Science.gov

Sample records for electric space propulsion

  1. In-Space Propulsion Solar Electric Propulsion Technology Overview

    NASA Astrophysics Data System (ADS)

    Dankanich, John W.

    2006-12-01

    NASA’s In-space Propulsion Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The solar electric propulsion technology area has been investing in NASA’s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk and cost of NASA planetary science missions. Current status and expected capabilities of the solar electric propulsion technologies will be discussed.

  2. The electric rail gun for space propulsion

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Barber, J. P.; Vahlberg, C. J.

    1981-01-01

    An analytic feasibility investigation of an electric propulsion concept for space application is described. In this concept, quasistatic thrust due to inertial reaction to repetitively accelerated pellets by an electric rail gun is used to propel a spacecraft. The study encompasses the major subsystems required in an electric rail gun propulsion system. The mass, performance, and configuration of each subsystem are described. Based on an analytic model of the system mass and performance, the electric rail gun mission performance as a reusable orbital transfer vehicle (OTV) is analyzed and compared to a 30 cm ion thruster system (BIMOD) and a chemical propulsion system (IUS) for payloads with masses of 1150 kg and 2300 kg. For system power levels in the range from 25 kW(e) to 100 kW(e) an electric rail gun OTV is more attractive than a BIMOD system for low Earth orbit to geosynchronous orbit transfer durations in the range from 20 to 120 days.

  3. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  4. Nuclear Electric Propulsion for Deep Space Exploration

    NASA Astrophysics Data System (ADS)

    Schmidt, G.

    Nuclear electric propulsion (NEP) holds considerable promise for deep space exploration in the future. Research and development of this technology is a key element of NASA's Nuclear Systems Initiative (NSI), which is a top priority in the President's FY03 NASA budget. The goal is to develop the subsystem technologies that will enable application of NEP for missions to the outer planets and beyond by the beginning of next decade. The high-performance offered by nuclear-powered electric thrusters will benefit future missions by (1) reducing or eliminating the launch window constraints associated with complex planetary swingbys, (2) providing the capability to perform large spacecraft velocity changes in deep space, (3) increasing the fraction of vehicle mass allocated to payload and other spacecraft systems, and, (3) in some cases, reducing trip times over other propulsion alternatives. Furthermore, the nuclear energy source will provide a power-rich environment that can support more sophisticated science experiments and higher- speed broadband data transmission than current deep space missions. This paper addresses NASA's plans for NEP, and discusses the subsystem technologies (i.e., nuclear reactors, power conversion and electric thrusters) and system concepts being considered for the first generation of NEP vehicles.

  5. Nuclear Electric Propulsion for Outer Space Missions

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    2003-01-01

    Today we know of 66 moons in our very own Solar System, and many of these have atmospheres and oceans. In addition, the Hubble (optical) Space Telescope has helped us to discover a total of 100 extra-solar planets, i.e., planets going around other suns, including several solar systems. The Chandra (X-ray) Space Telescope has helped us to discover 33 Black Holes. There are some extremely fascinating things out there in our Universe to explore. In order to travel greater distances into our Universe, and to reach planetary bodies in our Solar System in much less time, new and innovative space propulsion systems must be developed. To this end NASA has created the Prometheus Program. When one considers space missions to the outer edges of our Solar System and far beyond, our Sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at Earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Therefore, beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer Solar System, power is knowledge. It is important that the public be made aware of the tremendous space benefits offered by Nuclear Electric Propulsion (NEP) and the minimal risk it poses to our environment. This paper presents an overview of the reasons for NEP systems, along with their basic components including the reactor, power conversion units (both static and dynamic), electric thrusters, and the launch safety of the NEP system.

  6. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  7. Electric propulsion

    NASA Astrophysics Data System (ADS)

    Garrison, Philip W.

    Electric propulsion (EP) is an attractive option for unmanned orbital transfer vehicles (OTV's). Vehicles with solar electric propulsion (SEP) could be used routinely to transport cargo between nodes in Earth, lunar, and Mars orbit. Electric propulsion systems are low-thrust, high-specific-impulse systems with fuel efficiencies 2 to 10 times the efficiencies of systems using chemical propellants. The payoff for this performance can be high, since a principal cost for a space transportation system is that of launching to low Earth orbit (LEO) the propellant required for operations between LEO and other nodes. Several aspects of electric propulsion, including candidate systems and the impact of using nonterrestrial materials, are discussed.

  8. Nuclear modules for space electric propulsion

    NASA Astrophysics Data System (ADS)

    Difilippo, F. C.

    1998-01-01

    The analysis of interplanetary cargo and piloted missions requires the calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options in an iterative way by using simulations that run fast on a computer. As a consequence of a collaborative agreement between the National Aeronautic and Space Administration (NASA) and the Oak Ridge National Laboratory (ORNL), ORNL has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition, dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one

  9. Concept of electric propulsion realization for high power space tug

    NASA Astrophysics Data System (ADS)

    Zakharenkov, L. E.; Semenkin, A. V.; Solodukhin, A. E.

    2016-07-01

    Popular at the beginning of the Space Age, ambitious projects aimed at Moon, Mars, and other space objects exploration, have returned with new technology and design level. High power space tug with electric propulsion system (EPS) is mainly considered as a transport vehicle for such missions. Modern high power space tugs projects as well as their spacecraft (SC) power and propulsion systems are reviewed in the paper. The main technologies and design solutions needed for high-power EPS realization are considered.

  10. Advanced Electric Propulsion for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steve

    1999-01-01

    The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.

  11. Electric Propulsion Requirements and Mission Analysis Under NASA's In-Space Propulsion Technology Project

    NASA Technical Reports Server (NTRS)

    Dudzinski, Leonard a.; Pencil, Eric J.; Dankanich, John W.

    2007-01-01

    The In-Space Propulsion Technology Project (ISPT) is currently NASA's sole investment in electric propulsion technologies. This project is managed at NASA Glenn Research Center (GRC) for the NASA Headquarters Science Mission Directorate (SMD). The objective of the electric propulsion project area is to develop near-term and midterm electric propulsion technologies to enhance or enable future NASA science missions while minimizing risk and cost to the end user. Systems analysis activities sponsored by ISPT seek to identify future mission applications in order to quantify mission requirements, as well as develop analytical capability in order to facilitate greater understanding and application of electric propulsion and other propulsion technologies in the ISPT portfolio. These analyses guide technology investments by informing decisions and defining metrics for technology development to meet identified mission requirements. This paper discusses the missions currently being studied for electric propulsion by the ISPT project, and presents the results of recent electric propulsion (EP) mission trades. Recent ISPT systems analysis activities include: an initiative to standardize life qualification methods for various electric propulsion systems in order to retire perceived risk to proposed EP missions; mission analysis to identify EP requirements from Discovery, New Frontiers, and Flagship classes of missions; and an evaluation of system requirements for radioisotope-powered electric propulsion. Progress and early results of these activities is discussed where available.

  12. Benefits of electric propulsion for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Barnett, John W.

    1990-01-01

    An overview of the benefits which may be derived through the use of electric propulsion in support of the Space Exploration Initiative is presented. Lunar cargo, Mars cargo and piloted Mars vehicles using electric propulsion are considered. The high performance of electric propulsion systems is shown to offer substantial benefits for these applications, including: substantially reduced initial masses in low earth orbit, reduced round-trip times for piloted Mars vehicles, availability of large amounts of electrical power en route and at the destination, less sensitivity to launch dates and windows, reusability, and growth potential for human exploration of the solar system. Hybrid chemical/NEP and NTR/NEP vehicles are discussed for their potential to reduce piloted round-trip time to Mars even further. A brief technology assessment of the major electric propulsion system components is also presented.

  13. Nuclear modules for space electric propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow.

  14. Electric Propulsion for International Space Station Reboost: A Fresh Look

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Benson, Scott W.

    2002-01-01

    Electric propulsion has recently been revisited for reboost of space station due to its high fuel efficiency. This paper focuses upon the propulsion system and orbit analysis trades undertaken at the beginning of a study to show the relative performance of potential electric propulsion system. A code was developed to analyze continuous low thrust reboost of space station with various electric propulsion systems at various power levels. Analysis showed that a major portion of reboost of space station can be made using electric propulsion systems with 0.5 N of continuous thrust. 1.0 N of EP thrust can provide almost the entire reboost mission, Three electric propulsion systems at various total power levels were chosen for further investigation: N2H4 arcjets at 5 kW, xenon Hall at 10 kW, and xenon ion thrusters at 20 kW. They were chosen for their ability to reduce the internationally launched chemical reboost fuel by 50% or more.

  15. Solar Electric Propulsion Concepts for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; McGuire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2015-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  16. Solar Electric Propulsion Concepts for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  17. In-Space Propulsion Solar Electric Propulsion Program Overview of 2006

    NASA Technical Reports Server (NTRS)

    Baggett, Randy M.; Hulgan, Wendy W.; Dankanich, John W.; Bechtel, Robert T.

    2006-01-01

    The primary source of electric propulsion development throughout NASA is implemented by the In-Space Propulsion Technology Project at the NASA MSFC under the management of the Science Mission Directorate. The Solar Electric Propulsion technology area's objective is to develop near and mid-term SEP technology to enhance or enable mission capture while minimizing risk and cost to the end user. Major activities include developing NASA s Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development, advanced cathode testing and xenon recovery testing. Progress on current investments and future plans are discussed.

  18. High Power Electric Propulsion for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Polk, Jay

    2011-01-01

    Slide presentation reviews: (1) An Electric Propulsion Primer (2) The Flexible Path and the Electric Path (2a) A New Plan for Human Exploration (2b)The Role of Electric Propulsion (3) High Power Electric Thrusters (3a)Hall Thrusters (3b) Magnetoplasmadynamic Thrusters (4)Challenges for the Next Generation of Advanced Propulsion Technologist

  19. A High-power Electric Propulsion Test Platform in Space

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for

  20. Lightweight Radiator for in Space Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  1. Advanced Hall Electric Propulsion for Future In-space Transportation

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    2001-01-01

    The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant thrusters. The Hall thruster operates nominally in the 1500 sec specific impulse regime. It provides greater thrust to power than conventional gridded ion engines, thus reducing trip times and operational life when compared to that technology in Earth orbit applications. The technology in the far term, by adding a second acceleration stage, has shown promise of providing over 4000s Isp, the regime of the gridded ion engine and necessary for deep space applications. The Hall thruster system consists of three parts, the thruster, the power processor, and the propellant system. The technology is operational and commercially available at the 1.5 kW power level and 5 kW application is underway. NASA is looking toward 10 kW and eventually 50 kW-class engines for ambitious space transportation applications. The former allows launch vehicle step-down for GEO missions and demanding planetary missions such as Europa Lander, while the latter allows quick all-electric propulsion LEO to GEO transfers and non-nuclear transportation human Mars missions.

  2. Study of electrical and chemical propulsion systems for auxiliary propulsion of large space systems, volume 2

    NASA Technical Reports Server (NTRS)

    Smith, W. W.

    1981-01-01

    The five major tasks of the program are reported. Task 1 is a literature search followed by selection and definition of seven generic spacecraft classes. Task 2 covers the determination and description of important disturbance effects. Task 3 applies the disturbances to the generic spacecraft and adds maneuver and stationkeeping functions to define total auxiliary propulsion systems requirements for control. The important auxiliary propulsion system characteristics are identified and sensitivities to control functions and large space system characteristics determined. In Task 4, these sensitivities are quantified and the optimum auxiliary propulsion system characteristics determined. Task 5 compares the desired characteristics with those available for both electrical and chemical auxiliary propulsion systems to identify the directions technology advances should take.

