Wave Power Demonstration Project at Reedsport, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mekhiche, Mike; Downie, Bruce
2013-10-21
Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity ismore » then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.« less
Projected electric power demands for the Potomac Electric Power Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, J.W.
1975-07-01
Included are chapters on the background of the Potomac Electric Power Company, forecasting future power demand, demand modeling, accuracy of market predictions, and total power system requirements. (DG)
Research on Risk Manage of Power Construction Project Based on Bayesian Network
NASA Astrophysics Data System (ADS)
Jia, Zhengyuan; Fan, Zhou; Li, Yong
With China's changing economic structure and increasingly fierce competition in the market, the uncertainty and risk factors in the projects of electric power construction are increasingly complex, the projects will face huge risks or even fail if we don't consider or ignore these risk factors. Therefore, risk management in the projects of electric power construction plays an important role. The paper emphatically elaborated the influence of cost risk in electric power projects through study overall risk management and the behavior of individual in risk management, and introduced the Bayesian network to the project risk management. The paper obtained the order of key factors according to both scene analysis and causal analysis for effective risk management.
MW-Class Electric Propulsion System Designs
NASA Technical Reports Server (NTRS)
LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador
2011-01-01
Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary results of the COMPASS MW-class electric propulsion power system study are reported, and discussion is provided on how the analysis might be used to guide future technology investments as NASA moves to more capable high power in-space propulsion systems.
Aircraft Photovoltaic Power-Generating System.
NASA Astrophysics Data System (ADS)
Doellner, Oscar Leonard
Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.
75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... factors that could be affected by the proposed Project were evaluated in detail in the EIS. These issues... DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek... Energy Facility project (Project) in Brookings and Deuel Counties, South Dakota. The Administrator of RUS...
TidGen Power System Commercialization Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauer, Christopher R.; McEntee, Jarlath
2013-12-30
ORPC Maine, LLC, a wholly-owned subsidiary of Ocean Renewable Power Company, LLC (collectively ORPC), submits this Final Technical Report for the TidGen® Power System Commercialization Project (Project), partially funded by the U.S. Department of Energy (DE-EE0003647). The Project was built and operated in compliance with the Federal Energy Regulatory Commission (FERC) pilot project license (P-12711) and other permits and approvals needed for the Project. This report documents the methodologies, activities and results of the various phases of the Project, including design, engineering, procurement, assembly, installation, operation, licensing, environmental monitoring, retrieval, maintenance and repair. The Project represents a significant achievement formore » the renewable energy portfolio of the U.S. in general, and for the U.S. marine hydrokinetic (MHK) industry in particular. The stated Project goal was to advance, demonstrate and accelerate deployment and commercialization of ORPC’s tidal-current based hydrokinetic power generation system, including the energy extraction and conversion technology, associated power electronics, and interconnection equipment capable of reliably delivering electricity to the domestic power grid. ORPC achieved this goal by designing, building and operating the TidGen® Power System in 2012 and becoming the first federally licensed hydrokinetic tidal energy project to deliver electricity to a power grid under a power purchase agreement in North America. Located in Cobscook Bay between Eastport and Lubec, Maine, the TidGen® Power System was connected to the Bangor Hydro Electric utility grid at an on-shore station in North Lubec on September 13, 2012. ORPC obtained a FERC pilot project license for the Project on February 12, 2012 and the first Maine Department of Environmental Protection General Permit issued for a tidal energy project on January 31, 2012. In addition, ORPC entered into a 20-year agreement with Bangor Hydro Electric Company on January 1, 2013 for up to 5 megawatts at a price of $215/MWh, escalating at 2.0% per year.« less
75 FR 8895 - Basin Electric Power Cooperative: Deer Creek Station
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
.... The purpose of the proposed Project is to help serve increased load demand for electric power in the... Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities Service, USDA. ACTION...) and the Western Area Power Administration (Western) have issued a Draft Environmental Impact Statement...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
..., VA. For Further Information, Contact: Alicia Williamson, Project Manager, Environmental Projects...-mail to Alicia[email protected] . Dated at Rockville, Maryland, this 17th day of March 2010. For the...
Overview of Materials and Power Applications of Coated Conductors Project
NASA Astrophysics Data System (ADS)
Shiohara, Yuh; Taneda, Takahiro; Yoshizumi, Masateru
2012-01-01
There are high expectations for coated conductors in electric power applications such as superconducting magnetic energy storage (SMES) systems, power cables, and transformers owing to their ability to contribute to stabilizing and increasing the capacity of the electric power supply grid as well as to reducing CO2 emission as a result of their high critical-current characteristics. Research and development has been performed on wires/tapes and electric power devices worldwide. The Materials and Power Applications of Coated Conductors (M-PACC) Project is a five-year national project in Japan started in 2008, supported by the Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO), to develop both coated conductors that meet market requirements and basic technologies for the above-mentioned power applications using coated conductors. In this article, research and development results are reviewed and compared with the interim/final targets of the project, and future prospects are discussed.
2005-06-01
Logistics, BA-5590, BB- 390, BB-2590, PVPC, Iraq, Power Grid, Infrastructure, Cost Estimate, Photovoltaic Power Conversion (PVPC), MPPT 16. PRICE...the cost and feasibility of using photovoltaic (PV) solar power to assist in the rebuilding of the Iraqi electrical infrastructure. This project...cost and feasibility of using photovoltaic (PV) solar power to assist in the rebuilding of the Iraqi infrastructure. The project examines available
Generation of Electrical Power from Stimulated Muscle Contractions Evaluated
NASA Technical Reports Server (NTRS)
Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.
2004-01-01
This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.
78 FR 48670 - Boulder Canyon Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-09
... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... States Department of Energy, Western Area Power Administration, Boulder Canyon Project, 133 FERC ] 62,229...
Wind-powered electrical systems : highway rest areas, weigh stations, and team section buildings.
DOT National Transportation Integrated Search
2009-02-01
This project considered the use of wind for providing electrical power at Illinois Department of Transportation : (IDOT) highway rest areas, weigh stations, and team section buildings. The goal of the project was to determine : the extent to which wi...
Michael E. Goerndt; Francisco X. Aguilar; Kenneth E. Skog
2015-01-01
Future use of woody biomass to produce electric power in the U.S. North can have an important influence on timber production, carbon storage in forests, and net carbon emissions from producing electric power. The Northern Forest Futures Project (NFFP) has provided regional- and state-level projections of standing forest biomass, land-use change, and timber harvest,...
IYL project: pinky-powered photons
NASA Astrophysics Data System (ADS)
Dreyer, Elizabeth F. C.; Aku-Leh, Cynthia; Nees, John A.; Sala, Anca L.; Smith, Arlene; Jones, Timothy
2016-09-01
Pinky-powered Photons is an activity created by the Michigan Light Project during the International Year of Light to encourage creativity in learning about light. It is a low-cost project. Participants make and take home a colorful LED light powered entirely by their fingers. Younger visitors "package" the electrical element into their own creation while older visitors solder the electrical parts together and then create their own design. This paper will detail the learning objectives and outcomes of this project as well as how to implement it in an outreach event or classroom.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
............ Project No. 2266-096. Sabine River Authority of Texas and Project No. 2305-020. State of Louisiana. Town of Massena Electric Department Project No. 12607-001. Free Flow Power Corporation........ Project No. 12829-001. Free Flow Power Corporation........ Project No. 12861-001. Free Flow Power Corporation...
The Next Linear Collider Program
/graphics.htm Snowmass 2001 http://snowmass2001.org/ Electrical Systems Modulators http://www -project.slac.stanford.edu/lc/local/electrical/e_home.htm DC Magnet Power http://www-project.slac.stanford.edu/lc/local /electrical/e_home.htm Global Systems http://www-project.slac.stanford.edu/lc/local/electrical/e_home.htm
PMG: Numerical model of a fault tolerant permanent magnet generator for high rpm applications
NASA Astrophysics Data System (ADS)
Bertrand, Alexandre
The aerospace industry is confronting an increasing number of challenges these days. One can think for instance of the environmental challenges as well as the economic and social ones to name a few. These challenges have forced the industry to turn their design philosophy toward new ways of doing things. It is in this context that was born the More Electrical Aircraft (MEA) concept. This concept aims at giving a more prominent part to electrical power in the overall installed power balance aboard aircrafts (in comparison to more traditional power sources such as mechanical and hydraulic). In order to be able to support this increasing demand in electrical power, the electric power generation aboard aircrafts needed reengineering. This is one of the main reasons the More Electrical Engine (MEE) concept was born: to serve the needs of the MEA philosophy. It is precisely under the MEE concept that this project takes place. This project, realized in collaboration with Pratt & Whitney Canada (PWC), is a first attempt at the electrical modelling of this new type of electrical generator designed for aircrafts. The main objectives of this project are to understand the principles of operation of the New Architecture Electromagnetic Machine (NAEM) and to build a simplified model for EMTP-RV for steady-state simulations. This document contains the results that were obtained during the electrical modelling project of the New Architecture Electromagnetic Machine (NAEM) by the author using data from PWC. The model built by PWC using MagNet, a finite element analysis software, was used as the reference during the project. It was possible to develop an electrical model of the generator that replicate with a good accuracy the behaviour of the model of reference under steady-state operation. Some technical avenues are explored in the discussion in order to list the key improvements that will need to be done to the electrical model in future work.
78 FR 41057 - Notice of Availability of Environmental Assessment; Wisconsin Electric Power Company
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 11831-095] Notice of Availability of Environmental Assessment; Wisconsin Electric Power Company In accordance with the National... environmental assessment (EA) in cooperation with the U.S. Army Corps of Engineers. The project is located on...
75 FR 47591 - Environmental Impacts Statements; Notice Of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
... Thomas 559-784-1500 ext. 1164. EIS No. 20100292, Final EIS, BLM, CA, Ivanpah Solar Electric Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal... Generation Station (GGS) Project, Proposes to Modify its Interconnection Agreement, Basin Electric Power...
Concentrating Solar Power Projects - Dahan Power Plant | Concentrating
Plant Country: China Location: Beijing Owner(s): Institute of Electrical Engineering of Chinese Academy Electricity Generation: 1,950 MWh/yr Contact(s): Fengli Du Company: Institute of Electrical Engineering of Electrical Engineering of Chinese Academy of Sciences Owner(s) (%): Institute of Electrical Engineering of
The status of power supplies for primary electric propulsion in the U.S.A.
NASA Technical Reports Server (NTRS)
Jones, R. M.; Scott-Monck, J. A.
1984-01-01
This paper reviews the status of and requirements on solar electric and nuclear electric power supplies for primary electric propulsion missions. The power supply requirements of power level, specific mass (kg/kWe) and lifetime are defined as a function of the mission and electric propulsion system characteristics for planetary missions. The technology status of planar and concentrator arrays is discussed. Nuclear reactors and thermoelectric, thermionic, Brayton and Rankine conversion technologies are reviewed, as well as recent nuclear power system design concepts and program activity. Technology projections for power supplies applicable to primary electric propulsion missions are included.
Electric vehicle charging technologies analysis and standards : final research project report.
DOT National Transportation Integrated Search
2017-02-01
This project has evaluated the technologies and standards associated with Electric : Vehicle Service Equipment (EVSE) and the related infrastructure, and the major cost : issue related to electric vehicle (EV) charging -- the cost of utility power. T...
Exploring Students' Engineering Designs through Open-Ended Assignments
ERIC Educational Resources Information Center
Puente, S. M. Gómez; Jansen, J. W.
2017-01-01
This paper aims at presenting the experience of the Power Conversion project in teaching students to design a proof-of-principle contactless energy transfer system for the charging of electrical vehicles. The Power Conversion is a second-year electrical engineering (EE) project in which students are to gather and apply EE knowledge to design and…
NASA Astrophysics Data System (ADS)
Amon, D. M.
Progress is reviewed in a project to test the economic feasibility of wind turbine technology for generating electricity. The use of wind generating electricity on a commercial fruit farm interconnecting a commercial fruit farm with a major utility to sell power are the find project goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
The proposed overhead power line construction project (Sand Dunes to Ochoa, in Eddy and Lea Counties, New Mexico) will supply additional electric power to the Waste Isolation Pilot Plant (WIPP) and involve construction of a new electric substation at WIPP. This would provide a redundant electrical power source to WIPP. A finding of no significant impact is made.
NASA Astrophysics Data System (ADS)
Bartnik, R.; Hnydiuk-Stefan, A.; Buryn, Z.
2017-11-01
This paper reports the results of the investment strategy analysis in different electricity sources. New methodology and theory of calculating the market value of the power plant and value of the electricity market supplied by it are presented. The financial gain forms the most important criteria in the assessment of an investment by an investor. An investment strategy has to involve a careful analysis of each considered project in order that the right decision and selection will be made while various components of the projects will be considered. The latter primarily includes the aspects of risk and uncertainty. Profitability of an investment in the electricity sources (as well as others) is offered by the measures applicable for the assessment of the economic effectiveness of an investment based on calculations e.g. power plant market value and the value of the electricity that is supplied by a power plant. The values of such measures decide on an investment strategy in the energy sources. This paper contains analysis of exemplary calculations results of power plant market value and the electricity market value supplied by it.
NASA Astrophysics Data System (ADS)
Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Ling, Yunpeng
2017-03-01
On March 15, 2015, the Central Office issued the "Opinions on Further Deepening the Reform of Electric Power System" (Zhong Fa No. 9). This policy marks the central government officially opened a new round of electricity reform. As a programmatic document under the new situation to comprehensively promote the reform of the power system, No. 9 document will be approved as a separate transmission and distribution of electricity prices, which is the first task of promoting the reform of the power system. Grid tariff reform is not only the transmission and distribution price of a separate approval, more of the grid company input-output relationship and many other aspects of deep-level adjustments. Under the background of the reform of the transmission and distribution price, the main factors affecting the input-output relationship, such as the main business, electricity pricing, and investment approval, financial accounting and so on, have changed significantly. The paper designed the comprehensive evaluation index system of power grid projects' investment benefits under the reform of transmission and distribution price to improve the investment efficiency of power grid projects after the power reform in China.
Electric power is one of the basic needs for the development of any community. With electric power lacking in most rural communities in Africa, providing basic amenities that are dependent on power such as clean portable drinking water, powering equipment in health and dent...
Navajo Electrification Demonstraiton Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larry Ahasteen, Project Manager
2006-07-17
This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.
NASA Technical Reports Server (NTRS)
Ferber, R. R.; Marriott, A. T.; Truscello, V.
1978-01-01
The Small Power Systems Applications (SPSA) Project has been established to develop and commercialize small solar thermal power plants. The technologies of interest include all distributed and central receiver technologies which are potentially economically viable in power plant sizes of one to 10 MWe. The paper presents an overview of the SPSA Project and briefly discusses electric utility involvement in the Project.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... at the ACSD's North Plant wastewater treatment plant (WWTP), and to produce electrical power for on... turbine generator manufactured in the United States is of adequate capacity to meet the electrical power..., (2) Ormat Technologies, Inc, in Israel, and (3) Adoratec, in Germany. This is a project specific...
Miniaturized Power Processing Unit Study: A Cubesat Electric Propulsion Technology Enabler Project
NASA Technical Reports Server (NTRS)
Ghassemieh, Shakib M.
2014-01-01
This study evaluates High Voltage Power Processing Unit (PPU) technology and driving requirements necessary to enable the Microfluidic Electric Propulsion technology research and development by NASA and university partners. This study provides an overview of the state of the art PPU technology with recommendations for technology demonstration projects and missions for NASA to pursue.
78 FR 66785 - Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-06
... NUCLEAR REGULATORY COMMISSION [Project No. 0782; NRC-2013-0244] Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation AGENCY: Nuclear Regulatory Commission. ACTION: Notice of receipt; availability. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) staff acknowledges receipt of...
Automating a spacecraft electrical power system using expert systems
NASA Technical Reports Server (NTRS)
Lollar, L. F.
1991-01-01
Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming Spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for the efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.
77 FR 48151 - Boulder Canyon Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-13
... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... INFORMATION: Hoover Dam, authorized by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits...
Point Focusing Thermal and Electric Applications Project. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Landis, K. E. (Editor)
1979-01-01
Background and objectives used for the Workshop for Potential Military and Civil Users for Small Solar Thermal Electric Power Technologies are discussed. A summary of the results and conclusions developed at the workshop regarding small solar thermal electric power technologies is included.
25 CFR 169.27 - Power projects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Power projects. 169.27 Section 169.27 Indians BUREAU OF... projects. (a) The Act of March 4, 1911 (36 Stat. 1253), as amended by the Act of May 27, 1952 (66 Stat. 95... on any project for the generation of electric power, or the transmission or distribution of...
25 CFR 169.27 - Power projects.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Power projects. 169.27 Section 169.27 Indians BUREAU OF... projects. (a) The Act of March 4, 1911 (36 Stat. 1253), as amended by the Act of May 27, 1952 (66 Stat. 95... on any project for the generation of electric power, or the transmission or distribution of...
25 CFR 169.27 - Power projects.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Power projects. 169.27 Section 169.27 Indians BUREAU OF... projects. (a) The Act of March 4, 1911 (36 Stat. 1253), as amended by the Act of May 27, 1952 (66 Stat. 95... on any project for the generation of electric power, or the transmission or distribution of...
25 CFR 169.27 - Power projects.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Power projects. 169.27 Section 169.27 Indians BUREAU OF... projects. (a) The Act of March 4, 1911 (36 Stat. 1253), as amended by the Act of May 27, 1952 (66 Stat. 95... on any project for the generation of electric power, or the transmission or distribution of...
Concentrating Solar Power Projects - La Florida | Concentrating Solar Power
| NREL Florida This page provides information on La Florida, a concentrating solar power (CSP : March 20, 2017 Project Overview Project Name: La Florida Country: Spain Location: Badajoz (Badajoz Solar Resource: La Florida Weather Station Electricity Generation: 175,000 MWh/yr (Estimated) Contact(s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu T; Lantz, Eric J; Mowers, Matthew
Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative.more » In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.« less
Code of Federal Regulations, 2012 CFR
2012-10-01
... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...
Code of Federal Regulations, 2013 CFR
2013-10-01
... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...
Code of Federal Regulations, 2010 CFR
2010-10-01
... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...
Code of Federal Regulations, 2011 CFR
2011-10-01
... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...
Code of Federal Regulations, 2014 CFR
2014-10-01
... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...
The Astronautics Laboratory of the Air Force Systems Command electric propulsion projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanks, T.M.; Andrews, J.C.
1989-01-01
Ongoing projects at the Astronautics Laboratory (AL) of the USAF Systems Command are described. Particular attention is given to experiments with arcjets, magnetoplasmadynamic thrusters, ion engines, and the Electric Insertion Transfer Experiment (ELITE). ELITE involves the integration of high-power ammonia arcjets, low-power xenon ion thrusters, advanced photovoltaic solar arrays, and an autononomous flight control system. It is believed that electric propulsion will become a dominant element in the military and industrial use of space. 6 refs.
Waste-to-Energy Cogeneration Project, Centennial Park
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Clay; Mandon, Jim; DeGiulio, Thomas
The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utilitymore » bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.« less
Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project
NASA Technical Reports Server (NTRS)
2004-01-01
During 2004, the Jupiter Icy Moons Orbiter project, a part of NASA's Project Prometheus, continued efforts to develop electric propulsion technologies. These technologies addressed the challenges of propelling a spacecraft to several moons of Jupiter. Specific challenges include high power, high specific impulse, long lived ion thrusters, high power/high voltage power processors, accurate feed systems, and large propellant storage systems. Critical component work included high voltage insulators and isolators as well as ensuring that the thruster materials and components could operate in the substantial Jupiter radiation environment. A review of these developments along with future plans is discussed.
NASA Astrophysics Data System (ADS)
Phadke, Amol Anant
This dissertation explores issues related to competition in and regulation of electricity sectors in developing countries on the backdrop of fundamental reforms in their electricity sectors. In most cases, electricity sector reforms promoted privatization based on the rationale that it will lower prices and improve quality. In Chapter 2, I analyze this rationale by examining the stated capital cost of independent (private) power producer's (IPPs) power projects in eight developing countries and find that the stated capital cost of projects selected via competitive bidding is on an average about 40% to 60% lower than that of the projects selected via negotiations, which, I argue, represents the extent to which the costs of negotiated projects are overstated. My results indicate that the policy of promoting private sector without an adequate focus on improving competition or regulation has not worked in most cases in terms of getting competitively priced private sector projects. Given the importance of facilitating effective competition or regulation, In Chapter 3, I examine the challenges and opportunities of establishing a competitive wholesale electricity market in a developing country context. I model a potential wholesale electricity market in Maharashtra (MH) state, India and find that it would be robustly competitive even in a situation of up-to five percent of supply shortage, when opportunities for demand response are combined with policies such as divestiture and requiring long-term contracts. My results indicate that with appropriate policies, some developing countries could establish competitive wholesale electricity markets. In Chapter 4, I focus on the demand side and analyze the cost effectiveness of improving end-use efficiency in an electricity sector with subsidized tariffs and electricity shortages and show that they offer the least expensive way of reducing shortages in Maharashtra State, India. In Chapter 5, I examine the costs of reducing carbon dioxide emissions in the Indian power sector and find that the costs are higher than those in the US because of mark-ups in the Indian gas based power projects. Overall, this dissertation shows the importance of facilitating effective competition and regulation and pursuing end-use efficiency improvements in electricity sectors of developing countries.
Geothermal FIT Design: International Experience and U.S. Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rickerson, W.; Gifford, J.; Grace, R.
2012-08-01
Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date,more » a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).« less
Learning curve approach to projecting cost and performance for photovoltaic technologies
NASA Astrophysics Data System (ADS)
Cody, George D.; Tiedje, Thomas
1997-10-01
The current cost of electricity generated by PV power is still extremely high with respect to power supplied by the utility grid, and there remain questions as to whether PV power can ever be competitive with electricity generated by fossil fuels. An objective approach to this important question was given in a previous paper by the authors which introduced analytical tools to define and project the technical/economic status of PV power from 1988 through the year 2010. In this paper, we apply these same tools to update the conclusions of our earlier study in the context of recent announcements by Amoco/Enron-Solar of projected sales of PV power at rates significantly less than the U.S. utility average.
A learning curve approach to projecting cost and performance for photovoltaic technologies
NASA Astrophysics Data System (ADS)
Cody, George D.; Tiedje, Thomas
1997-04-01
The current cost of electricity generated by PV power is still extremely high with respect to power supplied by the utility grid, and there remain questions as to whether PV power can ever be competitive with electricity generated by fossil fuels. An objective approach to this important question was given in a previous paper by the authors which introduced analytical tools to define and project the technical/economic status of PV power from 1988 through the year 2010. In this paper, we apply these same tools to update the conclusions of our earlier study in the context of recent announcements by Amoco/Enron-Solarex of projected sales of PV power at rates significantly less than the US utility average.
Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application
NASA Technical Reports Server (NTRS)
Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)
2002-01-01
Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.
Mining Power and Hydrocarbon Consciousness from the Monthly Electricity Bill: A Classroom Project
ERIC Educational Resources Information Center
O'Brien, William P., Jr.
2007-01-01
Residential monthly electricity bills provided by students in physics classes served as data for a project designed to help them develop a sense of scale for electric energy consumption referenced to their own electric lifestyles and insight into how these lifestyles depend heavily on various naturally occurring terrestrial hydrocarbon resources.…
Analysis of recent projections of electric power demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, Jr, D V
1993-08-01
This report reviews the changes and potential changes in the outlook for electric power demand since the publication of Review and Analysis of Electricity Supply Market Projections (B. Swezey, SERI/MR-360-3322, National Renewable Energy Laboratory). Forecasts of the following organizations were reviewed: DOE/Energy Information Administration, DOE/Policy Office, DRI/McGraw-Hill, North American Electric Reliability Council, and Gas Research Institute. Supply uncertainty was briefly reviewed to place the uncertainties of the demand outlook in perspective. Also discussed were opportunities for modular technologies, such as renewable energy technologies, to fill a potential gap in energy demand and supply.
NASA Astrophysics Data System (ADS)
Newmark, R. L.; Cohen, S. M.; Averyt, K.; Macknick, J.; Meldrum, J.; Sullivan, P.
2014-12-01
Climate change has the potential to exacerbate reliability concerns for the power sector through changes in water availability and air temperatures. The power sector is responsible for 41% of U.S. freshwater withdrawals, primarily for power plant cooling needs, and any changes in the water available for the power sector, given increasing competition among water users, could affect decisions about new power plant builds and reliable operations for existing generators. Similarly, increases in air temperatures can reduce power plant efficiencies, which in turn increases fuel consumption as well as water withdrawal and consumption rates. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory's (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water runoff projections from Coupled Model Intercomparison Project 5 (CMIP5) data are applied to surface water available to generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water availability for the 134 electricity balancing regions in the ReEDS model. In addition, air temperature changes are considered for their impacts on electricity load, transmission capacity, and power plant efficiencies and water use rates. Mean climate projections have only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water access to offset climate impacts. Climate impacts are notable in southwestern states, which experience reduced water access purchases and a greater share of water acquired from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-26
... decommission the Ocotillo Sol Solar Project, a solar photovoltaic (PV) power plant facility, on approximately... Applicant's Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final Environmental...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... project, a solar photovoltaic (PV) power plant facility, on approximately 115 acres of BLM-administered... Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility on BLM...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft Environmental...
Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
2004-01-01
The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.
ERIC Educational Resources Information Center
Zhang, Zhe; Hansen, Claus Thorp; Andersen, Michael A. E.
2016-01-01
Power electronics is a fast-developing technology within the electrical engineering field. This paper presents the results and experiences gained from applying design-oriented project-based learning to switch-mode power supply design in a power electronics course at the Technical University of Denmark (DTU). Project-based learning (PBL) is known…
27. View, looking north, of motor house; the electric motor ...
27. View, looking north, of motor house; the electric motor and electric-powered winch are housed in section of building to the left. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
The generation of pollution-free electrical power from solar energy.
NASA Technical Reports Server (NTRS)
Cherry, W. R.
1971-01-01
Projections of the U.S. electrical power demands over the next 30 years indicate that the U.S. could be in grave danger from power shortages, undesirable effluence, and thermal pollution. An appraisal of nonconventional methods of producing electrical power is conducted, giving particular attention to the conversion of solar energy into commercial quantities of electrical power by solar cells. It is found that 1% of the land area of the 48 states could provide the total electrical power requirements of the U.S. in the year 1990. The ultimate method of generating vast quantities of electrical power would be from a series of synchronous satellites which beam microwave power back to earth to be used wherever needed. Present high manufacturing costs of solar cells could be substantially reduced by using massive automated techniques employing abundant low cost materials.
Status of a Power Processor for the Prometheus-1 Electric Propulsion System
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Hill, Gerald M.; Aulisio, Michael; Gerber, Scott; Griebeler, Elmer; Hewitt, Frank; Scina, Joseph
2006-01-01
NASA is developing technologies for nuclear electric propulsion for proposed deep space missions in support of the Exploration initiative under Project Prometheus. Electrical power produced by the combination of a fission-based power source and a Brayton power conversion and distribution system is used by a high specific impulse ion propulsion system to propel the spaceship. The ion propulsion system include the thruster, power processor and propellant feed system. A power processor technology development effort was initiated under Project Prometheus to develop high performance and lightweight power-processing technologies suitable for the application. This effort faces multiple challenges including developing radiation hardened power modules and converters with very high power capability and efficiency to minimize the impact on the power conversion and distribution system as well as the heat rejection system. This paper documents the design and test results of the first version of the beam supply, the design of a second version of the beam supply and the design and test results of the ancillary supplies.
Concentrating Solar Power Projects in the United States | Concentrating
States are listed belowââ¬"alphabetical by state, then by project name. You can browse a project profile by clicking on the project name. Arizona Maricopa Solar Project (Maricopa) Saguaro Power Plant Solana Generating Station (Solana) California Genesis Solar Energy Project Ivanpah Solar Electric
Power Market Design | Grid Modernization | NREL
Power Market Design Power Market Design NREL researchers are developing a modeling platform to test (a commercial electricity production simulation model) and FESTIV (the NREL-developed Flexible Energy consisting of researchers in power systems and economics Projects Grid Market Design Project The objective of
77 FR 5817 - Ocean Renewable Power Company, Tidal Energy Project, Cobscook Bay, ME
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... ocean floor, used for generating electricity from tidal currents and is now providing the public the... impacts associated with installation of an underwater cable assembly to transfer electricity to a power...
NASA Technical Reports Server (NTRS)
Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.
2016-01-01
The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid-electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid-electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of AC and DC for power transmission. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power generation, transmission, and distribution systems, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of dual-fed induction machines, which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the project along with the system architecture, development status and preliminary results.
Power monitoring and control for large scale projects: SKA, a case study
NASA Astrophysics Data System (ADS)
Barbosa, Domingos; Barraca, João. Paulo; Maia, Dalmiro; Carvalho, Bruno; Vieira, Jorge; Swart, Paul; Le Roux, Gerhard; Natarajan, Swaminathan; van Ardenne, Arnold; Seca, Luis
2016-07-01
Large sensor-based science infrastructures for radio astronomy like the SKA will be among the most intensive datadriven projects in the world, facing very high demanding computation, storage, management, and above all power demands. The geographically wide distribution of the SKA and its associated processing requirements in the form of tailored High Performance Computing (HPC) facilities, require a Greener approach towards the Information and Communications Technologies (ICT) adopted for the data processing to enable operational compliance to potentially strict power budgets. Addressing the reduction of electricity costs, improve system power monitoring and the generation and management of electricity at system level is paramount to avoid future inefficiencies and higher costs and enable fulfillments of Key Science Cases. Here we outline major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science and Smart power monitoring and control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, V.K.; Sandell, D.H.
The Government of Thailand is implementing a Southern Seaboard Development Project. The developing of the project will increase demand for all utility and infrastructure systems and services. The distribution of electric power in the new area falls within the responsibility of the Provincial Electricity Authority (PEA). The U.S. Trade and Development Program (TDP) funded a Definitional Mission to evaluate the prospects of TDP funding a feasibility study for an I-Shaped power interconnection study for supplying electricity to the 15 provinces in Southern Thailand. The mission concluded that TDP should provide a grant to PEA to select a U.S. firm tomore » carry out the proposed I-Shaped Interconnection study for power distribution in southern Thailand. The overall potential for exports resulting from the project is conservatively estimated at $120 million, not including any follow-on work and spare parts inventory, typical of such projects. TDP's program in Thailand has enjoyed enviable success in exports and TDP's support of the proposed feasibility study will clearly maintain and very likely add to that momentum.« less
NASA Astrophysics Data System (ADS)
Nejat, Cyrus; Nejat, Narsis; Nejat, Najmeh
2014-06-01
This research project is part of Narsis Nejat Master of Science thesis project that it is done at Shiraz University. The goals of this research are to make a computer model to evaluate the thermal power, electrical power, amount of emitted/absorbed dose, and amount of emitted/absorbed dose rate for static Radioisotope Thermoelectric Generators (RTG)s that is include a comprehensive study of the types of RTG systems and in particular RTG’s fuel resulting from both natural and artificial isotopes, calculation of the permissible dose radioisotope selected from the above, and conceptual design modeling and comparison between several NASA made RTGs with the project computer model pointing out the strong and weakness points for using this model in nuclear industries for simulation. The heat is being converted to electricity by two major methods in RTGs: static conversion and dynamic conversion. The model that is created for this project is for RTGs that heat is being converted to electricity statically. The model approximates good results as being compared with SNAP-3, SNAP-19, MHW, and GPHS RTGs in terms of electrical power, efficiency, specific power, and types of the mission and amount of fuel mass that is required to accomplish the mission.
78 FR 35022 - Parker-Davis Project-Rate Order No. WAPA-162
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... DEPARTMENT OF ENERGY Western Area Power Administration Parker-Davis Project-Rate Order No. WAPA-162 AGENCY: Western Area Power Administration, DOE. ACTION: Notice of Proposed Extension of Firm Electric and Transmission Service Formula Rates. SUMMARY: The Western Area Power Administration (Western...
2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2014-01-01
Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.
Aircraft photovoltaic power-generating system
NASA Astrophysics Data System (ADS)
Doellner, Oscar Leonard
Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet-engine design modifications incorporating this concept not only save weight (and thus fuel), but are - in themselves - favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project.
7 CFR 1709.109 - Eligible projects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... through on-grid and off-grid renewable energy technologies, energy efficiency, and energy conservation... improvement of: (a) Electric generation, transmission, and distribution facilities, equipment, and services... electric power generation, water or space heating, or process heating and power for the eligible community...
7 CFR 1709.109 - Eligible projects.
Code of Federal Regulations, 2011 CFR
2011-01-01
... through on-grid and off-grid renewable energy technologies, energy efficiency, and energy conservation... improvement of: (a) Electric generation, transmission, and distribution facilities, equipment, and services... electric power generation, water or space heating, or process heating and power for the eligible community...
7 CFR 1709.109 - Eligible projects.
Code of Federal Regulations, 2012 CFR
2012-01-01
... through on-grid and off-grid renewable energy technologies, energy efficiency, and energy conservation... improvement of: (a) Electric generation, transmission, and distribution facilities, equipment, and services... electric power generation, water or space heating, or process heating and power for the eligible community...
7 CFR 1709.109 - Eligible projects.
Code of Federal Regulations, 2013 CFR
2013-01-01
... through on-grid and off-grid renewable energy technologies, energy efficiency, and energy conservation... improvement of: (a) Electric generation, transmission, and distribution facilities, equipment, and services... electric power generation, water or space heating, or process heating and power for the eligible community...
7 CFR 1709.109 - Eligible projects.
Code of Federal Regulations, 2014 CFR
2014-01-01
... through on-grid and off-grid renewable energy technologies, energy efficiency, and energy conservation... improvement of: (a) Electric generation, transmission, and distribution facilities, equipment, and services... electric power generation, water or space heating, or process heating and power for the eligible community...
75 FR 27550 - Electrical Interconnection of the Juniper Canyon I Wind Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... Canyon I Wind Project AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE). ACTION: Notice of Availability of Record of Decision (ROD). SUMMARY: The Bonneville Power Administration (BPA... County, Washington. To interconnect the Wind Project, BPA will expand an existing substation (Rock Creek...
