Enhanced Learning through Design Problems--Teaching a Components-Based Course through Design
ERIC Educational Resources Information Center
Jensen, Bogi Bech; Hogberg, Stig; Jensen, Frida av Flotum; Mijatovic, Nenad
2012-01-01
This paper describes a teaching method used in an electrical machines course, where the students learn about electrical machines by designing them. The aim of the course is not to teach design, albeit this is a side product, but rather to teach the fundamentals and the function of electrical machines through design. The teaching method is…
NASA Astrophysics Data System (ADS)
Plastun, A. T.; Tikhonova, O. V.; Malygin, I. V.
2018-02-01
The paper presents methods of making a periodically varying different-pole magnetic field in low-power electrical machines. Authors consider classical designs of electrical machines and machines with ring windings in armature, structural features and calculated parameters of magnetic circuit for these machines.
Enhanced learning through design problems - teaching a components-based course through design
NASA Astrophysics Data System (ADS)
Jensen, Bogi Bech; Högberg, Stig; Fløtum Jensen, Frida av; Mijatovic, Nenad
2012-08-01
This paper describes a teaching method used in an electrical machines course, where the students learn about electrical machines by designing them. The aim of the course is not to teach design, albeit this is a side product, but rather to teach the fundamentals and the function of electrical machines through design. The teaching method is evaluated by a student questionnaire, designed to measure the quality and effectiveness of the teaching method. The results of the questionnaire conclusively show that this method labelled 'learning through design' is a very effective way of teaching a components-based course. This teaching method can easily be generalised and used in other courses.
Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2004-01-01
The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.
Variable cross-section windings for efficiency improvement of electric machines
NASA Astrophysics Data System (ADS)
Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.
2018-02-01
Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.
NASA Astrophysics Data System (ADS)
Husin, Zhafir Aizat; Sulaiman, Erwan; Khan, Faisal; Mazlan, Mohamed Mubin Aizat; Othman, Syed Muhammad Naufal Syed
2015-05-01
This paper presents a new structure of 12slot-14pole field excitation flux switching motor (FEFSM) as an alternative candidate of non-Permanent Magnet (PM) machine for HEV drives. Design study, performance analysis and optimization of field excitation flux switching machine with non-rare-earth magnet for hybrid electric vehicle drive applications is done. The stator of projected machine consists of iron core made of electromagnetic steels, armature coils and field excitation coils as the only field mmf source. The rotor is consisted of only stack of iron and hence, it is reliable and appropriate for high speed operation. The design target is a machine with the maximum torque, power and power density, more than 210Nm, 123kW and 3.5kW/kg, respectively, which competes with interior permanent magnet synchronous machine used in existing hybrid electric vehicle. Some design feasibility studies on FEFSM based on 2D-FEA and deterministic optimization method will be applied to design the proposed machine.
NASA Astrophysics Data System (ADS)
Jusoh, L. I.; Sulaiman, E.; Bahrim, F. S.; Kumar, R.
2017-08-01
Recent advancements have led to the development of flux switching machines (FSMs) with flux sources within the stators. The advantage of being a single-piece machine with a robust rotor structure makes FSM an excellent choice for speed applications. There are three categories of FSM, namely, the permanent magnet (PM) FSM, the field excitation (FE) FSM, and the hybrid excitation (HE) FSM. The PMFSM and the FEFSM have their respective PM and field excitation coil (FEC) as their key flux sources. Meanwhile, as the name suggests, the HEFSM has a combination of PM and FECs as the flux sources. The PMFSM is a simple and cheap machine, and it has the ability to control variable flux, which would be suitable for an electric bicycle. Thus, this paper will present a design comparison between an inner rotor and an outer rotor for a single-phase permanent magnet flux switching machine with 8S-10P, designed specifically for an electric bicycle. The performance of this machine was validated using the 2D- FEA. As conclusion, the outer-rotor has much higher torque approximately at 54.2% of an innerrotor PMFSM. From the comprehensive analysis of both designs it can be conclude that output performance is lower than the SRM and IPMSM design machine. But, it shows that the possibility to increase the design performance by using “deterministic optimization method”.
NASA Astrophysics Data System (ADS)
Nondahl, T. A.; Richter, E.
1980-09-01
A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.
Design and Performance Improvement of AC Machines Sharing a Common Stator
NASA Astrophysics Data System (ADS)
Guo, Lusu
With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be discussed in this dissertation. In the design stage, an optimization method based on orthogonal experimental design will be introduced. Besides, a universal current profiling technique is proposed to minimize the torque pulsation along with the stator copper losses in modular interior permanent magnet motors. Instead of sinusoidal current waveforms, this algorithm will calculate the proper currents which can minimize the torque pulsation. Finite element analysis and Matlab programing will be used to develop this optimal current profiling algorithm. Permanent magnet machines are becoming more attractive in some modern traction applications, such as traction motors and generators for an electrified vehicle. The operating speed or the load condition in these applications may be changing all the time. Compared to electric machines used to operate at a constant speed and constant load, better control performance is required. In this dissertation, a novel model reference adaptive control (MRAC) used on five-phase interior permanent magnet motor drives is presented. The primary controller is designed based on artificial neural network (ANN) to simulate the nonlinear characteristics of the system without knowledge of accurate motor model or parameters. The proposed motor drive decouples the torque and flux components of five-phase IPM motors by applying a multiple reference frame transformation. Therefore, the motor can be easily driven below the rated speed with the maximum torque per ampere (MTPA) operation or above the rated speed with the flux weakening operation. The ANN based primary controller consists of a radial basis function (RBF) network which is trained on-line to adapt system uncertainties. The complete IPM motor drive is simulated in Matlab/Simulink environment and implemented experimentally utilizing dSPACE DS1104 DSP board on a five-phase prototype IPM motor. The proposed model reference adaptive control method has been applied on the commons stator SynRM and IPM machine as well.
NASA Astrophysics Data System (ADS)
Gündoğdu, Tayfun; Kömürgöz, Güven
2012-08-01
Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted.
Design and market considerations for axial flux superconducting electric machine design
NASA Astrophysics Data System (ADS)
Ainslie, M. D.; George, A.; Shaw, R.; Dawson, L.; Winfield, A.; Steketee, M.; Stockley, S.
2014-05-01
In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.
Design of electric control system for automatic vegetable bundling machine
NASA Astrophysics Data System (ADS)
Bao, Yan
2017-06-01
A design can meet the requirements of automatic bale food structure and has the advantages of simple circuit, and the volume is easy to enhance the electric control system of machine carrying bunch of dishes and low cost. The bundle of vegetable machine should meet the sensor to detect and control, in order to meet the control requirements; binding force can be adjusted by the button to achieve; strapping speed also can be adjusted, by the keys to set; sensors and mechanical line connection, convenient operation; can be directly connected with the plug, the 220V power supply can be connected to a power source; if, can work, by the transmission signal sensor, MCU to control the motor, drive and control procedures for small motor. The working principle of LED control circuit and temperature control circuit is described. The design of electric control system of automatic dish machine.
Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor; ...
2018-05-08
Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cousineau, Justine Emily; Bennion, Kevin S.; Chieduko, Victor
Cooling of electric machines is a key to increasing power density and improving reliability. This paper focuses on the design of a machine using a cooling jacket wrapped around the stator. The thermal contact resistance (TCR) between the electric machine stator and cooling jacket is a significant factor in overall performance and is not well characterized. This interface is typically an interference fit subject to compressive pressure exceeding 5 MPa. An experimental investigation of this interface was carried out using a thermal transmittance setup using pressures between 5 and 10 MPa. Furthermore, the results were compared to currently available modelsmore » for contact resistance, and one model was adapted for prediction of TCR in future motor designs.« less
Special electrical machines: Sources and converters of energy
NASA Astrophysics Data System (ADS)
Bertinov, A. I.; But, D. A.; Miziurin, S. R.; Alievskii, B. L.; Sineva, N. V.
The principles underlying the operation of electromechanical and dynamic energy converters are discussed, along with those for the direct conversion of solar, thermal, and chemical energy into electrical energy. The theory for electromechanical and dynamic converters is formulated using a generalized model for the electromechanical conversion of energy. Particular attention is given to electrical machinery designed for special purposes. Features of superconductor electrical machines are discussed.
Development of an Eco-Friendly Electrical Discharge Machine (E-EDM) Using TRIZ Approach
NASA Astrophysics Data System (ADS)
Sreebalaji, V. S.; Saravanan, R.
Electrical Discharge Machine (EDM) is one of the non-traditional machining processes. EDM process is based on thermoelectric energy between the work and an electrode. A pulse discharge occurs in a small gap between the work piece and the electrode and removes the unwanted material from the parent metal through melting and vaporization. The electrode and the work piece must have an electrical conductivity in order to generate the spark. Dielectric fluid acts as a spark conductor, concentrating the energy to a very narrow region. There are various types of products can be produced and finished using EDM such as Moulds, Dies, Parts of Aerodynamics, Automotives and Surgical components. This research work reveals how an Eco friendly EDM (E-EDM) can be modeled to replace die electric fluid and introducing ozonised oxygen in to EDM to eliminate harmful effects generated while machining by using dielectric, to make pollution free machining environment through a new design of EEDM using TRIZ (a Russian acronym for Theory of Inventive Problem Solving) approach, since Eco friendly design is the need of the hour.
Superconductor Armature Winding for High Performance Electrical Machines
2016-12-05
Vol. 3, pp.489-507 [Kalsi1] S. S. Kalsi, ‘Superconducting Wind Turbine Generator Employing MgB2 Windings Both on Rotor and Stator’, IEEE Trans. on...Contract Number: N00014-‐14-‐1-‐0272 Contract Title: Superconductor armature winding for high performance electrical...an all-superconducting machine. Superconductor armature windings in electrical machines bring many design challenges that need to be addressed en
Condition monitoring of Electric Components
NASA Astrophysics Data System (ADS)
Zaman, Ishtiaque
A universal non-intrusive model of a flexible antenna array is presented in this paper to monitor and identify the failures in electric machines. This adjustable antenna is designed to serve the purpose of condition monitoring of a vast range of electrical components including Induction Motor (IM), Printed Circuit Board (PCB), Synchronous Reluctance Motor (SRM), Permanent Magnet Synchronous Machine (PMSM) etc. by capturing the low frequency magnetic field radiated around these machines. The basic design and specification of the proposed antenna array for low frequency components is portrayed first. The design of the antenna is adjustable to fit for an extensive variety of segments. Subsequent to distinguishing the design and specifications of the antenna, the ideal area of the most delicate stray field has been identified for healthy current streaming around the machineries. Following this, short circuit representing faulty situation has been introduced and compared with the healthy cases. Precision has been found recognizing the faults using this one generic model of Antenna and the results are presented for three different machines i.e. IM, SRM and PMSM. Finite element method has been used to design the antenna and detect the optimum location and faults in the machines. Finally, a 3D Printer is proposed to be employed to build the antenna as per the details tended to in this paper contingent upon the power segments.
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.
2017-01-01
The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.
10 CFR 431.383 - Enforcement process for electric motors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... general purpose electric motor of equivalent electrical design and enclosure rather than replacing the... equivalent electrical design and enclosure rather than machining and attaching an endshield. ... sample of up to 20 units will then be randomly selected from one or more subdivided groups within the...
Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion
NASA Technical Reports Server (NTRS)
Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.
1983-01-01
The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.
AC Loss Analysis of MgB2-Based Fully Superconducting Machines
NASA Astrophysics Data System (ADS)
Feddersen, M.; Haran, K. S.; Berg, F.
2017-12-01
Superconducting electric machines have shown potential for significant increase in power density, making them attractive for size and weight sensitive applications such as offshore wind generation, marine propulsion, and hybrid-electric aircraft propulsion. Superconductors exhibit no loss under dc conditions, though ac current and field produce considerable losses due to hysteresis, eddy currents, and coupling mechanisms. For this reason, many present machines are designed to be partially superconducting, meaning that the dc field components are superconducting while the ac armature coils are conventional conductors. Fully superconducting designs can provide increases in power density with significantly higher armature current; however, a good estimate of ac losses is required to determine the feasibility under the machines intended operating conditions. This paper aims to characterize the expected losses in a fully superconducting machine targeted towards aircraft, based on an actively-shielded, partially superconducting machine from prior work. Various factors are examined such as magnet strength, operating frequency, and machine load to produce a model for the loss in the superconducting components of the machine. This model is then used to optimize the design of the machine for minimal ac loss while maximizing power density. Important observations from the study are discussed.
NASA Astrophysics Data System (ADS)
Drid, S.; Nait-Said, M.-S.; Tadjine, M.; Makouf, A.
2008-06-01
There is an increasing interest in electric vehicles due to environmental concerns. Recent efforts are directed toward developing an improved propulsion system for electric vehicles applications with minimal power losses. This paper deals with the high efficient vector control for the reduction of copper losses of the doubly fed motor. Firstly, the feedback linearization control based on Lyapunov approach is employed to design the underlying controller achieving the double fluxes orientation. The fluxes controllers are designed independently of the speed. The speed controller is designed using the Lyapunov method especially employed to the unknown load torques. The global asymptotic stability of the overall system is theoretically proven. Secondly, a new Torque Copper Losses Factor is proposed to deal with the problem of the machine copper losses. Its main function is to optimize the torque in keeping the machine saturation at an acceptable level. This leads to a reduction in machine currents and therefore their accompanied copper losses guaranteeing improved machine efficiency. The simulation results in comparative presentation confirm largely the effectiveness of the proposed DFIM control with a very interesting energy saving contribution.
Electromechanical converters for electric vehicles
NASA Astrophysics Data System (ADS)
Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Rujanschi, N.
2018-01-01
The paper presents the analysis of various constructive schemes of synchronous electromechanical converters with permanent magnets fixed on the rotor and asynchronous with the short-circuit rotor. Various electrical stator winding schemes have also been compared, demonstrating the efficiency of copper utilization in toroidal windings. The electromagnetic calculus of the axial machine has particularities compared to the cylindrical machine, in the paper is presented the method of correlating the geometry of the cylindrical and axial machines. In this case the method and recommendations used in the design of such machines may be used.
Development of large, horizontal-axis wind turbines
NASA Technical Reports Server (NTRS)
Baldwin, D. H.; Kennard, J.
1985-01-01
A program to develop large, horizontal-axis wind turbines is discussed. The program is directed toward developing the technology for safe, reliable, environmentally acceptable large wind turbines that can generate a significant amount of electricity at costs competitive with those of conventional electricity-generating systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Several ongoing projects in large-wind-turbine development are directed toward meeting the technology requirements for utility applications. The machines based on first-generation technology (Mod-OA and Mod-1) successfully completed their planned periods of experimental operation in June, 1982. The second-generation machines (Mod-2) are in operation at selected utility sites. A third-generation machine (Mod-5) is under contract. Erection and initial operation of the Mod-5 in Hawaii should take place in 1986. Each successive generation of technology increased reliability and energy capture while reducing the cost of electricity. These advances are being made by gaining a better understanding of the system-design drivers, improving the analytical design tools, verifying design methods with operating field data, and incorporating new technology and innovative designs. Information is given on the results from the first- and second-generation machines (Mod-OA, - 1, and -2), the status of the Department of Interior, and the status of the third-generation wind turbine (Mod-5).
CFD Aided Design and Production of Hydraulic Turbines
NASA Astrophysics Data System (ADS)
Kaplan, Alper; Cetinturk, Huseyin; Demirel, Gizem; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team
2014-11-01
Hydraulic turbines are turbo machines which produce electricity from hydraulic energy. Francis type turbines are the most common one in use today. The design of these turbines requires high engineering effort since each turbine is tailor made due to different head and discharge. Therefore each component of the turbine is designed specifically. During the last decades, Computational Fluid Dynamics (CFD) has become very useful tool to predict hydraulic machinery performance and save time and money for designers. This paper describes a design methodology to optimize a Francis turbine by integrating theoretical and experimental fundamentals of hydraulic machines and commercial CFD codes. Specific turbines are designed and manufactured with the help of a collaborative CFD/CAD/CAM methodology based on computational fluid dynamics and five-axis machining for hydraulic electric power plants. The details are presented in this study. This study is financially supported by Turkish Ministry of Development.
40 CFR 60.180 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Lead Smelters § 60.180 Applicability and designation of affected facility. (a) The...: sintering machine, sintering machine discharge end, blast furnace, dross reverberatory furnace, electric...
40 CFR 60.180 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Lead Smelters § 60.180 Applicability and designation of affected facility. (a) The...: sintering machine, sintering machine discharge end, blast furnace, dross reverberatory furnace, electric...
CAD-CAE in Electrical Machines and Drives Teaching.
ERIC Educational Resources Information Center
Belmans, R.; Geysen, W.
1988-01-01
Describes the use of computer-aided design (CAD) techniques in teaching the design of electrical motors. Approaches described include three technical viewpoints, such as electromagnetics, thermal, and mechanical aspects. Provides three diagrams, a table, and conclusions. (YP)
NASA Astrophysics Data System (ADS)
Lingadurai, K.; Nagasivamuni, B.; Muthu Kamatchi, M.; Palavesam, J.
2012-06-01
Wire electrical discharge machining (WEDM) is a specialized thermal machining process capable of accurately machining parts of hard materials with complex shapes. Parts having sharp edges that pose difficulties to be machined by the main stream machining processes can be easily machined by WEDM process. Design of Experiments approach (DOE) has been reported in this work for stainless steel AISI grade-304 which is used in cryogenic vessels, evaporators, hospital surgical equipment, marine equipment, fasteners, nuclear vessels, feed water tubing, valves, refrigeration equipment, etc., is machined by WEDM with brass wire electrode. The DOE method is used to formulate the experimental layout, to analyze the effect of each parameter on the machining characteristics, and to predict the optimal choice for each WEDM parameter such as voltage, pulse ON, pulse OFF and wire feed. It is found that these parameters have a significant influence on machining characteristic such as metal removal rate (MRR), kerf width and surface roughness (SR). The analysis of the DOE reveals that, in general the pulse ON time significantly affects the kerf width and the wire feed rate affects SR, while, the input voltage mainly affects the MRR.
The NASA Lewis large wind turbine program
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Baldwin, D. H.
1981-01-01
The program is directed toward development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generation systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Advances are made by gaining a better understanding of the system design drivers, improvements in the analytical design tools, verification of design methods with operating field data, and the incorporation of new technology and innovative designs. An overview of the program activities is presented and includes results from the first and second generation field machines (Mod-OA, -1, and -2), the design phase of the third generation wind turbine (Mod-5) and the advanced technology projects. Also included is the status of the Department of Interior WTS-4 machine.
NASA Astrophysics Data System (ADS)
Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.
2017-09-01
One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.
Self-Centering Reciprocating-Permanent-Magnet Machine
NASA Technical Reports Server (NTRS)
Bhate, Suresh; Vitale, Nick
1988-01-01
New design for monocoil reciprocating-permanent-magnet electric machine provides self-centering force. Linear permanent-magnet electrical motor includes outer stator, inner stator, and permanent-magnet plunger oscillateing axially between extreme left and right positions. Magnets arranged to produce centering force and allows use of only one coil of arbitrary axial length. Axial length of coil chosen to provide required efficiency and power output.
Investigations of Effect of Rotary EDM Electrode on Machining Performance of Al6061 Alloy
NASA Astrophysics Data System (ADS)
Robinson Smart, D. S.; Jenish Smart, Joses; Periasamy, C.; Ratna Kumar, P. S. Samuel
2018-04-01
Electric Discharge Machining is an essential process which is being used for machining desired shape using electrical discharges which creates sparks. There will be electrodes subjected to electric voltage and which are separated by a dielectric liquid. Removing of material will be due to the continuous and rapid current discharges between two electrodes.. The spark is very carefully controlled and localized so that it only affects the surface of the material. Usually in order to prevent the defects which are arising due to the conventional machining, the Electric Discharge Machining (EDM) machining is preferred. Also intricate and complicated shapes can be machined effectively by use of Electric Discharge Machining (EDM). The EDM process usually does not affect the heat treat below the surface. This research work focus on the design and fabrication of rotary EDM tool for machining Al6061alloy and investigation of effect of rotary tool on surface finish, material removal rate and tool wear rate. Also the effect of machining parameters of EDM such as pulse on & off time, current on material Removal Rate (MRR), Surface Roughness (SR) and Electrode wear rate (EWR) have studied. Al6061 alloy can be used for marine and offshore applications by reinforcing some other elements. The investigations have revealed that MRR (material removal rate), surface roughness (Ra) have been improved with the reduction in the tool wear rate (TWR) when the tool is rotating instead of stationary. It was clear that as rotary speed of the tool is increasing the material removal rate is increasing with the reduction of surface finish and tool wear rate.
Adaptive displays and controllers using alternative feedback.
Repperger, D W
2004-12-01
Investigations on the design of haptic (force reflecting joystick or force display) controllers were conducted by viewing the display of force information within the context of several different paradigms. First, using analogies from electrical and mechanical systems, certain schemes of the haptic interface were hypothesized which may improve the human-machine interaction with respect to various criteria. A discussion is given on how this interaction benefits the electrical and mechanical system. To generalize this concept to the design of human-machine interfaces, three studies with haptic mechanisms were then synthesized and analyzed.
Efficient forced vibration reanalysis method for rotating electric machines
NASA Astrophysics Data System (ADS)
Saito, Akira; Suzuki, Hiromitsu; Kuroishi, Masakatsu; Nakai, Hideo
2015-01-01
Rotating electric machines are subject to forced vibration by magnetic force excitation with wide-band frequency spectrum that are dependent on the operating conditions. Therefore, when designing the electric machines, it is inevitable to compute the vibration response of the machines at various operating conditions efficiently and accurately. This paper presents an efficient frequency-domain vibration analysis method for the electric machines. The method enables the efficient re-analysis of the vibration response of electric machines at various operating conditions without the necessity to re-compute the harmonic response by finite element analyses. Theoretical background of the proposed method is provided, which is based on the modal reduction of the magnetic force excitation by a set of amplitude-modulated standing-waves. The method is applied to the forced response vibration of the interior permanent magnet motor at a fixed operating condition. The results computed by the proposed method agree very well with those computed by the conventional harmonic response analysis by the FEA. The proposed method is then applied to the spin-up test condition to demonstrate its applicability to various operating conditions. It is observed that the proposed method can successfully be applied to the spin-up test conditions, and the measured dominant frequency peaks in the frequency response can be well captured by the proposed approach.
A new wind energy conversion system
NASA Technical Reports Server (NTRS)
Smetana, F. O.
1975-01-01
It is presupposed that vertical axis wind energy machines will be superior to horizontal axis machines on a power output/cost basis and the design of a new wind energy machine is presented. The design employs conical cones with sharp lips and smooth surfaces to promote maximum drag and minimize skin friction. The cones are mounted on a vertical axis in such a way as to assist torque development. Storing wind energy as compressed air is thought to be optimal and reasons are: (1) the efficiency of compression is fairly high compared to the conversion of mechanical energy to electrical energy in storage batteries; (2) the release of stored energy through an air motor has high efficiency; and (3) design, construction, and maintenance of an all-mechanical system is usually simpler than for a mechanical to electrical conversion system.
30 CFR 18.48 - Circuit-interrupting devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... two-pole switch of the “dead-man-control” type that must be held closed by hand and will open when hand pressure is released. (e) A machine designed to operate from both trolley wire and portable cable.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is...
30 CFR 18.48 - Circuit-interrupting devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... two-pole switch of the “dead-man-control” type that must be held closed by hand and will open when hand pressure is released. (e) A machine designed to operate from both trolley wire and portable cable.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is...
Electric vehicle traction motors - The development of an advanced motor concept
NASA Technical Reports Server (NTRS)
Campbell, P.
1980-01-01
An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.
NASA Astrophysics Data System (ADS)
Toporkov, D. M.; Vialcev, G. B.
2017-10-01
The implementation of parallel branches is a commonly used manufacturing method of the realizing of fractional slot concentrated windings in electrical machines. If the rotor eccentricity is enabled in a machine with parallel branches, the equalizing currents can arise. The simulation approach of the equalizing currents in parallel branches of an electrical machine winding based on magnetic field calculation by using Finite Elements Method is discussed in the paper. The high accuracy of the model is provided by the dynamic improvement of the inductances in the differential equation system describing a machine. The pre-computed table flux linkage functions are used for that. The functions are the dependences of the flux linkage of parallel branches on the branches currents and rotor position angle. The functions permit to calculate self-inductances and mutual inductances by partial derivative. The calculated results obtained for the electric machine specimen are presented. The results received show that the adverse combination of design solutions and the rotor eccentricity leads to a high value of the equalizing currents and windings heating. Additional torque ripples also arise. The additional ripples harmonic content is not similar to the cogging torque or ripples caused by the rotor eccentricity.
Start-up and control method and apparatus for resonant free piston Stirling engine
Walsh, Michael M.
1984-01-01
A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.
30 CFR 18.97 - Inspection of machines; minimum requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... all electrical components for materials, workmanship, design, and construction; (2) Examination of all components of the machine which have been approved or certified under Bureau of Mines Schedule 2D, 2E, 2F, or...
30 CFR 18.97 - Inspection of machines; minimum requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... all electrical components for materials, workmanship, design, and construction; (2) Examination of all components of the machine which have been approved or certified under Bureau of Mines Schedule 2D, 2E, 2F, or...
30 CFR 18.97 - Inspection of machines; minimum requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... all electrical components for materials, workmanship, design, and construction; (2) Examination of all components of the machine which have been approved or certified under Bureau of Mines Schedule 2D, 2E, 2F, or...
Westinghouse programs in pulsed homopolar power supplies
NASA Technical Reports Server (NTRS)
Litz, D. C.; Mullan, E.
1984-01-01
This document details Westinghouse's ongoing study of homopolar machines since 1929 with the major effort occurring in the early 1970's to the present. The effort has enabled Westinghouse to develop expertise in the technology required for the design, fabrication and testing of such machines. This includes electrical design, electromagnetic analysis, current collection, mechanical design, advanced cooling, stress analysis, transient rotor performance, bearing analysis and seal technology. Westinghouse is using this capability to explore the use of homopolar machines as pulsed power supplies for future systems in both military and commercial applications.
NASA Astrophysics Data System (ADS)
Xu, Xueping; Han, Qinkai; Chu, Fulei
2018-03-01
The electromagnetic vibration of electrical machines with an eccentric rotor has been extensively investigated. However, magnetic saturation was often neglected. Moreover, the rub impact between the rotor and stator is inevitable when the amplitude of the rotor vibration exceeds the air-gap. This paper aims to propose a general electromagnetic excitation model for electrical machines. First, a general model which takes the magnetic saturation and rub impact into consideration is proposed and validated by the finite element method and reference. The dynamic equations of a Jeffcott rotor system with electromagnetic excitation and mass imbalance are presented. Then, the effects of pole-pair number and rubbing parameters on vibration amplitude are studied and approaches restraining the amplitude are put forward. Finally, the influences of mass eccentricity, resultant magnetomotive force (MMF), stiffness coefficient, damping coefficient, contact stiffness and friction coefficient on the stability of the rotor system are investigated through the Floquet theory, respectively. The amplitude jumping phenomenon is observed in a synchronous generator for different pole-pair numbers. The changes of design parameters can alter the stability states of the rotor system and the range of parameter values forms the zone of stability, which lays helpful suggestions for the design and application of the electrical machines.
Homopolar machine for reversible energy storage and transfer systems
Stillwagon, Roy E.
1978-01-01
A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.
Homopolar machine for reversible energy storage and transfer systems
Stillwagon, Roy E.
1981-01-01
A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.
Code of Federal Regulations, 2014 CFR
2014-07-01
... constitute an integral part of a circuit for transmitting electrical energy. (d) Cable reels for shuttle cars... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.45 Cable reels. (a) A self-propelled machine, that receives electrical energy through a portable...
Code of Federal Regulations, 2013 CFR
2013-07-01
... constitute an integral part of a circuit for transmitting electrical energy. (d) Cable reels for shuttle cars... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.45 Cable reels. (a) A self-propelled machine, that receives electrical energy through a portable...
Code of Federal Regulations, 2012 CFR
2012-07-01
... constitute an integral part of a circuit for transmitting electrical energy. (d) Cable reels for shuttle cars... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.45 Cable reels. (a) A self-propelled machine, that receives electrical energy through a portable...
Code of Federal Regulations, 2010 CFR
2010-07-01
... constitute an integral part of a circuit for transmitting electrical energy. (d) Cable reels for shuttle cars... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.45 Cable reels. (a) A self-propelled machine, that receives electrical energy through a portable...
Code of Federal Regulations, 2011 CFR
2011-07-01
... constitute an integral part of a circuit for transmitting electrical energy. (d) Cable reels for shuttle cars... MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design Requirements § 18.45 Cable reels. (a) A self-propelled machine, that receives electrical energy through a portable...
Electronically commutated dc motors for electric vehicles
NASA Technical Reports Server (NTRS)
Maslowski, E. A.
1981-01-01
A motor development program to explore the feasibility of electronically commutated dc motors (also known as brushless) for electric cars is described. Two different design concepts and a number of design variations based on these concepts are discussed. One design concept is based on a permanent magnet, medium speed, machine rated at 7000 to 9000 rpm, and powered via a transistor inverter power conditioner. The other concept is based on a permanent magnet, high speed, machine rated at 22,000 to 26,000 rpm, and powered via a thyristor inverter power conditioner. Test results are presented for a medium speed motor and a high speed motor each of which have been fabricated using samarium cobalt permanent magnet material.
NASA Astrophysics Data System (ADS)
Haikal Ahmad, M. A.; Zulafif Rahim, M.; Fauzi, M. F. Mohd; Abdullah, Aslam; Omar, Z.; Ding, Songlin; Ismail, A. E.; Rasidi Ibrahim, M.
2018-01-01
Polycrystalline diamond (PCD) is regarded as among the hardest material in the world. Electrical Discharge Machining (EDM) typically used to machine this material because of its non-contact process nature. This investigation was purposely done to compare the EDM performances of PCD when using normal electrode of copper (Cu) and newly proposed graphitization catalyst electrode of copper nickel (CuNi). Two level full factorial design of experiment with 4 center points technique was used to study the influence of main and interaction effects of the machining parameter namely; pulse-on, pulse-off, sparking current, and electrode materials (categorical factor). The paper shows interesting discovery in which the newly proposed electrode presented positive impact to the machining performance. With the same machining parameters of finishing, CuNi delivered more than 100% better in Ra and MRR than ordinary Cu electrode.
Machinability of nickel based alloys using electrical discharge machining process
NASA Astrophysics Data System (ADS)
Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.
2018-04-01
The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.
NASA Astrophysics Data System (ADS)
Sizov, Gennadi Y.
In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.
Electrically heated particulate filter embedded heater design
Gonze, Eugene V.; Chapman, Mark R.
2014-07-01
An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Cochran, R. P.
1980-01-01
The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.
Energy: Machines, Science (Experimental): 5311.03.
ERIC Educational Resources Information Center
Castaldi, June P.
This unit of instruction was designed as an introductory course in energy involving six simple machines, electricity, magnetism, and motion. The booklet lists the relevant state-adopted texts and states the performance objectives for the unit. It provides an outline of the course content and suggests experiments, demonstrations, field trips, and…
Analytical calculation of vibrations of electromagnetic origin in electrical machines
NASA Astrophysics Data System (ADS)
McCloskey, Alex; Arrasate, Xabier; Hernández, Xabier; Gómez, Iratxo; Almandoz, Gaizka
2018-01-01
Electrical motors are widely used and are often required to satisfy comfort specifications. Thus, vibration response estimations are necessary to reach optimum machine designs. This work presents an improved analytical model to calculate vibration response of an electrical machine. The stator and windings are modelled as a double circular cylindrical shell. As the stator is a laminated structure, orthotropic properties are applied to it. The values of those material properties are calculated according to the characteristics of the motor and the known material properties taken from previous works. Therefore, the model proposed takes into account the axial direction, so that length is considered, and also the contribution of windings, which differs from one machine to another. These aspects make the model valuable for a wide range of electrical motor types. In order to validate the analytical calculation, natural frequencies are calculated and compared to those obtained by Finite Element Method (FEM), giving relative errors below 10% for several circumferential and axial mode order combinations. It is also validated the analytical vibration calculation with acceleration measurements in a real machine. The comparison shows good agreement for the proposed model, being the most important frequency components in the same magnitude order. A simplified two dimensional model is also applied and the results obtained are not so satisfactory.
The Mod-2 wind turbine development project
NASA Technical Reports Server (NTRS)
Linscott, B. S.; Dennett, J. T.; Gordon, L. H.
1981-01-01
A major phase of the Federal Wind Energy Program, the Mod-2 wind turbine, a second-generation machine developed by the Boeing Engineering and Construction Co. for the U.S. Department of Energy and the Lewis Research Center of the National Aeronautics and Space Administration, is described. The Mod-2 is a large (2.5-MW power rating) horizontal-axis wind turbine designed for the generation of electrical power on utility networks. Three machines were built and are located in a cluster at Goodnoe Hills, Washington. All technical aspects of the project are described: design approach, significant innovation features, the mechanical system, the electrical power system, the control system, and the safety system.
Performance analysis of a new radial-axial flux machine with SMC cores and ferrite magnets
NASA Astrophysics Data System (ADS)
Liu, Chengcheng; Wang, Youhua; Lei, Gang; Guo, Youguang; Zhu, Jianguo
2017-05-01
Soft magnetic composite (SMC) is a popular material in designing of new 3D flux electrical machines nowadays for it has the merits of isotropic magnetic characteristic, low eddy current loss and high design flexibility over the electric steel. The axial flux machine (AFM) with the extended stator tooth tip both in the radial and circumferential direction is a good example, which has been investigated in the last years. Based on the 3D flux AFM and radial flux machine, this paper proposes a new radial-axial flux machine (RAFM) with SMC cores and ferrite magnets, which has very high torque density though the low cost low magnetic energy ferrite magnet is utilized. Moreover, the cost of RAFM is quite low since the manufacturing cost can be reduced by using the SMC cores and the material cost will be decreased due to the adoption of the ferrite magnets. The 3D finite element method (FEM) is used to calculate the magnetic flux density distribution and electromagnetic parameters. For the core loss calculation, the rotational core loss computation method is used based on the experiment results from previous 3D magnetic tester.
NASA Astrophysics Data System (ADS)
Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.
2016-03-01
The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard
The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewablemore » energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.« less
Research in the Automation of Teaching. Technical Report.
ERIC Educational Resources Information Center
Zuckerman, Carl B.; And Others
An experiment was designed to compare the value of the Skinner Teaching Machine with more traditional teaching methods and to compare various means of presenting material via the teaching machine. Material from the United States Navy Basic Electricity course was programed into three series of items: one completion, one multiple choice, and one…
Basic Mathematics Machine Calculator Course.
ERIC Educational Resources Information Center
Windsor Public Schools, CT.
This series of four text-workbooks was designed for tenth grade mathematics students who have exhibited lack of problem-solving skills. Electric desk calculators are to be used with the text. In the first five chapters of the series, students learn how to use the machine while reviewing basic operations with whole numbers, decimals, fractions, and…
Delivering key signals to the machine: seeking the electric signal that muscles emanate
NASA Astrophysics Data System (ADS)
Bani Hashim, A. Y.; Maslan, M. N.; Izamshah, R.; Mohamad, I. S.
2014-11-01
Due to the limitation of electric power generation in the human body, present human-machine interfaces have not been successful because of the nature of standard electronics circuit designs, which do not consider the specifications of signals that resulted from the skin. In general, the outcomes and applications of human-machine interfaces are limited to custom-designed subsystems, such as neuroprosthesis. We seek to model the bio dynamical of sub skin into equivalent mathematical definitions, descriptions, and theorems. Within the human skin, there are networks of nerves that permit the skin to function as a multi dimension transducer. We investigate the nature of structural skin. Apart from multiple networks of nerves, there are other segments within the skin such as minute muscles. We identify the segments that are active when there is an electromyography activity. When the nervous system is firing signals, the muscle is being stimulated. We evaluate the phenomena of biodynamic of the muscles that is concerned with the electromyography activity of the nervous system. In effect, we design a relationship between the human somatosensory and synthetic systems sensory as the union of a complete set of the new domain of the functional system. This classifies electromyogram waveforms linked to intent thought of an operator. The system will become the basis for delivering key signals to machine such that the machine is under operator's intent, hence slavery.
Mechanical design of walking machines.
Arikawa, Keisuke; Hirose, Shigeo
2007-01-15
The performance of existing actuators, such as electric motors, is very limited, be it power-weight ratio or energy efficiency. In this paper, we discuss the method to design a practical walking machine under this severe constraint with focus on two concepts, the gravitationally decoupled actuation (GDA) and the coupled drive. The GDA decouples the driving system against the gravitational field to suppress generation of negative power and improve energy efficiency. On the other hand, the coupled drive couples the driving system to distribute the output power equally among actuators and maximize the utilization of installed actuator power. First, we depict the GDA and coupled drive in detail. Then, we present actual machines, TITAN-III and VIII, quadruped walking machines designed on the basis of the GDA, and NINJA-I and II, quadruped wall walking machines designed on the basis of the coupled drive. Finally, we discuss walking machines that travel on three-dimensional terrain (3D terrain), which includes the ground, walls and ceiling. Then, we demonstrate with computer simulation that we can selectively leverage GDA and coupled drive by walking posture control.
