system on the vehicle. The CT also recently underwent modifications to the cab. The CT is transporting a Mobile Launch Platform (MLP). The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  13. KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2 nears the launch pad with a Mobile Launcher Platform (MLP) on top. After recent modifications to the cab and muffler system, the CT was taken on a test run. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-19

    KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2 nears the launch pad with a Mobile Launcher Platform (MLP) on top. After recent modifications to the cab and muffler system, the CT was taken on a test run. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  14. Systems definition space based power conversion systems: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Potential space-located systems for the generation of electrical power for use on earth were investigated. These systems were of three basic types: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  15. Factors Influencing Solar Electric Propulsion Vehicle Payload Delivery for Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Green, Shaun; Coverstone, Victoria

    2003-01-01

    Systems analyses were performed for missions utilizing solar electric propulsion systems to deliver payloads to outer-planet destinations. A range of mission and systems factors and their affect on the delivery capability of the solar electric propulsion system was examined. The effect of varying the destination, the trip time, the launch vehicle, and gravity-assist boundary conditions was investigated. In addition, the affects of selecting propulsion system and power systems characteristics (including primary array power variation, number of thrusters, thruster throttling mode, and thruster Isp) on delivered payload was examined.

  16. EPS analysis of nominal STS-1 flight

    NASA Technical Reports Server (NTRS)

    Wolfgram, D. F.; Pipher, M. D.

    1980-01-01

    The results of electrical power system (EPS) analysis of the planned Shuttle Transportation System Flight 1 mission are presented. The capability of the orbiter EPS to support the planned flight and to provide program tape information and supplementary data specifically requested by the flight operations directorate was assessed. The analysis was accomplished using the orbiter version of the spacecraft electrical power simulator program, operating from a modified version of orbiter electrical equipment utilization baseline revision four. The results indicate that the nominal flight, as analyzed, is within the capabilities of the orbiter power generation system, but that a brief, and minimal, current overload may exist between main distributor 1 and mid power controlled 1, and that inverter 9 may the overloaded for extended periods of time. A comparison of results with launch commit criteria also indicated that some of the presently existing launch redlines may be violated during the terminal countdown.

  17. Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  18. Magnetic Launch Assist Vehicle-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  19. KENNEDY SPACE CENTER, FLA. - Inside the cab of crawler-transporter (CT) number 2, driver Sam Dove, with United Space Alliance, operates the vehicle on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT is transporting a Mobile Launch Platform (MLP). The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Inside the cab of crawler-transporter (CT) number 2, driver Sam Dove, with United Space Alliance, operates the vehicle on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT is transporting a Mobile Launch Platform (MLP). The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  20. KSC-2012-6185

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 moves along the crawler way toward Launch Pad 39A following modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  1. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  2. Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)

    NASA Astrophysics Data System (ADS)

    Barklay, Chadwick D.; Miller, Roger G.; Pugh, Barry K.; Howell, Edwin I.

    1997-01-01

    Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been 238PuO2, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the ``Pluto Express'' mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS).

  3. MSFC Skylab electrical power systems mission evaluation

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.

    1974-01-01

    The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.

  4. Advanced Concept

    NASA Image and Video Library

    1999-01-01

    This artist’s concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  5. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  6. KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building with a Mobile Launcher Platform (MLP) on top on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - Crawler-transporter (CT) number 2, moves away from the Vehicle Assembly Building with a Mobile Launcher Platform (MLP) on top on a test run to the launch pad. The CT recently underwent modifications to the cab. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  7. KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab, at left, that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab, at left, that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  8. KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab (left, above the tracks) that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

    NASA Image and Video Library

    2003-08-18

    KENNEDY SPACE CENTER, FLA. - A closeup of crawler-transporter (CT) number 2 shows the cab (left, above the tracks) that recently underwent modifications. The CT is transporting a Mobile Launch Platform (MLP) on a test run to the pad. The CT moves Space Shuttle vehicles, situated on the MLP, between the VAB and launch pad. Moving on four double-tracked crawlers, the CT uses a laser guidance system and a leveling system for the journey that keeps the top of a Space Shuttle vertical within plus- or minus-10 minutes of arc. The system enables the CT-MLP-Shuttle to negotiate the ramp leading to the launch pads and keep the load level. Unloaded, the CT weighs 6 million pounds. Seen on top of the MLP are two tail service masts that support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft umbilicals.

  9. KSC-97PC1091

    NASA Image and Video Library

    1997-07-19

    Lockheed Martin Missile and Space Co. employees Joe Collingwood, at right, and Ken Dickinson retract pins in the storage base to release a radioisotope thermoelectric generator (RTG) in preparation for hoisting operations. This RTG and two others will be installed on the Cassini spacecraft for mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by NASA’s Jet Propulsion Laboratory

  10. KSC-97PC1094

    NASA Image and Video Library

    1997-07-19

    Jet Propulsion Laboratory (JPL) employees bolt a radioisotope thermoelectric generator (RTG) onto the Cassini spacecraft, at left, while other JPL workers, at right, operate the installation cart on a raised platform in the Payload Hazardous Servicing Facility (PHSF). Cassini will be outfitted with three RTGs. The power units are undergoing mechanical and electrical verification tests in the PHSF. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL

  11. KSC-97PC1093

    NASA Image and Video Library

    1997-07-19

    Supported on a lift fixture, this radioisotope thermoelectric generator (RTG), at center, is hoisted from its storage base using the airlock crane in the Payload Hazardous Servicing Facility (PHSF). Jet Propulsion Laboratory (JPL) workers are preparing to install the RTG onto the Cassini spacecraft, in background at left, for mechanical and electrical verification testing. The three RTGs on Cassini will provide electrical power to the spacecraft on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL

  12. KSC-97PC1089

    NASA Image and Video Library

    1997-07-19

    Jet Propulsion Laboratory (JPL) employees Norm Schwartz, at left, and George Nakatsukasa transfer one of three radioisotope thermoelectric generators (RTGs) to be used on the Cassini spacecraft from the installation cart to a lift fixture in preparation for returning the power unit to storage. The three RTGs underwent mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate at great distances from the Sun where solar power systems are not feasible. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed by JPL

  13. Applications of nuclear reactor power systems to electric propulsion missions.

    NASA Technical Reports Server (NTRS)

    Schaupp, R. W.; Sawyer, C. D.

    1971-01-01

    The performance of nuclear electric propulsion systems (NEP) has been evaluated for a wide variety of missions in an attempt to establish the commonality of NEP system requirements. Emphasis was given to those requirements and system characteristics that serve as guidelines for current technology development programs. Various interactions and tradeoffs between NEP system and mission parameters are described. The results show that the most significant factors in selecting NEP system size are launch mode (direct or spiral escape) and, to a weaker extent, launch vehicle capability. Other factors such as mission, payload, and thrust time constraints, have little influence, thus allowing one NEP system to be used for many missions. The results indicated that a 100 kWe NEP would be suitable for most direct escape missions and a 250 kWe NEP system would be suitable for more demanding missions that use the spiral escape mode.

  14. 160. Photocopy of drawing (1967 electrical drawing by Koebig & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    160. Photocopy of drawing (1967 electrical drawing by Koebig & Koebig, Inc.) MST MODIFICATION AND REFURBISHMENT; ELECTRICAL MODIFICATIONS OF LAUNCH DECK, SHEET E-3 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. 14 CFR 417.409 - System hazard controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...

  16. 14 CFR 417.409 - System hazard controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...

  17. 14 CFR 417.409 - System hazard controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...

  18. 14 CFR 417.409 - System hazard controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...

  19. KSC-97PC1066

    NASA Image and Video Library

    1997-07-18

    Jet Propulsion Laboratory (JPL) engineers examine the interface surface on the Cassini spacecraft prior to installation of the third radioisotope thermoelectric generator (RTG). The other two RTGs, at left, already are installed on Cassini. The three RTGs will be used to power Cassini on its mission to the Saturnian system. They are undergoing mechanical and electrical verification testing in the Payload Hazardous Servicing Facility. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL

  20. Integrated System Safety Program for the MX Weapon System.

    DTIC Science & Technology

    1979-09-25

    Quantitative AnalIsis Of Specified Undesired Events Nuclr Safey Anisis Reports ISARI Contractor Inpu To AFWL Technical Nucler Sa An. Is FIGURE 1...Launch Includes all functions from initiation of launch se- quence to missile first motion, such as transfer from ground power to airborne power ...all credible contingency or emergency condi- tions, such as Toxic gases/fluid release, inadvertently armed ordnance, electric power loss, and destruct

  1. Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Baggett, R.

    2004-11-01

    Next Generation Electric Propulsion (NGEP) technology development tasks are working towards advancing solar-powered electric propulsion systems and components to levels ready for transition to flight systems. Current tasks within NGEP include NASA's Evolutionary Xenon Thruster (NEXT), Carbon Based Ion Optics (CBIO), NSTAR Extended Life Test (ELT) and low-power Hall Effect thrusters. The growing number of solar electric propulsion options provides reduced cost and flexibility to capture a wide range of Solar System exploration missions. Benefits of electric propulsion systems over state-of-the-art chemical systems include increased launch windows, which reduce mission risk; increased deliverable payload mass for more science; and a reduction in launch vehicle size-- all of which increase the opportunities for New Frontiers and Discovery class missions. The Dawn Discovery mission makes use of electric propulsion for sequential rendezvous with two large asteroids (Vesta then Ceres), something not possible using chemical propulsion. NEXT components and thruster system under development have NSTAR heritage with significant increases in maximum power and Isp along with deep throttling capability to accommodate changes in input power over the mission trajectory. NEXT will produce engineering model system components that will be validated (through qualification-level and integrated system testing) and ready for transition to flight system development. NEXT offers Discovery, New Frontiers, Mars Exploration and outer-planet missions a larger deliverable payload mass and a smaller launch vehicle size. CBIO addresses the need to further extend ion thruster lifetime by using low erosion carbon-based materials. Testing of 30-cm Carbon-Carbon and Pyrolytic graphite grids using a lab model NSTAR thruster are complete. In addition, JPL completed a 1000 hr. life test on 30-cm Carbon-Carbon grids. The NSTAR ELT was a life time qualification test started in 1999 with a goal of 88 kg throughput of Xenon propellant. The test was intentionally terminated in 2003 after accumulating 233 kg throughput. The thruster has been completely disassembled and the conditions of all components documented. Because most of the NSTAR design features have been used in the NEXT thruster, the success of the ELT goes a long way toward qualifying NEXT by similarity Recent mission analyses for Discovery and New Frontiers class missions have also identified potential benefits of low-power, high thrust Hall Effect thrusters. Estimated to be ready for mission implementation by 2008, low-power Hall systems could increase mission capture for electric propulsion by greatly reducing propulsion cost, mass and complexity.

  2. Direct launch using the electric rail gun

    NASA Technical Reports Server (NTRS)

    Barber, J. P.

    1983-01-01

    The concept explored involves using a large single stage electric rail gun to achieve orbital velocities. Exit aerodynamics, launch package design and size, interior ballistics, system and component sizing and design concepts are treated. Technology development status and development requirements are identified and described. The expense of placing payloads in Earth orbit using conventional chemical rockets is considerable. Chemical rockets are very inefficient in converting chemical energy into payload kinetic energy. A rocket motor is relatively expensive and is usually expended on each launch. In addition specialized and expensive forms of fuel are required. Gun launching payloads directly to orbit from the Earth's surface is a possible alternative. Guns are much more energy efficient than rockets. The high capital cost of the gun installation can be recovered by reusing it over and over again. Finally, relatively inexpensive fuel and large quantities of energy are readily available to a fixed installation on the Earth's surface.

  3. Systems definition space-based power conversion systems. [for satellite power transmission to earth

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Potential space-located systems for the generation of electrical power for use on Earth are discussed and include: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; and (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Systems (1) and (2) would utilize a microwave beam system to transmit their output to Earth. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  4. KSC-2012-6214

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  5. KSC-2012-6199

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky

  6. KSC-2012-6213

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  7. KSC-2012-6207

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  8. KSC-2012-6208

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  9. KSC-2012-6203

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  10. KSC-2012-6205

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  11. KSC-2012-6201

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky

  12. KSC-2012-6202

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  13. KSC-2012-6198

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Ben Smegelsky

  14. KSC-2012-6209

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  15. KSC-2012-6211

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  16. KSC-2012-6204

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  17. KSC-2012-6206

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 arrives at Launch Pad 39A to check out recently completed modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/ Dimitri Gerondidakis

  18. KSC-97pc1065

    NASA Image and Video Library

    1997-07-18

    Jet Propulsion Laboratory (JPL) workers prepare the installation cart (atop the platform) for removal of a radioisotope thermoelectric generator (RTG) from the adjacent Cassini spacecraft. This is the second of three RTGs being removed from Cassini after undergoing mechanical and electrical verification tests in the Payload Hazardous Servicing Facility. The third RTG to be removed is in background at left. The three RTGs will then be temporarily stored before being re-installed for flight. The RTGs will provide electrical power to Cassini on its 6.7-year trip to the Saturnian system and during its four-year mission at Saturn. RTGs use heat from the natural decay of plutonium to generate electric power. The generators enable spacecraft to operate far from the Sun where solar power systems are not feasible. The Cassini mission is scheduled for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL

  19. Measurements in atmospheric electricity designed to improve launch safety during the Apollo series

    NASA Technical Reports Server (NTRS)

    Nanevicz, J. E.; Pierce, E. T.; Whitson, A. L.

    1972-01-01

    Ground test measurements were made during the launches of Apollo 13 and 14 in an effort to better define the electrical characteristics of a large launch vehicle. Of particular concern was the effective electrical length of the vehicle and plume since this parameter markedly affects the likelihood of a lightning stroke being triggered by a launch during disturbed weather conditions. Since no instrumentation could be carried aboard the launch vehicle, the experiments were confined to LF radio noise and electrostatic-field measurements on the ground in the vicinity of the launch pad. The philosophy of the experiment and the instrumentation and layout are described. From the results of the experiment it is concluded that the rocket and exhaust do not produce large-scale shorting of the earth's field out to distances of thousands of feet from the launch pad. There is evidence, however, that the plume does add substantially to the electrical length of the rocket. On this basis, it was recommended that there be no relaxation of launch rules for launches during disturbed weather.

  20. Solar power satellite system definition study. Volume 5: Space transportation analysis, phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A small Heavy Lift Launch Vehicle (HLLV) for the Solar Power Satellites (SPS) System was analyzed. It is recommended that the small HLLV with a payload of 120 metric tons be adopted as the SPS launch vehicle. The reference HLLV, a shuttle-derived option with a payload of 400 metric tons, should serve as a backup and be examined further after initial flight experience. The electric orbit transfer vehicle should be retained as the reference orbit-to-orbit cargo system.

  1. Programmable Low-Voltage Circuit Breaker and Tester

    NASA Technical Reports Server (NTRS)

    Greenfield, Terry

    2008-01-01

    An instrumentation system that would comprise a remotely controllable and programmable low-voltage circuit breaker plus several electric-circuit-testing subsystems has been conceived, originally for use aboard a spacecraft during all phases of operation from pre-launch testing through launch, ascent, orbit, descent, and landing. The system could also be adapted to similar use aboard aircraft. In comparison with remotely controllable circuit breakers heretofore commercially available, this system would be smaller, less massive, and capable of performing more functions, as needed for aerospace applications.

  2. Electric Propulsion Space Experiment (ESEX): Spacecraft design issues for high-power electric propulsion

    NASA Astrophysics Data System (ADS)

    Kriebel, Mary M.; Sanks, Terry M.

    1992-02-01

    Electric propulsion provides high specific impulses, and low thrust when compared to chemical propulsion systems. Therefore, electric propulsion offers improvements over chemical systems such as increased station-keeping time, prolonged on-orbit maneuverability, low acceleration of large structures, and increased launch vehicle flexibility. The anticipated near-term operational electric propulsion system for an electric orbit transfer vehicle is an arcjet propulsion system. Towards this end, the USAF's Phillips Laboratory (PL) has awarded a prime contract to TRW Space & Technology Group to design, build, and space qualify a 30-kWe class arcjet as well as develop and demonstrate, on the ground, a flight-qualified arcjet propulsion flight unit. The name of this effort is the 30 kWe Class Arcjet Advanced Technology Transition Demonstration (Arcjet ATTD) program. Once the flight unit has completed its ground qualification test, it will be given to the Space Test and Transportation Program Office of the Air Force's Space Systems Division (ST/T) for launch vehicle integration and space test. The flight unit's space test is known as the Electric Propulsion Space Experiment (ESEX). ESEX's mission scenario is 10 firings of 15 minutes each. The objectives of the ESEX flight are to measure arcjet plume deposition, electromagnetic interference, thermal radiation, and acceleration in space. Plume deposition, electromagnetic interference, and thermal radiation are operational issues that are primarily being answered for operational use. This paper describes the Arcjet ATTD flight unit design and identifies specifically how the diagnostic data will be collected as part of the ESEX program.

  3. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  4. TACSAT-4 Early Flight Operations Including Lessons From Integration, Test, and Launch Processing

    DTIC Science & Technology

    2012-08-01

    Healy used TacSat-4 as it returned from the Bering Sea from its ice breaking mission with the Russian tanker Renda to deliver emergency fuel supplies to...required extra design and verification work for the electrical power system, but it provided real benefits at the launch range. Specifically, it eliminated

  5. Maglev Launch: Ultra-low Cost, Ultra-high Volume Access to Space for Cargo and Humans

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    Despite decades of efforts to reduce rocket launch costs, improvements are marginal. Launch cost to LEO for cargo is ~$10,000 per kg of payload, and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced, large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space-Maglev Launch-magnetically accelerates levitated spacecraft to orbital speeds, 8 km/sec or more, in evacuated tunnels on the surface, using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described, the Gen-1System for unmanned cargo craft to orbit and Gen-2, for large-scale access of human to space. Magnetically levitated and propelled Gen-1 cargo craft accelerate in a 100 kilometer long evacuated tunnel, entering the atmosphere at the tunnel exit, which is located in high altitude terrain (~5000 meters) through an electrically powered ``MHD Window'' that prevents outside air from flowing into the tunnel. The Gen-1 cargo craft then coasts upwards to space where a small rocket burn, ~0.5 km/sec establishes, the final orbit. The Gen-1 reference design launches a 40 ton, 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day, a single Gen-1 facility could launch 150,000 tons annually. Using present costs for tunneling, superconductors, cryogenic equipment, materials, etc., the projected construction cost for the Gen-1 facility is 20 billion dollars. Amortization cost, plus Spacecraft and O&M costs, total $43 per kg of payload. For polar orbit launches, sites exist in Alaska, Russia, and China. For equatorial orbit launches, sites exist in the Andes and Africa. With funding, the Gen-1 system could operate by 2020 AD. The Gen-2 system requires more advanced technology. Passenger spacecraft enter the atmosphere at 70,000 feet, where deceleration is acceptable. A levitated evacuated launch tube is used, with the levitation force generated by magnetic interaction between superconducting cables on the levitated launch tube and superconducting cables on the ground beneath. The Gen-2 system could launch 100's of thousands of passengers per year, and operate by 2030 AD. Maglev launch will enable large human scale exploration of space, thousands of gigawatts of space solar power satellites for beamed power to Earth, a robust defense against asteroids and comets, and many other applications not possible now.

  6. Advanced electric motor technology: Flux mapping

    NASA Technical Reports Server (NTRS)

    Doane, George B., III; Campbell, Warren; Brantley, Larry W.; Dean, Garvin

    1992-01-01

    This report contains the assumptions, mathematical models, design methodology, and design points involved with the design of an electromechanical actuator (EMA) suitable for directing the thrust vector of a large MSFC/NASA launch vehicle. Specifically the design of such an actuator for use on the upcoming liquid fueled National Launch System (NLS) is considered culminating in a point design of both the servo system and the electric motor needed. A major thrust of the work is in selecting spur gear and roller screw reduction ratios to achieve simultaneously wide bandwidth, maximum power transfer, and disturbance rejection while meeting specified horsepower requirements at a given stroking speed as well as a specified maximum stall force. An innovative feedback signal is utilized in meeting these diverse objectives.

  7. Spaceport Command and Control System Automated Testing

    NASA Technical Reports Server (NTRS)

    Stein, Meriel

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  8. Spaceport Command and Control System Automation Testing

    NASA Technical Reports Server (NTRS)

    Hwang, Andrew

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administrations (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires high quality testing that will properly measure the capabilities of the system. Automating the test procedures would save the project time and money. Therefore, the Electrical Engineering Division at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  9. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level, specific impulse and propellant type are discussed.

  10. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret

    2013-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level, specific impulse and propellant type are discussed.

  11. KSC-10941f07

    NASA Image and Video Library

    1997-05-27

    Jet Propulsion Laboratory (JPL) technicians finish mounting a thermal model of a radioisotope thermoelectric generator (RTG) on the installation cart which will be used to install the RTG in the Cassini spacecraft at Level 14 of Space Launch Complex 40, Cape Canaveral Air Station. The technicians use the thermal model to practice installation procedures. The three actual RTGs which will provide electrical power to Cassini on its 6.7-mile trip to the Saturnian system, and during its four-year mission at Saturn, are being tested and monitored in the Radioisotope Thermoelectric Generator Storage Building in KSC's Industrial Area. The RTGs use heat from the natural decay of plutonium to generate electric power. RTGs enable spacecraft to operate far from the Sun where solar power systems are not feasible. The RTGs on Cassini are of the same design as those flying on the already deployed Galileo and Ulysses spacecraft. The Cassini mission is targeted for an October 6 launch aboard a Titan IVB/Centaur expendable launch vehicle. Cassini is built and managed for NASA by JPL

  12. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  13. Mass Analyzers Facilitate Research on Addiction

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The famous go/no go command for Space Shuttle launches comes from a place called the Firing Room. Located at Kennedy Space Center in the Launch Control Center (LCC), there are actually four Firing Rooms that take up most of the third floor of the LCC. These rooms comprise the nerve center for Space Shuttle launch and processing. Test engineers in the Firing Rooms operate the Launch Processing System (LPS), which is a highly automated, computer-controlled system for assembly, checkout, and launch of the Space Shuttle. LPS monitors thousands of measurements on the Space Shuttle and its ground support equipment, compares them to predefined tolerance levels, and then displays values that are out of tolerance. Firing Room operators view the data and send commands about everything from propellant levels inside the external tank to temperatures inside the crew compartment. In many cases, LPS will automatically react to abnormal conditions and perform related functions without test engineer intervention; however, firing room engineers continue to look at each and every happening to ensure a safe launch. Some of the systems monitored during launch operations include electrical, cooling, communications, and computers. One of the thousands of measurements derived from these systems is the amount of hydrogen and oxygen inside the shuttle during launch.

  14. Tail Service Mast Umbilical Arrival

    NASA Image and Video Library

    2016-08-02

    A crane lowers the first Tail Service Mast Umbilical (TSMU) onto a test stand at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. Two TSMUs will provide liquid propellants and power to the Space Launch System (SLS) rocket’s core stage engine. Both TSMUs will connect to the zero-level deck on the mobile launcher, providing fuel and electricity to the SLS rocket before it launches on Exploration Mission 1. The TSMU will undergo testing and validation at the LETF to verify it is functioning properly. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  15. Demonstration of Heavy Hybrid Diesel Fleet Vehicles

    DTIC Science & Technology

    2016-03-01

    Truck, Earth Auger/Digger Derrick 154 Hybrid Electric System Truck, Refuse 54 Hybrid Launch Assist Truck, Dump 921 Truck, Refrigerator 147 Truck, High...Hybrid Electric System Dump Truck 776 Naval Construction Force Truck 1,500 Engineer Tractor 2,942 Heavy Equipment Transporter (HET) 1,961...both trucks using Defense Logistics Agency (DLA) fuel management data. Card readers capture this data at the point of fueling using a specified card

  16. Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.

  17. Potential operating orbits for fission electric propulsion systems driven by the SAFE-400

    NASA Astrophysics Data System (ADS)

    Houts, Mike; Kos, Larry; Poston, David

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp>3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially non-radioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified. .

  18. KSC-06pd1938

    NASA Image and Video Library

    2006-08-26

    KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.

  19. KSC-06pd1937

    NASA Image and Video Library

    2006-08-26

    KENNEDY SPACE CENTER, FLA. - The dark clouds of a heavy rainstorm moving into Kennedy Space Center in the late afternoon on Sat., August 26, 2006, seem to illuminate the Space Shuttle Atlantis as it sits on Launch Pad 39B. A lightning strike to the pad's lightning protection system on August 25, caused the mission management team to postpone the launch of mission STS-115 for 24 hours in order to review all electrical systems on the space shuttle and ground support equipment at the pad. Photo credit: NASA/Ken Thornsley.

  20. KSC-97PC903

    NASA Image and Video Library

    1997-05-17

    Environmental Health Specialist Jamie A. Keeley, of EG&G Florida Inc., uses an ion chamber dose rate meter to measure radiation levels in one of three radioisotope thermoelectric generators (RTGs) that will provide electrical power to the Cassini spacecraft on its mission to explore the Saturnian system. The three RTGs and one spare are being tested and mointored in the Radioisotope Thermoelectric Generator Storage Building in the KSC's Industrial Area. The RTGs use heat from the natural decay of plutonium to generate electric power. RTGs enable spacecraft to operate far from the Sun where solar power systems are not feasible. The RTGs on Cassini are of the same design as those flying on the already deployed Galileo and Ulysses spacecraft. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle.

  1. An Analytical Performance Assessment of a Fuel Cell-powered, Small Electric Airplane

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Freeh, Joshua E.; Wickenheiser, Timothy J.