Electric Power Generation from Low to Intermediate Temperature Resourcces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnold, William; Mann, Michael; Salehfar, Hossein
The UND-CLR Binary Geothermal Power Plant was a collaborative effort of the U.S. Department of Energy (DOE), Continental Resources, Inc. (CRL), Slope Electric Cooperative (SEC), Access Energy, LLC (AE), Basin Electric Cooperative (BEC), Olson Construction, the North Dakota Industrial Commission Renewable Energy Council (NDIC-REC), the North Dakota Department of Commerce Centers of Excellence Program (NDDC-COE), and the University of North Dakota (UND). The primary objective of project was to demonstrate/test the technical and economic feasibility of generating electricity from non-conventional, low-temperature (90 ºC to 150 °C) geothermal resources using binary technology. CLR provided the access to 98 ºC water flowingmore » at 51 l s-1 at the Davis Water Injection Plan in Bowman County, ND. Funding for the project was from DOE –GTO, NDIC-REC, NDD-COE, and BEC. Logistics, on-site construction, and power grid access were facilitated by Slope Electric Cooperative and Olson Construction. Access Energy supplied prototype organic Rankine Cycle engines for the project. The potential power output from this project is 250 kW at a cost of $3,400 per kW. A key factor in the economics of this project is a significant advance in binary power technology by Access Energy, LLC. Other commercially available ORC engines have efficiencies 8 to 10 percent and produce 50 to 250 kW per unit. The AE ORC units are designed to generate 125 kW with efficiencies up to 14 percent and they can be installed in arrays of tens of units to produce several MW of power where geothermal waters are available. This demonstration project is small but the potential for large-scale development in deeper, hotter formations is promising. The UND team’s analysis of the entire Williston Basin using data on porosity, formation thicknesses, and fluid temperatures reveals that 4.0 x 1019 Joules of energy is available and that 1.36 x 109 MWh of power could be produced using ORC binary power plants. Much of the infrastructure necessary to develop extensive geothermal power in the Williston Basin exists as abandoned oil and gas wells. Re-completing wells for water production could provide local power throughout the basin thus reducing power loss through transmission over long distances. Water production in normal oil and gas operations is relatively low by design, but it could be one to two orders of magnitude greater in wells completed and pumped for water production. A promising method for geothermal power production recognized in this project is drilling horizontal open-hole wells in the permeable carbonate aquifers. Horizontal drilling in the aquifers increases borehole exposure to the resource and consequently increases the capacity for fluid production by up to an order of magnitude.« less
Electrical Materials Research for NASAs Hybrid Electric Commercial Aircraft Program
NASA Technical Reports Server (NTRS)
Bowman, Randy
2017-01-01
A high-level description of NASA GRC research in electrical materials is presented with a brief description of the AATTHGEP funding project. To be presented at the Interagency Advanced Power Group Electrical Materials panel session.
Intermediate Design and Analysis of the PANSAT Electrical Power Subsystem
1994-03-01
NAVAL POSTGRADUATE SCHOOL SMonterey, California 6’ AD-A283 610 jAUG 24 1994L THESIS INTERMEDIATE DESIGN AND ANALYSIS OF THE PANSAT ELECTRICAL POWER...data for PANSAM. iii TABLE OF CONTENTS I. INTRODUCTION 1 A. PURPOSE . . . . . . . . . . . . . . . . . . . . . . 1 B. PANSAT PROJECT DESCRIPTION...10 A. INTRODUCTION ................. ................... 10 B. ELECTRICAL CHARACTERISTICS ....... ............ 11 1. I-V Curve
Harnessing Alaska. [Hydroelectric power in Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Four hydropower projects will provide electricity for isolated Alaskan cities by late 1984. A 15Mw project is already producing power. The three remaining hydro projects are described. Tyee Lake is a lake tap project. Water is supplied to the powerhouse by tapping the lake via a tunnel blasted through the lake bottom. Water then flows through a vertical pressure shaft to a power tunnel and into an aboveground powerhouse. Swan Lake consists of a double-curved arch dam and a power tunnel. Terror Lake consists of a concrete-faced compacted rockfill dam and a power tunnel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englebretson, Steven; Ouyang, Wen; Tschida, Colin
This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability ofmore » the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... megawatts of electricity from wind turbine generators (WTGs). The proposed project includes a wind energy... about the installation of red flashing lights on wind turbine generators per Federal Aviation... DEPARTMENT OF ENERGY Western Area Power Administration; Grapevine Canyon Wind Project Record of...
Sanders, Kelly T; Blackhurst, Michael F; King, Carey W; Webber, Michael E
2014-06-17
We utilize a unit commitment and dispatch model to estimate how water use fees on power generators would affect dispatching and water requirements by the power sector in the Electric Reliability Council of Texas' (ERCOT) electric grid. Fees ranging from 10 to 1000 USD per acre-foot were separately applied to water withdrawals and consumption. Fees were chosen to be comparable in cost to a range of water supply projects proposed in the Texas Water Development Board's State Water Plan to meet demand through 2050. We found that these fees can reduce water withdrawals and consumption for cooling thermoelectric power plants in ERCOT by as much as 75% and 23%, respectively. To achieve these water savings, wholesale electricity generation costs might increase as much as 120% based on 2011 fuel costs and generation characteristics. We estimate that water saved through these fees is not as cost-effective as conventional long-term water supply projects. However, the electric grid offers short-term flexibility that conventional water supply projects do not. Furthermore, this manuscript discusses conditions under which the grid could be effective at "supplying" water, particularly during emergency drought conditions, by changing its operational conditions.
NRC assessment of the Department of Energy annealing demonstration project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, D.A.; Malik, S.N.
1997-02-01
Thermal annealing is the only known method for mitigating the effects of neutron irradiation embrittlement in reactor pressure vessel (RPV) steels. In May 1996, the US Department of Energy (DOE) in conjunction with the American Society of Mechanical Engineers, Westinghouse, Cooperheat, Electric Power Research Institute (with participating utilities), Westinghouse Owner`s Group, Consumers Power, Electricite` de France, Duquesne Light and the Central Research Institute of the Electric Power Industry (Japan) sponsored an annealing demonstration project (ADP) at Marble Hill. The Marble Hill Plant, located in Madison, Indiana, is a Westinghouse 4 loop design. The plant was nearly 70% completed when themore » project was canceled. Hence, the RPV was never irradiated. The paper will present highlights from the NRCs independent evaluation of the Marble Hill Annealing Demonstration Project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.
The commercial feasibility of underground coal gasification in southern Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solc, J.; Young, B.C.; Harju, J.A.
Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A projectmore » to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.« less
The energy sector is considered to be one of the most vulnerable to climate change. This study is a first-order analysis of the potential climate change impacts on the U.S. electric power sector, measuring the energy, environmental, and economic impacts of power system changes du...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-05
... Project, FERC No. 2570, located at the U.S. Corps of Engineers Racine Locks and Dam on the Ohio River in... McDonough, Assistant General Counsel--Real Estate, American Electric Power Service Corporation, 1 Riverside..., American Electric Power Service Corporation, 40 Franklin Road, Roanoke, VA 24011, telephone (540) 985-2875...
Nuclear power generation and fuel cycle report 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to themore » uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.« less
Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
2009-05-01
Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.
DOE/NREL supported wind energy activities in Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouilhet, S.
1997-12-01
This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in villagemore » settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... transmission lines, 5 new substations, modifications to 4 existing substations, maintenance access roads... address the construction, operation, and maintenance of Basin Electric's proposed Project. The Project includes construction, operation and maintenance of approximately 275 [[Page 50027
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
.... c. Date filed: May 25, 2012. d. Applicant: Inside Passage Electric Cooperative. e. Name of Project... project would not occupy any federal lands. g. Filed Pursuant to: Federal Power Act 16 U.S.C. 791(a)-825(r) (2006). h. Applicant Contact: Mr. Peter A. Bibb, Operations Manager, Inside Passage Electric Cooperative...
Performance Issues for a Changing Electric Power Industry
1995-01-01
Provides an overview of some of the factors affecting reliability within the electric bulk power system. Historical and projected data related to reliability issues are discussed on a national and regional basis. Current research on economic considerations associated with reliability levels is also reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahidehpour, Mohammad
Starting in October 2008, Illinois Institute of Technology (IIT), in collaboration with over 20 participating members, led an extensive effort to develop, demonstrate, promote, and commercialize a microgrid system and offer supporting technologies that will achieve Perfect Power at the main campus of IIT. A Perfect Power system, as defined by the Galvin Electricity Initiative (GEI), is a system that cannot fail to meet the electric needs of the individual end-user. The Principle Investigator of this Perfect Power project was Dr. Mohammad Shahidehpour, Director of the Robert W. Galvin Center for Electricity Innovation at IIT. There were six overall objectivesmore » of the Perfect Power project: (1) Demonstrate the higher reliability introduced by the microgrid system at IIT; (2) Demonstrate the economics of microgrid operations; (3) Allow for a decrease of fifty percent (50%) of grid electricity load; (4) Create a permanent twenty percent (20%) decrease in peak load from 2007 level; (5) Defer planned substation through load reduction; (6) Offer a distribution system design that can be replicated in urban communities.« less
McFarland, James; Zhou, Yuyu; Clarke, Leon; ...
2015-06-10
The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effectsmore » of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less
Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; O'Neill, Barbara
A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Officemore » selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls.« less
NASA Astrophysics Data System (ADS)
Kyriazis, G. A.; Di Lillo, L.; Slomovitz, D.; Iuzzolino, R.; Yasuda, E.; Trigo, L.; de Souza, R. M.; Laiz, H.; Debatin, R. M.; Afonso, E.
2018-03-01
Three countries in South America are jointly developing a reference system for measuring electric power up to 100 kHz. The objective is the construction of three similar measuring systems, one for each institute. This project will contribute to provide calibration services in measuring ranges still not covered by the three institutes. The status of its development by the end of 2017 is described here.
NASA Technical Reports Server (NTRS)
Marriott, A.
1980-01-01
The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.
NASA Astrophysics Data System (ADS)
Matsypura, Dmytro
In this dissertation, I develop a new theoretical framework for the modeling, pricing analysis, and computation of solutions to electric power supply chains with power generators, suppliers, transmission service providers, and the inclusion of consumer demands. In particular, I advocate the application of finite-dimensional variational inequality theory, projected dynamical systems theory, game theory, network theory, and other tools that have been recently proposed for the modeling and analysis of supply chain networks (cf. Nagurney (2006)) to electric power markets. This dissertation contributes to the extant literature on the modeling, analysis, and solution of supply chain networks, including global supply chains, in general, and electric power supply chains, in particular, in the following ways. It develops a theoretical framework for modeling, pricing analysis, and computation of electric power flows/transactions in electric power systems using the rationale for supply chain analysis. The models developed include both static and dynamic ones. The dissertation also adds a new dimension to the methodology of the theory of projected dynamical systems by proving that, irrespective of the speeds of adjustment, the equilibrium of the system remains the same. Finally, I include alternative fuel suppliers, along with their behavior into the supply chain modeling and analysis framework. This dissertation has strong practical implications. In an era in which technology and globalization, coupled with increasing risk and uncertainty, complicate electricity demand and supply within and between nations, the successful management of electric power systems and pricing become increasingly pressing topics with relevance not only for economic prosperity but also national security. This dissertation addresses such related topics by providing models, pricing tools, and algorithms for decentralized electric power supply chains. This dissertation is based heavily on the following coauthored papers: Nagurney, Cruz, and Matsypura (2003), Nagurney and Matsypura (2004, 2005, 2006), Matsypura and Nagurney (2005), Matsypura, Nagurney, and Liu (2006).
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-04-02
The Water Power Program helps industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity. Through support for public, private, and nonprofit efforts, the Water Power Program promotes the development, demonstration, and deployment of advanced hydropower devices and pumped storage hydropower applications. These technologies help capture energy stored by diversionary structures, increase the efficiency of hydroelectric generation, and use excess grid energy to replenish storage reserves for use during periods of peak electricity demand. In addition, the Water Power Program works to assess the potential extractable energy from domestic water resources to assist industry and government inmore » planning for our nation’s energy future. From FY 2008 to FY 2014, DOE’s Water Power Program announced awards totaling approximately $62.5 million to 33 projects focused on hydropower. Table 1 provides a brief description of these projects.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
... will be executed will be added when Dominion Virginia Power, who is part of the Electric Power research... Electric Power Research Institute (EPRI) to document what is planned to be accomplished by the CDP. DOE is... Storage Cask Research and Development Project (CDP) AGENCY: Fuel Cycle Technologies, Office of Nuclear...
Electric energy demand and supply prospects for California
NASA Technical Reports Server (NTRS)
Jones, H. G. M.
1978-01-01
A recent history of electricity forecasting in California is given. Dealing with forecasts and regulatory uncertainty is discussed. Graphs are presented for: (1) Los Angeles Department of Water and Power and Pacific Gas and Electric present and projected reserve margins; (2) California electricity peak demand forecast; and (3) California electricity production.
26. View, looking east, of motor house; the electric motor ...
26. View, looking east, of motor house; the electric motor and electric-powered winch are housed in section of building to the left. The U-bolt and concrete deadman which anchors the cable of the tramway is to the right. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed
NASA Technical Reports Server (NTRS)
Papathakis, Kurt V.
2017-01-01
There a few NASA funded electric and hybrid electric projects from different NASA Centers, including the NASA Armstrong Flight Research Center (AFRC) (Edwards, California). Each project identifies a specific technology gap that is currently inhibiting the growth and proliferation of relevant technologies in commercial aviation. This paper describes the design and development of a turbo-electric distributed propulsion (TeDP) hardware-in-the-loop (HIL) simulation bench, which is a test bed for discovering turbo-electric control, distributed electric control, power management control, and integration competencies while providing risk mitigation for future turbo-electric flying demonstrators.
Using coal inside California for electric power
NASA Technical Reports Server (NTRS)
Moore, J. B.
1978-01-01
In a detailed analysis performed at Southern California Edison on a wide variety of technologies, the direct combustion of coal and medium BTU gas from coal were ranked just below nuclear power for future nonpetroleum based electric power generation. As a result, engineering studies were performed for demonstration projects for the direct combustion of coal and medium BTU gas from coal. Graphs are presented for power demand, and power cost. Direct coal combustion and coal gasification processes are presented.
Wind for Schools Project Power System Brief
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2007-08-01
This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, T.F.
1991-10-01
This article reviews the various reports, surveys and projections on the national energy supply of the summer of 1991. Discussed are the natural gas supplies, competitive electric power production, reliability of independent power, public attitudes toward natural gas, the market share of natural gas, and projection of US energy supply and demand.
ERIC Educational Resources Information Center
Peterson, James N.; Hess, Herbert L.
An undergraduate capstone engineering design project now provides hydroelectric power to a remote wilderness location. Students investigated the feasibility of designing, building, and installing a 4kW hydroelectric system to satisfy the need for electric power to support the research and teaching functions of Taylor Ranch, a university facility…
Selection and development of small solar thermal power applications
NASA Technical Reports Server (NTRS)
Bluhm, S. A.; Kuehn, T. J.; Gurfield, R. M.
1979-01-01
The paper discusses the approach of the JPL Point Focusing Thermal and Electric Power Applications Project to selecting and developing applications for point-focusing distributed-receiver solar thermal electric power systems. Six application categories are defined. Results of application studies of U.S. utilities are presented. The economic value of solar thermal power systems was found to range from $900 to $2100/kWe in small community utilities of the Southwest.
Concentrating Solar Power Projects - Solar Electric Generating Station VI |
of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo with an Independent Power Producer, with special Standard Offer 2 (SO-2) type power purchase agreement to Southern
Concentrating Solar Power Projects - Solar Electric Generating Station II |
of power purchase agreement to Southern California Edison. Status Date: November 7, 2017 Photo with Facility Independent Power Producer, with special Standard Offer 2 (SO-2) type power purchase agreement to
Engineering innovation to reduce wind power COE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, Curtt Nelson
There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.
MEMS Rotary Engine Power System
NASA Astrophysics Data System (ADS)
Fernandez-Pello, A. Carlos; Pisano, Albert P.; Fu, Kelvin; Walther, David C.; Knobloch, Aaron; Martinez, Fabian; Senesky, Matt; Stoldt, Conrad; Maboudian, Roya; Sanders, Seth; Liepmann, Dorian
This work presents a project overview and recent research results for the MEMS Rotary Engine Power System project at the Berkeley Sensor & Actuator Center of the University of California at Berkeley. The research motivation for the project is the high specific energy density of hydrocarbon fuels. When compared with the energy density of batteries, hydrocarbon fuels may have as much as 20x more energy. However, the technical challenge is the conversion of hydrocarbon fuel to electricity in an efficient and clean micro engine. A 12.9 mm diameter Wankel engine will be shown that has already generated 4 Watts of power at 9300rpm. In addition, the 1mm and 2.4 mm Wankel engines that BSAC is developing for power generation at the microscale will be discussed. The project goal is to develop electrical power output of 90milliwatts from the 2.4 mm engine. Prototype engine components have already been fabricated and these will be described. The integrated generator design concept utilizes a nickel-iron alloy electroplated in the engine rotor poles, so that the engine rotor also serves as the generator rotor.
Feasibility study of wind-generated electricity for rural applications in southwestern Ohio
NASA Astrophysics Data System (ADS)
Kohring, G. W.
The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.
NASA Astrophysics Data System (ADS)
Schultz, A.; Bonner, L. R., IV
2017-12-01
Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth's vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth's crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD's inducing fields and the complex ground (3-D) electric field response, and the resulting alignment of the ground electric fields with the power transmission line paths. This is informing our efforts to provide a set of real-time tools for power grid operators to use in mitigating damage from space weather events.
An Overview of Electric Propulsion Activities at NASA
NASA Technical Reports Server (NTRS)
Dunning, John W., Jr.; Hamley, John A.; Jankovsky, Robert S.; Oleson, Steven R.
2004-01-01
This paper provides an overview of NASA s activities in the area of electric propulsion with an emphasis on project directions, recent progress, and a view of future project directions. The goals of the electric propulsion programs are to develop key technologies to enable new and ambitious science missions and to transfer these technologies to industry. Activities include the development of gridded ion thruster technology, Hall thruster technology, pulsed plasma thruster technology, and very high power electric propulsion technology, as well as systems technology that supports practical implementation of these advanced concepts. The performance of clusters of ion and Hall thrusters is being revisited. Mission analyses, based on science requirements and preliminary mission specifications, guide the technology projects and introduce mission planners to new capabilities. Significant in-house activity, with strong industrial/academia participation via contracts and grants, is maintained to address these development efforts. NASA has initiated a program covering nuclear powered spacecraft that includes both reactor and radioisotope power sources. This has provided an impetus to investigate higher power and higher specific impulse thruster systems. NASA continues to work closely with both supplier and user communities to maximize the understanding and acceptance of new technology in a timely and cost-effective manner. NASA s electric propulsion efforts are closely coordinated with Department of Defense and other national programs to assure the most effective use of available resources. Several NASA Centers are actively involved in these electric propulsion activities, including, the Glenn Research Center, Jet Propulsion Laboratory, Johnson Space Center, and Marshall Space Flight Center.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
..., modifications to 4 existing substations, a 345-kV switchyard, maintenance access roads, temporary construction... will address the construction, operation, and maintenance of Basin Electric's proposed Project. The Project includes construction, operation and maintenance of approximately 190 miles of new 345-kV single...
Concentrating Solar Power Projects - Solar Electric Generating Station IV |
of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo from a ) type power purchase agreement to Southern California Edison Incentives: Accelerated depreciation
ERIC Educational Resources Information Center
McNeill, Perry R.; And Others
Described is a project initiated to evaluate and disseminate the Electrical Power Engineering Technology Curriculum developed at Oklahoma State University. The objective of the evaluation phase, to have the original model curriculum evaluated by both present and potential employers, was accomplished in a two-day workshop with participation of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Wendt; Greg Mines
2014-09-01
Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contractsmore » in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.« less
Project W-320, 241-C-106 sluicing electrical calculations, Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, J.W.
1998-08-07
This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. These calculations are required: To determine the power requirements needed to power electrical heat tracing segments contained within three manufactured insulated tubing assemblies; To verify thermal adequacy of tubing assembly selection by others; To size the heat tracing feeder and branch circuit conductors and conduits; To size protective circuit breaker and fuses; and To accomplish thermal design for two electrical heat tracing segments: One at C-106 tank riser 7 (CCTV) and one at the exhaust hatchway (condensate drain). Contents include: C-Farm electrical heat tracing;more » Cable ampacity, lighting, conduit fill and voltage drop; and Control circuit sizing and voltage drop analysis for the seismic shutdown system.« less
Installation of solar PV systems in Sri Lanka
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernando, M.P.T.P.
1995-10-01
The tropical country of Sri Lanka has hydroelectric power plants sufficient to provide electricity to only 40% of its 25,000 villages. The electric power needs of the average Sri Lankan rural communities are basic: three or four lights to illuminate their house and a power supply for their televisions. Solar radiation is abundant throughout the year. To take advantage of this resource, the Sarvodaya Rural Technical Services launched a Solar PV pilot demonstration project in the rural areas not served by the electric grid. The systems were being installed on an individual residence basis and funded by loans. Social andmore » cultural problems which have arisen during the course of the project have slowed its implementation. This study identifies the problems and makes recommendations to resolve the current problems and avoid new ones.« less
FY2017 Electrification Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
During fiscal year 2017 (FY 2017), the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) funded early stage research & development (R&D) projects that address Batteries and Electrification of the U.S. transportation sector. The VTO Electrification Sub-Program is composed of Electric Drive Technologies, and Grid Integration activities. The Electric Drive Technologies group conducts R&D projects that advance Electric Motors and Power Electronics technologies. The Grid and Charging Infrastructure group conducts R&D projects that advance Grid Modernization and Electric Vehicle Charging technologies. This document presents a brief overview of the Electrification Sub-Program and progress reports for its R&D projects. Eachmore » of the progress reports provide a project overview and highlights of the technical results that were accomplished in FY 2017.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-14
ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10more » times smaller than existing chargers.« less
Final Report - Navajo Electrification Demonstration Project - FY2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenneth L. Craig, Interim General Manager
2007-03-31
The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.
Ground-Based High Energy Power Beaming in Support of Spacecraft Power Requirements
2006-06-01
provide 900 W/m2. As more of the arriving energy is converted to space bus power and less goes into the production of heat , more solar cell output...similar control of peak power levels. Efficiency of power transfer may easily be about 50% as the solar cell experiences less heating effects as the...investigates the feasibility of projecting ground-based laser power to energize a spacecraft electrical bus via the solar panels. The energy is projected
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, W.J.; Brown, W.R.; Siwajek, L.
1998-09-01
The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfillmore » gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.« less
Electric power generation using geothermal brine resources for a proof of concept facility
NASA Technical Reports Server (NTRS)
Hankin, J. W.
1974-01-01
An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.
Final Report Navajo Transmission Project (NTP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennie Hoisington; Steven Begay
2006-09-14
The Diné Power Authority is developing the Navajo Transmission Project (NTP) to relieve the constraints on the transmission of electricity west of the Four Corners area and to improve the operation flexibility and reliability of the extra-high-voltage transmission system in the region. The NTP creates the wholesale transmission capacity for more economical power transfers, sales, and purchases in the region. It will facilitate the development of Navajo energy resources, improve economic conditions on the Navajo Nation as well as allow DPA to participate in the western electrical utility industry.
Solar Power Use Claims Guidance
The Toolbox for Renewable Energy Project Development's Solar Power Use Claims Guidance page helps electricity consumers understand the legal right that RECs offer their owners when making solar power use claims and provides resources for making claims.
TEP Power Partners Project [Tucson Electric Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-02-06
The Arizona Governor’s Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants’ goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure relatedmore » aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013; 1,390 Home Area Networks (HANs) were registered; 797 new participants installed a HAN; Survey respondents’ are satisfied with the program and found value with a variety of specific program components; Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program; On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly; and An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.« less
NASA Astrophysics Data System (ADS)
Schultz, A.; Bonner, L. R., IV
2016-12-01
Existing methods to predict Geomagnetically Induced Currents (GICs) in power grids, such as the North American Electric Reliability Corporation standard adopted by the power industry, require explicit knowledge of the electrical resistivity structure of the crust and mantle to solve for ground level electric fields along transmission lines. The current standard is to apply regional 1-D resistivity models to this problem, which facilitates rapid solution of the governing equations. The systematic mapping of continental resistivity structure from projects such as EarthScope reveals several orders of magnitude of lateral variations in resistivity on local, regional and continental scales, resulting in electric field intensifications relative to existing 1-D solutions that can impact GICs to first order. The computational burden on the ground resistivity/GIC problem of coupled 3-D solutions inhibits the prediction of GICs in a timeframe useful to protecting power grids. In this work we reduce the problem to applying a set of filters, recognizing that the magnetotelluric impedance tensors implicitly contain all known information about the resistivity structure beneath a given site, and thus provides the required relationship between electric and magnetic fields at each site. We project real-time magnetic field data from distant magnetic observatories through a robustly calculated multivariate transfer function to locations where magnetotelluric impedance tensors had previously been obtained. This provides a real-time prediction of the magnetic field at each of those points. We then project the predicted magnetic fields through the impedance tensors to obtain predictions of electric fields induced at ground level. Thus, electric field predictions can be generated in real-time for an entire array from real-time observatory data, then interpolated onto points representing a power transmission line contained within the array to produce a combined electric field prediction necessary for GIC prediction along that line. This method produces more accurate predictions of ground electric fields in conductively heterogeneous areas that are not limited by distance from the nearest observatory, while still retaining comparable computational speeds as existing methods.
NASA Technical Reports Server (NTRS)
1979-01-01
The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.
Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid
NASA Astrophysics Data System (ADS)
Kuwayama, Akira
The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.
Mini Solar and Sea Current Power Generation System
NASA Astrophysics Data System (ADS)
Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu
2017-07-01
The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.
Continuing Education for Electrical Power Technicians. Final Report, June 1976-December 1978.
ERIC Educational Resources Information Center
Tinnell, Richard W., Ed.
The objective of this project was to develop and test a method of offering technical education to individuals employed in the electrical power industry. Representatives from industry were invited to an advisory council meeting where attention was focused on the needs of the industry. This information was used to define an extensive curriculum, and…
Would-Be Solar Electric Homeowners Sought For Project
photovoltaic power systems connected to local utility grids. A grid-tied rooftop photovoltaic system consists . Excess electricity may be sold back to the utility. At night, or when additional power is needed, the utilities, will assess the market potential and practicality of home photovoltaic systems. The utilities
Implementing PURPA : Renewable Resource Development in the Pacific Northwest : Executive Summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington State Energy Office.
The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities (QFs) and purchase electricity at a rate based upon their full avoided cost of providing both capacity and energy. Facilities that qualify for PURPA benefits include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. The mandate of PURPA, coupled with the electrical energy deficits projected to occur in the Pacific Northwest by the mid 1980s, led to resurgence of interest in the development ofmore » small, decentralized, non-utility owned and operated generating stations. A variety of would-be developers conducted feasibility studies and initiated environmental permitting and power marketing discussions with appropriate authorities. While many proposed PURPA projects fill by the wayside, others were successfully brought on-line. A variety of public and private sector developers, including cities, counties, irrigation districts, utilities, ranchers, timber companies, and food processing plants, successfully negotiated PURPA-based, or share-the-savings'' power purchase contracts. Other developers run their meter backwards'' or provide energy to their local utilities at the same rate that would otherwise be paid to Bonneville. This document provides a summary resource development of these renewable projects in the Pacific Northwest.« less
NASA Astrophysics Data System (ADS)
Yeo, M. J.; Kim, Y. P.
2017-12-01
Recently, concerns about the atmospheric environmental problems in North Korea (NK) have been growing. According to the World Health Organization (WHO) (2017), NK was the first ranked country in mortality rate attributed to household and ambient air pollution in 2012. Reliable energy-related data in NK were needed to understand the characteristics of air quality in NK. However, data from the North Korean government were limited. Nevertheless, we could find specific energy-related data produced by NK in the Project Design Documents (PDDs) of the Clean Development Mechanism (CDM) submitted to the United Nations Framework Convention on Climate Change (UNFCCC). There were the 6 registered CDM projects hosted by North Korea, developed as small hydropower plants. Several data of each power plant, such as the electricity output, connected to the Eastern Power Grid (EPG) or the Western Power Grid (WPG) in North Korea were provided in the CDM PDDs. We (1) figured out the trends of the electricity output, the `power conversion efficiency' which we defined the amount of generated electricity to the supplied input primary energy for power generation, and fuel mix as grid emission factor in NK as using the data produced by NK between 2005 and 2009, (2) discussed the operating status of the thermal power plants in NK, and (3) discussed the energy/environmental-related policies and the priority issues in NK in this study.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-10
... high-voltage transmission system carries electricity from 57 power plants encompassing 14 multi-purpose... DEPARTMENT OF ENERGY Southwestern Power Administration Western Area Power Administration Request... Act of 2005 AGENCY: Southwestern Power Administration and Western Area Power Administration...
Concentrating Solar Power Projects - Solar Electric Generating Station VII
type of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo from Producer, with special Standard Offer 2 (SO-2) type power purchase agreement to Southern California Edison
Concentrating Solar Power Projects - Solar Electric Generating Station V |
of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo of the Standard Offer 2 (SO-2) type power purchase agreement to Southern California Edison Incentives: Accelerated
Concentrating Solar Power Projects - Solar Electric Generating Station III
type of power purchase agreement to Southern California Edison. Status Date: October 1, 2015 Photo with Producer, with special Standard Offer 2 (SO-2) type power purchase agreement to Southern California Edison
Thermionic system evaluated test (TSET) facility description
NASA Astrophysics Data System (ADS)
Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.
1992-01-01
A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.
2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 3; Fabrication and Test Report
NASA Technical Reports Server (NTRS)
Alexander, Dennis
1997-01-01
The Solar Dynamic Ground Test Demonstration (SDGTD) project has successfully designed and fabricated a complete solar-powered closed Brayton electrical power generation system and tested it in a relevant thermal vacuum facility at NASA Lewis Research Center (LeRC). In addition to completing technical objectives, the project was completed 3-l/2 months early, and under budget.
Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks
NASA Astrophysics Data System (ADS)
Magnetto, D.; Vidiella, G.
2012-06-01
The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.
System Assessment of a High Power 3-U CubeSat
NASA Technical Reports Server (NTRS)
Shaw, Katie
2016-01-01
The Advanced eLectrical Bus (ALBus) CubeSat project is a technology demonstration mission of a 3-UCubeSat with an advanced, digitally controlled electrical power system capability and novel use of Shape Memory Alloy (SMA) technology for reliable deployable solar array mechanisms. The objective of the project is to, through an on orbit demonstration, advance the state of power management and distribution (PMAD) capabilities to enable future missions requiring higher power, flexible and reliable power systems. The goals of the mission include demonstration of: 100 Watt distribution to a target electrical load, efficient battery charging in the orbital environment, flexible power system distribution interfaces, adaptation of power system control on orbit, and reliable deployment of solar arrays and antennas utilizing re-settable SMA mechanisms. The power distribution function of the ALBus PMAD system is unique in the total power to target load capability of 100 W, the flexibility to support centralized or point-to-load regulation and ability to respond to fast transient power requirements. Power will be distributed from batteries at 14.8 V, 6.5 A to provide 100 W of power directly to a load. The deployable solar arrays utilize NASA Glenn Research Center superelastic and activated Nitinol(Nickel-Titanium alloy) Shape Memory Alloy (SMA) technology for hinges and a retention and release mechanism. The deployable solar array hinge design features utilization of the SMA material properties for dual purpose. The hinge uses the shape memory properties of the SMA to provide the spring force to deploy the arrays. The electrical conductivity properties of the SMA also enables the design to provide clean conduits for power transfer from the deployable arrays to the power management system. This eliminates the need for electrical harnesses between the arrays and the PMAD system in the ALBus system design. The uniqueness of the SMA retention and release mechanism design is the ability to reset the mechanism, allowing functional tests of the mechanisms prior to flight with no degradation of performance. The project is currently in preparation at the NASA Glenn Research Center for a launch in late calendar year of 2017. The 100 Watt power distribution and dual purpose, re-settable SMA mechanisms introduced several system level challenges due to the physical constraints in volume, mass and surface area of 3-U CubeSats. Several trade studies and design cycles have been completed to develop a system which supports the project objectives. This paper is a report on the results of the system level trade studies and assessments. The results include assessment of options for thermal control of 100 Watts of power dissipation, data from system analyses and engineering development tests, limitations of the 3-U system and extensibility to larger scale CubeSat missions.
The Mod-2 wind turbine development project
NASA Technical Reports Server (NTRS)
Linscott, B. S.; Dennett, J. T.; Gordon, L. H.
1981-01-01
A major phase of the Federal Wind Energy Program, the Mod-2 wind turbine, a second-generation machine developed by the Boeing Engineering and Construction Co. for the U.S. Department of Energy and the Lewis Research Center of the National Aeronautics and Space Administration, is described. The Mod-2 is a large (2.5-MW power rating) horizontal-axis wind turbine designed for the generation of electrical power on utility networks. Three machines were built and are located in a cluster at Goodnoe Hills, Washington. All technical aspects of the project are described: design approach, significant innovation features, the mechanical system, the electrical power system, the control system, and the safety system.
Electricity from biomass: A development strategy
NASA Astrophysics Data System (ADS)
1992-04-01
The purpose of this document is to review the current status of biomass power technology and to evaluate the future directions for development that could significantly enhance the contribution of biomass power to U.S. production of electricity. This document reviews the basic principles of biomass electric systems, the previous contributions of industry and the National Biomass Energy Programs to technology development, and the options for future technology development. It discusses the market for biomass electric technology and future needs for electric power production to help establish a market-oriented development strategy. It projects trends in the performance and cost of the technology and examines the changing dynamics of the power generation market place to evaluate specific opportunities for biomass power development. In a separate document, the Biomass Power Program Five Year R&D Plan, the details of schedules, funding, and roles of participating R&D organizations within the R&D program funded by the U.S. Department of Energy (DOE) are presented. In evaluating the future directions for research and development, two cases are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcy, W.M.; Dudek, R.A.