  3. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  4. Electric propulsion and its applications to space missions

    NASA Technical Reports Server (NTRS)

    Finke, R. C.

    1981-01-01

    Consideration is given the NASA, Air Force and European electric propulsion programs, the characteristics of primary electric propulsion systems, nuclear electric orbit transfer vehicles, and such topics in the fundamental processes of electrostatic thrusters as sputtering in mercury ion thrusters, the screen hole plasma sheath of an ion accelerator system, and the modelling of ion beam neutralization and nitrogen chemisorption. Also considered are electrostatic thruster components and systems, electromagnetic thrusters such as MPD and RIT systems, electric rail guns and mass drivers, power sources which include solar and nuclear alternatives, power conversion systems and their cooling apparatus, and the environmental interactions between spacecraft and their electric propulsion systems.

  5. Space Weather Concerns for All-Electric Propulsion Satellites

    NASA Astrophysics Data System (ADS)

    Horne, Richard B.; Pitchford, David

    2015-08-01

    The introduction of all-electric propulsion satellites is a game changer in the quest for low-cost access to space. It also raises new questions for satellite manufacturers, operators, and the insurance industry regarding the general risks and specifically the threat of adverse space weather. The issues surrounding this new concept were discussed by research scientists and up to 30 representatives from the space industry at a special meeting at the European Space Weather Week held in November 2014. Here we report on the discussions at that meeting. We show that for a satellite undergoing electric orbit raising for 200 days the radiation dose due to electrons is equivalent to approximately 6.7 year operation at geostationary orbit or approximately half the typical design life. We also show that electrons can be injected into the slot region (8000 km) where they pose a risk of satellite internal charging. The results highlight the importance of additional radiation protection. We also discuss the benefits, the operational considerations, the other risks from the Van Allen radiation belts, the new business opportunities for space insurance, and the need for space situation awareness in medium Earth orbit where electric orbit raising takes place.

  6. Radioisotope Electric Propulsion for Deep Space Sample Return

    SciTech Connect

    Noble, Robert J.; /SLAC

    2009-07-14

    The need to answer basic questions regarding the origin of the Solar System will motivate robotic sample return missions to destinations like Pluto, its satellite Charon, and objects in the Kuiper belt. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher return velocities. A sample return mission involves several complicated steps to reach an object and obtain a sample, but only the interplanetary return phase of the mission is addressed in this paper. Radioisotope electric propulsion is explored in this parametric study as a means to propel small, dedicated return vehicles for transferring kilogram-size samples from deep space to Earth. Return times for both Earth orbital rendezvous and faster, direct atmospheric re-entry trajectories are calculated for objects as far away as 100 AU. Chemical retro-rocket braking at Earth is compared to radioisotope electric propulsion but the limited deceleration capability of chemical rockets forces the return trajectories to be much slower.

  7. Electric Propulsion Apparatus

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2013-01-01

    An electric propulsion machine includes an ion thruster having an annular discharge chamber housing an anode having a large surface area. The ion thruster includes flat annular ion optics with a small span to gap ratio. Optionally, a second electric propulsion thruster may be disposed in a cylindrical space disposed within an interior of the annulus.

  8. Electric Sail Propulsion for Exploring Nearby Interstellar Space

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Wiegmann, Bruce; Bangham, Mike

    2015-01-01

    An Electric Sail is a revolutionary propellant-less propulsion system that is ideal for deep space missions to the outer planets, the Heliopause, and beyond. It is revolutionary in that it uses momentum exchange with the hypersonic solar wind to propel a spacecraft within the heliosphere. The momentum exchange is affected by the deflection of charged solar wind particles by an array of electrically biased wires that extend outward up to 30 km from a slowly rotating spacecraft. A high-voltage, positive bias on the wires, which are oriented normal to the solar wind flow, deflects the streaming protons, resulting in a reaction force on the wires that is also directed radially away from the sun. Over a period of months, this small force can accelerate the spacecraft to enormous speeds-on the order of 100-150 km/s (approximately 20 to 30 AU/yr). Unlike solar sails, Electric Sails do not rely on a fixed area to produce thrust. In fact, as they move away from the Sun and solar wind pressure decreases, the area for solar proton momentum transfer becomes larger, increasing system efficiency. As a result, thrust decreases at ˜1/r**(7/6) instead of the ˜1/r**2 rate typical for solar sails. The net effect is that an increased radial range of operation, together with increased thrust, both contribute to higher velocities and shorter total trip times to distant destinations. The MSFC Advanced Concepts Office (ACO) was awarded a Phase II NASA Innovative Advanced Concepts (NIAC) study to mature the technology for possible future demonstration and implementation. Preliminary results indicate that the physics of the system is viable and that a spacecraft propelled by an Electric Sail could reach the Heliopause in less than 15 years - and could be developed within a decade.

  9. Low Cost Electric Propulsion Thruster for Deep Space Robotic Science Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David

    2008-01-01

    Electric Propulsion (EP) has found widespread acceptance by commercial satellite providers for on-orbit station keeping due to the total life cycle cost advantages these systems offer. NASA has also sought to benefit from the use of EP for primary propulsion onboard the Deep Space-1 and DAWN spacecraft. These applications utilized EP systems based on gridded ion thrusters, which offer performance unequaled by other electric propulsion thrusters. Through the In-Space Propulsion Project, a lower cost thruster technology is currently under development designed to make electric propulsion intended for primary propulsion applications cost competitive with chemical propulsion systems. The basis for this new technology is a very reliable electric propulsion thruster called the Hall thruster. Hall thrusters, which have been flown by the Russians dating back to the 1970s, have been used by the Europeans on the SMART-1 lunar orbiter and currently employed by 15 other geostationary spacecraft. Since the inception of the Hall thruster, over 100 of these devices have been used with no known failures. This paper describes the latest accomplishments of a development task that seeks to improve Hall thruster technology by increasing its specific impulse, throttle-ability, and lifetime to make this type of electric propulsion thruster applicable to NASA deep space science missions. In addition to discussing recent progress on this task, this paper describes the performance and cost benefits projected to result from the use of advanced Hall thrusters for deep space science missions.

  10. NASA electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stone, J. R.; Aston, G.

    1985-01-01

    It is pointed out that the requirements for future electric propulsion cover an extremely large range of technical and programmatic characteristics. A NASA program is to provide options for the many potential mission applications, taking into account work on electrostatic, electromagnetic, and electrothermal propulsion systems. The present paper is concerned with developments regarding the three classes of electric propulsion. Studies concerning electrostatic propulsion are concerned with ion propulsion for primary propulsion for planetary and earth-orbit transfer vehicles, stationkeeping for geosynchronous spacecraft, and ion thruster systems. In connection with investigations related to electromagnetic propulsion, attention is given to electromagnetic launchers, the Hall current thruster, and magnetoplasmadynamic thrusters. In a discussion of electrothermal developments, space station resistojets are considered along with high performance resistojets, arcjets, and a laser thruster.

  11. Space transfer with ground-based laser/electric propulsion

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Stavnes, Mark; Oleson, Steve; Bozek, John

    1993-01-01

    A new method of providing power to space vehicles consists of using ground-based lasers to beam power to photovoltaic receivers in space. This can be used as a power source for electrically propelled orbital transfer vehicles.

  12. Electric propulsion for near-Earth space missions

    NASA Technical Reports Server (NTRS)

    Terwilliger, C. H.; Smith, W. W.

    1980-01-01

    A set of missions was postulated that was considered to be representative of those likely to be desirable/feasible over the next three decades. The characteristics of these missions, and their payloads, that most impact the choice/design of the requisite propulsion system were determined. A system-level model of the near-Earth transportation process was constructed, which incorporated these mission/system characteristics, as well as the fundamental parameters describing the technology/performance of an ion bombardment based electric propulsion system. The model was used for sensitivity studies to determine the interactions between the technology descriptors and program costs, and to establish the most cost-effective directions for technology advancement. The most important factor was seen to be the costs associated with the duration of the mission, and this in turn makes the development of advanced electric propulsion systems having moderate to high efficiencies ( 50 percent) at intermediate ranges of specific impulse (approximately 1000 seconds) very desirable.

  13. Space Propulsion Technology Program Overview

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1991-01-01

    The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).

  14. Radioisotope electric propulsion of sciencecraft to the outer solar system and near-interstellar space

    SciTech Connect

    Noble, R.J.

    1998-08-01

    Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near-interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated.

  15. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 2: Encke rendezvous mission and space vehicle functional description

    NASA Technical Reports Server (NTRS)

    Gardner, J. A.

    1972-01-01

    A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.

  16. Design of Electrical Systems for Rocket Propulsion Test Facilities at the John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Hughes, Mark S.; Davis, Dawn M.; Bakker, Henry J.; Jensen, Scott L.

    2007-01-01

    This viewgraph presentation reviews the design of the electrical systems that are required for the testing of rockets at the Rocket Propulsion Facility at NASA Stennis Space Center (NASA SSC). NASA/SSC s Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware. These must be accurate reliable comprehensive and timely. Data acquisition in a rocket propulsion test environment is challenging: severe temporal transient dynamic environments, large thermal gradients, vacuum to 15 ksi pressure regimes SSC has developed and employs DAS, control systems and control systems and robust instrumentation that effectively satisfies these challenges.

  17. Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.

    2001-01-01

    The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.

  18. Electric Propulsion Concepts Enabled by High Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Gilland, James; Fiehler, Douglas; Lyons, Valerie

    2005-01-01

    This paper describes the latest development in electric propulsion systems being planned for the new Space Exploration initiative. Missions to the Moon and Mars will require these new thrusters to deliver the large quantities of supplies that would be needed to support permanent bases on other worlds. The new thrusters are also being used for unmanned exploration missions that will go to the far reaches of the solar system. This paper is intended to give the reader some insight into several electric propulsion concepts their operating principles and capabilities, as well as an overview of some mission applications that would benefit from these propulsion systems, and their accompanying advanced power systems.

  19. Influence of Space Propulsions and Plasma Sources on Electric-Discharge Phenomena on the ISS

    NASA Astrophysics Data System (ADS)

    Tverdokhlebova, E. M.; Korsun, A. G.; Garkusha, V. I.; Strashinsky, V. A.; Gabdullin, F. F.; Tverdokhlebov, S. O.

    2004-10-01

    The electric field generated by the high voltage solar array of the International Space Station (ISS) induces electric discharges between constructions of the Station. The intensity of these discharges is affected by the plasma environment resulting from the activity of space propulsions and other onboard plasma sources. Parameters of the plasma environment are calculated taking into account the effect of the geomagnetic field and ionizing fluxes in space.

  20. Radioisotope electric propulsion of sciencecraft to the outer Solar System and near-interstellar space

    SciTech Connect

    Noble, R.J.

    1999-11-01

    Radioisotopes have been used successfully for more than 25 years to supply the heat for thermoelectric generators on various deep-space probes. Radioisotope electric propulsion (REP) systems have been proposed as low-thrust ion propulsion units based on radioisotope electric generators and ion thrusters. The perceived liability of radioisotope electric generators for ion propulsion is their high mass. Conventional radioisotope thermoelectric generators have a specific mass of about 200 kg/kW of electric power. Many development efforts have been undertaken with the aim of reducing the specific mass of radioisotope electric systems. Recent performance estimates suggest that specific masses of 50 kg/kW may be achievable with thermophotovoltaic and alkali metal thermal-to-electric conversion generators. Powerplants constructed from these near-term radioisotope electric generators and long-life ion thrusters will likely have specific masses in the range of 100 to 200 kg/kW of thrust power if development continues over the next decade. In earlier studies, it was concluded that flight times within the Solar System are indeed insensitive to reductions in the powerplant specific mass, and that a timely scientific program of robotic planetary rendezvous and near-interstellar space missions is enabled by primary electric propulsion once the powerplant specific mass is in the range of 100 to 200 kg/kW. Flight times can be substantially reduced by using hybrid propulsion schemes that combine chemical propulsion, gravity assist, and electric propulsion. Hybrid schemes are further explored in this article to illustrate how the performance of REP is enhanced for Pluto rendezvous, heliopause orbiter, and gravitational lens missions.