Thermal Management and Reliability of Automotive Power Electronics and Electric Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, Sreekant V; Bennion, Kevin S; Cousineau, Justine E
Low-cost, high-performance thermal management technologies are helping meet aggressive power density, specific power, cost, and reliability targets for power electronics and electric machines. The National Renewable Energy Laboratory is working closely with numerous industry and research partners to help influence development of components that meet aggressive performance and cost targets through development and characterization of cooling technologies, and thermal characterization and improvements of passive stack materials and interfaces. Thermomechanical reliability and lifetime estimation models are important enablers for industry in cost-and time-effective design.
NASA Astrophysics Data System (ADS)
Khanna, Rajesh; Kumar, Anish; Garg, Mohinder Pal; Singh, Ajit; Sharma, Neeraj
2015-12-01
Electric discharge drill machine (EDDM) is a spark erosion process to produce micro-holes in conductive materials. This process is widely used in aerospace, medical, dental and automobile industries. As for the performance evaluation of the electric discharge drilling machine, it is very necessary to study the process parameters of machine tool. In this research paper, a brass rod 2 mm diameter was selected as a tool electrode. The experiments generate output responses such as tool wear rate (TWR). The best parameters such as pulse on-time, pulse off-time and water pressure were studied for best machining characteristics. This investigation presents the use of Taguchi approach for better TWR in drilling of Al-7075. A plan of experiments, based on L27 Taguchi design method, was selected for drilling of material. Analysis of variance (ANOVA) shows the percentage contribution of the control factor in the machining of Al-7075 in EDDM. The optimal combination levels and the significant drilling parameters on TWR were obtained. The optimization results showed that the combination of maximum pulse on-time and minimum pulse off-time gives maximum MRR.
NASA Astrophysics Data System (ADS)
Gohil, Vikas; Puri, YM
2018-04-01
Turning by electrical discharge machining (EDM) is an emerging area of research. Generally, wire-EDM is used in EDM turning because it is not concerned with electrode tooling cost. In EDM turning wire electrode leaves cusps on the machined surface because of its small diameters and wire breakage which greatly affect the surface finish of the machined part. Moreover, one of the limitations of the process is low machining speed as compared to constituent processes. In this study, conventional EDM was employed for turning purpose in order to generate free-form cylindrical geometries on difficult-to-cut materials. Therefore, a specially designed turning spindle was mounted on a conventional die-sinking EDM machine to rotate the work piece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating work piece; thus, a mirror image of the tool is formed on the circumference of the work piece. In this way, an axisymmetric work piece can be made with small tools. The developed process is termed as the electrical discharge turning (EDT). In the experiments, the effect of machining parameters, such as pulse-on time, peak current, gap voltage and tool thickness on the MRR, and TWR were investigated and practical machining was carried out by turning of SS-304 stainless steel work piece.
The Glostavent: evolution of an anaesthetic machine for developing countries.
Beringer, R M; Eltringham, R J
2008-05-01
The sophisticated anaesthetic machines designed for use in modem hospitals are not appropriate for many parts of the developing world, as they are reliant on regular servicing by skilled engineers and an uninterrupted supply of electricity and compressed gases, which are not always available. The Glostavent has been designed specifically to meet the challenges faced by anaesthetists working in these countries. It is robust, simple to use, economical, easy to service and will continue to run during an interruption of the supply of oxygen or electricity. Feedback from widespread use throughout the developing world over the last 10 years has led to significant improvements to the original design. This article describes the basic components of the original version and the modifications which have been introduced as a result of practical experience in the developing world.
30 CFR 18.48 - Circuit-interrupting devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is... motor in the event the belt is stopped, or abnormally slowed down. Note: Short transfer-type conveyors...
Importance of polarity change in the electrical discharge machining
NASA Astrophysics Data System (ADS)
Schulze, H.-P.
2017-10-01
The polarity change in the electrical discharge machining is still a problem and is often performed completely unmotivated or randomly. The polarity must be designated primarily, i.e. the anodic part must be clearly assigned to the tool or the workpiece. Normally, the polarity of the workpiece electrode is named. In paper, will be shown which determine fundamental causes the structural behavior of the cathode and anode, and when it makes sense to change the polarity. The polarity change is primarily dependent on the materials that are used as cathode and anode. This distinction must be made if there are pure metals or complex materials. Secondary of the polarity change is also affected by the process energy source (PES) and the supply line. The polarity change is mostly influenced by the fact that the removal is to be maximized on the workpiece while the tool is minimal removal (wear) occur. A second factor that makes a polarity change needed is the use of electrical discharge in combination with other machining methods, such as electrochemical machining (ECM).
A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle
NASA Astrophysics Data System (ADS)
Wang, Aimeng; Guo, Jiayu
2017-12-01
A novel hybrid genetic algorithm (HGA) is proposed to optimize the rotor structure of an IPM machine which is used in EV application. The finite element (FE) simulation results of the HGA design is compared with the genetic algorithm (GA) design and those before optimized. It is shown that the performance of the IPMSM is effectively improved by employing the GA and HGA, especially by HGA. Moreover, higher flux-weakening capability and less magnet usage are also obtained. Therefore, the validity of HGA method in IPMSM optimization design is verified.
ERIC Educational Resources Information Center
Kafafian, Haig
Teaching instructions, lesson plans, and exercises are provided for severely physically and/or neurologically handicapped persons learning to use the Cybertype electric writing machine with a tongue-body keyboard. The keyboard, which has eight double-throw toggle switches and a three-position state-selector switch, is designed to be used by…
Electrical machines and assemblies including a yokeless stator with modular lamination stacks
Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose
2010-04-06
An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.
Design improvement of permanent magnet flux switching motor with dual rotor structure
NASA Astrophysics Data System (ADS)
Soomro, H. A.; Sulaiman, E.; Kumar, R.; Rahim, N. S.
2017-08-01
This paper presents design enhancement to reduce permanent magnet (PM) volume for 7S-6P-7S dual rotor permanent magnet flux-switching machines (DRPMFSM) for electric vehicle application. In recent years, Permanent magnet flux switching (PMFS) motor and a new member of brushless permanent magnet machine are prominently used for the electric vehicle. Though, more volume of Rare-Earth Permanent Magnet (REPM) is used to increase the cost and weight of these motors. Thus, to overcome the issue, new configuration of 7S-6P- 7S dual rotor permanent magnet flux-switching machine (DRPMFSM) has been proposed and investigated in this paper. Initially proposed 7S-6P-7S DRPMFSM has been optimized using “deterministic optimization” to reduce the volume of PM and to attain optimum performances. In addition, the performances of initial and optimized DRPMFSM have been compared such that back-emf, cogging torque, average torque, torque and power vs speed performances, losses and efficiency have been analysed by 2D-finite element analysis (FEA) using the JMAG- Designer software ver. 14.1. Consequently, the final design 7S-6P-7S DRPMFSM has achieved the efficiency of 83.91% at reduced PM volume than initial design to confirm the better efficient motor for HEVs applications.
A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems
NASA Technical Reports Server (NTRS)
Dietz, Anthony
2014-01-01
Hybrid turboelectric aircraft-with gas turbines driving electric generators connected to electric propulsion motors-have the potential to transform aircraft design. Decoupling power generation from propulsion enables innovative aircraft designs, such as blended-wing bodies, with distributed propulsion. These hybrid turboelectric aircraft have the potential to significantly reduce emissions, decrease fuel burn, and reduce noise, all of which are required to make air transportation growth projections sustainable. The power density requirements for these electric machines can only be achieved with superconductors, which in turn require lightweight, high-capacity cryocoolers.
NASA Astrophysics Data System (ADS)
Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal
2015-05-01
In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.
Machine & electrical double control air dryer for vehicle air braking system
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei
2017-09-01
As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.
French wind generator systems. [as auxiliary power sources for electrical networks
NASA Technical Reports Server (NTRS)
Noel, J. M.
1973-01-01
The experimental design of a wind driven generator with a rated power of 800 kilovolt amperes and capable of being connected to the main electrical network is reported. The rotor is a three bladed propeller; each blade is twisted but the fixed pitch is adjustable. The asynchronous 800-kilovolt ampere generator is driven by the propeller through a gearbox. A dissipating resistor regulates the machine under no-load conditions. The first propeller on the machine lasted 18 months; replacement of the rigid propeller with a flexible structure resulted in breakdown due to flutter effects.
Motor-Reducer Sizing through a MATLAB-Based Graphical Technique
ERIC Educational Resources Information Center
Giberti, H.; Cinquemani, S.
2012-01-01
The design of the drive system for an automatic machine and its correct sizing is a very important competence for an electrical or mechatronic engineer. This requires knowledge that crosses the fields of electrical engineering, electronics and mechanics, as well as the skill to choose commercial components based upon their technical documentation.…
Integrated Inverter For Driving Multiple Electric Machines
Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN
2006-04-04
An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.
An industrial sewing machine variable speed controller
NASA Technical Reports Server (NTRS)
Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Youngner, Frank
1992-01-01
The apparel industry is attempting to move in a new direction in the coming decade. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from a sit down operation to a stand up operation involving modular stations. The old treadle worked well with the sitting operator, but problems have been found when trying to use the same treadle with a standing operator. This report details a new design for a treadle to operate an industrial sewing machine that has a standing operator. Emphasis is placed on the ease of use by the operator, as well as the ergonomics involved. Procedures for testing the design are included along with possible uses for the treadle in other applications besides an industrial sewing machine.
A Novel Transverse Flux Machine for Vehicle Traction Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Zhao; Ahmed, Adeeb; Husain, Iqbal
2015-10-05
A novel transverse flux machine topology for electric vehicle traction application using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to Halbach-array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from Finite Element Analysis (FEA) show the motor achieved comparable torquemore » density to conventional rare-earth permanent magnet machines. This machine is a viable candidate for direct drive applications with low cost and high torque density.« less
An industrial sewing machine variable speed controller
NASA Astrophysics Data System (ADS)
Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Youngner, Frank
The apparel industry is attempting to move in a new direction in the coming decade. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from a sit down operation to a stand up operation involving modular stations. The old treadle worked well with the sitting operator, but problems have been found when trying to use the same treadle with a standing operator. This report details a new design for a treadle to operate an industrial sewing machine that has a standing operator. Emphasis is placed on the ease of use by the operator, as well as the ergonomics involved. Procedures for testing the design are included along with possible uses for the treadle in other applications besides an industrial sewing machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric
We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphousmore » boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.« less
Micro electrical discharge milling using deionized water as a dielectric fluid
NASA Astrophysics Data System (ADS)
Chung, Do Kwan; Kim, Bo Hyun; Chu, Chong Nam
2007-05-01
In electrical discharge machining, dielectric fluid is an important factor affecting machining characteristics. Generally, kerosene and deionized water have been used as dielectric fluids. In micro electrical discharge milling, which uses a micro electrode as a tool, the wear of the tool electrode decreases the machining accuracy. However, the use of deionized water instead of kerosene can reduce the tool wear and increase the machining speed. This paper investigates micro electrical discharge milling using deionized water. Deionized water with high resistivity was used to minimize the machining gap. Machining characteristics such as the tool wear, machining gap and machining rate were investigated according to resistivity of deionized water. As the resistivity of deionized water decreased, the tool wear was reduced, but the machining gap increased due to electrochemical dissolution. Micro hemispheres were machined for the purpose of investigating machining efficiency between dielectric fluids, kerosene and deionized water.
Code of Federal Regulations, 2010 CFR
2010-10-01
... between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that mechanical...
Investigation of a less rare-earth permanent-magnet machine with the consequent pole rotor
NASA Astrophysics Data System (ADS)
Bai, Jingang; Liu, Jiaqi; Wang, Mingqiao; Zheng, Ping; Liu, Yong; Gao, Haibo; Xiao, Lijun
2018-05-01
Due to the rising price of rare-earth materials, permanent-magnet (PM) machines in different applications have a trend of reducing the use of rare-earth materials. Since iron-core poles replace half of PM poles in the consequent pole (CP) rotor, the PM machine with CP rotor can be a promising candidate for less rare-earth PM machine. Additionally, the investigation of CP rotor in special electrical machines, like hybrid excitation permanent-magnet PM machine, bearingless motor, etc., has verified the application feasibility of CP rotor. Therefore, this paper focuses on design and performance of PM machines when traditional PM machine uses the CP rotor. In the CP rotor, all the PMs are of the same polarity and they are inserted into the rotor core. Since the fundamental PM flux density depends on the ratio of PM pole to iron-core pole, the combination rule between them is investigated by analytical and finite-element methods. On this basis, to comprehensively analyze and evaluate PM machine with CP rotor, four typical schemes, i.e., integer-slot machines with CP rotor and surface-mounted PM (SPM) rotor, fractional-slot machines with CP rotor and SPM rotor, are designed to investigate the performance of PM machine with CP rotor, including electromagnetic performance, anti-demagnetization capacity and cost.
Design of a line-VISAR interferometer system for the Sandia Z Machine
NASA Astrophysics Data System (ADS)
Galbraith, J.; Austin, K.; Baker, J.; Bettencourt, R.; Bliss, E.; Celeste, J.; Clancy, T.; Cohen, S.; Crosley, M.; Datte, P.; Fratanduono, D.; Frieders, G.; Hammer, J.; Jackson, J.; Johnson, D.; Jones, M.; Koen, D.; Lusk, J.; Martinez, A.; Massey, W.; McCarville, T.; McLean, H.; Raman, K.; Rodriguez, S.; Spencer, D.; Springer, P.; Wong, J.
2017-08-01
A joint team comprised of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratory (SNL) personnel is designing a line-VISAR (Velocity Interferometer System for Any Reflector) for the Sandia Z Machine, Z Line-VISAR. The diagnostic utilizes interferometry to assess current delivery as a function of radius during a magnetically-driven implosion. The Z Line-VISAR system is comprised of the following: a two-leg line-VISAR interferometer, an eight-channel Gated Optical Imager (GOI), and a fifty-meter transport beampath to/from the target of interest. The Z Machine presents unique optomechanical design challenges. The machine utilizes magnetically driven pulsed power to drive a target to elevated temperatures and pressures useful for high energy density science. Shock accelerations exceeding 30g and a strong electromagnetic pulse (EMP) are generated during the shot event as the machine discharges currents of over 25 million amps. Sensitive optical components must be protected from shock loading, and electrical equipment must be adequately shielded from the EMP. The optical design must accommodate temperature and humidity fluctuations in the facility as well as airborne hydrocarbons from the pulsed power components. We will describe the engineering design and concept of operations of the Z Line-VISAR system. Focus will be on optomechanical design.
Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen
2014-01-01
Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic.
Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Z.; Ahmed, A.; Husain, I.
2015-04-02
A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achievedmore » comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.« less
NASA Astrophysics Data System (ADS)
Ciucur, Violeta
2015-02-01
Of three-phase alternating current electric machines, it brings into question which of them is more advantageous to be used in electrical energy storage system by pumping water. The two major categories among which are given dispute are synchronous and the asynchronous machine. To consider the synchronous machine with permanent magnet configuration because it brings advantages compared with conventional synchronous machine, first by removing the necessary additional excitation winding. From the point of view of loss of the two types of machines, the optimal adjustment of the magnetic flux density is obtained to minimize the copper loss by hysteresis and eddy currents.
NASA Astrophysics Data System (ADS)
Ma, Lei; Sanada, Masayuki; Morimoto, Shigeo; Takeda, Yoji; Kaido, Chikara; Wakisaka, Takeaki
Loss evaluation is an important issue in the design of electrical machines. Due to the complicate structure and flux distribution, it is difficult to predict the iron loss in the machines exactly. This paper studies the iron loss in interior permanent magnet synchronous motors based on the finite element method. The iron loss test data of core material are used in the fitting of the hysteresis and eddy current loss constants. For motors in practical operation, additional iron losses due to the appearance of rotation of flux density vector and harmonic flux density distribution makes the calculation data deviates from the measured ones. Revision is made to account for these excess iron losses which exist in the practical operating condition. Calculation results show good consistence with the experimental ones. The proposed method provides a possible way to predict the iron loss of the electrical machine with good precision, and may be helpful in the selection of the core material which is best suitable for a certain machine.
Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process
NASA Astrophysics Data System (ADS)
Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.
2018-03-01
In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.
The Development of a Small High Speed Steam Microturbine Generator System
NASA Astrophysics Data System (ADS)
Alford, Adrian; Nichol, Philip; Frisby, Ben
2015-08-01
The efficient use of energy is paramount in every kind of business today. Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. This can be accomplished using steam turbines driving alternators on large scale systems. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This gave rise to a number of challenges which are described with the solutions adopted. The challenges included aerodynamic design of high efficiency impellers, sealing of a high speed shaft, thrust control and material selection to avoid steam erosion. The machine was packaged with a sophisticated control system to allow connection to the electricity grid. Some of the challenges in packaging the machine are also described. The Spirax Sarco TurboPower has now concluded performance and initial endurance tests which are described with a summary of the results.
NASA Astrophysics Data System (ADS)
Khan, A. A.; Mohiuddin, A. K. M.; Latif, M. A. A.
2018-01-01
This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.
Electric field prediction for a human body-electric machine system.
Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia
2004-01-01
A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.
Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles
NASA Technical Reports Server (NTRS)
Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.
1983-01-01
A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.
ERIC Educational Resources Information Center
Kong, Siu Cheung; Yeung, Yau Yuen; Wu, Xian Qiu
2009-01-01
In order to facilitate senior primary school students in Hong Kong to engage in learning by observation of the phenomena related to electrical circuits, a design of a specific courseware system, of which the interactive human-machine interface was created with the use of an open-source software called the LabVNC, for conducting online…
The Integration of Gasification Systems with Gas Engine to Produce Electrical Energy from Biomass
NASA Astrophysics Data System (ADS)
Siregar, K.; Alamsyah, R.; Ichwana; Sholihati; Tou, S. B.; Siregar, N. C.
2018-05-01
The need for energy especially biomass-based renewable energy continues to increase in Indonesia. The objective of this research was to design downdraft gasifier machine with high content of combustible gas on gas engine. Downdraft gasifier machine was adjusted with the synthetic gas produced from biomass. Besides that, the net energy ratio, net energy balance, renewable index, economic analysis, and impact assessment also been conducted. Gas engine that was designed in this research had been installed with capacity of 25 kW with diameter and height of reactor were 900 mm and 1000 mm respectively. The method used here were the design the Detailed Engineering Design (DED), assembly, and performance test of gas engine. The result showed that gas engine for biomass can be operated for 8 hours with performance engine of 84% and capacity of 25 kW. Net energy balance, net energy ratio, and renewable index was 30 MJ/kWh-electric; 0.89; 0.76 respectively. The value of GHG emission of Biomass Power Generation is 0.03 kg-CO2eq/MJ. Electrical production cost for Biomass Power Generation is about Rp.1.500,/kWh which is cheaper than Solar Power Generation which is about of Rp. 3.300,-/kWh.
Magnetostrictive Vibration Damper and Energy Harvester for Rotating Machinery
NASA Technical Reports Server (NTRS)
Deng, Zhangxian; Asnani, Vivake M.; Dapino, Marcelo J.
2015-01-01
Vibrations generated by machine driveline components can cause excessive noise and structural damage. Magnetostrictive materials, including Galfenol (iron-gallium alloys) and Terfenol-D (terbium-iron-dysprosium alloys), are able to convert mechanical energy to magnetic energy. A magnetostrictive vibration ring is proposed, which generates electrical energy and dampens vibration, when installed in a machine driveline. A 2D axisymmetric finite element (FE) model incorporating magnetic, mechanical, and electrical dynamics is constructed in COMSOL Multiphysics. Based on the model, a parametric study considering magnetostrictive material geometry, pickup coil size, bias magnet strength, flux path design, and electrical load is conducted to maximize loss factor and average electrical output power. By connecting various resistive loads to the pickup coil, the maximum loss factors for Galfenol and Terfenol-D due to electrical energy loss are identified as 0.14 and 0.34, respectively. The maximum average electrical output power for Galfenol and Terfenol-D is 0.21 W and 0.58 W, respectively. The loss factors for Galfenol and Terfenol-D are increased to 0.59 and 1.83, respectively, by using an L-C resonant circuit.
Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen
2014-01-01
Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge machining ZnO/Al2O3 ceramic. PMID:25364912
Electric machine for hybrid motor vehicle
Hsu, John Sheungchun
2007-09-18
A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.
NASA Astrophysics Data System (ADS)
Lewis, N. J.; Anderson, P. I.; Gao, Y.; Robinson, F.
2018-04-01
This paper reports the development of a measurement probe which couples local flux density measurements obtained using the needle probe method with the local magnetising field attained via a Hall effect sensor. This determines the variation in magnetic properties including power loss and permeability at increasing distances from the punched edge of 2.4% and 3.2% Si non-oriented electrical steel sample. Improvements in the characterisation of the magnetic properties of electrical steels would aid in optimising the efficiency in the design of electric machines.
Block-Module Electric Machines of Alternating Current
NASA Astrophysics Data System (ADS)
Zabora, I.
2018-03-01
The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).
NASA Astrophysics Data System (ADS)
Permiakov, V.; Pulnikov, A.; Dupré, L.; De Wulf, M.; Melkebeek, J.
2003-05-01
In this article, the magnetic properties of nonoriented electrical steel under sinusoidal and distorted excitations are investigated for the whole range of unidirectional mechanical stresses. The distorted flux obtained from the tooth tip of 3 kW induction machine at no-load test was put into the measurement system. The total losses increase for compressive stress both under sinusoidal and distorted excitations. For tensile elastic stresses, the total losses first decrease and then increase in a very similar way for both excitations. In contrast, the difference between total losses under sinusoidal and distorted magnetic fluxes becomes smaller with increase of the plastic strain. This work is a serious step toward complete characterization of the magnetic properties of electrical steel in the teeth area of induction machines. A deeper insight of that problem can improve the design of induction machines and other electromagnetic devices.
Design description of the Schuchuli Village photovoltaic power system
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.; Vasicek, R. W.; Delombard, R.
1981-01-01
A stand alone photovoltaic (PV) power system for the village of Schuchuli (Gunsight), Arizona, on the Papago Indian Reservation is a limited energy, all 120 V (d.c.) system to which loads cannot be arbitrarily added and consists of a 3.5 kW (peak) PV array, 2380 ampere-hours of battery storage, an electrical equipment building, a 120 V (d.c.) electrical distribution network, and equipment and automatic controls to provide control power for pumping water into an existing water system; operating 15 refrigerators, a clothes washing machine, a sewing machine, and lights for each of the homes and communal buildings. A solar hot water heater supplies hot water for the washing machine and communal laundry. Automatic control systems provide voltage control by limiting the number of PV strings supplying power during system operation and battery charging, and load management for operating high priority at the expense of low priority loads as the main battery becomes depleted.
Anaesthesia machine: checklist, hazards, scavenging.
Goneppanavar, Umesh; Prabhu, Manjunath
2013-09-01
From a simple pneumatic device of the early 20(th) century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc.) more than 15 air changes/hour and total intravenous anaesthesia should also be considered.
Anaesthesia Machine: Checklist, Hazards, Scavenging
Goneppanavar, Umesh; Prabhu, Manjunath
2013-01-01
From a simple pneumatic device of the early 20th century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc.) more than 15 air changes/hour and total intravenous anaesthesia should also be considered. PMID:24249887
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Electromechanical interlocking machine; locking between electrical and mechanical levers. 236.340 Section 236.340 Transportation Other Regulations... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical...
29 CFR 1926.906 - Initiation of explosive charges-electric blasting.
Code of Federal Regulations, 2013 CFR
2013-07-01
...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...
29 CFR 1926.906 - Initiation of explosive charges-electric blasting.
Code of Federal Regulations, 2014 CFR
2014-07-01
...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...
29 CFR 1926.906 - Initiation of explosive charges-electric blasting.
Code of Federal Regulations, 2012 CFR
2012-07-01
...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...
29 CFR 1926.906 - Initiation of explosive charges-electric blasting.
Code of Federal Regulations, 2011 CFR
2011-07-01
...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...
NREL`s variable speed test bed: Preliminary results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.; Fingersh, L.J.; Fuchs, E.F.
1996-10-01
Under an NREL subcontract, the Electrical and Computer Engineering Department of the University of Colorado (CU) designed a 20-kilowatt, 12-pole, permanent-magnet, electric generator and associated custom power electronics modules. This system can supply power over a generator speed range from 60 to 120 RPM. The generator was fabricated and assembled by the Denver electric-motor manufacturer, Unique Mobility, and the power electronics modules were designed and fabricated at the University. The generator was installed on a 56-foot tower in the modified nacelle of a Grumman Windstream 33 wind turbine in early October 1995. For checkout it was immediately loaded directly intomore » a three-phase resistive load in which it produced 3.5 kilowatts of power. Abstract only included. The ten-meter Grumman host wind machine is equipped with untwisted, untapered, NREL series S809 blades. The machine was instrumented to record both mechanical hub power and electrical power delivered to the utility. Initial tests are focusing on validating the calculated power surface. This mathematical surface shows the wind machine power as a function of both wind speed and turbine rotor speed. Upon the completion of this task, maximum effort will be directed toward filling a test matrix in which variable-speed operation will be contrasted with constant-speed mode by switching the variable speed control algorithm with the baseline constant speed control algorithm at 10 minutes time intervals. Other quantities in the test matrix will be analyzed to detect variable speed-effects on structural loads and power quality.« less
Safety in the Automated Office.
ERIC Educational Resources Information Center
Graves, Pat R.; Greathouse, Lillian R.
1990-01-01
Office automation has introduced new hazards to the workplace: electrical hazards related to computer wiring, musculoskeletal problems resulting from use of computer terminals and design of work stations, and environmental concerns related to ventilation, noise levels, and office machine chemicals. (SK)
NASA Astrophysics Data System (ADS)
Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi
2017-05-01
A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.
Electric machine and current source inverter drive system
Hsu, John S
2014-06-24
A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.
El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI
2012-07-17
An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, Kevin; Moreno, Gilberto
2015-09-29
Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures weremore » varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.« less
Faraday's first dynamo: A retrospective
NASA Astrophysics Data System (ADS)
Smith, Glenn S.
2013-12-01
In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.
Electric machine differential for vehicle traction control and stability control
NASA Astrophysics Data System (ADS)
Kuruppu, Sandun Shivantha
Evolving requirements in energy efficiency and tightening regulations for reliable electric drivetrains drive the advancement of the hybrid electric (HEV) and full electric vehicle (EV) technology. Different configurations of EV and HEV architectures are evaluated for their performance. The future technology is trending towards utilizing distinctive properties in electric machines to not only to improve efficiency but also to realize advanced road adhesion controls and vehicle stability controls. Electric machine differential (EMD) is such a concept under current investigation for applications in the near future. Reliability of a power train is critical. Therefore, sophisticated fault detection schemes are essential in guaranteeing reliable operation of a complex system such as an EMD. The research presented here emphasize on implementation of a 4kW electric machine differential, a novel single open phase fault diagnostic scheme, an implementation of a real time slip optimization algorithm and an electric machine differential based yaw stability improvement study. The proposed d-q current signature based SPO fault diagnostic algorithm detects the fault within one electrical cycle. The EMD based extremum seeking slip optimization algorithm reduces stopping distance by 30% compared to hydraulic braking based ABS.
NASA Astrophysics Data System (ADS)
Alatawneh, Natheer; Rahman, Tanvir; Lowther, David A.; Chromik, Richard
2017-06-01
Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.
Grumman WS33 wind system: prototype construction and testing, Phase II technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, F.M.; Henton, P.; King, P.W.
1980-11-01
The prototype fabrication and testing of the 8 kW small wind energy conversion system are reported. The turbine is a three-bladed, down-wind machine designed to interface directly with an electrical utility network. The machine as finally fabricated is rated at 15 kW at 24 mpH and peak power of 18 kW at 35 mph. Utility compatible electrical power is generated in winds between a cut-in speed of 9 mph and a cut-out speed of 35 mph by using the torque characteristics of the unit's induction generator combined with the rotor aerodynamics to maintain essentially constant speed. Inspection procedures, pre-delivery testing,more » and a cost analysis are included.« less
FEM analysis of an single stator dual PM rotors axial synchronous machine
NASA Astrophysics Data System (ADS)
Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.
2017-01-01
The actual e - continuously variable transmission (e-CVT) solution for the parallel Hybrid Electric Vehicle (HEV) requires two electric machines, two inverters, and a planetary gear. A distinct electric generator and a propulsion electric motor, both with full power converters, are typical for a series HEV. In an effort to simplify the planetary-geared e-CVT for the parallel HEV or the series HEV we hereby propose to replace the basically two electric machines and their two power converters by a single, axial-air-gap, electric machine central stator, fed from a single PWM converter with dual frequency voltage output and two independent PM rotors. The proposed topologies, the magneto-motive force analysis and quasi 3D-FEM analysis are the core of the paper.
Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology
NASA Astrophysics Data System (ADS)
Kumar, Amit; Soota, Tarun; Kumar, Jitendra
2018-03-01
Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.
Method for forming precision clockplate with pivot pins
Wild, Ronald L [Albuquerque, NM
2010-06-01
Methods are disclosed for producing a precision clockplate with rotational bearing surfaces (e.g. pivot pins). The methods comprise providing an electrically conductive blank, conventionally machining oversize features comprising bearing surfaces into the blank, optionally machining of a relief on non-bearing surfaces, providing wire accesses adjacent to bearing surfaces, threading the wire of an electrical discharge machine through the accesses and finishing the bearing surfaces by wire electrical discharge machining. The methods have been shown to produce bearing surfaces of comparable dimension and tolerances as those produced by micro-machining methods such as LIGA, at reduced cost and complexity.
NASA Astrophysics Data System (ADS)
Karunakaran, K.; Chandrasekaran, M.
2017-05-01
The recent technology of machining hard materials is Powder mix dielectric electrical Discharge Machining (PMEDM). This research investigates nano sized (about 5Nm) powders influence in machining Inconel 800 nickel based super alloy. This work is motivated for a practical need for a manufacturing industry, which processes various kinds of jobs of Inconel 800 material. The conventional EDM machining also considered for investigation for the measure of Nano powders performances. The aluminum, silicon and multi walled Carbon Nano tubes powders were considered in this investigation along with pulse on time, pulse of time and input current to analyze and optimize the responses of Material Removal Rate, Tool Wear Rate and surface roughness. The Taguchi general Full Factorial Design was used to design the experiments. The most advance equipments employed in conducting experiments and measuring equipments to improve the accuracy of the result. The MWCNT powder mix was out performs than other powders which reduce 22% to 50% of the tool wear rate, gives the surface roughness reduction from 29.62% to 41.64% and improved MRR 42.91% to 53.51% than conventional EDM.
Rotor compound concept for designing an industrial HTS synchronous motor
NASA Astrophysics Data System (ADS)
Kashani, M.; Hosseina, M.; Sarrafan, K.; Darabi, A.
2013-06-01
Recently, producing power with smaller amount of losses become as a goal in our daily life. Today, large amount of energy waste in power networks all around the world. The main reason is “resistive electric equipments” of power networks. Since early 1980s, simultaneous with the development of high temperature superconductive (HTS) technology, superconductors gently attracted the mankind attentions. Using superconductive equipments instead of conventional resistive ones are result in salient electric loss reduction in power systems. Especially to reduce losses in power networks superconductive industrial rotating machines can potentially perform a significant role. In early recent century, first generation of HTS rotating machines was born. But unfortunately they have long way to penetrate the commercial markets yet. In HTS rotating machines the conventional copper made windings are replaced with the HTS superconductors. In this paper an industrial HTS synchronous motor with YBCO coated conductor field windings was designed. As a new approach, model was equipped with a compound rotor that includes both magnetic and non-magnetic materials. So, large amount of heavy iron made part was replaced by light non-magnetic material such as G-10 fiberglass. Furthermore, in this structure iron loss in rotor could be reduced to its lowest value. Also less weight and more air gap energy density were the additional advantages. Regarding zero electric loss production in field windings and less iron loss in rotor construction, this model potentially is more effective than the other iron made HTS motors.
MTRETR MAINTENANCE SHOP, TRA653. FLOOR PLAN FOR FIRST FLOOR: MACHINE ...
MTR-ETR MAINTENANCE SHOP, TRA-653. FLOOR PLAN FOR FIRST FLOOR: MACHINE SHOP, ELECTRICAL AND INSTRUMENT SHOP, TOOL CRIB, ELECTRONIC SHOP, LOCKER ROOM, SPECIAL TEMPERATURE CONTROLLED ROOM, AND OFFICES. "NEW" ON DRAWING REFERS TO REVISION OF 11/1956 DRAWING ON WHICH AREAS WERE DESIGNATED AS "FUTURE." HUMMEL HUMMEL & JONES 810-MTR-ETR-653-A-7, 5/1957. INL INDEX NO. 532-0653-00-381-101839, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Study of the AC machines winding having fractional q
NASA Astrophysics Data System (ADS)
Bespalov, V. Y.; Sidorov, A. O.
2018-02-01
The winding schemes with a fractional numbers of slots per pole and phase q have been known and used for a long time. However, in the literature on the low-noise machines design there are not recommended to use. Nevertheless, fractional q windings have been realized in many applications of special AC electrical machines, allowing to improve their performance, including vibroacoustic one. This paper deals with harmonic analysis of windings having integer and fractional q in permanent magnet synchronous motors, a comparison of their characteristics is performed, frequencies of subharmonics are revealed. Optimal winding pitch design is found giving reduce the amplitudes of subharmonics. Distribution factors for subharmonics, fractional and high-order harmonics are calculated, results analysis is represented, allowing for giving recommendations how to calculate distribution factors for different harmonics when q is fractional.
1984-08-01
energy-savIng propulsion systems for tracked all- -terrain vehicles with extremely high mobility. Mong many proposed idea, Sthoeof hybrid -electric...propulsion system are dominant. Hybrid -electric propulsion system are hybrids In which at least one of the energy stores, sources or convertors can...Aer’teed b*.of I F~ Po ’edfJr* dema. 1046 Modern newly designed energy-saving hybrid -electric propulsion systems work on tracked all-terrain vehicles are
Wire electric-discharge machining and other fabrication techniques
NASA Technical Reports Server (NTRS)
Morgan, W. H.
1983-01-01
Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.
Topologies for three-phase wound-field salient rotor switched-flux machines for HEV applications
NASA Astrophysics Data System (ADS)
Khan, Faisal; Sulaiman, Erwan; Ahmad, Md Zarafi; Husin, Zhafir Aizat; Mazlan, Mohamed Mubin Aizat
2015-05-01
Wound-field switched-flux machines (WFSFM) have an intrinsic simplicity and high speed that make them well suited to many hybrid electric vehicle (HEV) applications. However, overlap armature and field windings raised the copper losses in these machines. Furthermore, in previous design segmented-rotor is used which made the rotor less robust. To overcome these problems, this paper presents novel topologies for three-phase wound-field switched-flux machines. Both armature and field winding are located on the stator and rotor is composed of only stack of iron. Non-overlap armature and field windings and toothed-rotor are the clear advantages of these topologies as the copper losses gets reduce and rotor becomes more robust. Design feasibility and performance analysis of 12 slots and different rotor pole numbers are examined on the basis of coil arrangement test, peak armature flux linkage, back emf, cogging torque and average torque by using Finite Element Analysis(FEA).
NASA Astrophysics Data System (ADS)
Kollmeyer, Phillip J.
This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the prototype electric truck with a different battery pack, the prototype electric truck with a higher power drivetrain and higher towing capability, and an electric city transit bus. Performance advantages provided by the HESS are demonstrated and verified for these vehicles in several areas including: longer vehicle range, improved low-temperature operation with lithium-ion batteries, and reduced battery losses and cycling stresses.
Composite Ceramic Superconducting Wires for Electric Motor Applications
1988-12-30
current a-yi t6-ransition. - Emerson Motor Division has begun work on DC heteropolar and homopolar motor designs. The mechanical stresses on conventional...Emerson Motor Division has begun work on DC heteropolar motor designs and, through Professor Novotny at U. Wisconsin, DC homopolar machines. The...123 3.2 Literature Research .............................. .. 124 3 3.3 Application Study .............................. .. 124 3.3.1 Homopolar Motor
Engineering Design Handbook. Dielectric Embedding of Electrical or Electronic Components
1979-04-06
its excellent electrical properties are maintained at elevated temperatures. Even when the insulation is exposed to a direct flame, it burns to a...machine by one operator; these molds are generally equipped with insulated handles to prevent personal in- jury from burns . In electronic embedment...Excellent for large volume runs; tooling is minimal. Pres- ence of a shell or housing as- sures no exposed components, as can occur in casting. Some
Torque Production in a Halbach Machine
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.; Vrnak, Daniel R.
2006-01-01
The NASA John H. Glenn Research Center initiated the investigation of torque production in a Halbach machine for the Levitated Ducted Fan (LDF) Project to obtain empirical data in determining the feasibility of using a Halbach motor for the project. LDF is a breakthrough technology for "Electric Flight" with the development of a clean, quiet, electric propulsor system. Benefits include zero emissions, decreased dependence on fossil fuels, increased efficiency, increased reliability, reduced maintenance, and decreased operating noise levels. A commercial permanent magnet brushless motor rotor was tested with a custom stator. An innovative rotor utilizing a Halbach array was designed and developed to fit directly into the same stator. The magnets are oriented at 90deg to the adjacent magnet, which cancels the magnetic field on the inside of the rotor and strengthens the field on the outside of the rotor. A direct comparison of the commercial rotor and the Halbach rotor was made. In addition, various test models were designed and developed to validate the basic principles described, and the theoretical work that was performed. The report concludes that a Halbach array based motor can provide significant improvements in electric motor performance and reliability.