1979-03-30
The Trans-Pecos Photovoltaic Concentrating Experiment is the design of a 200 kWe peak photovoltaic concentrating system applied to deep well irrigation in the Trans-Pecos region of Texas. The site selected is typical of deep well irrigation in arid regions of Texas, New Mexico, and Arizona. The existing well utilizes a 200 horse power, three phase, 480 volt induction motor to lift water 540 feet to irrigate 380 acres. The Trans-Pecos Photovoltaic Concentration (PVC) system employs a two axis (azimuth-elevation) tracking parabolic concentrator module that focuses sunlight at 38X concentration on two strings of actively cooled silicon solar cells. The directmore » current from a field of 102 collector modules is converted by a maximum power point electric power conditioning system to three phase alternating current. The power from the power conditioning system is connected through appropriate switchgear in parallel with the utility grid to the well's induction motor. The operational philosophy of the experiment is to displace daytime utility power with solar generated electric power. The solar system is sized to provide approximately 50 percent of the 24 hour energy demand of the motor. This requires an energy exchange with the utility since peak solar power (200 kWe) generated exceeds the peak motor demand (149.2 kWe). The annual energy production is projected to be 511 Mwh using El Paso, Texas solar TMY data. System electrical power production efficiency is projected to be 7.4 percent at the design point, and 7.0 percent on an annual electrical energy production basis. The system is projected to provide 37.8 percent of the 24 hour energy demand of the motor at the design point of March 10, excluding energy delivered to the grid in excess of motor demand. The total energy produced is projected to be 39.0 percent of the 24 hour energy demand of the motor at the design point of March 10.« less
Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Bruce Albert
The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutianmore » Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.« less
An econometric simulation model of income and electricity demand in Alaska's Railbelt, 1982-2022
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddigan, R.J.; Hill, L.J.; Hamblin, D.M.
1987-01-01
This report describes the specification of-and forecasts derived from-the Alaska Railbelt Electricity Load, Macroeconomic (ARELM) model. ARELM was developed as an independent, modeling tool for the evaluation of the need for power from the Susitna Hydroelectric Project which has been proposed by the Alaska Power Authority. ARELM is an econometric simulation model consisting of 61 equations - 46 behavioral equations and 15 identities. The system includes two components: (1) ARELM-MACRO which is a system of equations that simulates the performance of both the total Alaskan and Railbelt macroeconomies and (2) ARELM-LOAD which projects electricity-related activity in the Alaskan Railbelt region.more » The modeling system is block recursive in the sense that forecasts of population, personal income, and employment in the Railbelt derived from ARELM-MACRO are used as explanatory variables in ARELM-LOAD to simulate electricity demand, the real average price of electricity, and the number of customers in the Railbelt. Three scenarios based on assumptions about the future price of crude oil are simulated and documented in the report. The simulations, which do not include the cost-of-power impacts of Susitna-based generation, show that the growth rate in Railbelt electricity load is between 2.5 and 2.7% over the 1982 to 2022 forecast period. The forecasting results are consistent with other projections of load growth in the region using different modeling approaches.« less
Electric Power Engineering Cost Predicting Model Based on the PCA-GA-BP
NASA Astrophysics Data System (ADS)
Wen, Lei; Yu, Jiake; Zhao, Xin
2017-10-01
In this paper a hybrid prediction algorithm: PCA-GA-BP model is proposed. PCA algorithm is established to reduce the correlation between indicators of original data and decrease difficulty of BP neural network in complex dimensional calculation. The BP neural network is established to estimate the cost of power transmission project. The results show that PCA-GA-BP algorithm can improve result of prediction of electric power engineering cost.
Rocket Science: 50 Flying, Floating, Flipping, Spinning Gadgets Kids Create Themselves.
ERIC Educational Resources Information Center
Wiese, Jim
This book is divided into chapters based on the general subjects of mechanics, air power, water power, electricity and magnetism, chemistry, acoustics, and optics. Each chapter includes groups of projects designed to teach specific scientific ideas within the general subject. Some projects include a section that allows students to try different…
Skills Conversion Project: Chapter 7, Power Resources. Final Report.
ERIC Educational Resources Information Center
National Society of Professional Engineers, Washington, DC.
The opportunity for employment of displaced aerospace and defense professionals within the electric power utility industry was investigated by the Seattle Skills Conversion Project Team of the National Society of Professional Engineers, as part of a study conducted for the U.S. Department of Labor. The study concluded that a possibility for…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
... Administration (Western), a Federal power marketing agency of the Department of Energy (DOE), is publishing this... allocation of Federal electric power. Subpart C of the Energy Planning and Management Program (Program... for applications, in conjunction with the Loveland Area Projects (LAP) Final Post-1989 Marketing Plan...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maget, H.J.R.
1979-06-15
This program consists of a design study and component development for an experimental 50-kWp photovoltaic concentrator system to supply power to the San Ramon substation of the Pacific Gas and Electric Company. The photovoltaic system is optimized to produce peaking power to relieve the air conditioning load on the PG and E system during summer afternoons; and would therefore displace oil-fired power generation capacity. No electrical storage is required. The experiment would use GaAs concentrator cells with point-focus fresnel lenses operating at 400X, in independent tracking arrays of 440 cells each, generating 3.8 kWp. Fourteen arrays, each 9 feet bymore » 33 feet, are connected electrically in series to generate the 50 kWp. The high conversion efficiency possible with GaAs concentrator cells results in a projected annual average system efficiency (AC electric power output to sunlight input) of better than 15%. The capability of GaAs cells for high temperature operation made possible the design of a total energy option, whereby thermal power from selected arrays could be used to heat and cool the control center for the installation. System design and analysis, fabrication and installation, environmental assessment, and cost projections are described in detail. (WHK)« less
Electric vehicle energy impacts.
DOT National Transportation Integrated Search
2017-05-01
The objective of this research project was to evaluate the impacts of electric vehicles (EVs) and : renewable wind and solar photovoltaic (PV) power generation on reducing petroleum imports : and greenhouse gas emissions to Hawaii. In 2015, the state...
Coolidge solar powered irrigation pumping project
NASA Technical Reports Server (NTRS)
Larson, D. L.
1980-01-01
A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.
Standardized Modular Power Interfaces for Future Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard
2015-01-01
Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but an essential part of defining physical building blocks of modular power. This presentation describes the AMPS projects progress towards standardized modular power interfaces.
Insulation Requirements of High-Voltage Power Systems in Future Spacecraft
NASA Technical Reports Server (NTRS)
Qureshi, A. Haq; Dayton, James A., Jr.
1995-01-01
The scope, size, and capability of the nation's space-based activities are limited by the level of electrical power available. Long-term projections show that there will be an increasing demand for electrical power in future spacecraft programs. The level of power that can be generated, conditioned, transmitted, and used will have to be considerably increased to satisfy these needs, and increased power levels will require that transmission voltages also be increased to minimize weight and resistive losses. At these projected voltages, power systems will not operate satisfactorily without the proper electrical insulation. Open or encapsulated power supplies are currently used to keep the volume and weight of space power systems low and to protect them from natural and induced environmental hazards. Circuits with open packaging are free to attain the pressure of the outer environment, whereas encapsulated circuits are imbedded in insulating materials, which are usually solids, but could be liquids or gases. Up to now, solid insulation has usually been chosen for space power systems. If the use of solid insulation is continued, when voltages increase, the amount of insulation for encapsulation also will have to increase. This increased insulation will increase weight and reduce system reliability. Therefore, non-solid insulation media must be examined to satisfy future spacecraft power and voltage demands. In this report, we assess the suitability of liquid, space vacuum, and gas insulation for space power systems.
Solar Electric Propulsion for Future NASA Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Oleson, Steven R.; Mercer, Carolyn R.
2015-01-01
Use of high-power solar arrays, at power levels ranging from approximately 500 KW to several megawatts, has been proposed for a solar-electric propulsion (SEP) demonstration mission, using a photovoltaic array to provide energy to a high-power xenon-fueled engine. One of the proposed applications of the high-power SEP technology is a mission to rendezvous with an asteroid and move it into lunar orbit for human exploration, the Asteroid Retrieval mission. The Solar Electric Propulsion project is dedicated to developing critical technologies to enable trips to further away destinations such as Mars or asteroids. NASA needs to reduce the cost of these ambitious exploration missions. High power and high efficiency SEP systems will require much less propellant to meet those requirements.
Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Vassallo, Corinne; Tadge, Megan
2015-01-01
The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.
Final Test and Evaluation Results from the Solar Two Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRADSHAW, ROBERT W.; DAWSON, DANIEL B.; DE LA ROSA, WILFREDO
Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the projectmore » was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.« less
Study on Stochastic Optimal Electric Power Procurement Strategies with Uncertain Market Prices
NASA Astrophysics Data System (ADS)
Sakchai, Siripatanakulkhajorn; Saisho, Yuichi; Fujii, Yasumasa; Yamaji, Kenji
The player in deregulated electricity markets can be categorized into three groups of GENCO (Generator Companies), TRNASCO (Transmission Companies), DISCO (Distribution Companies). This research focuses on the role of Distribution Companies, which purchase electricity from market at randomly fluctuating prices, and provide it to their customers at given fixed prices. Therefore Distribution companies have to take the risk stemming from price fluctuation of electricity instead of the customers. This entails the necessity to develop a certain method to make an optimal strategy for electricity procurement. In such a circumstance, this research has the purpose for proposing the mathematical method based on stochastic dynamic programming to evaluate the value of a long-term bilateral contract of electricity trade, and also a project of combination of the bilateral contract and power generation with their own generators for procuring electric power in deregulated market.
Recent Trend of New Type Power Delivery System and its Demonstrative Project in Japan
NASA Astrophysics Data System (ADS)
Morozumi, Satoshi; Nara, Koichi
Recently many such distributed generating systems as co-generation, photovoltaic, wind, fuel cells etc. are introduced into power distribution system, and the power system must cope with the situation with distributed generators. Moreover, such industries as IT request reliable and high quality power to preserve their businesses, and some other electric energy based industries request less reliable but cheaper electricity. From these backgrounds, several new type power delivery systems are emerging where lots of distributed generators (DGs) can be connected and many benefits offered by DGs can be realized without affecting the existing power system. They are referred to various names. In U.S.A., Microgrid, Power Park and Virtual Utilities, etc. are proposed. In Europe, DISPOWER or Smart Grid is under developing. In Japan, FRIENDS and Demand Area Network System etc. are proposed and tested in real sites. In this paper, first, general concepts of such new type power delivery systems and new businesses expected to be created by using DGs are introduced. Then, recent research activities in this area in Japan are introduced so as to stimulate new business opportunities. In the later part of this paper, related NEDO's demonstrative projects are introduced. NEDO is the largest public R&D management organization and promoting several projects regarding grid connecting issues on the power system. Those projects were planned to solve several problems on the power system where distributed renewable energy resources are installed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacovides, L.J.; Cornell, E.P.; Kirk, R.
1981-01-01
A study of the energy utilization of gasoline and battery-electric powered special purpose vehicles is discussed along with the impact of electric cars on national energy consumption, the development of electric vehicles in Japan, the applicability of safety standards to electric and hybrid-vehicles, and crashworthiness tests on two electric vehicles. Aspects of energy storage are explored, taking into account a review of battery systems for electrically powered vehicles, the dynamic characterization of lead-acid batteries for vehicle applications, nickel-zinc storage batteries as energy sources for electric vehicles, and a high energy tubular battery for a 1800 kg payload electric delivery van.more » Subjects considered in connection with drive systems include the drive system of the DOE near-term electric vehicle, a high performance AC electric drive system, an electromechanical transmission for hybrid vehicle power trains, and a hybrid vehicle for fuel economy. Questions of vehicle development are examined, giving attention to the Electrovair electric car, special purpose urban cars, the system design of the electric test vehicle, a project for city center transport, and a digital computer program for simulating electric vehicle performance.« less
CAMP LEJEUNE ENERGY FROM WOOD (CLEW) PROJECT
The paper discusses EPA's Camp Lejeune Energy from Wood (CLEW) project, a demonstration project that converts wood energy to electric power, and provides waste utilization and pollution alleviation. The 1-MWe plant operates a reciprocating engine-generator set on synthetic gas f...
Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.
2010-09-01
The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... the potential from offshore wind power to other electric power sources, including fossil, nuclear and... for their proposed projects on the OCS. BOEMRE/New Jersey Renewable Energy Task Force BOEMRE formed...
Future CO2 emissions and electricity generation from proposed coal-fired power plants in India
NASA Astrophysics Data System (ADS)
Fofrich, R.; Shearer, C.; Davis, S. J.
2017-12-01
India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.
Baseline tests of the Volkswagen transporter electric delivery van
NASA Technical Reports Server (NTRS)
Soltis, R. F.; Mcbrien, E. F.; Bozek, J. M.; Gourash, F.
1978-01-01
The Volkswagen Transporter, an electric delivery van, was tested as part of an Energy Research and Development Administration (ERDA) project to characterize the state of the art of electric vehicles. The Volkswagen Transporter is a standard Volkswagen van that has been converted to an electric vehicle. It is powered by a 144-volt traction battery. A direct current (dc) chopper controller, actuated by a conventional accelerator pedal, regulates the voltage or power applied to the 16-kilowatt (21-hp) motor. The braking system uses conventional hydraulic braking in combination with an electric regenerative braking system. The Volkswagen vehicle performance test results are presented.
An experimental aluminum-fueled power plant
NASA Astrophysics Data System (ADS)
Vlaskin, M. S.; Shkolnikov, E. I.; Bersh, A. V.; Zhuk, A. Z.; Lisicyn, A. V.; Sorokovikov, A. I.; Pankina, Yu. V.
2011-10-01
An experimental co-generation power plant (CGPP-10) using aluminum micron powder (with average particle size up to 70 μm) as primary fuel and water as primary oxidant was developed and tested. Power plant can work in autonomous (unconnected from industrial network) nonstop regime producing hydrogen, electrical energy and heat. One of the key components of experimental plant is aluminum-water high-pressure reactor projected for hydrogen production rate of ∼10 nm3 h-1. Hydrogen from the reactor goes through condenser and dehumidifier and with -25 °C dew-point temperature enters into the air-hydrogen fuel cell 16 kW-battery. From 1 kg of aluminum the experimental plant produces 1 kWh of electrical energy and 5-7 kWh of heat. Power consumer gets about 10 kW of electrical power. Plant electrical and total efficiencies are 12% and 72%, respectively.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-25
... application for a successive preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Homeowner Tidal Power Electric Generation Project to be located in.... The proposed project would consist of: (1) 10 hydrokinetic turbine units with an estimated total...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
This Environmental Assessment documents the analysis of alternative corridors for development and operation of a proposed 115 kilovolt transmission line using private lands and transporting power to the US-Mexico international border. The project will require (1) an amendment to El Paso Electric Company`s existing export authorization to transfer power across this border, and (2) a Presidential Permit for construction of the transmission line. The project would be located in Dona Ana county in southern New Mexico, approximately five miles west of El Paso, Texas. The alternative corridors, specific locations within those corridors, and structure types are identified and analyzed inmore » the environmental studies.« less
Thermal Performance Benchmarking: Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilbert
2016-04-08
The goal for this project is to thoroughly characterize the performance of state-of-the-art (SOA) automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: Evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The performance results combined with component efficiency and heat generation information obtained by Oak Ridge National Laboratory (ORNL) maymore » then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY15, the 2012 Nissan LEAF power electronics and electric motor thermal management systems were benchmarked. Testing of the 2014 Honda Accord Hybrid power electronics thermal management system started in FY15; however, due to time constraints it was not possible to include results for this system in this report. The focus of this project is to benchmark the thermal aspects of the systems. ORNL's benchmarking of electric and hybrid electric vehicle technology reports provide detailed descriptions of the electrical and packaging aspects of these automotive systems.« less
LSA Low-cost Solar Array project
NASA Technical Reports Server (NTRS)
1978-01-01
The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.
Low-cost Solar Array (LSA) project
NASA Technical Reports Server (NTRS)
1978-01-01
The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.
75 FR 61414 - Basin Electric Power Cooperative: South Dakota PrairieWinds Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
... that would feature 101 wind turbine generators; 6,000-square-foot operations and maintenance building... PrairieWinds Project AGENCY: Rural Utilities Service, USDA. ACTION: Notice of Availability of Record of... Dakota PrairieWind Project (Project) in Aurora, Bule and Jerauld Counties, South Dakota. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sudipta
Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of the electric power systems. Some of the urgent areas for research, as identified by inverter manufacturers, installers and utilities, are potential for transient overvoltage from PV inverters, multi-inverter anti-islanding, impact of smart inverters on volt-VAR support, impact of bidirectional power flow, and potential for distributed generation curtailment solutions to mitigate grid stability challenges. Under this project, NREL worked with SolarCity to address these challenges through research, testing and analysis at the Energy System Integration Facility (ESIF). Inverters from differentmore » manufacturers were tested at ESIF and NREL's unique power hardware-in-the-loop (PHIL) capability was utilized to evaluate various system-level impacts. Through the modeling, simulation, and testing, this project eliminated critical barriers on high PV penetration and directly supported the Department of Energy's SunShot goal of increasing the solar PV on the electrical grid.« less
Honey Lake Geothermal Project, Lassen County, California
NASA Astrophysics Data System (ADS)
1984-11-01
The drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel is reported. The project is located within the Wendel-Amedee Known Geothermal Resource Area.
NASA Astrophysics Data System (ADS)
Buttery, N. E.
2008-03-01
Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.
Wildlife Habitat Impact Assessment, Chief Joseph Dam Project, Washington : Project Report 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuehn, Douglas; Berger, Matthew
1992-01-01
Under the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council`s Columbia River Basin Fish and Wildlife Program, a wildlife habitat impact assessment and identification of mitigation objectives have been developed for the US Army Corps of Engineer`s Chief Joseph Dam Project in north-central Washington. This study will form the basis for future mitigation planning and implementation.
Nuclear power generation and fuel cycle report 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The study was funded by the U.S. Trade and Development Agency on behalf of Kenya's Ministry of Agriculture. The purpose of the report is to determine the economic, technical, and financial viability of implementing bagasse based cogeneration projects in Kenya. The study is divided into the following sections: (1) Executive Summary, (2) Terms of Reference, (3) Bagasse Fuel for Generation, (4) The Electrical Power Situation in Kenya, (5) Export Electricity Potential from Nyando Sugar Belt, (6) Export Potential from Proposed New Sugar Factories; (7) Financial, (8) Project Financing, (9) Demonstration Project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eugene S. Grecheck
2010-11-30
This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision onmore » building a new nuclear power plant at the North Anna site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieman, Autumn
2016-02-26
The strategy of the Solar Project was to reduce fuel use within two years by a roof mounted photovoltaic system. The police/fire building is completely powered by electricity. The renewable energy system we have selected has a power capacity of 23kW and the ability to export 44.3 MWh. We anticipate 32.55% kWh energy savings, an excess of the required 30% reduction, in the building’s total fuel use based on the most current 12 months of data (2012). The solar electric system is a grid-tie, ballast mounted on a flat roof over the police/fire station. The solar electric system includes 280more » Watt modules for a nominal total of 22.80 kW. Approximately 84 modules are ballast mounted to the flat roof facing south.« less
Modular Power Standard for Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Gardner, Brent G.
2016-01-01
Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.
Functional specifications for AI software tools for electric power applications. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faught, W.S.
1985-08-01
The principle barrier to the introduction of artificial intelligence (AI) technology to the electric power industry has not been a lack of interest or appropriate problems, for the industry abounds in both. Like most others, however, the electric power industry lacks the personnel - knowledge engineers - with the special combination of training and skills AI programming demands. Conversely, very few AI specialists are conversant with electric power industry problems and applications. The recent availability of sophisticated AI programming environments is doing much to alleviate this shortage. These products provide a set of powerful and usable software tools that enablemore » even non-AI scientists to rapidly develop AI applications. The purpose of this project was to develop functional specifications for programming tools that, when integrated with existing general-purpose knowledge engineering tools, would expedite the production of AI applications for the electric power industry. Twelve potential applications, representative of major problem domains within the nuclear power industry, were analyzed in order to identify those tools that would be of greatest value in application development. Eight tools were specified, including facilities for power plant modeling, data base inquiry, simulation and machine-machine interface.« less
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.; Howell, Joe (Technical Monitor)
2002-01-01
Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 successfully demonstrated electric propulsion as the primary propulsion source for a satellite. The POWOW concept is a solar-electric propelled spacecraft capable of significant cargo and short trip times for traveling to Mars. There it would enter areosynchronous orbit (Mars GEO equivalent) and beam power to surface installations via lasers. The concept has been developed with industrial partner expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The present baseline spacecraft design providing 898 kW using technologies expected to be available in 2003 will be described. Areal power densities approaching 350 W/sq m at 80 C operating temperatures and wing level specific powers of over 350 W/kg are projected. Details of trip times and payloads to Mars are presented. Electric propulsion options include Hall, MPD, and ion thrusters of various power levels and trade studies have been conducted to define the most advantageous options. Because the design is modular, learning curve methodology has been applied to determine expected cost reductions and is included.
Description of the Prometheus Program Alternator/Thruster Integration Laboratory (ATIL)
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Birchenough, Arthur G.; Lebron-Velilla, Ramon C.; Gonzalez, Marcelo C.
2005-01-01
The Project Prometheus Alternator Electric Thruster Integration Laboratory's (ATIL) primary two objectives are to obtain test data to influence the power conversion and electric propulsion systems design, and to assist in developing the primary power quality specifications prior to system Preliminary Design Review (PDR). ATIL is being developed in stages or configurations of increasing fidelity and complexity in order to support the various phases of the Prometheus program. ATIL provides a timely insight of the electrical interactions between a representative Permanent Magnet Generator, its associated control schemes, realistic electric system loads, and an operating electric propulsion thruster. The ATIL main elements are an electrically driven 100 kWe Alternator Test Unit (ATU), an alternator controller using parasitic loads, and a thruster Power Processing Unit (PPU) breadboard. This paper describes the ATIL components, its development approach, preliminary integration test results, and current status.
Low-CO(2) electricity and hydrogen: a help or hindrance for electric and hydrogen vehicles?
Wallington, T J; Grahn, M; Anderson, J E; Mueller, S A; Williander, M I; Lindgren, K
2010-04-01
The title question was addressed using an energy model that accounts for projected global energy use in all sectors (transportation, heat, and power) of the global economy. Global CO(2) emissions were constrained to achieve stabilization at 400-550 ppm by 2100 at the lowest total system cost (equivalent to perfect CO(2) cap-and-trade regime). For future scenarios where vehicle technology costs were sufficiently competitive to advantage either hydrogen or electric vehicles, increased availability of low-cost, low-CO(2) electricity/hydrogen delayed (but did not prevent) the use of electric/hydrogen-powered vehicles in the model. This occurs when low-CO(2) electricity/hydrogen provides more cost-effective CO(2) mitigation opportunities in the heat and power energy sectors than in transportation. Connections between the sectors leading to this counterintuitive result need consideration in policy and technology planning.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14480-000] Alaska Electric... Comments, Motions To Intervene, and Competing Applications On January 11, 2013, Alaska Electric Light and... single 3.5-megavolt-ampere (MVA) transformer to adjust voltage to 23 kilovolts; and (7) appurtenant...
Energy Systems Integration News | Energy Systems Integration Facility |
Grid Modernization Project Informed by ESIF Research The Hawaii Public Utilities Commission approved on (HECO) to upgrade its five island power grids. The plan describes the scope and estimated cost to update the energy networks of Hawaiian Electric, Maui Electric, and Hawaii Electric Light in the next five
Load Composition Model Workflow (BPA TIP-371 Deliverable 1A)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Cezar, Gustavo V.
This project is funded under Bonneville Power Administration (BPA) Strategic Partnership Project (SPP) 17-005 between BPA and SLAC National Accelerator Laboratory. The project in a BPA Technology Improvement Project (TIP) that builds on and validates the Composite Load Model developed by the Western Electric Coordinating Council's (WECC) Load Modeling Task Force (LMTF). The composite load model is used by the WECC Modeling and Validation Work Group to study the stability and security of the western electricity interconnection. The work includes development of load composition data sets, collection of load disturbance data, and model development and validation. This work supports reliablemore » and economic operation of the power system. This report was produced for Deliverable 1A of the BPA TIP-371 Project entitled \\TIP 371: Advancing the Load Composition Model". The deliverable documents the proposed work ow for the Composite Load Model, which provides the basis for the instrumentation, data acquisition, analysis and data dissemination activities addressed by later phases of the project.« less
Electric service reliability cost/worth assessment in a developing country
NASA Astrophysics Data System (ADS)
Pandey, Mohan Kumar
Considerable work has been done in developed countries to optimize the reliability of electric power systems on the basis of reliability cost versus reliability worth. This has yet to be considered in most developing countries, where development plans are still based on traditional deterministic measures. The difficulty with these criteria is that they cannot be used to evaluate the economic impacts of changing reliability levels on the utility and the customers, and therefore cannot lead to an optimum expansion plan for the system. The critical issue today faced by most developing countries is that the demand for electric power is high and growth in supply is constrained by technical, environmental, and most importantly by financial impediments. Many power projects are being canceled or postponed due to a lack of resources. The investment burden associated with the electric power sector has already led some developing countries into serious debt problems. This thesis focuses on power sector issues facing by developing countries and illustrates how a basic reliability cost/worth approach can be used in a developing country to determine appropriate planning criteria and justify future power projects by application to the Nepal Integrated Electric Power System (NPS). A reliability cost/worth based system evaluation framework is proposed in this thesis. Customer surveys conducted throughout Nepal using in-person interviews with approximately 2000 sample customers are presented. The survey results indicate that the interruption cost is dependent on both customer and interruption characteristics, and it varies from one location or region to another. Assessments at both the generation and composite system levels have been performed using the customer cost data and the developed NPS reliability database. The results clearly indicate the implications of service reliability to the electricity consumers of Nepal, and show that the reliability cost/worth evaluation is both possible and practical in a developing country. The average customer interruption costs of Rs 35/kWh at Hierarchical Level I and Rs 26/kWh at Hierarchical Level II evaluated in this research work led to an optimum reserve margin of 7.5%, which is considerably lower than the traditional reserve margin of 15% used in the NPS. A similar conclusion may result in other developing countries facing difficulties in power system expansion planning using the traditional approach. A new framework for system planning is therefore recommended for developing countries which would permit an objective review of the traditional system planning approach, and the evaluation of future power projects using a new approach based on fundamental principles of power system reliability and economics.
Combined Heat and Power (CHP) Partnership
The CHP Partnership seeks to reduce air pollution and water usage associated with electric power generation by promoting the use of CHP. The Partnership works to remove policy barriers and to facilitate the development of new projects.
Concentrating Solar Power Projects - Dhursar | Concentrating Solar Power |
: 125.0 MW Status: Operational Start Year: 2014 Do you have more information, corrections, or comments Electricity Generation: 280,000 MWh/yr (Expected) Contact(s): Webmaster Solar Start Production: November 11
Concentrating Solar Power Projects - Arenales | Concentrating Solar Power |
MW Status: Operational Start Year: 2013 Do you have more information, corrections, or comments Electricity Generation: 166,000 MWh/yr (Estimated) Contact(s): SolarPACES Break Ground: November 2011 Start
Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy
2016-01-01
The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. The NASA Aeronautics Research Mission Directorate has identified a suite of investments to meet long term research demands beyond the purview of commercial investment. Electrification of aviation propulsion through turboelectric or hybrid electric propulsion is one of many exciting research areas which has the potential to revolutionize the aviation industry. This paper will provide an overview of the turboelectric and hybrid electric technologies being developed under NASAs Advanced Air Transportation Technology (AATT) Project, and how these technologies can impact vehicle design. An overview will be presented of vehicle system studies and the electric drive system assumptions for successful turboelectric and hybrid electric propulsion in single aisle size commercial aircraft. Key performance parameters for electric drive system technologies will be reviewed, and the technical investment made in materials, electric machines, power electronics, and integrated power systems will be discussed. Finally, power components for a single aisle turboelectric aircraft with an electrically driven tail cone thruster and a hybrid electric nine passenger aircraft with a range extender will be parametrically sized.
NASA Technical Reports Server (NTRS)
Lucas, J.
1979-01-01
Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. The Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs.
Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy
2016-01-01
The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. This paper provides an overview of the turboelectric and hybrid electric technologies being developed under NASA's Advanced Air Transportation Technology (AATT) Project and discusses how these technologies can impact vehicle design. The discussion includes an overview of key hybrid electric studies and technology investments, the approach to making informed investment decisions based on key performance parameters and mission studies, and the power system architectures for two candidate aircraft. Finally, the power components for a single-aisle turboelectric aircraft with an electrically driven tail cone thruster and for a hybrid-electric nine-passenger aircraft with a range extender are parametrically sized, and the sensitivity of these components to key parameters is presented.
Electric power supply and demand for the contiguous United States, 1981 - 1990
NASA Astrophysics Data System (ADS)
1981-07-01
The outlook for electric power supply and demand in the United States decade 1981 to 1990 is reviewed from the perspective of reliability and adequacy of service. Electric power supply adequacy as projected for the nine Regional Reliability Council areas of the contiguous United States is reported as well as interruptible load data reported by the Councils. cogeneration is discussed. Each of the 27 electric regions (sub-areas of the nine Council areas) in the contiguous US are studied. A glossary of terms is given. Appendices describe the Council structure, and include a copy of the ERA-411 Manual, which contains all the items to which the Councils were asked to respond. The utilities with included data, the Staff Report, Estimated Electric Demand and Supply for Summer 1981, Contiguous United States dated May 1981 are included.
Minnesota agripower project. Quarterly report, April--June 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baloun, J.
The Minnesota Valley Alfalfa Producers (MnVAP) propose to build an alfalfa processing plant integrated with an advanced power plant system at the Granite Falls, Minnesota Industrial Park to provide 75 MW of base load electric power and a competitively priced source of value added alfalfa based products. This project will utilize air blown fluidized bed gasification technology to process alfalfa stems and another biomass to produce a hot, clean, low heating value gas that will be used in a gas turbine. Exhaust heat from the gas turbine will be used to generate steam to power a steam turbine and providemore » steam for the processing of the alfalfa leaf into a wide range of products including alfalfa leaf meal, a protein source for livestock. The plant will demonstrate high efficiency and environmentally compatible electric power production, as well as increased economic yield from farm operations in the region. The initial phase of the Minnesota Agripower Project (MAP) will be to perform alfalfa feedstock testing, prepare preliminary designs, and develop detailed plans with estimated costs for project implementation. The second phase of MAP will include detailed engineering, construction, and startup. Full commercial operation will start in 2001.« less
Moya, Diego; Paredes, Juan; Kaparaju, Prasad
2018-01-01
RETScreen presents a proven focused methodology on pre-feasibility studies. Although this tool has been used to carry out a number of pre-feasibility studies of solar, wind, and hydropower projects; that is not the case for geothermal developments. This method paper proposes a systematic methodology to cover all the necessary inputs of the RETScreen-International Geothermal Project Model. As case study, geothermal power plant developments in the Ecuadorian context were analysed by RETScreen-International Geothermal Project Model. Three different scenarios were considered for analyses. Scenario I and II considered incentives of 132.1 USD/MWh for electricity generation and grants of 3 million USD. Scenario III considered the geothermal project with an electricity export price of 49.3 USD/MWh. Scenario III was further divided into IIIA and IIIB case studies. Scenario IIIA considered a 3 million USD grant while Scenario IIIB considered an income of 8.9 USD/MWh for selling heat in direct applications. Modelling results showed that binary power cycle was the most suitable geothermal technology to produce electricity along with aquaculture and greenhouse heating for direct use applications in all scenarios. Financial analyses showed that the debt payment would be 5.36 million USD/year under in Scenario I and III. The correspindig values for Scenario II was 7.06 million USD/year. Net Present Value was positive for all studied scenarios except for Scenario IIIA. Overall, Scenario II was identified as the most feasible project due to positive NPV with short payback period. Scenario IIIB could become financially attractive by selling heat for direct applications. The total initial investment for a 22 MW geothermal power plant was 114.3 million USD (at 2017 costs). Economic analysis showed an annual savings of 24.3 million USD by avoiding fossil fuel electricity generation. More than 184,000 tCO 2 eq. could be avoided annually.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carols H. Rentel
2007-03-31
Eaton, in partnership with Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) has completed a project that applies a combination of wireless sensor network (WSN) technology, anticipatory theory, and a near-term value proposition based on diagnostics and process uptime to ensure the security and reliability of critical electrical power infrastructure. Representatives of several Eaton business units have been engaged to ensure a viable commercialization plan. Tennessee Valley Authority (TVA), American Electric Power (AEP), PEPCO, and Commonwealth Edison were recruited as partners to confirm and refine the requirements definition from the perspective of the utilities that actually operatemore » the facilities to be protected. Those utilities have cooperated with on-site field tests as the project proceeds. Accomplishments of this project included: (1) the design, modeling, and simulation of the anticipatory wireless sensor network (A-WSN) that will be used to gather field information for the anticipatory application, (2) the design and implementation of hardware and software prototypes for laboratory and field experimentation, (3) stack and application integration, (4) develop installation and test plan, and (5) refinement of the commercialization plan.« less
Practical Sun Power: 5 Projects to Help Free You from Depending on Any Fuel Other Than the Sun.
ERIC Educational Resources Information Center
Rankins, William H., III; Wilson, David A.
This publication describes in detail projects for using solar energy; five major projects and five mini-projects. The major projects are: (1) Parabolic reflectors, both cylindrical and spherical; (2) Solar oven; (3) Hot water heater; (4) House heating; and (5) Conversion to electricity. Mini-projects investigate: (1) Solar computers; (2) Fresnel…
Identification of mission sensitivities for high-power electric propulsion systems
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.; Moeller, Robert C.
2005-01-01
This paper presents the results of mission analyses that expose various mission performance sensitivities and system advantages of the ALFA technology for a small but representative subset of nuclear electric propulsion (NEP) missions considered under NASA's Project Prometheus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.H.
The separation of the Czech and Slovak Republics has highlighted differences in regional energy development activities, specifically, the privatization of electric power projects. It has also highlighted differences in the investment opportunities in electric power generating projects. Although the terms of the velvet divorce are now relatively final, one area where some sharing, use or investment in common assets will continue to occur is in the energy sector. The main reason is it serves neither party to completely separate its assets, and both republics have some strategic leverage over the other regarding energy matters. Strategic/financial cooperation is necessary for bothmore » republics to move forward efficiently, but especially for Slovakia since it is the less resource-rich. On the other hand, Slovakia maintains the right-of-way for crucial pipelines from the Ukraine that supply both republics. There is no question though, the Czech region is the greater beneficiary of foreign investment in electric generation, transmission and distribution, retrofitting, environmental rehabilitation, and fuel supply development projects.« less
NASA Technical Reports Server (NTRS)
Fujita, T.; Manvi, R.; Roschke, E. J.; El-Gabalawi, N.; Herrera, G.; Kuo, T. J.; Chen, K. H.