  1. Electric vehicle propulsion alternatives

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  2. A study of the compatibility of science instruments with the solar electric propulsion space vehicle

    NASA Technical Reports Server (NTRS)

    Parker, R. H.; Ajello, J. M.; Bratenahl, A.; Clay, D. R.; Tsurutani, B.

    1973-01-01

    Electromagnetic interference and field-of-view constraints are identified as the areas of most concern to science on solar electric propulsion space vehicles. Several areas are indicated which more detailed data on the space vehicle environment are needed. In addition, possible means to attain or demonstrate science/space vehicle compatibility are recommended for further iteration between space vehicle design and science payload considerations. The space vehicle design developed by the solar electric propulsion system integration technology effort is used. Two payload sets for comet Encke missions (a slow flyby and a rendezvous), as well as several instruments which are not included in the two payload sets, are analyzed to determine requirements on the space vehicle imposed by the instruments in order to meet their objectives. Environmental requirements for the sets of instruments are developed and compared to both the SEPSIT design criteria and the environment as it is presently understood.

  3. Reactors for nuclear electric propulsion

    SciTech Connect

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  4. Electric Propulsion Applications and Impacts

    NASA Technical Reports Server (NTRS)

    Curran, Frank M.; Wickenheiser, Timothy J.

    1996-01-01

    Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.

  5. Advanced Space Robotics and Solar Electric Propulsion: Enabling Technologies for Future Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Tadros, A.

    2017-02-01

    Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.

  6. Electric propulsion, circa 2000

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Finke, R. C.

    1980-01-01

    This paper discusses the future of electric propulsion, circa 2000. Starting with the first generation Solar Electric Propulsion (SEP) technology as the first step toward the next century's advanced propulsion systems, the current status and future trends of other systems such as the magnetoplasmadynamic accelerator, the mass driver, the laser propulsion system, and the rail gun are described.

  7. Electric Propulsion Test & Evaluation Methodologies for Plasma in the Environments of Space and Testing (EP TEMPEST) (Briefing Charts)

    DTIC Science & Technology

    2015-04-01

    Briefing Charts 3. DATES COVERED (From - To) March 2015-April 2015 4. TITLE AND SUBTITLE Electric Propulsion Test & Evaluation Methodologies for Plasma...Integrity  Service  Excellence Air Force Research Laboratory Electric Propulsion Test & Evaluation Methodologies for Plasma in the Environments...of Space and Testing (EP TEMPEST) AFOSR T&E Program Review 13-17 April 2015 Dr. Daniel L. Brown In-Space Propulsion Branch (RQRS) Aerospace Systems

  8. Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1996-01-01

    system with a low initial development and infrastructure cost and a high operating cost. Note however that this has resulted in a 'Catch 22' standoff between the need for large initial investment that is amortized over many launches to reduce costs, and the limited number of launches possible at today's launch costs. Some examples of missions enabled (either in cost or capability) by advanced propulsion include long-life station-keeping or micro-spacecraft applications using electric propulsion or BMDO-derived micro-thrusters, low-cost orbit raising (LEO to GEO or Lunar orbit) using electric propulsion, robotic planetary missions using aerobraking or electric propulsion, piloted Mars missions using aerobraking and/or propellant production from Martian resources, very fast (100-day round-trip) piloted Mars missions using fission or fusion propulsion, and, finally, interstellar missions using fusion, antimatter, or beamed energy. The NASA Advanced Propulsion Technology program at the Jet Propulsion Laboratory (JPL) is aimed at assessing the feasibility of a range of near-term to far term advanced propulsion technologies that have the potential to reduce costs and/or enable future space activities. The program includes cooperative modeling and research activities between JPL and various universities and industry; and directly supported independent research at universities and industry. The cooperative program consists of mission studies, research and development of ion engine technology using C60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry-supported research includes modeling and proof-of-concept experiments in advanced, high-lsp, long-life electric propulsion, and in fusion propulsion.

  9. Operational experiments and thruster performance plan for the Nuclear Electric Propulsion Space Test Program (NEPSTP)

    NASA Astrophysics Data System (ADS)

    Bythrow, P. F.; Mauk, B. H.; Gatsonis, N. A.; Bokulic, R. S.

    1993-06-01

    The Nuclear Electric Propulsion Space Test Program (NEPSTP) is designed as a technology testbed for Nuclear Electric Propulsion (NEP). A Topaz II nuclear reactor will provide the required power and an array of Ion and Hall engines will be used for propulsion. NEPSTP will evaluate on orbit, and under the same set of environmental parameters, the performance and operational characteristics of competitive electric propulsion technologies each using Xenon gas as a propellant. NEPSTP, will be operating in the so called induced environment which is the result of interactions between the ambient and the contaminant environment and the spacecraft itself. The interactions of a conventional solar/chemical spacecraft with the induced environment have been studied extensively and certain aspects are now well understood. Other aspects specific to electric propulsion such as spacecraft interactions with the plasma environment, charging, or the motion of plasma clouds about spacecraft are still active research areas. To adequately evaluate these and other effects the NEPSTP science program includes a dedicated effort to assess Thruster Performance and to conduct a number of so called 'Operational Experiments' to evaluate unresolved aspects of the NEP environment. This paper will review our planned efforts.

  10. The NASA Electric Propulsion program

    NASA Technical Reports Server (NTRS)

    Byers, D. C.

    1984-01-01

    It is pointed out that the NASA Electric Propulsion program is aimed at providing technology for auxiliary and primary propulsion functions for earth-orbital and planetary space missions. Efforts in electrostatic propulsion include analyses of ion propulsion for Geosynchronous (GEO) and planetary spacecraft, continued preflight efforts associated with the Ion Auxiliary Propulsion System (IAPS), and research and technology for advanced and simplified ion thruster systems. In the area of electromagnetic propulsion, studies were conducted regarding the feasibility and impacts of the use of electromagnetic launchers. Research on magnetoplasmadynamic (MPD) thrusters, electromagnetic launchers, and Hall current thrusters was also performed. Studies in the electrothermal sector included an evaluation of electric propulsion options for the Space Station, taking into account also resistojets, a pulsed electrothermal thruster, and arc jets.

  11. Laser space propulsion overview

    NASA Astrophysics Data System (ADS)

    Phipps, Claude; Luke, James; Helgeson, Wesley

    2007-03-01

    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster. We also discuss the most recent advances in LSP. For the first time, it is possible to consider space propulsion engines which exhibit thrust of one to several newtons while simultaneously delivering 3,000 seconds, or greater, specific impulse. No other engine concept can do both in a compact format. These willl use onboard, rather than remote, lasers. We will review the concept of chemically augmented electric propulsion, which can provide overall thrust efficiency greater than unity while maintaining very low mass to power ratio, high mean time to failure and broad operating range. The main advantage of LSP is exhaust velocity which can be instantaneously varied from 2km/s to 30km/s, simply by varying laser pulsewidth and focal spot size on target. The laser element will probably be a diode-pumped, fiber master-oscillator-power-amplifier (MOPA) system. Liquid fuels are necessary for volumetric efficiency and reliable performance at the multi-kW optical power levels required for multi-N thrust.

  12. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  13. Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.

  14. Space propulsion technology and cryogenic fluid depot

    NASA Technical Reports Server (NTRS)

    Diehl, Larry A.

    1988-01-01

    Information on space propulsion and technology and the cryogenic fluid depot is given in viewgraph form. Information is given on orbit transfer, electric propulsion, spacecraft propulsion, and program objectives.

  15. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Callahan, Lisa Wood; Curran, Francis M.

    1996-01-01

    Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.

  16. Electric propulsion and interstellar flight

    SciTech Connect

    Matloff, G.L.

    1987-01-01

    Two general classes of interstellar space-flights are defined: endothermic and exothermic. Endothermic methods utilize power sources external to the vehicle and associated technology. Faster exothermic methods utilize on-board propulsive power sources or energy-beam technology. Various proposed endothermic electric propulsion methods are described. These include solar electric rockets, mass drivers, and ramjets. A review of previously suggested exothermic electric propulsion methods is presented. Following this review is a detailed discussion of possible near future application of the beamed-laser ramjet, mainly for ultimate relativistic travel. Electric/magnetic techniques offer an excellent possibility for decelerating an interstellar vehicle, regardless of the acceleration technique. 20 references.

  17. Center for Advanced Space Propulsion

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Center for Advanced Space Propulsion (CASP) is part of the University of Tennessee-Calspan Center for Aerospace Research (CAR). It was formed in 1985 to take advantage of the extensive research faculty and staff of the University of Tennessee and Calspan Corporation. It is also one of sixteen NASA sponsored Centers established to facilitate the Commercial Development of Space. Based on investigators' qualifications in propulsion system development, and matching industries' strong intent, the Center focused its efforts in the following technical areas: advanced chemical propulsion, electric propulsion, AI/Expert systems, fluids management in microgravity, and propulsion materials processing. This annual report focuses its discussion in these technical areas.

  18. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  19. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1987-01-01

    A theory of the plasma contacting process is described and experimental results obtained using three different hollow cathode-based plasma contactors are presented. The existence of a sheath across which the bulk of the voltage drop associated with the contacting process occurs is demonstrated. Test results are shown to agree with a model of a spherical, space-charge-limited double sheath. The concept of ignited mode contactor operation is discussed, which is shown to enhance contactor efficiency when it is collecting electrons. An investigation of the potentials in the plasma plumes downstream of contactors operating at typical conditions is presented. Results of tests performed on hollow cathodes operating at high interelectrode pressures (up to about 1000 Torr) on ammonia are presented and criteria that are necessary to ensure that the cathode will operate properly in this regime are presented. These results suggest that high pressure hollow cathode operation is difficult to achieve and that special care must be taken to assure that the electron emission region remains diffuse and attached to the low work function insert. Experiments conducted to verify results obtained previously using a ring cusp ion source equipped with a moveable anode are described and test results are reported. A theoretical study of hollow cathode operation at high electron emission currents is presented. Preliminary experiments using the constrained sheath optics concept to achieve ion extraction under conditions of high beam current density, low net accelerating voltage and well columniated beamlet formation are discussed.

  20. The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative

    SciTech Connect

    Coomes, E.P.; Dagle, J.E. )

    1991-01-01

    The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes {ital et} {ital al}. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vechicle to Mars and back in 601 days. By removing the crew and their associated support systems from the space craft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vechicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to MARS 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS could provide 2-MW on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI.

  1. A Facility for Testing High-Power Electric Propulsion Systems in Space: A Design Study

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for a subsequent detailed design and development activities leading to the deployment of a valuable space facility supporting the new vision of space exploration. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The platform would be designed to accommodate the side-by-side testing of multiple types of electric thrusters currently under development and thus provide a strong basis for comparing their relative performance. The utility of testing on the station is further enhanced by the human presence, enabling close interaction with and modification of the test hardware in a true laboratory environment. These conditions facilitate rapid development and flight certification at potentially lower cost than with conventional Earth-bound facilities. As an added benefit, the propulsive effect of these tests could provide some drag compensation for the station, reducing the re-boost cost for the orbital facility. While it is expected that the ISS will not be capable of generating continuous levels of high power, the utilization of state-of-the-art energy storage media

  2. The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative

    SciTech Connect

    Coomes, E.P.; Dagle, J.E.