    2003-01-01

    Rapidly emerging fuel cell power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and with exception of water vapor zero emissions. This paper describes an analytical feasibility and performance assessment conducted by NASA's Glenn Research Center of a fuel cell-powered, propeller-driven, small electric airplane based on a model of the MCR 01 two-place kitplane.

  2. Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas

    PubMed Central

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-01-01

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris. PMID:23429581

  3. Autonomous docking based on infrared system for electric vehicle charging in urban areas.

    PubMed

    Pérez, Joshué; Nashashibi, Fawzi; Lefaudeux, Benjamin; Resende, Paulo; Pollard, Evangeline

    2013-02-21

    Electric vehicles are progressively introduced in urban areas, because of their ability to reduce air pollution, fuel consumption and noise nuisance. Nowadays, some big cities are launching the first electric car-sharing projects to clear traffic jams and enhance urban mobility, as an alternative to the classic public transportation systems. However, there are still some problems to be solved related to energy storage, electric charging and autonomy. In this paper, we present an autonomous docking system for electric vehicles recharging based on an embarked infrared camera performing infrared beacons detection installed in the infrastructure. A visual servoing system coupled with an automatic controller allows the vehicle to dock accurately to the recharging booth in a street parking area. The results show good behavior of the implemented system, which is currently deployed as a real prototype system in the city of Paris.

  4. Low power pulsed MPD thruster system analysis and applications

    NASA Astrophysics Data System (ADS)

    Myers, Roger M.; Domonkos, Matthew; Gilland, James H.

    1993-06-01

    Pulsed MPD thruster systems were analyzed for application to solar-electric orbit transfer vehicles at power levels ranging from 10 to 40 kW. Potential system level benefits of pulsed propulsion technology include ease of power scaling without thruster performance changes, improved transportability from low power flight experiments to operational systems, and reduced ground qualification costs. Required pulsed propulsion system components include a pulsed applied-field MPD thruster, a pulse-forming network, a charge control unit, a cathode heater supply, and high speed valves. Mass estimates were obtained for each propulsion subsystem and spacecraft component. Results indicate that for payloads of 1000 and 2000 kg, pulsed MPD thrusters can reduce launch mass by between 1000 and 2500 kg relative to hydrogen arcjets, reducing launch vehicle class and launch cost. While the achievable mass savings depends on the trip time allowed for the mission, cases are shown in which the launch vehicle required for a mission is decreased from an Atlas IIAS to an Atlas I or Delta 7920.

  5. Seasat. Volume 3: Ground systems

    NASA Technical Reports Server (NTRS)

    Pounder, E. (Editor)

    1980-01-01

    The Seasat Project was a feasibility demonstration of the use of orbital remote sensing for global ocean observation. The satellite was launched in June of 1978 and was operated successfully until October 1978. A massive electrical failure occurred in the power system, terminating the mission prematurely. The ground systems using during the mission life are discussed. Descriptions of the operating organization, the system elements, and the testing program are included. The various phases of the mission: launch and orbit insertion; cruise; and calibration are discussed. A special section is included on the orbit maneuver activites. Operations during the satellite failure are reviewed and summarized.

  6. KSC-2012-6163

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 has been undergoing modifications inside high bay 2 of the Vehicle Assembly Building in preparation to carry the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  7. KSC-2012-6176

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 is parked outside of the Vehicle Assembly Building. The Crawler-transporter has been undergoing modifications to ensure its ability to carry the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  8. Visions of tomorrow: A focus on national space transportation issues; Proceedings of the Twenty-fifth Goddard Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor)

    1987-01-01

    The present conference on U.S. space transportation systems development discusses opportunities for aerospace students in prospective military, civil, industrial, and scientific programs, current strategic conceptualization and program planning for future U.S. space transportation, the DOD space transportation plan, NASA space transportation plans, medium launch vehicle and commercial space launch services, the capabilities and availability of foreign launch vehicles, and the role of commercial space launch systems. Also discussed are available upper stage systems, future space transportation needs for space science and applications, the trajectory analysis of a low lift/drag-aeroassisted orbit transfer vehicle, possible replacements for the Space Shuttle, LEO to GEO with combined electric/beamed-microwave power from earth, the National Aerospace Plane, laser propulsion to earth orbit, and a performance analysis for a laser-powered SSTO vehicle.

  9. Optimum solar electric interplanetary mission opportunities from 1975 to 1990

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.

    1971-01-01

    A collection of optimum trajectory and spacecraft data is presented for unmanned interplanetary missions from 1975 to 1990 using solar electric propulsion. Data are presented for one-way flyby and orbiter missions from Earth to Venus, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. The solar system model assumes planetary ephemerides which very closely approximate the true motion of the planets. Direct and indirect flight profiles are investigated. Data are presented for two representative flight times for each mission. The launch vehicle is the Titan 3 B (core)/Centaur, and a constant jet exhaust speed solar electric propulsion system having a specific mass of 30 kg/kw is completely optimized in terms of power level and jet exhaust speed to yield maximum net spacecraft mass. The hyperbolic excess speeds at departure and arrival and the launch date are optimized for each mission. For orbiter missions, a chemical retro stage is used to brake the spacecraft into a highly eccentric capture orbit about the target planet.

  10. Solar-Powered Electric Propulsion Systems: Engineering and Applications

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Kerrisk, D. J.

    1966-01-01

    Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.

  11. Status report on nuclear electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.

    1975-01-01

    Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.

  12. Demonstration of Heavy Hybrid Diesel Fleet Vehicles Final Report Version 2

    DTIC Science & Technology

    2016-03-29

    Rescue 215 Truck, Earth Auger/Digger Derrick 154 Hybrid Electric System Truck, Refuse 54 Hybrid Launch Assist Truck, Dump 921 Truck, Refrigerator...5,013 In-Progress; Hybrid Electric System Dump Truck 776 Naval Construction Force Truck 1,500 Engineer Tractor 2,942 Heavy Equipment Transporter...fuel consumed by both trucks using Defense Logistics Agency (DLA) fuel management data. Card readers capture this data at the point of fueling using a

  13. 261. Photocopy of drawing (1976 electrical drawing by the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    261. Photocopy of drawing (1976 electrical drawing by the Space and Missile Test Center, VAFB, USAF) FLOODLIGHT PLAN FOR LAUNCH PAD AREA, SHEET E9 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. MIC: Magnetically Deployable Structures for Power, Propulsion, Processing, Habitats and Energy Storage at Manned Lunar Bases

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Rather, John

    2007-01-01

    MIC (Magnetically Inflated Cables) is a new approach for robotically erecting very large, strong, rigid, and ultra-lightweight structures in space. MIC structures use a network of high current (SC) cables with attached high tensile strength Kevlar or Spectra tethers. MIC is launched as a compact package of coiled SC cables and tethers on a conventional launch vehicle. Once in space the SC cables are electrically energized. The resultant strong outwards magnetic forces expand them and the restraining tethers into a large structure, which can be 100's of meters in size. MIC structures can be configured for many different applications, including solar electric generation, solar thermal propulsion, energy storage, large space telescopes, magnetic shielding for astronauts, etc. The MIC technology components, including high temperature superconductors (HTS), thermal insulation, high strength tethers, and cryogenic refrigerators all exist commercially. Refrigeration requirements are very modest, on the order of 100 watts thermal per kilometer of MIC cable, with an input electric power to the refrigeration system of ~5 kW(e) per km. baseline MIC designs are described for a manned lunar base, including: 1) a 1 MW(e) solar electric system, 2) a high Isp (~900 seconds) solar thermal tug to transport 30 ton payloads between the Earth and the Moon, 3) a 2000 Megajoule electric energy storage system for peaking and emergency power, and 4) a large (~1 km) space telescope.

  15. High Voltage EEE Parts for EMA/EHA Applications on Manned Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Griffin, Trent; Young, David

    2011-01-01

    The objective of this paper is an assessment of high voltage electronic components required for high horsepower electric thrust vector control (TVC) systems for human spaceflight launch critical application. The scope consists of creating of a database of available Grade 1 electrical, electronic and electromechanical (EEE) parts suited to this application, a qualification path for potential non-Grade 1 EEE parts that could be used in these designs, and pathfinder testing to validate aspects of the proposed qualification plan. Advances in the state of the art in high power electric power systems enable high horsepower electric actuators, such as the electromechnical actuator (EMA) and the electro-hydrostatic actuator (EHA), to be used in launch vehicle TVC systems, dramaticly reducing weight, complexity and operating costs. Designs typically use high voltage insulated gate bipolar transistors (HV-IGBT). However, no Grade 1 HV-IGBT exists and it is unlikely that market factors alone will produce such high quality parts. Furthermore, the perception of risk, the lack of qualification methodoloy, the absence of manned space flight heritage and other barriers impede the adoption of commercial grade parts onto the critical path. The method of approach is to identify high voltage electronic component types and key parameters for parts currently used in high horsepower EMA/EHA applications, to search for higher quality substitutes and custom manufacturers, to create a database for these parts, and then to explore ways to qualify these parts for use in human spaceflight launch critical application, including grossly derating and possibly treating hybrid parts as modules. This effort is ongoing, but results thus far include identification of over 60 HV-IGBT from four manufacturers, including some with a high reliability process flow. Voltage ranges for HV-IGBT have been identified, as has screening tests used to characterize HV-IGBT. BSI BS ISO 21350 Space systems Off-the-shelf item utilization, developed from Marshall Work Instruction MWI8060.1 OFF-THE-SHELF HARDWARE UTILIZATION IN FLIGHT HARDWARE DEVELOPMENTwas found to provide guidance for including commercial off-the-shelf (COTS) hardware for use in critical applications.

  16. Tail Service Mast Umbilical Arrival

    NASA Image and Video Library

    2016-08-02

    Technicians assist as a crane is used to lift the first Tail Service Mast Umbilical (TSMU) into the vertical position at the Launch Equipment Test Facility (LETF) at NASA’s Kennedy Space Center in Florida. Two TSMUs will provide liquid propellants and power to the Space Launch System (SLS) rocket’s core stage engine. Both TSMUs will connect to the zero-level deck on the mobile launcher, providing fuel and electricity to the SLS rocket before it launches on Exploration Mission 1. The TSMU will undergo testing and validation at the LETF to verify it is functioning properly. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  17. Tail Service Mast Umbilical Arrival

    NASA Image and Video Library

    2016-08-02

    A crane lifts the first Tail Service Mast Umbilical (TSMU) up for placement on a test stand at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. Two TSMUs will provide liquid propellants and power to the Space Launch System (SLS) rocket’s core stage engine. Both TSMUs will connect to the zero-level deck on the mobile launcher, providing fuel and electricity to the SLS rocket before it launches on Exploration Mission 1. The TSMU will undergo testing and validation at the LETF to verify it is functioning properly. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  18. Tail Service Mast Umbilical Arrival

    NASA Image and Video Library

    2016-08-02

    Technician monitors the progress as a crane lowers the first Tail Service Mast Umbilical (TSMU) onto a test stand at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. Two TSMUs will provide liquid propellants and power to the Space Launch System (SLS) rocket’s core stage engine. Both TSMUs will connect to the zero-level deck on the mobile launcher, providing fuel and electricity to the SLS rocket before it launches on Exploration Mission 1. The TSMU will undergo testing and validation at the LETF to verify it is functioning properly. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  19. Tail Service Mast Umbilical Arrival

    NASA Image and Video Library

    2016-08-02

    A technician monitors the progress as a crane lifts the first Tail Service Mast Umbilical (TSMU) for transfer to a test stand at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. Two TSMUs will provide liquid propellants and power to the Space Launch System (SLS) rocket’s core stage engine. Both TSMUs will connect to the zero-level deck on the mobile launcher, providing fuel and electricity to the SLS rocket before it launches on Exploration Mission 1. The TSMU will undergo testing and validation at the LETF to verify it is functioning properly. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  20. The Economics of Advanced In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Bangalore, Manju; Dankanich, John

    2016-01-01

    The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.

  1. GLC_Exec v. 1.2.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgore, Roger Martin; Soloboda, Alexander Joseph

    Launching a rocket involves a controlled transition of the rocket subsystems from a quiescent state to the launch state (i.e., lift-off). In order to launch safely, with confidence that the rocket will successfully complete its mission, the state-of-health for all rocket subsystems and critical ground support equipment must be closely monitored throughout the launch process. This is accomplished by the ground support engineers using mission-specific ground support equipment. A subset of the GSE, the Remote Electrical Ground Interface System (REGIS), is located nearest the rocket to which it's connected via the Umbilical, a wiring harness providing power, sensor, and controlmore » lines. The REGIS also connects via Ethernet to the Ground Launch Computer (GLC).« less

  2. 46 CFR 112.15-1 - Temporary emergency loads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... independent batteries separately charged by solar cells). (r) Each general emergency alarm system required by... AND POWER SYSTEMS Emergency Loads § 112.15-1 Temporary emergency loads. On vessels required by § 112... the area of the water where it is to be launched. (h) Electric communication systems that are...

  3. KSC-00pp1682

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, an overhead crane lifts the P6 integrated truss segment from a workstand to place it in the payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  4. KSC-00pp1683

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, an overhead crane moves the P6 integrated truss segment to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  5. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  6. Space propulsion systems. Present performance limits and application and development trends

    NASA Technical Reports Server (NTRS)

    Buehler, R. D.; Lo, R. E.

    1981-01-01

    Typical spaceflight programs and their propulsion requirements as a comparison for possible propulsion systems are summarized. Chemical propulsion systems, solar, nuclear, or even laser propelled rockets with electrical or direct thermal fuel acceleration, nonrockets with air breathing devices and solar cells are considered. The chemical launch vehicles have similar technical characteristics and transportation costs. A possible improvement of payload by using air breathing lower stages is discussed. The electrical energy supply installations which give performance limits of electrical propulsion and the electrostatic ion propulsion systems are described. The development possibilities of thermal, magnetic, and electrostatic rocket engines and the state of development of the nuclear thermal rocket and propulsion concepts are addressed.

  7. Satellite Power Systems (SPS) concept definition study. Volume 5: Transportation and operations analysis. [heavy lift launch and orbit transfer vehicles for orbital assembly

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The development of transportation systems to support the operations required for the orbital assembly of a 5-gigawatt satellite is discussed as well as the construction of a ground receiving antenna (rectenna). Topics covered include heavy lift launch vehicle configurations for Earth-to LEO transport; the use of chemical, nuclear, and electric orbit transfer vehicles for LEO to GEO operations; personnel transport systems; ground operations; end-to-end analysis of the construction, operation, and maintenance of the satellite and rectenna; propellant production and storage; and payload packaging.

  8. Spaceport Command and Control System Software Development

    NASA Technical Reports Server (NTRS)

    Glasser, Abraham

    2017-01-01

    The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires a large amount of intensive testing that will properly measure the capabilities of the system. Automating the test procedures would save the project money from human labor costs, as well as making the testing process more efficient. Therefore, the Exploration Systems Division (formerly the Electrical Engineering Division) at Kennedy Space Center (KSC) has recruited interns for the past two years to work alongside full-time engineers to develop these automated tests, as well as innovate upon the current automation process.

  9. Mission Design for the Innovative Interstellar Explorer Vision Mission

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas I.; McNutt, Ralph L.

    2005-01-01

    The Innovative Interstellar Explorer, studied under a NASA Vision Mission grant, examined sending a probe to a heliospheric distance of 200 Astronomical Units (AU) in a "reasonable" amount of time. Previous studies looked at the use of a near-Sun propulsive maneuver, solar sails, and fission reactor powered electric propulsion systems for propulsion. The Innovative Interstellar Explorer's mission design used a combination of a high-energy launch using current launch technology, a Jupiter gravity assist, and electric propulsion powered by advanced radioisotope power systems to reach 200 AU. Many direct and gravity assist trajectories at several power levels were considered in the development of the baseline trajectory, including single and double gravity assists utilizing the outer planets (Jupiter, Saturn, Uranus, and Neptune). A detailed spacecraft design study was completed followed by trajectory analyses to examine the performance of the spacecraft design options.

  10. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  11. Electric Propulsion Performance from Geo-transfer to Geosynchronous Orbits

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Carpenter, Christian B.

    2007-01-01

    For near-Earth application, solar electric propulsion advocates have focused on Low Earth Orbit (LEO) to Geosynchronous (GEO) low-thrust transfers because of the significant improvement in capability over chemical alternatives. While the performance gain attained from starting with a lower orbit is large, there are also increased transfer times and radiation exposure risk that has hindered the commercial advocacy for electric propulsion stages. An incremental step towards electric propulsion stages is the use of integrated solar electric propulsion systems (SEPS) for GTO to GEO transfer. Thorough analyses of electric propulsion systems options and performance are presented. Results are based on existing or near-term capabilities of Arcjets, Hall thrusters, and Gridded Ion engines. Parametric analyses based on "rubber" thruster and launch site metrics are also provided.

  12. SERT D spacecraft study. [project planning and objectives

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The SERT D (Space Electric Rocket Test - D) study defines a possible spacecraft project that would demonstrate the use of electric ion thrusters for long-term (5 yr) station keeping and attitude control of a synchronous orbit satellite. Other mission objectives included in the study were: station walking to satellite rendezvous and inspection, use of low cost attitude sensing system, use of an advanced solar array orientation and slip ring system, and an ion thruster integrated directly with a solar array power source. The SERT D spacecraft, if launched, will become SERT 3 the third space electric thruster test.

  13. High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Borowski, Stanley K.; Mason, Lee M.; Gilland, James

    2003-01-01

    This documents the results of a one-year multi-center NASA study on the prospect of sending humans to Jupiter's moon, Callisto, using an all Nuclear Electric Propulsion (NEP) space transportation system architecture with magnetoplasmadynamic (MPD) thrusters. The fission reactor system utilizes high temperature uranium dioxide (UO2) in tungsten (W) metal matrix cermet fuel and electricity is generated using advanced dynamic Brayton power conversion technology. The mission timeframe assumes on-going human Moon and Mars missions and existing space infrastructure to support launch of cargo and crewed spacecraft to Jupiter in 2041 and 2045, respectively.

  14. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  15. A Survey of Power Electronics Applications in Aerospace Technologies

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Elbuluk, Malik E.

    2001-01-01

    The insertion of power electronics in aerospace technologies is becoming widespread. The application of semiconductor devices and electronic converters, as summarized in this paper, includes the International Space Station, satellite power system, and motor drives in 'more electric' technology applied to aircraft, starter/generators and reusable launch vehicles. Flywheels, servo systems embodying electromechanical actuation, and spacecraft on-board electric propulsion are discussed. Continued inroad by power electronics depends on resolving incompatibility of using variable frequency for 400 Hz-operated aircraft equipment. Dual-use electronic modules should reduce system development cost.

  16. Space transportation systems, launch systems, and propulsion for the Space Exploration Initiative: Results from Project Outreach

    NASA Technical Reports Server (NTRS)

    Garber, T.; Hiland, J.; Orletsky, D.; Augenstein, B.; Miller, M.

    1991-01-01

    A number of transportation and propulsion options for Mars exploration missions are analyzed. As part of Project Outreach, RAND received and evaluated 350 submissions in the launch vehicle, space transportation, and propulsion areas. After screening submissions, aggregating those that proposed identical or nearly identical concepts, and eliminating from further consideration those that violated known physical princples, we had reduced the total number of viable submissions to 213. In order to avoid comparing such disparate things as launch vehicles and electric propulsion systems, six broad technical areas were selected to categorize the submissions: space transportation systems; earth-to-orbit (ETO) launch systems; chemical propulsion; nuclear propulsion; low-thrust propulsion; and other. To provide an appropriate background for analyzing the submissions, an extensive survey was made of the various technologies relevant to the six broad areas listed above. We discuss these technologies with the intent of providing the reader with an indication of the current state of the art, as well as the advances that might be expected within the next 10 to 20 years.

  17. Low power pulsed MPD thruster system analysis and applications

    NASA Astrophysics Data System (ADS)

    Myers, Roger M.; Domonkos, Matthew; Gilland, James H.

    1993-09-01

    Pulsed magnetoplasmadynamic (MPD) thruster systems were analyzed for application to solar-electric orbit transfer vehicles at power levels ranging from 10 to 40 kW. Potential system level benefits of pulsed propulsion technology include ease of power scaling without thruster performance changes, improved transportability from low power flight experiments to operational systems, and reduced ground qualification costs. Required pulsed propulsion system components include a pulsed applied-field MPD thruster, a pulse-forming network, a charge control unit, a cathode heater supply, and high speed valves. Mass estimates were obtained for each propulsion subsystem and spacecraft component using off-the-shelf technology whenever possible. Results indicate that for payloads of 1000 and 2000 kg pulsed MPD thrusters can reduce launch mass by between 1000 and 2500 kg over those achievable with hydrogen arcjets, which can be used to reduce launch vehicle class and the associated launch cost. While the achievable mass savings depends on the trip time allowed for the mission, cases are shown in which the launch vehicle required for a mission is decreased from an Atlas IIAS to an Atlas I or Delta 7920.

  18. Low power pulsed MPD thruster system analysis and applications

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Domonkos, Matthew; Gilland, James H.

    1993-01-01

    Pulsed magnetoplasmadynamic (MPD) thruster systems were analyzed for application to solar-electric orbit transfer vehicles at power levels ranging from 10 to 40 kW. Potential system level benefits of pulsed propulsion technology include ease of power scaling without thruster performance changes, improved transportability from low power flight experiments to operational systems, and reduced ground qualification costs. Required pulsed propulsion system components include a pulsed applied-field MPD thruster, a pulse-forming network, a charge control unit, a cathode heater supply, and high speed valves. Mass estimates were obtained for each propulsion subsystem and spacecraft component using off-the-shelf technology whenever possible. Results indicate that for payloads of 1000 and 2000 kg pulsed MPD thrusters can reduce launch mass by between 1000 and 2500 kg over those achievable with hydrogen arcjets, which can be used to reduce launch vehicle class and the associated launch cost. While the achievable mass savings depends on the trip time allowed for the mission, cases are shown in which the launch vehicle required for a mission is decreased from an Atlas IIAS to an Atlas I or Delta 7920.

  19. Trajectory Optimization of an Interstellar Mission Using Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Kluever, Craig A.

    1996-01-01

    This paper presents several mission designs for heliospheric boundary exploration using spacecraft with low-thrust ion engines as the primary mode of propulsion The mission design goal is to transfer a 200-kg spacecraft to the heliospheric boundary in minimum time. The mission design is a combined trajectory and propulsion system optimization problem. Trajectory design variables include launch date, launch energy, burn and coast arc switch times, thrust steering direction, and planetary flyby conditions. Propulsion system design parameters include input power and specific impulse. Both SEP and NEP spacecraft arc considered and a wide range of launch vehicle options are investigated. Numerical results are presented and comparisons with the all chemical heliospheric missions from Ref 9 are made.

  20. Tail Service Mast Umbilical Arrival

    NASA Image and Video Library

    2016-08-02

    Technicians assist as a crane is used to lift the first Tail Service Mast Umbilical (TSMU) up from the flatbed of the transport truck at the Launch Equipment Test Facility (LETF) at NASA’s Kennedy Space Center in Florida. Two TSMUs will provide liquid propellants and power to the Space Launch System (SLS) rocket’s core stage engine. Both TSMUs will connect to the zero-level deck on the mobile launcher, providing fuel and electricity to the SLS rocket before it launches on Exploration Mission 1. The TSMU will undergo testing and validation at the LETF to verify it is functioning properly. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  1. Tail Service Mast Umbilical Arrival

    NASA Image and Video Library

    2016-08-02

    Technicians assist as a crane is used to lift the first Tail Service Mast Umbilical (TSMU) away from the flatbed of the transport truck at the Launch Equipment Test Facility (LETF) at NASA’s Kennedy Space Center in Florida. Two TSMUs will provide liquid propellants and power to the Space Launch System (SLS) rocket’s core stage engine. Both TSMUs will connect to the zero-level deck on the mobile launcher, providing fuel and electricity to the SLS rocket before it launches on Exploration Mission 1. The TSMU will undergo testing and validation at the LETF to verify it is functioning properly. The center’s Engineering Directorate and the Ground Systems Development and Operations Program are overseeing processing and testing of the umbilicals.

  2. Lightning Threat Analysis for the Space Shuttle Launch Pad and the Payload Changeout Room Using Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Collier, Richard S.

    1997-01-01

    This report describes finite difference computer calculations for the Space Shuttle Launch Pad which predict lightning induced electric currents and electric and magnetic fields caused by a lightning strike to the Lightning Protection System caternary wire. Description of possible lightning threats to Shuttle Payload components together with specifications for protection of these components, result from the calculation of lightning induced electric and magnetic fields inside and outside the during a lightning event. These fields also induce currents and voltages on cables and circuits which may be connected to, or a part of, shuttle payload components. These currents and voltages are also calculated. These threat levels are intended as a guide for designers of payload equipment to specify any shielding and/or lightning protection mitigation which may be required for payload components which are in the process of preparation or being transferred into the Shuttle Orbiter.

  3. SPHINX Satellite Testing in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1973-12-21

    Researchers examine the Space Plasma-High Voltage Interaction Experiment (SPHINX) satellite in the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis’ Spacecraft Technology Division designed SPHINX to study the electrical interaction of its experimental surfaces with space plasma. They sought to determine if higher orbits would improve the transmission quality of communications satellites. Robert Lovell, the Project Manager, oversaw vibrational and plasma simulation testing of the satellite in the Electric Propulsion Laboratory, seen here. SPHINX was an add-on payload for the first Titan/Centaur proof launch in early 1974. Lewis successfully managed the Centaur Program since 1962, but this would be the first Centaur launch with a Titan booster. Since the proof test did not have a scheduled payload, the Lewis-designed SPHINX received a free ride. The February 11, 1974 launch, however, proved to be one of the Launch Vehicle Division’s lowest days. Twelve minutes after the vehicle departed the launch pad, the booster and Centaur separated as designed, but Centaur’s two RL-10 engines failed to ignite. The launch pad safety officer destroyed the vehicle, and SPHINX never made it into orbit. Overall Centaur has an excellent success rate, but the failed SPHINX launch attempt caused deep disappointment across the center.