1979-01-01
Advanced technologies applicable to solar thermal electric power systems in the 1990-200 time-frame are delineated for power applications that fulfill a wide spectrum of small power needs with primary emphasis on power ratings less than 10MWe. Projections of power system characteristics (energy and capital costs as a function of capacity factor) are made based on development of identified promising technologies and are used as the basis for comparing technology development options and combinations of these options to determine developmental directions offering potential for significant improvements. Stirling engines, Brayton/Rankine combined cycles and storage/transport concepts encompassing liquid metals, and reversible-reaction chemical systems are considered for two-axis tracking systems such as the central receiver or power tower concept and distributed parabolic dish receivers which can provide efficient low-cost solar energy collection while achieving high temperatures for efficient energy conversion. Pursuit of advanced technology across a broad front can result in post-1985 solar thermal systems having the potential of approaching the goal of competitiveness with conventional power systems.
The prospects for hybrid electric vehicles, 2005-2020 : results of a Delphi Study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, H. K.; Santini, D. J.; Vyas, A. D.
1999-07-22
The introduction of Toyota's hybrid electric vehicle (HEV), the Prius, in Japan has generated considerable interest in HEV technology among US automotive experts. In a follow-up survey to Argonne National Laboratory's two-stage Delphi Study on electric and hybrid electric vehicles (EVs and HEVs) during 1994-1996, Argonne researchers gathered the latest opinions of automotive experts on the future ''top-selling'' HEV attributes and costs. The experts predicted that HEVs would have a spark-ignition gasoline engine as a power plant in 2005 and a fuel cell power plant by 2020. The projected 2020 fuel shares were about equal for gasoline and hydrogen, withmore » methanol a distant third. In 2020, HEVs are predicted to have series-drive, moderate battery-alone range and cost significantly more than conventional vehicles (CVs). The HEV is projected to cost 66% more than a $20,000 CV initially and 33% more by 2020. Survey respondents view batteries as the component that contributes the most to the HEV cost increment. The mean projection for battery-alone range is 49 km in 2005, 70 km in 2010, and 92 km in 2020. Responding to a question relating to their personal vision of the most desirable HEV and its likely characteristics when introduced in the US market in the next decade, the experts predicted their ''vision'' HEV to have attributes very similar to those of the ''top-selling'' HEV. However, the ''vision'' HEV would cost significantly less. The experts projected attributes of three leading batteries for HEVs and projected acceleration times on battery power alone. The resulting battery packs are evaluated, and their initial and replacement costs are analyzed. These and several other opinions are summarized.« less
Status and Trends in the U.S. Voluntary Green Power Market (2012 Data)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, J.; Nicholas, T.
2013-10-01
The "voluntary" or "green power" market is that in which consumers and institutions voluntarily purchase renewable energy to match all or part of their electricity needs. Voluntary action provides a revenue stream for renewable energy projects and raises consumer awareness of the benefits of renewable energy. There are numerous ways consumers and institutions can purchase renewable energy. Historically, the voluntary market has consisted of three market sectors: (1) utility green pricing programs (in states with regulated electricity markets), (2) competitive suppliers (in states with restructured electricity markets), and (3) unbundled renewable electricity certificate (REC) markets, where RECs are purchased bymore » consumers separately from electricity ("unbundled").« less
Status and Trends in the U.S. Voluntary Green Power Market (2016 Data)
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Heeter, Jenny; Cook, Jeff
The "voluntary" or "green power" market is that in which consumers and institutions voluntarily purchase renewable energy to match all or part of their electricity needs. Voluntary action provides a revenue stream for renewable energy projects and raises consumer awareness of the benefits of renewable energy. There are numerous ways consumers and institutions can purchase renewable energy. Historically, the voluntary market has consisted of three market sectors: (1) utility green pricing programs (in states with regulated electricity markets), (2) competitive suppliers (in states with restructured electricity markets), and (3) unbundled renewable electricity certificate (REC) markets, where RECs are purchased bymore » consumers separately from electricity ("unbundled").« less
Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed
NASA Technical Reports Server (NTRS)
Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr
2016-01-01
The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.
2014-07-01
would meet the Project’s purpose and need. The Proposed Action hereinafter “Project” includes leasing land to and entering into a Power Purchase...Agreement (PPA) with a private developer who would design, construct, operate and maintain an unmanned photovoltaic (PV) solar energy facility at the...infrastructure (e.g., roads, power lines, water). The Project is projected to provide almost 25 percent of VAFB’s electrical energy and is not
Advanced pumped storage hydroelectric power may reduce NO{sub x} and VOC emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
As a severe ozone nonattainment area, the New York/New Jersey metropolitan area faces the difficult challange of reducing emissions of nitrogen oxides (NO{sub x}) and volatile organic compounds (VOCs), the primary precursors of ground-level ozone. An ambitious,more » $$2.4 billion undertaking, known as the Mt. Hope project, may help the metropolitan area - and the entire Mid-Atlantic Ozone Transport Region (OTR) - attain ozone compliance. The project includes a new 2,000-MW electricity storage facility, which would allow thermal power plants in the region to run more efficiently and reduce NO{sub x} and VOC emissions, especially at times of critical ozone levels. The Mt. Hope project is the subject of a recent study that analyzed, potential reductions in ozone precursors from project implementation. According to the study, NO{sub x} emissions could be reduced by up to 50 tons per day and $$91 million per year could potentially be saved if the project is implemented. Advanced pumped storage (APS) improves significantly on the conventional method. The Mt. Hope project, for example, is expected to consume only 22% more electricity than it generates. APS facilities are designed to switch from power-receiving to power-generating modes frequently in response to demand - up to 20 times a day in the Mt. Hope design. 1 ref., 1 fig.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergey, M.
This paper presents an overview of the electric power system in Thailand. 99% of the country is electrified, but much of this is with diesel generators which leaves high costs but a high level of service. The paper discusses renewable energy projects which have been sited in the country, and examples of hybrid systems which have been retrofit into existing diesel generator systems. Photovoltaic and hydroelectric power projects are described. Dedicated systems have been installed for water pumping and battery charging applications.
Tidd PFBC demonstration project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrocco, M.
1997-12-31
The Tidd project was one of the first joint government-industry ventures to be approved by the US Department of Energy (DOE) in its Clean Coal Technology Program. In March 1987, DOE signed an agreement with the Ohio Power Company, a subsidiary of American Electric Power, to refurbish the then-idle Tidd plant on the banks of the Ohio River with advanced pressurized fluidized bed technology. Testing ended after 49 months of operation, 100 individual tests, and the generation of more than 500,000 megawatt-hours of electricity. The demonstration plant has met its objectives. The project showed that more than 95 percent ofmore » sulfur dioxide pollutants could be removed inside the advanced boiler using the advanced combustion technology, giving future power plants an attractive alternative to expensive, add-on scrubber technology. In addition to its sulfur removal effectiveness, the plant`s sustained periods of steady-state operation boosted its availability significantly above design projections, heightening confidence that pressurized fluidized bed technology will be a reliable, baseload technology for future power plants. The technology also controlled the release of nitrogen oxides to levels well below the allowable limits set by federal air quality standards. It also produced a dry waste product that is much easier to handle than wastes from conventional power plants and will likely have commercial value when produced by future power plants.« less
75 FR 6020 - Electrical Interconnection of the Lower Snake River Wind Energy Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... River Wind Energy Project AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE... (BPA) has decided to offer Puget Sound Energy Inc., a Large Generator Interconnection Agreement for... and Columbia counties, Washington. To interconnect the Wind Project, BPA will construct a new...
A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems
NASA Technical Reports Server (NTRS)
Dietz, Anthony
2014-01-01
Hybrid turboelectric aircraft-with gas turbines driving electric generators connected to electric propulsion motors-have the potential to transform aircraft design. Decoupling power generation from propulsion enables innovative aircraft designs, such as blended-wing bodies, with distributed propulsion. These hybrid turboelectric aircraft have the potential to significantly reduce emissions, decrease fuel burn, and reduce noise, all of which are required to make air transportation growth projections sustainable. The power density requirements for these electric machines can only be achieved with superconductors, which in turn require lightweight, high-capacity cryocoolers.
75 FR 11162 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
...; Wildorado Wind, LLC. Description: San Juan Mesa Wind Project, LLC et al. submits the Updated Market Power... Power Marketing, LLC; High Majestic Wind Energy Center, LLC. Description: NextEra Companies submits.... Description: Golden Spread Electric Cooperative, Inc et al. submits an Updated Market Power Analysis. Filed...
Demonstration project -- a solar-powered traffic counter.
DOT National Transportation Integrated Search
1982-01-01
Solar electric systems have some applications in the maintenance and operation of highway facilities. This report describes a project, performed by the Council in cooperation with the Traffic and Safety Division for the purpose of demonstrating the u...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purvis, Edward E.; Teagan, Peter; Little, Arthur D.
1979-04-01
Annex 6, which investigates the possible hydroelectric resources of Egypt, reveals that presently the only existing sites are on the upper Nile at the High and Aswan Dams. There are 8 sites on the Nile where it is practical to add hydroelectric generation and, of these, only 4 are feasible for immediate construction. There are also pumped-storage sites on the Nile and the Red Sea. There is also the Qattara Depression in the Western Desert which can be utilized for conventional, as well as pumped-storage generation, by bringing water from the Mediterranean Sea to the depression by canal or tunnel.more » The options were considered for construction of hydro plants to met the electric load growth of Egypt when other forms of energy supply would be integrated into a comprehensive supply pattern. In Annex 7, the prospective use of nuclear energy to meet Egypt's resources (uranium and thorium) to implement a nuclear energy program, and potential effects of the expanded use of nuclear energy are discussed. Annex 8 discusses solar energy (technology descriptions and impacts, solar thermal power, photovoltaics). Also wind power generation, biomass utilization, desalination, solar air conditioning and refrigeration, and cost of power from diesel engines are discussed. Annex 9 covers geothermal potentials in Egypt, discussing resources with temperatures above 180/sup 0/C; from 150 to 180/sup 0/C; from 100 to 150/sup 0/C; and with temperatures below 100/sup 0/C. Annex 10 discusses the electric power systems in Egypt. The following subjects are covered: existing electric power systems; electrical power facilities under construction or planned for construction by 1985; past and projected growth of electrical energy; distribution; and electrical power system projected from 1985 to 2000. (MCW)« less
NASA Astrophysics Data System (ADS)
Hadi, Nik Azran Ab; Rashid, Wan Norhisyam Abd; Hashim, Nik Mohd Zarifie; Mohamad, Najmiah Radiah; Kadmin, Ahmad Fauzan
2017-10-01
Electricity is the most powerful energy source in the world. Engineer and technologist combined and cooperated to invent a new low-cost technology and free carbon emission where the carbon emission issue is a major concern now due to global warming. Renewable energy sources such as hydro, wind and wave are becoming widespread to reduce the carbon emissions, on the other hand, this effort needs several novel methods, techniques and technologies compared to coal-based power. Power quality of renewable sources needs in depth research and endless study to improve renewable energy technologies. The aim of this project is to investigate the impact of renewable electric generator on its local distribution system. The power farm was designed to connect to the local distribution system and it will be investigated and analyzed to make sure that energy which is supplied to customer is clean. The MATLAB tools are used to simulate the overall analysis. At the end of the project, a summary of identifying various voltage fluctuates data sources is presented in terms of voltage flicker. A suggestion of the analysis impact of wave power generation on its local distribution is also presented for the development of wave generator farms.
Projection of distributed-collector solar-thermal electric power plant economics to years 1990-2000
NASA Technical Reports Server (NTRS)
Fujita, T.; Elgabalawi, N.; Herrera, G.; Turner, R. H.
1977-01-01
A preliminary comparative evaluation of distributed-collector solar thermal power plants was undertaken by projecting power plant economics of selected systems to the 1990 to 2000 time frame. The selected systems include: (1) fixed orientation collectors with concentrating reflectors and vacuum tube absorbers, (2) one axis tracking linear concentrator including parabolic trough and variable slat designs, and (3) two axis tracking parabolic dish systems including concepts with small heat engine-electric generator assemblies at each focal point as well as approaches having steam generators at the focal point with pipeline collection to a central power conversion unit. Comparisons are presented primarily in terms of energy cost and capital cost over a wide range of operating load factors. Sensitvity of energy costs for a range of efficiency and cost of major subsystems/components is presented to delineate critical technological development needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The study concerns the Provincial Electricity Authority, a state agency within the Ministry of Interior that supplies electricity to 73 of Thailand`s provinces. The primary objective of this study is to help increase the ability of the Authority to meet the rapidly increasing demand for electric power within the Kingdom of Thailand in a reliable, safe and economic manner. This is Volume 1 and it consists of the following: (1) introduction; (2) assessment; (3) conceptual design; (4) economic and financial evaluation; (5) project plan; (6) Thailand impact; (7) industry review; (8) conclusion; and appendices.
[Demography perspectives and forecasts of the demand for electricity].
Roy, L; Guimond, E
1995-01-01
"Demographic perspectives form an integral part in the development of electric load forecasts. These forecasts in turn are used to justify the addition and repair of generating facilities that will supply power in the coming decades. The goal of this article is to present how demographic perspectives are incorporated into the electric load forecasting in Quebec. The first part presents the methods, hypotheses and results of population and household projections used by Hydro-Quebec in updating its latest development plan. The second section demonstrates applications of such demographic projections for forecasting the electric load, with a focus on the residential sector." (SUMMARY IN ENG AND SPA) excerpt
Small solar thermal electric power plants with early commercial potential
NASA Technical Reports Server (NTRS)
Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.
1979-01-01
Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.
More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-02-01
Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures,more » voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.« less
Developing hydropower in Washington state. Volume 2: An electricity marketing manual
NASA Astrophysics Data System (ADS)
James, J. W.; McCoy, G. A.
1982-03-01
An electricity marketing manual for the potential small and micro-hydroelectric project developer within the state of Washington is presented. Public utility regulatory policies (PURPA) requires electric utilities to interconnect with and pay a rate based on their full avoided costs for the purchase of electrical output from qualifying small power production facilities. The determination of avoided costs, as business organizational considerations, utility interface concerns, interconnection requirements, metering options, and liability and wheeling are discussed. The utility responses are summarized, legislation which is of importance to hydropower developers and the powers and functions of the authorities responsible for enforcing the mandate of PURPA are described.
Rapid Building Assessment Project
2014-05-01
Efficiency Buildings Hub EISA Energy Independence Security Act EPRI The Electric Power and Research Institute ESTCP Environmental Security Technology...Ordinary Least Squares PG&E Pacific Gas & Electric R&D research and development RBA Remote Building Analytics REST representational state...utilities across North America and Europe. Requiring only hourly utility electric meter data, the building type, and address, FirstFuel can produce a
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... Application Tendered for Filing With the Commission; Copper Valley Electric Association, Inc. Take notice that..., 2011. d. Applicant: Copper Valley Electric Association, Inc.. e. Name of Project: Allison Creek...: Federal Power Act 16 U.S.C. 791 (a)--825(r) . h. Applicant Contact: Robert A. Wilkinson, CEO, Copper...
Energy Systems Integration: Demonstrating Distributed Resource Communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-01-01
Overview fact sheet about the Electric Power Research Institute (EPRI) and Schneider Electric Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.
The World's Largest Photovoltaic Concentrator System.
ERIC Educational Resources Information Center
Smith, Harry V.
1982-01-01
The Mississippi County Community College large-scale energy experiment, featuring the emerging high technology of solar electricity, is described. The project includes a building designed for solar electricity and a power plant consisting of a total energy photovoltaic system, and features two experimental developments. (MLW)
Meeting our need for electric energy: the role of nuclear power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-07-01
This report focuses on the projected long-term growth of electric demand and the resultant need for new electric generating capacity through the year 2010. It summarizes the results of several technical and economic analyses done over the past two years to present two alternative scenarios for the future growth of nuclear energy in the United States. The first of these scenarios is based on a reference assumption of continued economic recovery and growth, while the second assumes a more vigorous economic recovery. These alternative scenarios reflect both the role that electricity could play in assuring the future economic wellbeing ofmore » the United States and the role that nuclear power could play in meeting future electricity needs. The scenarios do not project an expected future; rather, they describe a future that can be achieved only if US industry is revitalized in several key areas and if current obstacles to construction and operation of nuclear power plants are removed. This report underscores the need for renewed domestic industrialization as well as the need for government and industry to take steps to allow nuclear energy to fulfill its original potential. Further, it suggests some specific actions that must be taken if these goals are to be met.« less
NASA Technical Reports Server (NTRS)
1980-01-01
The accomplishments of the Point-Focusing Distributed Receiver Technology Project during fiscal year 1979 are detailed. Present studies involve designs of modular units that collect and concentrate solar energy via highly reflective, parabolic-shaped dishes. The concentrated energy is then converted to heat in a working fluid, such as hot gas. In modules designed to produce heat for industrial applications, a flexible line conveys the heated fluid from the module to a heat transfer network. In modules designed to produce electricity the fluid carries the heat directly to an engine in a power conversion unit located at the focus of the concentrator. The engine is mechanically linked to an electric generator. A Brayton-cycle engine is currently being developed as the most promising electrical energy converter to meet near-future needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, R.A.; Hines, T.L.
Utilization of remote gas resources in developing countries continues to offer challenges and opportunities to producers and contractors. The Aguaytia Gas and Power Project is an example where perseverance and creativity resulted in successful utilization of natural gas resources in the Ucayali Region of Central Peru, a country which previously had no natural gas infrastructure. The resource for the project was first discovered by Mobil in 1961, and remained undeveloped for over thirty years due to lack of infrastructure and markets. Maple Gas won a competitively bid contract to develop the Aguaytia gas reserves in March of 1993. The challengesmore » facing Maple Gas were to develop downstream markets for the gas, execute contracts with Perupetro S.A. and other Peruvian government entities, raise financing for the project, and solicit and execute engineering procurement and construction (EPC) contracts for the execution of the project. The key to development of the downstream markets was the decision to generate electric power and transmit the power over the Andes to the main electrical grid along the coast of Peru. Supplemental revenue could be generated by gas sales to a small regional power plant and extraction of LPG and natural gasoline for consumption in the Peruvian market. Three separate lump sum contracts were awarded to Asea Brown Boveri (ABB) companies for the gas project, power project and transmission project. Each project presented its unique challenges, but the commonalities were the accelerated schedule, high rainfall in a prolonged wet season and severe logistics due to lack of infrastructure in the remote region. This presentation focuses on how the gas plant contractor, ABB Randall, working in harmony with the developer, Maple Gas, tackled the challenges to monetize a remote gas resource.« less
Establishment of the International Power Institute. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julius E. Coles
The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.
Griffith Energy Project Final Environmental Impact Statement
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
1999-04-02
Griffith Energy Limited Liability Corporation (Griffith) proposes to construct and operate the Griffith Energy Project (Project), a natural gas-fuel, combined cycle power plant, on private lands south of Kingman, Ariz. The Project would be a ''merchant plant'' which means that it is not owned by a utility and there is currently no long-term commitment or obligation by any utility to purchase the capacity and energy generated by the power plant. Griffith applied to interconnect its proposed power plant with the Western Area Power Administration's (Western) Pacific Northwest-Pacific Southwest Intertie and Parker-Davis transmission systems. Western, as a major transmission system owner,more » needs to provide access to its transmission system when it is requested by an eligible organization per existing policies, regulations and laws. The proposed interconnection would integrate the power generated by the Project into the regional transmission grid and would allow Griffith to supply its power to the competitive electric wholesale market. Based on the application, Western's proposed action is to enter into an interconnection and construction agreement with Griffith for the requested interconnections. The proposed action includes the power plant, water wells and transmission line, natural gas pipelines, new electrical transmission lines and a substation, upgrade of an existing transmission line, and access road to the power plant. Construction of segments of the transmission lines and a proposed natural gas pipeline also require a grant of right-of-way across Federal lands administered by the Bureau of Land Management. Public comments on the Draft EIS are addressed in the Final EIS, including addenda and modifications made as a result of the comments and/or new information.« less
Reedsport PB150 Deployment and Ocean Test Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Phil
2016-06-03
As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport (OR) was planned to consist of 10 PowerBuoys (Phase II)1, located 2.5 miles off the coast. U.S. Department of Energy (DOE) funding under a prior DOE Grant (DE-FG36-08GO88017) along with funding from PNGC Power, an Oregon-based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. The design and fabrication of the first PowerBuoy and factory testing of the power take-off subsystem were completed, and the power take-off subsystem wasmore » successfully integrated into the spar at the fabricator’s facility in Oregon. The objectives of this follow-on grant were: advance PB150B design from TRL 5/6 to TRL 7/8; deploy a single PB150 and operate autonomously for 2 years; establish O&M costs; collect environmental information; and establish manufacturing methodologies.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-04
... and 2 AGENCY: Nuclear Regulatory Commission. ACTION: Issuance of an environmental assessment and finding of no significant impact. FOR FURTHER INFORMATION CONTACT: Jennie Rankin, Project Manager... reactors, Surry Power Station Units 1 and 2, located in Surry County, Virginia. II. Environmental...
What is the Impact of Utility Demand Charges on a DCFC host
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francfort, James Edward
The PEV Electric Vehicle Supply Equipment (EVSE) delivered by The EV Project included both AC Level 2 and DCFC units. Over 100 of these dual-port Blink DC fast chargers were deployed by The EV Project. These DCFCs were installed in workplaces and in publicly accessible locations near traffic hubs, retail centers, parking lots, restaurants, and similar locations. The Blink DCFC is capable of charging at power up to 60 kW. Its dual-port design sequences the charge from one port to the other, delivering power to only one of two vehicles connected at a time. The actual power delivered through amore » port is determined by the PEV’s on-board battery management system (BMS). Both the power and the total energy used to recharge a PEV can represent a significant cost for the charging site host. Many electric utilities impose fees for power demand as part of their commercial rate structure. The demand charge incurred by a customer is related to the peak power used during a monthly billing cycle. This is in contrast to the cumulative total energy usage that is the more familiar utility charge seen for most residential services. A demand charge is typically assessed for the highest average power over any 15 minute interval during the monthly billing cycle. One objective of The EV Project was to identify and elucidate the motivations and barriers to potential DCFC site hosts. The application of electric utility demand charges is one such potential barrier. This subject was introduced in the paper: DC Fast Charge - Demand Charge Reduction1. It discussed demand charge impact in general terms in order to focus on potential mitigation actions. This paper identifies specific cases in order to quantify the impact of demand charges on EV Project DCFC hosts.« less
Including Energy Efficiency and Renewable Energy Policies in Electricity Demand Projections
Find more information on how state and local air agencies can identify on-the-books EE/RE policies, develop a methodology for projecting a jurisdiction's energy demand, and estimate the change in power sector emissions.
Advanced Technology Display House. Volume 1: Project Summary and Procedures
NASA Technical Reports Server (NTRS)
Maund, D. H.
1981-01-01
The Advanced Technology Display House (ATDH) project is described. Tasks are defined in the areas of energy demand, water demand, sewage treatment, electric power, plumbing, lighting, heating, and air conditioning. Energy, water, and sewage systems are defined.
Q-Thruster Breadboard Campaign Project
NASA Technical Reports Server (NTRS)
White, Harold
2014-01-01
Dr. Harold "Sonny" White has developed the physics theory basis for utilizing the quantum vacuum to produce thrust. The engineering implementation of the theory is known as Q-thrusters. During FY13, three test campaigns were conducted that conclusively demonstrated tangible evidence of Q-thruster physics with measurable thrust bringing the TRL up from TRL 2 to early TRL 3. This project will continue with the development of the technology to a breadboard level by leveraging the most recent NASA/industry test hardware. This project will replace the manual tuning process used in the 2013 test campaign with an automated Radio Frequency (RF) Phase Lock Loop system (precursor to flight-like implementation), and will redesign the signal ports to minimize RF leakage (improves efficiency). This project will build on the 2013 test campaign using the above improvements on the test implementation to get ready for subsequent Independent Verification and Validation testing at Glenn Research Center (GRC) and Jet Propulsion Laboratory (JPL) in FY 2015. Q-thruster technology has a much higher thrust to power than current forms of electric propulsion (7x Hall thrusters), and can significantly reduce the total power required for either Solar Electric Propulsion (SEP) or Nuclear Electric Propulsion (NEP). Also, due to the high thrust and high specific impulse, Q-thruster technology will greatly relax the specific mass requirements for in-space nuclear reactor systems. Q-thrusters can reduce transit times for a power-constrained architecture.
The Mesaba Energy Project: Clean Coal Power Initiative, Round 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Richard; Gray, Gordon; Evans, Robert
2014-07-31
The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a totalmore » of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage Transmission Line Route, and Natural Gas Pipeline Route Permits for a Large Electric Power Generating Plant to be located in Taconite, Minnesota. In addition, major pre-construction permit applications have been filed requesting authorization for the Project to i) appropriate water sufficient to accommodate its worst case needs, ii) operate a major stationary source in compliance with regulations established to protect public health and welfare, and iii) physically alter the geographical setting to accommodate its construction. As of the current date, the Water Appropriation Permits have been obtained.« less
NASA Technical Reports Server (NTRS)
Dudzinski, Leonard a.; Pencil, Eric J.; Dankanich, John W.
2007-01-01
The In-Space Propulsion Technology Project (ISPT) is currently NASA's sole investment in electric propulsion technologies. This project is managed at NASA Glenn Research Center (GRC) for the NASA Headquarters Science Mission Directorate (SMD). The objective of the electric propulsion project area is to develop near-term and midterm electric propulsion technologies to enhance or enable future NASA science missions while minimizing risk and cost to the end user. Systems analysis activities sponsored by ISPT seek to identify future mission applications in order to quantify mission requirements, as well as develop analytical capability in order to facilitate greater understanding and application of electric propulsion and other propulsion technologies in the ISPT portfolio. These analyses guide technology investments by informing decisions and defining metrics for technology development to meet identified mission requirements. This paper discusses the missions currently being studied for electric propulsion by the ISPT project, and presents the results of recent electric propulsion (EP) mission trades. Recent ISPT systems analysis activities include: an initiative to standardize life qualification methods for various electric propulsion systems in order to retire perceived risk to proposed EP missions; mission analysis to identify EP requirements from Discovery, New Frontiers, and Flagship classes of missions; and an evaluation of system requirements for radioisotope-powered electric propulsion. Progress and early results of these activities is discussed where available.
Laser prospects for SPS and restoration of the ozone layer
NASA Technical Reports Server (NTRS)
Kruzhilin, Yuri
1992-01-01
Large-scale applications of high-power lasers are considered (special experiments are described to confirm the feasibility of these applications) to achieve also large-scale environmental advantages. The possibility of producing electric energy by Laser-Solar Power Satellites in the near future is discussed. A full-scale experimental L-SPS satellite is suggested as a module of a global space energy network. Electric power of about 10 MW at the surface of the Earth is achievable as a result of energy conversion of laser radiation. L-SPS is based on the greatest advantages of present optics and laser techniques. Specialized-scale experiments are carried out and described. L-SPS project could provide real electricity for consumers not later than by highly developed fusion techniques, and the environmental aftereffects are quite favorable. A new method of power supply for satellites is suggested, based on the connection of an on-board electric circuit directly with the ground-based power grid by means of laser beams.
Summary assessment of solar thermal parabolic dish technology for electrical power generation
NASA Technical Reports Server (NTRS)
Penda, P. L.; Fujita, T.; Lucas, J. W.
1985-01-01
An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the U.S. Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are related to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.
Wind power as an electrical energy source in Illinois
NASA Astrophysics Data System (ADS)
Wendland, W. M.
1982-03-01
A preliminary estimate of the total wind power available in Illinois was made using available historical data, and projections of cost savings due to the presence of wind-generated electricity were attempted. Wind data at 10 m height were considered from nine different sites in the state, with three years data nominally being included. Wind-speed frequency histograms were developed for day and night periods, using a power law function to extrapolate the 10 m readings to 20 m. Wind speeds over the whole state were found to average over 8 mph, the cut-in point for most wind turbines, for from 40-63% of the time. A maximum of 75% run-time was determined for daylight hours in April-May. A reference 1.8 kW windpowered generator was used in annual demand projections for a reference one family home, using the frequency histograms. The small generator was projected to fulfill from 25-53% of the annual load, and, based on various cost assumptions, exhibited paybacks taking from 14-27 yr.
NASA Astrophysics Data System (ADS)
Voisin, N.; Macknick, J.; Fu, T.; O'Connell, M.; Zhou, T.; Brinkman, G.
2017-12-01
Water resources provide multiple critical services to the electrical grid through hydropower technologies, from generation to regulation of the electric grid (frequency, capacity reserve). Water resources can also represent vulnerabilities to the electric grid, as hydropower and thermo-electric facilities require water for operations. In the Western U.S., hydropower and thermo-electric plants that rely on fresh surface water represent 67% of the generating capacity. Prior studies have looked at the impact of change in water availability under future climate conditions on expected generating capacity in the Western U.S., but have not evaluated operational risks or changes resulting from climate. In this study, we systematically assess the impact of change in water availability and air temperatures on power operations, i.e. we take into account the different grid services that water resources can provide to the electric grid (generation, regulation) in the system-level context of inter-regional coordination through the electric transmission network. We leverage the Coupled Model Intercomparison Project Phase 5 (CMIP5) hydrology simulations under historical and future climate conditions, and force the large scale river routing- water management model MOSART-WM along with 2010-level sectoral water demands. Changes in monthly hydropower potential generation (including generation and reserves), as well as monthly generation capacity of thermo-electric plants are derived for each power plant in the Western U.S. electric grid. We then utilize the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions for the 2010 infrastructure under 100 years of historical and future (2050 horizon) hydroclimate conditions. We use economic metrics as well as operational metrics such as generation portfolio, emissions, and reserve margins to assess the changes in power system operations between historical and future normal and extreme water availability conditions. We provide insight on how this information can be used to support resource adequacy and grid expansion studies over the Western U.S. in the context of inter-annual variability and climate change.
Concentrating Solar Power Projects - Yumen 50MW Molten Salt Tower CSP
: Yumen (Gansu Province) Owner(s): Yumen Xinneng Thermal Power Co., Ltd Technology: Power tower Turbine Developer(s): China Sinogy Electric Engineering Co., Ltd Owner(s) (%): Yumen Xinneng Thermal Power Co., Ltd (Gross): 50.0 MW Turbine Capacity (Net): 50.0 MW Output Type: Steam Rankine Thermal Storage Storage Type
American lifelines alliance efforts to improve electric power transmission reliability
Nishenko, S.P.; Savage, W.U.; Honegger, D.G.; McLane, T.R.; ,
2002-01-01
A study was performed on American Lifelines Alliance (ALA) efforts to improve electric power transmission reliability. ALA is a public-private partnership project, with the goal of reducing risks to lifelines from natural hazards and human threat events. The mechanism used by ALA for developing national guidelines for lifeline systems is dependent upon using existing Standards Developing Organizations (SDO) accredited by the American National Standards Institute (ANSI) as means to achieve national consensus.
An Overview of ANN Application in the Power Industry
NASA Technical Reports Server (NTRS)
Niebur, D.
1995-01-01
The paper presents a survey on the development and experience with artificial neural net (ANN) applications for electric power systems, with emphasis on operational systems. The organization and constraints of electric utilities are reviewed, motivations for investigating ANN are identified, and a current assessment is given from the experience of 2400 projects using ANN for load forecasting, alarm processing, fault detection, component fault diagnosis, static and dynamic security analysis, system planning, and operation planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2006 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work. Summaries of major accomplishments for each technical project are give.« less
Change-of-Pace Electric Vehicle at the Lewis Research Center
1977-04-21
The National Aeronautics and Space Administration (NASA) Lewis Research Center tested 16 commercially-manufactured electric vehicles, including this modified Pacer, during the mid-1970s. The Electric Vehicle Project was just one of several energy-related programs that Lewis and the Energy Research and Development Administration (ERDA) undertook in the mid-1970s. NASA and ERDA embarked on this program in 1976 to determine the state of the current electric vehicle technology. As part of the project, Lewis tested a fleet composed of every commercially available electric car. The Cleveland-area Electric Vehicle Associates modified an American Motors Pacer vehicle to create this Change-of-Pace Coupe. It was powered by twenty 6-volt batteries whose voltage could be varied by a foot control. The tests analyzed the vehicle’s range, acceleration, coast-down, braking, and energy consumption. Some of the vehicles had analog data recording systems to measure the battery during operation and sensors to determine speed and distance. Lewis researchers found that the vehicle performance varied significantly from model to model. In general, the range, acceleration, and speed were lower than conventional vehicles. They also found that traditional gasoline-powered vehicles were as efficient as the electric vehicles. The researchers concluded, however, that advances in battery technology and electric drive systems would significantly improve the performance and efficiency.
2016 Standard Scenarios Report: A U.S. Electricity Sector Outlook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley; Mai, Trieu; Logan, Jeffrey
This is the webinar presentation deck used to present the 2016 Standard Scenarios work. It discusses the Annual Technology Baseline (ATB) detailed cost and performance projections for electricity-generating technologies and the standard scenarios of the power sector modeling using ATB inputs.
Unlocking Electric Power in the Oceans.
ERIC Educational Resources Information Center
Hurwood, David L.
1985-01-01
Cruising or stationary ocean thermal plants could convert the vast heat energy of the ocean into electricity for islands and underdeveloped countries. This approach to energy conservation is described with suggestions for design and outputs of plants. A model project operating in Hawaii is noted. (DH)
A Green Urban Mobility System Solution from the EU Ingrid project
NASA Astrophysics Data System (ADS)
D'Errico, Fabrizio; Screnci, Adamo; Romeo, Marco
With a mandate to reach 20/20/20 targets, new strategies are now focusing on the increased use of electricity to power transportation. Particularly in major urban areas of the EU, capillary use of electric vehicles are being encouraged, however, as these vehicles will be powered by the grid, there is always the risk that load peaks will occur. This work is just one of several being developed as part of the 23.9 MLN Euros INGRID European project started in July 2012, which combines solid-state high-density hydrogen storage systems with advanced ICT technologies for distribution grids. One possible solution which has been designed, is an off-grid utility to store renewable electricity captured from wind/solar sources and a re-charging point for full battery electric cars. This work shows the preliminary financial assessment of two business models for the Park-for-Recharging concept to promote green e-mobility as a more convenient and economical means of by-car transport.