    1990-10-01

    The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vehicle to Mars and back in 601 days. By removing the crew and their associated support systems from the spacecraft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vehicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to Mars 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS would provide 2-MWe on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI. 9 refs., 1 fig., 1 tab.

  3. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  4. Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.

  5. Micro electric propulsion feasibility

    NASA Technical Reports Server (NTRS)

    Aston, Graeme; Aston, Martha

    1992-01-01

    Miniature, 50 kg class, strategic satellites intended for extended deployment in space require an on-board propulsion capability to perform needed attitude control adjustments and drag compensation maneuvers. Even on such very small spacecraft, these orbit maintenance functions can be significant and result in a substantial propellant mass requirement. Development of advanced propulsion technology could reduce this propellant mass significantly, and thereby maximize the payload capability of these spacecraft. In addition, spacecraft maneuverability could be enhanced and/or multi-year mission lifetimes realized. These benefits cut spacecraft replacement costs, and reduce services needed to maintain the launch vehicles. For SDIO brilliant pebble spacecraft, a miniaturized hydrazine propulsion system provides both boost and divert thrust control. This type of propulsion system is highly integrated and is capable of delivering large thrust levels for short time periods. However, orbit maintenance functions such as drag make-up require only very small velocity corrections. Using the boost and/or divert thrusters for these small corrections exposes this highly integrated propulsion system to continuous on/off cycling and thereby increases the risk of system failure. Furthermore, since drag compensation velocity corrections would be orders of magnitude less than these thrusters were designed to deliver, their effective specific impulse would be expected to be lower when operated at very short pulse lengths. The net result of these effects would be a significant depletion of the on-board hydrazine propellant supply throughout the mission, and a reduced propulsion system reliability, both of which would degrade the interceptors usefulness. In addition to SDIO brilliant pebble spacecraft, comparably small spacecraft can be anticipated for other future strategic defense applications such as surveillance and communication. For such spacecraft, high capability and reliability

  6. Micro electric propulsion feasibility

    NASA Astrophysics Data System (ADS)

    Aston, Graeme; Aston, Martha

    1992-11-01

    Miniature, 50 kg class, strategic satellites intended for extended deployment in space require an on-board propulsion capability to perform needed attitude control adjustments and drag compensation maneuvers. Even on such very small spacecraft, these orbit maintenance functions can be significant and result in a substantial propellant mass requirement. Development of advanced propulsion technology could reduce this propellant mass significantly, and thereby maximize the payload capability of these spacecraft. In addition, spacecraft maneuverability could be enhanced and/or multi-year mission lifetimes realized. These benefits cut spacecraft replacement costs, and reduce services needed to maintain the launch vehicles. For SDIO brilliant pebble spacecraft, a miniaturized hydrazine propulsion system provides both boost and divert thrust control. This type of propulsion system is highly integrated and is capable of delivering large thrust levels for short time periods. However, orbit maintenance functions such as drag make-up require only very small velocity corrections. Using the boost and/or divert thrusters for these small corrections exposes this highly integrated propulsion system to continuous on/off cycling and thereby increases the risk of system failure. Furthermore, since drag compensation velocity corrections would be orders of magnitude less than these thrusters were designed to deliver, their effective specific impulse would be expected to be lower when operated at very short pulse lengths. The net result of these effects would be a significant depletion of the on-board hydrazine propellant supply throughout the mission, and a reduced propulsion system reliability, both of which would degrade the interceptors usefulness. In addition to SDIO brilliant pebble spacecraft, comparably small spacecraft can be anticipated for other future strategic defense applications such as surveillance and communication. For such spacecraft, high capability and reliability

  7. Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.

    2012-01-01

    Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.

  8. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  9. Test facilities for high power electric propulsion

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.

    1991-01-01

    Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.

  10. Electric Propulsion Study

    DTIC Science & Technology

    1990-08-01

    DTIC FILE COPY AL-TR-89-040 AD: AD-A227 121 Final Report forteprod Electric Propulsion Study 21 Sep 1988 to 30 Nov 1989 DTIC ’ELECTE0OCT 0c 41990u... Electric Propulsion Study (U) 12. PERSONAL AUTHOR(S) Cravens, Dennis J. 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE...identif bv block number) FIELD GROUP SUB-GROUP Inductive theories, electric propulsion, unified field 21 0- theories, Conservatc!±,n Laws, Dynamic

  11. Electric Propulsion Options for 10 kW Class Earth-Space Missions

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.

  12. Electric propulsion options for 10 kW class earth space missions

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.

  13. Solar Electric Propulsion (SEP)

    NASA Video Gallery

    Future Human Exploration requires high power solar electric propulsion vehicles to move cargo and humans beyond Low Earth Orbit, which requires large light weight arrays, high power processing, and...

  14. Mission applications of electric propulsion

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.

    1974-01-01

    This paper reviews the mission applications of electric propulsion. The energy requirements of candidate high-energy missions gaining in NASA priority are used to highlight the potential of electric propulsion. Mission-propulsion interfaces are examined to point out differences between chemical and electric applications. Brief comparisons between ballistic requirements and capabilities and those of electric propulsion show that electric propulsion is presently the most practical and perhaps the only technology which can accomplish missions with these energy requirements.

  15. Electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Finke, R. C.

    1980-01-01

    The advanced electric propulsion program is directed towards lowering the specific impulse and increasing the thrust per unit of ion thruster systems. In addition, electrothermal and electromagnetic propulsion technologies are being developed to attempt to fill the gap between the conventional ion thruster and chemical rocket systems. Most of these new concepts are exagenous and are represented by rail accelerators, ablative Teflon thrusters, MPD arcs, Free Radicals, etc. Endogenous systems such as metallic hydrogen offer great promise and are also being pursued.

  16. A large high vacuum, high pumping speed space simulation chamber for electric propulsion

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.; Parkes, James E.

    1994-01-01

    Testing high power electric propulsion devices poses unique requirements on space simulation facilities. Very high pumping speeds are required to maintain high vacuum levels while handling large volumes of exhaust products. These pumping speeds are significantly higher than those available in most existing vacuum facilities. There is also a requirement for relatively large vacuum chamber dimensions to minimize facility wall/thruster plume interactions and to accommodate far field plume diagnostic measurements. A 4.57 m (15 ft) diameter by 19.2 m (63 ft) long vacuum chamber at NASA Lewis Research Center is described. The chamber utilizes oil diffusion pumps in combination with cryopanels to achieve high vacuum pumping speeds at high vacuum levels. The facility is computer controlled for all phases of operation from start-up, through testing, to shutdown. The computer control system increases the utilization of the facility and reduces the manpower requirements needed for facility operations.

  17. Radioisotope electric propulsion for robotic science missions to near-interstellar space

    SciTech Connect

    Noble, R.J.

    1994-10-01

    The use of radioisotope electric propulsion for sending small robotic probes on fast science missions several hundred astronomical units (AU) from the Sun is investigated. Such missions would address a large variety of solar, interstellar, galactic and cosmological science themes from unique vantage points at 100 to 600 AU, including parallax distance measurements for the entire Milky Way Galaxy, sampling of the interstellar medium and imaging of cosmological objects at the gravitational lens foci of the Sun ({ge} 550 AU). Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on multi-hundred watt, radioisotope electric generators and ion thrusters. In a previous work, the flight times for rendezvous missions to the outer planets (< 30 AU) using REP were found to be less than fifteen years. However fast prestellar missions to several hundred AU are not possible unless the probe`s energy can be substantially increased in the inner Solar System so as to boost the final hyperbolic excess velocity. In this paper an economical hybrid propulsion scheme combining chemical propulsion and gravity assist in the inner Solar System and radioisotope electric propulsion in the outer Solar System is studied which enables fast prestellar missions. Total hyperbolic excess velocities of 15 AU/year and flight times to 550 AU of about 40 years are possible using REP technology that may be available in the next decade.

  18. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  19. Mission roles for the Solar Electric Propulsion Stage (SEPS) with the space transportation system. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Hammock, D. M.

    1975-01-01

    A study was conducted to determine the characteristics of solar electric propulsion stage (SEPS) for the space transportation system. Emphasis is placed on the rationale leading to the concepts for the development and operations program which enhances the cost effectiveness of the SEPS operating with the space transportation system. The approach in describing design concepts and configurations is concerned with the decision controlling factors and selection criteria. The mission roles for the SEPS in accomplishing proposed space activities are defined.

  20. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  1. Geosynchronous earth orbit base propulsion - electric propulsion options

    SciTech Connect

    Palaszewski, B.

    1987-01-01

    Electric propulsion and chemical propulsion requirements for a geosynchronous earth orbit (GEO) base were analyzed. The base is resupplied from the Space Station's low earth orbit. Orbit-transfer Delta-Vs, nodal-regression Delta-Vs and orbit-maintenance Delta-Vs were considered. For resupplying the base, a cryogenic oxygen/hydrogen (O2/H2) orbital transfer vehicle (OTV) is currently-baselined. Comparisons of several electric propulsion options with the O2/H2 OTV were conducted. Propulsion requirements for missions related to the GEO base were also analyzed. Payload data for the GEO missions were drawn from current mission data bases. Detailed electric propulsion module designs are presented. Mission analyses and propulsion analyses for the GEO-delivered payloads are included. 23 references.

  2. NASA Electric Propulsion System Studies

    NASA Technical Reports Server (NTRS)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  3. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    SciTech Connect

    Voss, S.S.; Reynolds, E.L.

    1994-06-01

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz 11 system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal Year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended.

  4. Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael

    2006-01-01

    The Solar Electric Propulsion (SEP) technology area is tasked to develop near and mid-term SEP technology to improve or enable science mission capture while minimizing risk and cost to the end user. The solar electric propulsion investments are primarily driven by SMD cost-capped mission needs. The technology needs are determined partially through systems analysis tasks including the recent "Re-focus Studies" and "Standard Architecture Study." These systems analysis tasks transitioned the technology development to address the near term propulsion needs suitable for cost-capped open solicited missions such as Discovery and New Frontiers Class missions. Major SEP activities include NASA's Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture for NSTAR and NEXT EP systems, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development and xenon recovery testing. Future plans include completion of ongoing ISP development activities and evaluating potential use of commercial electric propulsion systems for SMD applications. Examples of enhanced mission capability and technology readiness dates shall be discussed.

  5. Mission roles for the solar electric propulsion stage with the space transportation system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A briefing outline is presented of the mission roles for the solar electric propulsion stage (SEPS). Topics outlined include operational considerations and mission characteristics, trade studies and technology assessments influencing SEPS configuration definition, program support requirements, and development and operations cost estimates.

  6. High Power Nuclear Electric Propulsion (NEP) for Cargo and Propellant Transfer Missions in Cislunar Space

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Borowski, Stanley K.

    2003-01-01

    The performance of Nuclear Electric Propulsion (NEP) in transporting cargo and propellant from Low Earth Orbit (LEO) to the first Earth-Moon Lagrange point (EML1) is examined. The baseline NEP vehicle utilizes a fission reactor system with Brayton power conversion for electric power generation to power multiple liquid hydrogen magnetoplasmadynamic (MPD) thrusters. Vehicle characteristics and performance levels are based on technology availability in a fifteen to twenty year timeframe. Results of numerical trajectory analyses are also provided.

  7. Nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Keaton, Paul W.; Tubb, David J.

    1986-01-01

    The feasibility is investigated of using nuclear electric propulsion (NEP) for slow freighter ships traveling from a 500 km low Earth orbit (LEO) to the Moon's orbit about the Earth, and on to Mars. NEP is also shown to be feasible for transporting people to Mars on long conjunction-class missions lasting about nine months one way, and on short sprint missions lasting four months one way. Generally, it was not attempted to optimize ion exhaust velocities, but rather suitable parameters to demonstrate NEP feasibility were chosen. Various combinations of missions are compared with chemical and nuclear thermal propulsion (NTR) systems. Typically, NEP and NTR can accomplish the same lifting task with similar mass in LEO. When compared to chemical propulsion, NEP was found to accomplish the same missions with 40% less mass in LEO. These findings are sufficiently encouraging as to merit further studies with optimum systems.