  4. KSC-2011-1449

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  5. KSC-2011-1446

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  6. KSC-2011-1450

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, training takes place atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  7. KSC-2011-1448

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  8. KSC-2011-1447

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training on a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  9. 214. Photocopy of drawing (1983 electrical drawing by StearnsRoger Incorporated) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    214. Photocopy of drawing (1983 electrical drawing by Stearns-Roger Incorporated) ATLAS H CONVERSION, ELECTRICAL LAN FOR RELOCATION OF THE ERECTION WINCH TO MST STATION 124, SHEET 517-E21 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. SEPS mission and system integration/interface requirements for the space transportation system. [Solar Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Cork, M. J.; Barnett, P. M.; Shaffer, J., Jr.; Doran, B. J.

    1979-01-01

    Earth escape mission requirements on Solar Electric Propulsion System (SEPS), and the interface definition and planned integration between SEPS, user spacecraft, and other elements of the STS. Emphasis is placed on the Comet rendezvous mission, scheduled to be the first SEPS user. Interactive SEPS interface characteristics with spacecraft and mission, as well as the multiple organizations and inter-related development schedules required to integrate the SEPS with spacecraft and STS, require early attention to definition of interfaces in order to assure a successful path to the first SEPS launch in July 1985

  11. MARS PATHFINDER PYRO SYSTEMS SWITCHING ACTIVITY

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Mars Pathfinder lander is subjected to a electrical and functional tests of its pyrotechic petal deployer system by Jet Propulsion Laboratory (JPL) engineers and technicians in KSC's Spacecraft Assembly and Encapsulation Facility (SAEF-2). In the background is the Pathfinder cruise stage, which the lander will be mated to once its functional tests are complete. The lander will remain attached to this stage during its six-to-seven-month journey to Mars. When the lander touches down on the surface of Mars next year, the pyrotechnic system will deploy its three petals open like a flower and allow the Sojourner autonomous rover to explore the Martian surface. The Mars Pathfinder is scheduled for launch aboard a Delta II expendable launch vehicle on Dec. 2, the beginning of a 24-day launch period. JPL is managing the Mars Pathfinder project for NASA.

  12. KSC-2012-6177

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  13. KSC-2012-6179

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  14. Trajectory options for the DART mission

    NASA Astrophysics Data System (ADS)

    Atchison, Justin A.; Ozimek, Martin T.; Kantsiper, Brian L.; Cheng, Andrew F.

    2016-06-01

    This study presents interplanetary trajectory options for the Double Asteroid Redirection Test (DART) spacecraft to reach the near Earth object, Didymos binary system, during its 2022 Earth conjunction. DART represents a component of a joint NASA-ESA mission to study near Earth object kinetic impact deflection. The DART trajectory must satisfy mission objectives for arrival timing, geometry, and lighting while minimizing launch vehicle and spacecraft propellant requirements. Chemical propulsion trajectories are feasible from two candidate launch windows in late 2020 and 2021. The 2020 trajectories are highly perturbed by Earth's orbit, requiring post-launch deep space maneuvers to retarget the Didymos system. Within these windows, opportunities exist for flybys of additional near Earth objects: Orpheus in 2021 or 2007 YJ in 2022. A second impact attempt, in the event that the first impact is unsuccessful, can be added at the expense of a shorter launch window and increased (∼3x) spacecraft ΔV . However, the second impact arrival geometry has poor lighting, high Earth ranges, and would require additional degrees of freedom for solar panel and/or antenna gimbals. A low-thrust spacecraft configuration increases the trajectory flexibility. A solar electric propulsion spacecraft could be affordably launched as a secondary spacecraft in an Earth orbit and spiral out to target the requisite interplanetary departure condition. A sample solar electric trajectory was constructed from an Earth geostationary transfer using a representative 1.5 kW thruster. The trajectory requires 9 months to depart Earth's sphere of influence, after which its interplanetary trajectory includes a flyby of Orpheus and a second Didymos impact attempt. The solar electric spacecraft implementation would impose additional bus design constraints, including large solar arrays that could pose challenges for terminal guidance. On the basis of this study, there are many feasible options for DART to meet its mission design objectives and enable this unique kinetic impact experiment.

  15. New Marshall Center Test Stand 4697 Construction Time-Lapse

    NASA Image and Video Library

    2016-09-27

    In less than two minutes watch structural Test Stand 4697 rise at NASA's Marshall Space Flight Center from the start of construction in May 2014 to the end of the stand's construction phase in September 2016. The stand will subject the 196,000-gallon liquid oxygen tank of the Space Launch System's massive core stage to the same stresses and pressures it must endure at launch and in flight. Now, Marshall teams are installing sophisticated fluid transfer and pressurization systems, hydraulic controls, electrical control and data systems, fiber optics cables and special test equipment to prepare for the arrival of the test tank in 2017. (NASA/MSFC/David Olive)

  16. Combining Solar Electric Propulsion and Chemical Propulsion for Crewed Missions to Mars

    NASA Technical Reports Server (NTRS)

    Percy, Tom; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    This paper documents the results of an investigation of human Mars mission architectures that leverage near-term technology investments and infrastructures resulting from the planned Asteroid Redirect Robotic Mission (ARRM), including high-power Solar Electric Propulsion (SEP) and a human presence in Lunar Distant Retrograde Orbit (LDRO). The architectures investigated use a combination of SEP and chemical propulsion elements. Through this combination of propulsion technologies, these architectures take advantage of the high efficiency SEP propulsion system to deliver cargo, while maintaining the faster trip times afforded by chemical propulsion for crew transport. Evolved configurations of the Asteroid Redirect Vehicle (ARV) are considered for cargo delivery. Sensitivities to SEP system design parameters, including power level and propellant quantity, are presented. For the crew delivery, liquid oxygen and methane stages were designed using engines common to future human Mars landers. Impacts of various Earth departure orbits, Mars loiter orbits, and Earth return strategies are presented. The use of the Space Launch System for delivery of the various architecture elements was also investigated and launch vehicle manifesting, launch scheduling and mission timelines are also discussed. The study results show that viable Mars architecture can be constructed using LDRO and SEP in order to take advantage of investments made in the ARRM mission.

  17. Combining Solar Electric and Chemical Propulsion for Crewed Missions to Mars

    NASA Technical Reports Server (NTRS)

    Percy, Tom; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    This paper documents the results of an investigation of human Mars mission architectures that leverage near-term technology investments and infrastructures resulting from the planned Asteroid Redirect Mission, including high-power Solar Electric Propulsion (SEP) and a human presence in Lunar Distant Retrograde Orbit (LDRO). The architectures investigated use a combination of SEP and chemical propulsion elements. Through this combination of propulsion technologies, these architectures take advantage of the high efficiency SEP propulsion system to deliver cargo, while maintaining the faster trip times afforded by chemical propulsion for crew transport. Evolved configurations of the Asteroid Redirect Vehicle (ARV) are considered for cargo delivery. Sensitivities to SEP system design parameters, including power level and propellant quantity, are presented. For the crew delivery, liquid oxygen and methane stages were designed using engines common to future human Mars landers. Impacts of various Earth departure orbits, Mars loiter orbits, and Earth return strategies are presented. The use of the Space Launch System for delivery of the various architecture elements was also investigated and launch vehicle manifesting, launch scheduling and mission timelines are also discussed. The study results show that viable Mars architecture can be constructed using LDRO and SEP in order to take advantage of investments made in the ARM mission.

  18. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  19. KSC01pp0018

    NASA Image and Video Library

    2001-01-03

    KENNEDY SPACE CENTER, Fla. -- Bright morning sun shines on Space Shuttle Atlantis as it sits on Launch Pad 39A. In front of the wings, on either side of the orbiter are tail service masts, which support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab has five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  20. Outer Planet Exploration with Advanced Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey; Benson, Scott; McAdams, Jim; Ostdiek, Paul

    2002-01-01

    In response to a request by the NASA Deep Space Exploration Technology Program, NASA Glenn Research Center conducted a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power systems was shown to allow the same or smaller launch vehicle class as the chemical 2004 baseline and allow a launch slip and still flyby in the 2014 to 2020 timeframe. With this promising result the study was expanded to use a radioisotope power source for small electrically propelled orbiter spacecraft for outer planet targets such as Uranus, Neptune, and Pluto.

  1. 278. Photocopy of drawing (1978 structural electrical drawing by the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    278. Photocopy of drawing (1978 structural electrical drawing by the Space and Missile Test Center, VAFB, USAF) DETAILS, SECTION, AND ELECTRICAL PLAN FOR THE TIROS AND NOAA THEODOLITE STATION, SLC-3E, SHEET 4 OF 4 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Historical Footage of John Glenn Friendship 7

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The Friendship mission launch on the 20th day of February marked the first time that an American attempts to orbit the Earth. Historical footage of John Glenn's suit up, ride out to the launch pad, countdown, liftoff, booster engine cutoff, and separation of the booster engine escape tower is shown. Views of the Earth, Glenn's manual control of the electrical fly-by wire system, and the recovery of the landing vehicle from the ocean are presented.

  3. Modular, Reconfigurable, High-Energy Systems Stepping Stones

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Mankins, John C.

    2005-01-01

    Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters.

  4. 47. BASE OF UMBILICAL MAST, WITH ELECTRICAL POWER CABLES ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. BASE OF UMBILICAL MAST, WITH ELECTRICAL POWER CABLES ON LEFT; AIR-CONDITIONER DUCTS ON RIGHT - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. KSC-00pp1681

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, workers attach an overhead crane to lift the P6 integrated truss segment from a workstand and move it to the payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  6. KSC-00pp1685

    NASA Image and Video Library

    2000-11-10

    As it travels across the Space Station Processing Facility, the P6 integrated truss segment passes over the two Italian-built Multi-Purpose Logistics Modules, Leonardo (right) and Raffaello (behind Leonardo). The P6 is being moved to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  7. KSC-00pp1684

    NASA Image and Video Library

    2000-11-10

    In the Space Station Processing Facility, the P6 integrated truss segment travels across the building to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour’s payload bay for launch on mission STS-97. At left is the airlock module, another component of the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST

  8. KSC-00pp1686

    NASA Image and Video Library

    2000-11-10

    Carried by an overhead crane, the P6 integrated truss segment travels the length of the Space Station Processing Facility toward a payload transport canister that will transfer it to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  9. KSC-00pp1687

    NASA Image and Video Library

    2000-11-10

    The P6 integrated truss segment hangs suspended from an overhead crane that is moving it the length of the Space Station Processing Facility toward a payload transport canister for transfer to Launch Pad 39B. At the pad, the Space Station element will be placed in Endeavour’s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  10. KSC-00pp1779

    NASA Image and Video Library

    2000-11-30

    STS-97 Mission Specialist Joseph Tanner signals thumbs up for launch as he dons his launch and entry suit. this is his third Shuttle flight.; Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  11. KSC-00pp1782

    NASA Image and Video Library

    2000-11-30

    STS-97 Pilot Michael Bloomfield signals thumbs up for launch after donning his launch and entry suit. This is his second Shuttle flight. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  12. UV Spectrometer System AFGL 801 A HUP

    DTIC Science & Technology

    1989-05-01

    These criteria can be established when more is known about the launch vehicles . The spectrometer will be operated before, during and after each test to...between flights would also be cut dramatically. The Forth code would be written on an IBM PC and transferred to EEPROMs ( Electrically Erasab!- Programmable...Read Only Memory) in the flight instruments. The use of EEPROMs, which are electrically programmable and erasable, allows the whole process of

  13. Nano-Electric Field TechnologY (NEFTY)

    NASA Technical Reports Server (NTRS)

    Kintner, Paul M.

    2000-01-01

    The NEFTY SR&T grant was focused on the development of novel electric field boom systems for sounding rocket applications. A "yo-yo"-type boom that unwraps from a rotating and damped axel was analyzed through a simulation with Prof. Psiaki of Mechanical and Aerospace Engineering at Cornell University. The basic parameters of the analysis were evaluated and validated on a spinning platform prototyping system developed at Cornell University. The full "yo-yo"-type boom system is being developing for the SIERRA sounding rocket flight scheduled for a January 2002 launch. The principal results from this study were published.

  14. 56. DETAIL OF PAYLOAD ELECTRICAL AND AIRCONDITIONING UMBILICAL CONNECTIONS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. DETAIL OF PAYLOAD ELECTRICAL AND AIR-CONDITIONING UMBILICAL CONNECTIONS ON NORTH FACE OF SLC-3W UMBILICAL MAST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. KSC-2012-6175

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a space shuttle era mobile launcher platform, on the left, sits on pedestals outside the Vehicle Assembly Building. To the right is the mobile launcher that will support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  16. Dynamics Explorer dual spacecraft to be launched on July 31

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Plans for the launch of the Dynamics Explorers A and B are announced. The mission of the spacecraft is described. Specific knowledge about the coupling of energy, electric currents, electric fields, and plasmas between the magnetosphere, the ionosphere, and the atmosphere is sought. The instrumentation of the spacecraft is described and the spacecraft and Delta 3918 launch vehicle characterized. Detailed background information amplifying the mission is included.

  17. KSC01padig007

    NASA Image and Video Library

    2001-01-03

    KENNEDY SPACE CENTER, Fla. -- Under wispy white morning clouds, Space Shuttle Atlantis nears the Rotating Service Structure on Launch Pad 39A. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  18. Lunar Get Away Special (GAS) spacecraft

    NASA Technical Reports Server (NTRS)

    Nock, K. T.; Aston, G.; Salazar, R. P.; Stella, P. M.

    1987-01-01

    A new approach to the resumption of Lunar missions is discussed which relies upon Shuttle Get-Away-Special Canisters for launch and solar electric ion propulsion for slow orbit transfer to low Lunar orbit. The technique of orbit transfer is outlined along with a summary of a mission profile for a first mission which could carry a Gamma Ray Spectrometer. System design constraints are discussed followed by a description of the low mass spacecraft concept which has been developed. Particular emphasis is placed upon describing the small solar electric, xenon ion propulsion system.

  19. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  20. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2011-01-01

    NASA's goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  1. 102. VIEW OF GRANETZ 'EVENTRECORDER' COMPUTER AND GENERAL ELECTRIC PRINTERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. VIEW OF GRANETZ 'EVENT-RECORDER' COMPUTER AND GENERAL ELECTRIC PRINTERS FOR GRANETZ OUTPUT LOCATED NEAR EAST WALL OF LANDLINE INSTRUMENTATION ROOM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  3. Benefits of Application of Advanced Technologies for a Neptune Orbiter, Atmospheric Probes and Triton Lander

    NASA Technical Reports Server (NTRS)

    Somers, Alan; Celano, Luigi; Kauffman, Jeffrey; Rogers, Laura; Peterson, Craig

    2005-01-01

    Missions with planned launch dates several years from today pose significant design challenges in properly accounting for technology advances that may occur in the time leading up to actual spacecraft design, build, test and launch. Conceptual mission and spacecraft designs that rely solely on off the shelf technology will result in conservative estimates that may not be attractive or truly representative of the mission as it actually will be designed and built. This past summer, as part of one of NASA s Vision Mission Studies, a group of students at the Laboratory for Spacecraft and Mission Design (LSMD) have developed and analyzed different Neptune mission baselines, and determined the benefits of various assumed technology improvements. The baseline mission uses either a chemical propulsion system or a solar-electric system. Insertion into orbit around Neptune is achieved by means of aerocapture. Neptune s large moon Triton is used as a tour engine. With these technologies a comprehensive Cassini-class investigation of the Neptune system is possible. Technologies under investigation include the aerocapture heat shield and thermal protection system, both chemical and solar electric propulsion systems, spacecraft power, and energy storage systems.

  4. Design and performance of an arcjet nuclear electric propulsion system for a mid-1990's reference mission

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1987-01-01

    The design and performance of an arcjet nuclear-electric-propulsion spacecraft, suitable for use in the Space Nuclear Power System (SNPS) reference mission, are outlined. The vehicle design was based on a 30-kW ammonia arcjet system operating at an Isp of 1050 s and an efficiency of 45 percent. The arcjet/gimbal system, power-processing unit, and propellant-feed system are described. A 100-kWe SNPS was assumed, and the spacecraft mass was baselined at 5250 kg (excluding the propellant-feed system). A radiation/arcjet efflux diagnostics package was included in the performance analysis. This spacecraft, assuming a Shuttle launch from KSC, can perform a 50-deg inclination change and reach a final orbit of 35,860 km with a 120-d trip time providing a 4-mo active load for the SNPS. Alternatively, a Titan IV launch would provide a mass margin of 120 kg to a 10,000-km, 58-deg final orbit in 74 d. This spacecraft meets the reference-mission constraint of low developmental risk, and is scalable to power levels projected for future space platforms.

  5. Volt-VAR Optimization on American Electric Power Feeders in Northeast Columbus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Kevin P.; Weaver, T. F.

    2012-05-10

    In 2007 American Electric Power launched the gridSMART® initiative with the goals of increasing efficiency of the electricity delivery system and improving service to the end-use customers. As part of the initiative, a coordinated Volt-VAR system was deployed on eleven distribution feeders at five substations in the Northeast Columbus Ohio Area. The goal of the coordinated Volt-VAR system was to decrease the amount of energy necessary to provide end-use customers with the same quality of service. The evaluation of the Volt-VAR system performance was conducted in two stages. The first stage was composed of simulation, analysis, and estimation, while themore » second stage was composed of analyzing collected field data. This panel paper will examine the analysis conducted in both stages and present the estimated improvements in system efficiency.« less

  6. Low-thrust roundtrip trajectories to Mars with one-synodic-period repeat time

    NASA Astrophysics Data System (ADS)

    Okutsu, Masataka; Landau, Damon F.; Rogers, Blake A.; Longuski, James M.

    2015-05-01

    Cycler trajectories-both ballistic and powered-are reported in the literature in which there are two-vehicle, three-vehicle, and four-vehicle cases. Such trajectories permit the installation of cycler vehicles which provide safe and comfortable living conditions for human space travel between Earth and Mars during every synodic opportunity. The question the present paper answers is a logical, obvious one: Does a single-vehicle, one-synodic-period cycler exist? The answer is yes: such a trajectory can be flown-but only with a high-power electric propulsion system. In our example, it is found that "stopover" trajectories that spend 30 days in orbit about Earth and 30 days about Mars, and return astronauts to Earth in one synodic period require a 90-t power generator with a power level of 11 MWe. Fortuitously, and in lieu of using chemical propulsion, the high power level of the electric propulsion system would also be effective in hauling the cargo payload via a spiral trajectory about the Earth. But because one synodic period is not enough for the cycler vehicle to fly both the interplanetary trajectories and the Earth-spiral trajectories, we suggest developing two nuclear power generators, which could alternate flying the interplanetary trajectories and the Earth-spiral trajectories. Once these power generators are launched and begin operating in space, the mass requirement in seven subsequent missions (over a period of 15 years beginning in 2022) would be modest at 250-300 metric tons to low-Earth orbit per mission. Thus two cargo launches of NASA's Space Launch System and one crew launch of the Falcon Heavy, for example, would be adequate to maintain support for each consecutive mission. Although we propose developing two sets of electric propulsion systems to account for the Earth-spiral phases, only one vehicle is flown on a heliocentric trajectory at any given time. Thus, our low-thrust stopover cycler with zero encounter velocities falls into a category of a "one-vehicle cycler," which completes the gap in the literature, where we have already seen multiple-vehicle cycler concepts.

  7. KSC-07pd3624

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  8. KSC-07pd3623

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  9. KSC-07pd3625

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician checks test wiring spliced into an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system. The test wiring leads to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  10. Economical launching and accelerating control strategy for a single-shaft parallel hybrid electric bus

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu

    2016-08-01

    This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.

  11. Overview of Energy Storage Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  12. Skylab technology electrical power system

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.; Smith, O. B.; Nassen, H. S.

    1974-01-01

    The solar array/battery power systems for the Skylab vehicle were designed to operate in a solar inertial pointing mode to provide power continuously to the Skylab. Questions of power management are considered, taking into account difficulties caused by the reduction in power system performance due to the effects of structural failure occurring during the launching process. The performance of the solar array of the Apollo Telescope Mount Power System is discussed along with the Orbital Workshop solar array performance and the Airlock Module power conditioning group performance. A list is presented of a number of items which have been identified during mission monitoring and are recommended for electrical power system concepts, designs, and operation for future spacecraft.

  13. Feasibility of Space Disposal of Radioactive Nuclear Waste. 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This NASA study, performed at the request of the AEC, concludes that transporting radioactive waste (primarily long-lived isotopes) into space is feasible. Tentative solutions are presented for technical problems involving safe packaging. Launch systems (existing and planned), trajectories, potential hazards, and various destinations were evaluated. Solar system escape is possible and would have the advantage of ultimate removal of the radioactive waste from man's environment. Transportation costs would be low (comparable to less than a 5 percent increase in the cost of electricity) even though more than 100 space shuttle launches per year would be required by the year 2000.

  14. Design of Stand-Alone Hybrid Power Generation System at Brumbun Beach Tulungagung East Java

    NASA Astrophysics Data System (ADS)

    Rahmat, A. N.; Hidayat, M. N.; Ronilaya, F.; Setiawan, A.

    2018-04-01

    Indonesian government insists to optimize the use of renewable energy resources in electricity generation. One of the efforts is launching Independent Energy Village plan. This program aims to fulfill the need of electricity for isolated or remote villages in Indonesia. In order to support the penetration of renewable energy resources in electricity generation, a hybrid power generation system is developed. The simulation in this research is based on the availability of renewable energy resources in Brumbun beach, Tulungagung, East Java. Initially, the electricity was supplied through stand-alone electricity generations which are installed at each house. Hence, the use of electricity between 5 p.m. – 9 p.m. requires high operational costs. Based on the problem above, this research is conducted to design a stand-alone hybrid electricity generation system, which may consist of diesel, wind, and photovoltaic. The design is done by using HOMER software to optimize the use of electricity from renewable resources and to reduce the operation of diesel generation. The combination of renewable energy resources in electricity generation resulted in NPC of 44.680, COE of 0,268, and CO2 emissions of 0,038 % much lower than the use of diesel generator only.

  15. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  16. Nuclear electric power for multimegawatt orbit transfer vehicles

    NASA Astrophysics Data System (ADS)

    Casagrande, R. D.

    Multimegawatt nuclear propulsion is an attractive option for orbit transfer vehicles. The masses of these platforms are expected to exceed the capability of a single launch from Earth necessitating assembly in space in a parking orbit. The OTV would transfer the platform from the parking orbit to the operational orbit and then return for the next mission. Electric propulsion is advantageous because of the high specific impulse achieved by the technology, 1000 to 5000 s and beyond, to reduce the propellant required. Nuclear power is attractive as the power system because of the weight savings over solar systems in the multimegawatt regime, and multimegawatts of power are required. A conceptual diagram is shown of an OTV with a command control module using electric thrusters powered from an SP-100 class nuclear reactor power system.

  17. Electrical Actuation Technology Bridging

    NASA Astrophysics Data System (ADS)

    Hammond, Monica; Sharkey, John

    1993-05-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  18. Nuclear Thermal Rocket (NTR) Propulsion and Power Systems for Outer Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Cataldo, R. L.

    2001-01-01

    The high specific impulse (I (sub sp)) and engine thrust generated using liquid hydrogen (LH2)-cooled Nuclear Thermal Rocket (NTR) propulsion makes them attractive for upper stage applications for difficult robotic science missions to the outer planets. Besides high (I (sub sp)) and thrust, NTR engines can also be designed for "bimodal" operation allowing substantial amounts of electrical power (10's of kWe ) to be generated for onboard spacecraft systems and high data rate communications with Earth during the course of the mission. Two possible options for using the NTR are examined here. A high performance injection stage utilizing a single 15 klbf thrust engine can inject large payloads to the outer planets using a 20 t-class launch vehicle when operated in an "expendable mode". A smaller bimodal NTR stage generating approx. 1 klbf of thrust and 20 to 40 kWe for electric propulsion can deliver approx. 100 kg using lower cost launch vehicles. Additional information is contained in the original extended abstract.

  19. Spacecraft Impacts with Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Oleson, Steven R.

    2000-01-01

    A study was performed to assess the benefits of advanced power and electric propulsion systems for various space missions. Advanced power technologies that were considered included multiband gap and thin-film solar arrays, lithium batteries, and flywheels. Electric propulsion options included Hall effect thrusters and Ion thrusters. Several mission case studies were selected as representative of future applications for advanced power and propulsion systems. These included a low altitude Earth science satellite, a LEO communications constellation, a GEO military surveillance satellite, and a Mercury planetary mission. The study process entailed identification of overall mission performance using state-of-the-art power and propulsion technology, enhancements made possible with either power or electric propulsion advances individually, and the collective benefits realized when advanced power and electric propulsion are combined. Impacts to the overall spacecraft included increased payload, longer operational life, expanded operations and launch vehicle class step-downs.

  20. Mass comparisons of electric propulsion systems for NSSK of geosynchronous spacecraft

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.; Majcher, Gregory A.