INTERIOR VIEW OF MACHINE, METAL AND ELECTRIC SHOPS FROM THE ...
INTERIOR VIEW OF MACHINE, METAL AND ELECTRIC SHOPS FROM THE ELECTRIC SHOP. RAILROAD TRACKS IN FLOOR. VIEW FROM THE WEST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI
Reprographics Career Ladder AFSC 703X0.
1981-07-01
LINEUP AND REGISTER TABLES 39 BINDING MACHINES 36 FLOURESCENT LAMPS 36 WET PROCESS PLATEMAKERS 36 ELECTRIC STAPLERS 32 MANUAL PAPER CUTTERS 32...ELECTROSTATIC COPIERS/PLATEMAKERS 78% PAPER CUTTERS 57% ELECTRIC STAPLERS 47% BINDING MACHINES 42% SINGLE HEAD DRILLS 37% PADDING RACKS 31% PLATEMAKING...HEAD DRILLS 78% MANUAL PAPER CUTTERS 71% STATION COLLATORS 51% BINDING MACHiNES 46% ELECTRIC STAPLERS 46% PLATEMAKING CAMERAS 44% SADDLE STITCHERS 42
Modeling of power transmission and stress grading for corona protection
NASA Astrophysics Data System (ADS)
Zohdi, T. I.; Abali, B. E.
2017-11-01
Electrical high voltage (HV) machines are prone to corona discharges leading to power losses as well as damage of the insulating layer. Many different techniques are applied as corona protection and computational methods aid to select the best design. In this paper we develop a reduced-order model in 1D estimating electric field and temperature distribution of a conductor wrapped with different layers, as usual for HV-machines. Many assumptions and simplifications are undertaken for this 1D model, therefore, we compare its results to a direct numerical simulation in 3D quantitatively. Both models are transient and nonlinear, giving a possibility to quickly estimate in 1D or fully compute in 3D by a computational cost. Such tools enable understanding, evaluation, and optimization of corona shielding systems for multilayered coils.
Electrical insulation system for the shell-vacuum vessel and poloidal field gap in the ZTH machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reass, W.A.; Ballard, E.O.
1989-01-01
The electrical insulation systems for the ZTH machine have many unusual design problems. The poloidal field gap insulation must be capable of conforming to poloidal and toroidal contours, provide a 25 kV hold off, and sufficiently adhere to the epoxy back fill between the overlapping conductors. The shell-vacuum vessel system will use stretchable and flexible insulation along with protective hats, boots and sleeves. The shell-vacuum vessel system must be able to withstand a 12.5 kV pulse with provision for thermal insulation to limit the effects of the 300{degrees}C vacuum vessel during operation and bakeout. Methodology required to provide the electricalmore » protection along with testing data and material characteristics will be presented. 7 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkine, N.; Bottrell, G.; Weingart, O.
1981-05-01
A 4 kW small wind energy conversion system (SWECS) has been designed for residential applications in which relatively low (10 mph) mean annual wind speeds prevail. The objectives were to develop such a machine to produce electrical energy at 6 cents per kWh while operating in parallel with a utility grid or auxiliary generator. The Phase I effort began in November, 1979 and was carried through the Final Design Review in February 1981. During this period extensive trade, optimization and analytical studies were performed in an effort to provide the optimum machine to best meet the objectives. Certain components, systemsmore » and manufacturing processes were tested and evaluated and detail design drawings were produced. The resulting design is a 31-foot diameter horizontal axis downwind machine rated 5.7 kW and incorporating the following unique features: Composite Blades; Free-Standing Composite Tower; Torque-Actuated Blade Pitch Control. The design meets or exceeds all contract requirements except that for cost of energy. The target 6 cents per kWh will be achieved in a mean wind speed slightly below 12 mph instead of the specified 10 mph.« less
Electrical machines with superconducting windings. Part 3: Homopolar dc machines
NASA Astrophysics Data System (ADS)
Kullman, D.; Henninger, P.
1981-01-01
The losses in rotating liquid metal contacts and the problems in including liquid metals were theoretically and experimentally studied. These machines are shown realiable. For electric ship propulsion, they are a more efficient method of power transmission than mechanical gearboxes. However, weight reduction as compared to mechanical gearboxes can hardly be achieved with machines fully shielded by magnetic iron.
Equivalent model of a dually-fed machine for electric drive control systems
NASA Astrophysics Data System (ADS)
Ostrovlyanchik, I. Yu; Popolzin, I. Yu
2018-05-01
The article shows that the mathematical model of a dually-fed machine is complicated because of the presence of a controlled voltage source in the rotor circuit. As a method of obtaining a mathematical model, the method of a generalized two-phase electric machine is applied and a rotating orthogonal coordinate system is chosen that is associated with the representing vector of a stator current. In the chosen coordinate system in the operator form the differential equations of electric equilibrium for the windings of the generalized machine (the Kirchhoff equation) are written together with the expression for the moment, which determines the electromechanical energy transformation in the machine. Equations are transformed so that they connect the currents of the windings, that determine the moment of the machine, and the voltages on these windings. The structural diagram of the machine is assigned to the written equations. Based on the written equations and accepted assumptions, expressions were obtained for the balancing the EMF of windings, and on the basis of these expressions an equivalent mathematical model of a dually-fed machine is proposed, convenient for use in electric drive control systems.
Electromechanical systems with transient high power response operating from a resonant AC link
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Hansen, Irving G.
1992-01-01
The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).
Electronically commutated motors for vehicle applications
NASA Astrophysics Data System (ADS)
Echolds, E. F.
1980-02-01
Two permanent magnet electronically commutated motors for electric vehicle traction are discussed. One, based on existing technology, produces 23 kW (peak) at 26,000 rpm, and 11 kW continuous at 18,000 rpm. The motor has a conventional design: a four-pole permanent magnet rotor and a three-phase stator similar to those used on ordinary induction motors. The other, advanced technology motor, is rated at 27 kW (peak) at 14,000 rpm, and 11 kW continuous at 10,500 rpm. The machine employs a permanent magnet rotor and a novel ironless stator design in an axial air gap, homopolar configuration. Comparison of the new motors with conventional brush type machines indicates potential for substantial cost savings.
Apparatus for electrical-assisted incremental forming and process thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, John; Cao, Jian
A process and apparatus for forming a sheet metal component using an electric current passing through the component. The process can include providing an incremental forming machine, the machine having at least one arcuate tipped tool and at least electrode spaced a predetermined distance from the arcuate tipped tool. The machine is operable to perform a plurality of incremental deformations on the sheet metal component using the arcuate tipped tool. The machine is also operable to apply an electric direct current through the electrode into the sheet metal component at the predetermined distance from the arcuate tipped tool while themore » machine is forming the sheet metal component.« less
Design and testing of small scale fish meat bone separator useful for fish processing.
Ali Muhammed, M; Manjunatha, N; Murthy, K Venkatesh; Bhaskar, N
2015-06-01
The present study relates to the food processing machinery and, more specifically machine for producing boneless comminuted meat from raw fish fillet. This machine is of belt and drum type meat bone separator designed for small scale fish processing in a continuous mode. The basic principal involved in this machine is compression force. The electric geared motor consists of 1HP and the conveyor belt has a linear velocity of 19 to 22 m min(-1), which was sufficient to debone the fish effectively. During the meat bone separation trials an efficiency up to 75 % on dressed fish weight basis was observed and with a capacity to separate 70 kg h(-1) of meat from fish at the machine speed of 25 rpm. During the trials, it was demonstrated that there was no significant change in the proximate composition of comminuted fish meat when compared to unprocessed fish meat. This design has a greater emphasis on hygiene, provision for cleaning-in-place (CIP) and gives cost effective need and reliability for small scale industries to produce fish meat in turn used for their value added products.
PMG: Numerical model of a fault tolerant permanent magnet generator for high rpm applications
NASA Astrophysics Data System (ADS)
Bertrand, Alexandre
The aerospace industry is confronting an increasing number of challenges these days. One can think for instance of the environmental challenges as well as the economic and social ones to name a few. These challenges have forced the industry to turn their design philosophy toward new ways of doing things. It is in this context that was born the More Electrical Aircraft (MEA) concept. This concept aims at giving a more prominent part to electrical power in the overall installed power balance aboard aircrafts (in comparison to more traditional power sources such as mechanical and hydraulic). In order to be able to support this increasing demand in electrical power, the electric power generation aboard aircrafts needed reengineering. This is one of the main reasons the More Electrical Engine (MEE) concept was born: to serve the needs of the MEA philosophy. It is precisely under the MEE concept that this project takes place. This project, realized in collaboration with Pratt & Whitney Canada (PWC), is a first attempt at the electrical modelling of this new type of electrical generator designed for aircrafts. The main objectives of this project are to understand the principles of operation of the New Architecture Electromagnetic Machine (NAEM) and to build a simplified model for EMTP-RV for steady-state simulations. This document contains the results that were obtained during the electrical modelling project of the New Architecture Electromagnetic Machine (NAEM) by the author using data from PWC. The model built by PWC using MagNet, a finite element analysis software, was used as the reference during the project. It was possible to develop an electrical model of the generator that replicate with a good accuracy the behaviour of the model of reference under steady-state operation. Some technical avenues are explored in the discussion in order to list the key improvements that will need to be done to the electrical model in future work.
NASA Astrophysics Data System (ADS)
Sudhakara, Dara; Prasanthi, Guvvala
2017-04-01
Wire Cut EDM is an unconventional machining process used to build components of complex shape. The current work mainly deals with optimization of surface roughness while machining P/M CW TOOL STEEL by Wire cut EDM using Taguchi method. The process parameters of the Wire Cut EDM is ON, OFF, IP, SV, WT, and WP. L27 OA is used for to design of the experiments for conducting experimentation. In order to find out the effecting parameters on the surface roughness, ANOVA analysis is engaged. The optimum levels for getting minimum surface roughness is ON = 108 µs, OFF = 63 µs, IP = 11 A, SV = 68 V and WT = 8 g.
Multi-winding homopolar electric machine
Van Neste, Charles W
2012-10-16
A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.
Making Complex Electrically Conductive Patterns on Cloth
NASA Technical Reports Server (NTRS)
Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert
2008-01-01
A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.
NASA Technical Reports Server (NTRS)
Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Younger, Frank
1992-01-01
This report details a new design for a variable speed controller which can be used to operate lunar machinery without the astronaut using his or her upper body. In order to demonstrate the design, a treadle for an industrial sewing machine was redesigned to be used by a standing operator. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from sit down to stand up operation involving modular stations. The old treadle worked well with a sitting operator, but problems have been found when trying to use the same treadle with a standing operator. Emphasis is placed on the ease of use by the operator along with the ergonomics involved. Included with the design analysis are suggestions for possible uses for the speed controller in other applications.
Static Frequency Converter System Installed and Tested
NASA Technical Reports Server (NTRS)
Brown, Donald P.; Sadhukhan, Debashis
2003-01-01
A new Static Frequency Converter (SFC) system has been installed and tested at the NASA Glenn Research Center s Central Air Equipment Building to provide consistent, reduced motor start times and improved reliability for the building s 14 large exhausters and compressors. The operational start times have been consistent around 2 min, 20 s per machine. This is at least a 3-min improvement (per machine) over the old variable-frequency motor generator sets. The SFC was designed and built by Asea Brown Boveri (ABB) and installed by Encompass Design Group (EDG) as part of a Construction of Facilities project managed by Glenn (Robert Scheidegger, project manager). The authors designed the Central Process Distributed Control Systems interface and control between the programmable logic controller, solid-state exciter, and switchgear, which was constructed by Gilcrest Electric.
Simulation of an Asynchronous Machine by using a Pseudo Bond Graph
NASA Astrophysics Data System (ADS)
Romero, Gregorio; Felez, Jesus; Maroto, Joaquin; Martinez, M. Luisa
2008-11-01
For engineers, computer simulation, is a basic tool since it enables them to understand how systems work without actually needing to see them. They can learn how they work in different circumstances and optimize their design with considerably less cost in terms of time and money than if they had to carry out tests on a physical system. However, if computer simulation is to be reliable it is essential for the simulation model to be validated. There is a wide range of commercial brands on the market offering products for electrical domain simulation (SPICE, LabVIEW PSCAD,Dymola, Simulink, Simplorer,...). These are powerful tools, but require the engineer to have a perfect knowledge of the electrical field. This paper shows an alternative methodology to can simulate an asynchronous machine using the multidomain Bond Graph technique and apply it in any program that permit the simulation of models based in this technique; no extraordinary knowledge of this technique and electric field are required to understand the process .
Robust Fault Diagnosis in Electric Drives Using Machine Learning
2004-09-08
detection of fault conditions of the inverter. A machine learning framework is developed to systematically select torque-speed domain operation points...were used to generate various fault condition data for machine learning . The technique is viable for accurate, reliable and fast fault detection in electric drives.
A Senior Project-Based Multiphase Motor Drive System Development
ERIC Educational Resources Information Center
Abdel-Khalik, Ayman S.; Massoud, Ahmed M.; Ahmed, Shehab
2016-01-01
Adjustable-speed drives based on multiphase motors are of significant interest for safety-critical applications that necessitate wide fault-tolerant capabilities and high system reliability. Although multiphase machines are based on the same conceptual theory as three-phase machines, most undergraduate electrical machines and electric drives…
30 CFR 18.96 - Preparation of machines for inspection; requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.96 Preparation of machines for inspection... place at which a field approval investigation will be conducted with respect to any machine, the...
30 CFR 18.96 - Preparation of machines for inspection; requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.96 Preparation of machines for inspection... place at which a field approval investigation will be conducted with respect to any machine, the...
Three-dimensionally printed biological machines powered by skeletal muscle.
Cvetkovic, Caroline; Raman, Ritu; Chan, Vincent; Williams, Brian J; Tolish, Madeline; Bajaj, Piyush; Sakar, Mahmut Selman; Asada, H Harry; Saif, M Taher A; Bashir, Rashid
2014-07-15
Combining biological components, such as cells and tissues, with soft robotics can enable the fabrication of biological machines with the ability to sense, process signals, and produce force. An intuitive demonstration of a biological machine is one that can produce motion in response to controllable external signaling. Whereas cardiac cell-driven biological actuators have been demonstrated, the requirements of these machines to respond to stimuli and exhibit controlled movement merit the use of skeletal muscle, the primary generator of actuation in animals, as a contractile power source. Here, we report the development of 3D printed hydrogel "bio-bots" with an asymmetric physical design and powered by the actuation of an engineered mammalian skeletal muscle strip to result in net locomotion of the bio-bot. Geometric design and material properties of the hydrogel bio-bots were optimized using stereolithographic 3D printing, and the effect of collagen I and fibrin extracellular matrix proteins and insulin-like growth factor 1 on the force production of engineered skeletal muscle was characterized. Electrical stimulation triggered contraction of cells in the muscle strip and net locomotion of the bio-bot with a maximum velocity of ∼ 156 μm s(-1), which is over 1.5 body lengths per min. Modeling and simulation were used to understand both the effect of different design parameters on the bio-bot and the mechanism of motion. This demonstration advances the goal of realizing forward-engineered integrated cellular machines and systems, which can have a myriad array of applications in drug screening, programmable tissue engineering, drug delivery, and biomimetic machine design.
Lin, Yin-Yan; Wu, Hau-Tieng; Hsu, Chi-An; Huang, Po-Chiun; Huang, Yuan-Hao; Lo, Yu-Lun
2016-12-07
Physiologically, the thoracic (THO) and abdominal (ABD) movement signals, captured using wearable piezo-electric bands, provide information about various types of apnea, including central sleep apnea (CSA) and obstructive sleep apnea (OSA). However, the use of piezo-electric wearables in detecting sleep apnea events has been seldom explored in the literature. This study explored the possibility of identifying sleep apnea events, including OSA and CSA, by solely analyzing one or both the THO and ABD signals. An adaptive non-harmonic model was introduced to model the THO and ABD signals, which allows us to design features for sleep apnea events. To confirm the suitability of the extracted features, a support vector machine was applied to classify three categories - normal and hypopnea, OSA, and CSA. According to a database of 34 subjects, the overall classification accuracies were on average 75.9%±11.7% and 73.8%±4.4%, respectively, based on the cross validation. When the features determined from the THO and ABD signals were combined, the overall classification accuracy became 81.8%±9.4%. These features were applied for designing a state machine for online apnea event detection. Two event-byevent accuracy indices, S and I, were proposed for evaluating the performance of the state machine. For the same database, the S index was 84.01%±9.06%, and the I index was 77.21%±19.01%. The results indicate the considerable potential of applying the proposed algorithm to clinical examinations for both screening and homecare purposes.
Applied Physics Modules: Notes, Instructions, Data Sheets, Tests, and Test Answer Keys.
ERIC Educational Resources Information Center
Southeast Community Coll., Lincoln, NE.
These user instructions and related materials are designed to accompany a series of twenty-three applied physics modules which have been developed for postsecondary students in electrical, electronics, machine tool, metals, manufacturing, automotive, diesel, architecture, and civil drafting occupational programs. The instructions include an…
Multiple Learning Strategies Project. Small Engine Repair. Visually Impaired.
ERIC Educational Resources Information Center
Foster, Don; And Others
This instructional package designed for visually impaired students, focuses on the vocational area of small engine repair. Contained in this document are forty learning modules organized into fourteen units: engine block; starters; fuel tank, lines, filters and pumps; carburetors; electrical; test equipment; motorcycle; machining; tune-ups; short…
ERIC Educational Resources Information Center
Cox, Scott
2012-01-01
After years of using Rube Goldberg-inspired projects to teach concepts of simple machines, the author sought a comparable project to reinforce electricity lessons in his ninth-grade Science and Technology course. The Friendship Detector gives students a chance to design, test, and build a complex circuit with multiple switches and battery-powered…
Navy Acquisition: Cost, Schedule, and Performance of New Submarine Combat Systems
1990-01-01
1985). Page 8 GAO/NSIAD-90-72 Submarine Combat Systems Chapter 1 Introduction In December 1983 the Navy awarded the International Business Machines...contracts to the General Electric Com- pany and the International Business Machines. In December 1987 the Navy selected General Electric as the prime...contractor and International Business Machines as the "follower" contractor. On March 31, 1988. the Navy awarded General Electric a $1.84 billion fixed
Makinde, O A; Mpofu, K; Vrabic, R; Ramatsetse, B I
2017-01-01
The development of a robotic-driven maintenance solution capable of automatically maintaining reconfigurable vibrating screen (RVS) machine when utilized in dangerous and hazardous underground mining environment has called for the design of a multifunctional robotic end-effector capable of carrying out all the maintenance tasks on the RVS machine. In view of this, the paper presents a bio-inspired approach which unfolds the design of a novel multifunctional robotic end-effector embedded with mechanical and control mechanisms capable of automatically maintaining the RVS machine. To achieve this, therblig and morphological methodologies (which classifies the motions as well as the actions required by the robotic end-effector in carrying out RVS machine maintenance tasks), obtained from a detailed analogy of how human being (i.e. a machine maintenance manager) will carry out different maintenance tasks on the RVS machine, were used to obtain the maintenance objective functions or goals of the multifunctional robotic end-effector as well as the maintenance activity constraints of the RVS machine that must be adhered to by the multifunctional robotic end-effector during the machine maintenance. The results of the therblig and morphological analyses of five (5) different maintenance tasks capture and classify one hundred and thirty-four (134) repetitive motions and fifty-four (54) functions required in automating the maintenance tasks of the RVS machine. Based on these findings, a worm-gear mechanism embedded with fingers extruded with a hexagonal shaped heads capable of carrying out the "gripping and ungrasping" and "loosening and bolting" functions of the robotic end-effector and an electric cylinder actuator module capable of carrying out "unpinning and hammering" functions of the robotic end-effector were integrated together to produce the customized multifunctional robotic end-effector capable of automatically maintaining the RVS machine. The axial forces ([Formula: see text] and [Formula: see text]), normal forces ([Formula: see text]) and total load [Formula: see text] acting on the teeth of the worm-gear module of the multifunctional robotic end-effector during the gripping of worn-out or new RVS machine subsystems, which are 978.547, 1245.06 and 1016.406 N, respectively, were satisfactory. The nominal bending and torsional stresses acting on the shoulder of the socket module of the multifunctional robotic end-effector during the loosing and tightening of bolts, which are 1450.72 and 179.523 MPa, respectively, were satisfactory. The hammering and unpinning forces utilized by the electric cylinder actuator module of the multifunctional robotic end-effector during the unpinning and hammering of screen panel pins out of and into the screen panels were satisfactory.
NASA Astrophysics Data System (ADS)
Chen, Shun-Tong; Chang, Chih-Hsien
2013-12-01
This study presents a novel approach to the fabrication of a biomedical-mold for producing convex platform PMMA (poly-methyl-meth-acrylate) slides for counting cells. These slides allow for the microscopic examination of urine sediment cells. Manufacturing of such slides incorporates three important procedures: (1) the development of a tabletop high-precision dual-spindle CNC (computerized numerical control) machine tool; (2) the formation of a boron-doped polycrystalline composite diamond (BD-PCD) wheel-tool on the machine tool developed in procedure (1); and (3) the cutting of a multi-groove-biomedical-mold array using the formed diamond wheel-tool in situ on the developed machine. The machine incorporates a hybrid working platform providing wheel-tool thinning using spark erosion to cut, polish, and deburr microgrooves on NAK80 steel directly. With consideration given for the electrical conductive properties of BD-PCD, the diamond wheel-tool is thinned to a thickness of 5 µm by rotary wire electrical discharge machining. The thinned wheel-tool can grind microgrooves 10 µm wide. An embedded design, which inserts a close fitting precision core into the biomedical-mold to create step-difference (concave inward) of 50 µm in height between the core and the mold, is also proposed and realized. The perpendicular dual-spindles and precision rotary stage are features that allow for biomedical-mold machining without the necessity of uploading and repositioning materials until all tasks are completed. A PMMA biomedical-slide with a plurality of juxtaposed counting chambers is formed and its usefulness verified.
Optical alignment of electrodes on electrical discharge machines
NASA Technical Reports Server (NTRS)
Boissevain, A. G.; Nelson, B. W.
1972-01-01
Shadowgraph system projects magnified image on screen so that alignment of small electrodes mounted on electrical discharge machines can be corrected and verified. Technique may be adapted to other machine tool equipment where physical contact cannot be made during inspection and access to tool limits conventional runout checking procedures.
NASA Technical Reports Server (NTRS)
Piccolo, R.
1979-01-01
The design, development, efficiency, manufacturability, production costs, life cycle cost, and safety of sodium-sulfur, nickel-zinc, and lead-acid batteries for electric hybrid vehicles are discussed. Models are given for simulating the vehicle handling quality, and for finding the value of: (1) the various magnetic quantities in the different sections in which the magnetic circuit of the DC electric machine is divided; (2) flux distribution in the air gap and the magnetization curve under load conditions; and (3) the mechanical power curves versus motor speed at different values of armature current.
Ojukwu, Chidiebele Petronilla; Anyanwu, Godson Emeka; Nwabueze, Augustine Chijindu; Anekwu, Emelie Morris; Chukwu, Sylvester Caesar
2017-01-01
Milling machine operators perform physically demanding tasks that can lead to work related musculoskeletal disorders (WRMSDs), but literature on WRMSDs among milling machine operators is scarce. Knowledge of prevalence and risk factors of WRMSDs can be an appropriate base for planning and implementing ergonomics intervention programs in the workplace. This study aimed to determine the prevalence, pattern and associated factors of WRMSDs among commercial milling machine operators in Enugu, Nigeria. This cross-sectional survey involved 148 commercial milling machine operators (74 hand-operated milling machine operators (HOMMO) and 74 electrically-operated milling machine operators (EOMMO)), within the age range of 18-65 years, who were conveniently selected from four markets in Enugu, Nigeria. A standard Nordic questionnaire was used to assess the prevalence of WRMSDs among the participants. Data were summarized using descriptive statistics. There was a significant difference (p = 0.001) related to prevalence of WRMSDs between HOMMOs (77%) and EOMMOs (50%). All body parts were affected in both groups and shoulders (85.1%) and lower back (46%) had the highest percentage of prevalence. Working in awkward and same postures, working with injury, poor workplace design, repetition of tasks, vibratory working equipments, reduced rest, high job demand and heavy lifting were significantly associated with the prevalence of WRMSDs. WRMSDs are prevalent among commercial milling machine operators with higher occurrence in HOMMOs. Ergonomic interventions, including the re-design of milling machines and appropriate work posture education of machine operators are recommended in the milling industry.
HTS machines as enabling technology for all-electric airborne vehicles
NASA Astrophysics Data System (ADS)
Masson, P. J.; Brown, G. V.; Soban, D. S.; Luongo, C. A.
2007-08-01
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC
NASA Technical Reports Server (NTRS)
Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr
2014-01-01
Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.
30 CFR 18.97 - Inspection of machines; minimum requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.97 Inspection of machines; minimum... shall be conducted by an electrical representative and such inspection shall include: (1) Examination of...
30 CFR 18.97 - Inspection of machines; minimum requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.97 Inspection of machines; minimum... shall be conducted by an electrical representative and such inspection shall include: (1) Examination of...
Integration Methodology For Oil-Free Shaft Support Systems: Four Steps to Success
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; DellaCorte, Christopher; Bruckner, Robert J.
2010-01-01
Commercial applications for Oil-Free turbomachinery are slowly becoming a reality. Micro-turbine generators, highspeed electric motors, and electrically driven centrifugal blowers are a few examples of products available in today's commercial marketplace. Gas foil bearing technology makes most of these applications possible. A significant volume of component level research has led to recent acceptance of gas foil bearings in several specialized applications, including those mentioned above. Component tests identifying such characteristics as load carrying capacity, power loss, thermal behavior, rotordynamic coefficients, etc. all help the engineer design foil bearing machines, but the development process can be just as important. As the technology gains momentum and acceptance in a wider array of machinery, the complexity and variety of applications will grow beyond the current class of machines. Following a robust integration methodology will help improve the probability of successful development of future Oil-Free turbomachinery. This paper describes a previously successful four-step integration methodology used in the development of several Oil-Free turbomachines. Proper application of the methods put forward here enable successful design of Oil-Free turbomachinery. In addition when significant design changes or unique machinery are developed, this four-step process must be considered.
Electric power from vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Touryan, K. J.; Strickland, J. H.; Berg, D. E.
1987-12-01
Significant advancements have occurred in vertical axis wind turbine (VAWT) technology for electrical power generation over the last decade; in particular, well-proven aerodynamic and structural analysis codes have been developed for Darrieus-principle wind turbines. Machines of this type have been built by at least three companies, and about 550 units of various designs are currently in service in California wind farms. Attention is presently given to the aerodynamic characteristics, structural dynamics, systems engineering, and energy market-penetration aspects of VAWTs.
SEGMAG Machines for Marine Electrical Propulsion Systems
1978-09-13
78-9B2-SYSTA-Rj P4 SIG•(AG MACHINES VOR MARINE ELECTRICAL PROPULSION SYSTBILS Final Report Submitted to Office of Naval Research R.A. Feranchak, R. B...MACHINES FOR MARINE ELECTRICAL PROPULSION SYSTEMS Final Technical Report Submitted to Office of Naval Research Contract N00014-.77-C-0307 Feranchak, R. A...OF0ANI ZATION NAME AND ADDRESS 0., PROGRAM ELtEMNT.PROJECT, TASK~~.i~ckev ~eiAREA & WORK UNIT NUMBERS Westinghouse Research & Develepment Center 1310
Design of a Smart Ultrasonic Transducer for Interconnecting Machine Applications
Yan, Tian-Hong; Wang, Wei; Chen, Xue-Dong; Li, Qing; Xu, Chang
2009-01-01
A high-frequency ultrasonic transducer for copper or gold wire bonding has been designed, analyzed, prototyped and tested. Modeling techniques were used in the design phase and a practical design procedure was established and used. The transducer was decomposed into its elementary components. For each component, an initial design was obtained with simulations using a finite elements model (FEM). Simulated ultrasonic modules were built and characterized experimentally through the Laser Doppler Vibrometer (LDV) and electrical resonance spectra. Compared with experimental data, the FEM could be iteratively adjusted and updated. Having achieved a remarkably highly-predictive FEM of the whole transducer, the design parameters could be tuned for the desired applications, then the transducer is fixed on the wire bonder with a complete holder clamping was calculated by the FEM. The approach to mount ultrasonic transducers on wire bonding machines also is of major importance for wire bonding in modern electronic packaging. The presented method can lead to obtaining a nearly complete decoupling clamper design of the transducer to the wire bonder. PMID:22408564
Chongtham, Dhanaraj Singh; Bahl, Ajay; Kumar, Rohit Manoj; Talwar, K K
2007-05-31
We report a patient with hypertrophic cardiomyopathy who received an inappropriate implantable cardioverter defibrillator shock due to electrical interference from a washing machine. This electrical interference was detected as an episode of ventricular fibrillation with delivery of shock without warning symptoms.
EQUIPMENT FOR SPARK-ASSISTED MACHINING (OBORUDOVANIE DLYA ELEKTROISKROVOI OBRABOTKI),
MACHINE TOOLS, * ELECTROEROSIVE MACHINING), MACHINE TOOL INDUSTRY, ELECTROFORMING, ELECTRODES, ELECTROLYTIC CAPACITORS, ELECTRIC DISCHARGES, TOLERANCES(MECHANICS), SURFACE ROUGHNESS, DIES, MOLDINGS, SYNTHETIC FIBERS, USSR
Power Electronics and Electric Machines Publications | Transportation
electric machines. For more information about the following publications, contact Sreekant Narumanchi. A , NREL Software Spray System Evaluation (Software 1.1 MB) Papers 2017 Electric Motor Thermal Management Source: Douglas DeVoto. 2017. 14 pp. NREL/MP-5400-67117. Power Electronics Thermal Management Research
Electrical Discharge Machining (EDM) Gun Barrel Bore and Rifling Feasibility Study
1974-09-01
11 I + | , + + in cri es sss asa f^piis aisa -^ nro^ HH^ S I I + VD 1X> ^3 Wfl ^mvo ^00...and high erosion rates encountered in high performance gun designs such as the GAU-7/A DD , :°N RM73 1473 EDITION OF 1 NOV 65 IS OBSOLETE
Interest-Based Curriculum for House Care Services: Science.
ERIC Educational Resources Information Center
Natchitoches Parish School Board, LA.
The interest-based curriculum materials are designed to correlate the subjects of English, math, science, and home economics and infuse academic skills into the world of work. The House Care Science curriculum guide is divided into five units: (1) measurement, (2) household chemistry, (3) household electricity, (4) household machines, and (5)…
Driving and controlling molecular surface rotors with a terahertz electric field.
Neumann, Jan; Gottschalk, Kay E; Astumian, R Dean
2012-06-26
Great progress has been made in the design and synthesis of molecular motors and rotors. Loosely inspired by biomolecular machines such as kinesin and the FoF1 ATPsynthase, these molecules are hoped to provide elements for construction of more elaborate structures that can carry out tasks at the nanoscale corresponding to the tasks accomplished by elementary machines in the macroscopic world. Most of the molecular motors synthesized to date suffer from the drawback that they operate relatively slowly (less than kHz). Here we show by molecular dynamics studies of a diethyl sulfide rotor on a gold(111) surface that a high-frequency oscillating electric field normal to the surface can drive directed rotation at GHz frequencies. The maximum directed rotation rate is 10(10) rotations per second, significantly faster than the rotation of previously reported directional molecular rotors. Understanding the fundamental basis of directed motion of surface rotors is essential for the further development of efficient externally driven artificial rotors. Our results represent a step toward the design of a surface-bound molecular rotary motor with a tunable rotation frequency and direction.
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; ...
2018-03-12
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
Metal release from coffee machines and electric kettles.
Müller, Frederic D; Hackethal, Christin; Schmidt, Roman; Kappenstein, Oliver; Pfaff, Karla; Luch, Andreas
2015-01-01
The release of elemental ions from 8 coffee machines and 11 electric kettles into food simulants was investigated. Three different types of coffee machines were tested: portafilter espresso machines, pod machines and capsule machines. All machines were tested subsequently on 3 days before and on 3 days after decalcification. Decalcification of the machines was performed with agents according to procedures as specified in the respective manufacturer's manuals. The electric kettles showed only a low release of the elements analysed. For the coffee machines decreasing concentrations of elements were found from the first to the last sample taken in the course of 1 day. Metal release on consecutive days showed a decreasing trend as well. After decalcification a large increase in the amounts of elements released was encountered. In addition, the different machine types investigated clearly differed in their extent of element release. By far the highest leaching, both quantitatively and qualitatively, was found for the portafilter machines. With these products releases of Pb, Ni, Mn, Cr and Zn were in the range and beyond the release limits as proposed by the Council of Europe. Therefore, a careful rinsing routine, especially after decalcification, is recommended for these machines. The comparably lower extent of release of one particular portafilter machine demonstrates that metal release at levels above the threshold that triggers health concerns are technically avoidable.
NASA Astrophysics Data System (ADS)
Skrzypek, Josef; Mesrobian, Edmond; Gungner, David J.
1989-03-01
The development of autonomous land vehicles (ALV) capable of operating in an unconstrained environment has proven to be a formidable research effort. The unpredictability of events in such an environment calls for the design of a robust perceptual system, an impossible task requiring the programming of a system bases on the expectation of future, unconstrained events. Hence, the need for a "general purpose" machine vision system that is capable of perceiving and understanding images in an unconstrained environment in real-time. The research undertaken at the UCLA Machine Perception Laboratory addresses this need by focusing on two specific issues: 1) the long term goals for machine vision research as a joint effort between the neurosciences and computer science; and 2) a framework for evaluating progress in machine vision. In the past, vision research has been carried out independently within different fields including neurosciences, psychology, computer science, and electrical engineering. Our interdisciplinary approach to vision research is based on the rigorous combination of computational neuroscience, as derived from neurophysiology and neuropsychology, with computer science and electrical engineering. The primary motivation behind our approach is that the human visual system is the only existing example of a "general purpose" vision system and using a neurally based computing substrate, it can complete all necessary visual tasks in real-time.
NASA Astrophysics Data System (ADS)
Rimbawati; Azis Hutasuhut, Abdul; Irsan Pasaribu, Faisal; Cholish; Muharnif
2017-09-01
There is an electric machine that can operate as a generator either single-phase or three-phase in almost every household and industry today. This electric engine cannot be labeled as a generator but can be functioned as a generator. The machine that is mentioned is “squirrel cage motors” or it is well-known as induction motor that can be found in water pumps, washing machines, fans, blowers and other industrial machines. The induction motor can be functioned as a generator when the rotational speed of the rotor is made larger than the speed of the rotary field. In this regard, this study aims to modify the remains of 3-phase induction motor to be a permanent generator. Data of research based conducted on the river flow of Rumah Sumbul Village, STM Hulu district of Deli Serdang. The method of this research is by changing rotor and stator winding on a 3 phase induction motor, so it can produce a generator with rotation speed of 500 rpm. Based on the research, it can be concluded that the output voltage generator has occurred a voltage drop 10% between before and after loading for Star circuit and 2% for Delta circuit.
Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlisle, R.P.; Zenzen, J.M.
1994-01-01
This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story ofmore » fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.« less
Chapter 9: The FTU Machine - Design Construction and Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzuto, A.; Annino, C.; Baldarelli, M.
2004-05-15
The main design features and guidelines for the construction of the 8-T cryogenically cooled Frascati Tokamak Upgrade (FTU) are presented. The main features include the very compact toroidal magnets based on the concept of the 'Bitter' type of coil with wedge-shaped turns, utilized for the first time for the Alcator A and C magnets, and the original configuration of the vacuum vessel (VV) structure, which is fully welded in order to achieve the required high strength and electric resistivity. The present toroidal limiter has been installed following several years of operation, and this installation has required the development of specificmore » remote-handling tools. The toroidal limiter consists of 12 independent sectors made of stainless steel carriers and molybdenum alloy (TZM) tiles. The main fabrication processes developed for the toroidal and poloidal coils as well as for the VV are described. It is to be noted that the assembly procedure has required very accurate machining of all the structures requiring several trials and steps. The machine has shown no problem in operating routinely at its maximum design values (8 T, 1.6 MA)« less
Calculation of design load for the MOD-5A 7.3 mW wind turbine system
NASA Technical Reports Server (NTRS)
Mirandy, L.; Strain, J. C.
1995-01-01
Design loads are presented for the General Electric MOD-SA wind turbine. The MOD-SA system consists of a 400 ft. diameter, upwind, two-bladed, teetered rotor connected to a 7.3 mW variable-speed generator. Fatigue loads are specified in the form of histograms for the 30 year life of the machine, while limit (or maximum) loads have been derived from transient dynamic analysis at critical operating conditions. Loads prediction was accomplished using state of the art aeroelastic analyses developed at General Electric. Features of the primary predictive tool - the Transient Rotor Analysis Code (TRAC) are described in the paper. Key to the load predictions are the following wind models: (1) yearly mean wind distribution; (2) mean wind variations during operation; (3) number of start/shutdown cycles; (4) spatially large gusts; and (5) spatially small gusts (local turbulence). The methods used to develop statistical distributions from load calculations represent an extension of procedures used in past wind programs and are believed to be a significant contribution to Wind Turbine Generator analysis. Test/theory correlations are presented to demonstrate code load predictive capability and to support the wind models used in the analysis. In addition MOD-5A loads are compared with those of existing machines. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department, under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.