Climate Vulnerability of Hydro-power infrastructure in the Eastern African Power Pool
NASA Astrophysics Data System (ADS)
Sridharan, Vignesh
2017-04-01
At present there is around 6000 MW of installed hydropower capacity in the Eastern African power pool (EAPP)[1]. With countries aggressively planning to achieve the Sustainable development goal (SDG) of ensuring access to affordable electricity for all, a three-fold increase in hydropower capacity is expected by 2040 [1]. Most of the existing and planned infrastructure lie inside the Nile River Basin. The latest assessment report (AR 5) from the Intergovernmental Panel on Climate Change (IPCC) indicates a high level of climatic uncertainty in the Nile Basin. The Climate Moisture index (CMI) for the Eastern Nile region and the Nile Equatorial lakes varies significantly across the different General Circulation Models (GCM)[2]. Such high uncertainty casts a shadow on the plans to expand hydropower capacity, doubting whether hydropower expansion can contribute to the goal of improving access to electricity or end up as sunk investments. In this assessment, we analyze adaptation strategies for national energy systems in the Eastern African Power Pool (EAPP), which minimize the regret that could potentially arise from impacts of a changed climate. An energy systems model of the EAPP is developed representing national electricity supply infrastructure. Cross border transmission and hydropower infrastructure is defined at individual project level. The energy systems model is coupled with a water systems management model of the Nile River Basin that calculates the water availability at different hydropower infrastructures under a range of climate scenarios. The results suggest that a robust adaptation strategy consisting of investments in cross border electricity transmission infrastructure and diversifying sources of electricity supply will require additional investments of USD 4.2 billion by 2050. However, this leads to fuel and operational cost savings of up to USD 22.6 billion, depending on the climate scenario. [1] "Platts, 2016. World Electric Power Plants Database," World Electric Power Plants Database. [Online]. Available: http://www.platts.com/Products/worldelectricpowerplantsdatabase. [Accessed: 01-Mar-2016]. [2] Brent Boehlert, Kenneth M. Strzepek, David Groves, and Bruce Hewitson, Chris Jack, "Climate Change Projections in Africa-Chapter 3," in Enhancing the Climate Resilience of Africa's Infrastructure : The Power and Water Sectors, Washington DC: The World Bank, 2016, p. 219.
Electrical characterization of a Mapham inverter using pulse testing techniques
NASA Technical Reports Server (NTRS)
Baumann, E. D.; Myers, I. T.; Hammond, A. N.
1990-01-01
Electric power requirements for aerospace missions have reached megawatt power levels. Within the next few decades, it is anticipated that a manned lunar base, interplanetary travel, and surface exploration of the Martian surface will become reality. Several research and development projects aimed at demonstrating megawatt power level converters for space applications are currently underway at the NASA Lewis Research Center. Innovative testing techniques will be required to evaluate the components and converters, when developed, at their rated power in the absence of costly power sources, loads, and cooling systems. Facilities capable of testing these components and systems at full power are available, but their use may be cost prohibitive. The use of a multiple pulse testing technique is proposed to determine the electrical characteristics of large megawatt level power systems. Characterization of a Mapham inverter is made using the proposed technique and conclusions are drawn concerning its suitability as an experimental tool to evaluate megawatt level power systems.
Proposed Columbia Wind Farm No. 1 : Final Environmental Impact Statement, Joint NEPA/SEPA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
United States. Bonneville Power Administration; Klickitat County
1995-09-01
CARES proposes to construct and operate the 25 megawatt Columbia Wind Farm No. 1 (Project) in the Columbia Hills area of Klickitat County, Washington known as Juniper Point. Wind is not a constant resource and based on the site wind measurement data, it is estimated that the Project would generate approximately 7 average annual MWs of electricity. BPA proposes to purchase the electricity generated by the Project. CARES would execute a contractual agreement with a wind developer, to install approximately 91 wind turbines and associated facilities to generate electricity. The Project`s construction and operation would include: install concrete pier foundationsmore » for each wind turbine; install 91 model AWT-26 wind turbines using 43 m high guyed tubular towers on the pier foundations; construct a new 115/24-kv substation; construct a 149 m{sup 2} steel operations and maintenance building; install 25 pad mount transformers along the turbine access roads; install 4.0 km of underground 24 kv power collection lines to collect power from individual turbines to the end of turbine strings; install 1.2 km of underground communication and transmission lines from each turbine to a pad mount transformer; install 5.6 km of 24 kv wood pole transmission lines to deliver electricity from the pad mount transformers to the Project substation; install 3.2 km of 115 kv wood pole transmission lines to deliver electricity from the Project substation to the Public Utility District No. 1 of Klickitat County(PUD)115 kv Goldendale line; interconnect with the BPA transmission system through the Goldendale line and Goldendale substation owned by the PUD; reconstruct, upgrade, and maintain 8.0 km of existing roads; construct and maintain 6.4 km of new graveled roads along the turbine strings and to individual turbines; and install meteorological towers guyed with rebar anchors on the Project site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellinger, M.; Allen, E.
A unique public/private partnership of local, state, federal and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quotes} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of the The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function and environmental impacts, its implementation hasmore » required: (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation and financing of the project, and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellinger, M.; Allen, E.
A unique public/private partnership of local, state, federal, and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quote} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function, and environmental impacts, its implementation has required:more » (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation, and financing of the project; and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.« less
Solar Energy and Other Appropriate Technologies for Small ...
This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change resulting from the use of fossil fuels in Puerto Rico. In Puerto Rico, petroleum (65%), natural gas (18%) and coal (16%) are imported to generate electricity resulting in electrical rates that are more than twice the US average. In 2012, only 1% of electricity came from renewable energy (US Energy Information Administration). One major cost for electricity for small communities in Puerto Rico is the transfer, treatment and distribution of drinking water. These small communities (Non-PRASA communities) are not able to afford electrical costs and many have abandoned their groundwater sources and reverted to unfiltered surface water systems, creating serious public health risks and non-compliance. Many Non-PRASA groundwater systems (141 out of 247) could use solar-powered pumps to extract and deliver groundwater. Solar power would also extend the life of system electrical components by improving the quality of electrical power supply. Solar power as a renewable energy source for Non-PRASA water systems is a viable approach that also reduces the impact of climate change in the Caribbean.
High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Manzella, David H.
2004-01-01
The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.
Chemicals to help coal come clean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thayer, A.M.
Scrubbing methods to capture carbon from power plants are advancing to the demonstration phase. The article gives an update of projects around the world, and the goals and cost of CCS projects. BASF, together with RWE Power and Linde, are working to ensure state of the art integration of the carbon-capture process into a power plant to minimize the penalty in electrical output. A pilot project will test new solvents in an 'advanced amine' system at RWE's power station in Niederaussem, Germany. A pilot unit will soon capture CO{sub 2} from a coal-fired plant of Dow's in South Charleston, WV,more » USA and Dow has also agreed to build an amines demonstration facility in Belchatow, Poland. Other projects in the USA and Canada are reported. 1 fig.« less
Free-Piston Stirling Power Conversion Unit for Fission Surface Power, Phase I Final Report
NASA Technical Reports Server (NTRS)
Wood, J. Gary; Buffalino, Andrew; Holliday, Ezekiel; Penswick, Barry; Gedeon, David
2010-01-01
This report summarizes the design of a 12 kW dual opposed free-piston Stirling convertor and controller for potential future use in space missions. The convertor is heated via a pumped NaK loop and cooling is provided by a pumped water circuit. Convertor efficiency is projected at 27 percent (AC electrical out/heat in). The controller converts the AC electrical output to 120 Vdc and is projected at 91 percent efficiency. A mechanically simple arrangement, based on proven technology, was selected in which the piston is resonated almost entirely by the working space pressure swing, while the displacer is resonated by planar mechanical springs in the bounce space.
Hualapai Tribal Utility Development Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hualapai Tribal Nation
The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central powermore » grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, Annika; Heath, Garvin A
The generation capacity of small-scale (less than one megawatt) fossil-fueled electricity in the United States is anticipated to grow by threefold to twenty-fold from 2015 to 2040. However, in adherence with internationally agreed upon carbon accounting methods, the Environmental Protection Agency's (EPA's) U.S. Greenhouse Inventory (GHGI) does not currently attribute greenhouse gases (GHGs) from these small-scale distributed generation sources to the electric power sector and instead accounts for these emissions in the sector that uses the distributed generation (e.g., the commercial sector). In addition, no other federal electric-sector GHG emission data product produced by the EPA or the U.S. Energymore » Information Administration (EIA) can attribute these emissions to electricity. We reviewed the technical documentation for eight federal electric-sector GHG emission data products, interviewed the data product owners, collected their GHG emission estimates, and analyzed projections for growth in fossil-fueled distributed generation. We show that, by 2040, these small-scale generators could account for at least about 1%- 5% of total CO2 emissions from the U.S. electric power sector. If these emissions fall outside the electric power sector, the United States may not be able to completely and accurately track changes in electricity-related CO2 emissions, which could impact how the country sets GHG reduction targets and allocates mitigation resources. Because small-scale, fossil-fueled distributed generation is expected to grow in other countries as well, the results of this work also have implications for global carbon accounting.« less
Concentrating Solar Power Projects - Ivanpah Solar Electric Generating
Energy; Google Technology: Power tower Turbine Capacity: Net: 377.0 MW Gross: 392.0 MW Status Turbine Capacity (Gross): 392.0 MW Turbine Capacity (Net): 377.0 MW Turbine Manufacturer: Siemens SST-900
Photovoltaic at Hollywood and Desert Breeze Recreational Centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, Shane
Executive Summary Renewable Energy Initiatives for Clark County Parks and Recreation Solar Project DOE grant # DE-EE0003180 In accordance with the goals of the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy for promoting solar energy as clean, carbon-free and cost-effective, the County believed that a recreational center was an ideal place to promote solar energy technologies to the public. This project included the construction of solar electricity generation facilities (40kW) at two Clark County facility sites, Desert Breeze Recreational Center and Hollywood Recreational Center, with educational kiosks and Green Boxes for classroom instruction. The major objectivesmore » and goals of this Solar Project include demonstration of state of the art technologies for the generation of electricity from solar technology and the creation of an informative and educational tool in regards to the benefits and process of generating alternative energy. Clark County partnered with Anne Johnson (design architect/consultant), Affiliated Engineers Inc. (AEI), Desert Research Institute (DRI), and Morse Electric. The latest photovoltaic technologies were used in the project to help create the greatest expected energy savings for60443 each recreational center. This coupled with the data created from the monitoring system will help Clark County and NREL further understand the real time outputs from the system. The educational portion created with AEI and DRI incorporates material for all ages with a focus on K - 12. The AEI component is an animated story telling the fundamentals of how sunlight is turned into electricity and DRI‘s creation of Solar Green Boxes brings environmental education into the classroom. In addition to the educational component for the public, the energy that is created through the photovoltaic system also translates into saved money and health benefits for the general public. This project has helped Clark County to further add to its own energy reduction goals created by the energy management agenda (Resolution to Encourage Sustainability) and the County’s Eco-initiative. Each site has installed photovoltaic panels on the existing roof structures that exhibit suitable solar exposure. The generation systems utilize solar energy creating electricity used for the facility’s lighting system and other electrical requirements. Unused electricity is sent to the electric utility grid, often at peak demand times. Educational signage, kiosks and information have been included to inform and expand the public’s understanding of solar energy technology. The Solar Green Boxes were created for further hands on classroom education of solar power. In addition, data is sent by a Long Term PV performance monitoring system, complete with data transmission to NREL (National Renewable Energy Laboratory), located in Golden, CO. This system correlates local solar irradiance and weather with power production. The expected outcomes of this Solar Project are as follows: (1) Successful photovoltaic electricity generation technologies to capture solar energy in a useful form of electrical energy. (2) Reduction of greenhouse gas emissions and environmental degradation resulting from reduced energy demand from traditional electricity sources such as fossil fuel fired and nuclear power plants. (3) Advance the research and development of solar electricity generation. (4) The education of the general public in regards to the benefits of environmentally friendly electricity generation and Clark County’s efforts to encourage sustainable living practices. (5) To provide momentum for the nexus for future solar generation facilities in Clark County facilities and buildings and further the County’s energy reduction goals. (6) To ultimately contribute to the reduction of dependence on foreign oil and other unsustainable sources of energy. This Solar Project addresses several objectives and goals of the U.S. Department of Energy’s Solar Energy Technology Program. The project improves the integration and performance of solar electricity directly through implementation of cutting edge technology. The project further addresses this goal by laying important ground work and infrastructure for integration into the utility grid in future related projects. There will also be added security, reliability, and diversity to the energy system by providing and using reliable, secure, distributed electricity in Clark County facilities as well as sending such electricity back into the utility electric grid. A final major objective met by the Solar Project will be the displacement of energy derived by fossil fuels with clean renewable energy created by photovoltaic panels.« less
Measurement system for determination of current-voltage characteristics of PV modules
NASA Astrophysics Data System (ADS)
Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander
2015-09-01
The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.
SERT D spacecraft study. [project planning and objectives
NASA Technical Reports Server (NTRS)
1974-01-01
The SERT D (Space Electric Rocket Test - D) study defines a possible spacecraft project that would demonstrate the use of electric ion thrusters for long-term (5 yr) station keeping and attitude control of a synchronous orbit satellite. Other mission objectives included in the study were: station walking to satellite rendezvous and inspection, use of low cost attitude sensing system, use of an advanced solar array orientation and slip ring system, and an ion thruster integrated directly with a solar array power source. The SERT D spacecraft, if launched, will become SERT 3 the third space electric thruster test.
78 FR 50405 - Amended Application for Presidential Permit; Northern Pass Transmission LLC
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... project would adversely affect the operation of the U.S. electric power supply system under normal and... proposed project. Northern Pass is wholly owned by NU Transmission Ventures, Inc., a wholly-owned..., that would meet the needs of the Project.'' On July 1, 2013, Northern Pass submitted an amended...
Manpower Requirements in the Nuclear Power Industry, 1982-1991.
ERIC Educational Resources Information Center
Johnson, Ruth C.
A study projected employment needs created by growth and employee turnover for the nuclear power industry over the next decade. Only employment by electric utilities in the commercial generation of nuclear power was investigated. Employment data for 1981 were collected in a survey of 60 member utilities of the Institute of Nuclear Power…
Social and Economic Impact of Solar Electricity at Schuchuli Village
NASA Technical Reports Server (NTRS)
Bifano, W. J.; Ratajczak, A. F.; Bahr, D. M.; Garrett, B. G.
1979-01-01
Schuchuli, a small remote village on the Papago Indian Reservation in southwest Arizona, is 27 kilometers (17 miles) from the nearest available utility power. Its lack of conventional power is due to the prohibitive cost of supplying a small electrical load with a long-distance distribution line. Furthermore, alternate energy sources are expensive and place a burden on the resources of the villagers. On December 16, 1978, as part of a federally funded project, a solar cell power system was put into operation at Schuchuli. The system powers the village water pump, lighting for homes and other village buildings, family refrigerators and a communal washing machine and sewing machine.
Power processing for electric propulsion
NASA Technical Reports Server (NTRS)
Finke, R. C.; Herron, B. G.; Gant, G. D.
1975-01-01
The potential of achieving up to 30 per cent more spacecraft payload or 50 per cent more useful operating life by the use of electric propulsion in place of conventional cold gas or hydrazine systems in science, communications, and earth applications spacecraft is a compelling reason to consider the inclusion of electric thruster systems in new spacecraft design. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. This paper will present electron bombardment ion thruster requirements; review the performance characteristics of present power processing systems; discuss design philosophies and alternatives in areas such as inverter type, arc protection, and control methods; and project future performance potentials for meeting goals in the areas of power processor weight (10 kg/kW), efficiency (approaching 92 per cent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vittal, Vijay; Lampis, Anna Rosa
The Power System Engineering Research Center (PSERC) engages in technological, market, and policy research for an efficient, secure, resilient, adaptable, and economic U.S. electric power system. PSERC, as a founding partner of the Consortium for Electric Reliability Technology Solutions (CERTS), conducted a multi-year program of research for U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) to develop new methods, tools, and technologies to protect and enhance the reliability and efficiency of the U.S. electric power system as competitive electricity market structures evolve, and as the grid moves toward wide-scale use of decentralized generation (such asmore » renewable energy sources) and demand-response programs. Phase I of OE’s funding for PSERC, under cooperative agreement DE-FC26-09NT43321, started in fiscal year (FY) 2009 and ended in FY2013. It was administered by DOE’s National Energy Technology Laboratory (NETL) through a cooperative agreement with Arizona State University (ASU). ASU provided sub-awards to the participating PSERC universities. This document is PSERC’s final report to NETL on the activities for OE, conducted through CERTS, from September 2015 through September 2017 utilizing FY 2014 to FY 2015 funding under cooperative agreement DE-OE0000670. PSERC is a thirteen-university consortium with over 30 industry members. Since 1996, PSERC has been engaged in research and education efforts with the mission of “empowering minds to engineer the future electric energy system.” Its work is focused on achieving: • An efficient, secure, resilient, adaptable, and economic electric power infrastructure serving society • A new generation of educated technical professionals in electric power • Knowledgeable decision-makers on critical energy policy issues • Sustained, quality university programs in electric power engineering. PSERC core research is funded by industry, with a budget supporting approximately 30 principal investigators and some 70 graduate students and other researchers. Its researchers are multi-disciplinary, conducting research in three principal areas: power systems, power markets and policy, and transmission and distribution technologies. The research is collaborative; each project involves researchers typically at two universities working with industry advisors who have expressed interest in the project. Examples of topics for recent PSERC research projects include grid integration of renewables and energy storage, new tools for taking advantage of increased penetration of real-time system measurements, advanced system protection methods to maintain grid reliability, and risk and reliability assessment of increasingly complex cyber-enabled power systems. A PSERC’s objective is to proactively address the technical and policy challenges of U.S. electric power systems. To achieve this objective, PSERC works with CERTS to conduct technical research on advanced applications and investigate the design of fair and transparent electricity markets; these research topics align with CERTS research areas 1 and 2: Real-time Grid Reliability Management (Area 1), and Reliability and Markets (Area 2). The CERTS research areas overlap with the PSERC research stems: Power Systems, Power Markets, and Transmission and Distribution Technologies, as described on the PSERC website (see http://www.pserc.org/research/research_program.aspx). The performers were with Arizona State University (ASU), Cornell University (CU), University of California at Berkeley (UCB), and University of Illinois at Urbana-Champaign (UIUC). PSERC research activities in the area of reliability and markets focused on electric market and power policy analyses. The resulting studies suggest ways to frame best practices using organized markets for managing U.S. grid assets reliably and to identify highest priority areas for improvement. PSERC research activities in the area of advanced applications focused on mid- to long-term software research and development, with anticipated outcomes that move innovative ideas toward real-world application. Under the CERTS research area of Real-time Grid Reliability Management, PSERC has been focused on Advanced Applications Research and Development (AARD), a subgroup of activities that works to develop advanced applications and tools to more effectively operate the electricity delivery system, by enabling advanced analysis, visualization, monitoring and alarming, and decision support capabilities for grid operators.« less
NASA Astrophysics Data System (ADS)
Elangovan, D.; Archana, R.; Jayadeep, V. J.; Nithin, M.; Arunkumar, G.
2017-11-01
More than fifty percent Indian population do not have access to electricity in daily lives. The distance between the power generating stations and the distribution centers forms one of the main reasons for lack of electrification in rural and remote areas. Here lies the importance of decentralization of power generation through renewable energy resources. In the present world, electricity is predominantly powered by alternating current, but most day to day devices like LED lamps, computers and electrical vehicles, all run on DC power. By directly supplying DC to these loads, the number of power conversion stages was reduced, and overall system efficiency increases. Replacing existing AC network with DC is a humongous task, but with power electronic techniques, this project intends to implement DC grid at a household level in remote and rural areas. Proposed work was designed and simulated successfully for various loads amounting to 250 W through appropriate power electronic convertors. Maximum utilization of the renewable sources for domestic and commercial application was achieved with the proposed DC topology.
2012-01-01
Further, recent economic studies have employed full-cost accounting methods ( Kaplan 2011) to estimate the costs force projection in the Persian...Type 45 Destroyer with an IPS and the Type 23 Frigate powered by the Combined Diesel- Electric and Gas Turbine (CODLAG) architecture provides an...Ammunition Ship and the Combined Diesel- Electric or Gas Turbine (CODLOG) (also known as hybrid gas- turbine -electric drive) aboard the USS MAKIN ISLAND
NASA Astrophysics Data System (ADS)
Eaton, Russell
2002-01-01
The Department of Energy (DOE), as part of its Superconductivity Program for Electric Systems, is successfully pursuing the development of electric power and industrial devices, incorporating significant high-temperature superconducting (HTS) components or subsystems, through its innovative Superconducting Partnership Initiative (SPI). The objective of the SPI is to accelerate the commercial introduction of the HTS products for a broad range of electric power and industrial applications. DOE's approach to accomplishing the SPI objective is to support cost shared projects carried out by industry led teams. DOE will fund projects to develop HTS devices that are either in (1) the research and development stage (Phase 1), (2) the pre-commercialization stage (Phase II), or (3) the commercial entry stage (Phase III). DOE's industry partners must contribute at least half a project's costs. These teams will include capabilities needed to develop the device as well as to develop the business plan for the commercial product introduction. DOE's partners consist of vertically integrated teams consisting of equipment manufacturers, HTS wire and coil suppliers, national laboratories, and end users, primarily utilities. These partners carry out the multi-year technology development efforts, consisting generally of design, construction, and testing of the HTS system. Finally, commercialization of HTS products will be discussed primarily in terms of benefits these products will have over competing products based upon conventional conductors and the critical need for affordable, practical HTS materials and conductors for these applications. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.; Sparn, Bethany F.; Jin, Xin
This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set ofmore » leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.« less
Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1986-01-01
An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defennse (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.
Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1986-01-01
An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.
Renewable energy project analyst with a robust understanding of solar photovoltaic project costs and and analysis for a variety of solar photovoltaic and wind turbine cost benchmarking studies, with , University of Denver Featured Publications Mexico's Regulatory Engagement in Bulk Electric Power System
Summary of aerospace and nuclear engineering activities
NASA Technical Reports Server (NTRS)
1988-01-01
The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Director means the Director of the Office of Energy Projects or his designees. Federal authorization means... Section 50.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS FOR PERMITS TO SITE INTERSTATE ELECTRIC...
Code of Federal Regulations, 2013 CFR
2013-04-01
.... Director means the Director of the Office of Energy Projects or his designees. Federal authorization means... Section 50.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS FOR PERMITS TO SITE INTERSTATE ELECTRIC...
Code of Federal Regulations, 2012 CFR
2012-04-01
.... Director means the Director of the Office of Energy Projects or his designees. Federal authorization means... Section 50.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS FOR PERMITS TO SITE INTERSTATE ELECTRIC...
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Director means the Director of the Office of Energy Projects or his designees. Federal authorization means... Section 50.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS FOR PERMITS TO SITE INTERSTATE ELECTRIC...
Code of Federal Regulations, 2010 CFR
2010-04-01
.... Director means the Director of the Office of Energy Projects or his designees. Federal authorization means... Section 50.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS FOR PERMITS TO SITE INTERSTATE ELECTRIC...
Synthesis of power plant outage schedules. Final technical report, April 1995-January 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.R.
This document provides a report on the creation of domain theories in the power plant outage domain. These were developed in conjunction with the creation of a demonstration system of advanced scheduling technology for the outage problem. In 1994 personnel from Rome Laboratory (RL), Kaman Science (KS), Kestrel Institute, and the Electric Power Research Institute (EPRI) began a joint project to develop scheduling tools for power plant outage activities. This report describes our support for this joint effort. The project uses KIDS (Kestrel Interactive Development System) to generate schedulers from formal specifications of the power plant domain outage activities.
2000-11-30
Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000, carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.
2000-11-30
Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000 carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.
Economic Conditions and Factors Affecting New Nuclear Power Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-10-01
This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examinemore » the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic analysis. In both cases, the profitable price point is decreased, making more markets open to profitable entry. Overall, the economic attractiveness of a nuclear power construction project is not only a function of its own costs, but a function of the market into which it is deployed. Many of the market characteristics are out of the control of the potential nuclear power plant operators. The decision-making process for the power industry in general is complicated by the short-term market volatility in both the wholesale electricity market and the commodity (natural gas) market. Decisions based on market conditions today may be rendered null and void in six months. With a multiple-year lead time, nuclear power plants are acutely vulnerable to market corrections.« less
Breckinridge Project, initial effort
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-01-01
The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basismore » established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.« less
NASA Technical Reports Server (NTRS)
Barber, T. A.
1980-01-01
Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
ERIC Educational Resources Information Center
Garrison, Steve
1992-01-01
Presents activities that utilize piezoelectric film to familiarize students with fundamental principles of electricity. Describes classroom projects involving chemical sensors, microbalances, microphones, switches, infrared sensors, and power generation. (MDH)
Alternative Fuels Data Center: Electric Buses Hit the Streets in Kentucky
, Kentucky, diversified its fleet with all-electric buses. For information about this project, contact Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017 Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo of a car Smart Car Shopping Nov. 4
Advanced Vehicle system concepts. [nonpetroleum passenger transportation
NASA Technical Reports Server (NTRS)
Hardy, K. S.; Langendoen, J. M.
1983-01-01
Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.
Overview of the Development of the Advanced Electric Propulsion System (AEPS)
NASA Technical Reports Server (NTRS)
Herman, Daniel; Tofil, Todd; Santiago, Walter; Kamhawi, Hani; Polk, James; Snyder, John Steven; Hofer, Richard; Picha, Frank; Schmidt, George
2017-01-01
NASA is committed to the demonstration and application of high-power solar electric propulsion to meet its future mission needs. It is continuing to develop the 14 kW Advanced Electric Propulsion System (AEPS) under a project that recently completed an Early Integrated System Test (EIST) and System Preliminary Design Review (PDR). In addition, NASA is pursuing external partnerships in order to demonstrate Solar Electric Propulsion (SEP) technology and the advantages of high-power electric propulsion-based spacecraft. The recent announcement of a Power and Propulsion Element (PPE) as the first major piece of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission (ARRM) as the most likely first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been recognized as a critical part of a new, affordable human exploration architecture for missions beyond-low-Earth-orbit. This paper presents the status of AEPS development activities, and describes how AEPS hardware will be integrated into the PPE ion propulsion system.
Vehicle to grid: electric vehicles as an energy storage solution
NASA Astrophysics Data System (ADS)
McGee, Rodney; Waite, Nicholas; Wells, Nicole; Kiamilev, Fouad E.; Kempton, Willett M.
2013-05-01
With increased focus on intermittent renewable energy sources such as wind turbines and photovoltaics, there comes a rising need for large-scale energy storage. The vehicle to grid (V2G) project seeks to meet this need using electric vehicles, whose high power capacity and existing power electronics make them a promising energy storage solution. This paper will describe a charging system designed by the V2G team that facilitates selective charging and backfeeding by electric vehicles. The system consists of a custom circuit board attached to an embedded linux computer that is installed both in the EVSE (electric vehicle supply equipment) and in the power electronics unit of the vehicle. The boards establish an in-band communication link between the EVSE and the vehicle, giving the vehicle internet connectivity and the ability to make intelligent decisions about when to charge and discharge. This is done while maintaining compliance with existing charging protocols (SAEJ1772, IEC62196) and compatibility with standard "nonintelligent" cars and chargers. Through this system, the vehicles in a test fleet have been able to successfully serve as portable temporary grid storage, which has implications for regulating the electrical grid, providing emergency power, or supplying power to forward military bases.
2nd & 3rd Generation Vehicle Subsystems
NASA Technical Reports Server (NTRS)
2000-01-01
This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).
Research on cost control and management in high voltage transmission line construction
NASA Astrophysics Data System (ADS)
Xu, Xiaobin
2017-05-01
Enterprises. The cost control is of vital importance to the construction enterprises. It is the key to the profitability of the transmission line project, which is related to the survival and development of the electric power construction enterprises. Due to the long construction line, complex and changeable construction terrain as well as large construction costs of transmission line, it is difficult for us to take accurate and effective cost control on the project implementation of entire transmission line. Therefore, the cost control of transmission line project is a complicated and arduous task. It is of great theoretical and practical significance to study the cost control scheme of transmission line project by a more scientific and efficient way. Based on the characteristics of the construction project of the transmission line project, this paper analyzes the construction cost structure of the transmission line project and the current cost control problem of the transmission line project, and demonstrates the necessity and feasibility of studying the cost control scheme of the transmission line project more accurately. In this way, the dynamic cycle cost control process including plan, implementation, feedback, correction, modification and re-implement is achieved to realize the accurate and effective cost control of entire electric power transmission line project.
75 FR 16786 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... EIS, BLM, CA, Palen Solar Power Plant Project, Construction, Operation and Decommission a Solar... No. 20100107, Draft EIS, BLM, CA, Calico Solar Project, Proposed Solar Thermal Electricity Generation... 04/02/2010. EIS No. 20100054, Draft EIS, NASA, VA, Wallops Flight Facility, Shoreline Restoration and...
Optimal design of hybrid electric-human powered lightweight transportation
DOT National Transportation Integrated Search
2001-07-01
The goal of this project was to develop a lightweight and efficient hybrid bicycle design. A series approach to design of the hybrid bicycle was used to allow for more technical advances to be made. This approach required the project to be divided in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W.; Simons, George; Barsun, Stephan
The main focus of most evaluations is to determine the energy-savings impacts of the installed measure. This protocol defines a combined heat and power (CHP) measure as a system that sequentially generates both electrical energy and useful thermal energy from one fuel source at a host customer's facility or residence. This protocol is aimed primarily at regulators and administrators of ratepayer-funded CHP programs; however, project developers may find the protocol useful to understand how CHP projects are evaluated.
Projected electric power demands for the Potomac Electric Power Company. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estomin, S.; Kahal, M.
1984-03-01
This three-volume report presents the results of an econometric forecast of peak and electric power demands for the Potomac Electric Power Company (PEPCO) through the year 2002. Volume I describes the methodology, the results of the econometric estimations, the forecast assumptions and the calculated forecasts of peak demand and energy usage. Separate sets of models were developed for the Maryland Suburbs (Montgomery and Prince George's counties), the District of Columbia and Southern Maryland (served by a wholesale customer of PEPCO). For each of the three jurisdictions, energy equations were estimated for residential and commercial/industrial customers for both summer and wintermore » seasons. For the District of Columbia, summer and winter equations for energy sales to the federal government were also estimated. Equations were also estimated for street lighting and energy losses. Noneconometric techniques were employed to forecast energy sales to the Northern Virginia suburbs, Metrorail and federal government facilities located in Maryland.« less
Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raade, Justin; Roark, Thomas; Vaughn, John
2013-07-22
Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when usedmore » with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hague, J.R.
Formed on July 15, 1981, the goal of this program is to undertake applied research and development projects that may enhance reliability and minimize the cost of electric service in Kansas. The Kansas Electric Utilities Research Program (KEURP) is a contractual joint venture between six major electric utilities that serve the residents of the State of Kansas. The establishment of KEURP was made possible by the Kansas Corporation Commission (KCC). The KCC allowed Kansas electric utilities to include research and development (R & D) costs in their operating expenses, including dues to the Electric Power Research Institute (EPRI). Kansas universitiesmore » play a unique role in KEURP with representation on the executive, technical and advisory committees of the program. The universities receive significant direct and indirect support from KEURP through direct funded projects as well as KEURP/EPRI co-funded projects. KEURP is working with EPRI researchers on projects to develop or expand Kansans knowledge and expertise in the fields of high technology and economic development. KEURP is a major source of funding in the electric/hybrid vehicle demonstration program.« less
Application of Project-Based Learning (PBL) to the Teaching of Electrical Power Systems Engineering
ERIC Educational Resources Information Center
Hosseinzadeh, N.; Hesamzadeh, M. R.
2012-01-01
Project-based learning (PBL), a learning environment in which projects drive learning, has been successfully used in various courses in the educational programs of different disciplines. However, concerns have been raised as to the breadth of the content covered and, in particular, whether PBL can be applied to specialized subjects without…
ELECTRICAL LOAD ANTICIPATOR AND RECORDER
Werme, J.E.
1961-09-01
A system is described in which an indication of the prevailing energy consumption in an electrical power metering system and a projected power demand for one demand in terval is provided at selected increments of time within the demand interval. Each watt-hour meter in the system is provided with an impulse generator that generates two impulses for each revolution of the meter disc. In each demand interval, for example, one half-hour, of the metering system, the total impulses received from all of the meters are continuously totaled for each 5-minute interval and multiplied by a number from 6 to 1 depending upon which 5- minute interval the impulses were received. This value is added to the total pulses received in the intervals preceding the current 5-minute interval within the half-hour demand interval tc thereby provide an indication of the projected power demand every 5 minutes in the demand interval.
Helical screw expander evaluation project
NASA Technical Reports Server (NTRS)
Mckay, R.
1982-01-01
A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.
Power system applications of fiber optic sensors
NASA Technical Reports Server (NTRS)
Johnston, A. R.; Jackson, S. P.; Kirkham, H.; Yeh, C.
1986-01-01
This document is a progress report of work done in 1985 on the Communications and Control for Electric Power Systems Project at the Jet Propulsion Laboratory. These topics are covered: Electric Field Measurement, Fiber Optic Temperature Sensing, and Optical Power transfer. Work was done on the measurement of ac and dc electric fields. A prototype sensor for measuring alternating fields was made using a very simple electroscope approach. An electronic field mill sensor for dc fields was made using a fiber optic readout, so that the entire probe could be operated isolated from ground. There are several instances in which more precise knowledge of the temperature of electrical power apparatus would be useful. This report describes a number of methods whereby the distributed temperature profile can be obtained using a fiber optic sensor. The ability to energize electronics by means of an optical fiber has the advantage that electrical isolation is maintained at low cost. In order to accomplish this, it is necessary to convert the light energy into electrical form by means of photovoltaic cells. JPL has developed an array of PV cells in gallium arsenide specifically for this purpose. This work is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluestein, J.; Horgan, S.; Eldridge, M. M.
Relatively small projects for generating electrical power at or near the point of use--distributed generation (DG)--offer unique opportunities for enhancing the U.S. electric system. This report finds that current air quality regulatory practices are inappropriately inhibiting the development of DG through a failure to recognize the environmental benefits offered by DG or by imposing requirements designed for larger systems that are not appropriate to DG systems. The report recommends that air quality regulation be made more efficient and appropriate for DG by establishing national standards for DG equipment. This report also recommends that DG projects be evaluated on a''net'' emissionsmore » basis by being given credit for any emission sources that they displace. Air quality regulation should also recognize the benefits of combined heat and power (CHP).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, R.W.; Zimm, C.B.