  8. Space Transportation Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Stewart, Mark E.; Suresh, Ambady; Owen, A. Karl

    2001-01-01

    This report outlines the Space Transportation Propulsion Systems for the NPSS (Numerical Propulsion System Simulation) program. Topics include: 1) a review of Engine/Inlet Coupling Work; 2) Background/Organization of Space Transportation Initiative; 3) Synergy between High Performance Computing and Communications Program (HPCCP) and Advanced Space Transportation Program (ASTP); 4) Status of Space Transportation Effort, including planned deliverables for FY01-FY06, FY00 accomplishments (HPCCP Funded) and FY01 Major Milestones (HPCCP and ASTP); and 5) a review current technical efforts, including a review of the Rocket-Based Combined-Cycle (RBCC), Scope of Work, RBCC Concept Aerodynamic Analysis and RBCC Concept Multidisciplinary Analysis.

  9. Application of Solar-Electric Propulsion to Robotic Missions in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Dankanich, John

    2007-01-01

    Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science and robotic exploration, and planetary science. These missions span SEP power range from 10 kWe to about 100 kWe. A SEP design compatible with small inexpensive launch vehicles, and capable of lunar science missions, is presented. Modes of use and benefits are described, and potential SEP evolution is discussed.

  10. Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Doherty, Michael P.; Holcomb, Robert S.

    1993-04-01

    A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.

  11. Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Dankanich, John

    2006-01-01

    Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science, lunar exploration, lunar exploitation, planetary science, and planetary exploration. These missions span SEP power range from 10s of kWe to several MWe. Modes of use and benefits are described, and potential SEP evolution is discussed.

  12. Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Dankanich, John

    2011-01-01

    Interest in applications of solar electric propulsion (SEP) is increasing. Application of SEP technology is favored when: (1) the mission is compatible with low-thrust propulsion, (2) the mission needs high total delta V such that chemical propulsion is disadvantaged; and (3) performance enhancement is needed. If all such opportunities for future missions are considered, many uses of SEP are likely. Representative missions are surveyed and several SEP applications selected for analysis, including orbit raising, lunar science, lunar exploration, lunar exploitation, planetary science, and planetary exploration. These missions span SEP power range from 10s of kWe to several MWe. Modes of use and benefits are described, and potential SEP evolution is discussed.

  13. Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Holcomb, Robert S.

    1993-01-01

    A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.

  14. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  15. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  16. Electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.

    1991-01-01

    model enables one to calculate the flow direction and local density of the charge exchange plasma, and indicates the degree to which this plasma can flow upstream of the thruster exhaust plane. A continuing effort to investigate the most desirable throttling technique for noble gas ion thrusters concentrated this year on experimentally determining the fixed flow rate throttling range of a 30-cm dia. thruster with a two-grid accelerator system. These experiments demonstrated a throttling capability which covers a 2.8 to 1 variation in input power. This throttling range is 55 percent greater than expected, and is due to better accelerator system performance at low net-to-total voltage ratios than indicated in the literature. To facilitate the development of large, higher power ion thrusters several brief studies were performed. These include the development of a technique which simulates ion thruster operation without beam extraction, the development of an optical technique to measure ion thruster grid distortion due to thermal expansion, tests of a capacitance measurement technique to quantify the accelerator system grid separation, and the development of a segmented thruster geometry which enables near term development of ion thrusters at power levels greater than 100 kW. Finally, a paper detailing the benefits of electric propulsion for the Space Exploration Initiative was written.

  17. Visions of the Future: Hybrid Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  18. The Electric Propulsion Interactions Code (EPIC): A Member of the NASA Space Environment and Effects Program (SEE) Toolset

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Mandell, Myron J.; Kuharski, Robert A.; Davis, D. A.; Gardner, Barbara M.; Minor, Jody

    2003-01-01

    Science Applications International Corporation is currently developing the Electric Propulsion Interactions Code, EPIC, as part of a project sponsored by the Space Environments and Effects Program at NASA Marshall Space Flight Center. Now in its second year of development, EPIC is an interactive computer toolset that allows the construction of a 3-D spacecraft model, and the assessment of a variety of interactions between its subsystems and the plume from an electric thruster. This paper reports on the progress of EPZC including the recently added ability to exchange results the NASA Charging Analyzer Program, Nascap-2k. The capability greatly enhances EPIC's range of applicability. Expansion of the toolset's various physics models proceeds in parallel with the overall development of the software. Also presented are recent upgrades of the elastic scattering algorithm in the electric propulsion Plume Tool. These upgrades are motivated by the need to assess the effects of elastically scattered ions on the SIC for ion beam energies that exceed loo0 eV. Such energy levels are expected in future high-power (>10 kW) ion propulsion systems empowered by nuclear sources.

  19. Solar Electric Propulsion for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Hack, Kurt J.

    1998-01-01

    Highly propellant-efficient electric propulsion is being combined with advanced solar power technology to provide a non-nuclear transportation option for the human exploration of Mars. By virtue of its high specific impulse, electric propulsion offers a greater change in spacecraft velocity for each pound of propellant than do conventional chemical rockets. As a result, a mission to Mars based on solar electric propulsion (SEP) would require fewer heavy-lift launches than a traditional all-chemical space propulsion scenario would. Performance, as measured by mass to orbit and trip time, would be comparable to the NASA design reference mission for human Mars exploration, which utilizes nuclear thermal propulsion; but it would avoid the issues surrounding the use of nuclear reactors in space.

  20. Simulation of Electric Propulsion Thrusters

    DTIC Science & Technology

    2011-01-01

    Electric Propulsion Thrusters RTO-EN-AVT-194 17 - 3 [3] is a well-developed, highly successful numerical technique for simulating rarefied gas flows ... Rarefied Flows (Modeles et methodes de calcul des coulements de gaz rarefies ). RTO-EN-AVT-194 14. ABSTRACT Electric propulsion thrusters are replacing...METHODS The focus of this article is on numerical methods used to model the flow of gas and plasma through electric propulsion devices. Discussion

  1. Pulsed plasmoid electric propulsion

    NASA Technical Reports Server (NTRS)

    Bourque, Robert F.; Parks, Paul B.; Tamano, Teruo

    1990-01-01

    A method of electric propulsion is explored where plasmoids such as spheromaks and field reversed configurations (FRC) are formed and then allowed to expand down a diverging conducting shell. The plasmoids contain a toroidal electric current that provides both heating and a confining magnetic field. They are free to translate because there are no externally supplied magnetic fields that would restrict motion. Image currents in the diverging conducting shell keep the plasmoids from contacting the wall. Because these currents translate relative to the wall, losses due to magnetic flux diffusion into the wall are minimized. During the expansion of the plasma in the diverging cone, both the inductive and thermal plasma energy are converted to directed kinetic energy producing thrust. Specific impulses can be in the 4000 to 20000 sec range with thrusts from 0.1 to 1000 Newtons, depending on available power.

  2. Space nuclear power system and the design of the nuclear electric propulsion OTV

    NASA Technical Reports Server (NTRS)

    Buden, D.; Garrison, P. W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kWe to 1 MWe output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

  3. Space nuclear power system and the design of the nuclear electric propulsion OTV

    SciTech Connect

    Buden, D.; Garrison, P.W.

    1984-01-01

    Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kW/sub e/ to 1MW/sub e/ output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

  4. Characteristics of primary electric propulsion systems. [conferences

    NASA Technical Reports Server (NTRS)

    Byers, D. C.

    1979-01-01

    The use of advanced electric propulsion systems is expected to provide cost and performance benefits for future energetic space missions. A methodology to predict the characteristics of advanced electric propulsion systems was developed and programmed for computer calculations to allow evaluation of a broad set of technology and mission assumptions. The impact on overall thrust system characteristics was assessed for variations of propellant type, total accelerating voltage, thruster area, specific impulse, and power system approach. The data may be used both to provide direction to technology emphasis and allow for preliminary estimates of electric propulsion system properties for a wide variety of applications.

  5. In-space nuclear propulsion

    NASA Astrophysics Data System (ADS)

    Bruno, C.; Dujarric, C.

    2013-02-01

    The past and the recent status of nuclear propulsion (NP) for application to space mission is presented. The case for using NP in manned space missions is made based on fundamental physics and on the necessity to ensure safe radiation doses to future astronauts. In fact, the presence of solar and galactic-cosmic radiation poses substantial risks to crews traveling for months in a row to destinations such as asteroids and Mars. Since passive or active shields would be massive to protect against the more energetic part of the radiation energy spectrum, the only alternative is to reduce dose by traveling faster. Hence the importance of propulsion systems with much higher specific impulse than that of current chemical systems, and thus the use of nuclear propulsion. Nuclear-thermal and nuclear-electric propulsions are then discussed in view of their potential application to missions now in the preliminary planning stage by space agencies and industries and being considered by the ISECG international panel. In this context, recent ideas for future use of the ISS that may require NP are also presented.

  6. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  7. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  8. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr

    2014-01-01

    Description of current ARMD projects; Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project (new ARMD reorg), sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  9. Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin E.; Manzella, David

    2006-01-01

    Power limited, low-thrust trajectories were assessed for missions to Jupiter, Saturn, and Neptune utilizing a single Venus Gravity Assist (VGA) and a primary propulsion system based on either a 3-kW high voltage Hall thruster, of the type being developed by the NASA In-Space Propulsion Technology Program, or an 8-kW variant of this thruster. These Hall thrusters operate with specific impulses below 3,000 seconds. A trade study was conducted to examine mission parameters that include: net delivered mass (NDM), beginning-of-life (BOL) solar array power, heliocentric transfer time, required launch vehicle, number of operating thrusters, and throttle profile. The top performing spacecraft configuration was defined to be the one that delivered the highest mass for a range of transfer times. In order to evaluate the potential future benefit of using next generation Hall thrusters as the primary propulsion system, comparisons were made with the advanced state-of-the-art (ASOA), 7-kW, 4,100 second NASA's Evolutionary Xenon Thruster (NEXT) for the same mission scenarios. For the BOL array powers considered in this study (less than 30 kW), the results show that the performance of the Hall thrusters, relative to NEXT, is largely dependant on the performance capability of the launch vehicle, and that at least a 10 percent performance gain, equating to at least an additional 200 kg dry mass at each target planet, is achieved over the higher specific impulse NEXT when launched on an Atlas 551.

  10. Solar Electric Propulsion Mission Architectures

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2003-01-01

    This presentation reviews Solar Electric Propulsion (SEP) Mission Architectures with a slant towards power system technologies and challenges. The low-mass, high-performance attributes of SEP systems have attracted spacecraft designers and mission planners alike and have led to a myriad of proposed Earth orbiting and planetary exploration missions. These SEP missions are discussed from the earliest missions in the 1960's, to first demonstrate electric thrusters, to the multi-megawatt missions envisioned many decades hence. The technical challenges and benefits of applying high-voltage arrays, thin film and low-intensity, low-temperature (LILT) photovoltaics, gossamer structure solar arrays, thruster articulating systems and microsat systems to SEP spacecraft power system designs are addressed. The overarching conclusion from this review is that SEP systems enhance, and many times enable, a wide class of space missions.