    1991-01-01

    A model was developed and exercised to allow wet mass comparisons of three axis stabilized communication satellites delivered to geosynchronous transfer orbit. The mass benefits of using advanced chemical propulsion for apogee injection and north-south stationkeeping (NSSK) functions or electric propulsion (hydrazine arcjets and xenon ion thrusters) for NSSK functions are documented. A large derated ion thrusters is proposed which minimizes thruster lifetime concerns and qualification test times when compared to those of smaller ion thrusters planned for NSSK applications. The mass benefits, which depend on the spacecraft mass and mission duration, increase dramatically with arcjet specific impulse in the 500 to 600 s range, but are nearly constant for the derated ion thruster operated in the 2300 to 3000 s range. For a given mission, the mass benefits with an ion system are typically double those of the arcjet system; however, the total thrusting time with arcjets is less than 1/3 that with ion thrusters for the same thruster power. The mass benefits may permit increases in revenue producing payload or reduce launch costs by allowing a move to a smaller launch vehicle.

  1. Electric propulsion options for 10 kW class earth space missions

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.

  2. 54. DETAIL OF GENERAL ELECTRIC AIRBORNE BEACON EQUIPMENT TEST SET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. DETAIL OF GENERAL ELECTRIC AIRBORNE BEACON EQUIPMENT TEST SET (LEFT) AND ASSOCIATED GOULD BRUSH CHART RECORDERS (RIGHT). ELAPSED TIME COUNTER SITS ATOP AIRBORNE BEACON EQUIPMENT TEST SET. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Neptune Orbiters Utilizing Solar and Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas I.; Oleson, Steven R.

    2004-01-01

    In certain cases, Radioisotope Electric Propulsion (REP), used in conjunction with other propulsion systems, could be used to reduce the trip times for outer planetary orbiter spacecraft. It also has the potential to improve the maneuverability and power capabilities of the spacecraft when the target body is reached as compared with non-electric propulsion spacecraft. Current missions under study baseline aerocapture systems to capture into a science orbit after a Solar Electric Propulsion (SEP) stage is jettisoned. Other options under study would use all REP transfers with small payloads. Compared to the SEP stage/Aerocapture scenario, adding REP to the science spacecraft as well as a chemical capture system can replace the aerocapture system but with a trip time penalty. Eliminating both the SEP stage and the aerocapture system and utilizing a slightly larger launch vehicle, Star 48 upper stage, and a combined REP/Chemical capture system, the trip time can nearly be matched while providing over a kilowatt of science power reused from the REP maneuver. A Neptune Orbiter mission is examined utilizing single propulsion systems and combinations of SEP, REP, and chemical systems to compare concepts.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2002-03-25

    Cosmonaut Yury I. Onufrienko, Expedition Four mission commander, uses a communication system in the Russian Zvezda Service Module on the International Space Station (ISS). The Zvezda is linked to the Russian-built Functional Cargo Block (FGB) or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  5. Effects of Gravity-Assist Timing on Outer-Planet Missions Using Solar-Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Woo, Byoungsam; Coverstone, Victoria L.; Cupples, Michael

    2004-01-01

    Missions to the outer planets for spacecraft with a solar-electric propulsion system (SEPS) and that utilize a single Venus gravity assist are investigated. The trajectories maximize the delivered mass to the target planet for a range of flight times. A comparison of the trajectory characteristics (delivered mass, launch energy and onboard propulsive energy) is made for various Venus gravity assist opportunities. Methods to estimate the delivered mass to the outer planets are developed.

  6. Solar Electric and Chemical Propulsion for a Titan Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Green, Shaun E.; Donahue, Benjamin B.; Coverstone, Victoria L.

    2005-01-01

    Systems analyses were performed for a Titan Explorer Mission characterized by Earth-Saturn transfer stages using solar electric power generation and propulsion systems for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their effect on the payload delivery capability to Titan. The effect of varying launch vehicle type, solar array power level, ion thruster number, specific impulse, trip time, and Titan capture stage chemical propellant choice was investigated. The major purpose of the study was to demonstrate the efficacy of applying advanced ion propulsion system technologies like NASA's Evolutionary Xenon Thruster (NEXT), coupled with state-of-the-art (SOA) and advanced chemical technologies to a Flagship class mission. This study demonstrated that a NASA Design Reference Mission (DRM) payload of 406 kg could be successfully delivered to Titan using the baseline advanced ion propulsion system in conjunction with SOA chemical propulsion for Titan capture. In addition, the SEPS/Chemical system of this study is compared to an all- chemical NASA DRM mission. Results showed that the NEXT- based SEPS/Chemical system was able to deliver the required payload to Titan in 5 years less transfer time and on a smaller launch vehicle than the SOA chemical option.

  7. STS-97 P6 truss moves to a payload transport canister

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As it travels across the Space Station Processing Facility, the P6 integrated truss segment passes over the two Italian-built Multi-Purpose Logistics Modules, Leonardo (right) and Raffaello (behind Leonardo). The P6 is being moved to a payload transport canister for transfer to Launch Pad 39B. There it will be placed in Endeavour'''s payload bay for launch on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled Nov. 30 at 10:06 p.m. EST.

  8. Electrical actuation technology bridging, volume 1

    NASA Astrophysics Data System (ADS)

    Hammond, Monica S.; Doane, George B., III

    1993-01-01

    This document contains the proceedings from the conference. The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  9. Atmospheric electricity criteria guidelines for use in aerospace vehicle development

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1972-01-01

    Lightning has always been of concern for aerospace vehicle ground activities. The unexpected triggering of lightning discharges by the Apollo 12 space vehicle shortly after launch and the more recent repeated lightning strikes to the launch umbilical tower while the Apollo 15 space vehicle was being readied for launch have renewed interest in studies of atmospheric electricity as it relates to space vehicle missions. The material presented reflects some of the results of these studies with regard to updating the current criteria guidelines.

  10. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    NASA Technical Reports Server (NTRS)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Haag, Tom; Mackey, Jonathan; McVetta, Mike; Sorrelle, Luke; Tomsik, Tom; Gilligan, Ryan; hide

    2016-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kilowatt Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate and is intended to be used as the electric propulsion system on the Power and Propulsion Element of the recently announced Deep Space Gateway. The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU) 1 and TDU-3 Hall thrusters are also included.

  11. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Haag, Tom; Mackey, Jonathan; McVetta, Mike; Sorrelle, Luke; Tomsik, Tom; Gilligan, Ryan; hide

    2017-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kilowatt Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate and is intended to be used as the electric propulsion system on the Power and Propulsion Element of the recently announced Deep Space Gateway. The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU) 1 and TDU-3 Hall thrusters are also included.

  12. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    NASA Technical Reports Server (NTRS)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide

    2018-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  13. U.S. program assessing nuclear waste disposal in space - A status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Priest, C. C.; Friedlander, A. L.

    1980-01-01

    Various concepts for the space disposal of nuclear waste are discussed, with attention given to the destinations now being considered (high earth orbit, lunar orbit, lunar surface, solar orbit, solar system escape, sun). Waste mixes are considered in the context of the 'Purex' (Plutonium and Uranium extraction) process and the potential forms for nuclear waste disposal (ORNL cermet, Boro-silicate glass, Metal matrix, Hot-pressed supercalcine) are described. Preliminary estimates of the energy required and the cost surcharge needed to support the space disposal of nuclear waste are presented (8 metric tons/year, requiring three Shuttle launches). When Purex is employed, the generated electrical energy needed to support the Shuttle launches is shown to be less than 1%, and the projected surcharge to electrical users is shown to be slightly more than two mills/kW-hour.

  14. Engine technology challenges for a 21st Century High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Gilkey, Samuel; Hines, Richard

    1993-01-01

    Ongoing NASA-funded studies by Boeing, McDonnell-Douglas, General Electric, and Pratt & Whitney indicate that an opportunity exists for a 21st Century High-Speed Civil Transport (HSCT) to become a major part of the international air transportation system. However, before industry will consider an HSCT product launch and an investment estimated to be over $15 billion for design and certification, major technology advances must be made. An overview of the propulsion-specific technology advances that must be in hand before an HSCT product launch could be considered is presented.

  15. KSC01pp0004

    NASA Image and Video Library

    2001-01-02

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis moves through the doors of the Vehicle Assembly Building on its rollout to Launch Pad 39A. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station. The orbiter will carry in its payload bay the U.S. Laboratory, named Destiny, that will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  16. KSC01padig008

    NASA Image and Video Library

    2001-01-03

    KENNEDY SPACE CENTER, Fla. -- At the top of the incline to Launch Pad 39A, Space Shuttle Atlantis nears the Rotating Service Structure (left). Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  17. KSC01pp0009

    NASA Image and Video Library

    2001-01-02

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis moves back inside the Vehicle Assembly Building after an aborted rollout to Launch Pad 39A. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station. The orbiter will carry in its payload bay the U.S. Laboratory, named Destiny, that will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  18. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  19. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  20. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A crane and rigging lines are used to install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) high up on the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  1. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    Construction workers with JP Donovan assist with preparations to lift and install the Interim Cryogenic Propulsion Stage Umbilical on the tower of the mobile launcher at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  2. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    Construction workers with JP Donovan install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level of the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  3. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    A heavy-lift crane slowly lifts the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  4. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    The mobile launcher (ML) tower is lit up before early morning sunrise at NASA's Kennedy Space Center in Florida. Preparations are underway to lift and install the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) at about the 240-foot-level on the tower. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  5. Electrical Power Systems for NASA's Space Transportation Program

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  6. Active Removal of Large Debris: Electrical Propulsion Capabilities

    NASA Astrophysics Data System (ADS)

    Billot Soccodato, Carole; Lorand, Anthony; Perrin, Veronique; Couzin, Patrice; FontdecabaBaig, Jordi

    2013-08-01

    The risk for current operational spacecraft or future market induced by large space debris, dead satellites or rocket bodies, in Low Earth Orbit has been identified several years ago. Many potential solutions and architectures are traded with a main objective of reducing cost per debris. Based on cost consideration, specially driven by launch cost, solutions constructed on multi debris capture capacities seem to be much affordable The recent technologic evolutions in electric propulsion and solar power generation can be used to combine high potential vehicles for debris removal. The present paper reports the first results of a study funded by CNES that addresses full electric solutions for large debris removal. Some analysis are currently in progress as the study will end in August. It compares the efficiency of in-orbit Active Removal of typical debris using electric propulsion The electric engine performances used in this analysis are demonstrated through a 2012/2013 PPS 5000 on-ground tests campaign. The traded missions are based on a launch in LEO, the possible vehicle architectures with capture means or contact less, the selection of deorbiting or reorbiting strategy. For contact less strategy, the ion-beam shepherd effect towards the debris problematic will be addressed. Vehicle architecture and performance of the overall system will be stated, showing the adequacy and the limits of each solution.

  7. KSC-07pd3629

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician prepares a cable from an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system leading into the tail mast. The test wiring leads from the tail mast to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  8. KSC-07pd3628

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, cables lead from an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system into the tail mast. The test wiring leads from the tail mast to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  9. KSC-07pd3627

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, cables lead from an electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off, or ECO, system into the tail mast. The test wiring leads from the tail mast to the interior of the mobile launcher platform where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. The shuttle's planned launches on Dec. 6 and Dec. 9 were postponed because of false readings from the part of the ECO system that monitors the liquid hydrogen section of the tank. The liftoff date from NASA's Kennedy Space Center, Florida, is now targeted for Jan. 10, depending on the resolution of the problem in the fuel sensor system. Photo credit: NASA/Kim Shiflett

  10. 132. WEST SIDE OF MECHANICAL AND ELECTRICAL ROOM (210), LSB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    132. WEST SIDE OF MECHANICAL AND ELECTRICAL ROOM (210), LSB (BLDG. 751), QUALITY CONTROL BOARD ON LEFT. SOUTH SIDE OF TRANSFORMER ROOM (212) ON RIGHT SIDE OF PHOTOGRAPH, THROUGH OPEN DOORS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Cosmonaut Dezhurov Talks With Flight Controllers

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-16

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2001-12-12

    Astronauts Frank L. Culbertson, Jr. (left), Expedition Three mission commander, and Daniel W. Bursch, Expedition Four flight engineer, work in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000 pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-30

    Astronaut James S. Voss, Expedition Two flight engineer, performs an electronics task in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian-built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity, the first U.S.-built component to the ISS. Zvezda (Russian word for star), the third component of the ISS and the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  15. 46 CFR 133.110 - Survival craft muster and embarkation arrangements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Survival craft muster and embarkation arrangements. 133... VESSELS LIFESAVING SYSTEMS Requirements for All OSVs § 133.110 Survival craft muster and embarkation... lighting supplied from the emergency source of electrical power. (e) Each davit-launched survival craft...

  16. Networking in the Presence of Adversaries

    DTIC Science & Technology

    2014-09-12

    a topological graph with linear algebraic constraints. As a practical example, such a model arises from an electric power system in which the power...flow is governed by the Kirchhoff law. When an adversary launches an MiM data attack, part of the sensor data are intercepted and substituted with

  17. PHOBOS Exploration using Two Small Solar Electric Propulsion (SEP) Spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, J. J.; Baker, J. D.; McElrath, T. P.; Piacentine, J. S.; Snyder, J. S.

    2012-01-01

    Phobos Surveyor Mission concept provides an innovative low cost, highly reliable approach to exploring the inner solar system 1/16/2013 3 Dual manifest launch. Use only flight proven, well characterize commercial off-the-shelf components. Flexible mission architecture allows for a slew of unique measurements.

  18. Effectivity of atmospheric electricity on launch availability

    NASA Technical Reports Server (NTRS)

    Ernst, John A.

    1991-01-01

    Thunderstorm days at KSC; percentage of frequency of thunderstorms (1957-1989); effect of lightning advisory on ground operations; Shuttle launch history; Shuttle launch weather history; applied meteorology unit; and goals/operational benefits. This presentation is represented by viewgraphs.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  20. STS-98 Atlantis rolls out to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Under cloudy skies, Space Shuttle Atlantis inches its way to Launch Pad 39A from the Vehicle Assembly Building (right). The journey is a distance of just over 3 miles. The water in the foreground is part of Banana Creek. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station. The orbiter will carry in its payload bay the U.S. Laboratory, named Destiny, that will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five.

  1. Results of Evaluation of Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave

    2003-01-01

    The solar thermal propulsion evaluation reported here relied on prior research for all information on solar thermal propulsion technology and performance. Sources included personal contacts with experts in the field in addition to published reports and papers. Mission performance models were created based on this information in order to estimate performance and mass characteristics of solar thermal propulsion systems. Mission analysis was performed for a set of reference missions to assess the capabilities and benefits of solar thermal propulsion in comparison with alternative in-space propulsion systems such as chemical and electric propulsion. Mission analysis included estimation of delta V requirements as well as payload capabilities for a range of missions. Launch requirements and costs, and integration into launch vehicles, were also considered. The mission set included representative robotic scientific missions, and potential future NASA human missions beyond low Earth orbit. Commercial communications satellite delivery missions were also included, because if STP technology were selected for that application, frequent use is implied and this would help amortize costs for technology advancement and systems development. A C3 Topper mission was defined, calling for a relatively small STP. The application is to augment the launch energy (C3) available from launch vehicles with their built-in upper stages. Payload masses were obtained from references where available. The communications satellite masses represent the range of payload capabilities for the Delta IV Medium and/or Atlas launch vehicle family. Results indicated that STP could improve payload capability over current systems, but that this advantage cannot be realized except in a few cases because of payload fairing volume limitations on current launch vehicles. It was also found that acquiring a more capable (existing) launch vehicle, rather than adding an STP stage, is the most economical in most cases.

  2. The Perfect Mate for Safe Fueling

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Referred to as the "lifeline for any space launch vehicle" by NASA Space Launch Initiative Program Manager Warren Wiley, an umbilical is a large device that transports power, communications, instrument readings, and fluids such as propellants, pressurization gases, and coolants from one source to another. Numerous launch vehicles, planetary systems, and rovers require umbilical "mating". This process is a driving factor for dependable and affordable space access. With future-generation space vehicles in mind, NASA recently designed a smart, automated method for quickly and reliably mating and demating electrical and fluid umbilical connectors. The new umbilical concept is expected to replace NASA s traditional umbilical systems that release at vehicle lift-off (T-0). The idea is to increase safety by automatically performing hazardous tasks, thus reducing potential failure modes and the time and labor hours necessary to prepare for launch. The new system will also be used as a test bed for quick disconnect development and for advance control and leak detection. It incorporates concepts such as a secondary mate plate, robotic machine vision, and compliant motor motion control, and is destined to advance usage of automated umbilicals in a variety of aerospace and commercial applications.

  3. Review of the Lightning Strike Incident at Launch Complex 37 on July 27, 1967, and Comparison to a Gemini Lightning Strike

    NASA Technical Reports Server (NTRS)

    Llewellyn, J. A.

    1967-01-01

    The Launch Complex 37 lightning strike of July 27, 1967, was reviewed and compared to a similar incident on the Gemini Program. Available data indicate little likelihood of damaging currents having been present in SA-204 Launch Vehicle or the ground equipment during the July 27th incident. Based on the results of subsystem and system testing after the strike, anticipated results of future testing, the six months elapsed time between the strike-and launch, and the fact that much of the critical airborne electrical/electronic equipment has been removed since the strike for other reasons, no new actions are considered necessary at this time in the Gemini case, significant failures occurred in both airborne and ground circuits. Due to the resultant semi, condlictor uncertainty, and the relatively' short time prior to planned launch, all critical airborne components containing semiconduetors were replaced, and a sophisticated data comparison task was implemented.

  4. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 4: Transportation analysis

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1979-01-01

    Volume 4 of a seven volume Satellite Power Systems (SPS) is presented. This volume is divided into the following sections: (1) transportation systems elements; (2) transportation systems requirements; (3) heavy lift launch vehicles (HLLV); (4) LEO-GEO transportation; (5) on-orbit mobility systems; (6) personnel transfer systems; and (7) cost and programmatics. Three appendixes are also provided and they include: horizontal takeoff (single stage to orbit technical summary); HLLV reference vehicle trajectory and trade study data; and electric orbital transfer vehicle sizing.

  5. STS-116 Launch

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The primary mission objective was to deliver and install the P5 truss element. The P5 installation was conducted during the first of three space walks, and involved use of both the shuttle and station's robotic arms. The remainder of the mission included a major reconfiguration and activation of the ISS electrical and thermal control systems, as well as delivery of Zvezda Service Module debris panels, which will increase ISS protection from potential impacts of micro-meteorites and orbital debris. Two major payloads developed at the Marshall Space Flight Center (MSFC) were also delivered to the Station. The Lab-On-A Chip Application Development Portable Test System (LOCAD-PTS) and the Water Delivery System, a vital component of the Station's Oxygen Generation System.

  6. KSC-00pp1738

    NASA Image and Video Library

    2000-11-14

    The doors of the payload transport canister are open wide in the payload changeout room on Launch Pad 39B. Revealed is the P6 integrated truss segment, which will fly on mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST

  7. Simultaneous measurements of auroral particles and electric currents by a rocket-borne instrument system - Introductory remarks

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Cloutier, P. A.

    1975-01-01

    A rocket-borne experiment package has been designed to obtain simultaneous in situ measurements of the pitch angle distributions and energy spectra of primary auroral particles, the flux of neutral hydrogen at auroral energies, the electric currents flowing in the vicinity of the auroral arc as determined from vector magnetic data, and the modulation of precipitating electrons in the frequency range 0.5-10 MHz. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska, at 0722 UT on Feb. 25, 1972, over a bright auroral band. This paper is intended to serve as an introduction to the detailed discussion of results given in the companion papers. As such it includes a brief review of the general problem, a discussion of the rocket instrumentation, a delineation of the auroral and geomagnetic conditions at the time of launch, and comments on the overall payload performance.

  8. SMART-1, Platform Design and Project Status

    NASA Astrophysics Data System (ADS)

    Sjoberg, F.

    SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.

  9. Spaceport Command and Control System User Interface Testing

    NASA Technical Reports Server (NTRS)

    Huesman, Jacob

    2016-01-01

    The Spaceport Command and Control System will be the National Aeronautics and Space Administration's newest system for launching commercial and government owned spacecraft. It's a large system with many parts all in need of testing. To improve upon testing already done by NASA engineers, the Engineering Directorate, Electrical Division (NE-E) of Kennedy Space Center has hired a group of interns each of the last few semesters to develop novel ways of improving the testing process.

  10. Atmospheric electricity. [lightning protection criteria in spacecraft design

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1973-01-01

    Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.

  11. Electric Propulsion Options for 10 kW Class Earth-Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.

  12. Maximizing the Scientific Return of Low Cost Planetary Missions Using Solar Electric Propulsion(abstract)

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Metzger, A.; Pieters, C.; Elphic, R. C.; McCord, T.; Head, J.; Abshire, J.; Philips, R.; Sykes, M.; A'Hearn, M.; hide

    1994-01-01

    After many years of development, solar electric propulsion is now a practical low cost alternative for many planetary missions. In response to the recent Discovery AO, we and a number of colleagues have examined the scientific return from a missioon to map the Moon and then rendezvous with a small body. In planning this mission, we found that solar electric propulsion was quite affordable under the Discovery guidelines, that many targets could be reached more rapidly with solar electric propulsion than chemical propulsion, that a large number of planetary bodies were accessible with modest propulsion systems, and that such missions were quite adaptable, with generous launch windows which minimized mission risks. Moreover, solar electric propulsion is ideally suited for large payloads requiring a large amount of power.

  13. ICPSU Install onto Mobile Launcher

    NASA Image and Video Library

    2018-03-16

    The mobile launcher (ML) is reflected in the sunglasses of a construction worker with JP Donovan at NASA's Kennedy Space Center in Florida. A crane is lifting the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) up for installation on the tower of the ML. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical is located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  14. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    A construction worker with JP Donovan helps prepare the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) for installation high up on the tower of the mobile launcher (ML) at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the mobile launcher and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  15. ICPSU Install onto Mobile Launcher - Preps for Lift

    NASA Image and Video Library

    2018-03-15

    Construction workers with JP Donovan attach a heavy-lift crane to the Interim Cryogenic Propulsion Stage Umbilical (ICPSU) to prepare for lifting and installation on the mobile launcher (ML) tower at NASA's Kennedy Space Center in Florida. The last of the large umbilicals to be installed, the ICPSU will provide super-cooled hydrogen and liquid oxygen to the Space Launch System (SLS) rocket's interim cryogenic propulsion stage, or upper stage, at T-0 for Exploration Mission-1. The umbilical will be located at about the 240-foot-level of the ML and will supply fuel, oxidizer, gaseous helium, hazardous gas leak detection, electrical commodities and environment control systems to the upper stage of the SLS rocket during launch. Exploration Ground Systems is overseeing installation of the umbilicals on the ML.

  16. A nuclear electric propulsion vehicle for planetary exploration

    NASA Technical Reports Server (NTRS)

    Pawlik, E. V.; Phillips, W. M.

    1976-01-01

    A study is currently underway at JPL to design a nuclear electric-propulsion vehicle capable of performing detailed exploration of the outer planets. Evaluation of the design indicates that it is also applicable to orbit raising. Primary emphasis is on the power subsystem. Work on the design of the power system, the mission rationale, and preliminary spacecraft design are summarized. A propulsion system at a 400-kWe power level with a specific weight goal of no more than 25-kg/kW was selected for this study. The results indicate that this goal can be realized along with compatibility with the shuttle launch-vehicle constraints.

  17. Integration Of Launch Vehicle Simulation/Analysis Tools And Lunar Cargo Lander Design. Part 2/2

    NASA Technical Reports Server (NTRS)

    DeJean, George Brian; Shiue, Yeu-Sheng Paul; King, Jeffrey

    2005-01-01

    Part 2, which will be discussed in this report, will discuss the development of a Lunar Cargo Lander (unmanned launch vehicle) that will transport usable payload from Trans- Lunar Injection to the moon. The Delta IV-Heavy was originally used to transport the Lunar Cargo Lander to TLI, but other launch vehicles have been studied. In order to uncover how much payload is possible to land on the moon, research was needed in order to design the sub-systems of the spacecraft. The report will discuss and compare the use of a hypergolic and cryogenic system for its main propulsion system. The guidance, navigation, control, telecommunications, thermal, propulsion, structure, mechanisms, landing gear, command, data handling, and electrical power sub-systems were designed by scaling off other flown orbiters and moon landers. Once all data was collected, an excel spreadsheet was created to accurately calculate the usable payload that will land on the moon along with detailed mass and volume estimating relations. As designed, The Lunar Cargo Lander can plant 5,400 lbm of usable payload on the moon using a hypergolic system and 7,400 lbm of usable payload on the moon using a cryogenic system.

  18. KSC01pp0007

    NASA Image and Video Library

    2001-01-02

    KENNEDY SPACE CENTER, FLA. -- Viewed from inside the Vehicle Assembly Building, Space Shuttle Atlantis moves back inside after an aborted rollout to Launch Pad 39A. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station. The orbiter will carry in its payload bay the U.S. Laboratory, named Destiny, that will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  19. KSC01pp0008

    NASA Image and Video Library

    2001-01-02

    KENNEDY SPACE CENTER, FLA. -- Seen from outside, Space Shuttle Atlantis moves back inside the Vehicle Assembly Building after an aborted rollout to Launch Pad 39A. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station. The orbiter will carry in its payload bay the U.S. Laboratory, named Destiny, that will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  20. KSC01pp0003

    NASA Image and Video Library

    2001-01-02

    KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building, Space Shuttle Atlantis is viewed from overhead just before beginning rollout to Launch Pad 39A. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station. The orbiter will carry in its payload bay the U.S. Laboratory, named Destiny, that will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  1. KSC01pp0015

    NASA Image and Video Library

    2001-01-03

    KENNEDY SPACE CENTER, Fla. -- Under wispy white clouds, Space Shuttle Atlantis slowly moves toward the Rotating and Fixed Service Structures on Launch Pad 39A. The 80-foot-tall white lighting mast is seen atop the FSS. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  2. 46 CFR 112.15-1 - Temporary emergency loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... spaces sufficient to allow passengers and crew to find their way to open decks and to survival craft...) Illuminated signs with the word “EXIT” in red letters throughout a passenger vessel so the direction of escape... the area of the water where it is to be launched. (h) Electric communication systems that are...