1994-07-29
This presentation/paper gives an overview of the Oak Ridge National Lab`s collaboration with private industry in developing electric power applications for magnetic refrigeraters which use high temperature superconductors. Highlighted is the lab`s general approach and technical progress towards advancing magnetic refrigeration technology in the 20-80 K range by specifically developing a prototype magnetic cryocooler with could provide 50 W cooling at 40 K. Included is magnet schematics; a listing of the basic components; load points; magnet charge and cooldown; vendor for induction alloying elements; and performance testing. The projects are in collaboration with Astronautics Corporation of America and included aremore » the proposed projects for FY 1995, key personnel, and the fiscal 1994 budgets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirst, E.; Kirby, B.
1999-11-01
Just as the aviation industry needs air-traffic controllers to manage the movement of airplanes for safety and commerce, so too, the electricity industry requires system operators. The electrical-system-control functions encompass a range of activities that support commercial transactions and maintain bulk-power reliability. As part of a project for the Edison Electric Institute, the authors examined the functions and costs of system control and the issues that need to be resolved in a restructured electricity industry (Hirst and Kirby 1998).
Jarlath McEntee
2016-03-21
Workbooks showing Annualized Energy Production, Cost Breakdown Structure, Levelized Cost of Electricity for DOE Refernce Tidal Project 1) Baseline TidGen Power System 2) TidGen Power System with the application of Advanced Controls 3) Advanced TidGen Power System with several enhancements These files are provided as a zipped set. Files are linked together and must be viewed in the same folder.
Indian energy sources in 1980's
NASA Astrophysics Data System (ADS)
Chaturvedi, A. C.
Indian energy sources for electrical power generation are surveyed with a view to the development of the available hydroelectric resources. The capital-intensive nature of hydroelectric projects and their long gestation periods have impeded the rapid exploitation of the hydroelectric resources in the country, which are expected to provide 37% of the 16,200 MW capacity anticipated by 2001. Alternative sources of power such as solar and wind energy, biogas conversion and the use of industrial waste heat to produce electricity are discussed with case studies presented.
NASA Astrophysics Data System (ADS)
Kilic, Gokhan; Eren, Levent
2018-04-01
This paper reports on the fundamental role played by Ground Penetrating Radar (GPR), alongside advanced processing and presentation methods, during the tunnel boring project at a Dam and Hydro-Electric Power Station. It identifies from collected GPR data such issues as incomplete grouting and the presence of karst conduits and voids and provides full details of the procedures adopted. In particular, the application of collected GPR data to the Neural Network (NN) method is discussed.
Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion
NASA Technical Reports Server (NTRS)
Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.
2017-01-01
The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.
NASA Technical Reports Server (NTRS)
Morris, Robert A.
1990-01-01
The emphasis is on defining a set of communicating processes for intelligent spacecraft secondary power distribution and control. The computer hardware and software implementation platform for this work is that of the ADEPTS project at the Johnson Space Center (JSC). The electrical power system design which was used as the basis for this research is that of Space Station Freedom, although the functionality of the processes defined here generalize to any permanent manned space power control application. First, the Space Station Electrical Power Subsystem (EPS) hardware to be monitored is described, followed by a set of scenarios describing typical monitor and control activity. Then, the parallel distributed problem solving approach to knowledge engineering is introduced. There follows a two-step presentation of the intelligent software design for secondary power control. The first step decomposes the problem of monitoring and control into three primary functions. Each of the primary functions is described in detail. Suggestions for refinements and embelishments in design specifications are given.
NASA Technical Reports Server (NTRS)
Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.
2017-01-01
The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.
Wind-assist irrigation and electrical-power generation
NASA Astrophysics Data System (ADS)
Nelson, V.; Starcher, K.
1982-07-01
A wind turbine is mechanically connected to an existing irrigation well. The system can be operated in three modes: electric motor driving the water turbine pump. Wind assist mode where wind turbine supplements power from the utility line to drive the water turbine pump. At wind speeds of 12 m/s and greater, the wind turbine can pump water (15 kW) and feed power (10 kW) back into the utility grid at the same time. Electrical generation mode where the water pump is disconnected and all power is fed back to the utility grid. The concept is technically viable as the mechanical connection allows for a smooth transfer of power in parallel with an existing power source. Minor problems caused delays and major problems of two rotor failures precluded enough operation time to obtain a good estimation of the economics. Because reliability and maintenance are difficult problems with prototype or limited production wind energy conversion systems, the expense of the demonstration project has exceeded the estimated cost by a large amount.
Radioisotope powered AMTEC systems
NASA Astrophysics Data System (ADS)
Ivanenok, Joseph F., III; Sievers, Robert K.
1994-11-01
Alkali metal thermal to electric converter (AMTEC) systems are being developed for high performance spacecraft power systems, including small, general purpose heat source (GPHS) powered systems. Several design concepts have been evaluated for the power range from 75 W to 1 kW. The specific power for these concepts has been found to be as high as 18-20 W/kg and 22 kW/m(exp 3). The projected area, including radiators, has been as low as 0.4 m(exp 2)/kW. AMTEC power systems are extremely attractive, relative to other current and projected power systems, because AMTEC offers high power density, low projected area, and low volume. Two AMTEC cell design types have been identified. A single-tube cell is already under development and a multitube cell design, to provide additional power system gains, has undergone proof-of-principle testing. Solar powered AMTEC (SAMTEC) systems are also being developed, and numerous terrestrial applications have been identified for which the same basic AMTEC cells being developed for radioisotope systems are also suitable.
Energy efficiency system development
NASA Astrophysics Data System (ADS)
Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.
2017-09-01
By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.
Manned spacecraft electrical power systems
NASA Technical Reports Server (NTRS)
Simon, William E.; Nored, Donald L.
1987-01-01
A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.
Low-Mass, Low-Power Hall Thruster System
NASA Technical Reports Server (NTRS)
Pote, Bruce
2015-01-01
NASA is developing an electric propulsion system capable of producing 20 mN thrust with input power up to 1,000 W and specific impulse ranging from 1,600 to 3,500 seconds. The key technical challenge is the target mass of 1 kg for the thruster and 2 kg for the power processing unit (PPU). In Phase I, Busek Company, Inc., developed an overall subsystem design for the thruster/cathode, PPU, and xenon feed system. This project demonstrated the feasibility of a low-mass power processing architecture that replaces four of the DC-DC converters of a typical PPU with a single multifunctional converter and a low-mass Hall thruster design employing permanent magnets. In Phase II, the team developed an engineering prototype model of its low-mass BHT-600 Hall thruster system, with the primary focus on the low-mass PPU and thruster. The goal was to develop an electric propulsion thruster with the appropriate specific impulse and propellant throughput to enable radioisotope electric propulsion (REP). This is important because REP offers the benefits of nuclear electric propulsion without the need for an excessively large spacecraft and power system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galowitz, Stephen
The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven andmore » reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh's of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.« less
The effect of concentrator field layout on the EE-1 small community solar power system
NASA Technical Reports Server (NTRS)
Pons, R. L.; Irwin, R. E.
1981-01-01
The point-focusing distributed receiver (PFDR) concept is employed by a number of solar thermal power systems currently under development. One type of PFDR system which shows particular promise incorporates distributed energy generation. According to this concept each parabolic dish collector is a self-contained power generation module, and a conventional electrical system is used to interconnect the modules. The concept is thus modular, and any number of power modules can be combined to achieve the required plant size. Given the benefits of mass production, it appears that this type of system can produce electricity at lower cost than is projected for conventional (fossil) power systems over the next decade. An employment of organic Rankine cycle heat engines is considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2004 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
EFFECT OF SELECTIVE CATALYTIC REDUCTION ON MERCURY, 2002 FIELD STUDIES UPDATE
The report documents the 2002 "Selective Catalytic Reduction Mercury Field Sampling Project." An overall evaluation of the results from both 2001 and 2002 testing is also provided. The project was sponsored by the Electric Power Research Institute (EPRI), the U.S. Department of...
Synchrophasor Based Tracking Three-Phase State Estimator and It's Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phadke, A. G.; Thorp, James; Centeno, Virgilio
2013-08-31
Electric power infrastructure is one of the critical resources of the nation. Its reliability in the face of natural or man-made catastrophes is of paramount importance for the economic and public health wellbeing of a modern society. Maintaining high levels of security for the high voltage transmission back bone of the electric supply network is a task requiring access to modern monitoring tools. These tools have been made particularly effective with the advent of synchronized phasor measurement units (PMUs) which became available in late 1990s, and have now become an indispensable for optimal monitoring, protection and control of the powermore » grid. The present project was launched with an objective of demonstrating the value of the Wide Area Measurement System (WAMS) using PMUs and its applications on the Dominion Virginia Power High Voltage transmission grid. Virginia Tech is the birth place of PMUs, and was chosen to be the Principal Investigator of this project. In addition to Dominion Virginia Power, Quanta Technology of Raleigh, NC was selected to be co-Principal Investigators of this project.« less
NASA Astrophysics Data System (ADS)
Oishi, Ikuo; Nishijima, Kenichi
2002-03-01
A 70 MW class superconducting model generator was designed, manufactured, and tested from 1988 to 1999 as Phase I, which was Japan's national project on applications of superconducting technologies to electric power apparatuses that was commissioned by NEDO as part of New Sunshine Program of AIST and MITI. Phase II then is now being carried out by almost same organization as Phase I. With the development of the 70 MW class superconducting model generator, technologies for a 200 MW class pilot generator were established. The world's largest output (79 MW), world's longest continuous operation (1500 h), and other sufficient characteristics were achieved on the 70 MW class superconducting model generator, and key technologies of design and manufacture required for the 200 MW class pilot generator were established. This project contributed to progress of R&D of power apparatuses. Super-GM has started the next project (Phase II), which shall develop the key technologies for larger-capacity and more-compact machine and is scheduled from 2000 to 2003. Phase II shall be the first step for commercialization of superconducting generator.
Study on and the implementation of solar powered street lighting in SEEE, USM
NASA Astrophysics Data System (ADS)
Arshad, M. S.; Ain, M. F.; Ishak, D.; Rahman, A. L. A.; Nazri, A. S.; Abdullah, M. N.; Kaharuddin, S.; Hussin, R.
2017-10-01
Solar Powered Street Lights is a project that can be served to School of Electrical & Electronic Engineering (SEEE), Universiti Sains Malaysia in electricity cost savings by implementing the existing solar Photovoltaic (PV) system used for a green technology of energy efficiency. Due to the electricity of the national grid Tenaga Nasional Berhad (TNB) continue to increases, perhaps this system is able to maximize cost savings for SEEE. Solar energy collected during the day will be converted into electricity to charge the battery. Electricity charged the battery then will be connected and used to power the lights around the SEEE parking area at night. After taking all important aspects into accounts that help to optimize energy saving, this system has been proven to reduce electricity costs. System data such as the power consumption of the load, battery charging rates, and other relevant data is measured. From the measured data, calculations and analysis were performed to determine the actual performance of the system. Proper wiring connections between solar PV systems and light poles grid around the SEEE parking lot have been executed. As a result, the implementation of this system could save as much as RM 462.86 for the cost of monthly electricity bills incurred by the SEEE.
ERIC Educational Resources Information Center
Wisely, F. E.; And Others
A project designed to convert solid waste to energy is explained in this paper. In April, 1972, an investor-owned utility began to burn municipal solid waste as fuel for the direct production of electric power. This unique venture was a cooperative effort between the City of St. Louis, Missouri, and the Union Electric Company, with financial…
Water constraints on European power supply under climate change: impacts on electricity prices
NASA Astrophysics Data System (ADS)
van Vliet, Michelle T. H.; Vögele, Stefan; Rübbelke, Dirk
2013-09-01
Recent warm, dry summers showed the vulnerability of the European power sector to low water availability and high river temperatures. Climate change is likely to impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power production. Here, we show the impacts of climate change and changes in water availability and water temperature on European electricity production and prices. Using simulations of daily river flows and water temperatures under future climate (2031-2060) in power production models, we show declines in both thermoelectric and hydropower generating potential for most parts of Europe, except for the most northern countries. Based on changes in power production potentials, we assess the cost-optimal use of power plants for each European country by taking electricity import and export constraints into account. Higher wholesale prices are projected on a mean annual basis for most European countries (except for Sweden and Norway), with strongest increases for Slovenia (12-15%), Bulgaria (21-23%) and Romania (31-32% for 2031-2060), where limitations in water availability mainly affect power plants with low production costs. Considering the long design life of power plant infrastructures, short-term adaptation strategies are highly recommended to prevent undesired distributional and allocative effects.
NASA Astrophysics Data System (ADS)
Liberatore, Raffaele; Lanchi, Michela; Turchetti, Luca
2016-05-01
The Hybrid Sulfur (HyS) is a water splitting process for hydrogen production powered with high temperature nuclear heat and electric power; among the numerous thermo-chemical and thermo-electro-chemical cycles proposed in the literature, such cycle is considered to have a particularly high potential also if powered by renewable energy. SOL2HY2 (Solar to Hydrogen Hybrid Cycles) is a 3 year research project, co-funded by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU). A significant part of the project activities are devoted to the analysis and optimization of the integration of the solar power plant with the chemical, hydrogen production plant. This work reports a part of the results obtained in such research activity. The analysis presented in this work builds on previous process simulations used to determine the energy requirements of the hydrogen production plant in terms of electric power, medium (<550°C) and high (>550°C) temperature heat. For the supply of medium temperature (MT) heat, a parabolic trough CSP plant using molten salts as heat transfer and storage medium is considered. A central receiver CSP (Concentrated Solar Power) plant is considered to provide high temperature (HT) heat, which is only needed for sulfuric acid decomposition. Finally, electric power is provided by a power block included in the MT solar plant and/or drawn from the grid, depending on the scenario considered. In particular, the analysis presented here focuses on the medium temperature CSP plant, possibly combined with a power block. Different scenarios were analysed by considering plants with different combinations of geographical location and sizing criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, R.A.
1997-05-01
The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systemsmore » has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.« less
Carbon pricing, nuclear power and electricity markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, R.; Keppler, J. H.
2012-07-01
In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today betweenmore » nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised electricity market, looking at the impact of the seven key variables and provide conclusions on the portfolio that a utility would be advised to maintain, given the need to limit risks but also to move to low carbon power generation. Such portfolio diversification would not only limit financial investor risk, but also a number of non-financial risks (climate change, security of supply, accidents). (authors)« less
Heber Binary Project. Binary Cycle Geothermal Demonstration Power Plant (RP1900-1)
NASA Astrophysics Data System (ADS)
Lacy, R. G.; Nelson, T. T.
1982-12-01
The Heber Binary Project (1) demonstrates the potential of moderate temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology; (2) allows the scaling up and evaluation of the performance of binary cycle technology in geothermal service; (3) establishes schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants; and (4) resolves uncertainties associated with the reservoir performance, plant operation, and economics.
Federal Sector Renewable Energy Project Implementation: ’What’s Working and Why’
2011-01-13
River Site biomass CHP (240,000 pph, 20 MW) 9 Oak Ridge National Laboratory biomass gasification • Hill AFB Landfill Gas to Energy Electrical...Photovoltaics (PV) � Concentrating Solar Power (CSP) (with storage) � Wind � Biomass power (waste-to-energy (WTE), wood feed stock combustion, etc...Projects examples ( biomass combustion) 9 NREL Renewable Fuel Heating Plant (6-8mmBtu/hr hot water boiler-displaces natural gas use) 9 Savannah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker
The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and communitymore » outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.« less
Howard University Energy Expert Systems Institute Summer Program (EESI)
NASA Technical Reports Server (NTRS)
Momoh, James A.; Chuku, Arunsi; Abban, Joseph
1996-01-01
Howard University, under the auspices of the Center for Energy Systems and Controls runs the Energy Expert Systems Institute (EESI) summer outreach program for high school/pre-college minority students. The main objectives are to introduce precollege minority students to research in the power industry using modern state-of-the-art technology such as Expert Systems, Fuzzy Logic and Artificial Neural Networks; to involve minority students in space power management, systems and failure diagnosis; to generate interest in career options in electrical engineering; and to experience problem-solving in a teamwork environment consisting of faculty, senior research associates and graduate students. For five weeks the students are exposed not only to the exciting experience of college life, but also to the inspiring field of engineering, especially electrical engineering. The program consists of lectures in the fundamentals of engineering, mathematics, communication skills and computer skills. The projects are divided into mini and major. Topics for the 1995 mini projects were Expert Systems for the Electric Bus and Breast Cancer Detection. Topics on the major projects include Hybrid Electric Vehicle, Solar Dynamics and Distribution Automation. On the final day, designated as 'EESI Day' the students did oral presentations of their projects and prizes were awarded to the best group. The program began in the summer of 1993. The reaction from the students has been very positive. The program also arranges field trips to special places of interest such as the NASA Goddard Space Center.
SOSPAC- SOLAR SPACE POWER ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1994-01-01
The Solar Space Power Analysis Code, SOSPAC, was developed to examine the solar thermal and photovoltaic power generation options available for a satellite or spacecraft in low earth orbit. SOSPAC is a preliminary systems analysis tool and enables the engineer to compare the areas, weights, and costs of several candidate electric and thermal power systems. The configurations studied include photovoltaic arrays and parabolic dish systems to produce electricity only, and in various combinations to provide both thermal and electric power. SOSPAC has been used for comparison and parametric studies of proposed power systems for the NASA Space Station. The initial requirements are projected to be about 40 kW of electrical power, and a similar amount of thermal power with temperatures above 1000 degrees Centigrade. For objects in low earth orbit, the aerodynamic drag caused by suitably large photovoltaic arrays is very substantial. Smaller parabolic dishes can provide thermal energy at a collection efficiency of about 80%, but at increased cost. SOSPAC allows an analysis of cost and performance factors of five hybrid power generating systems. Input includes electrical and thermal power requirements, sun and shade durations for the satellite, and unit weight and cost for subsystems and components. Performance equations of the five configurations are derived, and the output tabulates total weights of the power plant assemblies, area of the arrays, efficiencies, and costs. SOSPAC is written in FORTRAN IV for batch execution and has been implemented on an IBM PC computer operating under DOS with a central memory requirement of approximately 60K of 8 bit bytes. This program was developed in 1985.
75 FR 66750 - Albany-Eugene Transmission Line Rebuild Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... Project AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE). ACTION: Notice of... Environmental Policy Act (NEPA), BPA intends to prepare an EIS on its proposed rebuild of a 32- mile section of... deteriorated condition of this 70-year old line compromises BPA's ability to maintain reliable electric service...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This two-page performance spotlight describes how, in 2004, Austin Energy (the electric utility for the city of Austin, Texas) began saving about $1.2 million in energy and maintenance costs annually as a direct result of a pumping system efficiency project.
Solar Collector Design Optimization: A Hands-on Project Case Study
ERIC Educational Resources Information Center
Birnie, Dunbar P., III; Kaz, David M.; Berman, Elena A.
2012-01-01
A solar power collector optimization design project has been developed for use in undergraduate classrooms and/or laboratories. The design optimization depends on understanding the current-voltage characteristics of the starting photovoltaic cells as well as how the cell's electrical response changes with increased light illumination. Students…
76 FR 78916 - Rice Solar Energy Project Record of Decision (DOE/EIS-0439)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... Protection Plan. The Biological Resources Mitigation Implementation and Monitoring Plan will include accurate... consideration that water is a limited resource, the Project owner would use dry cooling, which avoids... markets and transmits wholesale electrical power through an integrated 17,000-circuit mile, high- voltage...
Critical review: Uncharted waters? The future of the electricity-water nexus.
Sanders, Kelly T
2015-01-06
Electricity generation often requires large amounts of water, most notably for cooling thermoelectric power generators and moving hydroelectric turbines. This so-called "electricity-water nexus" has received increasing attention in recent years by governments, nongovernmental organizations, industry, and academics, especially in light of increasing water stress in many regions around the world. Although many analyses have attempted to project the future water requirements of electricity generation, projections vary considerably due to differences in temporal and spatial boundaries, modeling frameworks, and scenario definitions. This manuscript is intended to provide a critical review of recent publications that address the future water requirements of electricity production and define the factors that will moderate the water requirements of the electric grid moving forward to inform future research. The five variables identified include changes in (1) fuel consumption patterns, (2) cooling technology preferences, (3) environmental regulations, (4) ambient climate conditions, and (5) electric grid characteristics. These five factors are analyzed to provide guidance for future research related to the electricity-water nexus.
40 CFR 262.90 - Project XL for Public Utilities in New York State.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Project XL for Public Utilities in New... Utilities § 262.90 Project XL for Public Utilities in New York State. (a) The following definitions apply to..., or any company that provides electric power or telephone service and is regulated by New York State's...
CONVERTING ENERGY FROM RECLAIMED HEAT: THERMAL ELECTRIC GENERATOR
The use of solar energy acquiring devices has been slow to gain acceptance due to their overall low power generation versus high cost of a solar system. The goal of this project is to construct a model which increases the overall power generation of a solar building system by...
Tibet shares the Sun: Solar projects in Tibet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Jintang; Lu Weide
This article examines the extent and types of solar energy utilization in Tibet. Topics include the amount of available energy, costs of traditional energy sources, passive solar buildings including greenhouses for increased vegetable production, solar water heating, food preparation using solar heat, and photovoltaic powered devices and electric power plants.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Definitions. 1b.1 Section 1b.1 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF... pipelines, electric utilities and hydroelectric projects. [43 FR 27174, June 23, 1978, as amended by Order...
TECHNICAL ASSESSMENT OF FUEL CELL OPERATION ON LANDFILL GAS AT THE GROTON, CT, LANDFILL
The paper summarizes the results from a seminal assessment conducted on a fuel cell technology which generates electrical power from waste landfill gas. This assessment/ demonstration was the second such project conducted by the EPA, the first being conducted at the Penrose Power...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced bymore » Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced bymore » Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.« less
Smart Energy Management of Multiple Full Cell Powered Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOhammad S. Alam
2007-04-23
In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. Themore » goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.« less
Hualapai Wind Project Feasibility Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Kevin; Randall, Mark; Isham, Tom
The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorablemore » conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.« less
Tampa Electric Company Polk Power Station IGCC project: Project status
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, J.E.; Carlson, M.R.; Hurd, R.
1997-12-31
The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC andmore » Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.« less
DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhil, Abbas A.; Huff, Georgianne; Currier, Aileen B.
2016-09-01
The Electricity Storage Handbook (Handbook) is a how-to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluations of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical perspective. This Handbook, jointlymore » sponsored by the U.S. Department of Energy and the Electric Power Research Institute in collaboration with the National Rural Electric Cooperative Association, is published in electronic form at www.sandia.gov/ess.« less
Development of a heavy duty portable variable power supply (HPVPS)
NASA Astrophysics Data System (ADS)
Musa, Ahmad Zulfadli Bin; Lung, Chong Man; Abidin, Wan'Amirah Basyarah Binti Zainol
2017-08-01
This paper covers the innovation of a Heavy Duty Portable Variable Power Supply (HPVPS) in Jabatan Kejuruteraan Elektrik (JKE), Politeknik Mukah, Sarawak (PMU). This project consists of variable power supply which can vary the output from 1.2 V to 11.6V, AC pure wave inverter to convert DC to AC for the operation of low power home appliances and also used Li-on rechargeable batteries to store the electrical energy and additional feature that can be used to jump-start the batteries of the car. The main objective of this project is to make the user can operate the electronic devices anywhere whenever if no electricity while doing their lab activities. Most of the regulated power supply in JKE lab aged 9-10 years old and need periodical maintenance and need cost and also the unit can be used is not enough to support the whole class during lab activities. As a result, the P&P process will be facing the major problem in order to make the lab activities running smoothly. By development of the portable variable power supply, the P&P process is more efficient and very helpful.
The Retail Price Model is a tool to estimate the average retail electricity prices - under both competitive and regulated market structures - using power sector projections and assumptions from the Energy Information Administration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
University of California, Berkeley; Wei, Max; Lipman, Timothy
2014-06-23
A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kWmore » level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.« less
Evaluation of high-voltage, high-power, solid-state remote power controllers for amps
NASA Technical Reports Server (NTRS)
Callis, Charles P.
1987-01-01
The Electrical Power Branch at Marshall Space Flight Center has a Power System Development Facility where various power circuit breadboards are tested and evaluated. This project relates to the evaluation of a particular remote power controller (RPC) energizing high power loads. The Facility equipment permits the thorough testing and evaluation of high-voltage, high-power solid-state remote power controllers. The purpose is to evaluate a Type E, 30 Ampere, 200 V dc remote power controller. Three phases of the RPC evaluation are presented. The RPC is evaluated within a low-voltage, low-power circuit to check its operational capability. The RPC is then evaluated while performing switch/circuit breaker functions within a 200 V dc, 30 Ampere power circuit. The final effort of the project relates to the recommended procedures for installing these RPC's into the existing Autonomously Managed Power System (AMPS) breadboard/test facility at MSFC.
NASA Technical Reports Server (NTRS)
Carr, John; Martinez, Andres; Petro, Andrew
2015-01-01
The Lightweight Integrated Solar Array and Transceiver (LISA-T) project will leverage several existing and on-going efforts at Marshall Space Flight Center (MSFC) for the design, development, fabrication, and test of a launch stowed, orbit deployed structure on which thin-film photovoltaics for power generation and antenna elements for communication, are embedded. Photovoltaics is a method for converting solar energy into electricity using semiconductor materials. The system will provide higher power generation with a lower mass, smaller stowage volume, and lower cost than the state of the art solar arrays, while simultaneously enabling deployable antenna concepts.
Economically Feasible Potentials for Wind Power in China and the US
NASA Astrophysics Data System (ADS)
Lu, X.; McElroy, M. B.; Chris, N. P.; Tchou, J.
2011-12-01
The present study is intended to explore the economic feasible potentials for wind energy in China and the U.S. subject to their policy systems for renewable energy. These two countries were chosen as subject locales for three reasons: first, they are the two largest countries responsible for energy consumption and CO2 emissions; second, these two countries have the largest installed capacities and the fastest annual growth of wind power in the world; third, China and the U.S. have adopted two distinct but representative incentive policies to accelerate exploitation of the renewable energy source from wind. Investments in large-scale wind farms in China gain privileges from the concession policy established under China's Renewable Energy Law. The electricity generated from wind can be sold at a guaranteed price for a concession period (typically the first ten operational years of a wind farm) to ensure the profitability of the wind farm development. The effectiveness of this policy has been evidenced by the swift growth of total installed capacities for wind power over the past five years in China. A spatial financial model was developed to evaluate the bus-bar prices of wind-generated electricity in China following this wind concession policy. The results indicated that wind could accommodate all of the demand for electricity projected for 2030 assuming a guaranteed bus-bar price of 7.6 U.S. Cents per kWh over the concession period. It is noteworthy that the prices of wind-generated electricity could be as cheap as conventional power generation in the years following the concession period. The power market in the U.S. is more deregulated and electricity is normally traded in a bidding process an hour to a day ahead of real time. Accordingly, the market-oriented policy instrument of PTC subsidies was instituted in the U.S. to ensure the competitiveness of wind power compared to the conventional power generation in the regional power markets. The spatial financial model developed for previous analysis of wind energy in China was tailored to simulate the relevant investment environments for U.S. wind projects. A particular problem was investigated as to how the profitability and competitiveness of onshore wind power in the U.S. would be influenced by PTC subsidy levels varying from 0 to 4 cents per kWh. The results suggested that the current PTC level (2.1 cent per kWh) is at a critical point in determining the competitiveness of wind-generated electricity under normal costs. Setting system integration challenges aside, the potential for profitable wind-generated electricity could accommodate more than seven times U.S. electricity demand at the current PTC subsidy. Similar to the concession policy adopted in China, PTC subsidies are only available for the first ten years following the initiation of wind farms; wind power would still offer a renewable energy source for profitable electricity generation during the post-PTC period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Shweta; Kholod, Nazar; Chaturvedi, Vaibhav
This paper provides projections of water withdrawals and consumption for electricity generation in India through 2050. Based on the results from five energy-economic modeling teams, the paper explores the implications of economic growth, power plant cooling policies, and electricity CO2 emissions reductions on water withdrawals and consumption. To isolate modeling differences, the five teams used harmonized assumptions regarding economic and population growth, the distribution of power plants by cooling technologies, and withdrawals and consumption intensities. The results demonstrate the different but potentially complementary implications of cooling technology policies and efforts to reduce CO2 emissions. The application of closed-loop cooling technologiesmore » substantially reduces water withdrawals but increases consumption. The water implications of CO2 emissions reductions, depend critically on the approach to these reductions. Focusing on wind and solar power reduces consumption and withdrawals; a focus on nuclear power increases both; and a focus on hydroelectric power could increase consumptive losses through evaporation.« less
ERIC Educational Resources Information Center
Lissaman, P. B. S.
1979-01-01
Detailed are the history, development, and future objectives of the Coriolis program, a project designed to place large turbine units in the Florida Current that would generate large amounts of electric power. (BT)
Iron-Nitride Alloy Magnets: Transformation Enabled Nitride Magnets Absent Rare Earths (TEN Mare)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-01
REACT Project: Case Western is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in today’s best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in themore » U.S. each year by encouraging the use of clean alternatives to oil and coal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.
2014-01-31
Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generatormore » and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.« less
Development of 70 MW class superconducting generator with quick-response excitation
NASA Astrophysics Data System (ADS)
Miyaike, Kiyoshi; Kitajima, Toshio; Ito, Tetsuo
2002-03-01
The development of a superconducting generator had been carried out for 12 years under the first stage of a Super GM project. The 70 MW class model machine with quick response excitation was manufactured and evaluated in the project. This type of superconducting generator improves power system stability against rapid load fluctuations at the power system faults. This model machine achieved all development targets including high stability during rapid excitation control. It was also connected to the actual 77 kV electrical power grid as a synchronous condenser and proved advantages and high-operation reliability of the superconducting generator.
Economic Rebalancing and Electricity Demand in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Gang; Lin, Jiang; Yuan, Alexandria
Understanding the relationship between economic growth and electricity use is essential for power systems planning. This need is particularly acute now in China, as the Chinese economy is going through a transition to a more consumption and service oriented economy. This study uses 20 years of provincial data on gross domestic product (GDP) and electricity consumption to examine the relationship between these two factors. We observe a plateauing effect of electricity consumption in the richest provinces, as the electricity demand saturates and the economy develops and moves to a more service-based economy. There is a wide range of forecasts formore » electricity use in 2030, ranging from 5,308 to 8,292 kWh per capita, using different estimating functions, as well as in existing studies. It is therefore critical to examine more carefully the relationship between electricity use and economic development, as China transitions to a new growth phase that is likely to be less energy and resource intensive. The results of this study suggest that policymakers and power system planners in China should seriously re-evaluate power demand projections and the need for new generation capacity to avoid over-investment that could lead to stranded generation assets.« less
Generation of Electric Energy and Desalinating Water from Solar Energy and the Oceans Hydropower
NASA Astrophysics Data System (ADS)
Elfikky, Niazi
Brief.All warnings and fears about the environment in our Earth planet due to the serious effects of the industrial revolution were certainly predicted early. But the eager contest and the powerful desire for more profits beside the human interest for welfare and development closed all minds about the expected severe destuctive impacts on our earth planet. Also, we have to remember that the majority of the African, Asian and Latin American countries are still in the first stage of their development and if they will be left to generate all their demand of energy by the conventional machine e.g (Fossil Fuel, Biofuel and Nuclear Fuel), then our Earth planet will confront an endless and ceasless severe destructive impacts due to the encroach of the released hot Carbon Doxide and hot vapours of Acids which will never forgive any fruitful aspect in our Earth Planet from destruction. 1. Importance of the New Project. Building the Extra cheap, clean Power plants with safe and smooth Operation in addition to the long life time in service for generating enough and plentiful electric energy the sustainable renwable resources will invigorate the foresaking of all Nuclear, Fossil and Biofuel power plants to avoide the nuclear hazards and stop releasing the hot carbon doxide, hot acids for the recovery of our ill environment. Also, the main sustainable, renewable, and cheap resources for generating the bulky capacity of the electric energy in our project are the Sun and the Oceans in addition to all Seas Surrounding all Continents in our Earth planet. Therefore, our recourses are so much enormous plentiful, clean, and renewable. 2. .Generation of Electricity from Solar Energy by Photovoltiac Cells (PVCs) or Concentrated Solar Power (CSP). Characteristics of Photovoltiac Cells (PVCs). It is working only by Sun's Light (Light photons) and its efficiency will decrease as the Solar Thermal Radiation will increase, i.e. as the temerature of the Solar Voltiac will increase, its output will decrease or when the Solar thermal radiation of the Sun will increase, the efficiency of the Solar Voltiac Cells will nearly fully degrade at the ambient temperature 55C?(131Fahrenheit). As known, in the African countries near the Atlantic Ocean like Mauritania, Senegal, South Africa and Guinea ..etc, also the middle east countries like Moroco, Tuniz, Lybia, Algeria, Egypt, Sudan, Saudi Arabia, Kuwait, United Arab Emarates and Iraq etc. the range of the ambient temerature in the Summer seasons especially in the Desrt near the Atlantic Ocean, the Mediterranean Sea, Red Sea and the Persian Gulf is around (60-70)C? or (140F-158F). Similarly the majority of the Latin American countries with India and China. So, all the environments of the antecedent countries are not the suitable envuironment for generating electric energy from the Solar Voltiac cells in all seasons along the year. Characteristics of the Concentrated Solar Power (CSP). It uses half cylindrical mirrors to reflect with concentration the Solar thermal Radiation around a pipe to heat a special liquid. When the liquid will be heated it will pass through a water tank to exchange its heat in water tank to evaporate the water and create a steam to drive the Power Turbine for generating electricity. Also the capacity of the electric power generated by such technique is so much limited with respect to the wide area (3000 acres, about five miles end to end) occupied by the Concentrated Solar Power Plant . 3. The New Project Profile. Employing the water from the Oceans, Mediterranean Sea, Red Sea and Chinees sea to generate the bulky Hydraulic power capacity which will be deliverd directly to the electric power Grid without any inverters. The Salt water will be drawn for desalination after driving A Steam Power Turbine for genrating additional electric power. Invited Call, Speaker No.41445.
Multi-attribute criteria applied to electric generation energy system analysis LDRD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.
2005-10-01
This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carrymore » out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.« less
Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; Duffy, Kirsten P.; Provenza, Andrew J.; Loyselle, Patricia L.; Choi, Benjamin B.; Morrison, Carlos R.; Lowe, Angela M.
2015-01-01
The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years.