  11. In-Space Transportation Propulsion Architecture Assessment

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon

    2000-01-01

    Almost all space propulsion development and application has been chemical. Aerobraking has been used at Venus and Mars, and for entry at Jupiter. One electric propulsion mission has been flown (DS-1) and electric propulsion is in general use by commercial communications satellites for stationkeeping. Gravity assist has been widely used for high-energy missions (Voyager, Galileo, Cassini, etc.). It has served as a substitute for high-energy propulsion but is limited in energy gain, and adds mission complexity as well as launch opportunity restrictions. It has very limited value for round trip missions such as humans to Mars and return. High-energy space propulsion has been researched for many years, and some major developments, such as nuclear thermal propulsion (NTP), undertaken. With the exception of solar electric propulsion at a scale of a few kilowatts, high-energy space propulsion has never been used on a mission. Most mission studies have adopted TRL 6 technology because most have looked for a near-term start. The current activity is technology planning aimed at broadening the options available to mission planners. Many of the illustrations used in this report came from various NASA sources; their use is gratefully acknowledged.

  12. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  13. The Electric Propulsion Space Experiment (ESEX)-A demonstration of high power arcjets for orbit transfer applications

    NASA Astrophysics Data System (ADS)

    Bromaghim, D. R.; Salasovich, R. M.; Leduc, J. R.; Johnson, L. K.

    1998-01-01

    The Electric Propulsion Space Experiment (ESEX) is a high power (30 kW) ammonia arcjet space demonstration sponsored by the Propulsion Directorate of the Phillips Laboratory with TRW as the prime contractor. ESEX is one of nine experiments being launched in early 1998 on board the Advanced Research and Global Observation Satellite (ARGOS). ESEX will demonstrate the feasibility of using a high power arcjet for orbit transfer. ESEX is instrumented with various sensors to address all of the expected interactions with ARGOS including electromagnetic interference, contamination, and radiated thermal loading. The performance of the arcjet will also be measured using ground tracking, an on-board GPS receiver, and on-board accelerometer. In addition to the performance and spacecraft interaction studies, ground-based spectroscopic and radiometric measurements will be performed to observe plume species as well as determine the effect of the arcjet firing on the space environment. ESEX is currently undergoing integrated testing with the spacecraft bus and the eight other experiments to verify the full operability of ARGOS while on-orbit. These tests include basic functionality of the system in addition to the normal suite of environmental tests including electromagnetic interference and compatibility, acoustic and pyroshock testing, and thermal vacuum tests.

  14. Space tug point design study. Volume 3: Design definition. Part 1: Propulsion and mechanical, avionics, thermal control and electrical power subsystems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.

  15. Space station propulsion

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Morren, W. Earl; Sovey, James S.; Tacina, Robert R.

    1987-01-01

    Two propulsion systems have been selected for the space station: gaseous H/O rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These two thruster systems integrate very well with the fluid systems on the space station, utilizing waste fluids as their source of propellant. The H/O rocket will be fueled by electrolyzed water and the resistojets will use waste gases collected from the environmental control system and the various laboratories. The results are presented of experimental efforts with H/O and resistojet thrusters to determine their performance and life capability, as well as results of studies to determine the availability of water and waste gases.

  16. Application of Solar-Electric Propulsion to Robotic and Human Missions in Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon

    2006-01-01

    Solar-electric propulsion (SEP) is becoming of interest for application to a wide range of missions. The benefits of SEP are strongly influenced by system element performance, especially that for the power system. Solar array performance is increasing rapidly and promises to continue to do so for another 10 to 20 years (Fig. 1). At the same time, cost per watt is decreasing. Radiation hardness is increasing. New concepts for how to design a SEP are emerging. These improvements lead to changes in the best ways to apply SEP technology to missions, and broadening of the practical uses of SEP technology compared to competing technologies. This paper addresses the evolving characteristics of SEP technology from the point of view of mission design, and how mission profile characteristics can be designed to best take advantage of evolving SEP characteristics. Mission concepts include robotic lunar landers and orbiters; scientific planetary spacecraft; delivery of spacecraft to geosynchronous orbit from inclined and low-inclination launch orbits; and lunar cargo delivery from Earth orbit to lunar orbit. Expendable and re-usable SEP profiles are considered. Flight control considerations are abstracted from recent papers by the author to describe how these influence SEP design and operations.

  17. Electric Propulsion Technologies for Project Prometheus

    NASA Astrophysics Data System (ADS)

    Oleson, S.

    2004-11-01

    Last year NASA's Project Prometheus, the Nuclear Systems Program, began efforts to develop technologies for nuclear systems for space use. Key to these developments are electric propulsion technologies that have been shown to enable new nuclear powered missions. A discussion of these mission applications and their projected requirements are discussed. This mission set is focused on a 100 kWe nuclear electric powered flagship science mission.. The corresponding electric propulsion technologies of interest and under development are discussed. These technologies include high power / high Isp gridded ion and Hall thrusters, magnetoplasmadynamic, and other new concepts. Finally, base technology developments, such as long life components, electrodeless concepts, and alternate propellants are reviewed.

  18. MW-Class Electric Propulsion System Designs

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  19. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-01-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  20. Space Nuclear Thermal Propulsion Test Facilities Subpanel

    NASA Astrophysics Data System (ADS)

    Allen, George C.; Warren, John W.; Martinell, John; Clark, John S.; Perkins, David

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies; this final report

  1. Workshop on Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Bents, David; Marvin, Dean

    1993-01-01

    A summary of the discussion at the workshop on solar electric propulsion (SEP) is presented. The purpose of ELITE SEP flight experiment is to demonstrate operation of solar array powered electric thrusters for raising spacecraft from parking orbit to higher altitudes, leading to definition of an operational SEP orbit transfer vehicles (OTV) for Air Force missions. Many of the problems or potential problems that may be associated with SEP are not well understood nor clearly identified, and system level phenomena such as interaction of thruster plume with the solar arrays cannot be simulated in a ground test. Therefore, an end-to-end system flight test is required to demonstrate solar electric propulsion.

  2. NASA's nuclear electric propulsion technology project

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Sovey, James S.

    1992-01-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt- and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities.

  3. NASA's nuclear electric propulsion technology project

    NASA Astrophysics Data System (ADS)

    Stone, James R.; Sovey, James S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt- and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities.

  4. NASA's nuclear electric propulsion technology project

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Sovey, James S.

    1992-01-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities.

  5. NASA's nuclear electric propulsion technology project

    NASA Astrophysics Data System (ADS)

    Stone, James R.; Sovey, James S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities.

  6. A review of electric propulsion systems and mission applications

    NASA Technical Reports Server (NTRS)

    Vondra, R.; Nock, K.; Jones, R.

    1984-01-01

    The satisfaction of growing demands for access to space resources will require new developments related to advanced propulsion and power technologies. A key technology in this context is concerned with the utilization of electric propulsion. A brief review of the current state of development of electric propulsion systems on an international basis is provided, taking into account advances in the USSR, the U.S., Japan, West Germany, China and Brazil. The present investigation, however, is mainly concerned with the U.S. program. The three basic types of electric thrusters are considered along with the intrinsic differences between chemical and electric propulsion, the resistojet, the augmented hydrazine thruster, the arcjet, the ion auxiliary propulsion system flight test, the pulsed plasma thruster, magnetoplasmadynamic propulsion, a pulsed inductive thruster, and rail accelerators. Attention is also given to the applications of electric propulsion.

  7. Electric propulsion - A high energy capability for solar system exploration

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.

    1976-01-01

    The principles of spacecraft electric (ion thruster) propulsion are briefly reviewed. Attention is given to the inner and outer planet applications of electric (and solar electric) propulsion. Electric propulsion is considered as a stepping stone to nuclear electric propulsion.

  8. Electric propulsion - Past history and future prospects

    NASA Technical Reports Server (NTRS)

    Stuhlinger, E.

    1974-01-01

    Studies of feasibility and flight mechanics of electric propulsion systems began around 1946. Conceptual systems design started in 1954, experimental developments in 1958; flight tests in 1964 and 1970 proved the functioning of electric thrusters in space. Further development of ion thruster systems has concentrated on bombardment ionization in the U.S., and on radiofrequency, bombardment, and surface contact ionization in West Germany, Great Britain, France and Russia. Electrothermal, plasma, and colloid thruster development has been pursued in many contries. Electric thrusters were used successfully during past years for satellite attitude control, and for prime propulsion of the Russian spacecraft Yantar. Further applications for attitude and position control of satellites are planned. Studies are presently underway for solar electric missions to planets, planetary moons, comets, asteroids, and toward the sun, and also for missions in near-earth space involving transfer, servicing, and repair of orbiting spacecraft.

  9. Radioisotope fueled pulsed power generation system for propulsion and electrical power for deep space missions

    NASA Astrophysics Data System (ADS)

    Howe, Troy

    Space exploration missions to the moon, Mars, and other celestial bodies have allowed for great scientific leaps to enhance our knowledge of the universe; yet the astronomical cost of these missions limits their utility to only a few select agencies. Reducing the cost of exploratory space travel will give rise to a new era of exploration, where private investors, universities, and world governments can send satellites to far off planets and gather important data. By using radioisotope power sources and thermal storage devices, a duty cycle can be introduced to extract large amounts of energy in short amounts of time, allowing for efficient space travel. The same device can also provide electrical power for subsystems such as communications, drills, lasers, or other components that can provide valuable scientific information. This project examines the use of multiple radioisotope sources combined with a thermal capacitor using Phase Change Materials (PCMs) which can collect energy over a period of time. The result of this design culminates in a variety of possible spacecraft with their own varying costs, transit times, and objectives. Among the most promising are missions to Mars which cost less than 17M, missions that can provide power to satellite constellations for decades, or missions that can deliver large, Opportunity-sized (185kg) payloads to mars for less than 53M. All made available to a much wider range of customer with commercially available satellite launches from earth. The true cost of such progress though lies in the sometimes substantial increase in transit times for these missions.

  10. Accommodating electric propulsion on SMART-1

    NASA Astrophysics Data System (ADS)

    Kugelberg, Joakim; Bodin, Per; Persson, Staffan; Rathsman, Peter

    2004-07-01

    This paper focuses on the technical challenges that arise when electric propulsion is used on a small spacecraft such as SMART-1. The choice of electric propulsion influences not only the attitude control system and the power system, but also the thermal control as well as the spacecraft structure. A description is given on how the design of the attitude control system uses the possibility to control the alignment of the thrust vector in order to reduce the momentum build-up. An outline is made of the philosophy of power generation and distribution and shows how the thermal interfaces to highly dissipating units have been solved. Areas unique for electric propulsion are the added value of a thrust vector orientation mechanism and the special consideration given to the electromagnetic compatibility. SMART-1 is equipped with a thruster gimbal mechanism providing a 10° cone in which the thrust vector can be pointed. Concerning the electromagnetic compatibility, a discussion on how to evaluate the available test results is given keeping in mind that one of the main objectives of the SMART-1 mission is to assess the impact of electric propulsion on the scientific instruments and on other spacecraft systems. Finally, the assembly, integration and test of the spacecraft is described. Compared to traditional propulsion systems, electric propulsion puts different requirements on the integration sequence and limits the possibilities to verify the correct function of the thruster since it needs high quality vacuum in order to operate. Prime contractor for SMART-1 is the Swedish Space Corporation (SSC). The electric propulsion subsystem is procured directly by ESA from SNECMA, France and is delivered to SSC as a customer furnished item. The conclusion of this paper is that electric propulsion is possible on a small spacecraft, which opens up possibilities for a new range of missions for which a large velocity increment is needed. The paper will also present SMART-1 and show

  11. Nuclear Propulsion in Space (1968)

    SciTech Connect

    2012-06-23

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  12. Nuclear Propulsion in Space (1968)

    ScienceCinema

    None

    2016-07-12

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  13. Electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-01-01

    The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of

  14. Electric propulsion system technology

    NASA Astrophysics Data System (ADS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-11-01

    The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of

  15. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  16. Fundamentals of Electrical Propulsion Plant Design,

    DTIC Science & Technology

    1982-04-06

    Classification. Turboelectric Propulsion Plants ( TEGU ). Diesel- Electric Propulsion Plants (DEGU). § 9.3 Excitation and Control Systems with...is evident, for example, from /431 the data in Table 9.1. Table 9.1 Turboelectric Propulsion Plant ( TEGU ) Basic Characteristics Ship Name Plant Output...generators for GEU: nonsalient-pole machinery in turboelectric propulsion plants ( TEGU ) and salient-pole in diesel electric propulsion plants. Primary

  17. Electromagnetic interference assessment of an ion drive electric propulsion system

    NASA Technical Reports Server (NTRS)

    Whittlesey, A. C.