  3. Material selection and evaluation of new encapsulation compounds for electric cables for launch support system

    NASA Technical Reports Server (NTRS)

    Ray, Asit K.

    1992-01-01

    Eight urethane compounds were evaluated as possible replacement for the existing encapsulating compoounds for electrical cables for the Launch Support System at Kennedy Space Center (KSC). The existing encapsulating compound, PR-1535, contains the curative MOCA 4-4'-Methylene-BIS (2-chloroaniline), which is a suspect carcinogen and hence may be the subject of further restrictions of its use by the Occupational Safety and Health Administration (OSHA). The samples made in the configuration of cable joints and in the form of disks were evaluated for flammability and hypergolic compatibility. These also underwent accelerated weatherability tests that measured the residual hardness of the exposed samples. Three candidates and the existing compound passed the hardness test. Of these, only one candidate and the existing compound passed the flammability test. The thermal and hydrolytic stability (weatherability) of these samples was studied using thermogravimetric analysis (DSC) techniques. The TMA and DSC data correlated with the residual hardness data; whereas, the TGA data showed no correlation. A hypergolic compatibility test will be conducted on the compound V-356-HE80, which passed both the flammability and accelerated weatherability tests.

  4. The IBEX Flight Segment

    NASA Astrophysics Data System (ADS)

    Scherrer, J.; Carrico, J.; Crock, J.; Cross, W.; Delossantos, A.; Dunn, A.; Dunn, G.; Epperly, M.; Fields, B.; Fowler, E.; Gaio, T.; Gerhardus, J.; Grossman, W.; Hanley, J.; Hautamaki, B.; Hawes, D.; Holemans, W.; Kinaman, S.; Kirn, S.; Loeffler, C.; McComas, D. J.; Osovets, A.; Perry, T.; Peterson, M.; Phillips, M.; Pope, S.; Rahal, G.; Tapley, M.; Tyler, R.; Ungar, B.; Walter, E.; Wesley, S.; Wiegand, T.

    2009-08-01

    IBEX provides the observations needed for detailed modeling and in-depth understanding of the interstellar interaction (McComas et al. in Physics of the Outer Heliosphere, Third Annual IGPP Conference, pp. 162-181, 2004; Space Sci. Rev., 2009a, this issue). From mission design to launch and acquisition, this goal drove all flight system development. This paper describes the management, design, testing and integration of IBEX’s flight system, which successfully launched from Kwajalein Atoll on October 19, 2008. The payload is supported by a simple, Sun-pointing, spin-stabilized spacecraft with no deployables. The spacecraft bus consists of the following subsystems: attitude control, command and data handling, electrical power, hydrazine propulsion, RF, thermal, and structures. A novel 3-step orbit approach was employed to put IBEX in its highly elliptical, 8-day final orbit using a Solid Rocket Motor, which provided large delta-V after IBEX separated from the Pegasus launch vehicle; an adapter cone, which interfaced between the SRM and Pegasus; Motorized Lightbands, which performed separation from the Pegasus, ejection of the adapter cone, and separation of the spent SRM from the spacecraft; a ShockRing isolation system to lower expected launch loads; and the onboard Hydrazine Propulsion System. After orbit raising, IBEX transitioned from commissioning to nominal operations and science acquisition. At every phase of development, the Systems Engineering and Mission Assurance teams supervised the design, testing and integration of all IBEX flight elements.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, planet Earth, some 235 statute miles away, forms the back drop for this photo of STS-97 astronaut and mission specialist Joseph R. Tanner, taken during the third of three space walks. The mission's goal was to perform the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  6. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    NASA Technical Reports Server (NTRS)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  7. STS-97 crew gathers for a snack before suiting up for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew are ready to enjoy a snack in the crew quarters, Operations and Checkout Building, before beginning to suit up for launch. Seated from left are Mission Specialists Marc Garneau and Carlos Noriega, Commander Brent Jett, Mission Specialist Joseph Tanner and Pilot Michael Bloomfield. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST.

  8. Launch of Space Shuttle Endeavour as it leaps free of Launch Pad

    NASA Image and Video Library

    2007-08-08

    Space Shuttle Endeavour paints the still-blue evening sky as it leaves Earth behind on its journey into space on mission STS-118. Liftoff from Launch Pad 39A was on time at 6:36 p.m. EDT. The mission is the 22nd shuttle flight to the International Space Station. It will continue space station construction by delivering a third starboard truss segment, S5, and other payloads such as the SPACEHAB module and the external stowage platform 3. The 11-day mission may be extended to as many as 14 depending on the test of the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab.

  9. FAST Spacecraft Battery Design and Performance

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Rao, Gopalakrishna; Ahmad, Anisa

    1997-01-01

    The Fast Auroral Snapshot (FAST) Explorer spacecraft is to study the physical processes that produce the aurora borealis and aurora australis. It is a unique plasma physics experiment that will take fundamental measurements of the magnetic and electrical fields. This investigation will add significantly to our understanding of the near-earth space environments and its effect. The FAST has a 1 year requirement and 3-year goal for its mission life in low earth orbit. The FAST power power system topology is a Direct Energy Transfer (DET) system based on the SAMPEX design. The FAST flight battery supplies power to the satellite during pre-launch operations, the launch phase, the eclipse periods for all mission phases, and when the load is about 50 watts.

  10. A Hydraulic Blowdown Servo System For Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  11. A CubeSat Asteroid Mission: Design Study and Trade-Offs

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa; Hepp, Aloysius; Stegeman, James; Bur, Mike; Burke, Laura; Martini, Michael; Fittje, James E.; Kohout, Lisa; hide

    2014-01-01

    There is considerable interest in expanding the applicability of cubesat spacecraft into lightweight, low cost missions beyond Low Earth Orbit. A conceptual design was done for a 6-U cubesat for a technology demonstration to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective was a mission to be launched on the SLS test launch EM-1 to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0. Targeting asteroids that fly close to earth minimizes the propulsion required for fly-by/rendezvous. Due to mass constraints, high specific impulse is required, and volume constraints mean the propellant density was also of great importance to the ability to achieve the required deltaV. This improves the relative usefulness of the electrospray salt, with higher propellant density. In order to minimize high pressure tanks and volatiles, the salt electrospray and iodine ion propulsion systems were the optimum designs for the fly-by and rendezvous missions respectively combined with a thruster gimbal and wheel system For the candidate fly-by mission, with a mission deltaV of about 400 m/s, the mission objectives could be accomplished with a 800s electrospray propulsion system, incorporating a propellant-less cathode and a bellows salt tank. This propulsion system is planned for demonstration on 2015 LEO and 2016 GEO DARPA flights. For the rendezvous mission, at a ?V of 2000 m/s, the mission could be accomplished with a 50W miniature ion propulsion system running iodine propellant. This propulsion system is not yet demonstrated in space. The conceptual design shows that an asteroid mission is possible using a cubesat platform with high-efficiency electric propulsion.

  12. Power and Propulsion System Design for Near-Earth Object Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Landau, Damon F.; Bury, Kristen M.; Malone, Shane P.; Hickman, Tyler A.

    2011-01-01

    Near-Earth Objects (NEOs) are exciting targets for exploration; they are relatively easy to reach but relatively little is known about them. With solar electric propulsion, a vast number of interesting NEOs can be reached within a few years and with extensive flexibility in launch date. An additional advantage of electric propulsion for these missions is that a spacecraft can be small, enabling a fleet of explorers launched on a single vehicle or as secondary payloads. Commercial, flight-proven Hall thruster systems have great appeal based on their performance and low cost risk, but one issue with these systems is that the power processing units (PPUs) are designed for regulated spacecraft power architectures which are not attractive for small NEO missions. In this study we consider the integrated design of power and propulsion systems that utilize the capabilities of existing PPUs in an unregulated power architecture. Models for solar array and engine performance are combined with low-thrust trajectory analyses to bound spacecraft design parameters for a large class of NEO missions, then detailed array performance models are used to examine the array output voltage and current over a bounded mission set. Operational relationships between the power and electric propulsion systems are discussed, and it is shown that both the SPT-100 and BPT-4000 PPUs can perform missions over a solar range of 0.7 AU to 1.5 AU - encompassing NEOs, Venus, and Mars - within their operable input voltage ranges. A number of design trades to control the array voltage are available, including cell string layout, array offpointing during mission operations, and power draw by the Hall thruster system.

  13. Modular High-Energy Systems for Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  14. NASA launches dual Dynamics Explorer spacecraft

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A Delta launch vehicle was used to insert Dynamics Explorer A into a highly elliptical polar orbit, ranging from 675 to 24,945 km, and Dynamics Explorer B satellite into a low polar orbit, ranging from 306 to 1,300 km. The two spacecraft are designed to provide specific knowledge about the interaction of energy, electric currents, electric fields, and plasmas between the magnetosphere, the ionosphere, and the atmosphere.

  15. 113. VIEW OF NORTH SIDE OF MECHANICAL AND ELECTRICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. VIEW OF NORTH SIDE OF MECHANICAL AND ELECTRICAL ROOM (110), LSB (BLDG. 770). QUALITY ASSURANCE ROOM (106A) ON RIGHT SIDE OF PHOTO; CABLE TRAYS OVERHEAD AT TOP; STAIRS TO LSB (BLDG. 770) ADDITION (ROOMS 117 THROUGH 120) IN CENTER OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Developments in Understanding Stability as Applied to Magnetic Levitated Launch Assist

    NASA Technical Reports Server (NTRS)

    Gering, James A.

    2002-01-01

    Magnetic levitation is a promising technology, with the potential of constituting the first stage of a third generation space transportation system. Today, the Space Shuttle burns on the order of one million pounds of solid rocket propellant to bring the orbiter and external tank to nearly Mach 1 (1,000 kph). Imagine the reductions in launch vehicle weight, complexity and risk if an aerospace vehicle could be accelerated to the same speed utilizing about $1,000 of off-board electrical energy stored in flywheels. After over two decades of development, maglev trains travel on full-scale demonstration tracks in Germany and Japan reaching speeds approaching 500 kph. Encouraging as this may appear, the energy and power required to accelerate a 1 million pound launch vehicle to 1,000 kph would radically redefine the state-of-the-art in electrical energy storage and delivery. Reaching such a goal will require levitation with sufficient stability to withstand an operating environment fundamentally different from that of a high-speed train. Recently NASA let contracts for the construction of three maglev demonstration tracks. This construction and several associated trade studies represent a first-order investigation into the feasibility of maglev launch assist. This report provides a review of these efforts, other government sponsored maglev projects and additional technical literature pertinent to maglev stability. This review brings to light details and dimensions of the maglev stability problem which are not found in previous NASA-sponsored trade studies and which must be addressed in order to realize magnetic levitation as a launch assist technology.

  17. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  18. Geocentric solar electric propulsion vehicle design.

    NASA Technical Reports Server (NTRS)

    Harney, E. D.; Lapins, U. E.; Molitor, J. H.

    1972-01-01

    Mission applications have been studied that use solar electric propulsion (SEP) to inject payloads into geocentric orbits. Two specific applications feasible with current technology are described that approximate practical bounds for the next decade. In the lower extreme, SEP is used on a Thor-Delta launched satellite to maximize the weight injected into synchronous orbits. In the other extreme, SEP is used in a reusable interorbital tug together with an all-chemical shuttle/tug transportation system. Different trajectory profiles are required to most efficiently accomplish the overall mission objectives in the two cases.

  19. The Space Launch System and Missions to the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.; Post, Kevin

    2015-11-01

    Introduction: America’s heavy lift launch vehicle, the Space Launch System, enables a variety of planetary science missions. The SLS can be used for most, if not all, of the National Research Council’s Planetary Science Decadal Survey missions to the outer planets. The SLS performance enables larger payloads and faster travel times with reduced operational complexity.Europa Clipper: Our analysis shows that a launch on the SLS would shorten the Clipper mission travel time by more than four years over earlier mission concept studies.Jupiter Trojan Tour and Rendezvous: Our mission concept replaces Advanced Stirling Radioisotope Generators (ASRGs) in the original design with solar arrays. The SLS capability offers many more target opportunities.Comet Surface Sample Return: Although in our mission concept, the SLS launches later than the NRC mission study (November 2022 instead of the original launch date of January 2021), it reduces the total mission time, including sample return, by two years.Saturn Apmospheric Entry Probe: Though Saturn arrivial time remains the same in our concept as the arrival date in the NRC study (2034), launching on the SLS shortens the mission travel time by three years with a direct ballistic trajectory.Uranus Orbiter with Probes: The SLS shortens travel time for an Uranus mission by four years with a Jupiter swing-by trajectory. It removes the need for a solar electric propulsion (SEP) stage used in the NRC mission concept study.Other SLS Science Mission Candidates: Two other mission concepts we are investigating that may be of interest to this community are the Advanced Technology Large Aperature Space Telescope (ATLAST) and the Interstellar Explorer also referred to as the Interstellar Probe.Summary: The first launch of the SLS is scheduled for 2018 followed by the first human launch in 2021. The SLS in its evolving configurations will enable a broad range of exploration missions which will serve to recapture the enthusiasm and commitment that permeated the planetary exploration community during the early years of robotic exploration.

  20. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  1. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  2. Investigation of Propulsion System Requirements for Spartan Lite

    NASA Technical Reports Server (NTRS)

    Urban, Mike; Gruner, Timothy; Morrissey, James; Sneiderman, Gary

    1998-01-01

    This paper discusses the (chemical or electric) propulsion system requirements necessary to increase the Spartan Lite science mission lifetime to over a year. Spartan Lite is an extremely low-cost (less than 10 M) spacecraft bus being developed at the NASA Goddard Space Flight Center to accommodate sounding rocket class (40 W, 45 kg, 35 cm dia by 1 m length) payloads. While Spartan Lite is compatible with expendable launch vehicles, most missions are expected to be tertiary payloads deployed by. the Space Shuttle. To achieve a one year or longer mission life from typical Shuttle orbits, some form of propulsion system is required. Chemical propulsion systems (characterized by high thrust impulsive maneuvers) and electrical propulsion systems (characterized by low-thrust long duration maneuvers and the additional requirement for electrical power) are discussed. The performance of the Spartan Lite attitude control system in the presence of large disturbance torques is evaluated using the Trectops(Tm) dynamic simulator. This paper discusses the performance goals and resource constraints for candidate Spartan Lite propulsion systems and uses them to specify quantitative requirements against which the systems are evaluated.

  3. Global atmospheric response to emissions from a proposed reusable space launch system

    NASA Astrophysics Data System (ADS)

    Larson, Erik J. L.; Portmann, Robert W.; Rosenlof, Karen H.; Fahey, David W.; Daniel, John S.; Ross, Martin N.

    2017-01-01

    Modern reusable launch vehicle technology may allow high flight rate space transportation at low cost. Emissions associated with a hydrogen fueled reusable rocket system are modeled based on the launch requirements of developing a space-based solar power system that generates present-day global electric energy demand. Flight rates from 104 to 106 per year are simulated and sustained to a quasisteady state. For the assumed rocket engine, H2O and NOX are the primary emission products; this also includes NOX produced during reentry heating. For a base case of 105 flights per year, global stratospheric and mesospheric water vapor increase by approximately 10 and 100%, respectively. As a result, high-latitude cloudiness increases in the lower stratosphere and near the mesopause by as much as 20%. Increased water vapor also results in global effective radiative forcing of about 0.03 W/m2. NOX produced during reentry exceeds meteoritic production by more than an order of magnitude, and along with in situ stratospheric emissions, results in a 0.5% loss of the globally averaged ozone column, with column losses in the polar regions exceeding 2%.

  4. Torsional ultrasonic wave based level measurement system

    DOEpatents

    Holcomb, David E [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN

    2012-07-10

    A level measurement system suitable for use in a high temperature and pressure environment to measure the level of coolant fluid within the environment, the system including a volume of coolant fluid located in a coolant region of the high temperature and pressure environment and having a level therein; an ultrasonic waveguide blade that is positioned within the desired coolant region of the high temperature and pressure environment; a magnetostrictive electrical assembly located within the high temperature and pressure environment and configured to operate in the environment and cooperate with the waveguide blade to launch and receive ultrasonic waves; and an external signal processing system located outside of the high temperature and pressure environment and configured for communicating with the electrical assembly located within the high temperature and pressure environment.

  5. Space Transportation Infrastructure Supported By Propellant Depots

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Woodcock, Gordon

    2011-01-01

    A space transportation infrastructure is described that utilizes propellant depots to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicles such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to a Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing, and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. A Mars Orbital Depot is also described to support ongoing Mars missions. New concepts for vehicle designs are presented that can be launched on current 5-meter diameter expendable launch vehicles. These new reusable vehicle concepts include a LEO Depot, L1 Depot, and Mars Orbital Depot based on International Space Station (ISS) heritage hardware. The high-energy depots at L1 and Mars orbit are compatible with, but do not require, electric propulsion tug use for propellant and/or cargo delivery. New reusable in-space crew transportation vehicles include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot and the L1 Depot, a new reusable Lunar Lander for crew transportation between the L1 Depot and the lunar surface, and a Deep Space Habitat (DSH) to support crew missions from the L1 Depot to ESL2, Asteroid, and Mars destinations. A 6 meter diameter Mars lander concept is presented that can be launched without a fairing based on the Delta IV heavy Payload Planners Guide, which indicates feasibility of a 6.5 meter fairing. This lander would evolve to re-usable operations when propellant production is established on Mars. Figure 1 provides a summary of the possible missions this infrastructure can support. Summary mission profiles are presented for each primary mission capability. These profiles are the basis for propellant loads, numbers of vehicles/stages and launches for each mission capability. Data includes the number of launches required for each mission utilizing current expendable launch vehicle systems, and concluding remarks include ideas for reducing the number of launches through incorporation of heavy-lift launch vehicles, solar electric propulsion, and other transportation support concepts.

  6. Development of Test Article Building Block (TABB) for deployable platform systems

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Barbour, R. T.

    1984-01-01

    The concept of a Test Article Building Block (TABB) is described. The TABB is a ground test article that is representative of a future building block that can be used to construct LEO and GEO deployable space platforms for communications and scientific payloads. This building block contains a main housing within which the entire structure, utilities, and deployment/retraction mechanism are stowed during launch. The end adapter secures the foregoing components to the housing during launch. The main housing and adapter provide the necessary building-block-to-building-block attachments for automatically deployable platforms. Removal from the shuttle cargo bay can be accomplished with the remote manipulator system (RMS) and/or the handling and positioning aid (HAPA). In this concept, all the electrical connections are in place prior to launch with automatic latches for payload attachment provided on either the end adapters or housings. The housings also can contain orbiter docking ports for payload installation and maintenance.

  7. Thrust vector control using electric actuation

    NASA Astrophysics Data System (ADS)

    Bechtel, Robert T.; Hall, David K.

    1995-01-01

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles.

  8. Installation of solar PV systems in Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, M.P.T.P.

    1995-10-01

    The tropical country of Sri Lanka has hydroelectric power plants sufficient to provide electricity to only 40% of its 25,000 villages. The electric power needs of the average Sri Lankan rural communities are basic: three or four lights to illuminate their house and a power supply for their televisions. Solar radiation is abundant throughout the year. To take advantage of this resource, the Sarvodaya Rural Technical Services launched a Solar PV pilot demonstration project in the rural areas not served by the electric grid. The systems were being installed on an individual residence basis and funded by loans. Social andmore » cultural problems which have arisen during the course of the project have slowed its implementation. This study identifies the problems and makes recommendations to resolve the current problems and avoid new ones.« less

  9. Life Modeling for Nickel-Hydrogen Batteries in Geosynchronous Satellite Operation

    DTIC Science & Technology

    2005-03-25

    aerothermodynamics; chemical and electric propulsion; environmental chemistry; combustion processes; space environment effects on materials, hardening and...intelligent microinstruments for monitoring space and launch system environments . Space Science Applications Laboratory: Magnetospheric, auroral and cosmic-ray...hyperspectral imagery to defense, civil space, commercial, and environmental missions; effects of solar activity, magnetic storms and nuclear explosions on the

  10. Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production

    DTIC Science & Technology

    2010-02-10

    PEM Fuel Cell Anode + -Cathode e- e- e- e- Electric load...BOP system. • Enables new product launch (C- Series) Proton PEM cell stack for UK Vanguard subs 18UNCLASSIFIED: Dist A. Approved for public release...UNCLASSIFIED: Dist A. Approved for public release “Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production” Alternative Energy

  11. Electric propulsion options for the SP-100 reference mission

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.; Rawlin, V. K.; Patterson, M. J.

    1987-01-01

    Analyses were performed to characterize and compare electric propulsion systems for use on a space flight demonstration of the SP-100 nuclear power system. The component masses of resistojet, arcjet, and ion thruster systems were calculated using consistent assumptions and the maximum total impulse, velocity increment, and thrusting time were determined, subject to the constraint of the lift capability of a single Space Shuttle launch. From the study it was found that for most systems the propulsion system dry mass was less than 20 percent of the available mass for the propulsion system. The maximum velocity increment was found to be up to 2890 m/sec for resistojet, 3760 m/sec for arcjet, and 23 000 m/sec for ion thruster systems. The maximum thruster time was found to be 19, 47, and 853 days for resistojet, arcjet, and ion thruster systems, respectively.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-05

    Astronaut Joseph R. Tanner, STS-97 mission specialist, is seen during a session of Extravehicular Activity (EVA), performing work on the International Space Station (ISS). Part of the Remote Manipulator System (RMS) arm and a section of the newly deployed solar array panel are in the background. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system on board the ISS. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  13. Importance of the Natural Terrestrial Environment with Regard to Advanced Launch Vehicle Design and Development

    NASA Technical Reports Server (NTRS)

    Pearson, S. D.; Vaughan, W. W.; Batts, G. W.; Jasper, G. L.

    1996-01-01

    The terrestrial environment is an important forcing function in the design and development of the launch vehicle. The scope of the terrestrial environment includes the following phenomena: Winds; Atmospheric Thermodynamic Models and Properties; Thermal Radiation; U.S. and World Surface Environment Extremes; Humidity; Precipitation, Fog, and Icing; Cloud Characteristics and Cloud Cover Models; Atmospheric Electricity; Atmospheric Constituents; Vehicle Engine Exhaust and Toxic Chemical Release; Occurrences of Tornadoes and Hurricanes; Geological Hazards, and Sea States. One must remember that the flight profile of any launch vehicle is in the terrestrial environment. Terrestrial environment definitions are usually limited to information below 90 km. Thus, a launch vehicle's operations will always be influenced to some degree by the terrestrial environment with which it interacts. As a result, the definition of the terrestrial environment and its interpretation is one of the key launch vehicle design and development inputs. This definition is a significant role, for example, in the areas of structures, control systems, trajectory shaping (performance), aerodynamic heating and take off/landing capabilities. The launch vehicle's capabilities which result from the design, in turn, determines the constraints and flight opportunities for tests and operations.

  14. Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Hill, James J.

    2016-01-01

    NASA is studying a "Proving Ground" near the Moon to conduct human space exploration missions in preparation for future flights to Mars. This paper describes a concept of operations ("conops") for activities in the Proving Ground, focusing on the construction and use of a mobile Cislunar Transit Habitat capable of months-long excursions within and beyond the Earth-Moon system. Key elements in the conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System heavy-lift rocket. Potential additions include commercial launch vehicles and logistics carriers, solar electric propulsion stages to move elements between different orbits and eventually take them on excursions to deep space, a node module with multiple docking ports, habitation and life support blocks, and international robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The conops describes "case studies" of notional missions chosen to guide the design of the architecture and its elements. One such mission is the delivery of a 10-ton pressurized element, co-manifested with an Orion on a Block 1B Space Launch System rocket, to the Proving Ground. With a large solar electric propulsion stage, the architecture could enable a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to safely quantify the risk of landing deconditioned crews on Mars. The conops also discusses aborts and contingency operations. Early return to Earth may be difficult, especially during later Proving Ground missions. While adding risk, limited-abort conditions provide needed practice for Mars, from which early return is likely to be impossible.