Machine learning for the New York City power grid.
Rudin, Cynthia; Waltz, David; Anderson, Roger N; Boulanger, Albert; Salleb-Aouissi, Ansaf; Chow, Maggie; Dutta, Haimonti; Gross, Philip N; Huang, Bert; Ierome, Steve; Isaac, Delfina F; Kressner, Arthur; Passonneau, Rebecca J; Radeva, Axinia; Wu, Leon
2012-02-01
Power companies can benefit from the use of knowledge discovery methods and statistical machine learning for preventive maintenance. We introduce a general process for transforming historical electrical grid data into models that aim to predict the risk of failures for components and systems. These models can be used directly by power companies to assist with prioritization of maintenance and repair work. Specialized versions of this process are used to produce 1) feeder failure rankings, 2) cable, joint, terminator, and transformer rankings, 3) feeder Mean Time Between Failure (MTBF) estimates, and 4) manhole events vulnerability rankings. The process in its most general form can handle diverse, noisy, sources that are historical (static), semi-real-time, or realtime, incorporates state-of-the-art machine learning algorithms for prioritization (supervised ranking or MTBF), and includes an evaluation of results via cross-validation and blind test. Above and beyond the ranked lists and MTBF estimates are business management interfaces that allow the prediction capability to be integrated directly into corporate planning and decision support; such interfaces rely on several important properties of our general modeling approach: that machine learning features are meaningful to domain experts, that the processing of data is transparent, and that prediction results are accurate enough to support sound decision making. We discuss the challenges in working with historical electrical grid data that were not designed for predictive purposes. The “rawness” of these data contrasts with the accuracy of the statistical models that can be obtained from the process; these models are sufficiently accurate to assist in maintaining New York City’s electrical grid.
NASA Astrophysics Data System (ADS)
Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir
2017-10-01
The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.
Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems
NASA Technical Reports Server (NTRS)
Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey
2015-01-01
Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Pinch current limitation effect in plasma focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.; Saw, S. H.; INTI International University College, 71800 Nilai
The Lee model couples the electrical circuit with plasma focus dynamics, thermodynamics, and radiation. It is used to design and simulate experiments. A beam-target mechanism is incorporated, resulting in realistic neutron yield scaling with pinch current and increasing its versatility for investigating all Mather-type machines. Recent runs indicate a previously unsuspected 'pinch current limitation' effect. The pinch current does not increase beyond a certain value however low the static inductance is reduced to. The results indicate that decreasing the present static inductance of the PF1000 machine will neither increase the pinch current nor the neutron yield, contrary to expectations.
Study About Ceiling Design for Main Control Room of NPP with HFE
NASA Astrophysics Data System (ADS)
Gu, Pengfei; Ni, Ying; Chen, Weihua; Chen, Bo; Zhang, Jianbo; Liang, Huihui
Recently since human factor engineering (HFE) has been used in control room design of nuclear power plant (NPP), the human-machine interface (HMI) has been gradual to develop harmoniously, especially the use of the digital technology. Comparing with the analog technology which was used to human-machine interface in the past, human-machine interaction has been more enhanced. HFE and the main control room (MCR) design engineering of NPP is a combination of multidisciplinary cross, mainly related to electrical and instrument control, reactor, machinery, systems engineering and management disciplines. However, MCR is not only equipped with HMI provided by the equipments, but also more important for the operator to provide a work environment, such as the main control room ceiling. The ceiling design of main control room related to HFE which influences the performance of staff should also be considered in the design of the environment and aesthetic factors, especially the introduction of professional design experience and evaluation method. Based on Ling Ao phase II and Hong Yanhe project implementation experience, the study analyzes lighting effect, space partition, vision load about the ceiling of main control room of NPP. Combining with the requirements of standards, the advantages and disadvantages of the main control room ceiling design has been discussed, and considering the requirements of lightweight, noise reduction, fire prevention, moisture protection, the ceiling design solution of the main control room also has been discussed.
DOE-RCT-0003641 Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Edward; Lesster, Ted
2014-07-30
This program studied novel concepts for an Axial Flux Reluctance Machine to capture energy from marine hydrokinetic sources and compared their attributes to a Radial Flux Reluctance Machine which was designed under a prior Department of Energy program for the same application. Detailed electromagnetic and mechanical analyses were performed to determine the validity of the concept and to provide a direct comparison with the existing conventional Radial Flux Switched Reluctance Machine designed during the Advanced Wave Energy Conversion Project, DE-EE0003641. The alternate design changed the machine topology so that the flux that is switched flows axially rather than radially andmore » the poles themselves are long radially, as opposed to the radial flux machine that has pole pieces that are long axially. It appeared possible to build an axial flux machine that should be considerably more compact than the radial machine. In an “apples to apples” comparison, the same rules with regard to generating magnetic force and the fundamental limitations of flux density hold, so that at the heart of the machine the same torque equations hold. The differences are in the mechanical configuration that limits or enhances the change of permeance with rotor position, in the amount of permeable iron required to channel the flux via the pole pieces to the air-gaps, and in the sizing and complexity of the electrical winding. Accordingly it was anticipated that the magnetic component weight would be similar but that better use of space would result in a shorter machine with accompanying reduction in housing and support structure. For the comparison the pole count was kept the same at 28 though it was also expected that the radial tapering of the slots between pole pieces would permit a higher pole count machine, enabling the generation of greater power at a given speed in some future design. The baseline Radial Flux Machine design was established during the previous DOE program. Its characteristics were tabulated for use in comparing to the Axial Flux Machine. Three basic conceptual designs for the Axial Flux Machine were considered: (1) a machine with a single coil at the inner diameter of the machine, (2) a machine with a single coil at the outside diameter of the machine, and (3) a machine with a coil around each tooth. Slight variations of these basic configurations were considered during the study. Analysis was performed on these configurations to determine the best candidate design to advance to preliminary design, based on size, weight, performance, cost and manufacturability. The configuration selected as the most promising was the multi-pole machine with a coil around each tooth. This configuration provided the least complexity with respect to the mechanical configuration and manufacturing, which would yield the highest reliability and lowest cost machine of the three options. A preliminary design was performed on this selected configuration. For this first ever axial design of the multi rotor configuration the 'apples to apples' comparison was based on using the same length of rotor pole as the axial length of rotor pole in the radial machine and making the mean radius of the rotor in the axial machine the same as the air gap radius in the radial machine. The tooth to slot ratio at the mean radius of the axial machine was the same as the tooth to slot ratio of the radial machine. The comparison between the original radial flux machine and the new axial flux machine indicates that for the same torque, the axial flux machine diameter will be 27% greater, but it will have 30% of the length, and 76% of the weight. Based on these results, it is concluded that an axial flux reluctance machine presents a viable option for large generators to be used for the capture of wave energy. In the analysis of Task 4, below, it is pointed out that our selection of dimensional similarity for the 'apples to apples' comparison did not produce an optimum axial flux design. There is torque capability to spare, implying we could reduce the magnetic structure, but the winding area, constrained by the pole separation at the inner pole radius has a higher resistance than desirable, implying we need more room for copper. The recommendation is to proceed via one cycle of optimization and review to correct this unbalance and then proceed to a detailed design phase to produce manufacturing drawings, followed by the construction of a prototype to test the performance of the machine against predicted results.« less
Bearingless AC Homopolar Machine Design and Control for Distributed Flywheel Energy Storage
NASA Astrophysics Data System (ADS)
Severson, Eric Loren
The increasing ownership of electric vehicles, in-home solar and wind generation, and wider penetration of renewable energies onto the power grid has created a need for grid-based energy storage to provide energy-neutral services. These services include frequency regulation, which requires short response-times, high power ramping capabilities, and several charge cycles over the course of one day; and diurnal load-/generation-following services to offset the inherent mismatch between renewable generation and the power grid's load profile, which requires low self-discharge so that a reasonable efficiency is obtained over a 24 hour storage interval. To realize the maximum benefits of energy storage, the technology should be modular and have minimum geographic constraints, so that it is easily scalable according to local demands. Furthermore, the technology must be economically viable to participate in the energy markets. There is currently no storage technology that is able to simultaneously meet all of these needs. This dissertation focuses on developing a new energy storage device based on flywheel technology to meet these needs. It is shown that the bearingless ac homopolar machine can be used to overcome key obstacles in flywheel technology, namely: unacceptable self-discharge and overall system cost and complexity. Bearingless machines combine the functionality of a magnetic bearing and a motor/generator into a single electromechanical device. Design of these machines is particularly challenging due to cross-coupling effects and trade-offs between motor and magnetic bearing capabilities. The bearingless ac homopolar machine adds to these design challenges due to its 3D flux paths requiring computationally expensive 3D finite element analysis. At the time this dissertation was started, bearingless ac homopolar machines were a highly immature technology. This dissertation advances the state-of-the-art of these machines through research contributions in the areas of magnetic modeling, winding design, control, and power-electronic drive implementation. While these contributions are oriented towards facilitating more optimal flywheel designs, they will also be useful in applying the bearingless ac homopolar machine in other applications. Example designs are considered through finite element analysis and experimental validation is provided from a proof-of-concept prototype that has been designed and constructed as a part of this dissertation.
Developments for the ICRH System of the Ignitor Machine
NASA Astrophysics Data System (ADS)
Sassi, M.; Mantovani, S.; Coppi, B.
2014-10-01
The ICRH system that is suitable for the high-density plasmas to be produced by the Ignitor machine has been designed and components of it have been tested. This system will operate over the range 80-120 MHz, consistently with magnetic fields in the range 9-13 T. The maximum delivered power is in the interval 8 MW (at 80 MHz) to 6 MW (at 120 MHz) distributed over 4 ports. A full size prototype of the VTL between the port flange and the antenna straps, with the external support and precise guiding system has been constructed. The innovative quick latching system located at the end of the coaxial cable has been successfully tested, providing perfect interference with the spring Be-Cu electrical contacts. Vacuum levels of 10-6, compatible with the limit of material degassing, and electrical tests up to 12 kV without discharges have been obtained. Sponsored in part by the US DOE.
NASA Astrophysics Data System (ADS)
Elfgen, S.; Franck, D.; Hameyer, K.
2018-04-01
Magnetic measurements are indispensable for the characterization of soft magnetic material used e.g. in electrical machines. Characteristic values are used as quality control during production and for the parametrization of material models. Uncertainties and errors in the measurements are reflected directly in the parameters of the material models. This can result in over-dimensioning and inaccuracies in simulations for the design of electrical machines. Therefore, existing influencing factors in the characterization of soft magnetic materials are named and their resulting uncertainties contributions studied. The analysis of the resulting uncertainty contributions can serve the operator as additional selection criteria for different measuring sensors. The investigation is performed for measurements within and outside the currently prescribed standard, using a Single sheet tester and its impact on the identification of iron loss parameter is studied.
Geometry and surface damage in micro electrical discharge machining of micro-holes
NASA Astrophysics Data System (ADS)
Ekmekci, Bülent; Sayar, Atakan; Tecelli Öpöz, Tahsin; Erden, Abdulkadir
2009-10-01
Geometry and subsurface damage of blind micro-holes produced by micro electrical discharge machining (micro-EDM) is investigated experimentally to explore the relational dependence with respect to pulse energy. For this purpose, micro-holes are machined with various pulse energies on plastic mold steel samples using a tungsten carbide tool electrode and a hydrocarbon-based dielectric liquid. Variations in the micro-hole geometry, micro-hole depth and over-cut in micro-hole diameter are measured. Then, unconventional etching agents are applied on the cross sections to examine micro structural alterations within the substrate. It is observed that the heat-damaged segment is composed of three distinctive layers, which have relatively high thicknesses and vary noticeably with respect to the drilling depth. Crack formation is identified on some sections of the micro-holes even by utilizing low pulse energies during machining. It is concluded that the cracking mechanism is different from cracks encountered on the surfaces when machining is performed by using the conventional EDM process. Moreover, an electrically conductive bridge between work material and debris particles is possible at the end tip during machining which leads to electric discharges between the piled segments of debris particles and the tool electrode during discharging.
Design and performance tests of a distributed power-driven wheel loader
NASA Astrophysics Data System (ADS)
Jin, Xiaolin; Shi, Laide; Bian, Yongming
2010-03-01
An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.
Design and performance tests of a distributed power-driven wheel loader
NASA Astrophysics Data System (ADS)
Jin, Xiaolin; Shi, Laide; Bian, Yongming
2009-12-01
An improved ZLM15B distributed power-driven wheel loader was designed, whose travel and brake system was accomplished by two permanent magnet synchronous motorized-wheels instead of traditional mechanical components, and whose hydraulic systems such as the working device system and steering system were both actuated by an induction motor. All above systems were flexibly coupled with 3-phase 380VAC electric power with which the diesel engine power is replaced. On the level cement road, traveling, braking, traction and steering tests were carried out separately under non-load and heavy-load conditions. Data show that machine speed is 5 km/h around and travel efficiency of motorized-wheels is above 95%; that machine braking deceleration is between 0.5 and 0.64 m/s2 but efficiency of motorized-wheels is less than 10%; that maximum machine traction is above 2t while efficiency of motorized-wheels is more than 90% and that adaptive differential steering can be smoothly achieved by motorized-wheels.
NASA Astrophysics Data System (ADS)
Chilur, Rudragouda; Kumar, Sushilendra
2018-06-01
The Maize ( Zea mays L.) crop is one of the most important cereal in agricultural production systems of Northern Transition Zone (Hyderabad-Karnataka region) in India. These Hyderabad Karnataka farmers (small-medium) are lack of economic technologies with maize dehusking and shelling, which fulfils the two major needs as crops and as livestock in farming. The portable medium size (600 kg/h capacity) electric motor (2.23 kW) operated Maize Dehusker cum Sheller (MDS) was designed to resolve the issue by considering engineering properties of maize. The developed trapezium shaped MDS machine having overall dimensions (length × (top and bottom) × height) of 1200 × (500 and 610) × 810 mm. The selected operational parameters viz, cylinder peripheral speed (7.1 m/s), concave clearance (25 mm) and feed rate (600 kg/h) were studied for machine-performance and seed-quality parameters. The performance of machine under these parameters showed the dehusking efficiency of 99.56%, shelling efficiency of 98.01%, cleaning efficiency of 99.11%, total loss of 3.63% machine capacity of 527.11 kg/kW-h and germination percentage of 98.93%. Overall machine performance was found satisfactory for maize dehusking cum shelling operation as well as to produce the maize grains for seeding purpose.
NASA Astrophysics Data System (ADS)
Chilur, Rudragouda; Kumar, Sushilendra
2018-02-01
The Maize (Zea mays L.) crop is one of the most important cereal in agricultural production systems of Northern Transition Zone (Hyderabad-Karnataka region) in India. These Hyderabad Karnataka farmers (small-medium) are lack of economic technologies with maize dehusking and shelling, which fulfils the two major needs as crops and as livestock in farming. The portable medium size (600 kg/h capacity) electric motor (2.23 kW) operated Maize Dehusker cum Sheller (MDS) was designed to resolve the issue by considering engineering properties of maize. The developed trapezium shaped MDS machine having overall dimensions (length × (top and bottom) × height) of 1200 × (500 and 610) × 810 mm. The selected operational parameters viz, cylinder peripheral speed (7.1 m/s), concave clearance (25 mm) and feed rate (600 kg/h) were studied for machine-performance and seed-quality parameters. The performance of machine under these parameters showed the dehusking efficiency of 99.56%, shelling efficiency of 98.01%, cleaning efficiency of 99.11%, total loss of 3.63% machine capacity of 527.11 kg/kW-h and germination percentage of 98.93%. Overall machine performance was found satisfactory for maize dehusking cum shelling operation as well as to produce the maize grains for seeding purpose.
A micro-machined source transducer for a parametric array in air.
Lee, Haksue; Kang, Daesil; Moon, Wonkyu
2009-04-01
Parametric array applications in air, such as highly directional parametric loudspeaker systems, usually rely on large radiators to generate the high-intensity primary beams required for nonlinear interactions. However, a conventional transducer, as a primary wave projector, requires a great deal of electrical power because its electroacoustic efficiency is very low due to the large characteristic mechanical impedance in air. The feasibility of a micro-machined ultrasonic transducer as an efficient finite-amplitude wave projector was studied. A piezoelectric micro-machined ultrasonic transducer array consisting of lead zirconate titanate uni-morph elements was designed and fabricated for this purpose. Theoretical and experimental evaluations showed that a micro-machined ultrasonic transducer array can be used as an efficient source transducer for a parametric array in air. The beam patterns and propagation curves of the difference frequency wave and the primary wave generated by the micro-machined ultrasonic transducer array were measured. Although the theoretical results were based on ideal parametric array models, the theoretical data explained the experimental results reasonably well. These experiments demonstrated the potential of micro-machined primary wave projector.
Power Electronics and Electric Machines Facilities | Transportation
current processes. Photo by Dennis Schroeder, NREL A photo of a researcher in safety glasses using a large focus in NREL's power electronics and electric machines labs. Photo by Dennis Schroeder, NREL Heat
Bucak, Ihsan Ömür
2010-01-01
In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.
Bucak, İhsan Ömür
2010-01-01
In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion. PMID:22294906
Control system for, and a method of, heating an operator station of a work machine
Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad
2005-04-05
There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
The CCRI Electric Boat Program: A Partnership for Progress in Economic Development.
ERIC Educational Resources Information Center
Liston, Edward J.
The Community College of Rhode Island (CCRI) has made a strong commitment to building partnerships with business and industry. CCRI's first customized training program was developed in 1982 with the National Tooling and Machine Association (NTMA), and was designed to enable apprentice machinists to receive the classroom training required to earn a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, J.T.; Chu, L.A.
The modular nature of gasification-combined-cycle (GCC) plants is known to facilitate capacity addition in increments (phased construction) that may match more closely with the anticipated growth in electrical load. Because the gas turbines are the primary building blocks of a phased GCC plant, utility planners are investigating in more detail prospective gas turbines of current and advanced designs developed by several manufacturers. This report summarizes the results of the evaluation of a GCC power plant based on the Kraftwerk Union Model V84.2 gas turbines of the current design now offered for the US market. The design of the Model V84.2more » machine, a scaled-down version of Kraftwerk Union's 50 Hz Model V94 machine, incorporates features suitable for burning gases, such as coal-derived synthesis gas. 14 figs., 42 tabs.« less
Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure
Garcia-Garibay, Miguel A.
2005-01-01
Crystalline molecular machines represent an exciting new branch of crystal engineering and materials science with important implications to nanotechnology. Crystalline molecular machines are crystals built with molecules that are structurally programmed to respond collectively to mechanic, electric, magnetic, or photonic stimuli to fulfill specific functions. One of the main challenges in their construction derives from the picometric precision required for their mechanic operation within the close-packed, self-assembled environment of crystalline solids. In this article, we outline some of the general guidelines for their design and apply them for the construction of molecular crystals with units intended to emulate macroscopic gyroscopes and compasses. Recent advances in the preparation, crystallization, and dynamic characterization of these interesting systems offer a foothold to the possibilities and help highlight some avenues for future experimentation. PMID:16046543
Aggregation of Electric Current Consumption Features to Extract Maintenance KPIs
NASA Astrophysics Data System (ADS)
Simon, Victor; Johansson, Carl-Anders; Galar, Diego
2017-09-01
All electric powered machines offer the possibility of extracting information and calculating Key Performance Indicators (KPIs) from the electric current signal. Depending on the time window, sampling frequency and type of analysis, different indicators from the micro to macro level can be calculated for such aspects as maintenance, production, energy consumption etc. On the micro-level, the indicators are generally used for condition monitoring and diagnostics and are normally based on a short time window and a high sampling frequency. The macro indicators are normally based on a longer time window with a slower sampling frequency and are used as indicators for overall performance, cost or consumption. The indicators can be calculated directly from the current signal but can also be based on a combination of information from the current signal and operational data like rpm, position etc. One or several of those indicators can be used for prediction and prognostics of a machine's future behavior. This paper uses this technique to calculate indicators for maintenance and energy optimization in electric powered machines and fleets of machines, especially machine tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vevera, Bradley J; Hyres, James W; McClintock, David A
2014-01-01
Irradiated AISI 316L stainless steel disks were removed from the Spallation Neutron Source (SNS) for post-irradiation examination (PIE) to assess mechanical property changes due to radiation damage and erosion of the target vessel. Topics reviewed include high-resolution photography of the disk specimens, cleaning to remove mercury (Hg) residue and surface oxides, profile mapping of cavitation pits using high frequency ultrasonic testing (UT), high-resolution surface replication, and machining of test specimens using wire electrical discharge machining (EDM), tensile testing, Rockwell Superficial hardness testing, Vickers microhardness testing, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The effectiveness of the cleaning proceduremore » was evident in the pre- and post-cleaning photography and permitted accurate placement of the test specimens on the disks. Due to the limited amount of material available and the unique geometry of the disks, machine fixturing and test specimen design were critical aspects of this work. Multiple designs were considered and refined during mock-up test runs on unirradiated disks. The techniques used to successfully machine and test the various specimens will be presented along with a summary of important findings from the laboratory examinations.« less
Optical HMI with biomechanical energy harvesters integrated in textile supports
NASA Astrophysics Data System (ADS)
De Pasquale, G.; Kim, SG; De Pasquale, D.
2015-12-01
This paper reports the design, prototyping and experimental validation of a human-machine interface (HMI), named GoldFinger, integrated into a glove with energy harvesting from fingers motion. The device is addressed to medical applications, design tools, virtual reality field and to industrial applications where the interaction with machines is restricted by safety procedures. The HMI prototype includes four piezoelectric transducers applied to the fingers backside at PIP (proximal inter-phalangeal) joints, electric wires embedded in the fabric connecting the transducers, aluminum case for the electronics, wearable switch made with conductive fabrics to turn the communication channel on and off, and a LED. The electronic circuit used to manage the power and to control the light emitter includes a diodes bridge, leveling capacitors, storage battery and switch made by conductive fabric. The communication with the machine is managed by dedicated software, which includes the user interface, the optical tracking, and the continuous updating of the machine microcontroller. The energetic benefit of energy harvester on the battery lifetime is inversely proportional to the activation time of the optical emitter. In most applications, the optical port is active for 1 to 5% of the time, corresponding to battery lifetime increasing between about 14% and 70%.
NASA Astrophysics Data System (ADS)
Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.
2017-12-01
The article deals with modern methods of monitoring the state and predicting the life of electric machines. In 50% of the cases of failure in the performance of electric machines is associated with insulation damage. As promising, nondestructive methods of control, methods based on the investigation of the processes of polarization occurring in insulating materials are proposed. To improve the accuracy of determining the state of insulation, a multiparametric approach is considered, which is a basis for the development of an expert system for estimating the state of health.
Apparatus for cooling an electric machine
Palafox, Pepe; Gerstler, William Dwight; Shen, Xiaochun; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Salasoo, Lembit
2013-07-16
Provided is an apparatus, for example, for use with a rotating electric machine, that includes a housing. The housing can include a housing main portion and a housing end portion. The housing main portion can be configured to be disposed proximal to a body portion of a stator section of an electric machine. The housing main portion can define a main fluid channel that is configured to conduct fluid therethrough. The housing end portion can receive fluid from said main fluid channel and direct fluid into contact with a winding end portion of a conductive winding of the stator section.
High slot utilization systems for electric machines
Hsu, John S
2009-06-23
Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.
An overview of large wind turbine tests by electric utilities
NASA Technical Reports Server (NTRS)
Vachon, W. A.; Schiff, D.
1982-01-01
A summary of recent plants and experiences on current large wind turbine (WT) tests being conducted by electric utilities is provided. The test programs discussed do not include federal research and development (R&D) programs, many of which are also being conducted in conjunction with electric utilities. The information presented is being assembled in a project, funded by the Electric Power Research Institute (EPRI), the objective of which is to provide electric utilities with timely summaries of test performance on key large wind turbines. A summary of key tests, test instrumentation, and recent results and plans is given. During the past year, many of the utility test programs initiated have encountered test difficulties that required specific WT design changes. However, test results to date continue to indicate that long-term machine performance and cost-effectiveness are achievable.
Surface structuring of boron doped CVD diamond by micro electrical discharge machining
NASA Astrophysics Data System (ADS)
Schubert, A.; Berger, T.; Martin, A.; Hackert-Oschätzchen, M.; Treffkorn, N.; Kühn, R.
2018-05-01
Boron doped diamond materials, which are generated by Chemical Vapor Deposition (CVD), offer a great potential for the application on highly stressed tools, e. g. in cutting or forming processes. As a result of the CVD process rough surfaces arise, which require a finishing treatment in particular for the application in forming tools. Cutting techniques such as milling and grinding are hardly applicable for the finish machining because of the high strength of diamond. Due to its process principle of ablating material by melting and evaporating, Electrical Discharge Machining (EDM) is independent of hardness, brittleness or toughness of the workpiece material. EDM is a suitable technology for machining and structuring CVD diamond, since boron doped CVD diamond is electrically conductive. In this study the ablation characteristics of boron doped CVD diamond by micro electrical discharge machining are investigated. Experiments were carried out to investigate the influence of different process parameters on the machining result. The impact of tool-polarity, voltage and discharge energy on the resulting erosion geometry and the tool wear was analyzed. A variation in path overlapping during the erosion of planar areas leads to different microstructures. The results show that micro EDM is a suitable technology for finishing of boron doped CVD diamond.
Performance Assessment of Flashed Steam Geothermal Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alt, Theodore E.
1980-12-01
Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor ismore » the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.« less
NASA Astrophysics Data System (ADS)
Sahu, Anshuman Kumar; Chatterjee, Suman; Nayak, Praveen Kumar; Sankar Mahapatra, Siba
2018-03-01
Electrical discharge machining (EDM) is a non-traditional machining process which is widely used in machining of difficult-to-machine materials. EDM process can produce complex and intrinsic shaped component made of difficult-to-machine materials, largely applied in aerospace, biomedical, die and mold making industries. To meet the required applications, the EDMed components need to possess high accuracy and excellent surface finish. In this work, EDM process is performed using Nitinol as work piece material and AlSiMg prepared by selective laser sintering (SLS) as tool electrode along with conventional copper and graphite electrodes. The SLS is a rapid prototyping (RP) method to produce complex metallic parts by additive manufacturing (AM) process. Experiments have been carried out varying different process parameters like open circuit voltage (V), discharge current (Ip), duty cycle (τ), pulse-on-time (Ton) and tool material. The surface roughness parameter like average roughness (Ra), maximum height of the profile (Rt) and average height of the profile (Rz) are measured using surface roughness measuring instrument (Talysurf). To reduce the number of experiments, design of experiment (DOE) approach like Taguchi’s L27 orthogonal array has been chosen. The surface properties of the EDM specimen are optimized by desirability function approach and the best parametric setting is reported for the EDM process. Type of tool happens to be the most significant parameter followed by interaction of tool type and duty cycle, duty cycle, discharge current and voltage. Better surface finish of EDMed specimen can be obtained with low value of voltage (V), discharge current (Ip), duty cycle (τ) and pulse on time (Ton) along with the use of AlSiMg RP electrode.
380 kW synchronous machine with HTS rotor windings--development at Siemens and first test results
NASA Astrophysics Data System (ADS)
Nick, W.; Nerowski, G.; Neumüller, H.-W.; Frank, M.; van Hasselt, P.; Frauenhofer, J.; Steinmeyer, F.
2002-08-01
Applying HTS conductors in the rotor of synchronous machines allows the design of future motors or generators that are lighter, more compact and feature an improved coefficient of performance. To address these goals a project collaboration was installed within Siemens, including Automation & Drives, Large Drives as a leading supplier of electrical machines, Corporate Technology as a competence center for superconducting technology, and other partners. The main task of the project was to demonstrate the feasibility of basic concepts. The rotor was built from racetrack coils of Bi-2223 HTS tape conductor, these were assembled on a core and fixed by a bandage of glass-fibre composite. Rotor coil cooling is performed by thermal conduction, one end of the motor shaft is hollow to give access for the cooling system. Two cooling systems were designed and operated successfully: firstly an open circuit using cold gaseous helium from a storage vessel, but also a closed circuit system based on a cryogenerator. To take advantage of the increased rotor induction levels the stator winding was designed as an air gap winding. This was manufactured and fitted in a standard motor housing. After assembling of the whole system in a test facility with a DC machine load experiments have been started to prove the validity of our design, including operation with both cooling systems and driving the stator from the grid as well as by a power inverter.
Calculation of parameters of technological equipment for deep-sea mining
NASA Astrophysics Data System (ADS)
Yungmeister, D. A.; Ivanov, S. E.; Isaev, A. I.
2018-03-01
The actual problem of extracting minerals from the bottom of the world ocean is considered. On the ocean floor, three types of minerals are of interest: iron-manganese concretions (IMC), cobalt-manganese crusts (CMC) and sulphides. The analysis of known designs of machines and complexes for the extraction of IMC is performed. These machines are based on the principle of excavating the bottom surface; however such methods do not always correspond to “gentle” methods of mining. The ecological purity of such mining methods does not meet the necessary requirements. Such machines require the transmission of high electric power through the water column, which in some cases is a significant challenge. The authors analyzed the options of transportation of the extracted mineral from the bottom. The paper describes the design of machines that collect IMC by the method of vacuum suction. In this method, the gripping plates or drums are provided with cavities in which a vacuum is created and individual IMC are attracted to the devices by a pressure drop. The work of such machines can be called “gentle” processing technology of the bottom areas. Their environmental impact is significantly lower than mechanical devices that carry out the raking of IMC. The parameters of the device for lifting the IMC collected on the bottom are calculated. With the use of Kevlar ropes of serial production up to 0.06 meters in diameter, with a cycle time of up to 2 hours and a lifting speed of up to 3 meters per second, a productivity of about 400,000 tons per year can be realized for IMC. The development of machines based on the calculated parameters and approbation of their designs will create a unique complex for the extraction of minerals at oceanic deposits.
Permanent-Magnet Motors and Generators for Aircraft
NASA Technical Reports Server (NTRS)
Echolds, E. F.
1983-01-01
Electric motors and generators that use permarotating machinery, but aspects of control and power conditioning are also considered. The discussion is structured around three basic areas: rotating machine design considerations presents various configuration and material options, generator applications provides insight into utilization areas and shows actual hardware and test results, and motor applications provides the same type of information for drive systems.
Strategic Alliances: Making a Difference One Warfighter At a Time
2011-03-12
Prototype Integration Planning Machining / CNC / Metals Welding Assembly / Paint Integration •Field-Experienced Veterans •Component, Subsystems...Wiring Harness •CAD/CAM CNC Programming •Quick reaction of parts - CNC , Lathes, Mills, Water Jet/Laser Cutting Design •Mechanical, Electrical...DEFORMATION RESISTANCE WELDING • Tubular Structural welding, Light weight structures COMBINED PLASMA -MIG ARC WELDING • Faster than any other
TACOM LCMC Industrial Base Networking Summit
2010-03-25
CAD/CAM CNC Programming •Quick reaction of parts - CNC , Lathes , Mills, Water Jet/Laser Cutting Design •Mechanical, Electrical, Electronics...system that can efficiently fabricate standard and unique parts at the point of need • Lathe modules deployed at 4 strategic SWA locations • Concepts...Prototype Integration Planning Machining / CNC / Metals Welding Assembly / Paint Integration •Field-Experienced Veterans •Component, Subsystems
Description of photovoltaic village power systems in the United States and Africa
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.; Bifano, W. J.
1979-01-01
Photovoltaic power systems in remote villages in the United States and Africa are described. These projects were undertaken to demonstrate that existing photovoltaic system technology is capable of providing electrical power for basic domestic services for the millions of small, remote communities in both developed and developing countries. One system is located in the Papago Indian Village of Schuchuli in southwest Arizona (U. S.) and became operational 16 December 1978. The other system is located in Tangaye, a rural village in Upper Volta, Africa. It became operational 1 March 1979. The Schuchuli system has a 3.5 kW (peak) solar array which provides electric power for village water pumping, a refrigerator for each family, lights in the village buildings, and a community washing machine and sewing machine. The 1.8 kW (peak) Tangaye system provides power for community water pumping, flour milling and lights in the milling building. These are both stand-alone systems (i.e., no back-up power source) which are being operated and maintained by local personnel. Both systems are instrumented. Systems operations are being monitored by NASA to measure design adequacy and to refine designs for future systems.
Rotating magnetizations in electrical machines: Measurements and modeling
NASA Astrophysics Data System (ADS)
Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay
2018-05-01
This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.
2011-03-01
input spindle from the engine to over tighten and apply an even greater amount of resistance to the engine shaft . Not only was this dangerous to...Mengistu, Todd Rotramel, and Matt Rippl, all of whom worked together with me to design and build the test rig for our dynamometer setup. Countless...hours were spent together planning and executing the design and building the stand itself. The AFIT machine shop crew and ENY lab techs also
Sustainable manufacturing by calculating the energy demand during turning of AISI 1045 steel
NASA Astrophysics Data System (ADS)
Nur, R.; Nasrullah, B.; Suyuti, M. A.; Apollo
2018-01-01
Sustainable development will become important issues for many fields, including production, industry, and manufacturing. In order to achieve sustainable development, industry should be able to perform of sustainable production processes and environmentally friendly. Therefore, there is need to minimize the energy demand in the machining process. This paper presents a calculation method of energy consumption in the machining process, especially turning process which calculated by summing the number of energy consumption, such as the electric energy consumed during the machining preparation, the electrical energy during the cutting processes, and the electrical energy to produce a cutting tool. A case study was performed on dry turning of mild carbon steel using coated carbide. This approach can be used to determine the total amount of electrical energy consumed in the specific machining process. It concluded that the energy consumption will be an increase for using the high cutting speed as well as for the feed rate was increased.
Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes
NASA Astrophysics Data System (ADS)
Sari, M. M.; Noordin, M. Y.; Brusa, E.
2012-09-01
Electrical discharge machining (EDM) is one of the most accurate non traditional manufacturing processes available for creating tiny apertures, complex or simple shapes and geometries within parts and assemblies. Performance of the EDM process is usually evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product, after machining. Unfortunately, the high heat generated on the electrically discharged material during the EDM process decreases the quality of products. Carbon nanotubes display unexpected strength and unique electrical and thermal properties. Multi-wall carbon nanotubes are therefore on purpose added to the dielectric used in the EDM process to improve its performance when machining the AISI H13 tool steel, by means of copper electrodes. Some EDM parameters such as material removal rate, electrode wear rate, surface roughness and recast layer are here first evaluated, then compared to the outcome of EDM performed without using nanotubes mixed to the dielectric. Independent variables investigated are pulse on time, peak current and interval time. Experimental evidences show that EDM process operated by mixing multi-wall carbon nanotubes within the dielectric looks more efficient, particularly if machining parameters are set at low pulse of energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agazzone, U.; Ausiello, F.P.
1981-06-23
A power-generating installation comprises a plurality of modular power plants each comprised of an internal combustion engine connected to an electric machine. The electric machine is used to start the engine and thereafter operates as a generator supplying power to an electrical network common to all the modular plants. The installation has a control and protection system comprising a plurality of control modules each associated with a respective plant, and a central unit passing control signals to the modules to control starting and stopping of the individual power plants. Upon the detection of abnormal operation or failure of its associatedmore » power plant, each control module transmits an alarm signal back to the central unit which thereupon stops, or prevents the starting, of the corresponding power plant. Parameters monitored by each control module include generated current and inter-winding leakage current of the electric machine.« less
Electric converters of electromagnetic strike machine with battery power
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.
2018-03-01
At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.
Molecular machines open cell membranes
NASA Astrophysics Data System (ADS)
García-López, Víctor; Chen, Fang; Nilewski, Lizanne G.; Duret, Guillaume; Aliyan, Amir; Kolomeisky, Anatoly B.; Robinson, Jacob T.; Wang, Gufeng; Pal, Robert; Tour, James M.
2017-08-01
Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.
Molecular machines open cell membranes.
García-López, Víctor; Chen, Fang; Nilewski, Lizanne G; Duret, Guillaume; Aliyan, Amir; Kolomeisky, Anatoly B; Robinson, Jacob T; Wang, Gufeng; Pal, Robert; Tour, James M
2017-08-30
Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.
Man and machine design for space flight
NASA Technical Reports Server (NTRS)
Louviere, A. J.
1979-01-01
The factors involved in creating effective designs for living and working in a weightless environment are discussed. Among the areas covered are special provisions for eating and drinking, a special shower nozzle to remove soap, electric shavers designed for vacuum containment of the clippings, and the need for restraint systems at the crew's workstations. Attention is given to the fact that the crewmen assume a neutral body posture in weightlessness which is an important consideration in designing displays, controls, and windows. It is concluded that the incorporation of the change in body posture and the requirement for restraint into future designs will greatly facilitate the crewman's task in the weightless environment.
NASA Technical Reports Server (NTRS)
Williams, P.; Sagraniching, E.; Bennett, M.; Singh, R.
1991-01-01
A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight.
Axial gap rotating electrical machine
None
2016-02-23
Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.
Feasibility Study of Thin Film Thermocouple Piles
NASA Technical Reports Server (NTRS)
Sisk, R. C.
2001-01-01
Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.