    1981-01-01

    An electric propulsion thrust system has the capability of providing a high specific impulse for long duration scientific missions in space. The EMI from the elements of an ion engine was characterized. The compatibility of ion drive electric propulsion systems with typical interplanetary spacecraft engineering was predicted.

  18. Ion electric propulsion unit

    DOEpatents

    Light, Max E; Colestock, Patrick L

    2014-01-28

    An electron cyclotron resonance (ECR) thruster is disclosed having a plasma chamber which is electrically biased with a positive voltage. The chamber bias serves to efficiently accelerate and expel the positive ions from the chamber. Electrons follow the exiting ions, serving to provide an electrically neutral exhaust plume. In a further embodiment, a downstream shaping magnetic field serves to further accelerate and/or shape the exhaust plume.

  19. Characterization of solar cells for space applications. Volume 11: Electrical characteristics of 2 ohm-cm, 228 micron wraparound solar cells as a function of intensity, temperature, and irradiation. [for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Weiss, R. S.

    1980-01-01

    Parametric characterization data on Spectrolab 2 by 4 cm, 2 ohm/cm, 228 micron thick wraparound cell, a candidate for the Solar Electric Propulsion Mission, are presented. These data consist of the electrical characteristics of the solar cell under a wide range of temperature and illumination intensity combinations of the type encountered in space applications.

  20. Solar-Powered Electric Propulsion Systems: Engineering and Applications

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Kerrisk, D. J.

    1966-01-01

    Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.

  1. Nuclear Thermal Propulsion for Advanced Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  2. Space propulsion: The antimatter advantage

    SciTech Connect

    Sun, A.; Edwards, C.; Kane, A.; Pandipati, S. )

    1993-11-01

    With each century come new and exciting technologies, but perhaps the most challenging innovations have occurred in the modern era as a result of man's quest to explore the universe. While enormous advancements have occurred during the space age, there still remain significant obstacles in deep space exploration. A practical challenge to exploration is the development of a type of propulsion suitable for deep space endeavors. The development of such a propulsion system would greatly facilitate space research, while providing additional opportunities for other classes of exploration not yet defined. Based upon current research, there exist several possibilities for future propulsion techniques. Some of the most promising research has dealt with antimatter and its usefulness in energy production. The potential of antimatter as an efficient and renewable energy source exists, yet important practical and scientific concerns must be overcome to make this technology feasible. For deep space exploration to be successful, more advanced and powerful propulsion systems need to be devised. Current rocket technology is inadequate to meet these future needs. The authors predict that antimatter propulsion will emerge as the new standard for space exploration. At least the beginnings of this new technology are expected within the next twenty years.

  3. SDIO Electric Propulsion Objectives and Programs

    DTIC Science & Technology

    1989-07-01

    mission provides an unique opportunity to examine the control scenarios required for nuclear electric orbit transfer, to examine the maneuvering of...starter circuit included a current control circuit designed to suppress start-up surge current. Under the SBIR Phase 2, the upgraded PPU was tested...Propulsion Applications Enabled by Space Nuclear Power", AIAA Paper 89-2591, July 1989. 16Zafran, S., Biess , J. J., and Loveberg, R. H

  4. Spacecraft Impacts with Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Oleson, Steven R.

    2000-01-01

    A study was performed to assess the benefits of advanced power and electric propulsion systems for various space missions. Advanced power technologies that were considered included multiband gap and thin-film solar arrays, lithium batteries, and flywheels. Electric propulsion options included Hall effect thrusters and Ion thrusters. Several mission case studies were selected as representative of future applications for advanced power and propulsion systems. These included a low altitude Earth science satellite, a LEO communications constellation, a GEO military surveillance satellite, and a Mercury planetary mission. The study process entailed identification of overall mission performance using state-of-the-art power and propulsion technology, enhancements made possible with either power or electric propulsion advances individually, and the collective benefits realized when advanced power and electric propulsion are combined. Impacts to the overall spacecraft included increased payload, longer operational life, expanded operations and launch vehicle class step-downs.

  5. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristic parameters of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, argon MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. Overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  6. Research Opportunities in Space Propulsion

    NASA Technical Reports Server (NTRS)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used

  7. Space station propulsion test bed

    NASA Technical Reports Server (NTRS)

    Briley, G. L.; Evans, S. A.

    1989-01-01

    A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.

  8. Nuclear Electric Propulsion mission operations.

    NASA Technical Reports Server (NTRS)

    Prickett, W. Z.; Spera, R. J.

    1972-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration missions conducted by unmanned Nuclear Electric Propulsion (NEP) system employing in-core thermionic reactors for electric power generation. The selected reference mission are Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. Mission operations and options are defined from spacecraft assembly through mission completion. Pre-launch operations and related GSE requirements are identified. Shuttle launch and subsequent injection to earth escape by the Centaur d-1T are discussed, as well as power plant startup and heliocentric mission phases.

  9. Electric Propulsion Platforms at DFRC

    NASA Technical Reports Server (NTRS)

    Baraaclough, Jonathan

    2009-01-01

    NASA Dryden Flight Research Center is a world-class flight research facility located at Edwards AFB, CA. With access to a 44 sq. mile dry lakebed and 350 testable days per year, it is the ideal location for flight research. DFRC has been undertaking aircraft research for approximately six decades including the famous X-aircraft (X-1 through X-48) and many science and exploration platforms. As part of this impressive heritage, DFRC has garnered more hours of full-sized electric aircraft testing than any other facility in the US, and possibly the world. Throughout the 80 s and 90 s Dryden was the home of the Pathfinder, Pathfinder Plus, and Helios prototype solar-electric aircraft. As part of the ERAST program, these electric aircraft achieved a world record 97,000 feet altitude for propeller-driven aircraft. As a result of these programs, Dryden s staff has collected thousands of man-hours of electric aircraft research and testing. In order to better answer the needs of the US in providing aircraft technologies with lower fuel consumption, lower toxic emissions (NOx, CO, VOCs, etc.), lower greenhouse gas (GHG) emissions, and lower noise emissions, NASA has engaged in cross-discipline research under the Aeronautics Research Mission Directorate (ARMD). As a part of this overall effort, Mark Moore of LaRC has initiated a cross-NASA-center electric propulsion working group (EPWG) to focus on electric propulsion technologies as applied to aircraft. Electric propulsion technologies are ideally suited to overcome all of the obstacles mentioned above, and are at a sufficiently advanced state of development component-wise to warrant serious R&D and testing (TRL 3+). The EPWG includes participation from NASA Langley Research Center (LaRC), Glenn Research Center (GRC), Ames Research Center (ARC), and Dryden Flight Research Center (DFRC). Each of the center participants provides their own unique expertise to support the overall goal of advancing the state-of-the-art in aircraft

  10. High Power Electric Propulsion for Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.

    2003-01-01

    Focused technology trade studies for Nuclear Electric Propulsion vehicle concepts for outer planet missions are presented; representative mission, vehicle and technology characterizations illustrate samples of work done under the NASA Marshall Space Flight Center-Boeing-SAIC In-Space Technology Assessment (ISTA) contract. An objective of ISTA is to identify and present sound technical and programtic options for the formulation and implementation of advanced electric and chemical propulsion solar system exploration missions. Investigations to date include a variety of outer planet destinations, trip times, science payload allotments, orbital capture techniques, all conducted to illustrate how advanced technology would maximize mission benefits. Architecture wide optimizations that facilitate good propulsion technology investments for advanced electric and chemical propulsion systems were conducted, including those relevant to the nuclear system initiative. Representative analyses of vehicles utilizing fission reactors with advanced power generation, Conversion, processing and electric propulsion systems, which would enable scientifically rich robotic exploration missions, are presented.

  11. Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Blevins, John; Rodgers, Stephen

    2003-01-01

    The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.

  12. Solar Electric Propulsion Technology Development for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Kerslake, Thomas W.; Scheidegger, Robert J.; Woodworth, Andrew A.; Lauenstein, Jean-Marie

    2015-01-01

    NASA is developing technologies to prepare for human exploration missions to Mars. Solar electric propulsion (SEP) systems are expected to enable a new cost effective means to deliver cargo to the Mars surface. Nearer term missions to Mars moons or near-Earth asteroids can be used to both develop and demonstrate the needed technology for these future Mars missions while demonstrating new capabilities in their own right. This presentation discusses recent technology development accomplishments for high power, high voltage solar arrays and power management that enable a new class of SEP missions.

  13. Space station propulsion requirements study

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  14. The ubiquitous solar electric propulsion stage

    NASA Technical Reports Server (NTRS)

    Austin, R. E.; Dod, R. E.; Terwilliger, C. H.

    1976-01-01

    Mission analyses indicate there are several near-term interplanetary missions that cannot be performed with any degree of sophistication without electric propulsion. Cost and performance benefits are suggested when this same technology is included in the Shuttle-based earth-orbital transportation system. Specific earth-orbital payload programs gain from increased weight allowances, decreased costs through simplification, and reduced numbers of spacecraft due to on-orbit servicing. More ambitious mission planners looking toward space industrialization will find uses ranging from GSO debris clearance to a versatile support element for a multipurpose manned space station.

  15. Multimegawatt electric propulsion system design considerations

    NASA Technical Reports Server (NTRS)

    Gilland, J. H.; Myers, Roger M.; Patterson, Michael J.

    1991-01-01

    Piloted Mars Mission Requirements of relatively short trip times and low initial mass in Earth orbit as identified by the NASA Space Exploration Initiative, indicate the need for multimegawatt electric propulsion systems. The design considerations and results for two thruster types, the argon ion, and hydrogen magnetoplasmadynamic thrusters, are addressed in terms of configuration, performance, and mass projections. Preliminary estimates of power management and distribution for these systems are given. Some assessment of these systems' performance in a reference Space Exploration Initiative piloted mission are discussed. Research and development requirements of these systems are also described.

  16. Space Propulsion by Intermittent Combustion

    DTIC Science & Technology

    1984-10-01

    Change: A Possible Approach for Follow-on Efforts* 1. Introduction One critical aspect of space platform maneuverability is the performance of rapid...STATEMENT t2b. OtSTRIUTION CODE 13. ABSTRACT (Au~nman 200’ ’ ’ One critical aspect of space platform maneuverability is the performance of rapid orbital...participated in a workshop on Orbit-Raising and Maneuvering Propulsion, held in Orlando, Florida. I -iii- TABLE OF CONTENTS PAGE Title Page

  17. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    NASA Astrophysics Data System (ADS)

    1991-03-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  18. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  19. Nuclear electric propulsion: An integral part of NASA's nuclear propulsion project

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1992-01-01

    NASA has initiated a technology program to establish the readiness of nuclear propulsion technology for the Space Exploration Initiative (SEI). This program was initiated with a very modest effort identified with nuclear thermal propulsion (NTP); however, nuclear electric propulsion (NEP) is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. Although the Synthesis Group On America's SEI has identified NEP only as an option for cargo missions, recent studies conducted by NASA-Lewis show that NEP offers the potential for early manned Mars missions as well. Lower power NEP is also of current interest for outer planetary robotic missions. Current plans are reviewed for the overall nuclear propulsion project, with emphasis on NEP and those elements of NTP program which have synergism with NEP.