  15. KSC-08pd0004

    NASA Image and Video Library

    2008-01-04

    KENNEDY SPACE CENTER, FLA. -- At a lab at NASA's Kennedy Space Center, aerospace technicians with the United Launch Alliance inspect an electrical wiring harness that has been inserted into a replacement feed-through connector during preparations to solder the pins to the socket of the connector that will be installed in the external fuel tank for space shuttle Atlantis' STS-122 mission. The technicians performed this exacting task on the Centaur upper stage for Atlas and Titan launches in 1994 and were specifically chosen for the task. Soldering the connector pins and sockets together addresses the most likely cause of a problem in the engine cutoff sensor system, or ECO system. Some of the tank's ECO sensors failed during propellant tanking for launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. After the soldering is completed and the connector is reinstalled, shuttle program managers will decide on how to proceed. The launch date for mission STS-122 is under review. Photo credit: NASA/Kim Shiflett

  16. KSC-08pd0001

    NASA Image and Video Library

    2008-01-04

    KENNEDY SPACE CENTER, FLA. -- At a lab at NASA's Kennedy Space Center, a Lockheed Martin technician prepares an electrical wiring harness during a procedure to solder the pins to the socket of the replacement feed-through connector that will be installed in the external fuel tank for space shuttle Atlantis' STS-122 mission. Two United Launch Alliance technicians, who performed this exacting task on the Centaur upper stage for Atlas and Titan launches in 1994, will be doing the soldering. Soldering the connector pins and sockets together addresses the most likely cause of a problem in the engine cutoff sensor system, or ECO system. Some of the tank's ECO sensors failed during propellant tanking for launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. After the soldering is completed and the connector is reinstalled, shuttle program managers will decide on how to proceed. The launch date for mission STS-122 is under review. Photo credit: NASA/Kim Shiflett

  17. KSC-08pd0003

    NASA Image and Video Library

    2008-01-04

    KENNEDY SPACE CENTER, FLA. -- At a lab at NASA's Kennedy Space Center, Kevin Wyckoff, an aerospace technician with the United Launch Alliance, inserts an electrical wiring harness into a replacement feed-through connector during preparations to solder the pins to the socket of the connector. The connector will later be installed in the external fuel tank for space shuttle Atlantis' STS-122 mission. The technician performed this exacting task on the Centaur upper stage for Atlas and Titan launches in 1994 and was specifically chosen for the task. Soldering the connector pins and sockets together addresses the most likely cause of a problem in the engine cutoff sensor system, or ECO system. Some of the tank's ECO sensors failed during propellant tanking for launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. After the soldering is completed and the connector is reinstalled, shuttle program managers will decide on how to proceed. The launch date for mission STS-122 is under review. Photo credit: NASA/Kim Shiflett

  18. 44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. VIEW OF UMBILICAL MAST AND LAUNCH PAD FROM SOUTHWEST. DOORS FOR THE UMBILICAL MAST TRENCH RAISED FOR MAINTENANCE POSITION OF 10 DEGREES. LAUNCHER IS RIGHT OF MAST; RAILS PARALLEL TO MAST. CONTROL PANELS LEFT TO RIGHT: ELECTRICAL PANEL, COMMUNICATIONS PANEL, AND MAST CONTROL PANEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. MW-Class Electric Propulsion System Designs for Mars Cargo Transport

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee

    2011-01-01

    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  20. Electric Propulsion Applications and Impacts

    NASA Technical Reports Server (NTRS)

    Curran, Frank M.; Wickenheiser, Timothy J.

    1996-01-01

    Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.

  1. Titan 3E/Centaur D-1T Systems Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A systems and operational summary of the Titan 3E/Centaur D-1T program is presented which describes vehicle assembly facilities, launch facilities, and management responsibilities, and also provides detailed information on the following separate systems: (1) mechanical systems, including structural components, insulation, propulsion units, reaction control, thrust vector control, hydraulic systems, and pneumatic equipment; (2) astrionics systems, such as instrumentation and telemetry, navigation and guidance, C-Band tracking system, and range safety command system; (3) digital computer unit software; (4) flight control systems; (5) electrical/electronic systems; and (6) ground support equipment, including checkout equipment.

  2. An update on the Deep Space 1 power system: SCARLET integration and test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.M.; Murphy, D.M.

    1998-07-01

    The Solar Concentrator Arrays with Refractive Linear Element Technology (SCARLET) system for the Deep Space 1 (DS1) spacecraft have been completed and delivered to JPL for integration with the spacecraft. This paper describes the array assembly, the qualification test program, and the results of the qualification tests. The array will provide power to the DS1 spacecraft and its NSTAR ion electric propulsion system. Launch is scheduled for October, 1998 from Kennedy Space Center, FL.

  3. Li-Ion Battery for ISS

    NASA Technical Reports Server (NTRS)

    Dalton, Penni; Cohen, Fred

    2004-01-01

    The ISS currently uses Ni-H2 batteries in the main power system. Although Ni-H2 is a robust and reliable system, recent advances in battery technology have paved the way for future replacement batteries to be constructed using Li-ion technology. This technology will provide lower launch weight as well as increase ISS electric power system (EPS) efficiency. The result of incorporating this technology in future re-support hardware will be greater power availability and reduced program cost. the presentations of incorporating the new technology.

  4. KSC01padig009

    NASA Image and Video Library

    2001-01-03

    KENNEDY SPACE CENTER, Fla. -- At the top of Launch Pad 39A, Space Shuttle Atlantis closes in on the Rotating Service Structure (left). On the RSS, the payload canister can be seen half way up the structure as it is lifted to the Payload Changeout Room. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  5. KSC01pp0006

    NASA Image and Video Library

    2001-01-02

    KENNEDY SPACE CENTER, Fla. -- Under gray cloudy skies, Space Shuttle Atlantis inches its way to Launch Pad 39A , barely visible in the background. The journey is a distance of just over 3 miles. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station. The orbiter will carry in its payload bay the U.S. Laboratory, named Destiny, that will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  6. STS-98 Atlantis rolls out to Pad 39A for the second time

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Under wispy white clouds, Space Shuttle Atlantis slowly moves toward the Rotating and Fixed Service Structures on Launch Pad 39A. The 80-foot-tall white lighting mast is seen atop the FSS. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five.

  7. Apollo Spacecraft and Saturn V Launch Vehicle Pyrotechnics/Explosive Devices

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    The Apollo Mission employs more than 210 pyrotechnic devices per mission.These devices are either automatic of commanded from the Apollo spacecraft systems. All devices require high reliability and safety and most are classified as either crew safety critical or mission critical. Pyrotechnic devices have a wide variety of applications including: launch escape tower separation, separation rocket ignition, parachute deployment and release and electrical circuit opening and closing. This viewgraph presentation identifies critical performance, design requirements and safety measures used to ensure quality, reliability and performance of Apollo pyrotechnic/explosive devices. The major components and functions of a typical Apollo pyrotechnic/explosive device are listed and described (initiators, cartridge assemblies, detonators, core charges). The presentation also identifies the major locations and uses for the devices on: the Command and Service Module, Lunar Module and all stages of the launch vehicle.

  8. KSC-05PD-0527

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, workers mate the External Tank, at left, to the underside of Space Shuttle Discovery, at right. Each of two aft external tank umbilical plates mate with a corresponding plate on the orbiter. The plates help maintain alignment among the umbilicals. The attach fitting is aft of the nose gear wheel well. Workers next will perform an electrical and mechanical verification of the mated interfaces to verify all critical vehicle connections. A Shuttle interface test is performed using the launch processing system to verify Space Shuttle vehicle interfaces and Space Shuttle vehicle-to-ground interfaces. In approximately one week, Space Shuttle Discovery will be ready for rollout to Launch Pad 39B for Return to Flight mission STS-114. The launch window for STS-114 is May 15 to June 3.

  9. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 2: Technical results

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.

    1980-01-01

    Technologies either critical to performance of offering cost advantages compared to the investment required to bring them to usable confidence levels are identified. A total transportation system is used as an evaluation yardstick. Vehicles included in the system are a single stage to orbit launch vehicle used in a priority cargo role, a matching orbit transfer vehicle, a heavy lift launch vehicle with a low Earth orbit delivery capability of 226, 575 kg, and a matching solar electric cargo orbit transfer vehicle. The system and its reference technology level are consistent with an initial operational capability in 1990. The 15 year mission scenario is based on early space industrialization leading to the deployment of large systems such as power satellites. Life cycle cost benefits in discounted and undiscounted dollars for each vehicle, technology advancement, and the integrated transportation system are calculated. A preliminary functional analysis was made of the operational support requirements for ground based and space based chemical propulsion orbit transfer vehicles.

  10. Telemetry Boards Interpret Rocket, Airplane Engine Data

    NASA Technical Reports Server (NTRS)

    2009-01-01

    For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.

  11. Solar Collector Mirror for Brayton Power System

    NASA Image and Video Library

    1966-09-21

    NASA’s Lewis Research Center conducted extensive research programs in the 1960s and 1970s to develop systems that provide electrical power in space. One system, the Brayton cycle engine, converted solar thermal energy into electrical power. This system operated on a closed-loop Brayton thermodynamic cycle. The Brayton system relied on this large mirror to collect radiation from the sun. The mirror concentrated the Sun's rays on a heat storage receiver which warmed the Brayton system’s working fluid, a helium-xenon gas mixture. The heated fluid powered the system’s generator which produced power. In the mid-1960s Lewis researchers constructed this 30-foot diameter prototype of a parabolic solar mirror for the Brayton cycle system. The mirror had to be rigid, impervious to micrometeorite strikes, and lightweight. This mirror was comprised of twelve 1-inch thick magnesium plate sections that were coated with aluminum. The mirror could be compactly broken into its sections for launch.

  12. KSC00pp1688

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- The payload transport canister (right) and workers wait for the arrival of the P6 integrated truss segment (left) carried by the overhead crane. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  13. KSC-00pp1691

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is placed in the payload transport canister while workers watch its progress. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  14. KSC-00pp1780

    NASA Image and Video Library

    2000-11-30

    STS-97 Mission Specialist Marc Garneau, who is with the Canadian Space Agency, waves after donning his launch and entry suit. This is his third Shuttle flight.; Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  15. KSC-00pp1781

    NASA Image and Video Library

    2000-11-30

    With the help of a suit technician, STS-97 Commander Brent Jett dons his launch and entry suit. This is his third Shuttle flight.; Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  16. KSC00pp1691

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is placed in the payload transport canister while workers watch its progress. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  17. KSC-00pp1783

    NASA Image and Video Library

    2000-11-30

    STS-97 Mission Specialist Carlos Noriega appears relaxed as he dons his launch and entry suit. This is his second Shuttle flight. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  18. KSC-00pp1688

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- The payload transport canister (right) and workers wait for the arrival of the P6 integrated truss segment (left) carried by the overhead crane. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  19. Aircraft measurements of electrified clouds at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Jones, J. J.; Winn, W. P.; Hunyady, S. J.; Moore, C. B.; Bullock, J. W.

    1990-01-01

    The space-vehicle launch commit criteria for weather and atmospheric electrical conditions in us at Cape Canaveral Air Force Station and Kennedy Space Center (KSC) have been made restrictive because of the past difficulties that have arisen when space vehicles have triggered lightning discharge after their launch during cloudy weather. With the present ground-base instrumentation and our limited knowledge of cloud electrification process over this region of Florida, it has not been possible to provide a quantitative index of safe launching conditions. During the fall of 1988, a Schweizer 845 airplane equipped to measure electric field and other meteorological parameters flew over KSC in a program to study clouds defined in the existing launch restriction criteria. All aspects of this program are addressed including planning, method, and results. A case study on the November 4, 1988 flight is also presented.

  20. Missile launch detection electric field perturbation experiment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, R.J.; Rynne, T.M.

    1993-04-28

    The Lawrence Livermore National Laboratory and SARA Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. LLNL and SARA deployed sensors for monitoring of basic phenomena. An attempt was made to measure perturbations of the earth geo-potential during the launch of a Lance missile. The occurrence of the perturbation is expected from the conducting body of the missile and the exhaust plume. A set of voltage-probe antennas were used to monitor the local electric field perturbation from the launch at ranges of approximately 1 km. Examination of the data acquired during the launch periodmore » failed to show identifiable correlation of the field variations with the launch event. Three reasons are ascribed to this lack of event data: (1) The electric field potential variations have a limited spatial correlation length - the fields measured in one region have little correlation to measurements made at distances of a kilometer away. The potential variations are related to localized atmospheric disturbances and are generally unpredictable. A value for the spatial correlation length is also not known. (2) The conductivity of the plume and missile body are not adequate to produce a field perturbation of adequate magnitude. Phenomena related to the exhaust plume and missile may exist and be outside of the collection range of the equipment employed for these measurements. (3) The presence of 60 Hz power line noise was of sufficient magnitude to irreversibly contaminate measurements.« less

  1. Additive Manufacturing Integrated Energy Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Roderick; Lee, Brian; Love, Lonnie

    2016-02-05

    Meet AMIE - the Additive Manufacturing Integrated Energy demonstration project. Led by Oak Ridge National Laboratory and many industry partners, the AMIE project changes the way we think about generating, storing, and using electrical power. AMIE uses an integrated energy system that shares energy between a building and a vehicle. And, utilizing advanced manufacturing and rapid innovation, it only took one year from concept to launch.

  2. Additive Manufacturing Integrated Energy Demonstration

    ScienceCinema

    Jackson, Roderick; Lee, Brian; Love, Lonnie; Mabe, Gavin; Keller, Martin; Curran, Scott; Chinthavali, Madhu; Green, Johney; Sawyer, Karma; Enquist, Phil

    2018-01-16

    Meet AMIE - the Additive Manufacturing Integrated Energy demonstration project. Led by Oak Ridge National Laboratory and many industry partners, the AMIE project changes the way we think about generating, storing, and using electrical power. AMIE uses an integrated energy system that shares energy between a building and a vehicle. And, utilizing advanced manufacturing and rapid innovation, it only took one year from concept to launch.

  3. Development and flight history of SERT 2 spacecraft

    NASA Technical Reports Server (NTRS)

    Kerslake, William R.; Ignaczak, Louis R.

    1992-01-01

    A 25-year historical review of the Space Electric Rocket Test 2 (SERT 2) mission is presented. The Agena launch vehicle; the SERT 2 spacecraft; and mission-peculiar spacecraft hardware, including two ion thruster systems, are described. The 3 1/2-year development period, from 1966 to 1970, that was needed to design, fabricate, and qualify the ion thruster system and the supporting spacecraft components, is documented. Major testing of two ion thruster systems and related auxiliary experiments that were conducted in space after the 3 Feb. 1970, launch are reviewed. Extended ion thruster restarts from 1973 to 1981 are reported, in addition to cross-neutralization tests. Tests of a reflector erosion experiment were continued in 1989 to 1991. The continuing performance of spacecraft subsystems, including the solar arrays, over the 1970-1991 period is summarized. Finally, the knowledge of thruster-spacecraft interactions learned from SERT 2 is listed.

  4. KSC-2011-1395

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony at a new 18,500-square-foot Electrical Maintenance Facility (EMF) officially opening for business. Addressing the attendees is NASA Construction of Facility Project Manager Nick Rivieccio. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder

  5. KSC-2011-1397

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony at a new 18,500-square-foot Electrical Maintenance Facility (EMF) officially opening for business. Addressing the attendees is Kennedy Director of Operations Mike Benik. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder

  6. KSC-2011-1396

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony at a new 18,500-square-foot Electrical Maintenance Facility (EMF) officially opening for business. Addressing the attendees is Kennedy Center Director Bob Cabana. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder

  7. MW-Class Electric Propulsion System Designs

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary results of the COMPASS MW-class electric propulsion power system study are reported, and discussion is provided on how the analysis might be used to guide future technology investments as NASA moves to more capable high power in-space propulsion systems.

  8. Baseline spacecraft and mission design for the SP-100 flight experiment

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1989-01-01

    The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kWe ammonia arcjet system operating at an experimentally-measured specific impulse of 1030 s and an efficiency of 42 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kWe SRPS is assumed. The total spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission and an orbit raising round trip corresponding to possible orbit transfer vehicle missions. Launches from Kennedy Space Center using the Titan IV expendable launch vehicle are assumed.

  9. Nuclear Safety for Space Systems

    NASA Astrophysics Data System (ADS)

    Offiong, Etim

    2010-09-01

    It is trite, albeit a truism, to say that nuclear power can provide propulsion thrust needed to launch space vehicles and also, to provide electricity for powering on-board systems, especially for missions to the Moon, Mars and other deep space missions. Nuclear Power Sources(NPSs) are known to provide more capabilities than solar power, fuel cells and conventional chemical means. The worry has always been that of safety. The earliest superpowers(US and former Soviet Union) have designed and launched several nuclear-powered systems, with some failures. Nuclear failures and accidents, however little the number, could be far-reaching geographically, and are catastrophic to humans and the environment. Building on the numerous research works on nuclear power on Earth and in space, this paper seeks to bring to bear, issues relating to safety of space systems - spacecrafts, astronauts, Earth environment and extra terrestrial habitats - in the use and application of nuclear power sources. It also introduces a new formal training course in Space Systems Safety.

  10. Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James

    2011-01-01

    A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.

  11. SEE Design Guide and Requirements for Electrical Deadfacing

    NASA Technical Reports Server (NTRS)

    Berki, Joe M.; Sargent, Noel; Kauffman, W. (Technical Monitor)

    2002-01-01

    The purpose of this design guide is to present information for understanding and mitigating the potential hazards associated with de-mating and mating powered electrical connectors on space flight vehicles. The process of staging is a necessary function in the launching of space vehicles and in the deployment of satellites, and now in manned assembly of systems in space. During this electrical interconnection process, various environments may be encountered that warrant the restriction of the voltage and current present across the pins of an electrical connector prior to separation, mating, or in a static open non-mated configuration. This process is called deadfacing. These potentially hazardous environments encompass the obvious explosive fuel vapors and human shock hazard, to multiple Electro-Magnetic Interference (EMI) phenomena related to the rapid rate of change in current as well as exposure to Radio Frequency (RF) fields.

  12. Vibration Testing of Stirling Power Convertors

    NASA Technical Reports Server (NTRS)

    Hughes, Bill; Goodnight, Thomas; McNelis, Mark E.; Suarez, Vicente J.; Schreiber, Jeff; Samorezov, Sergey

    2003-01-01

    The NASA John H. Glenn Research Center (GRC) and the U.S. Department of Energy (DOE) are currently developing a high efficient, long life, free piston Stirling convertor for use as an advanced spacecraft power system for future NASA missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC), developed by Stirling Technology Company (STC) for DOE, was vibration tested at GRC s Structural Dynamics Laboratory (SDU7735) in November- December 1999. This testing demonstrated that the Stirling TDC is able to withstand the harsh random vibration (20 to 2000 Hertz) seen during a typical spacecraft launch and survive with no structural damage or functional power performance degradation, thereby enabling its usage in future spacecraft power systems. The Stirling Vibration Test Team at NASA GRC and STC personnel conducted tests on a single 55 electric watt TDC. The purpose was to characterize the TDC s structural response to vibration and determine if the TDC could survive the vibration criteria established by the Jet Propulsion Laboratory (JPL) for launch environments. The TDC was operated at full-stroke and full power conditions during the vibration testing. The TDC was tested in two orientations, with the direction of vibration parallel and perpendicular to the TDC s moving components (displacer and piston). The TDC successfully passed a series of sine and random vibration tests. The most severe test was a 12.3 Grms random vibration test (peak vibration level of 0.2 g2/Hz from 50 to 250 Hertz) with test durations of 3 minutes per axis. The random vibration test levels were chosen to simulate, with margin, the maximum anticipated launch vibration conditions. As a result of this very successful vibration testing and successful evaluations in other key technical readiness areas, the Stirling power system is now considered a viable technology for future application for NASA spacecraft missions. Possible usage of the Stirling power system would be to supply on- board electric spacecraft power for future NASA Deep-Space Missions, performing as an attractive alternative to Radioisotope Thermoelectric Generators (RTG). Usage of the Stirling technology is also being considered as the electric power source for future Mars rovers, whose mission profiles may exclude the use of photovoltaic power systems (such as exploring at high Martian latitudes or for missions of lengthy durations). GRC s Thermo-Mechanical Systems Branch (5490) provides Stirling technology expertise under a Space Act Agreement with the DOE. Additional vibration testing, by GRC s Structural Systems Dynamics Branch (7733, is planned to continue to demonstrate the Stirling power system s vibration capability as its technology and flight system designs progress.

  13. Dust-Tolerant Intelligent Electrical Connection System

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  14. Feasibility of space disposal of radioactive nuclear waste. 2: Technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility of transporting radioactive waste produced in the process of generating electricity in nuclear powerplants into space for ultimate disposal was investigated at the request of the AEC as a NASA in-house effort. The investigation is part of a broad AEC study of methods for long-term storage or disposal of radioactive waste. The results of the study indicate that transporting specific radioactive wastes, particularly the actinides with very long half-lives, into space using the space shuttle/tug as the launch system, appears feasible from the engineering and safety viewpoints. The space transportation costs for ejecting the actinides out of the solar system would represent less than a 5-percent increase in the average consumer's electric bill.

  15. The role of nuclear reactors in space exploration and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. Onemore » reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built and flew space reactors; it is time to do so again.« less

  16. Reactor/Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  17. Study of radioisotope safety devices for electric propulsion system, Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. B.; Homeyer, W. G.; Postula, F. D.; Steeger, E. J.

    1972-01-01

    A new reference design was prepared for the 5 kW(e) thermionic power supply. The safety equipment in this design is a passive containment system which does not rely on the operation of any mechanisms such as a launch escape rocket or deployment of parachutes. It includes: (1) a blast shield to protect against the explosion of the launch vehicle; (2) a combination of refractory thermal insulation and heat storage material to protect against a sustained launch pad fire; (3) a reentry body with a spherical nose and a large conical flare at the aft end to stabilize the reentry attitude and lower the terminal velocity in air; (4) composite graphite thermal protection to sustain the reentry heat pulse; (5) crushable honeycomb behind the nose to limit the deceleration of the radioisotope source due to impact on land at terminal velocity; (6) a double-walled secondary containment vessel surrounding the isotopic capsules; (7) neutron shielding to reduce external dose rates; (8) an auxiliary cooling system employing redundant heat pipes to remove the radioactive decay heat from the heat source and reject it to the surroundings or to a forced convection loop.

  18. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan Jerred; Troy Howe; Adarsh Rajguru

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within themore » solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical-based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payload’s communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods – the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.« less

  19. 5. PHOTOCOPY OF DRAWING (1975 ELECTRICAL DRAWING BY THE STRATEGIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. PHOTOCOPY OF DRAWING (1975 ELECTRICAL DRAWING BY THE STRATEGIC AIR COMMAND, USAF) ELECTRICAL PLANS FOR BUILDING 768, SHEET 7 OF 8 - Vandenberg Air Force Base, Space Launch Complex 3, Entry Control Point, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. KSC01pp0005

    NASA Image and Video Library

    2001-01-02

    KENNEDY SPACE CENTER, Fla. -- Under cloudy skies, Space Shuttle Atlantis inches its way to Launch Pad 39A from the Vehicle Assembly Building (right). The journey is a distance of just over 3 miles. The water in the foreground is part of Banana Creek. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station. The orbiter will carry in its payload bay the U.S. Laboratory, named Destiny, that will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five

  1. Mercury orbiter transport study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.

  2. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated the engine over the entire NSTAR throttle range over a series of tests. Flow rates were very stable with variations of at most 0.2%, and transition times between throttle levels were typically 90 seconds or less with a maximum of 200 seconds, both significant improvements over the Dawn bang-bang feed system.

  3. Faster Finances

    NASA Technical Reports Server (NTRS)

    1976-01-01

    TRW has applied the Apollo checkout procedures to retail-store and bank-transaction systems, as well as to control systems for electric power transmission grids -- reducing the chance of power blackouts. Automatic checkout equipment for Apollo Spacecraft is one of the most complex computer systems in the world. Used to integrate extensive Apollo checkout procedures from manufacture to launch, it has spawned major advances in computer systems technology. Store and bank credit system has caused significant improvement in speed and accuracy of transactions, credit authorization, and inventory control. A similar computer service called "Validata" is used nationwide by airlines, airline ticket offices, car rental agencies, and hotels.

  4. Identifying Accessible Near-Earth Objects For Crewed Missions With Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Smet, Stijn De; Parker, Jeffrey S.; Herman, Jonathan F. C.; Aziz, Jonathan; Barbee, Brent W.; Englander, Jacob A.

    2015-01-01

    This paper discusses the expansion of the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) with Solar Electric Propulsion (SEP). The research investigates the existence of new launch seasons that would have been impossible to achieve using only chemical propulsion. Furthermore, this paper shows that SEP can be used to significantly reduce the launch mass and in some cases the flight time of potential missions as compared to the current, purely chemical trajectories identified by the NHATS project.

  5. Electromechanical systems with transient high power response operating from a resonant AC link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).

  6. Selection and Prioritization of Advanced Propulsion Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Eberle, Bill; Farris, Bob; Johnson, Les; Jones, Jonathan; Kos, Larry; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    The exploration of our solar system will require spacecraft with much greater capability than spacecraft which have been launched in the past. This is particularly true for exploration of the outer planets. Outer planet exploration requires shorter trip times, increased payload mass, and ability to orbit or land on outer planets. Increased capability requires better propulsion systems, including increased specific impulse. Chemical propulsion systems are not capable of delivering the performance required for exploration of the solar system. Future propulsion systems will be applied to a wide variety of missions with a diverse set of mission requirements. Many candidate propulsion technologies have been proposed but NASA resources do not permit development of a] of them. Therefore, we need to rationally select a few propulsion technologies for advancement, for application to future space missions. An effort was initiated to select and prioritize candidate propulsion technologies for development investment. The results of the study identified Aerocapture, 5 - 10 KW Solar Electric Ion, and Nuclear Electric Propulsion as high priority technologies. Solar Sails, 100 Kw Solar Electric Hall Thrusters, Electric Propulsion, and Advanced Chemical were identified as medium priority technologies. Plasma sails, momentum exchange tethers, and low density solar sails were identified as high risk/high payoff technologies.

  7. Demonstration of Heavy Diesel Hybrid Fleet Vehicles

    DTIC Science & Technology

    2016-03-29

    Refuse 54 Hybrid Launch Assist Truck, Dump 921 Truck, Refrigerator 147 Truck, High Reach, Various 327 Crane, Wheeled, Truck Mounted 250 Truck...Types Medium Tactical Vehicle Rep. (MTVR) 9,069 Line Haul Tractor 5,013 In-Progress; Hybrid Electric System Dump Truck 776 Naval Construction...data. Card readers capture this data at the point of fueling using a specified card reader. Information improved data consistency as compared with

  8. Electrically scanning microwave radiometer for Nimbus E

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An electronically scanning microwave radiometer system has been designed, developed, and tested for measurement of meteorological, geomorphological and oceanographic parameters from NASA/GSFC's Nimbus E satellite. The system is a completely integrated radiometer designed to measure the microwave brightness temperature of the earth and its atmosphere at a microwave frequency of 19.35 GHz. Calibration and environmental testing of the system have successfully demonstrated its ability to perform accurate measurements in a satellite environment. The successful launch and data acquisition of the Nimbus 5 (formerly Nimbus E) gives further demonstration to its achievement.