Contributions a l'etude et a l'application industrielle de la machine asynchrone
NASA Astrophysics Data System (ADS)
Ouhrouche, Mohand-Ameziane
The work presented in this thesis, done in the Electrical Drives Laboratory of Electrical and Computer Engineering Department, deals with the industrial applications of a three-phase induction machine (electrical drives and electricity generation). This thesis, characterized by its multidisciplinary content, has two major parts. The first one deals with the on-line and off-line parametric identification of the induction machine model necessary to achieve accurate vector control strategy. The second part, which is a resume of a research work sponsored by Hydro-Quebec, deals with the application of an induction machine in Asynchronous Non Utility Generators units (ANUG). As it is shown in the following, major scientific contributions are made in both two parts. In the first part of our research work, we propose a new speed sensorless vector control strategy for an induction machine, which is adaptive to the rotor resistance variations. The proposed control strategy is based on the Extended Kalman Filter approach and a decoupling controller which takes into account the rotor resistance variations. The consideration of coupled electrical and mechanical modes leads to a fifth order nonlinear model of the induction machine. The load torque is taken as a function of the rotor angular speed. The Extended Kalman Filter, based on the process's nonlinear (bilinear) model, estimate simultaneously the rotor resistance, angular speed and the flux vector from the startup to the steady state equilibrium point. The machine-converter-control system is implemented in MATLAB/SIMULINK environment and the obtained results confirm the robustness of the proposed scheme. As in the electrical drives erea, the induction machine is now widely used by small to medium power Non Utility Generator units (NUG) to produce electricity. In Quebec, these NUGs units are integrated into the Hydro-Quebec 25 kV distribution system via transformer which exhibit nonlinear characteristics. We have shown by using the ElectroMagnetic Program (EMTP) that, in some islanding scenarios, i.e. that the NUG unit is disconnected from the power grid, in addition to frequency variations, appearence of high an abnormal overvoltages, ferroresonance should occur. As a consequence, normal protective devices could fail to securely operate, which could cause serious damages to the equipment and the maintenance staff. This result, established for the first time , can be useful to improve the reliability of the NUGs units and is considered important by the power engineering community. This has led to a publication in the John Wiley & Sons Encyclopedia of Electrical and Electronics Engineering which will be available in February 1999 ( http://www.engr.wisc.edu/ ece/ece).
Understanding the electrical characteristics of micromotors
NASA Astrophysics Data System (ADS)
Emadi, Ali; Irudayaraj, Sujay S.
2005-06-01
This paper presents a comprehensive list of issues related to the electrical characteristics of both electrostatic and electromagnetic micromotors and aims at understanding the behavior of the micromotor from the electrical standpoint. The paper takes the step-by-step approach by first presenting an overview of the laws of electrostatics and electromagnetism for micromachines, their applicability, features and limitations, and then progresses to independently analyze some of the important machine related quantities like electromotive torque, force-output, angular frequencies, supply conditions and requirements, for different types of electrostatic and electromagnetic micromotor constructions. A thorough study on the electric machine parameters that affect the performance of the micromotor need to be performed, since it would serve as a useful link in integrating the micromachine output performance with the fabrication process and challenges associated with it. Achieving such integration would then determine the optimized working condition for the micromotor. The main reason for this study is that although significant advancements have fostered the growth of micromotors in the recent past which has led to the establishment of the micromotor as quite a remarkable machine for powering micromechanical devices, and also as an industrial requirement for various applications, there has always been a concern about the optimal performance of the micromotor, since there is more than just one technology that is being incorporated to realize the micromotor. With fields ranging from surface engineering and chemistry to material science engineering exerting influence on the micromotor design, it becomes very important to completely comprehend the electrophysics of the micromachine that would in turn interact with the science of fabrication to result in the development of better micromotors with considerably less functional complexity.
NASA Astrophysics Data System (ADS)
Horodinca, M.
2016-08-01
This paper intend to propose some new results related with computer aided monitoring of transient regimes on machine-tools based on the evolution of active electrical power absorbed by the electric motor used to drive the main kinematic chains and the evolution of rotational speed and acceleration of the main shaft. The active power is calculated in numerical format using the evolution of instantaneous voltage and current delivered by electrical power system to the electric motor. The rotational speed and acceleration of the main shaft are calculated based on the signal delivered by a sensor. Three real-time analogic signals are acquired with a very simple computer assisted setup which contains a voltage transformer, a current transformer, an AC generator as rotational speed sensor, a data acquisition system and a personal computer. The data processing and analysis was done using Matlab software. Some different transient regimes were investigated; several important conclusions related with the advantages of this monitoring technique were formulated. Many others features of the experimental setup are also available: to supervise the mechanical loading of machine-tools during cutting processes or for diagnosis of machine-tools condition by active electrical power signal analysis in frequency domain.
Effect of electric discharge machining on the fatigue life of Inconel 718
NASA Technical Reports Server (NTRS)
Jeelani, S.; Collins, M. R.
1988-01-01
The effect of electric discharge machining on the fatigue life of Inconel 718 alloy at room temperature was investigated. Data were generated in the uniaxial tension fatigue mode at ambient temperature using flat 3.175 mm thick specimens. The specimens were machined on a wire-cut electric discharge machine at cutting speeds ranging from 0.5 to 2 mm per minute. The specimens were fatigued at a selected stress, and the resulting fatigue lives compared with that of the virgin material. The surfaces of the fatigued specimens were examined under optical and scanning electron microscopes, and the roughness of the surfaces was measured using a standard profilometer. From the results of the investigation, it was concluded that the fatigue life of the specimens machined using EDM decreased slightly as compared with that of the virgin material, but remained unchanged as the cutting speed was changed. The results are explained using data produced employing microhardness measurements, profilometry, and optical and scanning microscopy.
THE NATURE OF ENERGY TRANSFER TO ELECTRODES IN A PULSE DISCHARGE WITH SMALL GAPS,
SPARK MACHINING, ELECTRIC DISCHARGES), (*ELECTROMAGNETIC PULSES, SPARK MACHINING), ELECTROEROSIVE MACHINING, ENERGY, ELECTRON IRRADIATION, ION BOMBARDMENT, THERMAL CONDUCTIVITY, FILMS, KINETIC ENERGY, ZONE MELTING, USSR
Experimental investigation on the electrical contact behavior of rolling contact connector.
Chen, Junxing; Yang, Fei; Luo, Kaiyu; Zhu, Mingliang; Wu, Yi; Rong, Mingzhe
2015-12-01
Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigate the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.
NASA Astrophysics Data System (ADS)
Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem
2017-07-01
This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.
NASA Astrophysics Data System (ADS)
Zuhrie, M. S.; Basuki, I.; Asto, B. I. G. P.; Anifah, L.
2018-04-01
The development of robotics in Indonesia has been very encouraging. The barometer is the success of the Indonesian Robot Contest. The focus of research is a teaching module manufacturing, planning mechanical design, control system through microprocessor technology and maneuverability of the robot. Contextual Teaching and Learning (CTL) strategy is the concept of learning where the teacher brings the real world into the classroom and encourage students to make connections between knowledge possessed by its application in everyday life. This research the development model used is the 4-D model. This Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with the aim to produce a tool of learning in the form of smart educational robot modules and kit based on Contextual Teaching and Learning at the Department of Electrical Engineering to improve the skills of the Electrical Engineering student. Socialization questionnaires showed that levels of the student majoring in electrical engineering competencies image currently only limited to conventional machines. The average assessment is 3.34 validator included in either category. Modules developed can give hope to the future are able to produce Intelligent Robot Tool for Teaching.
Homopolar Transformer for Conversion of Electrical Energy
1998-10-13
electrical current Hows through a conductor situated in a magnetic field during rotation of the machine rotor. In L the case of a homopolar motor ...10, incorporated within a homopolar machine 12 corresponding for example to the motor or generator disclosed in U.S. Pat. No. 3,657,580 to Doyle. The...During operation of the homopolar machine 12 as a motor , a voltage source 16 connected to the stator terminals 26 and 28 causes a current to flow
The 1991-1992 walking robot design
NASA Technical Reports Server (NTRS)
Azarm, Shapour; Dayawansa, Wijesurija; Tsai, Lung-Wen; Peritt, Jon
1992-01-01
The University of Maryland Walking Machine team designed and constructed a robot. This robot was completed in two phases with supervision and suggestions from three professors and one graduate teaching assistant. Bob was designed during the Fall Semester 1991, then machined, assembled, and debugged in the Spring Semester 1992. The project required a total of 4,300 student hours and cost under $8,000. Mechanically, Bob was an exercise in optimization. The robot was designed to test several diverse aspects of robotic potential, including speed, agility, and stability, with simplicity and reliability holding equal importance. For speed and smooth walking motion, the footpath contained a long horizontal component; a vertical aspect was included to allow clearance of obstacles. These challenges were met with a leg design that utilized a unique multi-link mechanism which traveled a modified tear-drop footpath. The electrical requirements included motor, encoder, and voice control circuitry selection, manual controller manufacture, and creation of sensors for guidance. Further, there was also a need for selection of the computer, completion of a preliminary program, and testing of the robot.
Analysis of Even Harmonics Generation in an Isolated Electric Power System
NASA Astrophysics Data System (ADS)
Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya
Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.
Ammari, Habib; Boulier, Thomas; Garnier, Josselin; Wang, Han
2017-01-31
Understanding active electrolocation in weakly electric fish remains a challenging issue. In this article we propose a mathematical formulation of this problem, in terms of partial differential equations. This allows us to detail two algorithms: one for localizing a target using the multi-frequency aspect of the signal, and another one for identifying the shape of this target. Shape recognition is designed in a machine learning point of view, and takes advantage of both the multi-frequency setup and the movement of the fish around its prey. Numerical simulations are shown for the computation of the electric field emitted and sensed by the fish; they are then used as an input for the two algorithms.
Method and apparatus for monitoring machine performance
Smith, Stephen F.; Castleberry, Kimberly N.
1996-01-01
Machine operating conditions can be monitored by analyzing, in either the time or frequency domain, the spectral components of the motor current. Changes in the electric background noise, induced by mechanical variations in the machine, are correlated to changes in the operating parameters of the machine.
Huang, Zonghao; Wang, Zhigong; Lv, Xiaoying; Zhou, Yuxuan; Wang, Haipeng; Zong, Sihao
2014-01-01
Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, multi-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique. PMID:25657728
NASA Astrophysics Data System (ADS)
Joyner, Claude Russell; Fowler, Bruce; Matthews, John
2003-01-01
In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.
Heat engine generator control system
Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.
1998-05-12
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.
Heat engine generator control system
Rajashekara, Kaushik; Gorti, Bhanuprasad Venkata; McMullen, Steven Robert; Raibert, Robert Joseph
1998-01-01
An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.
Torque ripple reduction in electric machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Patel Bhageerath; Huh, Kum-Kang; El-Refaie, Ayman Mohamed Fawzi
An electric machine, such as an Internal Permanent magnet or Synchronous Reluctance machine, having X phases, that includes a stator assembly, having M slots, with a stator core and stator teeth, that is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface that defines a cavity; and a rotor assembly, having N poles, disposed within the cavity which is configured to rotate about the longitudinal axis, wherein the rotor assembly includes a shaft, a rotor core located circumferentially around the shaft. The machinemore » is configured such that a value k=M/(X*N) wherein k is a non-integer greater than about 1.3. The electric machine may alternatively, or additionally, include a non-uniformed gap between the exterior surface of the rotor spokes and the interior stator surface of the stator.« less
Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.; Thornton, M.
A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehiclesmore » (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.« less
Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems
NASA Astrophysics Data System (ADS)
Gallo, Bruno M.; El-Genk, Mohamed S.
2008-01-01
This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at the University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.
Multi-parameter monitoring of electrical machines using integrated fibre Bragg gratings
NASA Astrophysics Data System (ADS)
Fabian, Matthias; Hind, David; Gerada, Chris; Sun, Tong; Grattan, Kenneth T. V.
2017-04-01
In this paper a sensor system for multi-parameter electrical machine condition monitoring is reported. The proposed FBG-based system allows for the simultaneous monitoring of machine vibration, rotor speed and position, torque, spinning direction, temperature distribution along the stator windings and on the rotor surface as well as the stator wave frequency. This all-optical sensing solution reduces the component count of conventional sensor systems, i.e., all 48 sensing elements are contained within the machine operated by a single sensing interrogation unit. In this work, the sensing system has been successfully integrated into and tested on a permanent magnet motor prototype.
Cape Blanco wind farm feasibility study
NASA Astrophysics Data System (ADS)
1987-11-01
The Cape Blanco Wind Farm (CBWF) Feasibility Study was undertaken as a prototype for determining the feasibility of proposals for wind energy projects at Northwest sites. It was intended to test for conditions under which wind generation of electricity could be commercially feasible, not by another abstract survey of alternative technologies, but rather through a site-specific, machine-specific analysis of one proposal. Some of the study findings would be most pertinent to the Cape Blanco site - local problems require local solutions. Other findings would be readily applicable to other sites and other machines, and study methodologies would be designed to be modified for appraisal of other proposals. This volume discusses environmental, economic, and technical issues of the Wind Farm.
Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory
ERIC Educational Resources Information Center
Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel
2015-01-01
Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…
Traveling wire electrode increases productivity of Electrical Discharge Machining /EDM/ equipment
NASA Technical Reports Server (NTRS)
Kotora, J., Jr.; Smith, S. V.
1967-01-01
Traveling wire electrode on electrical discharge machining /EDM/ equipment reduces the time requirements for precision cutting. This device enables cutting with a minimum of lost material and without inducing stress beyond that inherent in the material. The use of wire increases accuracy and enables tighter tolerances to be maintained.
Standard surface grinder for precision machining of thin-wall tubing
NASA Technical Reports Server (NTRS)
Jones, A.; Kotora, J., Jr.; Rein, J.; Smith, S. V.; Strack, D.; Stuckey, D.
1967-01-01
Standard surface grinder performs precision machining of thin-wall stainless steel tubing by electrical discharge grinding. A related adaptation, a traveling wire electrode fixture, is used for machining slots in thin-walled tubing.
NASA Astrophysics Data System (ADS)
Veronesi, F.; Grassi, S.
2016-09-01
Wind resource assessment is a key aspect of wind farm planning since it allows to estimate the long term electricity production. Moreover, wind speed time-series at high resolution are helpful to estimate the temporal changes of the electricity generation and indispensable to design stand-alone systems, which are affected by the mismatch of supply and demand. In this work, we present a new generalized statistical methodology to generate the spatial distribution of wind speed time-series, using Switzerland as a case study. This research is based upon a machine learning model and demonstrates that statistical wind resource assessment can successfully be used for estimating wind speed time-series. In fact, this method is able to obtain reliable wind speed estimates and propagate all the sources of uncertainty (from the measurements to the mapping process) in an efficient way, i.e. minimizing computational time and load. This allows not only an accurate estimation, but the creation of precise confidence intervals to map the stochasticity of the wind resource for a particular site. The validation shows that machine learning can minimize the bias of the wind speed hourly estimates. Moreover, for each mapped location this method delivers not only the mean wind speed, but also its confidence interval, which are crucial data for planners.
[Design and application of medical electric leg-raising machine].
Liang, Jintang; Chen, Jinyuan; Zhao, Zixian; Lin, Jinfeng; Li, Juanhong; Zhong, Jingliang
2017-08-01
Passive leg raising is widely used in clinic, but it lacks of specialized mechanical raise equipment. It requires medical staff to raise leg by hand or requires a multi-functional bed to raise leg, which takes time and effort. Therefore we have developed a new medical electric leg-raising machine. The equipment has the following characteristics: simple structure, stable performance, easy operation, fast and effective, safe and comfortable. The height range of the lifter is 50-120 cm, the range of the angle of raising leg is 10degree angle-80degree angle, the maximum supporting weight is 40 kg. Because of raising the height of the lower limbs and making precise angle, this equipment can completely replace the traditional manner of lifting leg by hand with multi-functional bed to lift patients' leg and can reduce the physical exhaustion and time consumption of medical staff. It can change the settings at any time to meet the needs of the patient; can be applied to the testing of PLR and dynamically assessing the hemodynamics; can prevent deep vein thrombosis and some related complications of staying in bed; and the machine is easy to be cleaned and disinfected, which can effectively avoid hospital acquired infection and cross infection; and can also be applied to emergency rescue of various disasters and emergencies.
Design of Heat Exchanger for Ericsson-Brayton Piston Engine
Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef
2014-01-01
Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy—energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. PMID:24977174
Design of heat exchanger for Ericsson-Brayton piston engine.
Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef; Holubcik, Michal; Nosek, Radovan
2014-01-01
Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy--energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element.
Fracture Tests of Etched Components Using a Focused Ion Beam Machine
NASA Technical Reports Server (NTRS)
Kuhn, Jonathan, L.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Powers, Edward I. (Technical Monitor)
2000-01-01
Many optical MEMS device designs involve large arrays of thin (0.5 to 1 micron components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture test configurations for 0.5 micron thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe. and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.
Prediction of multi performance characteristics of wire EDM process using grey ANFIS
NASA Astrophysics Data System (ADS)
Kumanan, Somasundaram; Nair, Anish
2017-09-01
Super alloys are used to fabricate components in ultra-supercritical power plants. These hard to machine materials are processed using non-traditional machining methods like Wire cut electrical discharge machining and needs attention. This paper details about multi performance optimization of wire EDM process using Grey ANFIS. Experiments are designed to establish the performance characteristics of wire EDM such as surface roughness, material removal rate, wire wear rate and geometric tolerances. The control parameters are pulse on time, pulse off time, current, voltage, flushing pressure, wire tension, table feed and wire speed. Grey relational analysis is employed to optimise the multi objectives. Analysis of variance of the grey grades is used to identify the critical parameters. A regression model is developed and used to generate datasets for the training of proposed adaptive neuro fuzzy inference system. The developed prediction model is tested for its prediction ability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Junxing; Yang, Fei, E-mail: yfei2007@mail.xjtu.edu.cn; Luo, Kaiyu
Rolling contact connector (RCC) is a new technology utilized in high performance electric power transfer systems with one or more rotating interfaces, such as radars, satellites, wind generators, and medical computed tomography machines. Rolling contact components are used in the RCC instead of traditional sliding contacts to transfer electrical power and/or signal. Since the requirement of the power transmission is increasing in these years, the rolling electrical contact characteristics become more and more important for the long-life design of RCC. In this paper, a typical form of RCC is presented. A series of experimental work are carried out to investigatemore » the rolling electrical contact characteristics during its lifetime. The influence of a variety of factors on the electrical contact degradation behavior of RCC is analyzed under both vacuum and air environment. Based on the surface morphology and elemental composition changes in the contact zone, which are assessed by field emission scanning electron microscope and confocal laser scanning microscope, the mechanism of rolling electrical contact degradation is discussed.« less
Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.
2014-01-01
NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance using hardware-in-the-loop (HIL).
Design and development of high efficiency 140W space TWT with graphite collector
NASA Astrophysics Data System (ADS)
Srivastava, V.; Purohit, G.; Sharma, R. K.; Sharma, S. M.; Bera, A.; Bhaskar, P. V.; Singh, R. R.; Prasad, K.; Kiran, V.
2008-05-01
4-stage graphite collector assembly has been designed and developed for a 140W Ku-band space TWT to achieve the collector efficiency more than 80%. The UHV compatible, high density, copper impregnated POCO graphite (DFP-1C) was used to fabricate the four collector electrodes of the 4-stage depressed collector. Copper impregnated graphite material is used for the collector electrodes because of its low secondary electron emission coefficient, high thermal and electrical conductivities, easy machining and brazing, low thermal expansion coefficient and low weight. The graphite material was characterized for the UHV compatibility. The collector electrodes were precisely fabricated by careful machining, and technology was developed for brazing of graphite electrodes with high voltage alumina insulators. Complete TWT with four-stage graphite collector was developed and 140W output power at gain more than 55 dB was achieved. The TWT was pumped from both the gun and the collector ends.
NASA Astrophysics Data System (ADS)
Fachrurrozi, Muhammad; Saparudin; Erwin
2017-04-01
Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.
Halbach array DC motor/generator
Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.
1998-01-06
A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.
Halbach array DC motor/generator
Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.
1998-01-01
A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.
Design and realization of sort manipulator of crystal-angle sort machine
NASA Astrophysics Data System (ADS)
Wang, Ming-shun; Chen, Shu-ping; Guan, Shou-ping; Zhang, Yao-wei
2005-12-01
It is a current tendency of development in automation technology to replace manpower with manipulators in working places where dangerous, harmful, heavy or repetitive work is involved. The sort manipulator is installed in a crystal-angle sort machine to take the place of manpower, and engaged in unloading and sorting work. It is the outcome of combing together mechanism, electric transmission, and pneumatic element and micro-controller control. The step motor makes the sort manipulator operate precisely. The pneumatic elements make the sort manipulator be cleverer. Micro-controller's software bestows some simple artificial intelligence on the sort manipulator, so that it can precisely repeat its unloading and sorting work. The combination of manipulator's zero position and step motor counting control puts an end to accumulating error in long time operation. A sort manipulator's design in the practice engineering has been proved to be correct and reliable.
Pelamis: experience from concept to connection.
Yemm, Richard; Pizer, David; Retzler, Chris; Henderson, Ross
2012-01-28
The development of the Pelamis wave energy converter from its conceptual origins to its commercial deployment is reviewed. The early emphasis on designing for survivability and favourable power absorption characteristics focused attention towards a self-referenced articulated line-absorber in an attenuator orientation. A novel joint and control system allow the machine to be actively tuned to provide a resonant response power amplification in small and moderate seas. In severe seas, the machine is left in its default or natural condition, which is benign and non-resonant. Hydraulic rams at the joints provide the primary power take-off with medium-term storage in high-pressure accumulators yielding smooth electricity generation. Land-based modular construction requiring minimal weather windows for rapid offshore installation is an essential engineering feature necessary for viable commercialization. The second-generation Pelamis designs built for E.ON and ScottishPower Renewables are presented, and the scope for further cost reduction and performance enhancements are explained.
Structural Design Optimization of Doubly-Fed Induction Generators Using GeneratorSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Fingersh, Lee J; Dykes, Katherine L
2017-11-13
A wind turbine with a larger rotor swept area can generate more electricity, however, this increases costs disproportionately for manufacturing, transportation, and installation. This poster presents analytical models for optimizing doubly-fed induction generators (DFIGs), with the objective of reducing the costs and mass of wind turbine drivetrains. The structural design for the induction machine includes models for the casing, stator, rotor, and high-speed shaft developed within the DFIG module in the National Renewable Energy Laboratory's wind turbine sizing tool, GeneratorSE. The mechanical integrity of the machine is verified by examining stresses, structural deflections, and modal properties. The optimization results aremore » then validated using finite element analysis (FEA). The results suggest that our analytical model correlates with the FEA in some areas, such as radial deflection, differing by less than 20 percent. But the analytical model requires further development for axial deflections, torsional deflections, and stress calculations.« less
Electrical contact tool set station
Byers, M.E.
1988-02-22
An apparatus is provided for the precise setting to zero of electrically conductive cutting tools used in the machining of work pieces. An electrically conductive cylindrical pin, tapered at one end to a small flat, rests in a vee-shaped channel in a base so that its longitudinal axis is parallel to the longitudinal axis of the machine's spindle. Electronic apparatus is connected between the cylindrical pin and the electrically conductive cutting tool to produce a detectable signal when contact between tool and pin is made. The axes of the machine are set to zero by contact between the cutting tool and the sides, end or top of the cylindrical pin. Upon contact, an electrical circuit is completed, and the detectable signal is produced. The tool can then be set to zero for that axis. Should the tool contact the cylindrical pin with too much force, the cylindrical pin would be harmlessly dislodged from the vee-shaped channel, preventing damage either to the cutting tool or the cylindrical pin. 5 figs.
Preliminary design of a 100 kW turbine generator
NASA Technical Reports Server (NTRS)
Puthoff, R. L.; Sirocky, P. J.
1974-01-01
The National Science Foundation and the Lewis Research Center have engaged jointly in a Wind Energy Program which includes the design and erection of a 100 kW wind turbine generator. The machine consists primarily of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades operates at 40 rpm and generates 100 kW of electrical power at 18 mph wind velocity. The entire assembly is placed on top of a tower 100 feet above ground level.
Fabrication and assembly of the ERDA/NASA 100 kilowatt experimental wind turbine
NASA Technical Reports Server (NTRS)
Puthoff, R. L.
1976-01-01
As part of the Energy Research and Development Administration (ERDA) wind-energy program, NASA Lewis Research Center has designed and built an experimental 100-kW wind turbine. The two-bladed turbines drives a synchronous alternator that generates its maximum output of 100 kW of electrical power in a 29-km/hr (18-mph) wind. The design and assembly of the wind turbine were performed at Lewis from components that were procured from industry. The machine was installed atop the tower on September 3, 1975.
High-Strength Undiffused Brushless (HSUB) Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S; Tolbert, Leon M; Lee, Seong T
2007-01-01
This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air gap flux. The PM in the rotor prevents magnetic flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce.more » A high-strength machine is thus obtained. The air gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.« less
Battery electric vehicles - implications for the driver interface.
Neumann, Isabel; Krems, Josef F
2016-03-01
The current study examines the human-machine interface of a battery electric vehicle (BEV) from a user-perspective, focussing on the evaluation of BEV-specific displays, the relevance of provided information and challenges for drivers due to the concept of electricity in a road vehicle. A sample of 40 users drove a BEV for 6 months. Data were gathered at three points of data collection. Participants perceived the BEV-specific displays as only moderately reliable and helpful for estimating the displayed parameters. This was even less the case after driving the BEV for 3 months. A taxonomy of user requirements was compiled revealing the need for improved and additional information, especially regarding energy consumption and efficiency. Drivers had difficulty understanding electrical units and the energy consumption of the BEV. On the background of general principles for display design, results provide implications how to display relevant information and how to facilitate drivers' understanding of energy consumption in BEVs. Practitioner Summary: Battery electric vehicle (BEV) displays need to incorporate new information. A taxonomy of user requirements was compiled revealing the need for improved and additional information in the BEV interface. Furthermore, drivers had trouble understanding electrical units and energy consumption; therefore, appropriate assistance is required. Design principles which are specifically important in the BEV context are discussed.
Results of a utility survey of the status of large wind turbine development
NASA Technical Reports Server (NTRS)
Watts, A.; Quraeshi, S.; Rowley, L. P.
1979-01-01
Wind energy conversion systems were surveyed from a utility viewpoint to establish the state of the art with regard to: (1) availability of the type of machines; (2) quality of power generation; (3) suitability for electrical grid; (4) reliability; and (5) economics. Of the 23 designs discussed, 7 have vertical axis wind turbines, 9 have upwind horizontal axis turbines, and 7 have downwind horizontal axis turbines.
Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero
2014-12-08
Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews.
Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero
2014-01-01
Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews. PMID:25494351
Redox control of molecular motion in switchable artificial nanoscale devices.
Credi, Alberto; Semeraro, Monica; Silvi, Serena; Venturi, Margherita
2011-03-15
The design, synthesis, and operation of molecular-scale systems that exhibit controllable motions of their component parts is a topic of great interest in nanoscience and a fascinating challenge of nanotechnology. The development of this kind of species constitutes the premise to the construction of molecular machines and motors, which in a not-too-distant future could find applications in fields such as materials science, information technology, energy conversion, diagnostics, and medicine. In the past 25 years the development of supramolecular chemistry has enabled the construction of an interesting variety of artificial molecular machines. These devices operate via electronic and molecular rearrangements and, like the macroscopic counterparts, they need energy to work as well as signals to communicate with the operator. Here we outline the design principles at the basis of redox switching of molecular motion in artificial nanodevices. Redox processes, chemically, electrically, or photochemically induced, can indeed supply the energy to bring about molecular motions. Moreover, in the case of electrically and photochemically induced processes, electrochemical and photochemical techniques can be used to read the state of the system, and thus to control and monitor the operation of the device. Some selected examples are also reported to describe the most representative achievements in this research area.
System and method for smoothing a salient rotor in electrical machines
Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.
2016-12-13
An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.
Calibrator device for the extrusion of cable coatings
NASA Astrophysics Data System (ADS)
Garbacz, Tomasz; Dulebová, Ľudmila; Spišák, Emil; Dulebová, Martina
2016-05-01
This paper presents selected results of theoretical and experimental research works on a new calibration device (calibrators) used to produce coatings of electric cables. The aim of this study is to present design solution calibration equipment and present a new calibration machine, which is an important element of the modernized technology extrusion lines for coating cables. As a result of the extrusion process of PVC modified with blowing agents, an extrudate in the form of an electrical cable was obtained. The conditions of the extrusion process were properly selected, which made it possible to obtain a product with solid external surface and cellular core.
NASA Astrophysics Data System (ADS)
Fgeppert, E.
1984-09-01
Mechanical means for sensing turning torque generated by the load forces in a rotary drive system is described. The sensing means is designed to operate with minimal effect on normal operation of the drive system. The invention can be employed in various drive systems, e.g., automotive engine-transmission power plants, electric motor-operated tools, and metal cutting machines. In such drive systems, the torque-sensing feature may be useful for actuation of various control devices, such as electric switches, mechanical clutches, brake actuators, fluid control valves, or audible alarms. The torque-sensing function can be used for safety overload relief, motor de-energization, engine fuel control transmission clutch actuation, remote alarm signal, tool breakage signal, etc.
21. INTERIOR VIEW, UNDER THE MAIN FLOOR SHOWING THE LINESHAFT ...
21. INTERIOR VIEW, UNDER THE MAIN FLOOR SHOWING THE LINESHAFT SYSTEM ONCE POWERED BY A STEAM ENGINE AND LATER BY TWO LARGE ELECTRICAL MILL MOTORS (NOTICE LARGE GEAR IN FOREGROUND) THAT OPERATED EACH NAIL MACHINE; PRESENTLY THE NAIL MACHINES ARE DRIVEN BY INDIVIDUAL ELECTRICAL MOTORS - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV
NASA Astrophysics Data System (ADS)
Moses, A. J.
1994-03-01
Flux rotating in the plane of laminations of amorphous materials or electrical steels can cause additional losses in electrical machines. To make full use of laboratory rotational magnetization studies, a better understanding of the nature of rotational flux in machine cores is needed. This paper highlights the need for careful laboratory simulation of the conditions which occur in actual machines. Single specimen tests must produce uniform flux over a given measuring region and output from field and flux sensors need careful analysis. Differences between thermal and flux sensing methods are shown as well as anomalies caused when the magnetisation direction is reversed in an anistropic specimen. Methods of overcoming these problems are proposed.
Structural and Machine Design Using Piezoceramic Materials: A Guide for Structural Design Engineers
NASA Technical Reports Server (NTRS)
Inman, Daniel J.; Cudney, Harley H.
2000-01-01
Using piezoceramic materials is one way the design engineer can create structures which have an ability to both sense and respond to their environment. Piezoceramic materials can be used to create structural sensors and structural actuators. Because piezoceramic materials have transduction as a material property, their sensing or actuation functions are a result of what happens to the material. This is different than discrete devices we might attach to the structure. For example, attaching an accelerometer to a structure will yield an electrical signal proportional to the acceleration at the attachment point on the structure. Using a electromagnetic shaker as an actuator will create an applied force at the attachment point. Active material elements in a structural design are not easily modeled as providing transduction at a point, but rather they change the physics of the structure in the areas where they are used. Hence, a designer must not think of adding discrete devices to a structure to obtain an effect, but rather must design a structural system which accounts for the physical principles of all the elements in the structure. The purpose of this manual is to provide practicing engineers the information necessary to incorporate piezoelectric materials in structural design and machine design. First, we will review the solid-state physics of piezoelectric materials. Then we will discuss the physical characteristics of the electrical-active material-structural system. We will present the elements of this system which must be considered as part of the design task for a structural engineer. We will cover simple modeling techniques and review the features and capabilities of commercial design tools that are available. We will then cover practical how-to elements of working with piezoceramic materials. We will review sources of piezoceramic materials and built-up devices, and their characteristics. Finally, we will provide two design examples using piezoceramic materials, first as discrete actuators for vibration isolation, and second as structurally-distributed sensor/actuators for active acoustic control.
Electrical test prediction using hybrid metrology and machine learning
NASA Astrophysics Data System (ADS)
Breton, Mary; Chao, Robin; Muthinti, Gangadhara Raja; de la Peña, Abraham A.; Simon, Jacques; Cepler, Aron J.; Sendelbach, Matthew; Gaudiello, John; Emans, Susan; Shifrin, Michael; Etzioni, Yoav; Urenski, Ronen; Lee, Wei Ti
2017-03-01
Electrical test measurement in the back-end of line (BEOL) is crucial for wafer and die sorting as well as comparing intended process splits. Any in-line, nondestructive technique in the process flow to accurately predict these measurements can significantly improve mean-time-to-detect (MTTD) of defects and improve cycle times for yield and process learning. Measuring after BEOL metallization is commonly done for process control and learning, particularly with scatterometry (also called OCD (Optical Critical Dimension)), which can solve for multiple profile parameters such as metal line height or sidewall angle and does so within patterned regions. This gives scatterometry an advantage over inline microscopy-based techniques, which provide top-down information, since such techniques can be insensitive to sidewall variations hidden under the metal fill of the trench. But when faced with correlation to electrical test measurements that are specific to the BEOL processing, both techniques face the additional challenge of sampling. Microscopy-based techniques are sampling-limited by their small probe size, while scatterometry is traditionally limited (for microprocessors) to scribe targets that mimic device ground rules but are not necessarily designed to be electrically testable. A solution to this sampling challenge lies in a fast reference-based machine learning capability that allows for OCD measurement directly of the electrically-testable structures, even when they are not OCD-compatible. By incorporating such direct OCD measurements, correlation to, and therefore prediction of, resistance of BEOL electrical test structures is significantly improved. Improvements in prediction capability for multiple types of in-die electrically-testable device structures is demonstrated. To further improve the quality of the prediction of the electrical resistance measurements, hybrid metrology using the OCD measurements as well as X-ray metrology (XRF) is used. Hybrid metrology is the practice of combining information from multiple sources in order to enable or improve the measurement of one or more critical parameters. Here, the XRF measurements are used to detect subtle changes in barrier layer composition and thickness that can have second-order effects on the electrical resistance of the test structures. By accounting for such effects with the aid of the X-ray-based measurements, further improvement in the OCD correlation to electrical test measurements is achieved. Using both types of solution incorporation of fast reference-based machine learning on nonOCD-compatible test structures, and hybrid metrology combining OCD with XRF technology improvement in BEOL cycle time learning could be accomplished through improved prediction capability.
Machine learnt bond order potential to model metal-organic (Co-C) heterostructures.
Narayanan, Badri; Chan, Henry; Kinaci, Alper; Sen, Fatih G; Gray, Stephen K; Chan, Maria K Y; Sankaranarayanan, Subramanian K R S
2017-11-30
A fundamental understanding of the inter-relationships between structure, morphology, atomic scale dynamics, chemistry, and physical properties of mixed metallic-covalent systems is essential to design novel functional materials for applications in flexible nano-electronics, energy storage and catalysis. To achieve such knowledge, it is imperative to develop robust and computationally efficient atomistic models that describe atomic interactions accurately within a single framework. Here, we present a unified Tersoff-Brenner type bond order potential (BOP) for a Co-C system, trained against lattice parameters, cohesive energies, equation of state, and elastic constants of different crystalline phases of cobalt as well as orthorhombic Co 2 C derived from density functional theory (DFT) calculations. The independent BOP parameters are determined using a combination of supervised machine learning (genetic algorithms) and local minimization via the simplex method. Our newly developed BOP accurately describes the structural, thermodynamic, mechanical, and surface properties of both the elemental components as well as the carbide phases, in excellent accordance with DFT calculations and experiments. Using our machine-learnt BOP potential, we performed large-scale molecular dynamics simulations to investigate the effect of metal/carbon concentration on the structure and mechanical properties of porous architectures obtained via self-assembly of cobalt nanoparticles and fullerene molecules. Such porous structures have implications in flexible electronics, where materials with high electrical conductivity and low elastic stiffness are desired. Using unsupervised machine learning (clustering), we identify the pore structure, pore-distribution, and metallic conduction pathways in self-assembled structures at different C/Co ratios. We find that as the C/Co ratio increases, the connectivity between the Co nanoparticles becomes limited, likely resulting in low electrical conductivity; on the other hand, such C-rich hybrid structures are highly flexible (i.e., low stiffness). The BOP model developed in this work is a valuable tool to investigate atomic scale processes, structure-property relationships, and temperature/pressure response of Co-C systems, as well as design organic-inorganic hybrid structures with a desired set of properties.
Research on precise pneumatic-electric displacement sensor with large measurement range
NASA Astrophysics Data System (ADS)
Yin, Zhehao; Yuan, Yibao; Liu, Baoshuai
2017-10-01
This research mainly focuses on precise pneumatic-electric displacement sensor which has large measurement range. Under the high precision, measurement range can be expanded so that the need of high precision as well as large range can be satisfied in the field of machining inspection technology. This research was started by the analysis of pneumatic-measuring theory. Then, an gas circuit measuring system which is based on differential pressure was designed. This designed system can reach two aims: Firstly, to convert displacement signal into gas signal; Secondly, to reduce the measurement error which caused by pressure and environmental turbulence. Furthermore, in consideration of the high requirement for linearity, sensitivity and stability, the project studied the pneumatic-electric transducer which puts the SCX series pressure sensor as a key part. The main purpose of this pneumatic-electric transducer is to convert gas signal to suitable electrical signal. Lastly, a broken line subsection linearization circuit was designed, which can nonlinear correct the output characteristic curve so as to enlarge the linear measurement range. The final result could be briefly described like this: under the condition that measuring error is less than 1μm, measurement range could be extended to approximately 200μm which is much higher than the measurement range of traditional pneumatic measuring instrument. Meanwhile, it can reach higher exchangeability and stability in order to become more suitable to engineering application.
Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY
2012-03-13
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
Service Modules for Coal Extraction
NASA Technical Reports Server (NTRS)
Gangal, M. D.; Lewis, E. V.
1985-01-01
Service train follows group of mining machines, paying out utility lines as machines progress into coal face. Service train for four mining machines removes gases and coal and provides water and electricity. Flexible, coiling armored carriers protect cables and hoses. High coal production attained by arraying row of machines across face, working side by side.
History of Rotating Machine Development and Foresight
NASA Astrophysics Data System (ADS)
Tari, Makoto; Nagano, Susumu; Amemori, Shiro; Aso, Toshiyuki
The history of electrical rotating machines such as generators and motors in Japan is around one hundred years. At early stage, all machines were imported from foreign countries, but now domestic industries introduce new concept of machines and are leading these kinds of technology. Reviewing of history and development and foresight seems meaningful for further development.
Cyclic Parameter Refinement of 4S-10 Hybrid Flux-Switching Motor for Lightweight Electric Vehicle
NASA Astrophysics Data System (ADS)
Rani, J. Abd; Sulaiman, E.; Kumar, R.
2017-08-01
A great deal of attention has been given to the reduction of lighting the vehicle because the lighter the vehicle the energy consumption is comparatively low. Hence, the lightweight electric vehicle was introduced for lower carbon footprint and the sizing of the vehicle itself. One of the components to reduce the weight of the vehicle is the propulsion system which comprised of electric motor functioning as the source of torque to drive the propulsion system of the machine. This paper presents the refinement methodology for the optimized design of the 4S-10P E-Core hybrid excitation flux switching motor. The purpose of the refinement methodology is to improve the torque production of the optimized motor. The result of the successful improvement of the torque production is justifiable for a lightweight electric vehicle to drive the propulsion system.
NASA Astrophysics Data System (ADS)
Boussetoua, Mohammed
During winter, the climate in the northern region is known for its icing and freezing conditions. However, emergency services often use helicopters to reach isolated locations. The difficult situations, generally experiences in the North particularly in Quebec, may prevent rescuers to intervene. The main reason preventing such operations is the lack of a de-icing system in the small helicopter blades. The overall objective of the project is research, development, design and manufacture of a system composed of an on-board rotating low speed generator and heating elements. It consumes a part of the power supplied by the turbine through the axis of the main rotor of the small aircraft and converts it to electrical power to be used by the heating elements. This innovation will allow to fly safely everywhere throughout the year protect the lives of the users even in the worst weather conditions. Firstly, the research focuses on the identification of problems related to the use of protection systems against the hoarfrost on main rotor blades of different aircrafts during flight. In this phase, we specifically focused on the difficulties encountered by the aircraft companies using the existing and operational systems for protection against hoarfrost. Main rotor blades are difficult to protect on helicopters. Several systems were considered by the helicopter manufacturers, such as electrothermal systems, pneumatic systems or using anti-icing fluids. In the current state of technological knowledge, all helicopters that have been certified to fly in icing conditions use electrothermal systems for protection against hoarfrost on their main rotor Small helicopters addressed by this work, are forbidden to fly in icing conditions due to lack of energy source to operate these systems. The electrothermal system has been considered for this thesis work to protect the main rotor blades of small aircraft in-flight. The second part of this thesis is based on the source of power feeding the hearting system. In recent years, numerous research studies have started on the development of electromechanical system converters for various applications, such as transport by road, rail or aviation. The development of new low-speed, low-weight electric machines and their very high degree of compactness has become a very promising alternative. This project strongly interests many industries in the field of air transport. The transverse flux machine is considered as a compact structure having better mass power compared to other electrical machines. The design of transverse flux machine was the subject of an electromagnetic study. Also, the analytical study helped to determine the overall dimensions of the machine. The study was followed by a validation phase of the analytical model using numerical simulations. These two studies were intended to determine changes in the characteristics of the transverse flux machine according to the different geometric dimensions of its active parts. From the calculations made using analytical and numerical models, a prototype of the transverse flux machine (600 W, 320 RPM) was designed and manufactured in the AMIL laboratory at the Universite du Quebec a Chicoutimi (UQAC). A bench test was conducted to compare the theoretical and experimental results. The measurements obtained on this prototype were compared with the theoretical results. This phase of the study demonstrates with satisfaction, the reliability of the theoretical models developed. Finally, a new configuration of this machine has been proposed. Numerical simulation results of this structure are particularly encouraging and require further investigations. For logistical and financial reasons, the prototype of this configuration has not been manufactured. (Abstract shortened by UMI.)
Effects of pole flux distribution in a homopolar linear synchronous machine
NASA Astrophysics Data System (ADS)
Balchin, M. J.; Eastham, J. F.; Coles, P. C.
1994-05-01
Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.
Naderi, Peyman
2016-09-01
The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Realization of station for testing asynchronous three-phase motors
NASA Astrophysics Data System (ADS)
Wróbel, A.; Surma, W.
2016-08-01
Nowadays, you cannot imagine the construction and operation of machines without the use of electric motors [13-15]. The proposed position is designed to allow testing of asynchronous three-phase motors. The position consists of a tested engine and the engine running as a load, both engines combined with a mechanical clutch [2]. The value of the load is recorded by measuring shaft created with Strain Gauge Bridge. This concept will allow to study the basic parameters of the engines, visualization motor parameters both vector and scalar controlled, during varying load drive system. In addition, registration during the variable physical parameters of the working electric motor, controlled by a frequency converter or controlled by a contactor will be possible. Position is designed as a teaching and research position to characterize the engines. It will be also possible selection of inverter parameters.
Power electromagnetic strike machine for engineering-geological surveys
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Chetverikov, E. A.; Kargin, V. A.; Moiseev, A. P.; Ivanova, Z. I.
2017-10-01
When implementing the processes of dynamic sensing of soils and pulsed nonexplosive seismic exploration, the most common and effective method is the strike one, which is provided by a variety of structure and parameters of pneumatic, hydraulic, electrical machines of strike action. The creation of compact portable strike machines which do not require transportation and use of mechanized means is important. A promising direction in the development of strike machines is the use of pulsed electromagnetic actuator characterized by relatively low energy consumption, relatively high specific performance and efficiency, and providing direct conversion of electrical energy into mechanical work of strike mass with linear movement trajectory. The results of these studies allowed establishing on the basis of linear electromagnetic motors the electromagnetic pulse machines with portable performance for dynamic sensing of soils and land seismic pulse of small depths.
Hameed, Saqib; González Rojas, Hernán A; Perat Benavides, José I; Nápoles Alberro, Amelia; Sánchez Egea, Antonio J
2018-05-25
In this article, the influence of electropulsing on the machinability of steel S235 and aluminium 6060 has been studied during conventional and electropulsing-assisted turning processes. The machinability indices such as chip compression ratio ξ , shear plane angle ϕ and specific cutting energy (SCE) are investigated by using different cutting parameters such as cutting speed, cutting feed and depth of cut during electrically-assisted turning process. The results and analysis of this work indicated that the electrically-assisted turning process improves the machinability of steel S235, whereas the machinability of aluminium 6060 gets worse. Finally, due to electropluses (EPs), the chip compression ratio ξ increases with the increase in cutting speed during turning of aluminium 6060 and the SCE decreases during turning of steel S235.
Research on electrodischarge drilling of polycrystalline diamond with increased gap voltage
NASA Astrophysics Data System (ADS)
Skoczypiec, Sebastian; Bizoń, Wojciech; Żyra, Agnieszka
2018-05-01
This paper presents an experimental investigation of the machining characteristics of polycrystalline diamond (PCD). Machining of PCD by conventional technologies is not an effective solution. Due to presence of cobalt this material can be machined by application of electrical discharges. On the other side, electrical conductivity of PCD is on the limit of electrodischarge machining (EDM) possibilities. Proposed paper reports experimental investigation on electrodischarge drilling of PCD samples. The test were carried out with application on of high-voltage (up to 550 V) pulse power unit for two kinds of dielectrics: carbon based (Exxsol D80) and de-ionized water. As output parameters machining accuracy (side gap), material removal rate were selected. Also, based on SEM photographs and energy dispersive X-ray spectroscopy (EDS) analysis, a qualitative evaluation of the obtained results was presented.
ERIC Educational Resources Information Center
Sedaghat, Ahmad; AlJundub, Mohammad; Eilaghi, Armin; Bani-Hani, Ehab; Sabri, Farhad; Mbarki, Raouf; Assad, M. El Haj
2017-01-01
The PBL unit of fluid and electrical drive systems is taught in final semester of undergraduates in mechanical engineering department of the Australian College of Kuwait (ACK). The recent project on an automated punching machine is discovered more appealing to both students and instructors in triggering new ideas and satisfaction end results. In…
NASA Astrophysics Data System (ADS)
Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping
2018-02-01
In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.
NASA Technical Reports Server (NTRS)
Hamilton, H. B.; Strangas, E.
1980-01-01
The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.
Reliability of the quench protection system for the LHC superconducting elements
NASA Astrophysics Data System (ADS)
Vergara Fernández, A.; Rodríguez-Mateos, F.
2004-06-01
The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Michael J.
The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.
Exfoliated BN shell-based high-frequency magnetic core-shell materials.
Zhang, Wei; Patel, Ketan; Ren, Shenqiang
2017-09-14
The miniaturization of electric machines demands high frequency magnetic materials with large magnetic-flux density and low energy loss to achieve a decreased dimension of high rotational speed motors. Herein, we report a solution-processed high frequency magnetic composite (containing a nanometal FeCo core and a boron nitride (BN) shell) that simultaneously exhibits high electrical resistivity and magnetic permeability. The frequency dependent complex initial permeability and the mechanical robustness of nanocomposites are intensely dependent on the content of BN insulating phase. The results shown here suggest that insulating magnetic nanocomposites have potential for application in next-generation high-frequency electric machines with large electrical resistivity and permeability.
Automated manual transmission clutch controller
Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.
1999-11-30
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission shift sequence controller
Lawrie, Robert E.; Reed, Richard G.; Rausen, David J.
2000-02-01
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission mode selection controller
Lawrie, Robert E.
1999-11-09
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
Automated manual transmission controller
Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.
1999-12-28
A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.
NASA Astrophysics Data System (ADS)
Tarasov, V. N.; Boyarkina, I. V.
2017-06-01
Analytical calculation methods of dynamic processes of the self-propelled boom hydraulic machines working equipment are more preferable in comparison with numerical methods. The analytical research method of dynamic processes of the boom hydraulic machines working equipment by means of differential equations of acceleration and braking of the working equipment is proposed. The real control law of a hydraulic distributor electric spool is considered containing the linear law of the electric spool activation and stepped law of the electric spool deactivation. Dependences of dynamic processes of the working equipment on reduced mass, stiffness of hydraulic power cylinder, viscous drag coefficient, piston acceleration, pressure in hydraulic cylinders, inertia force are obtained. Definite recommendations relative to the reduction of dynamic loads, appearing during the working equipment control are considered as the research result. The nature and rate of parameter variations of the speed and piston acceleration dynamic process depend on the law of the ports opening and closure of the hydraulic distributor electric spool. Dynamic loads in the working equipment are decreased during a smooth linear activation of the hydraulic distributor electric spool.
Spin torque oscillator neuroanalog of von Neumann's microwave computer.
Hoppensteadt, Frank
2015-10-01
Frequency and phase of neural activity play important roles in the behaving brain. The emerging understanding of these roles has been informed by the design of analog devices that have been important to neuroscience, among them the neuroanalog computer developed by O. Schmitt and A. Hodgkin in the 1930s. Later J. von Neumann, in a search for high performance computing using microwaves, invented a logic machine based on crystal diodes that can perform logic functions including binary arithmetic. Described here is an embodiment of his machine using nano-magnetics. Electrical currents through point contacts on a ferromagnetic thin film can create oscillations in the magnetization of the film. Under natural conditions these properties of a ferromagnetic thin film may be described by a nonlinear Schrödinger equation for the film's magnetization. Radiating solutions of this system are referred to as spin waves, and communication within the film may be by spin waves or by directed graphs of electrical connections. It is shown here how to formulate a STO logic machine, and by computer simulation how this machine can perform several computations simultaneously using multiplexing of inputs, that this system can evaluate iterated logic functions, and that spin waves may communicate frequency, phase and binary information. Neural tissue and the Schmitt-Hodgkin, von Neumann and STO devices share a common bifurcation structure, although these systems operate on vastly different space and time scales; namely, all may exhibit Andronov-Hopf bifurcations. This suggests that neural circuits may be capable of the computational functionality as described by von Neumann. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy
2016-01-01
The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. The NASA Aeronautics Research Mission Directorate has identified a suite of investments to meet long term research demands beyond the purview of commercial investment. Electrification of aviation propulsion through turboelectric or hybrid electric propulsion is one of many exciting research areas which has the potential to revolutionize the aviation industry. This paper will provide an overview of the turboelectric and hybrid electric technologies being developed under NASAs Advanced Air Transportation Technology (AATT) Project, and how these technologies can impact vehicle design. An overview will be presented of vehicle system studies and the electric drive system assumptions for successful turboelectric and hybrid electric propulsion in single aisle size commercial aircraft. Key performance parameters for electric drive system technologies will be reviewed, and the technical investment made in materials, electric machines, power electronics, and integrated power systems will be discussed. Finally, power components for a single aisle turboelectric aircraft with an electrically driven tail cone thruster and a hybrid electric nine passenger aircraft with a range extender will be parametrically sized.
A Markovian engine for a biological energy transducer: the catalytic wheel.
Tsong, Tian Yow; Chang, Cheng-Hung
2007-04-01
The molecular machines in biological cells are made of proteins, DNAs and other classes of molecules. The structures of these molecules are characteristically "soft", highly flexible, and yet their interactions with other molecules or ions are specific and selective. This chapter discusses a prevalent form, the catalytic wheel, or the energy transducer of cells, examines its mechanism of action, and extracts from it a set of simple but general rules for understanding the energetics of the biomolecular devices. These rules should also benefit design of manmade nanometer scale machines such as rotary motors or track-guided linear transporters. We will focus on an electric work that, by matching system dynamics and then enhancing the conformational fluctuation of one or several driver proteins, converts stochastic input of energy into rotation or locomotion of a receptor protein. The spatial (or barrier) and temporal symmetry breakings required for selected driver/receptor combinations are examined. This electric ratchet consists of a core engine that follows the Markovian dynamic, alleviates difficulties encountered in rigid mechanical model, and tailors to the soft-matter characteristics of the biomolecules.
Apparatus For Laminating Segmented Core For Electric Machine
Lawrence, Robert Anthony; Stabel, Gerald R
2003-06-17
A segmented core for an electric machine includes segments stamped from coated electric steel. The segments each have a first end, a second end, and winding openings. A predetermined number of segments are placed end-to-end to form layers. The layers are stacked such that each of the layers is staggered from adjacent layers by a predetermined rotation angle. The winding openings of each of the layers are in vertical alignment with the winding openings of the adjacent layers. The stack of layers is secured to form the segmented core.
Sample preparation of metal alloys by electric discharge machining
NASA Technical Reports Server (NTRS)
Chapman, G. B., II; Gordon, W. A.
1976-01-01
Electric discharge machining was investigated as a noncontaminating method of comminuting alloys for subsequent chemical analysis. Particulate dispersions in water were produced from bulk alloys at a rate of about 5 mg/min by using a commercially available machining instrument. The utility of this approach was demonstrated by results obtained when acidified dispersions were substituted for true acid solutions in an established spectrochemical method. The analysis results were not significantly different for the two sample forms. Particle size measurements and preliminary results from other spectrochemical methods which require direct aspiration of liquid into flame or plasma sources are reported.
Magnet management in electric machines
Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum Kang
2017-03-21
A magnet management method of controlling a ferrite-type permanent magnet electrical machine includes receiving and/or estimating the temperature permanent magnets; determining if that temperature is below a predetermined temperature; and if so, then: selectively heating the magnets in order to prevent demagnetization and/or derating the machine. A similar method provides for controlling magnetization level by analyzing flux or magnetization level. Controllers that employ various methods are disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
Cooling system for rotating machine
Gerstler, William Dwight [Niskayuna, NY; El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Alexander, James Pellegrino [Ballston Lake, NY; Quirion, Owen Scott [Clifton Park, NY; Palafox, Pepe [Schenectady, NY; Shen, Xiaochun [Schenectady, NY; Salasoo, Lembit [Schenectady, NY
2011-08-09
An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.
30 CFR 75.832 - Frequency of examinations; recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... machine examination. At least once every 7 days, a qualified person must examine each high-voltage continuous mining machine to verify that electrical protection, equipment grounding, permissibility, cable... least once every 7 days, and prior to tramming the high-voltage continuous mining machine, a qualified...
Sabaliunas, Darius; Pittinger, Charles; Kessel, Cristy; Masscheleyn, Patrick
2006-04-01
A residential energy-use model was developed to estimate energy budgets for household laundering practices in the United States and Canada. The thermal energy for heating water and mechanical energy for agitating clothes in conventional washing machines were calculated for representative households in the United States and Canada. Comparisons in energy consumption among hot-, warm-, and cold-water wash and rinse cycles, horizontal- and vertical-axis washing machines, and gas and electric water heaters, were calculated on a per-wash-load basis. Demographic data for current laundering practices in the United States and Canada were then incorporated to estimate household and national energy consumption on an annual basis for each country. On average, the thermal energy required to heat water using either gas or electric energy constitutes 80% to 85% of the total energy consumed per wash in conventional, vertical-axis (top-loading) washing machines. The balance of energy used is mechanical energy. Consequently, the potential energy savings per load in converting from hot-and-warm- to cold-wash temperatures can be significant. Annual potential energy and cost savings and reductions in carbon dioxide emissions are also estimated for each country, assuming full conversion to cold-wash water temperatures. This study provides useful information to consumers for conserving energy in the home, as well as to, manufacturers in the design of more energy-efficient laundry formulations and appliances.
Electric vehicle drive systems
NASA Astrophysics Data System (ADS)
Appleyard, M.
1992-01-01
New legislation in the State of California requires that 2% of vehicles sold there from 1998 will be 'zero-emitting'. This provides a unique market opportunity for developers of electric vehicles but substantial improvements in the technology are probably required if it is to be successfully exploited. There are around a dozen types of battery that are potentially relevant to road vehicles but, at the present, lead/acid and sodium—sulphur come closest to combining acceptable performance, life and cost. To develop an efficient, lightweight electric motor system requires up-to-date techniques of magnetics design, and the latest power-electronic and microprocessor control methods. Brushless machines, coupled with solid-state inverters, offer the most economical solution for mass production, even though their development costs are higher than for direct-current commutator machines. Fitted to a small car, even the highest energy-density batteries will only provide around 200 km average range before recharging. Therefore, some form of supplementary on-board power generation will probably be needed to secure widespread acceptance by the driving public. Engine-driven generators of quite low power can achieve useful increases in urban range but will fail to qualify as 'zero-emitting'. On the other hand, if the same function could be economically performed by a small fuel-cell using hydrogen derived from a methanol reformer, then most of the flexibility provided by conventional vehicles would be retained. The market prospects for electric cars would then be greatly enhanced and their dependence on very advanced battery technology would be reduced.
High-Strength Undiffused Brushless (HSUB) Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, John S; Lee, Seong T; Tolbert, Leon M
2008-01-01
This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air-gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air-gap flux. The PM in the rotor prevents magnetic-flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce. A high-strength machinemore » is thus obtained. The air-gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.« less
Design of permanent magnet synchronous motor speed control system based on SVPWM
NASA Astrophysics Data System (ADS)
Wu, Haibo
2017-04-01
The control system is designed to realize TMS320F28335 based on the permanent magnet synchronous motor speed control system, and put it to quoting all electric of injection molding machine. The system of the control method used SVPWM, through the sampling motor current and rotating transformer position information, realize speed, current double closed loop control. Through the TMS320F28335 hardware floating-point processing core, realize the application for permanent magnet synchronous motor in the floating point arithmetic, to replace the past fixed-point algorithm, and improve the efficiency of the code.
Torque shudder protection device and method
King, Robert D.; De Doncker, Rik W. A. A.; Szczesny, Paul M.
1997-01-01
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency.
Torque shudder protection device and method
King, R.D.; Doncker, R.W.A.A. De.; Szczesny, P.M.
1997-03-11
A torque shudder protection device for an induction machine includes a flux command generator for supplying a steady state flux command and a torque shudder detector for supplying a status including a negative status to indicate a lack of torque shudder and a positive status to indicate a presence of torque shudder. A flux adapter uses the steady state flux command and the status to supply a present flux command identical to the steady state flux command for a negative status and different from the steady state flux command for a positive status. A limiter can receive the present flux command, prevent the present flux command from exceeding a predetermined maximum flux command magnitude, and supply the present flux command to a field oriented controller. After determining a critical electrical excitation frequency at which a torque shudder occurs for the induction machine, a flux adjuster can monitor the electrical excitation frequency of the induction machine and adjust a flux command to prevent the monitored electrical excitation frequency from reaching the critical electrical excitation frequency. 5 figs.
Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
Qu, Ronghai; Lipo, Thomas A.
2005-08-02
The present invention provides a novel dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine. The present invention improves electrical machine torque density and efficiency. At least one concentric surface-mounted permanent magnet dual-rotor is located inside and outside of a torus-shaped stator with back-to-back windings, respectively. The machine substantially improves machine efficiency by reducing the end windings and boosts the torque density by at least doubling the air gap and optimizing the machine aspect ratio.
NASA Technical Reports Server (NTRS)
Steckler, Jessica
2017-01-01
NASA is working in junction with another company on the Electric Turbo Pump. Analysis of the impeller, including the blades, volute housing, and associated components, will take place in ANSYS. Contours of the deformed and stress were recorded to assess the parts. Campbell diagrams will be considered as mentioned to find the operating regions of the impeller and volute housing, more specifically what speed is ideal to ensure that the impeller does not begin to vibrate at a frequency that will break it. More than one material will be examined as per request by the designer to determine which material is more cost efficient, easy to machine, and can withstand the stress values that will be placed on it.
The design of the new LHC connection cryostats
NASA Astrophysics Data System (ADS)
Vande Craen, A.; Barlow, G.; Eymin, C.; Moretti, M.; Parma, V.; Ramos, D.
2017-12-01
In the frame of the High Luminosity upgrade of the LHC, improved collimation schemes are needed to cope with the superconducting magnet quench limitations due to the increasing beam intensities and particle debris produced in the collision points. Two new TCLD collimators have to be installed on either side of the ALICE experiment to intercept heavy-ion particle debris. Beam optics solutions were found to place these collimators in the continuous cryostat of the machine, in the locations where connection cryostats, bridging a gap of about 13 m between adjacent magnets, are already present. It is therefore planned to replace these connection cryostats with two new shorter ones separated by a bypass cryostat allowing the collimators to be placed close to the beam pipes. The connection cryostats, of a new design when compared to the existing ones, will still have to ensure the continuity of the technical systems of the machine cryostat (i.e. beam lines, cryogenic and electrical circuits, insulation vacuum). This paper describes the functionalities and the design solutions implemented, as well as the plans for their construction.
NASA Technical Reports Server (NTRS)
Clark, Tom; Croker, Todd; Hines, Ken; Knight, Mike; Walton, Todd
1988-01-01
This project addresses the problem of cutting lunar stones into blocks to be used to construct shelters to protect personnel and equipment from harmful solar radiation. This plant will manufacture 6 in x 1 ft x 2 ft blocks and will be located near the south pole to allow it to be in the shade at all times. This design uses a computer controlled robot, a boulder handler that uses hydraulics for movement, a computer system that used 3-D vision to determine the size of boulders, a polycrystalline diamond tipped saw blade that utilizes radiation for cooling, and a solar tower to collect solar energy. Only two electric motors are used in this plant because of the heavy weight of electric motors and the problem of cooling them. These two motors will be cooled by thermoelectric cooling. All other motors and actuators are to be hydraulic. The architectural design for the building as well as the conceptual design of the machines for cutting the blocks are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrus, L.D.; Rogne, C.
1974-01-23
The panic bars (and associated linkages and electrical circuitry) that are defined in this document are a machine operator-actuated control for the emergency deenergization of the tram motors on self-propelled, electric and diesel face equipment, including haulage equipment such as shuttle cars. There are nine basic types of panic bars (and several variations) that are recommended in this document, but all of the panic bars are characteristically of the ''fire door'' type that is frequently encountered on outside exit doors of many public and some commercial buildings. It is also the intent of the following panic bar designs that, whenmore » emergency brakes are added to the face equipment machinery for which they are required, that they be designed and hooked up so that actuation of the panic bar will result in automatic application of the emergency brakes (immediately following the deenergization of the tram motors). (GRA)« less
Smart signal processing for an evolving electric grid
NASA Astrophysics Data System (ADS)
Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.
2015-12-01
Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.
Jeyabalan, Vickneswaran; Samraj, Andrews; Loo, Chu Kiong
2010-10-01
Aiming at the implementation of brain-machine interfaces (BMI) for the aid of disabled people, this paper presents a system design for real-time communication between the BMI and programmable logic controllers (PLCs) to control an electrical actuator that could be used in devices to help the disabled. Motor imaginary signals extracted from the brain’s motor cortex using an electroencephalogram (EEG) were used as a control signal. The EEG signals were pre-processed by means of adaptive recursive band-pass filtrations (ARBF) and classified using simplified fuzzy adaptive resonance theory mapping (ARTMAP) in which the classified signals are then translated into control signals used for machine control via the PLC. A real-time test system was designed using MATLAB for signal processing, KEP-Ware V4 OLE for process control (OPC), a wireless local area network router, an Omron Sysmac CPM1 PLC and a 5 V/0.3A motor. This paper explains the signal processing techniques, the PLC's hardware configuration, OPC configuration and real-time data exchange between MATLAB and PLC using the MATLAB OPC toolbox. The test results indicate that the function of exchanging real-time data can be attained between the BMI and PLC through OPC server and proves that it is an effective and feasible method to be applied to devices such as wheelchairs or electronic equipment.
Condition Assessment and End-of-Life Prediction System for Electric Machines and Their Loads
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Toliyat, Hamid A.
2005-01-01
An end-of-life prediction system developed for electric machines and their loads could be used in integrated vehicle health monitoring at NASA and in other government agencies. This system will provide on-line, real-time condition assessment and end-of-life prediction of electric machines (e.g., motors, generators) and/or their loads of mechanically coupled machinery (e.g., pumps, fans, compressors, turbines, conveyor belts, magnetic levitation trains, and others). In long-duration space flight, the ability to predict the lifetime of machinery could spell the difference between mission success or failure. Therefore, the system described here may be of inestimable value to the U.S. space program. The system will provide continuous monitoring for on-line condition assessment and end-of-life prediction as opposed to the current off-line diagnoses.
NASA Astrophysics Data System (ADS)
Montanini, Roberto; Quattrocchi, Antonino
2016-06-01
A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d31 mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.
NASA Astrophysics Data System (ADS)
Qi, Weiran; Miao, Hongxia; Miao, Xuejiao; Xiao, Xuanxuan; Yan, Kuo
2016-10-01
In order to ensure the safe and stable operation of the prefabricated substations, temperature sensing subsystem, temperature remote monitoring and management subsystem, forecast subsystem are designed in the paper. Wireless temperature sensing subsystem which consists of temperature sensor and MCU sends the electrical equipment temperature to the remote monitoring center by wireless sensor network. Remote monitoring center can realize the remote monitoring and prediction by monitoring and management subsystem and forecast subsystem. Real-time monitoring of power equipment temperature, history inquiry database, user management, password settings, etc., were achieved by monitoring and management subsystem. In temperature forecast subsystem, firstly, the chaos of the temperature data was verified and phase space is reconstructed. Then Support Vector Machine - Particle Swarm Optimization (SVM-PSO) was used to predict the temperature of the power equipment in prefabricated substations. The simulation results found that compared with the traditional methods SVM-PSO has higher prediction accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanini, Roberto, E-mail: rmontanini@unime.it; Quattrocchi, Antonino, E-mail: aquattrocchi@unime.it
A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d{sub 31} mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequencymore » highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.« less
Halbach array motor/generators: A novel generalized electric machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, B.T.; Post, R.F.; Dreifuerst, G.R.
1995-02-01
For many years Klaus Halbach has been investigating novel designs for permanent magnet arrays, using advanced analytical approaches and employing a keen insight into such systems. One of his motivations for this research was to find more efficient means for the utilization of permanent magnets for use in particle accelerators and in the control of particle beams. As a result of his pioneering work, high power free-electron laser systems, such as the ones built at the Lawrence Livermore Laboratory, became feasible, and his arrays have been incorporated into other particle-focusing systems of various types. This paper reports another, quite different,more » application of Klaus` work, in the design of high power, high efficiency, electric generators and motors. When tested, these motor/generator systems display some rather remarkable properties. Their success derives from the special properties which these arrays, which the authors choose to call {open_quotes}Halbach arrays,{close_quotes} possess.« less
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC. Job Corps.
This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…
Cao, Ran; Pu, Xianjie; Du, Xinyu; Yang, Wei; Wang, Jiaona; Guo, Hengyu; Zhao, Shuyu; Yuan, Zuqing; Zhang, Chi; Li, Congju; Wang, Zhong Lin
2018-05-22
Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human-machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human-machine interfacing.
Development of a lemon cutting machine.
Hrishikesh Tavanandi, A; Deepak, S; Venkateshmurthy, K; Raghavarao, K S M S
2014-12-01
Cutting of lemon and other similar fruits is conventionally done manually by sharp knife, which is labor intensive and often un-hygienic. In the present work, a device has been designed and developed for cutting of lemon hygienically into four pieces of similar shape based on stationery cutters and rotating centralizing/locating slit plate concept. Machine has a unique knife assembly consisting of two bird wing shaped knives, joined by welding perpendicularly to a vertical knife, so that the lemon can be cut into four pieces in a single sweep. Six numbers of rotating centralizing/locating slit plates are welded on to the side plates and the plates carry a groove on its inner face, to enable the wing shaped knife to complete the horizontal cut. The rotating slit plates, having centralizing angle of 90°, are rotated by an electric geared motor. The prototype machine has capacity of over 5,000 lemons/h with a power consumption of 0.11 kW.
WTG Energy Systems' Rotor: Steel at 80 Feet
NASA Technical Reports Server (NTRS)
Barrows, R. E.
1979-01-01
The design, specifications, and performance of the 80 foot diameter fixed pitch rotor operating on the MP1-200 wind turbine generator installed as part of the Island of Cuttyhunk's electric power utility grid system are described. This synchronous generating system rated 200 kilowatts at 28 mph wind velocity, and produces constant 60 Hz, 480 VAC current at +/- 1 percent accuracy throughout the machine's operating range. Future R & D requirements and suggestions are included with cost data.
Wire EDM for Refractory Materials
NASA Technical Reports Server (NTRS)
Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.
1982-01-01
In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.
30 CFR 18.96 - Preparation of machines for inspection; requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Preparation of machines for inspection... Field Approval of Electrically Operated Mining Equipment § 18.96 Preparation of machines for inspection; requirements. (a) Upon receipt of written notice from the Health and Safety District Manager of the time and...
30 CFR 18.96 - Preparation of machines for inspection; requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Preparation of machines for inspection... Field Approval of Electrically Operated Mining Equipment § 18.96 Preparation of machines for inspection; requirements. (a) Upon receipt of written notice from the Health and Safety District Manager of the time and...
30 CFR 18.96 - Preparation of machines for inspection; requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Preparation of machines for inspection... Field Approval of Electrically Operated Mining Equipment § 18.96 Preparation of machines for inspection; requirements. (a) Upon receipt of written notice from the Health and Safety District Manager of the time and...
The development of a control system for a small high speed steam microturbine generator system
NASA Astrophysics Data System (ADS)
Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.
2015-08-01
Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.
Neon turbo-Brayton cycle refrigerator for HTS power machines
NASA Astrophysics Data System (ADS)
Hirai, Hirokazu; Hirokawa, M.; Yoshida, Shigeru; Nara, N.; Ozaki, S.; Hayashi, H.; Okamoto, H.; Shiohara, Y.
2012-06-01
We developed a prototype turbo-Brayton refrigerator whose working fluid is neon gas. The refrigerator is designed for a HTS (High Temperature Superconducting) power transformer and its cooling power is more than 2 kW at 65 K. The refrigerator has a turboexpander and a turbo-compressor, which utilize magnetic bearings. These rotational machines have no rubbing parts and no oil-components. Those make a long maintenance interval of the refrigerator. The refrigerator is very compact because our newly developed turbo-compressor is volumetrically smaller than a displacement type compressor in same operating specification. Another feature of the refrigerator is a wide range operation capability for various heat-loads. Cooling power is controlled by the input-power of the turbo-compressor instead of the conventional method of using an electric heater. The rotational speed of the compressor motor is adjusted by an inverter. This system is expected to be more efficient. We show design details, specification and cooling test results of the new refrigerator in this paper.
Grumman WS33 wind system. Phase II: executive summary. Prototype construction and testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, F M; Hinton, P; King, P W
1980-11-01
The configuration of an 8 kW wind turbine generator and its fabrication and pre-delivery testing are discussed. The machine is a three-bladed, down wind turbine designed to interface directly with an electrical utility network. Power is generated in winds between a cut-in speed of 4.0 m/s and a cut-out speed of 22 m/s. A blade pitch control system provides for positioning the rotor at a coarse pitch for start-up, fine pitch for normal running, and a feather position for shut-down. Operation of the machine is controlled by a self-monitoring, programmable logic microprocessor. System components were obtained through a series ofmore » make-buy decisions, tracked and inspected for specification compliance. Only minor modifications from the original design and minor problems of assembly are reported. Four accelerometers were mounted inside the nacelle to determine the accelerations, frequencies and displacements of the system in the three orthogonal axes. A cost analysis is updated. (LEW)« less
Description of photovoltaic village power systems in the United States and Africa
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.; Bifano, W. J.
1979-01-01
The paper describes the designs, hardware, and installations of NASA photovoltaic power systems in the village of Schuchuli in Arizona and Tangaye in Upper Volta, Africa. The projects were designed to demonstrate that current photovoltaic system technology can provide electrical power for domestic services for small, remote communities. The Schuchuli system has a 3.5 kW peak solar array which provides power for water pumping, a refrigerator for each family, lights, and community washing and sewing machines. The 1.8 kW Tangaye system provides power for pumping, flour milling, and lights in the milling building. Both are stand-alone systems operated by local personnel, and they are monitored by NASA to measure design adequacy and refine future designs.
Strategies to improve electrode positioning and safety in cochlear implants.
Rebscher, S J; Heilmann, M; Bruszewski, W; Talbot, N H; Snyder, R L; Merzenich, M M
1999-03-01
An injection-molded internal supporting rib has been produced to control the flexibility of silicone rubber encapsulated electrodes designed to electrically stimulate the auditory nerve in human subjects with severe to profound hearing loss. The rib molding dies, and molds for silicone rubber encapsulation of the electrode, were designed and machined using AutoCad and MasterCam software packages in a PC environment. After molding, the prototype plastic ribs were iteratively modified based on observations of the performance of the rib/silicone composite insert in a clear plastic model of the human scala tympani cavity. The rib-based electrodes were reliably inserted farther into these models, required less insertion force and were positioned closer to the target auditory neural elements than currently available cochlear implant electrodes. With further design improvements the injection-molded rib may also function to accurately support metal stimulating contacts and wire leads during assembly to significantly increase the manufacturing efficiency of these devices. This method to reliably control the mechanical properties of miniature implantable devices with multiple electrical leads may be valuable in other areas of biomedical device design.
A Module Experimental Process System Development Unit (MEPSDU)
NASA Technical Reports Server (NTRS)
1981-01-01
Subsequent to the design review, a series of tests was conducted on simulated modules to demonstrate that all environmental specifications (wind loading, hailstone impact, thermal cycling, and humidity cycling) are satisfied by the design. All tests, except hailstone impact, were successfully completed. The assembly sequence was simplified by virtue of eliminating the frame components and assembly steps. Performance was improved by reducing the module edge border required to accommodate the frame of the preliminary design module. An ultrasonic rolling spot bonding technique was selected for use in the machine to perform the aluminum interconnect to cell metallization electrical joints required in the MEPSDU module configuration. This selection was based on extensive experimental tests and economic analyses.
Anodizing of High Electrically Stressed Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores, P.; Henderson, D. J.; Good, D. E.