Selective Energy Feasibility Study -- Richmond College, City University of New York
ERIC Educational Resources Information Center
Consulting Engineer, 1974
1974-01-01
A study of the presently available data on magnitude, duration, and coincidence of electrical demands determined that onsite electrical power generation in the form of a selective energy system should be incorporated within the central utilities plant projected for the Richmond College Campus of the City University of New York (CUNY). (Author/MLF)
Alternative Fuels Data Center: New York City Cleans up With Alternative
uses natural gas, biodiesel, and hybrid electric trucks. For information about this project, contact Fleet Drives Smarter with Biodiesel Aug. 26, 2017 Photo of a car Idaho Surges Ahead with Electric Vehicle Charging Aug. 4, 2017 Photo of a truck Cooking Oil Powers Biodiesel Vehicles in Rhode Island July
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
Structural Mechanics and Dynamics Branch
NASA Technical Reports Server (NTRS)
Stefko, George
2003-01-01
The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.
NASA Technical Reports Server (NTRS)
Menke, M. M.; Judd, B. R.
1973-01-01
The development policy for thermionic reactors to provide electric propulsion and power for space exploration was analyzed to develop a logical procedure for selecting development alternatives that reflect the technical feasibility, JPL/NASA project objectives, and the economic environment of the project. The partial evolution of a decision model from the underlying philosophy of decision analysis to a deterministic pilot phase is presented, and the general manner in which this decision model can be employed to examine propulsion development alternatives is illustrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The purpose of this inventory of power plants is to provide a ready reference for planners whose focus is on the state, standard Federal region, and/or national level. Thus the inventory is compiled alphabetically by state within standard Federal regions. The units are listed alphabetically within electric utility systems which in turn are listed alphabetically within states. The locations are identified to county level according to the Federal Information Processing Standards Publication Counties and County Equivalents of the States of the United States. Data compiled include existing and projected electrical generation units, jointly owned units, and projected construction units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, J. O.; Mosey, G.
2014-04-01
Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.
Key issues in space nuclear power challenges for the future
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.
1991-01-01
The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.
Key issues in space nuclear power
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W.
1991-01-01
The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.
2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 1; Executive Summary
NASA Technical Reports Server (NTRS)
Alexander, Dennis
1997-01-01
The Solar Dynamic Ground Test Demonstration (SDGTD) successfully demonstrated a solar-powered closed Brayton cycle system in a relevant space thermal environment. In addition to meeting technical requirements the project was completed 4 months ahead of schedule and under budget. The following conclusions can be supported: 1. The component technology for solar dynamic closed Brayton cycle technology has clearly been demonstrated. 2. The thermal, optical, control, and electrical integration aspects of systems integration have also been successfully demonstrated. Physical integration aspects were not attempted as these tend to be driven primarily by mission-specific requirements. 3. System efficiency of greater than 15 percent (all losses fully accounted for) was demonstrated using equipment and designs which were not optimized. Some preexisting hardware was used to minimize cost and schedule. 4. Power generation of 2 kWe. 5. A NASA/industry team was developed that successfully worked together to accomplish project goals. The material presented in this report will show that the technology necessary to design and fabricate solar dynamic electrical power systems for space has been successfully developed and demonstrated. The data will further show that achieved results compare well with pretest predictions. The next step in the development of solar dynamic space power will be a flight test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ranmore » from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, and they are indicated at the end of each section for readers interested in pursuing details of the work.« less
Optimization of parameters of special asynchronous electric drives
NASA Astrophysics Data System (ADS)
Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.
2018-03-01
The article considers the solution of the problem of parameters optimization of special asynchronous electric drives. The solution of the problem will allow one to project and create special asynchronous electric drives for various industries. The created types of electric drives will have optimum mass-dimensional and power parameters. It will allow one to realize and fulfill the set characteristics of management of technological processes with optimum level of expenses of electric energy, time of completing the process or other set parameters. The received decision allows one not only to solve a certain optimizing problem, but also to construct dependences between the optimized parameters of special asynchronous electric drives, for example, with the change of power, current in a winding of the stator or rotor, induction in a gap or steel of magnetic conductors and other parameters. On the constructed dependences, it is possible to choose necessary optimum values of parameters of special asynchronous electric drives and their components without carrying out repeated calculations.
2000-11-30
Back dropped by a cloudless blue sky, Space Shuttle Endeavor stands ready for launch after the rollback of the Rotating Service Structure, at left. The orbiter launched that night carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electric system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.
Radioisotope powered AMTEC systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenok, J.F. III; Sievers, R.K.
1994-11-01
Alkali metal thermal to electric converter (AMTEC) systems are being developed for high performance spacecraft power systems, including small, general purpose heat source (GPHS) powered systems. Several design concepts have been evaluated for the power range from 75 W to 1 kW. The specific power for these concepts has been found to be as high as 18-20 W/kg and 22 kW/m(exp 3). The projected area, including radiators, has been as low as 0.4 m(exp 2)/kW. AMTEC power systems are extremely attractive, relative to other current and projected power systems, because AMTEC offers high power density, low projected area, and lowmore » volume. Two AMTEC cell design types have been identified. A single-tube cell is already under development and a multitube cell design, to provide additional power system gains, has undergone proof-of-principle testing. Solar powered AMTEC (SAMTEC) systems are also being developed, and numerous terrestrial applications have been identified for which the same basic AMTEC cells being developed for radioisotope systems are also suitable. 35 refs.« less
Middle East fuel supply & gas exports for power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, G.K.; Newendorp, T.
1995-12-31
The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, includingmore » fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.« less
A High-power Electric Propulsion Test Platform in Space
NASA Technical Reports Server (NTRS)
Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil
2005-01-01
This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for diagnostic instruments, data handling and thermal control. The platform will be designed to accommodate the side-by-side testing of multiple types of electric thrusters. It is intended to be a permanent facility in which different thrusters can be tested over time. ISS crews can provide maintenance for the platform and change out thruster test units as needed. The primary objective of this platform is to provide a test facility for electric propulsion devices of interest for future exploration missions. These thrusters are expected to operate in the range of hundreds of kilowatts and above. However, a platform with this capability could also accommodate testing of thrusters that require much lower power levels. Testing at the higher power levels would be accomplished by using power fiom storage devices on the platform, which would be gradually recharged by the ISS power generation system. This paper will summarize the results of the preliminary phase of the study with an explanation of the user requirements and the initial conceptual design. The concept for test operations will also be described. The NASA project team is defining the requirements but they will also reflect the inputs of the broader electric propulsion community including those at universities, commercial enterprises and other government laboratories. As a facility on the International Space Station, the design requirements are also intended to encompass the needs of international users. Testing of electric propulsion systems on the space station will help advance the development of systems needed for exploration and could also serve the needs of other customers. Propulsion systems being developed for commercial and military applications could be tested and certification testing of mature thrusters could be accomplished in the space environment.
Virtual Power Electronics: Novel Software Tools for Design, Modeling and Education
NASA Astrophysics Data System (ADS)
Hamar, Janos; Nagy, István; Funato, Hirohito; Ogasawara, Satoshi; Dranga, Octavian; Nishida, Yasuyuki
The current paper is dedicated to present browser-based multimedia-rich software tools and e-learning curriculum to support the design and modeling process of power electronics circuits and to explain sometimes rather sophisticated phenomena. Two projects will be discussed. The so-called Inetele project is financed by the Leonardo da Vinci program of the European Union (EU). It is a collaborative project between numerous EU universities and institutes to develop state-of-the art curriculum in Electrical Engineering. Another cooperative project with participation of Japanese, European and Australian institutes focuses especially on developing e-learning curriculum, interactive design and modeling tools, furthermore on development of a virtual laboratory. Snapshots from these two projects will be presented.
NASA Astrophysics Data System (ADS)
Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei
2017-03-01
The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.
Redefining RECs: Additionality in the voluntary Renewable Energy Certificate market
NASA Astrophysics Data System (ADS)
Gillenwater, Michael Wayne
In the United States, electricity consumers are told that they can "buy" electricity from renewable energy projects, versus fossil fuel-fired facilities, through participation in a voluntary green power program. The marketing messages communicate to consumers that their participation and premium payments for a green label will cause additional renewable energy generation and thereby allow them to claim they consume electricity that is absent pollution as well as reduce pollutant emissions. Renewable Energy Certificates (RECs) and wind energy are the basis for the majority of the voluntary green power market in the United States. This dissertation addresses the question: Do project developers respond to the voluntary REC market in the United States by altering their decisions to invest in wind turbines? This question is investigated by modeling and probabilistically quantifying the effect of the voluntary REC market on a representative wind power investor in the United States using data from formal expert elicitations of active participants in the industry. It is further explored by comparing the distribution of a sample of wind power projects supplying the voluntary green power market in the United States against an economic viability model that incorporates geographic factors. This dissertation contributes the first quantitative analysis of the effect of the voluntary REC market on project investment. It is found that 1) RECs should be not treated as equivalent to emission offset credits, 2) there is no clearly credible role for voluntary market RECs in emissions trading markets without dramatic restructuring of one or both markets and the environmental commodities they trade, and 3) the use of RECs in entity-level GHG emissions accounting (i.e., "carbon footprinting") leads to double counting of emissions and therefore is not justified. The impotence of the voluntary REC market was, at least in part, due to the small magnitude of the REC price signal and lack of long-term contracts that would reduce the risk of relying on revenue the voluntary green power market. Although no simple solutions are identified, a proposal for integrating RECs into a load based cap-and-trade system is presented. Keywords: Renewable Energy Certificate (REC); Renewable Portfolio Standard (RPS); emission offset; additionality; attributes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... Patel, Project Manager, US-APWR Projects Branch, Division of New Reactor Licensing, Office of New.... Before issuing the amendment, regardless of whether a hearing is requested, the Commission will make a... make it immediately effective, notwithstanding the request for a hearing. Any hearing held would take...
1985-11-01
Public Utilities Regulatory Policies Act ( PURPA ) criteria for classification as a "Qualifying Facility" (QF). 11. Visual effect of intermittent...the public utility of electric power produced by the cogenerator. The operating standard of PURPA requires that a new QF must produce at least 5% of
Project-Based Learning and Rubrics in the Teaching of Power Supplies and Photovoltaic Electricity
ERIC Educational Resources Information Center
Martinez, F.; Herrero, L. C.; de Pablo, S.
2011-01-01
Project-based learning (PBL) and cooperative learning are, in various aspects, very superior education methodologies compared to other traditional ones. They are highly appropriate methodologies for elective courses, as they exert a strong attraction on the students, quite apart from their educational advantages. This paper describes how PBL and…
78 FR 45918 - Application for Presidential Permit; Soule River Hydroelectric Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Hydro. Soule Hydro proposes to construct and operate a high-voltage alternating current (HVAC... 8-mile long, 138 kilovolt (kV) HVAC 3-phase submarine cable that would be laid on the floor of... whether the proposed project would adversely affect the operation of the U.S. electric power supply system...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... consist of up to 32 wind turbines with a generating capacity of 82 megawatts (MW) of electricity. Power generated by the wind turbines would be transmitted to the existing Bonneville Power Administration... conjunction with the construction, operation, maintenance, and decommissioning of the Radar Ridge Wind Project...
ERIC Educational Resources Information Center
Robinson, Fred
Since it became known in l979 that the Arkansas Power and Light Company was going to build a large electricity generating plant near Hampton and that there would be a lignite mining operation established there to support the power plant, the Warren public schools have been preparing to meet the impact on the schools. Because it was assumed that…
Solar Energy Technician/Installer
ERIC Educational Resources Information Center
Moore, Pam
2007-01-01
Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…
Space/lunar solar power systems research and needs (1999)
NASA Astrophysics Data System (ADS)
Criswell, David R.; Waldron, Robert D.
1999-01-01
Average per capita incomes of people in the Developed and Developing Nations have been diverging since the 1800s. The divergence increased after World War II. Now the per capita cost of commercial energy in the Developing Nations is a large fraction of the per capita income within the Developing Nations. Solar electric power could be provided to Earth from space or lunar installations. This new source power must be low in cost, <=1 ¢/kWe-h, in order to accelerate economic growth in the Developing Nations. Microwave beams appear to be the preferable method of delivering power to Earth. In order to provide low cost solar-electric power the projected cost of the microwave rectifier/antennas, termed rectennas, must be reduced. A reflector-rectenna is proposed to concentrate microwaves before they are converted by compact sets of antenna/rectifiers to electric power. Rectenna costs may be reduced by a factor of 5 and energy costs to the order of 1 ¢/kWe-h or less. The primary disadvantages of the concentrators are an ~10% loss in efficiency and re-emission of non-captured microwave energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelsohn, M.; Lowder, T.; Canavan, B.
Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary ofmore » the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.« less
DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhil, Abbas Ali; Huff, Georgianne; Currier, Aileen B.
2015-02-01
The Electricity Storage Handbook (Handbook) is a how - to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluation s of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical perspectivemore » . This Handbook, jointly sponsored by the U.S. Department of Energy and the Electric Power Research Institute in collaboration with the National Rural Electric Cooperative Association, is published in electronic form at www.sandia.gov/ess. This Handbook is best viewed online.« less
Electric power from sugar cane in Costa Rica. A technical and economic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tugwell, F.; Gowen, M.; Kenda, W.
1988-07-01
A team of specialists visited Costa Rica in May 1988 to analyze the potential for production and sale of electricity by the sugar-cane industry. Focusing on three sugar mills, the team made technical projections at four levels of investment, ranging from the simplest sale of surplus power to the installation of new turbogenerator systems. For each level, capital costs, electricity production and sales, and fuel options were estimated. Associated risks were assessed through sensitivity analyses to demonstrate the possible impacts of varying interest rates, fuel costs, and electricity sales prices. The team concluded that production and sale of electricity formore » the national grid could be an excellent investment opportunity for the sugar industry and would provide important economic benefits, including creation of additional jobs in rural areas, diversification of the sugar industry, and (in the short term) displacement of the need for imported fuels.« less
Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, S. M.; Macknick, J.; Averyt, K.
2014-05-01
Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact onmore » national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.« less
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2014-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2012-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.
Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley
NASA Technical Reports Server (NTRS)
Cole, Stuart K.; DeYoung, Russell J.
2012-01-01
An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.
System Advisor Model, SAM 2011.12.2: General Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, P.; Dobos, A.
2012-02-01
This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2011.12.2, released on December 2, 2011. SAM is software that models the cost and performance of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of solar, wind, geothermal, biomass, and conventional power systems. The financial model can represent financing structures for projects that either buy and sell electricity at retail ratesmore » (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). Advanced analysis options facilitate parametric, sensitivity, and statistical analyses, and allow for interfacing SAM with Microsoft Excel or with other computer programs. SAM is available as a free download at http://sam.nrel.gov. Technical support and more information about the software are available on the website.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alderfer, B.; Eldridge, M.; Starrs, T.
Distributed power is modular electric generation or storage located close to the point of use. Based on interviews of distributed generation project proponents, this report reviews the barriers that distributed generators of electricity are encountering when attempting to interconnect to the electrical grid. Descriptions of 26 of 65 case studies are included in the report. The survey found and the report describes a wide range of technical, business-practice, and regulatory barriers to interconnection. An action plan for reducing the impact of these barriers is also included.
ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
LANDI, J.T.; PLIVELICH, R.F.
2006-04-30
Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, J.; Blarigan, P. Van
1998-08-01
In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end themore » authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.« less
Photovoltaic power system reliability considerations
NASA Technical Reports Server (NTRS)
Lalli, V. R.
1980-01-01
An example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems is presented. This particular application is for a solar cell power system demonstration project designed to provide electric power requirements for remote villages. The techniques utilized involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of fail-safe and planned spare parts engineering philosophy.
Gestion de stockage d'energie thermique d'un parc de chauffe-eaux par une commande a champ moyen
NASA Astrophysics Data System (ADS)
Bourdel, Benoit
In today's energy transition, smart grids and electrical load control are very active research fields. This master's thesis is an offshoot of the SmartDesc project which aims at using energy storage capability of electric household appliances, such as water heaters and electric heaters to mitigate the fluctuations of system loads and renewable generation. The smartDESC project aims at demonstrating that the mean field game theory (MFG), as new mathematical theory, can be used to convert and control water heaters (and possibly space heater) into smart thermal capacities. Thus, a set of "modules" has been developed. These modules are used to generate the optimal control and locally interpret it, to simulate the water-heater thermophysics or water draw event, or to virtualize a telecommunication mesh network. The different aspects of the project have been first studied and developed separately. During the course of this master's research, the modules have been integrated, tested, interfaced and tuned in a common simulator. This simulator is designed to make complete electrical network simulations with a multi-scale approach (from individual water heater to global electric load and production). Firstly, the modules are precisely described theoretically and practically. Then, different types of control are applied to an uniform population of houses fitted with water heaters and controllers. The results of these controls are analysed and compared in order to understand their strengths and weaknesses. Finally, a study was conducted to analyse the resilience of a mean field control. This report demonstrates that mean field game theory in coordination with a system level aggregate model based optimization program, is able to effectively control a large population of water heaters to smooth the overall electrical load. This control offers good resilience to unforeseen circumstances that can disrupt the network. It is also demonstrated that a mean field control is able to absorb fluctuations due to wind power production. Thus, by reducing the variability of the residential sector's electrical charge, the mean field control plays a role in increasing power system stability in the face of high levels of renewable energy penetration. The next stage of smartDESC project is now to set up an intelligent electric water heater prototype. This prototype, in progress since January 2016 at Ecole Polytechnique in Montreal, is aimed at proving concretely the theories developed in the project.
Turner, Sean W D; Ng, Jia Yi; Galelli, Stefano
2017-07-15
An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~-5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5-20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5-15%) without investing in new power generation facilities. Copyright © 2017 Elsevier B.V. All rights reserved.
Turner, Sean W. D.; Ng, Jia Yi; Galelli, Stefano
2017-03-07
Here, an important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction ofmore » change in globally aggregated hydropower production (~–5 to + 5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~ 5–20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~ 5–15%) without investing in new power generation facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Sean W. D.; Ng, Jia Yi; Galelli, Stefano
Here, an important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction ofmore » change in globally aggregated hydropower production (~–5 to + 5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~ 5–20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~ 5–15%) without investing in new power generation facilities.« less
16. Perimeter acquisition radar building room #102, electrical equipment room; ...
16. Perimeter acquisition radar building room #102, electrical equipment room; the prime power distribution system. Excellent example of endulum-types shock isolation. The grey cabinet and barrel assemble is part of the polychlorinated biphenyl (PCB) retrofill project - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
...,250 megawatts of electric power produced from wind turbines to be located in the vicinity of La... States to Mexico, except for the small amount of electrical energy needed for wind turbine lubrication... connect a wind energy project to be built in the vicinity of La Rumorosa, Baja California, Mexico, to San...
Supercapacitors for the energy management of electric vehicles
NASA Astrophysics Data System (ADS)
Faggioli, Eugenio; Rena, Piergeorgio; Danel, Veronique; Andrieu, X.; Mallant, Ronald; Kahlen, Hans
The integration of the on-board energy source of an electrically propelled vehicle with a supercapacitor bank (SB) as a peak power unit, can lead to substantial benefits in terms of electric vehicle performances, battery life and energy economy. Different architectures may be envisaged, to be chosen according to technical-economical trade-off. A research activity, supported by the European Community in the frame of the Joule III program and titled `Development of Supercapacitors for Electric Vehicles' (contract JOE3-CT95-0001), has been in progress since the beginning of 1996. The partners involved are SAFT (project leader), Alcatel Alsthom Research (France), Centro Ricerche Fiat (Italy), University of Kaiserslautern (Germany), Danionics (DK) and ECN (Netherlands). Its objective is to develop a SB and its electronic control and to integrate them in two different full-scale traction systems, supplied, respectively, by sealed lead traction batteries and by a fuel cell system. Through the bench tests, it will be possible to evaluate the impact of the SB on both traction systems. In this paper, a project overview will be given; the power management strategy principles, the supercapacitor's control electronic devices, the system's architecture and the supercapacitor's requirements on the base of the simulation results, will be examined.
Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl
To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of themore » project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.« less
Advanced Integrated Traction System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Smith; Charles Gough
2011-08-31
The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotivemore » platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.« less
Medium- and Heavy-Duty Vehicle Duty Cycles for Electric Powertrains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kenneth; Bennion, Kevin; Miller, Eric
2016-03-02
NREL's Fleet Test and Evaluation group has extensive in-use vehicle data demonstrating the importance of understanding the vocational duty cycle for appropriate sizing of electric vehicle (EV) and power electronics components for medium- and heavy-duty EV applications. This presentation includes an overview of recent EV fleet evaluation projects that have valuable in-use data that can be leveraged for sub-system research, analysis, and validation. Peak power and power distribution data from in-field EVs are presented for four different vocations, including class 3 delivery vans, class 6 delivery trucks, class 8 transit buses, and class 8 port drayage trucks, demonstrating the impactsmore » of duty cycle on performance requirements.« less
Concentrating Solar Power Projects - Waad Al Shamal ISCC Plant |
construction Start Year: 2018 Do you have more information, corrections, or comments? Background Technology Solar Start Production: 2018 Participants Developer(s): General Electric Plant Configuration Solar Field
The Space Station Module Power Management and Distribution automation test bed
NASA Technical Reports Server (NTRS)
Lollar, Louis F.
1991-01-01
The Space Station Module Power Management And Distribution (SSM/PMAD) automation test bed project was begun at NASA/Marshall Space Flight Center (MSFC) in the mid-1980s to develop an autonomous, user-supportive power management and distribution test bed simulating the Space Station Freedom Hab/Lab modules. As the test bed has matured, many new technologies and projects have been added. The author focuses on three primary areas. The first area is the overall accomplishments of the test bed itself. These include a much-improved user interface, a more efficient expert system scheduler, improved communication among the three expert systems, and initial work on adding intermediate levels of autonomy. The second area is the addition of a more realistic power source to the SSM/PMAD test bed; this project is called the Large Autonomous Spacecraft Electrical Power System (LASEPS). The third area is the completion of a virtual link between the SSM/PMAD test bed at MSFC and the Autonomous Power Expert at Lewis Research Center.
Solar perspectives - Israel, solar pond innovator
NASA Astrophysics Data System (ADS)
Winsberg, S.
1981-07-01
Existing and planned solar pond electricity producing power plants in Israel and California are discussed. Salt ponds, with salinity increasing with depth, are coupled with low temperature, organic working fluid Rankine cycle engines to form self-storage, nonpolluting, electric plants. Average pond thermal gradients range from 25 C surface to 90 C at the bottom; 160 GW of potential power have been projected as currently available from existing natural solar ponds from a partial survey of 14 countries. The largest installation to date has a 220 kW output, and a 5 MW plant is scheduled for completion in 1983. Efficiencies of 10% and a cost of $2,000/kW for a 40 MW plant are projected, a cost which is comparable to that of conventional plants. The 40 MW plant is an optimized design, allowing for modular plant additions to increase capacity.
Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas
This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well asmore » on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.« less
Improved Weather and Power Forecasts for Energy Operations - the German Research Project EWeLiNE
NASA Astrophysics Data System (ADS)
Lundgren, Kristina; Siefert, Malte; Hagedorn, Renate; Majewski, Detlev
2014-05-01
The German energy system is going through a fundamental change. Based on the energy plans of the German federal government, the share of electrical power production from renewables should increase to 35% by 2020. This means that, in the near future at certain times renewable energies will provide a major part of Germany's power production. Operating a power supply system with a large share of weather-dependent power sources in a secure way requires improved power forecasts. One of the most promising strategies to improve the existing wind power and PV power forecasts is to optimize the underlying weather forecasts and to enhance the collaboration between the meteorology and energy sectors. Deutscher Wetterdienst addresses these challenges in collaboration with Fraunhofer IWES within the research project EWeLiNE. The overarching goal of the project is to improve the wind and PV power forecasts by combining improved power forecast models and optimized weather forecasts. During the project, the numerical weather prediction models COSMO-DE and COSMO-DE-EPS (Ensemble Prediction System) by Deutscher Wetterdienst will be generally optimized towards improved wind power and PV forecasts. For instance, it will be investigated whether the assimilation of new types of data, e.g. power production data, can lead to improved weather forecasts. With regard to the probabilistic forecasts, the focus is on the generation of ensembles and ensemble calibration. One important aspect of the project is to integrate the probabilistic information into decision making processes by developing user-specified products. In this paper we give an overview of the project and present first results.
NASA Astrophysics Data System (ADS)
Zhang, Jinfang; Yan, Xiaoqing; Wang, Hongfu
2018-02-01
With the rapid development of renewable energy in Northwest China, curtailment phenomena is becoming more and more serve owing to lack of adjustment ability and enough transmission capacity. Based on the existing HVDC projects, exploring the hybrid transmission mode associated with thermal power and renewable power will be necessary and important. This paper has proposed a method on optimal thermal power and renewable energy combination for HVDC lines, based on multi-scheme comparison. Having established the mathematic model for electric power balance in time series mode, ten different schemes have been picked for figuring out the suitable one by test simulation. By the proposed related discriminated principle, including generation device utilization hours, renewable energy electricity proportion and curtailment level, the recommendation scheme has been found. The result has also validated the efficiency of the method.
Alkaline batteries for hybrid and electric vehicles
NASA Astrophysics Data System (ADS)
Haschka, F.; Warthmann, W.; Benczúr-Ürmössy, G.
Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g., nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries.
Power-Conversion Concept Designed for the Jupiter Icy Moons Orbiter
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2004-01-01
The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission being developed by NASA's Office of Space Science under Project Prometheus. JIMO is examining the potential of nuclear electric propulsion (NEP) technology to efficiently deliver scientific payloads to three of Jupiter's moons: Callisto, Ganymede, and Europa. A critical element of the NEP spacecraft is the space reactor power system (SRPS), consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD).
Clarks Hill Lake Water Quality Study.
1982-06-01
multipurpose project designed to reduce flooding on the Savannah River, generate electric power and increase the depth of the Savannah River for... power plant at the dam has seven generators, each with a capacity of 40,000 kilowatts. The average annual energy output of Clarks Hill Power Plant is 700...feet) from the top of power pool elevation of 100.6 meters (330 feet msl) to a minimum pool elevation of 95.1 meters (312 feet msl). Because of below
The equal load-sharing model of cascade failures in power grids
NASA Astrophysics Data System (ADS)
Scala, Antonio; De Sanctis Lucentini, Pier Giorgio
2016-11-01
Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing power demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into ;super-grids;.
Intellectual Production Supervision Perform based on RFID Smart Electricity Meter
NASA Astrophysics Data System (ADS)
Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng
2018-03-01
This topic develops the RFID intelligent electricity meter production supervision project management system. The system is designed for energy meter production supervision in the management of the project schedule, quality and cost information management requirements in RFID intelligent power, and provide quantitative information more comprehensive, timely and accurate for supervision engineer and project manager management decisions, and to provide technical information for the product manufacturing stage file. From the angle of scheme analysis, design, implementation and test, the system development of production supervision project management system for RFID smart meter project is discussed. Focus on the development of the system, combined with the main business application and management mode at this stage, focuses on the energy meter to monitor progress information, quality information and cost based information on RFID intelligent power management function. The paper introduces the design scheme of the system, the overall client / server architecture, client oriented graphical user interface universal, complete the supervision of project management and interactive transaction information display, the server system of realizing the main program. The system is programmed with C# language and.NET operating environment, and the client and server platforms use Windows operating system, and the database server software uses Oracle. The overall platform supports mainstream information and standards and has good scalability.
Demand, Energy, and Power Factor
1994-08-01
POWER FACTOR DEFINITION I Basically , power factor (pf) is a measure of how effectively the plant uses the electricity it purchases from the utility. It...not be made available by the plant. U 24 This video is relatively short, less than fifteen-minutes, and covers the basics on demand, block extenders...designing, implementing, and evaluation of the resultant project. 1 2. Thumann, Albeit. Plant Engineer and Managers Guide to Energv Conservation, 5th ed
Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul
The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’smore » new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.« less
Integrated Power Adapter: Isolated Converter with Integrated Passives and Low Material Stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
ADEPT Project: CPES at Virginia Tech is developing an extremely efficient power converter that could be used in power adapters for small, lightweight laptops and other types of mobile electronic devices. Power adapters convert electrical energy into useable power for an electronic device, and they currently waste a lot of energy when they are plugged into an outlet to power up. CPES at Virginia Tech is integrating high-density capacitors, new magnetic materials, high-frequency integrated circuits, and a constant-flux transformer to create its efficient power converter. The high-density capacitors enable the power adapter to store more energy. The new magnetic materialsmore » also increase energy storage, and they can be precisely dispensed using a low-cost ink-jet printer which keeps costs down. The high-frequency integrated circuits can handle more power, and they can handle it more efficiently. And, the constant-flux transformer processes a consistent flow of electrical current, which makes the converter more efficient.« less
NASA Technical Reports Server (NTRS)
Buttler, Jennifer A.
2004-01-01
The program for which I am working at this summer is Propulsion and Power/Low Emissions Alternative Power (P&P/LEAP). It invests in a fundamental TRL 1-6 research and technology portfolio that will enable the future of: Alternative fuels and/or alternative propulsion systems, non-combustion (electric) propulsion systems. P&P/LEAP will identify and capitalize on the highest potential concepts generated both internal and external to the Agency. During my 2004 summer at NASA Glenn Research Center, I worked with my mentor Barbara Mader, in the Project Office with the Business Team completing various tasks for the project and personnel. The LEAP project is a highly matrixed organization. The Project Office is responsible for the goals advocacy and dollar (budget) of the LEAP project. The objectives of the LEAP Project are to discover new energy sources and develop unconventional engines and power systems directed towards greatly reduced emissions, enable new vehicle concepts for public mobility, new science missions and national security. The Propulsion and PowerLow Emissions Alternative Power directly supports the environmental, mobility, national security objectives of the Vehicle Systems Program and the Aeronautics Technology Theme. Technology deliverables include the demonstration through integrated ground tests, a constant volume combustor in an engine system, and UAV/small transport aircraft all electric power system. My mentor serves as a key member of the management team for the Aeropropulsion Research Program Office (ARPO). She has represented the office on numerous occasions, and is a member of a number of center-wide panels/teams, such as the Space management Committee and is chair to the Business Process Consolidation Team. She is responsible for the overall coordination of resources for the Propulsion and Power Project - from advocacy to implementation. The goal for my summer at NASA was to document processes and archive program documents from the past years. I used the computer and office machines, and also worked with personnel in setting up a Cost Estimation Plan. I gained office experience in Word, Excel, and Power Point, with the completion of a variety of tasks. I made spreadsheets that pertained to the budget plan for Journey to Tomorrow, to name a few I have supported the office by tracking resource information: including programmatic travel, project budget at the center level to budgets for individual research sub-projects and grants. I also assisted the Program Support Office in their duties including, representing the office on numerous occasions on center-wide team/panels, such as the Space management committee, IFMP Budget Formulation, Journey to Tomorrow Committee, and the Vehicle Systems Program Business Process Team.
Enhancement of observability and protection of smart power system
NASA Astrophysics Data System (ADS)
Siddique, Abdul Hasib
It is important for a modern power grid to be smarter in order to provide reliable and sustainable supply of electricity. Traditional way of receiving data from the wired system is a very old and outdated technology. For a quicker and better response from the electric system, it is important to look at wireless systems as a feasible option. In order to enhance the observability and protection it is important to integrate wireless technology with the modern power system. In this thesis, wireless network based architecture for wide area monitoring and an alternate method for performing current measurement for protection of generators and motors, has been adopted. There are basically two part of this project. First part deals with the wide area monitoring of the power system and the second part focuses more on application of wireless technology from the protection point of view. A number of wireless method have been adopted in both the part, these includes Zigbee, analog transmission (Both AM and FM) and digital transmission. The main aim of our project was to propose a cost effective wide area monitoring and protection method which will enhance the observability and stability of power grid. A new concept of wireless integration in the power protection system has been implemented in this thesis work.
A consortium of three brings real geothermal power for California's Imperial valley -- at last
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehlage, E.F.
1983-04-01
Imperial Valley's geothermal history gets a whole new chapter with dedication ceremony for southern California's unusual 10,000 kilowatt power station-SCE in joint corporate venture with Southern Pacific and Union Oil. America's newest and unique electric power generation facility, The Salton Sea Geothermal-Electric Project, was the the site of a formal dedication ceremony while the sleek and stainless jacketed piping and machinery were displayed against a flawlessly brilliant January sky - blue and flecked with a few whisps of high white clouds, while plumes of geothermal steam rose across the desert. The occasion was the January 19, 1983, ceremonial dedication ofmore » the unique U.S.A. power generation facility constructed by an energy consortium under private enterprise, to make and deliver electricity, using geothermal steam released (with special cleaning and treatment) from magma-heated fluids produced at depths of 3,000 to 6,000 feet beneath the floor of the Imperial Valley near Niland and Brawley, California.« less
American power conference: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
The first volume of this conference contains papers on the following topics: (1) Controls, monitoring, and expert systems (Harnessing microprocessor revolution for a more competitive power industry; Plant control--Upgrades; Neural network applications); (2) Diversification and globalization (Electric utility diversification/globalization--Panel; Private power in developing countries); (3) Environment and clean air (Clean Air compliance costs; Site selection for power stations and related facilities; Electric utility trace substance emissions; Solid waste disposal and commercial use; Precipitators/fabric filters; and Effect of flow modifications on fisheries and water quality); (4) Generation--Fuel options equipment (Alternate fuels; Advances in fuel cells for electric power applications; Secondary containmentmore » and seismic requirements for petrochemical facilities; Clean coal technology demonstration; Advanced energy systems; Hydropower); (5) Nuclear operations options (Radioactive waste management and disposal; Off normal conditions; Advanced light water reactors--15 years after TMI; Structural dynamic analyses for nuclear power plants); (6) Retrofit, betterment, repowering maintenance (Project management; Improving competitiveness through process re-engineering; Central stations; Water and wastewater treatment); (7) System planning, operation demand maintenance (Transmission system access; Stability; Systems planning); (8) Transmission and distribution (Transformers; Relaying for system protection; Managing EMF effects); and (9) Education (Power engineering). 155 papers have been processed separately for inclusion on the data base.« less
Lu, Xi; McElroy, Michael B; Chen, Xinyu; Kang, Chongqing
2014-12-16
Although capacity credits for wind power have been embodied in power systems in the U.S. and Europe, the current planning framework for electricity in China continues to treat wind power as a nondispatchable source with zero contribution to firm capacity. This study adopts a rigorous reliability model for the electric power system evaluating capacity credits that should be recognized for offshore wind resources supplying power demands for Jiangsu, China. Jiangsu is an economic hub located in the Yangtze River delta accounting for 10% of the total electricity consumed in China. Demand for electricity in Jiangsu is projected to increase from 331 TWh in 2009 to 800 TWh by 2030. Given a wind penetration level of 60% for the future additional Jiangsu power supply, wind resources distributed along the offshore region of five coastal provinces in China (Shandong, Jiangsu, Shanghai, Zhejiang, and Fujian) should merit a capacity credit of 12.9%, the fraction of installed wind capacity that should be recognized to displace coal-fired systems without violating the reliability standard. In the high-coal-price scenario, with 60% wind penetration, reductions in CO2 emissions relative to a business as usual reference could be as large as 200.2 million tons of CO2 or 51.8% of the potential addition, with a cost for emissions avoided of $29.0 per ton.