  9. KSC-08pd0005

    NASA Image and Video Library

    2008-01-04

    KENNEDY SPACE CENTER, FLA. -- At a lab at NASA's Kennedy Space Center, Bob Arp, an aerospace technician with the United Launch Alliance, inserts a wire from an electrical harness onto the pin of a replacement feed-through connector during preparations to solder the pins to the socket of the connector. The connector will be installed in the external fuel tank for space shuttle Atlantis' STS-122 mission. The technician performed this exacting task on the Centaur upper stage for Atlas and Titan launches in 1994 and was specifically chosen for the task. Soldering the connector pins and sockets together addresses the most likely cause of a problem in the engine cutoff sensor system, or ECO system. Some of the tank's ECO sensors failed during propellant tanking for launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. After the soldering is completed and the connector is reinstalled, shuttle program managers will decide on how to proceed. The launch date for mission STS-122 is under review. Photo credit: NASA/Kim Shiflett

  10. KSC-08pd0002

    NASA Image and Video Library

    2008-01-04

    KENNEDY SPACE CENTER, FLA. -- At a lab at NASA's Kennedy Space Center, Kevin Wyckoff, an aerospace technician with the United Launch Alliance, examines an electrical wiring harness. The harness will be inserted into a replacement feed-through connector during preparations to solder the pins to the socket of the connector. The connector will later be installed in the external fuel tank for space shuttle Atlantis' STS-122 mission. The technician performed this exacting task on the Centaur upper stage for Atlas and Titan launches in 1994 and was specifically chosen for the task. Soldering the connector pins and sockets together addresses the most likely cause of a problem in the engine cutoff sensor system, or ECO system. Some of the tank's ECO sensors failed during propellant tanking for launch attempts on Dec. 6 and Dec. 9. Results of a tanking test on Dec. 18 pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. After the soldering is completed and the connector is reinstalled, shuttle program managers will decide on how to proceed. The launch date for mission STS-122 is under review. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd3631

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, a technician explains how test equipment -- the blue monitor -- will be used to validate the circuit on test wiring from the electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off system. The test wiring leads from the tail mast on the mobile launcher platform to the interior where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd3632

    NASA Image and Video Library

    2007-12-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39A, technicians overlook wires and monitoring equipment that will be used to validate the circuit on the test wiring from the electrical harness in space shuttle Atlantis' aft main engine compartment connected with the engine cut-off system. The test wiring leads from the tail mast on the mobile launcher platform to the interior where the Time Domain Reflectometry, or TDR, test equipment will be located to test the sensor system. Photo credit: NASA/Kim Shiflett

  13. Space station orbit maintenance

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  14. Solar satellites

    NASA Astrophysics Data System (ADS)

    Poher, C.

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  15. Nuclear reactor power for a space-based radar. SP-100 project

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  16. 8. PHOTOCOPY OF DRAWING (1975 ELECTRICAL DRAWING BY THE RALPH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. PHOTOCOPY OF DRAWING (1975 ELECTRICAL DRAWING BY THE RALPH M. PARSONS COMPANY) ELECTRICAL PLAN AND DETAILS FOR BUILDING 762-A, SHEET E4 - Vandenberg Air Force Base, Space Launch Complex 3, Technical Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Electromechanical systems with transient high power response operating from a resonant ac link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.

  18. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Gamblin, R.; Marrero, E.; Bering, E. A., III; Leffer, B.; Dunbar, B.; Ahmad, H.; Canales, D.; Bias, C.; Cao, J.; Pina, M.; Ehteshami, A.; Hermosillo, D.; Siddiqui, A.; Guala, D.

    2014-12-01

    This project is currently engaging tweleve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological inovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The UH USIP undergraduate team is currently in the process of build ten such payloads for launch using1500 gm latex weather balloons to be deployed in Houston and Fairbanks, AK as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind speed, wind direction, temperature, electrical conductivity, ozone and odd nitrogen. This instrument payload will also profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students will fly payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  19. Mobile, high-wind, balloon-launching apparatus

    NASA Technical Reports Server (NTRS)

    Rust, W. David; Marshall, Thomas C.

    1989-01-01

    In order to place instruments for measuring meteorological and electrical parameters into thunderstorms, an inexpensive apparatus has been developed which makes it possible to inflate, transport, and launch balloons in high winds. The launching apparatus is a cylinder of bubble plastic that is made by joining the sides of the cylinder together with a velcro rip strip. A balloon is launched by pulling the rip strip rapidly. This allows the balloon to pop upward into the ambient low-level wind and carry its instrumentation aloft. Different-sized launch tubes are constructed to accommodate particular sizes of balloons. Balloons have been launched in winds of about 20 m/s.

  20. Nuclear Electric Propulsion for Deep Space Exploration

    NASA Astrophysics Data System (ADS)

    Schmidt, G.

    Nuclear electric propulsion (NEP) holds considerable promise for deep space exploration in the future. Research and development of this technology is a key element of NASA's Nuclear Systems Initiative (NSI), which is a top priority in the President's FY03 NASA budget. The goal is to develop the subsystem technologies that will enable application of NEP for missions to the outer planets and beyond by the beginning of next decade. The high-performance offered by nuclear-powered electric thrusters will benefit future missions by (1) reducing or eliminating the launch window constraints associated with complex planetary swingbys, (2) providing the capability to perform large spacecraft velocity changes in deep space, (3) increasing the fraction of vehicle mass allocated to payload and other spacecraft systems, and, (3) in some cases, reducing trip times over other propulsion alternatives. Furthermore, the nuclear energy source will provide a power-rich environment that can support more sophisticated science experiments and higher- speed broadband data transmission than current deep space missions. This paper addresses NASA's plans for NEP, and discusses the subsystem technologies (i.e., nuclear reactors, power conversion and electric thrusters) and system concepts being considered for the first generation of NEP vehicles.

  1. 2. Photocopy of drawing (1976 structural and electrical drawing by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopy of drawing (1976 structural and electrical drawing by the Strategic Air Command, USAF) SITE PLAN, STRUCTURAL AND ELECTRICAL FOR RELOCATING WAREHOUSE, SHEET 1 OF 1 - Vandenberg Air Force Base, Space Launch Complex 3, Storage Shed, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation

    NASA Technical Reports Server (NTRS)

    Schnell, Andrew R.; Hull, Patrick V.; Turner, Mike L.; Dozier, Gerry; Alverson, Lauren; Garrett, Aaron; Reneau, Jarred

    2008-01-01

    Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed.

  3. Lightweight Integrated Solar Array and Transceiver. [Improving Electrical Power and Communication Capabilities in Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Carr, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) project will leverage several existing and on-going efforts at Marshall Space Flight Center (MSFC) for the design, development, fabrication, and test of a launch stowed, orbit deployed structure on which thin-film photovoltaics for power generation and antenna elements for communication, are embedded. Photovoltaics is a method for converting solar energy into electricity using semiconductor materials. The system will provide higher power generation with a lower mass, smaller stowage volume, and lower cost than the state of the art solar arrays, while simultaneously enabling deployable antenna concepts.

  4. KSC-2011-1398

    NASA Image and Video Library

    2011-02-08

    CAPE CANAVERAL, Fla. -- A traditional ribbon-cutting ceremony takes place inside the new 18,500-square-foot Electrical Maintenance Facility (EMF) at NASA's Kennedy Space Center in Florida. From left are Kennedy Director of Operations Mike Benik, NASA Construction of Facility Project Manager Nick Rivieccio and Kennedy Center Director Bob Cabana. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder

  5. Nuclear safety considerations in the conceptual design of a fast reactor for space electric power and propulsion

    NASA Technical Reports Server (NTRS)

    Hsieh, T.-M.; Koenig, D. R.

    1977-01-01

    Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.

  6. Mercury Capsule Construction at the NASA Lewis Research Center

    NASA Image and Video Library

    1959-08-21

    A NASA mechanic secures the afterbody to a Mercury capsule in the hangar at the Lewis Research Center. The capsule was one of two built at Lewis for the “Big Joe” launches scheduled for September 1959. The initial phase of Project Mercury consisted of a series of unmanned launches using the Air Force’s Redstone and Atlas boosters and the Langley-designed Little Joe boosters. The first Atlas launch, referred to as “Big Joe”, was a single attempt early in Project Mercury to use a full-scale Atlas booster to simulate the reentry of a mock-up Mercury capsule without actually placing it in orbit. The overall design of Big Joe had been completed by December 1958, and soon thereafter project manager Aleck Bond assigned NASA Lewis the task of designing the electronic instrumentation and automatic stabilization system. Lewis also constructed the capsule’s lower section, which contained a pressurized area with the electronics and two nitrogen tanks for the retrorockets. Lewis technicians were responsible for assembling the entire capsule: the General Electric heatshield, NASA Langley afterbody and recovery canister, and Lewis electronics and control systems. On June 9, 1959, the capsule was loaded on an air force transport aircraft and flown to Cape Canaveral. A team of 45 test operations personnel from Lewis followed the capsule to Florida and spent the ensuing months preparing it for launch. The launch took place in the early morning hours of September 9, 1959.

  7. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.

    2013-01-01

    The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.

  8. Television image of a large upward electrical discharge above a thunderstorm system

    NASA Technical Reports Server (NTRS)

    Franz, R. C.; Nemzek, R. J.; Winckler, J. R.

    1990-01-01

    A low light-level TV camera is used to obtain an unusual image of luminous electrical discharge over a thunderstorm 250 km from the observation site. The image is presented and the discharge in the image is described. It is suggested that the image is probably due to two localized electric charge concentrations at the cloud tops. The hazard of these discharges for aircraft and rocket launches is examined. Consideration is given to the possibility that these discharges may account for unexplained photometric observations of distant lightning events that show a low rise rate of the luminous pulse and no electromagnetic sferic pulse like that in cloud-to-earth lightning strokes. The photometric events of this type that occurred on September 22-23, 1989 during hurricane Hugo are noted.

  9. An Analysis of Undersea Glider Architectures and an Assessment of Undersea Glider Integration into Undersea Applications

    DTIC Science & Technology

    2012-09-01

    Marine Mammal Survey • Inspection and Security • Environmental Monitoring Launch & Recovery • Man Portable (1-2 people) Features • Length: 2.2 m...Oceanography & Science • Pollution Detection • Water Quality Monitoring • Rapid Environment Assessment • Marine Mammals Assessment Launch & Recovery...Figure 29. Slocum Electric Launch from Surface Ship Guide Rails from (Quest Marine Services, 2007

  10. Advancing electric-vehicle development with pure-lead-tin battery technology

    NASA Astrophysics Data System (ADS)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  11. COMPASS Final Report: Radioisotope Electric Propulsion (REP) Centaur Orbiter New Frontiers Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    Radioisotope Electric Propulsion (REP) has been shown in past studies to enable missions to outer planetary bodies including the orbiting of Centaur asteroids. Key to the feasibility for REP missions are long life, low power electric propulsion (EP) devices, low mass Radioisotope Power System (RPS) and light spacecraft (S/C) components. In order to determine the key parameters for EP devices to perform these REP missions a design study was completed to design an REP S/C to orbit a Centaur in a New Frontiers (NF) cost cap. The design shows that an orbiter using several long lived (approx.200 kg xenon (Xe) throughput), low power (approx.700 W) Hall thrusters teamed with six (150 W each) Advanced Stirling Radioisotope Generators (ASRG) can deliver 60 kg of science instruments to a Centaur in 10 yr within the NF cost cap. Optimal specific impulses (Isp) for the Hall thrusters were found to be around 2000 s with thruster efficiencies over 40 percent. Not only can the REP S/C enable orbiting a Centaur (when compared to an all chemical mission only capable of flybys) but the additional power from the REP system can be used to enhance science and simplify communications. The mission design detailed in this report is a Radioisotope Power System (RPS) powered EP science orbiter to the Centaur Thereus with arrival 10 yr after launch, ending in a 1 yr science mapping mission. Along the trajectory, approximately 1.5 yr into the mission, the REP S/C does a flyby of the Trojan asteroid Tlepolemus. The total (Delta)V of the trajectory is 8.9 km/s. The REP S/C is delivered to orbit on an Atlas 551 class launch vehicle with a Star 48 B solid rocket stage

  12. Launch Method for Kites in Low-Wind or No-Wind Conditions

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    Airborne observations using lightweight camera systems are desirable for a variety of applications. This system was contemplated as a method to provide a simple remote sensing aerial platform. Kites have been successfully employed for aerial observations, but have historically required natural wind or towing to become airborne. This new method negates this requirement, and widens the applicability of kites for carrying instrumentation. Applicability is primarily limited by the space available on the ground for launching. The innovation is a method for launching kites in low-wind or no-wind conditions. This method will enable instrumentation to be carried aloft using simple (or complex) kite-based systems, to obtain observations from an aerial perspective. This technique will provide access to altitudes of 100 meters or more over any area normally suited for kite flying. The duration of any observation is dependent on wind strength; however, the initial altitude is relatively independent. The system does not require any electrical or combustion-based elements. This technology was developed to augment local-scale airborne measurement capabilities suitable for Earth science research, agricultural productivity, and environmental observations. The method represents an extension of techniques often used in aeronautical applications for launching fixed-wing aircraft, such as sailplanes, using mechanical means not incorporated in the aircraft itself. The innovation consists of an elastic cord (for propulsive force), a tether extension (optional, for additional height), and the kite (instrumentation optional). Operation of the system is accomplished by fixing the elastic cord to ground (or equivalent), attaching the cord with/or without a tether extension to the kite, tensioning the system to store energy, and releasing the kite. The kite will climb until energy is dissipated.

  13. A regenerative fuel cell system for modular space station integrated electrical power.

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Schubert, F. H.

    1973-01-01

    A regenerative fuel cell system (RFCS) for energy storage aboard the Modular Space Station (MSS) was selected over the battery technique because of lower cost, lower launch weight, lower required solar array area, and its ability to be integrated into the station's reaction control and environmental control and life support subsystems in addition to the electrical power subsystem. The total MSS energy storage requirement was met by dividing it into four equal modular RFCSs, each made up of a fuel cell subsystem, a water electrolysis subsystem, a gas accumulator subassembly, and a water tank subassembly. The weight of each of the four RFCSs varied from 4000 to 7000 lb with the latter being a more maintainable design. The specific energy ranged between 5.6 to 9.4 watt-hr/lb.

  14. Solar Electric Propulsion for Primitive Body Science Missions

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin E.

    2006-01-01

    This paper describes work that assesses the performance of solar electric propulsion (SEP) for three different primitive body science missions: 1) Comet Rendezvous 2) Comet Surface Sample Return (CSSR), and 3) a Trojan asteroid/Centaur object Reconnaissance Flyby. Each of these missions launches from Earth between 2010 and 2016. Beginning-of-life (BOL) solar array power (referenced at 1 A.U.) varies from 10 to 18 kW. Launch vehicle selections range from a Delta II to a Delta IV medium-class. The primary figure of merit (FOM) is net delivered mass (NDM). This analysis considers the effects of imposing various mission constraints on the Comet Rendezvous and CSSR missions. Specifically, the Comet Rendezvous mission analysis examines an arrival date constraint with a launch year variation, whereas the CSSR mission analysis investigates an Earth entry velocity constraint commensurate with past and current missions. Additionally, the CSSR mission analysis establishes NASA's New Frontiers (NF) Design Reference Mission (DRM) in order to evaluate current and future SEP technologies. The results show that transfer times range from 5 to 9 years (depending on the mission). More importantly, the spacecraft's primary propulsion system performs an average 5-degree plane change on the return leg of the CSSR mission to meet the previously mentioned Earth entry velocity constraint. Consequently, these analyses show that SEP technologies that have higher thrust-to-power ratios can: 1) reduce flight time, and 2) change planes more efficiently.

  15. 4. PHOTOCOPY OF DRAWING (1976 STRUCTURAL AND ELECTRICAL DRAWING BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PHOTOCOPY OF DRAWING (1976 STRUCTURAL AND ELECTRICAL DRAWING BY THE SPACE AND MISSILE TEST CENTER, VAFB, USAF) STRUCTURAL AND ELECTRICAL DIAGRAM FOR EQUIPMENT STORAGE BUILDING, SHEET S-26 - Vandenberg Air Force Base, Space Launch Complex 3, Storage Shed, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  17. KSC-07pd3652

    NASA Image and Video Library

    2007-12-21

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, a United Space Alliance technician carefully cuts away the foam insulation surrounding the covers over the feed-through connector box on the external tank for space shuttle Atlantis' STS-122 mission. The covers will be removed for access to the feed-through connectors. Following the failure of some of the tank's engine cutoff sensors, or ECO sensors, during propellant tanking for launch attempts on Dec. 6 and Dec. 9, a tanking test was conducted on Dec. 18 to aid in troubleshooting the cause. Technicians spliced test wiring into the ECO sensor electrical system and used time domain reflectometry equipment to help locate the electrical anomaly. Results of the tanking test pointed to an open circuit in the feed-through connector wiring, which is located at the base of the tank. The feed-through connector passes the wires from the inside of the tank to the outside. During the holiday period, workers from Lockheed Martin will begin inspecting and testing the connector. Shuttle program managers will meet on Dec. 27 to review the test and analysis, and decide on a forward plan. Photo credit: NASA/Kim Shiflett

  18. Iodine Propulsion Advantages for Low Cost Mission Applications and the Iodine Satellite (ISAT) Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Schumacher, Daniel M.

    2015-01-01

    The NASA Marshall Space Flight Center Science and Technology Office is continuously exploring technology options to increase performance or reduce cost and risk to future NASA missions including science and exploration. Electric propulsion is a prevalent technology known to reduce mission costs by reduction in launch costs and spacecraft mass through increased post launch propulsion performance. The exploration of alternative propellants for electric propulsion continues to be of interest to the community. Iodine testing has demonstrated comparable performance to xenon. However, iodine has a higher storage density resulting in higher ?V capability for volume constrained systems. Iodine's unique properties also allow for unpressurized storage yet sublimation with minimal power requirements to produce required gas flow rates. These characteristics make iodine an ideal propellant for secondary spacecraft. A range of mission have been evaluated with a focus on low-cost applications. Results highlight the potential for significant cost reduction over state of the art. Based on the potential, NASA has been developing the iodine Satellite for a near-term iodine Hall propulsion technology demonstration. Mission applications and progress of the iodine Satellite project are presented.

  19. KSC-00pp1690

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is lowered into the payload transport canister under the watchful eyes of the worker inside the canister as well as the workers on the sides. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  20. KSC-00pp1732

    NASA Image and Video Library

    2000-11-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST

  1. KSC00pp1689

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- Workers in the Space Station Processing Facility line up on the sides of the payload transport canister as an overhead crane moves the P6 integrated truss segment into position above it. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  2. KSC-00pp1689

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- Workers in the Space Station Processing Facility line up on the sides of the payload transport canister as an overhead crane moves the P6 integrated truss segment into position above it. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  3. KSC-00pp1785

    NASA Image and Video Library

    2000-11-30

    Leaving the Operations and Checkout Building, the STS-97 crew hurries toward the waiting Astrovan that will take them to Launch Pad 39B. Starting at left, they are Mission Specialists Carlos Noriega, Joseph Tanner and Marc Garneau; Pilot Michael Bloomfield; and Commander Brent Jett. Garneau is with the Canadian Space Agency. Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST

  4. KSC00pp1690

    NASA Image and Video Library

    2000-11-10

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the P6 integrated truss segment is lowered into the payload transport canister under the watchful eyes of the worker inside the canister as well as the workers on the sides. After being secured in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST

  5. KSC00pp1732

    NASA Image and Video Library

    2000-11-14

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST

  6. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA system with a low initial development and infrastructure cost and a high operating cost. Note however that this has resulted in a 'Catch 22' standoff between the need for large initial investment that is amortized over many launches to reduce costs, and the limited number of launches possible at today's launch costs. Some examples of missions enabled (either in cost or capability) by advanced propulsion include long-life station-keeping or micro-spacecraft applications using electric propulsion or BMDO-derived micro-thrusters, low-cost orbit raising (LEO to GEO or Lunar orbit) using electric propulsion, robotic planetary missions using aerobraking or electric propulsion, piloted Mars missions using aerobraking and/or propellant production from Martian resources, very fast (100-day round-trip) piloted Mars missions using fission or fusion propulsion, and, finally, interstellar missions using fusion, antimatter, or beamed energy. The NASA Advanced Propulsion Technology program at the Jet Propulsion Laboratory (JPL) is aimed at assessing the feasibility of a range of near-term to far term advanced propulsion technologies that have the potential to reduce costs and/or enable future space activities. The program includes cooperative modeling and research activities between JPL and various universities and industry; and directly supported independent research at universities and industry. The cooperative program consists of mission studies, research and development of ion engine technology using C60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry-supported research includes modeling and proof-of-concept experiments in advanced, high-lsp, long-life electric propulsion, and in fusion propulsion.

  7. TOPAZ II Anti-Criticality Device Rapid Prototype

    NASA Astrophysics Data System (ADS)

    Campbell, Donald R.; Otting, William D.

    1994-07-01

    The Ballistic Missile Defense Organization (BMDO) has been working on a Nuclear Electric Propulsion Space Test Project (NEPSTP) using an existing Russian Topaz II reactor system to power the NEPSTP satellite. Safety investigations have shown that it will be possible to safely launch the Topaz II system in the United States with some modification to preclude water flooded criticality. A ``fuel-out'' water subcriticality concept was selected by the Los Alamos National Laboratory (LANL) as the baseline concept. A fuel-out anti-criticality device (ACD) conceptual design was developed by Rockwell. The concept functions to hold the fuel from the four centermost thermionic fuel elements (TFEs) outside the reactor during launch and reliably inserts the fuel into the reactor once the operational orbit is achieved. A four-tenths scale ACD rapid prototype model, fabricated from the CATIA solids design model, clearly shows in three dimensions the relative size and spatial relationship of the ACD components.

  8. KSC-00pp1054

    NASA Image and Video Library

    2000-07-31

    The Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station, is shown on the floor of the Space Station Processing Facility. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998

  9. KSC-07pd2238

    NASA Image and Video Library

    2007-08-08

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, STS-118 Commander Scott Kelly dons his launch and entry suit for launch aboard Space Shuttle Endeavour. This is Kelly's second spaceflight. The STS-118 mission is the 22nd shuttle flight to the International Space Station. It will continue space station construction by delivering a third starboard truss segment, S5, and other payloads such as the SPACEHAB module and the external stowage platform 3. The 11-day mission may be extended to as many as 14 depending on the test of the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. NASA/Kim Shiflett

  10. KSC-07pd1774

    NASA Image and Video Library

    2007-07-03

    KENNEDY SPACE CENTER, FLA. -- The main engines on the orbiter Endeavour (upper right) are seen as Endeavour is lowered into high bay 1 of the Vehicle Assembly Building for stacking with the external tank (seen at left) and solid rocket boosters on the mobile launcher platform. Endeavour will be launched on mission STS-118, its first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab. Endeavour is targeted for launch on Aug. 7. Photo credit: NASA/Troy Cryder

  11. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  12. Communication Satellite Payload Special Check out Equipment (SCOE) for Satellite Testing

    NASA Astrophysics Data System (ADS)

    Subhani, Noman

    2016-07-01

    This paper presents Payload Special Check out Equipment (SCOE) for the test and measurement of communication satellite Payload at subsystem and system level. The main emphasis of this paper is to demonstrate the principle test equipment, instruments and the payload test matrix for an automatic test control. Electrical Ground Support Equipment (EGSE)/ Special Check out Equipment (SCOE) requirements, functions and architecture for C-band and Ku-band payloads are presented in details along with their interface with satellite during different phases of satellite testing. It provides test setup, in a single rack cabinet that can easily be moved from payload assembly and integration environment to thermal vacuum chamber all the way to launch site (for pre-launch test and verification).

  13. Quick trips to Mars

    NASA Technical Reports Server (NTRS)

    Hornung, R.

    1991-01-01

    The design of a Mars Mission Vehicle that would have to be launched by two very heavy lift launch vehicles is described along with plans for a mission to Mars. The vehicle has three nuclear engine for rocket vehicle application (NERVA) boosters with a fourth in the center that acts as a dual mode system. The fourth generates electrical power while in route, but it also helps lift the vehicle out of earth orbit. A Mars Ascent Vehicle (MAV), a Mars transfer vehicle stage, and a Mars Excursion Vehicle (MEV) are located on the front end of this vehicle. Other aspects of this research including aerobraking, heat shielding, nuclear thermal rocket engines, a mars mission summary, closed Brayton cycle with and without regeneration, liquid hydrogen propellant storage, etc. are addressed.

  14. Electric Propulsion for Low Earth Orbit Communication Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  15. Joint NASA/USAF Airborne Field Mill Program - Operation and safety considerations during flights of a Lear 28 airplane in adverse weather

    NASA Technical Reports Server (NTRS)

    Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.

    1992-01-01

    A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.

  16. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.

  17. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.

  18. KSC-03pd0992

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- Workers prepare the Pegasus XL launch vehicle for re-mate with the Galaxy Evolution Explorer (GALEX) spacecraft. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  19. KSC-03pd0991

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. - Workers prepare the Pegasus XL launch vehicle for re-mate with the Galaxy Evolution Explorer (GALEX) spacecraft. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  20. KSC-03pd0993

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. - Workers prepare the Galaxy Evolution Explorer (GALEX) spacecraft for re-mate with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  1. COMPASS Final Report: Low Cost Robotic Lunar Lander

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Oleson, Steven R.