2013-06-01
Anodizing creates an aluminum oxide coating that penetrates into the surface as well as builds above the surface of aluminum creating a very hard ceramic-type coating with good dielectric properties. Over time and use, the electrical carrying components (or spools in this case) experience electrical breakdown, yielding undesirable x-ray dosages or failure. The spool is located in the high vacuum region of a rod pinch diode section of an x-ray producing machine. Machine operators have recorded decreases in x-ray dosages over numerous shots using the reusable spool component, and re-anodizing the interior surface of the spool does not provide themore » expected improvement. A machine operation subject matter expert coated the anodized surface with diffusion pump oil to eliminate electrical breakdown as a temporary fix. It is known that an anodized surface is very porous, and it is because of this porosity that the surface may trap air that becomes a catalyst for electrical breakdown. In this paper we present a solution of mitigating electrical breakdown by oiling. We will also present results of surface anodizing improvements achieved by surface finish preparation and surface sealing. We conclude that oiling the anodized surface and using anodized hot dip sealing processes will have similar results.« less
Towards implementation of cellular automata in Microbial Fuel Cells.
Tsompanas, Michail-Antisthenis I; Adamatzky, Andrew; Sirakoulis, Georgios Ch; Greenman, John; Ieropoulos, Ioannis
2017-01-01
The Microbial Fuel Cell (MFC) is a bio-electrochemical transducer converting waste products into electricity using microbial communities. Cellular Automaton (CA) is a uniform array of finite-state machines that update their states in discrete time depending on states of their closest neighbors by the same rule. Arrays of MFCs could, in principle, act as massive-parallel computing devices with local connectivity between elementary processors. We provide a theoretical design of such a parallel processor by implementing CA in MFCs. We have chosen Conway's Game of Life as the 'benchmark' CA because this is the most popular CA which also exhibits an enormously rich spectrum of patterns. Each cell of the Game of Life CA is realized using two MFCs. The MFCs are linked electrically and hydraulically. The model is verified via simulation of an electrical circuit demonstrating equivalent behaviours. The design is a first step towards future implementations of fully autonomous biological computing devices with massive parallelism. The energy independence of such devices counteracts their somewhat slow transitions-compared to silicon circuitry-between the different states during computation.
Towards implementation of cellular automata in Microbial Fuel Cells
Adamatzky, Andrew; Sirakoulis, Georgios Ch.; Greenman, John; Ieropoulos, Ioannis
2017-01-01
The Microbial Fuel Cell (MFC) is a bio-electrochemical transducer converting waste products into electricity using microbial communities. Cellular Automaton (CA) is a uniform array of finite-state machines that update their states in discrete time depending on states of their closest neighbors by the same rule. Arrays of MFCs could, in principle, act as massive-parallel computing devices with local connectivity between elementary processors. We provide a theoretical design of such a parallel processor by implementing CA in MFCs. We have chosen Conway’s Game of Life as the ‘benchmark’ CA because this is the most popular CA which also exhibits an enormously rich spectrum of patterns. Each cell of the Game of Life CA is realized using two MFCs. The MFCs are linked electrically and hydraulically. The model is verified via simulation of an electrical circuit demonstrating equivalent behaviours. The design is a first step towards future implementations of fully autonomous biological computing devices with massive parallelism. The energy independence of such devices counteracts their somewhat slow transitions—compared to silicon circuitry—between the different states during computation. PMID:28498871
NASA Astrophysics Data System (ADS)
Mejid Elsiti, Nagwa; Noordin, M. Y.; Idris, Ani; Saed Majeed, Faraj
2017-10-01
This paper presents an optimization of process parameters of Micro-Electrical Discharge Machining (EDM) process with (γ-Fe2O3) nano-powder mixed dielectric using multi-response optimization Grey Relational Analysis (GRA) method instead of single response optimization. These parameters were optimized based on 2-Level factorial design combined with Grey Relational Analysis. The machining parameters such as peak current, gap voltage, and pulse on time were chosen for experimentation. The performance characteristics chosen for this study are material removal rate (MRR), tool wear rate (TWR), Taper and Overcut. Experiments were conducted using electrolyte copper as the tool and CoCrMo as the workpiece. Experimental results have been improved through this approach.
Structural Mechanics and Dynamics Branch
NASA Technical Reports Server (NTRS)
Stefko, George
2003-01-01
The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.
Method for providing slip energy control in permanent magnet electrical machines
Hsu, John S.
2006-11-14
An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.
Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel
NASA Astrophysics Data System (ADS)
Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.
2018-04-01
Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.
NASA Astrophysics Data System (ADS)
Prasanna, J.; Rajamanickam, S.; Amith Kumar, O.; Karthick Raj, G.; Sathya Narayanan, P. V. V.
2017-05-01
In this paper Ti-6Al-4V used as workpiece material and it is keenly seen in variety of field including medical, chemical, marine, automotive, aerospace, aviation, electronic industries, nuclear reactor, consumer products etc., The conventional machining of Ti-6Al-4V is very difficult due to its distinctive properties. The Electrical Discharge Machining (EDM) is right choice of machining this material. The tungsten copper composite material is employed as tool material. The gap voltage, peak current, pulse on time and duty factor is considered as the machining parameter to analyze the machining characteristics Material Removal Rate (MRR) and Tool Wear Rate (TWR). The Taguchi method is provided to work for finding the significant parameter of EDM. It is found that for MRR significant parameters rated in the following order Gap Voltage, Pulse On-Time, Peak Current and Duty Factor. On the other hand for TWR significant parameters are listed in line of Gap Voltage, Duty Factor, Peak Current and Pulse On-Time.
NASA Astrophysics Data System (ADS)
Eichhorn, M.; Taruffi, A.; Bauer, C.
2017-04-01
The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.
Investigation of complexity of the instruction manuals for electrical coffeepots.
Fernandes, C A; Teixeira, J M; Merino, E A D
2014-01-01
Electrical coffeepots are commonly used in professional and residential environments. Their instruction manuals are related to issues that involve the user's safety and ability to operate the machine correctly. To provide the best product performance to the user, one must indicate or inform the correct usability, to turn the interaction easier. This research proposes to investigate the instruction manuals of the electrical coffeepots. Four coffee pot instruction manuals were analyzed in relation to the complexity through the heuristic evaluation. For that, eight experts of the Graphic Design were chosen to answer twenty four questions with the aim of analyzing: images; texts; layout development; information and warnings. This study shows the results of the 04 (four) items analyzed: a) images; b) texts; c) layout development; d) information and warnings, together with the suggestions of improvements for each manual. It is believed that the methodological procedures for the application of the heuristic evaluation have facilitated the diagnosis of fragilities and barriers that the users find during the interaction with electrical coffeepot manuals.
NASA Astrophysics Data System (ADS)
Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.
2017-08-01
This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.
Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness
NASA Astrophysics Data System (ADS)
Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah
2018-01-01
In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.
Development of an Electric Motor Powered Low Cost Coconut Deshelling Machine
NASA Astrophysics Data System (ADS)
Mondal, Imdadul Hoque; Prasanna Kumar, G. V.
2016-06-01
An electric motor powered coconut deshelling machine was developed in line with the commercially available unit, but with slight modifications. The machine worked on the principle that the coconut shell can be caused to fail in shear and compressive forces. It consisted of a toothed wheel, a deshelling rod, an electric motor, and a compound chain drive. A bevelled 16 teeth sprocket with 18 mm pitch was used as the toothed wheel. Mild steel round bar of 18 mm diameter was used as the deshelling rod. The sharp edge tip of the deshelling rod was inserted below the shell to apply shear force on the shell, and the fruit was tilted toward the rotary toothed wheel to apply the compressive force on the shell. The speed of rotation of the toothed wheel was set at 34 ± 2 rpm. The output capacity of the machine was found to be 24 coconuts/h with 95 % of the total time effectively used for deshelling. The labour requirement was found to be 43 man-h/1000 nuts. About 13 % of the kernels got scraped and about 7 % got sliced during the operation. The developed coconut deshelling machine was recommended for the minimum annual use of 200 h or deshelling of 4700 coconuts per year. The cost of operation for 200 h of annual use was found to be about ` 47/h. The developed machine was found to be simple, easy to operate, energy efficient, safe and reduce drudgery involved in deshelling by conventional methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Ian; Hiskens, Ian; Linderoth, Jeffrey
Building on models of electrical power systems, and on powerful mathematical techniques including optimization, model predictive control, and simluation, this project investigated important issues related to the stable operation of power grids. A topic of particular focus was cascading failures of the power grid: simulation, quantification, mitigation, and control. We also analyzed the vulnerability of networks to component failures, and the design of networks that are responsive to and robust to such failures. Numerous other related topics were investigated, including energy hubs and cascading stall of induction machines
Combined passive bearing element/generator motor
Post, Richard F.
2000-01-01
An electric machine includes a cylindrical rotor made up of an array of permanent magnets that provide a N-pole magnetic field of even order (where N=4, 6, 8, etc.). This array of permanent magnets has bars of identical permanent magnets made of dipole elements where the bars are assembled in a circle. A stator inserted down the axis of the dipole field is made of two sets of windings that are electrically orthogonal to each other, where one set of windings provides stabilization of the stator and the other set of windings couples to the array of permanent magnets and acts as the windings of a generator/motor. The rotor and the stator are horizontally disposed, and the rotor is on the outside of said stator. The electric machine may also include two rings of ferromagnetic material. One of these rings would be located at each end of the rotor. Two levitator pole assemblies are attached to a support member that is external to the electric machine. These levitator pole assemblies interact attractively with the rings of ferromagnetic material to produce a levitating force upon the rotor.
NASA Astrophysics Data System (ADS)
Laib dit Leksir, Y.; Mansour, M.; Moussaoui, A.
2018-03-01
Analysis and processing of databases obtained from infrared thermal inspections made on electrical installations require the development of new tools to obtain more information to visual inspections. Consequently, methods based on the capture of thermal images show a great potential and are increasingly employed in this field. However, there is a need for the development of effective techniques to analyse these databases in order to extract significant information relating to the state of the infrastructures. This paper presents a technique explaining how this approach can be implemented and proposes a system that can help to detect faults in thermal images of electrical installations. The proposed method classifies and identifies the region of interest (ROI). The identification is conducted using support vector machine (SVM) algorithm. The aim here is to capture the faults that exist in electrical equipments during an inspection of some machines using A40 FLIR camera. After that, binarization techniques are employed to select the region of interest. Later the comparative analysis of the obtained misclassification errors using the proposed method with Fuzzy c means and Ostu, has also be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englebretson, Steven; Ouyang, Wen; Tschida, Colin
This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability ofmore » the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.« less
Design and analysis of a novel doubly salient permanent- magnet generator
NASA Astrophysics Data System (ADS)
Sarlioglu, Bulent
Improvements in permanent magnets and power electronics technologies have made it possible to devise different configurations of electrical machines which were not previously possible to implement. In this dissertation, a novel Doubly Salient Permanent Magnet (DSPM) generator has been designed, analyzed, and tested. The DSPM generator has four stator poles and six rotor poles. Two high density permanent magnets are located in the stator yoke. Since there are no windings or permanent magnets in the rotor, the DSPM generator has several advantages: the rotor has low inertia, no copper loss, no PM attachments, no brushes, and no slip rings. This type of rotor can be manufactured easily, and can be run at very high speeds as in the case of a switched reluctance machine. Compared to induction and switched reluctance machines, the DSPM generator can produce more power from the same geometry. Moreover, the efficiency of the DSPM generator is higher, since there is no copper loss associated with excitation of the machine. Another advantage of the DSPM generator is that the output AC voltage can easily be rectified by a diode bridge rectifier, while in the case of the switched reluctance machine one needs to use active semiconductor switches for power generation. If greater utilization and control of power production capability are desired, the AC output of the DSPM generator can be rectified using an active converter. In this dissertation, a novel doubly salient permanent magnet generator is introduced. First, the theory of the DSPM generator is given. Later, this novel generator is investigated using conventional magnetic circuits, nonlinear finite element analysis, and simulations with first order approximations and nonlinear modeling. It is compared with other generators. Static and no-load testing of the prototype DSPM generator are presented, and generator performance is evaluated with various power electronic circuits.
A superconducting homopolar motor and generator—new approaches
NASA Astrophysics Data System (ADS)
Fuger, Rene; Matsekh, Arkadiy; Kells, John; Sercombe, D. B. T.; Guina, Ante
2016-03-01
Homopolar machines were the first continuously running electromechanical converters ever demonstrated but engineering challenges and the rapid development of AC technology prevented wider commercialisation. Recent developments in superconducting, cryogenic and sliding contact technology together with new areas of application have led to a renewed interest in homopolar machines. Some of the advantages of these machines are ripple free constant torque, pure DC operation, high power-to-weight ratio and that rotating magnets or coils are not required. In this paper we present our unique approach to high power and high torque homopolar electromagnetic turbines using specially designed high field superconducting magnets and liquid metal current collectors. The unique arrangement of the superconducting coils delivers a high static drive field as well as effective shielding for the field critical sliding contacts. The novel use of additional shielding coils reduces weight and stray field of the system. Liquid metal current collectors deliver a low resistance, stable and low maintenance sliding contact by using a thin liquid metal layer that fills a circular channel formed by the moving edge of a rotor and surrounded by a conforming stationary channel of the stator. Both technologies are critical to constructing high performance machines. Homopolar machines are pure DC devices that utilise only DC electric and magnetic fields and have no AC losses in the coils or the supporting structure. Guina Energy Technologies has developed, built and tested different motor and generator concepts over the last few years and has combined its experience to develop a new generation of homopolar electromagnetic turbines. This paper summarises the development process, general design parameters and first test results of our high temperature superconducting test motor.
Dynamic behavior of the mechanical systems from the structure of a hybrid automobile
NASA Astrophysics Data System (ADS)
Dinel, Popa; Irina, Tudor; Nicolae-Doru, Stănescu
2017-10-01
In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.
A multitasking finite state architecture for computer control of an electric powertrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burba, J.C.
1984-01-01
Finite state techniques provide a common design language between the control engineer and the computer engineer for event driven computer control systems. They simplify communication and provide a highly maintainable control system understandable by both. This paper describes the development of a control system for an electric vehicle powertrain utilizing finite state concepts. The basics of finite state automata are provided as a framework to discuss a unique multitasking software architecture developed for this application. The architecture employs conventional time-sliced techniques with task scheduling controlled by a finite state machine representation of the control strategy of the powertrain. The complexitiesmore » of excitation variable sampling in this environment are also considered.« less
Free-flying teleoperator requirements and conceptual design.
NASA Technical Reports Server (NTRS)
Onega, G. T.; Clingman, J. H.
1973-01-01
A teleoperator, as defined by NASA, is a remotely controlled cybernetic man-machine system designed to augment and extend man's sensory, manipulative, and cognitive capabilities. Teleoperator systems can fulfill an important function in the Space Shuttle program. They can retrieve automated satellites for refurbishment and reuse. Cargo can be transferred over short or large distances and orbital operations can be supported. A requirements analysis is discussed, giving attention to the teleoperator spacecraft, docking and stowage systems, display and controls, propulsion, guidance, navigation, control, the manipulators, the video system, the electrical power, and aspects of communication and data management. Questions of concept definition and evaluation are also examined.
Hybrid-secondary uncluttered induction machine
Hsu, John S.
2001-01-01
An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.
Feasibility Study of Jupiter Icy Moons Orbiter Permanent Magnet Alternator Start Sequence
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Tokars, Roger P.
2006-01-01
The Jupiter Icy Moons Orbiter (JIMO) mission was a proposed, (recently cancelled) long duration science mission to study three moons of Jupiter: Callisto, Ganymede, and Europa. One design of the JIMO spacecraft used a nuclear heat source in conjunction with a Brayton rotating machine to generate electrical power for the electric thrusters and the spacecraft bus. The basic operation of the closed cycle Brayton system was as follows. The working fluid, a heliumxenon gas mixture, first entered a compressor, then went through a recuperator and hot-side heat exchanger, then expanded across a turbine that drove an alternator, then entered the cold-side of the recuperator and heat exchanger and finally returned to the compressor. The spacecraft was to be launched with the Brayton system off-line and the nuclear reactor shut down. Once the system was started, the helium-xenon gas would be circulated into the heat exchangers as the nuclear reactors were activated. Initially, the alternator unit would operate as a motor so as to drive the turbine and compressor to get the cycle started. This report investigated the feasibility of the start up sequence of a permanent magnet (PM) machine, similar in operation to the alternator unit, without any position or speed feedback sensors ("sensorless") and with a variable load torque. It is found that the permanent magnet machine can start with sensorless control and a load torque of up to 30 percent of the rated value.
3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. ...
3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. VIEW OF 7 1/2 TON CAPACITY ALLIANCE SIDE DOOR CHARGING MACHINE. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
ML-o-Scope: A Diagnostic Visualization System for Deep Machine Learning Pipelines
2014-05-16
ML-o-scope: a diagnostic visualization system for deep machine learning pipelines Daniel Bruckner Electrical Engineering and Computer Sciences... machine learning pipelines 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...the system as a support for tuning large scale object-classification pipelines. 1 Introduction A new generation of pipelined machine learning models
ERIC Educational Resources Information Center
Kafafian, Haig
Instructions are given for teaching severely physically and/or neurologically handicapped students to use the 14-key Cybertype man-machine communications system, an electric writing machine with a simplified keyboard to enable persons with limited motor ability or coordination to communicate in written form. Explained are the various possible…
Study of Man-Machine Communications Systems for the Handicapped. Volume III. Final Report.
ERIC Educational Resources Information Center
Kafafian, Haig
The report describes a series of studies conducted to determine the extent to which severly handicapped students who were able to comprehend language and language structure but who were not able to write or type could communicate using various man-machine systems. Included among the systems tested were specialized electric typewriting machines, a…
The release of nickel and other trace elements from electric kettles and coffee machines.
Berg, T; Petersen, A; Pedersen, G A; Petersen, J; Madsen, C
2000-03-01
The release of nickel, chromium and lead from electric kettles to water under conditions simulating regular household use was investigated. Ten out of 26 kettles sold on the Danish market released more than 50 micrograms/l nickel to water, whereas neither lead nor chromium was released in any significant amount. Fifty micrograms/l of nickel in water was chosen as the threshold of action, because concentrations below this value were considered unlikely to provide outbreaks of eczema for those consumers suffering from contact allergy to nickel, who are also sensitive to the content of nickel in the diet. This first part of the study was followed up by a dialogue between the kettle producers and the Danish authorities, leading to a change of construction or design for those kettles that did not comply with the criteria. As a follow-up study another ten kettles were studied to check whether compliance was improved. Two of these ten kettles still released more than 50 micrograms/l nickel to water under the test conditions. These two kettles, however, were subsequently withdrawn from the market. Coffee machines tested similarly did not release aluminium, lead, chromium or nickel in quantities of any significance.
Electrical Power Conversion of a River and Tidal Power Generator: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan
As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern;more » thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).« less
Electrical Power Conversion of River and Tidal Power Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan
As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern;more » thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).« less
NASA Astrophysics Data System (ADS)
Nur, Rusdi; Suyuti, Muhammad Arsyad; Susanto, Tri Agus
2017-06-01
Aluminum is widely utilized in the industrial sector. There are several advantages of aluminum, i.e. good flexibility and formability, high corrosion resistance and electrical conductivity, and high heat. Despite of these characteristics, however, pure aluminum is rarely used because of its lacks of strength. Thus, most of the aluminum used in the industrial sectors was in the form of alloy form. Sustainable machining can be considered to link with the transformation of input materials and energy/power demand into finished goods. Machining processes are responsible for environmental effects accepting to their power consumption. The cutting conditions have been optimized to minimize the cutting power, which is the power consumed for cutting. This paper presents an experimental study of sustainable machining of Al-11%Si base alloy that was operated without any cooling system to assess the capacity in reducing power consumption. The cutting force was measured and the cutting power was calculated. Both of cutting force and cutting power were analyzed and modeled by using the central composite design (CCD). The result of this study indicated that the cutting speed has an effect on machining performance and that optimum cutting conditions have to be determined, while sustainable machining can be followed in terms of minimizing power consumption and cutting force. The model developed from this study can be used for evaluation process and optimization to determine optimal cutting conditions for the performance of the whole process.
Support vector machine for day ahead electricity price forecasting
NASA Astrophysics Data System (ADS)
Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti
2015-05-01
Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.
NASA Astrophysics Data System (ADS)
Corne, Bram; Vervisch, Bram; Derammelaere, Stijn; Knockaert, Jos; Desmet, Jan
2018-07-01
Stator current analysis has the potential of becoming the most cost-effective condition monitoring technology regarding electric rotating machinery. Since both electrical and mechanical faults are detected by inexpensive and robust current-sensors, measuring current is advantageous on other techniques such as vibration, acoustic or temperature analysis. However, this technology is struggling to breach into the market of condition monitoring as the electrical interpretation of mechanical machine-problems is highly complicated. Recently, the authors built a test-rig which facilitates the emulation of several representative mechanical faults on an 11 kW induction machine with high accuracy and reproducibility. Operating this test-rig, the stator current of the induction machine under test can be analyzed while mechanical faults are emulated. Furthermore, while emulating, the fault-severity can be manipulated adaptively under controllable environmental conditions. This creates the opportunity of examining the relation between the magnitude of the well-known current fault components and the corresponding fault-severity. This paper presents the emulation of evolving bearing faults and their reflection in the Extended Park Vector Approach for the 11 kW induction machine under test. The results confirm the strong relation between the bearing faults and the stator current fault components in both identification and fault-severity. Conclusively, stator current analysis increases reliability in the application as a complete, robust, on-line condition monitoring technology.
Electricity: From Tabletop to Power Plant
ERIC Educational Resources Information Center
Moran, Timothy
2009-01-01
While electricity is central to our daily lives, it remains "black box" technology to most students. They know that electricity is produced somewhere and that it costs money, but they do not have personal experience with the operation and scale of the machines that provide it. Fortunately, electricity generation can be added to the more basic…
Electrical Systems. FOS: Fundamentals of Service. Fifth Edition.
ERIC Educational Resources Information Center
John Deere Co., Moline, IL.
This manual, which is part of a series on agricultural and industrial machinery, deals with electrical systems. Special attention is paid to electricity as it is commonly used on mobile machines. The following topics are covered in the individual chapters: electricity and how it works (current, voltage, and resistance; types of circuits;…
Electrical Systems. FOS: Fundamentals of Service.
ERIC Educational Resources Information Center
John Deere Co., Moline, IL.
This electrical systems manual is one of a series of power mechanics texts and visual aids for training in the servicing of electrical systems on mobile machines. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The ten chapters focus on (1) Electricity: How It…
PWM Inverter control and the application thereof within electric vehicles
Geppert, Steven
1982-01-01
An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, J.M.
The theory and methodology of design of general-purpose machines that may be controlled by a computer to perform all the tasks of a set of special-purpose machines is the focus of modern machine design research. These seventeen contributions chronicle recent activity in the analysis and design of robot manipulators that are the prototype of these general-purpose machines. They focus particularly on kinematics, the geometry of rigid-body motion, which is an integral part of machine design theory. The challenges to kinematics researchers presented by general-purpose machines such as the manipulator are leading to new perspectives in the design and control ofmore » simpler machines with two, three, and more degrees of freedom. Researchers are rethinking the uses of gear trains, planar mechanisms, adjustable mechanisms, and computer controlled actuators in the design of modern machines.« less
BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTHEAST. THE ...
BLAISDELL SLOW SAND FILTER WASHING MACHINE. VIEW LOOKING SOUTHEAST. THE ELECTRIC TROLLEY IS SEEN AT THE LEFT. THE BULKHEAD SEEN AT THE LOWER RIGHT IS NOT PART OF THE MACHINE; IT WAS INSTALLED TO RETAIN THE FILTER SAND AFTER THE MACHINE WAS NO LONGER USED. THE NORTHWEST CORNER OF SETTLING RESERVOIR NO. 4 IS SEEN IN THE DISTANCE BELOW THE RIGHT SIDE OF THE TROLLEY. - Yuma Main Street Water Treatment Plant, Blaisdell Slow Sand Filter Washing Machine, Jones Street at foot of Main Street, Yuma, Yuma County, AZ
Stator for a rotating electrical machine having multiple control windings
Shah, Manoj R.; Lewandowski, Chad R.
2001-07-17
A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.
1984-01-01
MANUFACTURING OHIO DLA POWER AND HAND PUMPS 31 COCA - COLA COMPANY INC THE WISCONSIN NAVY POWER AND HAND PUMPS 85 COLE-PARMER INSTRUMENT CO ILLINOIS NAVY...ELECTRICAL & ULTRASONIC EROSION MACHINES 123 OL MARKETING INC OKLAHOMA USAF ELECTRICAL 8 ULTRASONIC EROSION MACHINES 120 JCK & CASTER CO MINNESOTA DLA...FITTINGS FOR ROPE CABLE AND CHAIN ’I9 EILO MANUFACTURING INC OKLAHOMA NAVY FITTINGS FOR ROPE CABLE AND CHAIN !2? GATEWAY MARKETING CORPORATION NEW
Horizontal-axis clothes washer market poised for expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, K.L.
1994-12-31
The availability of energy- and water-efficient horizontal-axis washing machines in the North American market is growing, as US and European manufacturers position for an expected long-term market shift toward horizontal-axis (H-axis) technology. Four of the five major producers of washing machines in the US are developing or considering new H-axis models. New entrants, including US-based Staber Industries and several European manufacturers, are also expected to compete in this market. The intensified interest in H-axis technology is partly driven by speculation that new US energy efficiency standards, to be proposed in 1996 and implemented in 1999, will effectively mandate H-axis machines.more » H-axis washers typically use one-third to two-thirds less energy, water, and detergent than vertical-axis machines. Some models also reduce the energy needed to dry the laundry, since their higher spin speeds extract more water than is typical with vertical-axis designs. H-axis washing machines are the focus of two broadly-based efforts to support coordinated research and incentive programs by electric, gas, and water utilities: The High-Efficiency Laundry Metering/Marketing Analysis (THELMA), and the Consortium for Energy Efficiency (CEE) High-Efficiency Clothes Washer Initiative. These efforts may help to pave the way for new types of marketing partnerships among utilities and other parties that could help to speed adoption of H-axis washers.« less
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Ryan Wartman; David Tarnowski
2006-03-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the completion of the design refinement phase. This phase resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. This system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota. Since then, the fabrication of the dry application prototype (incorporating an electromagnetic drive mechanism and a new deblinding concept) has been completed and successfully tested at QRDC's lab.« less
21. INTERIOR VIEW OF THE MACHINE SHOP LOOKING SOUTH. FROM ...
21. INTERIOR VIEW OF THE MACHINE SHOP LOOKING SOUTH. FROM LEFT TO RIGHT, PULLEY'S ABOVE FOR THE LATHE BELOW, ENTRANCE TO THE ELECTRICAL MOTOR ROOM, BORING MACHINE, PLANER, TOOL, BENCH AGAINST THE BACK WALL, DOORWAY INTO THE ANNEX, LONG LATHE. WOOD STOVE IN THE FOREGROUND RIGHT. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Liang; Yang, Yi; Harley, Ronald Gordon
A system is for a plurality of different electric load types. The system includes a plurality of sensors structured to sense a voltage signal and a current signal for each of the different electric loads; and a processor. The processor acquires a voltage and current waveform from the sensors for a corresponding one of the different electric load types; calculates a power or current RMS profile of the waveform; quantizes the power or current RMS profile into a set of quantized state-values; evaluates a state-duration for each of the quantized state-values; evaluates a plurality of state-types based on the powermore » or current RMS profile and the quantized state-values; generates a state-sequence that describes a corresponding finite state machine model of a generalized load start-up or transient profile for the corresponding electric load type; and identifies the corresponding electric load type.« less
Study of the Productivity and Surface Quality of Hybrid EDM
NASA Astrophysics Data System (ADS)
Wankhade, Sandeepkumar Haribhau; Sharma, Sunil Bansilal
2016-01-01
The development of new, advanced engineering materials and the need for precise prototypes and low-volume production have made the electric discharge machining (EDM), an important manufacturing process to meet such demands. It is capable of machining geometrically complex and hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, carbides etc. Conversely the low MRR limits its productivity. Abrasive water jet machine (AJM) tools are quick to setup and offer quick turn-around on the machine and could make parts out of virtually any material. They do not heat the material hence no heat affected zone and can make any intricate shape easily. The main advantages are flexibility, low heat production and ability to machine hard and brittle materials. Main disadvantages comprise the process produces a tapered cut and health hazards due to dry abrasives. To overcome the limitations and exploit the best of each of above processes; an attempt has been made to hybridize the processes of AJM and EDM. The appropriate abrasives routed with compressed air through the hollow electrode to construct the hybrid process i.e., abrasive jet electric discharge machining (AJEDM), the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process. The main process parameters were varied to explore their effects and experimental results show that AJEDM enhances the machining efficiency with better surface finish hence can fit the requirements of modern manufacturing applications.
Methode unifiee de simulation et de conception des convertisseurs de puissance
NASA Astrophysics Data System (ADS)
Fortin Blanchette, Handy
High frequency power converters are now master piece in emerging new renewable energy applications such as hybrid vehicules. These new technologies merge the power of electrical machine with the thermal motor power. The power converters used to control those electrical machines are embeded technologies with high efficiency conversion and a high reliability. More than ground vehicule applications, embeded power converters are now present in aeronautic and aerospace domains. In this sense, high reliability and high efficiency are now important characteristics that are not only suitable but needed. In spite of this progression, power converters development remains today a complex science. Even if advanced complex techniques are now available to increase the converter stability, there are no systemic rules to design the converter physical assembly. Very often, an artistic approach is used to place the components inside the converter in the more convenient places. This lack of rigor about EMI problems is not so surprising because this kind of analysis is costly and risky. In general, to solve this type of problems, one designs a second and a third printed circuit generation which is not necessarily a quick and systematic approach. To overcome these difficulties, the main goal of this thesis is to provide simple and improved tools for power converter circuit designers. The key point are to solve EMI and reliability problems at the earlier design stage and not during the prototyping phase. Many solutions are exposed in this text about the magnetic field orientation, leakage inductances identification, power semiconductors modeling and electromagnetic modeling of power converters. The exactness of these methods is proved by using it to develop a matrix converter. The printed circuits are designed to orient properly the magnetic field enabling to introduce low power sensing circuits directly inside the converter. This application is one of the numerous possibilities offered by the techniques presented in this document. Keywords: power converters, modeling, electromagnetic interferences.
NASA Astrophysics Data System (ADS)
Starikov, A. I.; Nekrasov, R. Yu; Teploukhov, O. J.; Soloviev, I. V.; Narikov, K. A.
2016-10-01
Manufactures, machinery and equipment improve of constructively as science advances and technology, and requirements are improving of quality and longevity. That is, the requirements for surface quality and precision manufacturing, oil and gas equipment parts are constantly increasing. Production of oil and gas engineering products on modern machine tools with computer numerical control - is a complex synthesis of technical and electrical equipment parts, as well as the processing procedure. Technical machine part wears during operation and in the electrical part are accumulated mathematical errors. Thus, the above-mentioned disadvantages of any of the following parts of metalworking equipment affect the manufacturing process of products in general, and as a result lead to the flaw.
Non-contact capacitance based image sensing method and system
Novak, James L.; Wiczer, James J.
1995-01-01
A system and a method is provided for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device.
Non-contact capacitance based image sensing method and system
Novak, James L.; Wiczer, James J.
1994-01-01
A system and a method for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device.
Controlled clockwise and anticlockwise rotational switching of a molecular motor.
Perera, U G E; Ample, F; Kersell, H; Zhang, Y; Vives, G; Echeverria, J; Grisolia, M; Rapenne, G; Joachim, C; Hla, S-W
2013-01-01
The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.
30 CFR 18.8 - Date for conducting investigation and tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES General... determine the order of precedence for investigation and testing. If an electrical machine component or...
Performance and Surface Integrity of Ti6Al4V After Sinking EDM with Special Graphite Electrodes
NASA Astrophysics Data System (ADS)
Amorim, Fred L.; Stedile, Leandro J.; Torres, Ricardo D.; Soares, Paulo C.; Henning Laurindo, Carlos A.
2014-04-01
Titanium and its alloys have high chemical reactivity with most of the cutting tools. This makes it difficult to work with these alloys using conventional machining processes. Electrical discharge machining (EDM) emerges as an alternative technique to machining these materials. In this work, it is investigated the performance of three special grades of graphite as electrodes when ED-Machining Ti6Al4V samples under three different regimes. The main influences of electrical parameters are discussed for the samples material removal rate, volumetric relative wear and surface roughness. The samples surfaces were evaluated using SEM images, microhardness measurements, and x-ray diffraction. It was found that the best results for samples material removal rate, surface roughness, and volumetric relative wear were obtained for the graphite electrode with 10-μm particle size and negative polarity. For all samples machined by EDM and characterized by x-ray (XRD), it was identified the presence of titanium carbides. For the finish EDM regimes, the recast layer presents an increased amount of titanium carbides compared to semi-finish and rough regimes.
Additional extensions to the NASCAP computer code, volume 3
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Cooke, D. L.
1981-01-01
The ION computer code is designed to calculate charge exchange ion densities, electric potentials, plasma temperatures, and current densities external to a neutralized ion engine in R-Z geometry. The present version assumes the beam ion current and density to be known and specified, and the neutralizing electrons to originate from a hot-wire ring surrounding the beam orifice. The plasma is treated as being resistive, with an electron relaxation time comparable to the plasma frequency. Together with the thermal and electrical boundary conditions described below and other straightforward engine parameters, these assumptions suffice to determine the required quantities. The ION code, written in ASCII FORTRAN for UNIVAC 1100 series computers, is designed to be run interactively, although it can also be run in batch mode. The input is free-format, and the output is mainly graphical, using the machine-independent graphics developed for the NASCAP code. The executive routine calls the code's major subroutines in user-specified order, and the code allows great latitude for restart and parameter change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in termsmore » of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.« less
Self aligning electron beam gun having enhanced thermal and mechanical stability
Scarpetti, Jr., Raymond D.; Parkison, Clarence D.; Switzer, Vernon A.; Lee, Young J.; Sawyer, William C.
1995-01-01
A compact, high power electron gun having enhanced thermal and mechanical stability which incorporates a mechanically coupled, self aligning structure for the anode and cathode. The enhanced stability, and reduced need for realignment of the cathode to the anode and downstream optics during operation are achieved by use of a common support structure for the cathode and anode which requires no adjustment screws or spacers. The electron gun of the present invention also incorporates a modular design for the cathode, in which the electron emitter, its support structure, and the hardware required to attach the emitter assembly to the rest of the gun are a single element. This modular design makes replacement of the emitter simpler and requires no realignment after a new emitter has been installed. Compactness and a reduction in the possibility of high voltage breakdown are achieved by shielding the "triple point" where the electrode, insulator, and vacuum meet. The use of electric discharge machining (EDM) for fabricating the emitter allows for the accurate machining of the emitter into intricate shapes without encountering the normal stresses developed by standard emitter fabrication techniques.
NASA Technical Reports Server (NTRS)
Kuznetsov, Stephen; Marriott, Darin
2008-01-01
Advances in ultra high speed linear induction electromagnetic launchers over the past decade have focused on magnetic compensation of the exit and entry-edge transient flux wave to produce efficient and compact linear electric machinery. The paper discusses two approaches to edge compensation in long-stator induction catapults with typical end speeds of 150 to 1,500 m/s. In classical linear induction machines, the exit-edge effect is manifest as two auxiliary traveling waves that produce a magnetic drag on the projectile and a loss of magnetic flux over the main surface of the machine. In the new design for the Stator Compensated Induction Machine (SCIM) high velocity launcher, the exit-edge effect is nulled by a dual wavelength machine or alternately the airgap flux is peaked at a location prior to the exit edge. A four (4) stage LIM catapult is presently being constructed for 180 m/s end speed operation using double-sided longitudinal flux machines. Advanced exit and entry edge compensation is being used to maximize system efficiency, and minimize stray heating of the reaction armature. Each stage will output approximately 60 kN of force and produce over 500 G s of acceleration on the armature. The advantage of this design is there is no ablation to the projectile and no sliding contacts, allowing repeated firing of the launcher without maintenance of any sort. The paper shows results of a parametric study for 500 m/s and 1,500 m/s linear induction launchers incorporating two of the latest compensation techniques for an air-core stator primary and an iron-core primary winding. Typical thrust densities for these machines are in the range of 150 kN/sq.m. to 225 kN/sq.m. and these compete favorably with permanent magnet linear synchronous machines. The operational advantages of the high speed SCIM launcher are shown by eliminating the need for pole-angle position sensors as would be required by synchronous systems. The stator power factor is also improved.
30 CFR 18.10 - Notice of approval or disapproval.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES General... assembly of an electrical machine or accessory, MSHA will issue to the applicant either a written notice of...
Electrical-assisted double side incremental forming and processes thereof
Roth, John; Cao, Jian
2014-06-03
A process for forming a sheet metal component using an electric current passing through the component is provided. The process can include providing a double side incremental forming machine, the machine operable to perform a plurality of double side incremental deformations on the sheet metal component and also apply an electric direct current to the sheet metal component during at least part of the forming. The direct current can be applied before or after the forming has started and/or be terminated before or after the forming has stopped. The direct current can be applied to any portion of the sheet metal. The electrical assistance can reduce the magnitude of force required to produce a given amount of deformation, increase the amount of deformation exhibited before failure and/or reduce any springback typically exhibited by the sheet metal component.