A sustainability analysis of an incineration project in Serbia.
Mikic, Miljan; Naunovic, Zorana
2013-11-01
The only option for municipal solid waste (MSW) treatment adopted so far in Serbia is landfilling. Similarly to other south-eastern European countries, Serbia is not recovering any energy from MSW. Fifty percent of electricity in Serbia is produced in coal-fired power plants with emission control systems dating from the 1980s. In this article, the option of MSW incineration with energy recovery is proposed and examined for the city of Novi Sad. A sustainability analysis consisting of financial, economic and sensitivity analyses was done in the form of a cost-benefit analysis following recommendations from the European Commission. Positive and negative social and environmental effects of electricity generation through incineration were valuated partly using conversion factors and shadow prices, and partly using the results of previous studies. Public aversion to MSW incineration was considered. The results showed that the incineration project would require external financial assistance, and that an increase of the electricity and/or a waste treatment fee is needed to make the project financially positive. It is also more expensive than the landfilling option. However, the economic analysis showed that society would have net benefits from an incineration project. The feed-in tariff addition of only €0.03 (KWh)(-1) to the existing electricity price, which would enable the project to make a positive contribution to economic welfare, is lower than the actual external costs of electricity generation from coal in Serbia.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... electrical power from Deepwater Wind's proposed 30 megawatt (MW) offshore wind energy project located in... (BIWF), a proposed 30 MW offshore wind energy project located in Rhode Island State waters approximately... habitats can be found at: http://www.crmc.ri.gov/samp_ocean.html . There are several species of birds...
NASA's Evolutionary Xenon Thruster: The NEXT Ion Propulsion System for Solar System Exploration
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Benson, Scott W.
2008-01-01
This viewgraph presentation reviews NASA s Evolutionary Xenon Thruster (NEXT) Ion Propulsion system. The NEXT project is developing a solar electric ion propulsion system. The NEXT project is advancing the capability of ion propulsion to meet NASA robotic science mission needs. The NEXT system is planned to significantly improve performance over the state of the art electric propulsion systems, such as NASA Solar Electric Propulsion Technology Application Readiness (NSTAR). The status of NEXT development is reviewed, including information on the NEXT Thruster, the power processing unit, the propellant management system (PMS), the digital control interface unit, and the gimbal. Block diagrams NEXT system are presented. Also a review of the lessons learned from the Dawn and NSTAR systems is provided. In summary the NEXT project activities through 2007 have brought next-generation ion propulsion technology to a sufficient maturity level.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
... Offshore Wind Collaborative,'' a public-private entity consisting of NYPA, the Long Island Power Authority... Island-New York City Offshore Wind Project'', is designed to generate at least 350 megawatts (MW) of electricity from offshore wind resources, with the ability to expand generation capacity to as much as 700 MW...
ERIC Educational Resources Information Center
Maseda, F. J.; Martija, I.; Martija, I.
2012-01-01
This paper describes a novel Electrical Machine and Power Electronic Training Tool (EM&PE[subscript TT]), a methodology for using it, and associated experimental educational activities. The training tool is implemented by recreating a whole power electronics system, divided into modular blocks. This process is similar to that applied when…
The Energy Imperative: Report Update
2008-11-01
projections for 2030.2 • Renewable power generation from solar , wind, biomass, and geothermal resources is growing rapidly, but these sources still...consistent policy approach to address cost, regulatory, and transmission infrastructure challenges. For solar photovoltaic (PV) technology, basic...research is particularly important to make the needed improvements in cost and performance. • Solar power can help meet peak load electricity demand
NASA Astrophysics Data System (ADS)
Feliciano-Cruz, Luisa I.
The increasing fossil fuel costs as well as the need to move in a somewhat sustainable future has led the world in a quest for exploiting the free and naturally available energy from the Sun to produce electric power, and Puerto Rico is no exception. This thesis proposes the design of a simulation model for the analysis and performance evaluation of a Solar Thermal Power Plant in Puerto Rico and suggests the use of the Compound Parabolic Concentrator as the solar collector of choice. Optical and thermal analysis of such collectors will be made using local solar radiation data for determining the viability of this proposed project in terms of the electric power produced and its cost.
Undersea line planned to transmit to an island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The electric utility serving Nantucket Island in Massachusetts, which until now has generated its own power, plans to lay 25 miles of transmission cable to connect with New England's mainland grid. The line will allow the utility to purchase less costly power and retire several old generators, improving both reliability and air quality on the island. Nantucket Electric Co. says the 33-Mw submarine link, costing at least $23 million, probably will connect with a line near the elbow on Cape Cod. The undersea cable will be as deep as 60 ft. Nantucket Electric plans to form a partnership within amore » few months with a mainland utility or private producer that would help finance the project and sell the power. The island utility has preliminary approval by the state Industrial Finance Agency for a tax-exempt bond issue to finance the cable, contingent on its finding a partner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeigue, J.; Da Cunha, A.; Severino, D.
Turkey's growing power market has attracted investors and project developers for over a decade, yet their plans have been dashed by unexpected political or financial crises or, worse, obstructed by a lengthy bureaucratic approval process. Now, with a more transparent retail electricity market, government regulators and investors are bullish on Turkey. Is Turkey ready to turn the power on? This report closely examine Turkey's plans to create a power infrastructure capable of providing the reliable electricity supplies necessary for sustained economic growth. It was compiled with on-the-ground research and extensive interview with key industrial and political figures. Today, hard coalmore » and lignite account for 21% of Turkey's electricity generation and gas-fired plants account for 50%. The Alfin Elbistan-B lignite-fired plant has attracted criticism for its lack of desulfurization units and ash dam facilities that have tarnished the industry's image. A 1,100 MW hard-coal fired plant using supercritical technology is under construction. 9 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jadun, Paige; McMillan, Colin; Steinberg, Daniel
This report is the first in a series of Electrification Futures Study (EFS) publications. The EFS is a multiyear research project to explore widespread electrification in the future energy system of the United States. More specifically, the EFS is designed to examine electric technology advancement and adoption for end uses in all major economic sectors as well as electricity consumption growth and load profiles, future power system infrastructure development and operations, and the economic and environmental implications of widespread electrification. Because of the expansive scope and the multiyear duration of the study, research findings and supporting data will be publishedmore » as a series of reports, with each report released on its own timeframe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudgins, Andrew P.; Waight, Jim; Grover, Shailendra
OMNETRIC Corp., Duke Energy, CPS Energy, and the University of Texas at San Antonio (UTSA) created a project team to execute the project 'OpenFMB Reference Architecture Demonstration.' The project included development and demonstration of concepts that will enable the electric utility grid to host larger penetrations of renewable resources. The project concept calls for the aggregation of renewable resources and loads into microgrids and the control of these microgrids with an implementation of the OpenFMB Reference Architecture. The production of power from the renewable resources that are appearing on the grid today is very closely linked to the weather. Themore » difficulty of forecasting the weather, which is well understood, leads to difficulty in forecasting the production of renewable resources. The current state of the art in forecasting the power production from renewables (solar PV and wind) are accuracies in the range of 12-25 percent NMAE. In contrast the demand for electricity aggregated to the system level, is easier to predict. The state of the art of demand forecasting done, 24 hours ahead, is about 2-3% MAPE. Forecasting the load to be supplied from conventional resources (demand minus generation from renewable resources) is thus very hard to forecast. This means that even a few hours before the time of consumption, there can be considerable uncertainty over what must be done to balance supply and demand. Adding to the problem of difficulty of forecasting, is the reality of the variability of the actual production of power from renewables. Due to the variability of wind speeds and solar insolation, the actual output of power from renewable resources can vary significantly over a short period of time. Gusts of winds result is variation of power output of wind turbines. The shadows of clouds moving over solar PV arrays result in the variation of power production of the array. This compounds the problem of balancing supply and demand in real time. Establishing a control system that can manage distribution systems with large penetrations of renewable resources is difficult due to two major issues: (1) the lack of standardization and interoperability between the vast array of equipment in operation and on the market, most of which use different and proprietary means of communication and (2) the magnitude of the network and the information it generates and consumes. The objective of this project is to provide the industry with a design concept and tools that will enable the electric power grid to overcome these barriers and support a larger penetration of clean energy from renewable resources.« less
NASA Astrophysics Data System (ADS)
Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.
2017-12-01
The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50% during intensifying drought scenarios, which can have broader electricity sector system implications. Results relevant to stakeholder and power provider interests highlight the vulnerabilities in grid operations driven by water shortage agreements and changes in the climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acker, Tom; Kipple, Allison
The objective of this project was to develop a curriculum module involving the design and simulation of a wind turbine generator. Dr. Allison Kipple, Assistant Professor of Electrical Engineering, led development of the module, employing graduate and undergraduate students, and Dr. Tom Acker served as project manager and principal investigator. This objective was achieved resulting in development of curricular materials, implementation and revision of the materials in EE 364, a Northern Arizona University electrical engineering course in “Fundamentals of Electromagnetics,” and via dissemination of the curricular materials to a broad community including other universities.
Heat and electricity from the sun using parabolic dish collector systems
NASA Technical Reports Server (NTRS)
Truscello, V. C.; Williams, A. N.
1979-01-01
The paper investigates point focus distributed receiver (PFDR) solar thermal technology for the production of electric power and of industrial process heat. Attention is given to a thermal systems project conducted by JPL under DOE sponsorship. It is reported that project emphasis is on the development of cost-effective systems which will accelerate the commercialization and industrialization of plants up to 10 MWe, using parabolic dish collectors. Also discussed are the characteristics of PFDR systems, the cost targets for major systems hardware, and markets for this technology. Finally, the present system status of the technology development effort is discussed.
NASA Astrophysics Data System (ADS)
Satria, E.
2018-03-01
Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Shweta; Kholod, Nazar; Chaturvedi, Vaibhav
This paper provides projections of water withdrawals and consumption for electricity generation in India through 2050. Based on the results from five energy-economic modeling teams, the paper explores the implications of economic growth, power plant cooling policies, and electricity CO 2 emissions reductions on water withdrawals and consumption. To understand how different modeling approaches derive different results for energy-water interactions, the five teams used harmonized assumptions regarding economic and population growth, the distribution of power plants by cooling technologies, and withdrawals and consumption intensities. The multi-model study provides robust results regarding the different but potentially complementary implications of cooling technologymore » policies and efforts to reduce CO 2 emissions. The water implications of CO 2 emissions reductions depend critically on the approach to these reductions. Focusing on wind and solar power reduces consumption and withdrawals, a focus on nuclear power increases both, and a focus on hydroelectric power could increase consumptive losses through evaporation. Policies focused specifically on cooling water can have substantial and complementary impacts.« less
Thermal Performance Benchmarking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xuhui; Moreno, Gilbert; Bennion, Kevin
2016-06-07
The goal for this project is to thoroughly characterize the thermal performance of state-of-the-art (SOA) in-production automotive power electronics and electric motor thermal management systems. Information obtained from these studies will be used to: evaluate advantages and disadvantages of different thermal management strategies; establish baseline metrics for the thermal management systems; identify methods of improvement to advance the SOA; increase the publicly available information related to automotive traction-drive thermal management systems; help guide future electric drive technologies (EDT) research and development (R&D) efforts. The thermal performance results combined with component efficiency and heat generation information obtained by Oak Ridge Nationalmore » Laboratory (ORNL) may then be used to determine the operating temperatures for the EDT components under drive-cycle conditions. In FY16, the 2012 Nissan LEAF power electronics and 2014 Honda Accord Hybrid power electronics thermal management system were characterized. Comparison of the two power electronics thermal management systems was also conducted to provide insight into the various cooling strategies to understand the current SOA in thermal management for automotive power electronics and electric motors.« less
Srinivasan, Shweta; Kholod, Nazar; Chaturvedi, Vaibhav; ...
2017-05-05
This paper provides projections of water withdrawals and consumption for electricity generation in India through 2050. Based on the results from five energy-economic modeling teams, the paper explores the implications of economic growth, power plant cooling policies, and electricity CO 2 emissions reductions on water withdrawals and consumption. To understand how different modeling approaches derive different results for energy-water interactions, the five teams used harmonized assumptions regarding economic and population growth, the distribution of power plants by cooling technologies, and withdrawals and consumption intensities. The multi-model study provides robust results regarding the different but potentially complementary implications of cooling technologymore » policies and efforts to reduce CO 2 emissions. The water implications of CO 2 emissions reductions depend critically on the approach to these reductions. Focusing on wind and solar power reduces consumption and withdrawals, a focus on nuclear power increases both, and a focus on hydroelectric power could increase consumptive losses through evaporation. Policies focused specifically on cooling water can have substantial and complementary impacts.« less
Power Take-off System for Marine Renewable Devices, CRADA Number CRD-14-566
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard
Ocean Renewable Power Company (ORPC) proposes a project to develop and test innovative second-generation power take-off (PTO) components for the U.S. Department of Energy's 2013 FOA: Marine and Hydrokinetic System Performance Advancement, Topic Area 2 (Project). Innovative PTO components will include new and improved designs for bearings, couplings and a subsea electrical generator. Specific project objectives include the following: (1) Develop components for an advanced PTO suitable for MHK devices; (2) Bench test these components; (3) Assess the component and system performance benefits; (4) Perform a system integration study to integrate these components into an ORPC hydrokinetic turbine. National Renewablemore » Energy Laboratory (NREL) will participate on the ORPC lead team to review design of the generator and will provide guidance on the design. Based on inputs from the project team, NREL will also provide an economic analysis of the impacts of the proposed system performance advancements.« less
Fuel Cell Electric Vehicle Powered by Renewable Hydrogen
None
2018-02-14
The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.
Fuel Cell Electric Vehicle Powered by Renewable Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.
Point Focusing Thermal and Electric Applications Project. Volume 2: Workshop proceedings
NASA Technical Reports Server (NTRS)
Landis, K. E. (Editor)
1979-01-01
Point focus distributed receiver solar thermal technology for the production of electric power and of industrial process heat is discussed. Thermal power systems are described. Emphasis is on the development of cost effective systems which will accelerate the commercialization and industrialization of plants, using parabolic dish collectors. The characteristics of PFDR systems and the cost targets for major subsystems hardware are identified. Markets for this technology and their size are identified, and expected levelized bus bar energy costs as a function of yearly production level are presented. The present status of the technology development effort is discussed.
REDOX electrochemical energy storage
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1980-01-01
Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.
NSTAR Ion Thrusters and Power Processors
NASA Technical Reports Server (NTRS)
Bond, T. A.; Christensen, J. A.
1999-01-01
The purpose of the NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) project is to validate ion propulsion technology for use on future NASA deep space missions. This program, which was initiated in September 1995, focused on the development of two sets of flight quality ion thrusters, power processors, and controllers that provided the same performance as engineering model hardware and also met the dynamic and environmental requirements of the Deep Space 1 Project. One of the flight sets was used for primary propulsion for the Deep Space 1 spacecraft which was launched in October 1998.
Concentrating Solar Power Projects - Solar Electric Generating Station VIII
: Harper Dry Lake, California (Mojave Desert) Owner(s): NextEra (50%) Technology: Parabolic trough Turbine City: Harper Dry Lake State: California County: San Bernardino Region: Mojave Desert Lat/Long Location
Concentrating Solar Power Projects - Solar Electric Generating Station IX |
Station IX (SEGS IX) Country: United States Location: Harper Dry Lake, California (Mojave Desert) Owner(s : Parabolic trough Status: Operational Country: United States City: Harper Dry Lake State: California County
Port of Los Angeles: Off-Road Heavy Duty Equipment and Infrastructure Enhancements
Description of a project at the Port of Los Angeles to replace a diesel crane with an electric crane. Additionally includes information on shore power installation, and cargo handling equipment upgrades.
Caltrans bridge inspection aerial robot.
DOT National Transportation Integrated Search
2008-10-01
The California Department of Transportation (Caltrans) project resulted in the development of a twin-motor, : single duct, electric-powered Aerobot designed of carrying video cameras up to 200 feet in elevation to enable : close inspection of bridges...
Analysis of Unit-Level Changes in Operations with Increased SPP Wind from EPRI/LCG Balancing Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Stanton W
2012-01-01
Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The Departmentmore » of Energy funded the project 'Integrating Midwest Wind Energy into Southeast Electricity Markets' to be led by EPRI in coordination with the main authorities for the regions: SPP, Entergy, TVA, Southern Company and OPC. EPRI utilized several subcontractors for the project including LCG, the developers of the model UPLAN. The study aims to evaluate the operating cost benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of regional cooperation for integrating mid-western wind energy into southeast electricity markets. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. DOE funded Oak Ridge National Laboratory to provide additional support to the project, including a review of results and any side analysis that may provide additional insight. This report is a unit-by-unit analysis of changes in operations due to the different scenarios used in the overall study. It focuses on the change in capacity factors and the number of start-ups required for each unit since those criteria summarize key aspects of plant operations, how often are they called upon and how much do they operate. The primary analysis of the overall project is based on security-constrained unit commitment (SCUC) and economic dispatch (SCED) simulations of the SPP-SERC regions as modeled for the year 2022. The SCUC/SCED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as best as possible in the model. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models and review of simulation results and conclusions. While other SERC utility systems are modeled, the listed SERC utilities were explicitly included as active participants in the project due to the size of their load and relative proximity to SPP for importing wind energy.« less
Onshore Wind Farms: Value Creation for Stakeholders in Lithuania
NASA Astrophysics Data System (ADS)
Burinskienė, Marija; Rudzkis, Paulius; Kanopka, Adomas
With the costs of fossil fuel consistently rising worldwide over the last decade, the development of green technologies has become a major goal in many countries. Therefore the evaluation of wind power projects becomes a very important task. To estimate the value of the technologies based on renewable resources also means taking into consideration social, economic, environmental, and scientific value of such projects. This article deals with economic evaluation of electricity generation costs of onshore wind farms in Lithuania and the key factors that have influence on wind power projects and offer a better understanding of social-economic context behind wind power projects. To achieve these goals, this article makes use of empirical data of Lithuania's wind power farms as well as data about the investment environment of the country.Based on empirical data of wind power parks, the research investigates the average wind farm generation efficiency in Lithuania. Employing statistical methods the return on investments of wind farms in Lithuania is calculated. The value created for every party involved and the total value of the wind farm is estimated according to Stakeholder theory.
Promotion of renewable energy in some MENA region countries
NASA Astrophysics Data System (ADS)
Abdeladim, K.; Bouchakour, S.; Arab, A. Hadj; Ould Amrouche, S.; Yassaa, N.
2018-05-01
In recent years Middle East and North African (MENA) countries, are showing efforts about the integration of renewable electricity into their power markets. Indeed, installations were already achieved and renewable energy programs were launched. The Algerian program remains one of the most ambitious with its installation capacity up to 22GW of power generating to be installed by 2030. More than 60 % of the total capacity is planned to be solar photovoltaic (PV). Like Algeria, Morocco has integrated development project with a target to develop by 2020 a 2000 MW capacity of electricity production from solar energy. The Tunisian government has launched its first phase of the renewable power generation program, with an objective to install 1,000 MW of renewable power capacity over the 2017-2020 periods, where 650 MW of the total capacity is planned to be solar and 350 MW wind. One of the leading Arab country in wind energy, these recent years is Egypt, with its more than 700 megawatt of operational power generation plants and has launched significant projects development in solar energy. Regarding Jordan, the government has taken different steps in this field of energy with a Strategy plan 2007-2020, by implementing a large scale of projects on renewable energy sources, with an objective to cover 10% of the country’s energy supply, from renewable sources by the year 2020. Concerning Lebanon, the country is looking to attain an integration of 12 % by 2020.
NASA Astrophysics Data System (ADS)
Kim, Hyo-Seok
The generation of electrical energy by piezoelectric polymer when mechanically stressed has motivated the investigation of poly(vinylidenefluoride-trifluoro ethylene) (PVDF-TrFE) devices as implantable physiological power supplies. The fragility, specific weight, and rigidity of traditional piezoelectric ceramics used have limited their applicability, although the concept of using piezoelectric elements as mechanically actuated electric power generators for implanted organs has been exploited to some extent. In contrast, piezoelectric polymers are flexible, light, resistant to mechanical fatigue, and efficient as voltage generators. Thus, they can be considered as a source for generating, through mechanical deformation, the electric power needed to fuel implanted artificial organs or to trigger assisting devices such as cardiac pacemakers. This study demonstrates the feasibility of power generation devices that create current from mechanical deformation. One type of power generating device is PVDF-TrFE copolymer and, when built on the pacemaker's lead, can use the motion of the heart as its power source. The other type of device is a Pt-Nafion-PEDOT (PNP) composite device which is fabricated using Perfluorosulfonate ionomeric polymer (Nafion) and conductive polymer, Poly(3,4-ethylenedioxythiophene), by electrochemical synthesis. The device will enable passive location-specific stimulation, thus mimicking the contraction signal of the normal heart. It can generate its own power and may therefore make the battery-lifetime longer. In other applications of these materials is an ultrasound transducer and receiver. Ultrasound transducer/receivers using PNP composite and PVDF as a reference transducer/receiver were studied in order to detect and locate the depth of material (alloy metal, polymer gel) by a pulse-echo method. In a time of flight (TOF) measurement, a transmitter emits short packets of ultrasound waves toward the surface of object in tissue, where they are reflected and then detected by a receiver. The time interval or frequency change between emission and detection is measured as an indicator for the distance. The purpose of this project is to conduct fundamental study into the material properties with an emphasis on polarization-related phenomena. This project specifically focuses on the power generating properties of the hybrid PNP composite device and its application. This device is a new system being applied for the first time because of its potential for generating power. The specific aspects of the devices being studied in the project encompass both macroscopic and microscopic properties of hybrid PNP composite. The microscopic properties include electrical property as measured by impedance spectroscopy and dielectric response characteristics to examine the power generating mechanism of induced polarization for PNP composite device. The produced current and power efficiency by mechanical deformation operation are compared.
Baseline Testing of the Club Car Carryall With Asymmetric Ultracapacitors
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2003-01-01
The NASA John H. Glenn Research Center initiated baseline testing of the Club Car Carryall with asymmetric ultracapacitors as a way to reduce pollution in industrial settings, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future space applications. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The Carryall is a state of the art, ground up, electric utility vehicle. A unique aspect of the project was the use of a state of the art, long life ultracapacitor energy storage system. Innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The Carryall was tested with the standard lead acid battery energy storage system, as well as with an asymmetric ultracapacitor energy storage system. The report concludes that the Carryall provides excellent performance, and that the implementation of asymmetric ultracapacitors in the power system can provide significant performance improvements.
Organizational culture and knowledge management in the electric power generation industry
NASA Astrophysics Data System (ADS)
Mayfield, Robert D.
Scarcity of knowledge and expertise is a challenge in the electric power generation industry. Today's most pervasive knowledge issues result from employee turnover and the constant movement of employees from project to project inside organizations. To address scarcity of knowledge and expertise, organizations must enable employees to capture, transfer, and use mission-critical explicit and tacit knowledge. The purpose of this qualitative grounded theory research was to examine the relationship between and among organizations within the electric power generation industry developing knowledge management processes designed to retain, share, and use the industry, institutional, and technical knowledge upon which the organizations depend. The research findings show that knowledge management is a business problem within the domain of information systems and management. The risks associated with losing mission critical-knowledge can be measured using metrics on employee retention, recruitment, productivity, training and benchmarking. Certain enablers must be in place in order to engage people, encourage cooperation, create a knowledge-sharing culture, and, ultimately change behavior. The research revealed the following change enablers that support knowledge management strategies: (a) training - blended learning, (b) communities of practice, (c) cross-functional teams, (d) rewards and recognition programs, (e) active senior management support, (f) communication and awareness, (g) succession planning, and (h) team organizational culture.
DSM Electricity Savings Potential in the Buildings Sector in APP Countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeil, MIchael; Letschert, Virginie; Shen, Bo
2011-01-12
The global economy has grown rapidly over the past decade with a commensurate growth in the demand for electricity services that has increased a country's vulnerability to energy supply disruptions. Increasing need of reliable and affordable electricity supply is a challenge which is before every Asia Pacific Partnership (APP) country. Collaboration between APP members has been extremely fruitful in identifying potential efficiency upgrades and implementing clean technology in the supply side of the power sector as well established the beginnings of collaboration. However, significantly more effort needs to be focused on demand side potential in each country. Demand side managementmore » or DSM in this case is a policy measure that promotes energy efficiency as an alternative to increasing electricity supply. It uses financial or other incentives to slow demand growth on condition that the incremental cost needed is less than the cost of increasing supply. Such DSM measures provide an alternative to building power supply capacity The type of financial incentives comprise of rebates (subsidies), tax exemptions, reduced interest loans, etc. Other approaches include the utilization of a cap and trade scheme to foster energy efficiency projects by creating a market where savings are valued. Under this scheme, greenhouse gas (GHG) emissions associated with the production of electricity are capped and electricity retailers are required to meet the target partially or entirely through energy efficiency activities. Implementation of DSM projects is very much in the early stages in several of the APP countries or localized to a regional part of the country. The purpose of this project is to review the different types of DSM programs experienced by APP countries and to estimate the overall future potential for cost-effective demand-side efficiency improvements in buildings sectors in the 7 APP countries through the year 2030. Overall, the savings potential is estimated to be 1.7 thousand TWh or 21percent of the 2030 projected base case electricity demand. Electricity savings potential ranges from a high of 38percent in India to a low of 9percent in Korea for the two sectors. Lighting, fans, and TV sets and lighting and refrigeration are the largest contributors to residential and commercial electricity savings respectively. This work presents a first estimates of the savings potential of DSM programs in APP countries. While the resulting estimates are based on detailed end-use data, it is worth keeping in mind that more work is needed to overcome limitation in data at this time of the project.« less
Design and analysis of aluminum/air battery system for electric vehicles
NASA Astrophysics Data System (ADS)
Yang, Shaohua; Knickle, Harold
Aluminum (Al)/air batteries have the potential to be used to produce power to operate cars and other vehicles. These batteries might be important on a long-term interim basis as the world passes through the transition from gasoline cars to hydrogen fuel cell cars. The Al/air battery system can generate enough energy and power for driving ranges and acceleration similar to gasoline powered cars. From our design analysis, it can be seen that the cost of aluminum as an anode can be as low as US 1.1/kg as long as the reaction product is recycled. The total fuel efficiency during the cycle process in Al/air electric vehicles (EVs) can be 15% (present stage) or 20% (projected) comparable to that of internal combustion engine vehicles (ICEs) (13%). The design battery energy density is 1300 Wh/kg (present) or 2000 Wh/kg (projected). The cost of battery system chosen to evaluate is US 30/kW (present) or US$ 29/kW (projected). Al/air EVs life-cycle analysis was conducted and compared to lead/acid and nickel metal hydride (NiMH) EVs. Only the Al/air EVs can be projected to have a travel range comparable to ICEs. From this analysis, Al/air EVs are the most promising candidates compared to ICEs in terms of travel range, purchase price, fuel cost, and life-cycle cost.
Baseline Testing of the Ultracapacitor Enhanced Photovoltaic Power Station
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.
2001-01-01
The NASA John H. Glenn Research Center is developing an advanced ultracapacitor enhanced photovoltaic power station. Goals of this effort include maximizing photovoltaic power generation efficiency and extending the life of photovoltaic energy storage systems. Unique aspects of the power station include the use of a solar tracker, and ultracapacitors for energy storage. The photovoltaic power station is seen as a way to provide electric power in remote locations that would otherwise not have electric power, provide independence form utility systems, reduce pollution, reduce fossil fuel consumption, and reduce operating costs. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB), and the E-Bike. The power station complements the E-Bike extremely well in that it permits the charging of the vehicle batteries in remote locations. Other applications include scientific research and medical power sources in isolated regions. The power station is an inexpensive approach to advance the state of the art in power technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the ultracapacitor enhanced power station, the results of performance testing and future power station development plans is the subject of this report. The report concludes that the ultracapacitor enhanced power station provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.
Challenges for future space power systems
NASA Technical Reports Server (NTRS)
Brandhorst, Henry W., Jr.
1989-01-01
Forecasts of space power needs are presented. The needs fall into three broad categories: survival, self-sufficiency, and industrialization. The cost of delivering payloads to orbital locations and from Low Earth Orbit (LEO) to Mars are determined. Future launch cost reductions are predicted. From these projections the performances necessary for future solar and nuclear space power options are identified. The availability of plentiful cost effective electric power and of low cost access to space are identified as crucial factors in the future extension of human presence in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Ian; Hiskens, Ian; Linderoth, Jeffrey
Building on models of electrical power systems, and on powerful mathematical techniques including optimization, model predictive control, and simluation, this project investigated important issues related to the stable operation of power grids. A topic of particular focus was cascading failures of the power grid: simulation, quantification, mitigation, and control. We also analyzed the vulnerability of networks to component failures, and the design of networks that are responsive to and robust to such failures. Numerous other related topics were investigated, including energy hubs and cascading stall of induction machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charlier, R.H.
1982-01-01
The various methods of extracting energy from the ocean are covered, along with information on what causes tides, how tides are used to generate electricity, and the locations of hundreds of potential sites for tidal power plants. The rehabilitation of old tide mills, new methods of building tidal power plants, and the plastic barrier scheme are described. A world-wide examination is provided of tidal power plant sites and the status of power projects in the US, France, the USSR, England, Canada, North and South Korea, Argentina, Australia, and India. (WHR)
1973-08-01
average to peak flows. Cost estimates include provision of diesel-electric standby power generation. Sewage pumping stations are generally designed for a...20 year design period. The pumping station power costs have been based on a pump efficiency of 75%, the appropriate pumping head, and a power cost of...considered by the project evaluators. Table E4 shows both the total power generating capacity of the station as well as that which is normally available
US effort on HTS power transformers
NASA Astrophysics Data System (ADS)
Mehta, S.
2011-11-01
Waukesha Electric Systems has been working in HTS power transformers development program under the auspices of US Government Department of Energy since 1994. This presentation will describe various milestones for this program and program history along with the lessons learned along the way. Our motivations for working on this development program based on man benefits offered by HTS power transformers to power delivery systems will be discussed. Based on various issues encountered during execution of many HTS projects, DOE has set up an independent program review process that is lead by team of experts. This team reviews are integral part of all DOE HTS projects. Success of all projects would be greatly enhanced by identifying critical issues early in the program. Requiring appropriate actions to mitigate the issues before processing further will lead to proactive interrogation and incorporation of expert's ideas in the project plans. Working of this review process will be also described in this presentation. Waukesha Electric Systems team including: Superpower-Inc, Oak Ridge National Laboratory, University of Houston Center for Superconductivity and Southern California Edison company was awarded a cost share grant by US Government in 2010 for development of a fault current limiting HTS power transformer. This multi year's program will require design, manufacture, installation, and monitoring of a 28 MVA tree phase transformer installed at Irvine CA. Smart Grid demonstration site. Transformer specifications along with requirements for fault current limiting and site requirement will be discussed. Design and development of various sub systems in support of this program including: HTS conductor performance specification, Dielectric system design approach, Dewar development for containing phase assemblies, cryo-cooling system design approach, etc. will be described. Finally; overall program schedule, critical milestone events, test plans and progress to date will be reported.
Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-05-01
The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencingmore » similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broderick, Robert Joseph; Quiroz, Jimmy Edward; Reno, Matthew J.
2015-11-01
The third solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utility Commission (CPUC) is supporting the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with collaboration from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E), in research to improve the Utility Application Review and Approval process for interconnecting distributed energy resources to the distribution system. Currently this process is the most time - consuming of any step on the path to generating power onmore » the distribution system. This CSI RD&D solicitation three project has completed the tasks of collecting data from the three utilities, clustering feeder characteristic data to attain representative feeders, detailed modeling of 16 representative feeders, analysis of PV impacts to those feeders, refinement of current screening processes, and validation of those suggested refinements. In this report each task is summarized to produce a final summary of all components of the overall project.« less
Modeling the value of integrated U.S. and Canadian power sector expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp; Cole, Wesley J.; Steinberg, Daniel C.
The U.S.-Canadian power system has evolved into a highly integrated grid. Cross-border transmission and coordination of system operations create an interconnected power system with combined imports and exports of electricity of greater than 77 TWh per year. Currently, more than 5 GW of new international transmission lines are in various stages of permitting and development. These transmission lines may enable even greater integration and coordination of the U.S. and Canadian systems, which can in turn increase the reliability and flexibility of North America's electricity grid and help address challenges associated with integrating high levels of variable renewables. Using a versionmore » of the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that incorporates Canada, this analysis quantifies the differences in the evolution of the power system under scenarios in which cross-border transmission capacity is restricted to today's levels, and scenarios in which new transmission is less restricted. These impacts are analyzed under a 'business-as-usual' reference scenario and a scenario in which deep cuts in power sector carbon dioxide emissions levels are achieved. A set of key impact metrics is analyzed, including 1) the composition of generating capacity by technology, 2) system costs, 3) wholesale electricity prices, 4) international electricity exports and imports, 5) transmission capacity, and 6) carbon dioxide emission levels. When new cross-border transmission is not allowed, the United States needs additional capacity (primarily natural gas and renewable energy) to meet domestic needs, while total Canadian capacity is lower because less capacity is needed to export to the United States. This effect is amplified under the carbon cap scenario. Impacts vary on a regional basis, largely due to the different relative sizes of the generation portfolio between countries and regions and the relative impact from cross-border electricity trade. The total impact from restricting cross-border trade on carbon emissions and average wholesale electricity prices is limited, due to the relative size of the domestic power systems and the cross-border trade volume. Lastly, cross-border transmission capacity is projected to more than double under the unrestricted transmission capacity scenarios, which exceeds the rate of projected domestic transmission capacity additions in each country.« less