    2010-01-01

    The COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) team designed a robotic lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost in this 2006 design study. The purpose of the low cost lunar lander design was to investigate how much payload can an inexpensive chemical or Electric Propulsion (EP) system deliver to the Moon s surface. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10% of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

  2. Appendices for the Space Applications program, 1974

    NASA Technical Reports Server (NTRS)

    1974-01-01

    To achieve truly low cost system design with direct evolution for inorbit shuttle resupply, a modular building block approach has been adopted. The heart of the modular building block concept lies in the ability to use a common set of nonoptimized subsystems in such a way that a wide variety of missions can be flown with no detrimental impact on performance. By standardizing the mechanical configurations and electrical interfaces of the subsystem modules, and by designing each of them to be structurally and thermally independent entities, it is possible to cluster these building blocks or modules about an instrument system so as to adequately perform the mission without the need for subsystem redevelopments for each mission. This system concept offers the following capabilities: (1) the ability to launch and orbit the observatory by either the Delta, the Titan, or the space shuttle. (2) the ability to completely reconfigure the spacecraft subsystems for different launch vehicles, and (3) the ability to perform in-orbit resupply and/or emergency retrieval of the observatory.

  3. A Comparative of Life Cycle Assessment of a Conventional Van and a Battery Electric Van for an Online Shopping System in Thailand

    NASA Astrophysics Data System (ADS)

    Koiwanit, J.; Hamontree, C.

    2018-05-01

    The transportation sector is responsible for one of the main emitters of large quantities of pollutions to the atmosphere, which impacts local, regional or global environment receptors. In Thailand, many retail chains have been trying to launch many campaigns and projects to reduce GHG emissions together with offering the best convenience services to serve customers’ needs. By promoting an online shopping system for the workplace, this will mitigate even more of the air pollutants than the conventional online shopping system, where the products are delivered to customer’s doorsteps. This study aims to investigate and compare the impact of different vehicle technologies for an online shopping using Life Cycle Assessment (LCA) methodology especially in the vehicle use phase. The observed results showed that the electric van has the potential of reducing emissions and consequently showed lower impacts in most impact categories.

  4. Design consideration for a nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Pawlik, E. V.

    1978-01-01

    A study is currently underway to design a nuclear electric propulsion vehicle capable of performing detailed exploration of the outer-planets. Primary emphasis is on the power subsystem. Secondary emphasis includes integration into a spacecraft, and integration with the thrust subsystem and science package or payload. The results of several design iterations indicate an all-heat-pipe system offers greater reliability, elimination of many technology development areas and a specific weight of under 20 kg/kWe at the 400 kWe power level. The system is compatible with a single Shuttle launch and provides greater safety than could be obtained with designs using pumped liquid metal cooling. Two configurations, one with the reactor and power conversion forward on the spacecraft with the ion engines aft and the other with reactor, power conversion and ion engines aft were selected as dual baseline designs based on minimum weight, minimum required technology development and maximum growth potential and flexibility.

  5. Experimental study of ELF signatures developed by ballistic missile launch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peglow, S.G.; Rynne, T.M.

    1993-04-08

    The Lawrence Livermore National Laboratory (Livermore, CA) and SARA, Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. These tests involved the launch of Lance missiles with a subsequent direction of F-15Es into the launch area for subsequent detection and simulated destruction of redeployed missile launchers, LLNL and SARA deployed SARN`s ELF sensors and various data acquisition systems for monitoring of basic phenomena. On 25 January 1993, a single missile launch allowed initial measurements of the phenomena and an assessment of appropriate sensor sensitivity settings as well as the appropriateness of the sensor deploymentmore » sites (e.g., with respect to man-made ELF sources such as power distributions and communication lines). On 27 January 1993, a measurement of a double launch of Lance missiles was performed. This technical report covers the results of the analysis of latter measurements. An attempt was made to measure low frequency electromagnetic signatures that may be produced during a missile launch. Hypothetical signature production mechanisms include: (1) Perturbations of the earth geo-potential during the launch of the missile. This signature may arise from the interaction of the ambient electric field with the conducting body of the missile as well as the partially ionized exhaust plume. (2) Production of spatial, charge sources from triboelectric-like mechanisms. Such effects may occur during the initial interaction of the missile plume with the ground material and lead to an initial {open_quotes}spike{close_quotes} output, Additionally, there may exist charge transfer mechanisms produced during the exhausting of the burnt fuel oxidizer.« less

  6. Phase 1 Space Fission Propulsion System Design Considerations

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Carter, Robert; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a "Phase 1" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.

  7. Phase 1 space fission propulsion system design considerations

    NASA Astrophysics Data System (ADS)

    Houts, Mike; van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert

    2002-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a ``Phase 1'' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system. .

  8. On the Magnitude of the Electric Field Near Thunderstorm-Associated Clouds

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Ward, Jennifer G.; Mach, Douglas M.; Bateman, Monte G.; Dye, James E.

    2007-01-01

    Electric field measurements made in and near clouds during two airborne field mill programs are presented. Aircraft equipped with multiple electric field mills and cloud physics sensors were flown near active convection and into thunderstorm anvil and debris clouds. The magnitude of the electric field was measured as a function of position with respect to the cloud edge in order to provide an observational basis for modifications to the lightning launch commit criteria (LLCC) used by the U.S. space program. These LLCC are used to reduce the risk that an ascending launch vehicle will trigger a lightning strike that could cause the loss of the mission or vehicle. The results suggest that even with fields of tens of kV/m inside electrically active convective clouds, the fields external to these clouds decay to less than 3 kV/m within fifteen kilometers of cloud edge. Fields exceeding 3 kV/m were not found external to anvil and debris clouds.

  9. Sunmaster: An SEP cargo vehicle for Mars missions

    NASA Technical Reports Server (NTRS)

    Chiles, Aleasa; Fraser, Jennifer; Halsey, Andy; Honeycutt, David; Madden, Michael; Mcgough, Brian; Paulsen, David; Spear, Becky; Tarkenton, Lynne; Westley, Kevin

    1991-01-01

    Options are examined for an unmanned solar powered electric propulsion cargo vehicle for Mars missions. The 6 prime areas of study include: trajectory, propulsion system, power system, supporting structure, control system, and launch consideration. Optimization of the low thrust trajectory resulted in a total round trip mission time just under 4 years. The argon propelled electrostatic ion thruster system consists of seventeen 5 N engines and uses a specific impulse of 10,300 secs. At Earth, the system uses 13 engines to produce 60 N of thrust; at Mars, five engines are used, producing 25 N thrust. The thrust of the craft is varied between 60 N at Earth and 24 N at Mars due to reduced solar power available. Solar power is collected by a Fresnel lens concentrator system using a multistacked cell. This system provides 3.5 MW to the propulsion system after losses. Control and positioning to the craft are provided by a system of three double gimballed control moment gyros. Four shuttle 'C' launches will be used to transport the unassembled vehicle in modular units to low Earth orbit where it will be assembled using the Mobile Transporter of the Space Station Freedom.

  10. 29. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND EARTH BLAST BERM; VIEW TO SOUTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  11. 28. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND EARTH BLAST BERM; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  12. Potential advantages of solar electric propulsion for outer planet orbiters.

    NASA Technical Reports Server (NTRS)

    Sauer, C. G.; Atkins, K. L.

    1972-01-01

    Past studies of solar electric propulsion for outer planet orbiters have generally emphasized the advantages of flight time reduction and payload increases. However, several subtle advantages exist, which may become important in an environment of increasingly difficult requirements as ways to extend current technology are sought. These advantages accrue primarily because of the inherent capability, unique to electric propulsion, to efficiently shape a trajectory while enroute. Stressed in this paper are: the ability to meet orbital constraints due to assumed radiation belts, science flexibility in a dual launch program, increased numbers of observational passes, and the lengthening of launch periods. These are examined for years representative of relatively easy and difficult ballistic missions. The results indicate that an early investment in solar electric technology will provide a strong performance foundation for a long range outer planet exploration program which evolves from current spacecraft technology.

  13. Frito-Lay Electric Delivery Truck Testing | Transportation Research | NREL

    Science.gov Websites

    Frito-Lay Electric Delivery Truck Evaluation Frito-Lay Electric Delivery Truck Evaluation Photo of . The on-road portion of this 12-month evaluation, launched in 2013, focuses on collecting and analyzing . Publications The following documents provide more information about the study. Field Evaluation of Medium-Duty

  14. KSC-00pp1055

    NASA Image and Video Library

    2000-07-31

    A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At center left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the upper right hand corner of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch)

  15. KSC-00pp1053

    NASA Image and Video Library

    2000-07-31

    A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At the bottom left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. The truss is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the center of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch)

  16. Zenith 1 truss transfer ceremony

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A wide-angle view of the floor of the Space Station Processing Facility. The floor is filled with racks and hardware for processing and testing the various components of the International Space Station (ISS). At center left is the Zenith-1 (Z-1) Truss, the cornerstone truss of the Space Station. The Z-1 Truss was officially turned over to NASA from The Boeing Co. on July 31. It is scheduled to fly in Space Shuttle Discovery's payload pay on STS-92 targeted for launch Oct. 5, 2000. The Z-1 is considered a cornerstone truss because it carries critical components of the Station's attitude, communications, thermal and power control systems as well as four control moment gyros, high and low gain antenna systems, and two plasma contactor units used to disperse electrical charge build-ups. The Z-1 truss and a Pressurized Mating Adapter (PMA-3), also flying to the Station on the same mission, will be the first major U.S. elements flown to the ISS aboard the Shuttle since the launch of the Unity element in December 1998. The large module in the upper right hand corner of the floor is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch).

  17. KSC00pp1767

    NASA Image and Video Library

    2000-11-18

    KENNEDY SPACE CENTER, FLA. -- Working on the Orbiter Docking System of orbiter Atlantis are Mission Specialists Tom Jones (leaning over) and Robert Curbeam. They and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated

  18. KSC-00pp1767

    NASA Image and Video Library

    2000-11-18

    KENNEDY SPACE CENTER, FLA. -- Working on the Orbiter Docking System of orbiter Atlantis are Mission Specialists Tom Jones (leaning over) and Robert Curbeam. They and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated

  19. Evaluation of actuator energy storage and power sources for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Young, Fred M.

    1993-01-01

    The objective of this evaluation is to determine an optimum energy storage/power source combination for electrical actuation systems for existing (Solid Rocket Booster (SRB), Shuttle) and future (Advanced Launch System (ALS), Shuttle Derivative) vehicles. Characteristic of these applications is the requirement for high power pulses (50-200 kW) for short times (milliseconds to seconds), coupled with longer-term base or 'housekeeping' requirements (5-16 kW). Specific study parameters (e.g., weight, volume, etc.) as stated in the proposal and specified in the Statement of Work (SOW) are included.

  20. Smart LED lighting for major reductions in power and energy use for plant lighting in space

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie

    Launching or resupplying food, oxygen, and water into space for long-duration, crewed missions to distant destinations, such as Mars, is currently impossible. Bioregenerative life-support systems under development worldwide involving photoautotrophic organisms offer a solution to the food dilemma. However, using traditional Earth-based lighting methods, growth of food crops consumes copious energy, and since sunlight will not always be available at different space destinations, efficient electric lighting solutions are badly needed to reduce the Equivalent System Mass (ESM) of life-support infrastructure to be launched and transported to future space destinations with sustainable human habitats. The scope of the present study was to demonstrate that using LEDs coupled to plant detection, and optimizing spectral and irradiance parameters of LED light, the model crop lettuce (Lactuca sativa L. cv. Waldmann's Green) can be grown with significantly lower electrical energy for plant lighting than using traditional lighting sources. Initial experiments aimed at adapting and troubleshooting a first-generation "smart" plant-detection system coupled to LED arrays resulted in optimizing the detection process for plant position and size to the limits of its current design. Lettuce crops were grown hydroponically in a growth chamber, where temperature, relative humidity, and CO2 level are controlled. Optimal irradiance and red/blue ratio of LED lighting were determined for plant growth during both lag and exponential phases of crop growth. Under optimizing conditions, the efficiency of the automatic detection system was integrated with LED switching and compared to a system in which all LEDs were energized throughout a crop-production cycle. At the end of each cropping cycle, plant fresh and dry weights and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed. Preliminary results indicated that lettuce plants grown under optimizing conditions with red and blue LED lighting required 12 times less energy than with a traditional high-intensity discharge lighting system. This study paves the way for refinement of the smart lighting system and further, major reductions in ESM for space life-support systems and for ground-based controlled-environment agriculture. Project supported by NASA grant number NNX09AL99G.

  1. Power Management and Distribution System Developed for Thermionic Power Converters

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.

    1998-01-01

    A spacecraft solar, bimodal system combines propulsion and power generation into a single integrated system. An Integrated Solar Upper Stage (ISUS) provides orbital transfer capabilities, power generation for payloads, and onboard propulsion to the spacecraft. A key benefit of a bimodal system is a greater payload-to-spacecraft mass ratio resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. NASA has joined efforts with the Air Force Phillips Laboratory to develop enabling technologies for such a system. The NASA/Air Force bimodal concept uses solar concentrators to focus energy into an integrated power plant. This power plant consists of a graphite core that stores thermal energy within a cavity. An array of thermionic converters encircles the graphite cavity and provides electrical energy conversion functions. During the power generation phase of the bimodal system, the thermionic converters are exposed to the heated cavity and convert the thermal energy to electricity. Near-term efforts of the ISUS bimodal program are focused on a ground demonstration of key technologies in order to proceed to a full space flight test. Thermionic power generation is one key technology of the bimodal concept. Thermionic power converters impose unique operating requirements upon a power management and distribution (PMAD) system design. Single thermionic converters supply large currents at very low voltages. Operating voltages can vary over a range of up to 3 to 1 as a function of operating temperature. Most spacecraft loads require regulated 28-volts direct-current (Vdc) power. A combination of series-connected converters and powerprocessing boosters is required to deliver power to the spacecraft's payloads at this level.

  2. Combined release and radiation effects satellite (CRRES) - Spacecraft and mission

    NASA Astrophysics Data System (ADS)

    Johnson, M. H.; Kierein, John

    1992-08-01

    The CRRES mission is a joint NASA and U.S. Department of Defense undertaking to study the near-Earth space environment and the effects of the Earth's radiation environment on state-of-the-art microelectronic components. To perform these studies, CRRES was launched with a complex array of scientific payloads. These included 24 chemical canisters which were released during the first 13 months of the mission at various altitudes over ground observation sites and diagnostic facilities. The CRRES system was launched on July 25, 1990, from Cape Canaveral Air Force Station on an Atlas I expendable launch vehicle into a low-inclination geosynchronous transfer orbit. The specified mission duration was 1 year with a goal of 3 years. The satellite subsystems support the instrument payloads by providing them with electrical power, command and data handling, and thermal control. This review briefly describes the CRRES observatory and mission, and provides an introduction to the CRRES instrumentation technical notes contained within this issue.

  3. KSC-02pd0280

    NASA Image and Video Library

    2002-03-12

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis is hard down on the launch pad after its mid-day rollout from the Vehicle Assembly Building. Part of the Fixed Service Structure is at left. On either side of the tail of Atlantis are the tail service masts, which support the fluid, gas and electrical requirements of the orbiter's liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is scheduled for launch April 4 on mission STS-110, which will install the S0 truss, the framework that eventually will hold the power and cooling systems needed for future international research laboratories on the International Space Station. The Canadarm2 robotic arm will be used exclusively to hoist the 13-ton truss from the payload bay to the Station. The S0 truss will be the first major U.S. component launched to the Station since the addition of the Quest airlock in July 2001. The four spacewalks planned for the construction will all originate from the airlock. The mission will be Atlantis' 25th trip to space

  4. Enhanced Ionization Of Propellant Through Carbon Nanotube Growth On Angled Walls

    DTIC Science & Technology

    2017-06-01

    FEEP field emission electric propulsion MUF mass utilization factor NSTAR NASA Solar Technology Application Readiness SCATHA Spacecraft Charging at...Experiments This experiment, Spacecraft Charging at High Altitudes (SCATHA), was developed by the U.S. Air Force along with NASA [5]. A satellite was launched...propulsion system, gimbal mounted and deployed on DS1. Source: [6]. 3. DAWN A more recent use of XIPS is the DAWN Spacecraft from NASA . Orbiting the

  5. Automatic circuit interrupter

    NASA Technical Reports Server (NTRS)

    Dwinell, W. S.

    1979-01-01

    In technique, voice circuits connecting crew's cabin to launch station through umbilical connector disconnect automatically unused, or deadened portion of circuits immediately after vehicle is launched, eliminating possibility that unused wiring interferes with voice communications inside vehicle or need for manual cutoff switch and its associated wiring. Technique is applied to other types of electrical actuation circuits, also launch of mapped vehicles, such as balloons, submarines, test sleds, and test chambers-all requiring assistance of ground crew.

  6. KSC-03pd1000

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- A worker makes adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26. .

  7. KSC-03pd0995

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- Workers push the Galaxy Evolution Explorer (GALEX) spacecraft toward the Pegasus XL launch vehicle for a second mating. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  8. KSC-03pd0994

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. - The Pegasus XL launch vehicle is ready for a re-mate with the Galaxy Evolution Explorer (GALEX) spacecraft. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  9. KSC-03pd0998

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  10. KSC-03pd0996

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  11. KSC-03pd0997

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  12. KSC-03pd0999

    NASA Image and Video Library

    2003-04-07

    KENNEDY SPACE CENTER, FLA. - A worker makes adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26.

  13. KSC-03PD-1000

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. -- A worker makes adjustments on the Galaxy Evolution Explorer (GALEX) spacecraft during the second mating with the Pegasus XL launch vehicle. The March 26 launch was delayed to enable protective covers to be added to the Optical Wheel Assembly (OWA) on GALEX to avoid the possibility of a missing electrical cable fastener floating into and jamming the mechanism when GALEX is in orbit. Launch of GALEX is now scheduled for no earlier than April 26. .

  14. Analytical and computational investigations of a magnetohydrodynamics (MHD) energy-bypass system for supersonic gas turbine engines to enable hypersonic flight

    NASA Astrophysics Data System (ADS)

    Benyo, Theresa Louise

    Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the exhaust flow from the engine by converting electrical current back into flow enthalpy to increase thrust. Though there has been considerable research into the use of MHD generators to produce electricity for industrial power plants, interest in the technology for flight-weight aerospace applications has developed only recently. In this research, electromagnetic fields coupled with weakly ionzed gases to slow hypersonic airflow were investigated within the confines of an MHD energy-bypass system with the goal of showing that it is possible for an air-breathing engine to transition from takeoff to Mach 7 without carrying a rocket propulsion system along with it. The MHD energy-bypass system was modeled for use on a supersonic turbojet engine. The model included all components envisioned for an MHD energy-bypass system; two preionizers, an MHD generator, and an MHD accelerator. A thermodynamic cycle analysis of the hypothesized MHD energy-bypass system on an existing supersonic turbojet engine was completed. In addition, a detailed thermodynamic, plasmadynamic, and electromagnetic analysis was combined to offer a single, comprehensive model to describe more fully the proper plasma flows and magnetic fields required for successful operation of the MHD energy bypass system. The unique contribution of this research involved modeling the current density, temperature, velocity, pressure, electric field, Hall parameter, and electrical power throughout an annular MHD generator and an annular MHD accelerator taking into account an external magnetic field within a moving flow field, collisions of electrons with neutral particles in an ionized flow field, and collisions of ions with neutral particles in an ionized flow field (ion slip). In previous research, the ion slip term has not been considered. The MHD energy-bypass system model showed that it is possible to expand the operating range of a supersonic jet engine from a maximum of Mach 3.5 to a maximum of Mach 7. The inclusion of ion slip within the analysis further showed that it is possible to 'drive' this system with maximum magnetic fields of 3 T and with maximum conductivity levels of 11 mhos/m. These operating parameters better the previous findings of 5 T and 10 mhos/m, and reveal that taking into account collisions between ions and neutral particles within a weakly ionized flow provides a more realistic model with added benefits of lower magnetic fields and conductivity levels especially at the higher Mach numbers. (Abstract shortened by UMI.).

  15. Comet rendezvous mission design using Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.; Hastrup, R. C.; Yen, C.-W. L.; Wood, L. J.

    1979-01-01

    A dual comet (Halley Flyby/Tempel 2 Rendezvous) mission, which is planned to be the first to use the Solar Electric Propulsion System (SEPS), is to be launched in 1985. The purpose of this paper is to describe how the mission design attempts to maximize science return while working within spacecraft and other constraints. Science requirements and desires are outlined and specific instruments are considered. Emphasis is on the strategy for operations in the vicinity of Tempel 2, for which a representative profile is described. The mission is planned to extend about one year past initial rendezvous. Because of the large uncertainty in the comet environment the Tempel 2 operations strategy must be highly adaptive.

  16. 126. MOTOR CONTROL CENTER 1 (MCC1), FACING NORTH IN ROW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    126. MOTOR CONTROL CENTER 1 (MCC-1), FACING NORTH IN ROW OF ELECTRICAL CABINETS JUST SOUTH OF TRANSFORMER SUBSTATION CABINETS IN TRANSFORMER ROOM (112), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. SERT II thrusters - Still ticking after eleven years

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.

    1981-01-01

    The Space Electric Rocket Test II (SERT II) spacecraft was launched in 1970 with a primary objective of demonstrating long-term operation of a space electric thruster system. An overview is presented of all the SERT II testing conducted during the time from 1970 to 1981. Thruster testing and interaction results are considered, taking into account ion beam thrusting, distant neutralization, and the plasma beam thrust. In a discussion of durability testing, attention is given to the main cathodes, the neutralizer cathodes, the main keeper insulator, the H.V. grid insulators, the neutralizer propellant tanks, and the main propellant tanks. The most important result of the study is related to the confidence gained that mercury bombardment ion thruster systems can be built and operated in space on a routine basis with the same lifetime and performance as measured in ground testing.

  18. CETA truck and EVA restraint system

    NASA Technical Reports Server (NTRS)

    Beals, David C.; Merson, Wayne R.

    1991-01-01

    The Crew Equipment Translation Aid (CETA) experiment is an extravehicular activity (EVA) Space Transportation System (STS) based flight experiment which will explore various modes of transporting astronauts and light equipment for Space Station Freedom (SSF). The basic elements of CETA are: (1) two 25 foot long sections of monorail, which will be EVA assembled in the STS cargo bay to become a single 50 ft. rail called the track; (2) a wheeled baseplate called the truck which rolls along the track and can accept three cart concepts; and (3) the three carts which are designated manual, electric, and mechanical. The three carts serve as the astronaut restraint and locomotive interfaces with the track. The manual cart is powered by the astronaut grasping the track's handrail and pulling himself along. The electric cart is operated by an astronaut turning a generator which powers the electric motor and drives the cart. The mechanical cart is driven by a Bendix type transmission and is similar in concept to a man-propelled railroad cart. During launch and landing, the truck is attached to the deployable track by means of EVA removable restraint bolts and held in position by a system of retractable shims. These shims are positioned on the exterior of the rail for launch and landing and rotate out of the way for the duration of the experiment. The shims are held in position by strips of Velcro nap, which rub against the sides of the shim and exert a tailored force. The amount of force required to rotate the shims was a major EVA concern, along with operational repeatability and extreme temperature effects. The restraint system was tested in a thermal-vac and vibration environment and was shown to meet all of the initial design requirements. Using design inputs from the astronauts who will perform the EVA, CETA evolved through an iterative design process and represented a cooperative effort.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2006-12-09

    Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The primary mission objective was to deliver and install the P5 truss element. The P5 installation was conducted during the first of three space walks, and involved use of both the shuttle and station’s robotic arms. The remainder of the mission included a major reconfiguration and activation of the ISS electrical and thermal control systems, as well as delivery of Zvezda Service Module debris panels, which will increase ISS protection from potential impacts of micro-meteorites and orbital debris. Two major payloads developed at the Marshall Space Flight Center (MSFC) were also delivered to the Station. The Lab-On-A Chip Application Development Portable Test System (LOCAD-PTS) and the Water Delivery System, a vital component of the Station’s Oxygen Generation System.

  20. Launch Pad in a Box

    NASA Technical Reports Server (NTRS)

    Mantovani, J. G.; Tamasy, G. J.; Mueller, R. P.; Townsend, I. I.; Sampson, J. W.; Lane, M. A.

    2016-01-01

    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests. The thermal energy from the Morpheus rocket exhaust plume was only found to be sufficient to cause appreciable ablation of one of the four ablatives that were tested. The rocket exhaust plume did cause spalling of concrete during each descent and landing on a landing pad in the hazard field. The Extended Abstract ASE Earth and Space Conference April, 2016 - Orlando, FL concrete surface was laser scanned following each Morpheus landing, and the total volume of spalled concrete that eroded between the first and final landings of the Morpheus Project's test campaign was estimated. This paper will also describe a new deployable launch system (DLS) capability that is being developed at KSC and was publicly announced in May 2015 (KSC Partnerships, 2015). The DLS is a set of multi-user Ground Support Equipment that will be used to test and launch small class launch vehicles. The system is comprised of four main elements: the Launch Stand, the Flame Deflector, the Pad Apron and the KAMAG transporter. The system elements are designed to be deployed at launch or test sites within the KSC/CCAFS boundaries. The DLS is intended to be used together with the Fluid and Electrical System of the Universal Propellant Servicing Systems and Mobile Power Data and Communications Unit.

Top