Irredundant Sequential Machines Via Optimal Logic Synthesis
1989-10-01
1989 Irredundant Sequential Machines Via Optimal Logic Synthesis NSrinivas Devadas , Hi-Keung Tony Ma, A. Richard Newton, and Alberto Sangiovanni- S...Agency under contract N00014-87-K-0825, and a grant from AT & T Bell Laboratories. Author Information Devadas : Department of Electrical Engineering...Sequential Machines Via Optimal Logic Synthesis Srinivas Devadas * Hi-Keung Tony ha. A. Richard Newton and Alberto Sangiovanni-Viucentelli Department of
Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines
1989-09-01
Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Srinivas Devadas and Kurt Keutzer F ( Abstract In this...Projects Agency under contract number N00014-87-K-0825. Author Information Devadas : Department of Electrical Engineering and Computer Science, Room 36...MA 02139; (617) 253-0292. 0 * Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Siivas Devadas
Translations on USSR Resources, Number 767.
1978-01-19
photography and so on). The amount of data obtained as a result of additional surveys makes it possible to evaluate the intensity and configuration...machine tools , chemical products, refrigerators, as well as potatoes and products of livestock breeding. The Kazakh SSR made an enormous leap in its...of the fuel and water power resources of Georgia, Azerbaydzhan and Armenia. Petroleum, transport and electrical machine building, machine tool
Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Maness, Michael; Dykes, Katherine
Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less
Optimized Generator Designs for the DTU 10-MW Offshore Wind Turbine using GeneratorSE: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Maness, Michael; Dykes, Katherine
Compared to land-based applications, offshore wind imposes challenges for the development of next generation wind turbine generator technology. Direct-drive generators are believed to offer high availability, efficiency, and reduced operation and maintenance requirements; however, previous research suggests difficulties in scaling to several megawatts or more in size. The resulting designs are excessively large and/or massive, which are major impediments to transportation logistics, especially for offshore applications. At the same time, geared wind turbines continue to sustain offshore market growth through relatively cheaper and lightweight generators. However, reliability issues associated with mechanical components in a geared system create significant operation andmore » maintenance costs, and these costs make up a large portion of overall system costs offshore. Thus, direct-drive turbines are likely to outnumber their gear-driven counterparts for this market, and there is a need to review the costs or opportunities of building machines with different types of generators and examining their competitiveness at the sizes necessary for the next generation of offshore wind turbines. In this paper, we use GeneratorSE, the National Renewable Energy Laboratory's newly developed systems engineering generator sizing tool to estimate mass, efficiency, and the costs of different generator technologies satisfying the electromagnetic, structural, and basic thermal design requirements for application in a very large-scale offshore wind turbine such as the Technical University of Denmark's (DTU) 10-MW reference wind turbine. For the DTU reference wind turbine, we use the previously mentioned criteria to optimize a direct-drive, radial flux, permanent-magnet synchronous generator; a direct-drive electrically excited synchronous generator; a medium-speed permanent-magnet generator; and a high-speed, doubly-fed induction generator. Preliminary analysis of leveled costs of energy indicate that for large turbines, the cost of permanent magnets and reliability issues associated with brushes in electrically excited machines are the biggest deterrents for building direct-drive systems. The advantage of medium-speed permanent-magnet machines over doubly-fed induction generators is evident, yet, variability in magnet prices and solutions to address reliability issues associated with gearing and brushes can change this outlook. This suggests the need to potentially pursue fundamentally new innovations in generator designs that help avoid high capital costs but still have significant reliability related to performance.« less
Seminar for High School Students “Practice on Manufacturing Technology by Advanced Machine Tools”
NASA Astrophysics Data System (ADS)
Marui, Etsuo; Yamawaki, Masao; Taga, Yuken; Omoto, Ken'ichi; Miyaji, Reiji; Ogura, Takahiro; Tsubata, Yoko; Sakai, Toshimasa
The seminar ‘Practice on Manufacturing Technology by Advanced Machine Tools’ for high school students was held at the supporting center for technology education of Gifu University, under the sponsorship of the Japan Society of Mechanical Engineers. This seminar was held, hoping that many students become interested in manufacturing through the experience of the seminar. Operating CNC milling machine and CNC wire-cut electric discharge machine, they made original nameplates. Participants made the program to control CNC machine tools themselves. In this report, some valuable results obtained through such experience are explained.
Wind energy - A utility perspective
NASA Astrophysics Data System (ADS)
Fung, K. T.; Scheffler, R. L.; Stolpe, J.
1981-03-01
Broad consideration is given to the siting, demand, capital and operating cost and wind turbine design factors involved in a utility company's incorporation of wind powered electrical generation into existing grids. With the requirements of the Southern California Edison service region in mind, it is concluded that although the economic and legal climate for major investments in windpower are favorable, the continued development of large only wind turbine machines (on the scale of NASA's 2.5 MW Mod-2 design) is imperative in order to reduce manpower and maintenance costs. Stress is also put on the use of demonstration projects for both vertical and horizontal axis devices, in order to build up operational experience and confidence.
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor)
2013-01-01
An electric propulsion machine includes an ion thruster having an annular discharge chamber housing an anode having a large surface area. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, a second electric propulsion thruster may be disposed in a cylindrical space disposed within an interior of the annulus.
A Virtual Sensor for Online Fault Detection of Multitooth-Tools
Bustillo, Andres; Correa, Maritza; Reñones, Anibal
2011-01-01
The installation of suitable sensors close to the tool tip on milling centres is not possible in industrial environments. It is therefore necessary to design virtual sensors for these machines to perform online fault detection in many industrial tasks. This paper presents a virtual sensor for online fault detection of multitooth tools based on a Bayesian classifier. The device that performs this task applies mathematical models that function in conjunction with physical sensors. Only two experimental variables are collected from the milling centre that performs the machining operations: the electrical power consumption of the feed drive and the time required for machining each workpiece. The task of achieving reliable signals from a milling process is especially complex when multitooth tools are used, because each kind of cutting insert in the milling centre only works on each workpiece during a certain time window. Great effort has gone into designing a robust virtual sensor that can avoid re-calibration due to, e.g., maintenance operations. The virtual sensor developed as a result of this research is successfully validated under real conditions on a milling centre used for the mass production of automobile engine crankshafts. Recognition accuracy, calculated with a k-fold cross validation, had on average 0.957 of true positives and 0.986 of true negatives. Moreover, measured accuracy was 98%, which suggests that the virtual sensor correctly identifies new cases. PMID:22163766
A virtual sensor for online fault detection of multitooth-tools.
Bustillo, Andres; Correa, Maritza; Reñones, Anibal
2011-01-01
The installation of suitable sensors close to the tool tip on milling centres is not possible in industrial environments. It is therefore necessary to design virtual sensors for these machines to perform online fault detection in many industrial tasks. This paper presents a virtual sensor for online fault detection of multitooth tools based on a bayesian classifier. The device that performs this task applies mathematical models that function in conjunction with physical sensors. Only two experimental variables are collected from the milling centre that performs the machining operations: the electrical power consumption of the feed drive and the time required for machining each workpiece. The task of achieving reliable signals from a milling process is especially complex when multitooth tools are used, because each kind of cutting insert in the milling centre only works on each workpiece during a certain time window. Great effort has gone into designing a robust virtual sensor that can avoid re-calibration due to, e.g., maintenance operations. The virtual sensor developed as a result of this research is successfully validated under real conditions on a milling centre used for the mass production of automobile engine crankshafts. Recognition accuracy, calculated with a k-fold cross validation, had on average 0.957 of true positives and 0.986 of true negatives. Moreover, measured accuracy was 98%, which suggests that the virtual sensor correctly identifies new cases.
Operational Merits of Maritime Superconductivity
NASA Astrophysics Data System (ADS)
Ross, R.; Bosklopper, J. J.; van der Meij, K. H.
The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more adequate than cheaper systems.
Conceptual Design of a Basic Production Facility for the XM587E2/XM724 Electronic Time Fuzes
1977-11-01
blue side up, and then staked. The spri.ng pin is pressed in position and probed for the 1. 644-0. 010- inch dimension. See figure 33. 4.6.7.2 Parts...fitting subassembly. The detonator 69 IDLE HOPPER FEED -PROBE STAKE SPRING PIN PROBE PRESENCE STAKE LEADL IPROB LEADID ~ ASSEMBLY14 3 1 BLUE SIDE UP...automatic shutoffs. * Warning lights /alarms/ signs /’Jecals where necessary. * Electrical grounding of machine. [ 98 0 Noise levels below 85 decibals at
NASA Astrophysics Data System (ADS)
Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.
2015-03-01
Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.
Probabilistic Design Methodology and its Application to the Design of an Umbilical Retract Mechanism
NASA Technical Reports Server (NTRS)
Onyebueke, Landon; Ameye, Olusesan
2002-01-01
A lot has been learned from past experience with structural and machine element failures. The understanding of failure modes and the application of an appropriate design analysis method can lead to improved structural and machine element safety as well as serviceability. To apply Probabilistic Design Methodology (PDM), all uncertainties are modeled as random variables with selected distribution types, means, and standard deviations. It is quite difficult to achieve a robust design without considering the randomness of the design parameters which is the case in the use of the Deterministic Design Approach. The US Navy has a fleet of submarine-launched ballistic missiles. An umbilical plug joins the missile to the submarine in order to provide electrical and cooling water connections. As the missile leaves the submarine, an umbilical retract mechanism retracts the umbilical plug clear of the advancing missile after disengagement during launch and retrains the plug in the retracted position. The design of the current retract mechanism in use was based on the deterministic approach which puts emphasis on factor of safety. A new umbilical retract mechanism that is simpler in design, lighter in weight, more reliable, easier to adjust, and more cost effective has become desirable since this will increase the performance and efficiency of the system. This paper reports on a recent project performed at Tennessee State University for the US Navy that involved the application of PDM to the design of an umbilical retract mechanism. This paper demonstrates how the use of PDM lead to the minimization of weight and cost, and the maximization of reliability and performance.
On the decomposition of synchronous state mechines using sequence invariant state machines
NASA Technical Reports Server (NTRS)
Hebbalalu, K.; Whitaker, S.; Cameron, K.
1992-01-01
This paper presents a few techniques for the decomposition of Synchronous State Machines of medium to large sizes into smaller component machines. The methods are based on the nature of the transitions and sequences of states in the machine and on the number and variety of inputs to the machine. The results of the decomposition, and of using the Sequence Invariant State Machine (SISM) Design Technique for generating the component machines, include great ease and quickness in the design and implementation processes. Furthermore, there is increased flexibility in making modifications to the original design leading to negligible re-design time.
Photovoltaics and the automobile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, W.R. Jr.
1994-12-31
For years people have been in love with the automobile. Some people just enjoy using the automobile as transportation while others also enjoy the workings and operation of this fascinating machine. The automobile is not without problems of pollution and energy consumption. These problems are changing its design and construction. New clean energy sources are being analyzed and applied to power the modern automobile. A space age energy source now being considered by some and used by others to power the automobile is photovoltaics. Photovoltaics (PV) is the direct conversion of sunlight to electricity. There are a number of devicesmore » in the modern car that are electrically powered. PV could provide a clean endless supply of electricity for air conditioning, radios and other electrical components of a car. Most people have never heard of photovoltaics (PV). There has been a great deal of research in PV among energy experts. The automobile is known the world over in both use and operation. The author describes how the merging of these two technologies will benefit mankind and without damaging the environment. 12 refs.« less
Low-cost distributed solar-thermal-electric power generation
NASA Astrophysics Data System (ADS)
Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.
2004-01-01
Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.
Vibration of high-voltage electric machines with rotors on rolling bearings
NASA Astrophysics Data System (ADS)
Shekyan, H. G.; Gevorgyan, A. V.
2018-04-01
The paper presents an investigation of vibrational activity of electric machines due to high-harmonic vibrational loadings. It is shown that the vibrational loadings experienced by bearings may result in the interruption of their normal operation and even take them out of action. Therefore, the values of the vibrational speed-up leading to high harmonics are factors determining the admissible dynamic loading on the bearings. In the paper, an attempt is made to consider the factors which result in origination of high harmonics and to illustrate methods for their smoothing.
NASA Astrophysics Data System (ADS)
Chen, Yu-Fan; Wang, Yen-Hung; Tsai, Jui-che
2018-03-01
This work has developed an approach to construct a corner cube retroreflector (CCR). A two-dimensional cutout pattern is first fabricated with wire electrical discharge machining process. It is then folded up into a three-dimensional CCR suspended on a cantilever beam. The folded-up CCR may be driven through external actuators for optical modulation; it can also mechanically respond to perturbation, acceleration, etc., to function as a sensor. Mechanical (static and dynamic modeling) and optical (ray tracing) analyses are also performed.
Possibilities and limitations of wind energy utilisation
NASA Astrophysics Data System (ADS)
Feustel, J.
1981-10-01
The existing wind resource, the most favorable locations, applications, and designs of windpowered generators are reviewed, along with descriptions of current and historic wind turbines and lines of research. Coastal regions, plains, hill summits, and mountains with funneling regions are noted to have the highest annual wind averages, with energy densities exceeding the annual solar insolation at average wind speeds of 5-7.9 m/sec. Applications for utility-grade power production, for irrigation, for mechanical heat production, and for pumped storage in water towers or reservoirs are mentioned, as well as electrical power production in remote areas and for hydrogen production by electrolysis. Power coefficients are discussed, with attention given to the German Growian 3 MW machine. It is shown that the least economically sound wind turbines, the machines with outputs below 100 kW, can vie with diesel plant economics in a good wind regime if the wind turbine operates for 15 yr.
NASA Astrophysics Data System (ADS)
Ardi, S.; Ardyansyah, D.
2018-02-01
In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.
Performance improvement of optical fiber coupler with electric heating versus gas heating.
Shuai, Cijun; Gao, Chengde; Nie, Yi; Peng, Shuping
2010-08-20
Gas heating has been widely used in the process of fused biconical tapering. However, as the instability and asymmetric flame temperature of gas heating exist, the performance of the optical devices fabricated by this method was affected. To overcome the problems resulting from gas combustion, an electric heater is designed and manufactured using a metal-ceramic (MoSi(2)) as a heating material. Our experimental data show that the fused-taper machine with an electric heater has improved the performance of optical devices by increasing the consistency of the extinction ratio, excess loss, and the splitting ratio over that of the previous gas heating mode. Microcrystallizations and microcracks were observed at the fused region of the polarization-maintaining (PM) fiber coupler and at the taper region with scanning electron microscopy and atomic force microscopy respectively. The distribution of the microcrystallizations and microcracks are nonuniform along the fiber with gas heating, while their distribution is rather uniform with electric heating. These findings show that the novel optical fiber coupler with an electric heater has improved the performance of optical fiber devices by affecting the consistency of the optical parameters and micromorphology of the surface of PM fiber.
Scale effects and a method for similarity evaluation in micro electrical discharge machining
NASA Astrophysics Data System (ADS)
Liu, Qingyu; Zhang, Qinhe; Wang, Kan; Zhu, Guang; Fu, Xiuzhuo; Zhang, Jianhua
2016-08-01
Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at the micro-scale, which can make it difficult to predict and optimize the machining performances of micro EDM. A new concept of "scale effects" in micro EDM is proposed, the scale effects can reveal the difference in machining performances between micro EDM and conventional macro EDM. Similarity theory is presented to evaluate the scale effects in micro EDM. Single factor experiments are conducted and the experimental results are analyzed by discussing the similarity difference and similarity precision. The results show that the output results of scale effects in micro EDM do not change linearly with discharge parameters. The values of similarity precision of machining time significantly increase when scaling-down the capacitance or open-circuit voltage. It is indicated that the lower the scale of the discharge parameter, the greater the deviation of non-geometrical similarity degree over geometrical similarity degree, which means that the micro EDM system with lower discharge energy experiences more scale effects. The largest similarity difference is 5.34 while the largest similarity precision can be as high as 114.03. It is suggested that the similarity precision is more effective in reflecting the scale effects and their fluctuation than similarity difference. Consequently, similarity theory is suitable for evaluating the scale effects in micro EDM. This proposed research offers engineering values for optimizing the machining parameters and improving the machining performances of micro EDM.
Induced electric fields in workers near low-frequency induction heating machines.
Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter
2014-04-01
Published data on occupational exposure to induction heating equipment are scarce, particularly in terms of induced quantities in the human body. This article provides some additional information by investigating exposure to two such machines-an induction furnace and an induction hardening machine. Additionally, a spatial averaging algorithm for measured fields we developed in a previous publication is tested on new data. The human model was positioned at distances where measured values of magnetic flux density were above the reference levels. All human exposure was below the basic restriction-the lower bound of the 0.1 top percentile induced electric field in the body of a worker was 0.193 V/m at 30 cm from the induction furnace. © 2013 Wiley Periodicals, Inc.
Design and modeling balloon-expandable coronary stent for manufacturability
NASA Astrophysics Data System (ADS)
Suryawan, D.; Suyitno
2017-02-01
Coronary artery disease (CAD) is a disease that caused by narrowing of the coronary artery. The narrowing coronary artery is usually caused by cholesterol-containing deposit (plaque) which can cause a heart attack. CAD is the most common cause mortality in Indonesia. The commonly CAD treatment use the stent to opens or alleviate the narrowing coronary artery. In this study, the stent design is optimized for the manufacturability. Modeling is used to determine the free stent expansion due to applied pressure in the inner surface of the stent. The stress distribution, outer diameter change, and dogboning phenomena are investigated in the simulation. The result of modeling and simulating was analyzed and used to optimize the stent design before it is manufactured using EDM (Electric Discharge Machine) in the next research.
AFM surface imaging of AISI D2 tool steel machined by the EDM process
NASA Astrophysics Data System (ADS)
Guu, Y. H.
2005-04-01
The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.
29 CFR 1910.254 - Arc welding and cutting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... adequate current collecting devices. (v) All ground connections shall be checked to determine that they are mechanically strong and electrically adequate for the required current. (3) Supply connections and conductors... for connection to a portable welding machine. (ii) For individual welding machines, the rated current...
Biological proton pumping in an oscillating electric field.
Kim, Young C; Furchtgott, Leon A; Hummer, Gerhard
2009-12-31
Time-dependent external perturbations provide powerful probes of the function of molecular machines. Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase is the main energy transducer in aerobic life, converting chemical energy into an electric potential by pumping protons across a membrane. With the help of master-equation descriptions that recover the key thermodynamic and kinetic properties of this biological "fuel cell," we show that the proton pumping efficiency and the electronic currents in steady state depend significantly on the frequency and amplitude of the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A spectral analysis reveals dominant reaction steps consistent with an electron-gated pumping mechanism.
Translations on North Korea No. 622
1978-10-13
Pyongyang Power Station 5 July Electric Factory Hamhung Machine Tool Factory Kosan Plastic Pipe Factory Sog’wangea Plastic Pipe Factory 8...August Factory Double Chollima Hamhung Disabled Veterans’ Plastic Goods Factory Mangyongdae Machine Tool Factory Kangso Coal Mine Tongdaewon Garment...21 Jul 78 p 4) innovating in machine tool production (NC 21 Jul 78 p 2) in 40 days of the 蔴 days of combat" raised coal production 10 percent
The environmental impact of the Glostavent® anesthetic machine.
Eltringham, Roger J; Neighbour, Robert C
2015-06-01
Because anesthetic machines have become more complex and more expensive, they have become less suitable for use in the many isolated hospitals in the poorest countries in the world. In these situations, they are frequently unable to function at all because of interruptions in the supply of oxygen or electricity and the absence of skilled technicians for maintenance and servicing. Despite these disadvantages, these machines are still delivered in large numbers, thereby expending precious resources without any benefit to patients. The Glostavent was introduced primarily to enable an anesthetic service to be delivered in these difficult circumstances. It is smaller and less complex than standard anesthetic machines and much less expensive to produce. It combines a drawover anesthetic system with an oxygen concentrator and a gas-driven ventilator. It greatly reduces the need for the purchase and transport of cylinders of compressed gases, reduces the impact on the environment, and enables considerable savings. Cylinder oxygen is expensive to produce and difficult to transport over long distances on poor roads. Consequently, the supply may run out. However, when using the Glostavent, oxygen is normally produced at a fraction of the cost of cylinders by the oxygen concentrator, which is an integral part of the Glostavent. This enables great savings in the purchase and transport cost of oxygen cylinders. If the electricity fails and the oxygen concentrator ceases to function, oxygen from a reserve cylinder automatically provides the pressure to drive the ventilator and oxygen for the breathing circuit. Consequently, economy is achieved because the ventilator has been designed to minimize the amount of driving gas required to one-seventh of the patient's tidal volume. Additional economies are achieved by completely eliminating spillage of oxygen from the breathing system and by recycling the driving gas into the breathing system to increase the Fraction of Inspired Oxygen (FIO2) at no extra cost. Savings also are accrued when using the drawover breathing system as the need for nitrous oxide, compressed air, and soda lime are eliminated. The Glostavent enables the administration of safe anesthesia to be continued when standard machines are unable to function and can do so with minimal harm to the environment.
Introduction to the Control of Electric Motors.
ERIC Educational Resources Information Center
Spencer, Frederick
The fundamentals of electric circuits and electric machines are presented in the text, with an emphasis on the practical operation rather than on mathematical analyses of theories involved. The material contained in the text includes the fundamentals of both D.C. and A.C. circuits together with the principles of magnetism and electro-magnetic…
30 CFR 18.99 - Notice of approval or disapproval; letters of approval and approval plates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... approval or disapproval of the machine. (a) If the qualified electrical representative recommends field..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.99 Notice of approval or...
30 CFR 18.99 - Notice of approval or disapproval; letters of approval and approval plates.
Code of Federal Regulations, 2011 CFR
2011-07-01
... approval or disapproval of the machine. (a) If the qualified electrical representative recommends field..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Field Approval of Electrically Operated Mining Equipment § 18.99 Notice of approval or...
Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun
2015-09-29
An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.
Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting
NASA Astrophysics Data System (ADS)
Howey, D. A.; Bansal, A.; Holmes, A. S.
2011-08-01
A miniature shrouded wind turbine aimed at energy harvesting for power delivery to wireless sensors in pipes and ducts is presented. The device has a rotor diameter of 2 cm, with an outer diameter of 3.2 cm, and generates electrical power by means of an axial-flux permanent magnet machine built into the shroud. Fabrication was accomplished using a combination of traditional machining, rapid prototyping, and flexible printed circuit board technology for the generator stator, with jewel bearings providing low friction and start up speed. Prototype devices can operate at air speeds down to 3 m s-1, and deliver between 80 µW and 2.5 mW of electrical power at air speeds in the range 3-7 m s-1. Experimental turbine performance curves, obtained by wind tunnel testing and corrected for bearing losses using data obtained in separate vacuum run-down tests, are compared with the predictions of an elementary blade element momentum (BEM) model. The two show reasonable agreement at low tip speed ratios. However, in experiments where a maximum could be observed, the maximum power coefficient (~9%) is marginally lower than predicted from the BEM model and occurs at a lower than predicted tip speed ratio of around 0.6.
Evaluation and selection of refrigeration systems for lunar surface and space applications
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Blount, T. D.; Williams, J. L.
1971-01-01
Evaluated are the various refrigeration machines which could be used to provide heat rejection in environmental control systems for lunar surface and spacecraft applications, in order to select the best refrigeration machine for satisfying each individual application and the best refrigeration machine for satisfying all of the applications. The refrigeration machine considered include: (1) vapor comparison cycle (work-driven); (2) vapor adsorption cycle (heat-driven); (3) vapor absorption cycle (heat-driven); (4) thermoelectric (electrically-driven); (5) gas cycle (work driven); (6) steam-jet (heat-driven).
NASA Technical Reports Server (NTRS)
Goss, W. C.; Mann, W. A.; Goldstein, R.
1985-01-01
Technique yields joints with average transmissivity of 91.6 percent. Electric arc passed over butted fiber ends to melt them together. Maximum optical transmissivity of joint achieved with optimum choice of discharge current, translation speed, and axial compression of fibers. Practical welding machine enables delicate and tedious joining operation performed routinely.
30 CFR 18.49 - Connection boxes on machines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Connection boxes on machines. 18.49 Section 18.49 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and...
30 CFR 18.61 - Final inspection of complete machine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Final inspection of complete machine. 18.61 Section 18.61 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Inspections...
Non-contact capacitance based image sensing method and system
Novak, J.L.; Wiczer, J.J.
1994-01-25
A system and a method for imaging desired surfaces of a workpiece is described. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device. 18 figures.
Non-contact capacitance based image sensing method and system
Novak, J.L.; Wiczer, J.J.
1995-01-03
A system and a method is provided for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device. 18 figures.
The effect of CNC and manual laser machining on electrical resistance of HDPE/MWCNT composite
NASA Astrophysics Data System (ADS)
Mohammadi, Fatemeh; Farshbaf Zinati, Reza; Fattahi, A. M.
2018-05-01
In this study, electrical conductivity of high-density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) composite was investigated after laser machining. To this end, produced using plastic injection process, nano-composite samples were laser machined with various combinations of input parameters such as feed rate (35, 45, and 55 mm/min), feed angle with injection flow direction (0°, 45°, and 90°), and MWCNT content (0.5, 1, and 1.5 wt%). The angle between laser feed and injected flow direction was set via either of two different methods: CNC programming and manual setting. The results showed that the parameters of angle between laser line and melt flow direction and feed rate were both found to have statistically significance and physical impacts on electrical resistance of the samples in manual setting. Also, maximum conductivity was seen when the angle between laser line and melt flow direction was set to 90° in manual setting, and maximum conductivity was seen at feed rate of 55 mm/min in both of CNC programming and manual setting.
A variable-mode stator consequent pole memory machine
NASA Astrophysics Data System (ADS)
Yang, Hui; Lyu, Shukang; Lin, Heyun; Zhu, Z. Q.
2018-05-01
In this paper, a variable-mode concept is proposed for the speed range extension of a stator-consequent-pole memory machine (SCPMM). An integrated permanent magnet (PM) and electrically excited control scheme is utilized to simplify the flux-weakening control instead of relatively complicated continuous PM magnetization control. Due to the nature of memory machine, the magnetization state of low coercive force (LCF) magnets can be easily changed by applying either a positive or negative current pulse. Therefore, the number of PM poles may be changed to satisfy the specific performance requirement under different speed ranges, i.e. the machine with all PM poles can offer high torque output while that with half PM poles provides wide constant power range. In addition, the SCPMM with non-magnetized PMs can be considered as a dual-three phase electrically excited reluctance machine, which can be fed by an open-winding based dual inverters that provide direct current (DC) bias excitation to further extend the speed range. The effectiveness of the proposed variable-mode operation for extending its operating region and improving the system reliability is verified by both finite element analysis (FEA) and experiments.
NASA Astrophysics Data System (ADS)
Bakhmutov, S. V.; Ivanov, V. G.; Karpukhin, K. E.; Umnitsyn, A. A.
2018-02-01
The paper considers the Anti-lock Braking System (ABS) operation algorithm, which enables the implementation of hybrid braking, i.e. the braking process combining friction brake mechanisms and e-machine (electric machine), which operates in the energy recovery mode. The provided materials focus only on the rectilinear motion of the vehicle. That the ABS task consists in the maintenance of the target wheel slip ratio, which depends on the tyre-road adhesion coefficient. The tyre-road adhesion coefficient was defined based on the vehicle deceleration. In the course of calculated studies, the following operation algorithm of hybrid braking was determined. At adhesion coefficient ≤0.1, driving axle braking occurs only due to the e-machine operating in the energy recovery mode. In other cases, depending on adhesion coefficient, the e-machine provides the brake torque, which changes from 35 to 100% of the maximum available brake torque. Virtual tests showed that values of the wheel slip ratio are close to the required ones. Thus, this algorithm makes it possible to implement hybrid braking by means of the two sources creating the brake torque.
30 CFR 77.1304 - Blasting agents; special provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... connection with pneumatic loading machines shall be of the semiconductive type, having a total resistance low... electric currents to a safe level. Wire-countered hose shall not be used because of the potential hazard from stray electric currents. ...
30 CFR 77.1304 - Blasting agents; special provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... connection with pneumatic loading machines shall be of the semiconductive type, having a total resistance low... electric currents to a safe level. Wire-countered hose shall not be used because of the potential hazard from stray electric currents. ...
Trio of Topics: Questions of Mass, Electricity, and Time.
ERIC Educational Resources Information Center
Quantum, 1992
1992-01-01
Discusses three topics related to physics: (1) the center of mass of a long stick thrown horizontally; (2) how electric current flows in metals; and (3) the theory of relativity in relationship with fictionalized time machines. (MDH)
Method and apparatus for improving the quality and efficiency of ultrashort-pulse laser machining
Stuart, Brent C.; Nguyen, Hoang T.; Perry, Michael D.
2001-01-01
A method and apparatus for improving the quality and efficiency of machining of materials with laser pulse durations shorter than 100 picoseconds by orienting and maintaining the polarization of the laser light such that the electric field vector is perpendicular relative to the edges of the material being processed. Its use is any machining operation requiring remote delivery and/or high precision with minimal collateral dames.
22. INTERIOR VIEW OF THE MACHINE SHOP LOOKING NORTH. FROM ...
22. INTERIOR VIEW OF THE MACHINE SHOP LOOKING NORTH. FROM LEFT TO RIGHT, NORTH END OF THE LONG LATHE, WOOD STOVE WITH A BRICK HEARTH FLOOR, FAR BACK LEFT CORNER IS THE MAIN CLUTCH FOR THE MILL POWER SHAFTS, SHAFT LATHE, SMALL PLANER, BORING MACHINE WITH IONIC COLUMN DETAIL., AND THE ENTRANCE TO THE ELECTRICAL MOTOR ROOM. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
NASA Astrophysics Data System (ADS)
Praveen, L.; Geeta Krishna, P.; Venugopal, L.; Prasad, N. E. C.
2018-03-01
Electrical Discharge Machining (EDM) is an unconventional metal removal process that is extensively used for removing the difficult-to-machine metal such as Ti alloys, super alloys and metal matrix composites. This paper investigates the effects of pulse (ON/OFF) time on EDM machining characteristics of Ti-6Al-4V alloy using copper and graphite as electrodes in reverse polarity condition. Full factorial design method was used to design the experiments. Two variables (Pulse On and OFF) with three levels are considered. The output variables are the tool wear rate and the material removal rate. The important findings from the present work are: (1) the material removal rate (MRR) increases gradually with an increase of the Pulse ON time whereas the change is insignificant with an increase of the Pulse OFF time, (2) Between copper and graphite electrodes, the copper electrode is proved to be good in terms of MRR, (3) a combination of high pulse ON time and OFF time is desirable for high MRR rate in the Cu electrode whereas for the graphite electrode, a combination of high pulse ON time and low pulse OFF time is desirable for high MRR rate, (4) the tool wear rate (TWR) reduces with the Pulse On or OFF time, the rate of TWR is uniform for the graphite electrode in contrast to abrupt decrease from 25 to 50 μs (pulse ON time) in the copper electrode, (5) In order to keep the TWR as minimum possible, it is desirable to have a combination of high pulse ON time and OFF time for both the copper and the graphite electrode.
NASA Astrophysics Data System (ADS)
Ren, Xiaotao; Corcolle, Romain; Daniel, Laurent
2016-02-01
The use of soft magnetic composites (SMCs) in electrical engineering applications is growing. SMCs provide an effective alternative to laminated steels because they exhibit a high permeability with low eddy current losses. Losses are a critical feature in the design of electrical machines, and it is necessary to evaluate the role of microstructure and constitutive properties of SMCs during the predesign stage. In this paper we propose a simplified finite element approach to compute eddy current losses in these materials. The computations allow to quantify the role of exciting source and material properties on eddy current losses. This analysis can later be used in the development of homogenization models for SMC. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek
Smart Screening System (S3) In Taconite Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryoush Allaei; Angus Morison; David Tarnowski
2005-09-01
The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the process of FE model validation and correlation with experimental data in terms of dynamic performance and predicted stresses. It also detailed efforts into making the supporting structure less important to system performance. Finally, an introduction into the dry application concept was presented. Since then, the design refinement phase was completed. This has resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. Furthermore, this system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Requisitioning tabulating... Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT... electrical and mechanical contact tabulating machines, including aperture cards and copy cards. Federal...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Requisitioning tabulating... Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT... electrical and mechanical contact tabulating machines, including aperture cards and copy cards. Federal...
Drilling Precise Orifices and Slots
NASA Technical Reports Server (NTRS)
Richards, C. W.; Seidler, J. E.
1983-01-01
Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.
30 CFR 18.21 - Machines equipped with powered dust collectors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Machines equipped with powered dust collectors. 18.21 Section 18.21 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES...
40 CFR 60.185 - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Lead... reverberatory furnace, or sintering machine discharge end. The span of this system shall be set at 80 to 100... discharged into the atmosphere from any sintering machine, electric furnace or converter subject to § 60.183...
Engineering of Machine tool’s High-precision electric drives
NASA Astrophysics Data System (ADS)
Khayatov, E. S.; Korzhavin, M. E.; Naumovich, N. I.
2018-03-01
In the article it is shown that in mechanisms with numerical program control, high quality of processes can be achieved only in systems that provide adjustment of the working element’s position with high accuracy, and this requires an expansion of the regulation range by the torque. In particular, the use of synchronous reactive machines with independent excitation control makes it possible to substantially increase the moment overload in the sequential excitation circuit. Using mathematical and physical modeling methods, it is shown that in the electric drive with a synchronous reactive machine with independent excitation in a circuit with sequential excitation, it is possible to significantly expand the range of regulation by the torque and this is achieved by the effect of sequential excitation, which makes it possible to compensate for the transverse reaction of the armature.
Hybrid-secondary uncluttered permanent magnet machine and method
Hsu, John S.
2005-12-20
An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.
Isogeometric analysis and harmonic stator-rotor coupling for simulating electric machines
NASA Astrophysics Data System (ADS)
Bontinck, Zeger; Corno, Jacopo; Schöps, Sebastian; De Gersem, Herbert
2018-06-01
This work proposes Isogeometric Analysis as an alternative to classical finite elements for simulating electric machines. Through the spline-based Isogeometric discretization it is possible to parametrize the circular arcs exactly, thereby avoiding any geometrical error in the representation of the air gap where a high accuracy is mandatory. To increase the generality of the method, and to allow rotation, the rotor and the stator computational domains are constructed independently as multipatch entities. The two subdomains are then coupled using harmonic basis functions at the interface which gives rise to a saddle-point problem. The properties of Isogeometric Analysis combined with harmonic stator-rotor coupling are presented. The results and performance of the new approach are compared to the ones for a classical finite element method using a permanent magnet synchronous machine as an example.
Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor.
Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan
2017-01-29
Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect-using electric current shape analysis-for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between "does-not-need-to-be-replaced" and "needs-to-be-replaced" shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification.
Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor
Sa, Jaewon; Choi, Younchang; Chung, Yongwha; Kim, Hee-Young; Park, Daihee; Yoon, Sukhan
2017-01-01
Detecting replacement conditions of railway point machines is important to simultaneously satisfy the budget-limit and train-safety requirements. In this study, we consider classification of the subtle differences in the aging effect—using electric current shape analysis—for the purpose of replacement condition detection of railway point machines. After analyzing the shapes of after-replacement data and then labeling the shapes of each before-replacement data, we can derive the criteria that can handle the subtle differences between “does-not-need-to-be-replaced” and “needs-to-be-replaced” shapes. On the basis of the experimental results with in-field replacement data, we confirmed that the proposed method could detect the replacement conditions with acceptable accuracy, as well as provide visual interpretability of the criteria used for the time-series classification. PMID:28146057
Utilization of rotor kinetic energy storage for hybrid vehicles
Hsu, John S [Oak Ridge, TN
2011-05-03
A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.
Dichroic Filter for Separating W-Band and Ka-Band
NASA Technical Reports Server (NTRS)
Epp, Larry W.; Durden, Stephen L.; Jamnejad, Vahraz; Long, Ezra M.; Sosnowski, John B.; Higuera, Raymond J.; Chen, Jacqueline C.
2012-01-01
The proposed Aerosol/Cloud/Ecosystems (ACEs) mission development would advance cloud profiling radar from that used in CloudSat by adding a 35-GHz (Ka-band) channel to the 94-GHz (W-band) channel used in CloudSat. In order to illuminate a single antenna, and use CloudSat-like quasi-optical transmission lines, a spatial diplexer is needed to add the Ka-band channel. A dichroic filter separates Ka-band from W-band by employing advances in electrical discharge machining (EDM) and mode-matching analysis techniques developed and validated for designing dichroics for the Deep Space Network (DSN), to develop a preliminary design that both met the requirements of frequency separation and mechanical strength. First, a mechanical prototype was built using an approximately 102-micron-diameter EDM process, and tolerances of the hole dimensions, wall thickness, radius, and dichroic filter thickness measured. The prototype validated the manufacturing needed to design a dichroic filter for a higher-frequency usage than previously used in the DSN. The initial design was based on a Ka-band design, but thicker walls are required for mechanical rigidity than one obtains by simply scaling the Ka-band dichroic filter. The resulting trade of hole dimensions for mechanical rigidity (wall thickness) required electrical redesign of the hole dimensions. Updates to existing codes in the linear solver decreased the analysis time using mode-matching, enabling the electrical design to be realized quickly. This work is applicable to missions and instruments that seek to extend W-band cloud profiling measurements to other frequencies. By demonstrating a dichroic filter that passes W-band, but reflects a lower frequency, this opens up the development of instruments that both compare to and enhance CloudSat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
Wu, Zhihong; Lu, Ke; Zhu, Yuan
2015-01-01
The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment.
Zhu, Yuan
2015-01-01
The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment. PMID:26114557