  20. SEPS mission and system integration/interface requirements for the space transportation system. [Solar Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Cork, M. J.; Barnett, P. M.; Shaffer, J., Jr.; Doran, B. J.

    1979-01-01

    Earth escape mission requirements on Solar Electric Propulsion System (SEPS), and the interface definition and planned integration between SEPS, user spacecraft, and other elements of the STS. Emphasis is placed on the Comet rendezvous mission, scheduled to be the first SEPS user. Interactive SEPS interface characteristics with spacecraft and mission, as well as the multiple organizations and inter-related development schedules required to integrate the SEPS with spacecraft and STS, require early attention to definition of interfaces in order to assure a successful path to the first SEPS launch in July 1985

  1. Technology Area Roadmap for In Space Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny

    2010-01-01

    This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.

  2. NASA's progress in nuclear electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Doherty, Michael P.; Peecook, Keith M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed.

  3. Nuclear electric propulsion stage requirements and description

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Peelgren, M. L.; Nakashima, A. M.; Nsieh, T. M.; Phillips, W. M.; Kikin, G. M.

    1974-01-01

    The application of a nuclear electric propulsion (NEP) stage in the exploration of near-earth, cometary, and planetary space was discussed. The NEP stage is powered by a liquid-metal-cooled, fast spectrum thermionic reactor capable of providing 120 kWe for 20,000 hours. This power is used to drive a number of mercury ion bombardment thrusters with specific impulse in the range of 4000-5000 seconds. The NEP description, characteristics, and functional requirements are discussed. These requirements are based on a set of five coordinate missions, which are described in detail. These five missions are a representative part of a larger set of missions used as a basic for an advanced propulsion comparison study. Additionally, the NEP stage development plan and test program is outlined and a schedule presented.

  4. In-Space Propulsion: Connectivity to In-Space Fabrication and Repair

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Harris, D.; Trausch, A.; Matloff, G. L.; Taylor, T.; Cutting, K.

    2005-01-01

    The connectivity between new in-space propulsion technologies and the ultimate development of an in-space fabrication and repair infrastructure are described in this Technical Memorandum. A number of advanced in-space propulsion technologies are being developed by NASA, many of which are directly relevant to the establishment of such an in-space infrastructure. These include aerocapture, advanced solar-electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers, and solar photon sails. Other, further-term technologies have also been studied to assess their utility to the development of such an infrastructure.

  5. Space Shuttle Propulsion Finishing Strong

    NASA Technical Reports Server (NTRS)

    Owen, James W.; Singer, Jody

    2011-01-01

    Numerous lessons have been documented from the Space Shuttle Propulsion elements. Major events include loss of the SRB's on STS-4 and shutdown of an SSME during ascent on STS- 51F. On STS-112 only half the pyrotechnics fired to release the vehicle from the launch pad, a testament for redundancy. STS-91 exhibited freezing of a main combustion chamber pressure measurement and on STS-93 nozzle tube ruptures necessitated a low liquid level oxygen cut off of the main engines. A number of on pad aborts were experienced during the early program resulting in delays. And the two accidents, STS-51L and STS-107, had unique heritage in history from early Program decisions and vehicle configuration. Following STS-51L significant resources were invested in developing fundamental physical understanding of solid rocket motor environments and material system behavior. Human rating of solid rocket motors was truly achieved. And following STS-107, the risk of ascent debris was better characterized and controlled. Situational awareness during all mission phases improved, and the management team instituted effective risk assessment practices. These major events and lessons for the future are discussed. The last 22 flights of the Space Shuttle, following the Columbia accident, were characterized by remarkable improvement in safety and reliability. Numerous problems were solved in addition to reduction of the ascent debris hazard. The propulsion system elements evolved to high reliability and heavy lift capability. The Shuttle system, though not a operable as envisioned in the 1970's, successfully assembled the International Space Station (ISS) and provided significant logistics and down mass for ISS operations. By the end of the Program, the remarkable Space Shuttle Propulsion system achieved very high performance, was largely reusable, exhibited high reliability, and is a heavy lift earth to orbit propulsion system. The story of this amazing system is discussed in detail in the paper.

  6. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  7. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  8. Center for Advanced Space Propulsion (CASP)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With a mission to initiate and conduct advanced propulsion research in partnership with industry, and a goal to strengthen U.S. national capability in propulsion technology, the Center for Advanced Space Propulsion (CASP) is the only NASA Center for Commercial Development of Space (CCDS) which focuses on propulsion and associated technologies. Meetings with industrial partners and NASA Headquarters personnel provided an assessment of the constraints placed on, and opportunities afforded commercialization projects. Proprietary information, data rights, and patent rights were some of the areas where well defined information is crucial to project success and follow-on efforts. There were five initial CASP projects. At the end of the first year there are six active, two of which are approaching the ground test phase in their development. Progress in the current six projects has met all milestones and is detailed. Working closely with the industrial counterparts it was found that the endeavors in expert systems development, computational fluid dynamics, fluid management in microgravity, and electric propulsion were well received. One project with the Saturn Corporation which dealt with expert systems application in the assembly process, was placed on hold pending further direction from Saturn. The Contamination Measurment and Analysis project was not implemented since CASP was unable to identify an industrial participant. Additional propulsion and related projects were investigated during the year. A subcontract was let to a small business, MicroCraft, Inc., to study rocket engine certification standards. The study produced valuable results; however, based on a number of factors it was decided not to pursue this project further.

  9. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  10. The Electric Propulsion Interactions Code (EPIC)

    NASA Technical Reports Server (NTRS)

    Mikellides, I. G.; Mandell, M. J.; Kuharski, R. A.; Davis, V. A.; Gardner, B. M.; Minor, J.

    2004-01-01

    Science Applications International Corporation is currently developing the Electric Propulsion Interactions Code, EPIC, as part of a project sponsored by the Space Environments and Effects Program at the NASA Marshall Space Flight Center. Now in its second year of development, EPIC is an interactive computer tool that allows the construction of a 3-D spacecraft model, and the assessment of a variety of interactions between its subsystems and the plume from an electric thruster. These interactions may include erosion of surfaces due to sputtering and re-deposition of sputtered materials, surface heating, torque on the spacecraft, and changes in surface properties due to erosion and deposition. This paper describes the overall capability of EPIC and provides an outline of the physics and algorithms that comprise many of its computational modules.

  11. Analysis of System Margins on Missions Utilizing Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oh, David Y.; Landau, Damon; Randolph, Thomas; Timmerman, Paul; Chase, James; Sims, Jon; Kowalkowski, Theresa

    2008-01-01

    NASA's Jet Propulsion Laboratory has conducted a study focused on the analysis of appropriate margins for deep space missions using solar electric propulsion (SEP). The purpose of this study is to understand the links between disparate system margins (power, mass, thermal, etc.) and their impact on overall mission performance and robustness. It is determined that the various sources of uncertainty and risk associated with electric propulsion mission design can be summarized into three relatively independent parameters 1) EP Power Margin, 2) Propellant Margin and 3) Duty Cycle Margin. The overall relationship between these parameters and other major sources of uncertainty is presented. A detailed trajectory analysis is conducted to examine the impact that various assumptions related to power, duty cycle, destination, and thruster performance including missed thrust periods have on overall performance. Recommendations are presented for system margins for deep space missions utilizing solar electric propulsion.

  12. Comparison of Solar Electric and Chemical Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Burke, Laura M.; Sjauw, Waldy K.; McGuire, Melissa L.; Smith, Bryan K.

    2015-01-01

    Solar Electric Propulsion (SEP) offers fuel efficiency and mission robustness for spacecraft. The combination of solar power and electric propulsion engines is currently used for missions ranging from geostationary stationkeeping to deep space science because of these benefits. Both solar power and electric propulsion technologies have progressed to the point where higher electric power systems can be considered, making substantial cargo missions and potentially human missions viable. This paper evaluates and compares representative lunar, Mars, and Sun-Earth Langrangian point missions using SEP and chemical propulsion subsystems. The potential benefits and limitations are discussed along with technology gaps that need to be resolved for such missions to become possible. The connection to NASA's human architecture and technology development efforts will be discussed.

  13. Status of Propulsion Technology Development Under the NASA In-space Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Dankanich, John; Pencil, Eric; Pinero, Luis

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Hall-effect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The HEP system is composed of the High Voltage Hall Accelerator (HiVHAc) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HiVHAc are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs like: MAV propulsion and electric propulsion. And finally, one focus of the SystemsMission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  14. Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  15. Nuclear Electric Propulsion Technology Panel findings and recommendations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    Summarized are the findings and recommendations of a triagency (NASA/DOE/DOD) panel on Nuclear Electric Propulsion (NEP) Technology. NEP has been identified as a candidate nuclear propulsion technology for exploration of the Moon and Mars as part of the Space Exploration Initiative (SEI). The findings are stated in areas of system and subsystem considerations, technology readiness, and ground test facilities. Recommendations made by the panel are summarized concerning: (1) existing space nuclear power and propulsion programs, and (2) the proposed multiagency NEP technology development program.

  16. Electric Propulsion Induced Secondary Mass Spectroscopy

    NASA Technical Reports Server (NTRS)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  17. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability

  18. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a subsequent human-crewed mission. The ion propulsion subsystem must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as an enabling element of an affordable beyond low-earth orbit human-crewed exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, a status on the NASA in-house thruster and power processing is provided, and an update on acquisition for flight provided.

  19. 46 CFR 111.35-1 - Electrical propulsion installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13,...

  20. 46 CFR 111.35-1 - Electrical propulsion installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13,...

  1. 46 CFR 111.35-1 - Electrical propulsion installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13,...

  2. 46 CFR 111.35-1 - Electrical propulsion installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13,...

  3. 46 CFR 111.35-1 - Electrical propulsion installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electrical propulsion installations. 111.35-1 Section... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Propulsion § 111.35-1 Electrical propulsion installations. Each electric propulsion installation must meet sections 4-8-5/5.5, 4-8-5/5.11, 4-8-5/5.13,...

  4. Fusion power for space propulsion.

    NASA Technical Reports Server (NTRS)

    Roth, R.; Rayle, W.; Reinmann, J.

    1972-01-01

    Principles of operation, interplanetary orbit-to-orbit mission capabilities, technical problems, and environmental safeguards are examined for thermonuclear fusion propulsion systems. Two systems examined include (1) a fusion-electric concept in which kinetic energy of charged particles from the plasma is converted into electric power (for accelerating the propellant in an electrostatic thrustor) by the van de Graaf generator principle and (2) the direct fusion rocket in which energetic plasma lost from the reactor has a suitable amount of added propellant to obtain the optimum exhaust velocity. The deuterium-tritium and the deuterium/helium-3 reactions are considered as suitable candidates, and attention is given to problems of cryogenic refrigeration systems, magnet shielding, and high-energy particle extraction and guidance.

  5. Space station propulsion system technology

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Meng, Phillip R.; Schneider, Steven J.; Sovey, James S.; Tacina, Robert R.

    1987-01-01

    Two propulsion systems have been selected for the space station: O/H rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These thruster systems integrate very well with the fluid systems on the station. Both thrusters will utilize waste fluids as their source of propellant. The O/H rocket will be fueled by electrolyzed water and the resistojets will use stored waste gases from the environmental control system and the various laboratories. This paper presents the results of experimental efforts with O/H and resistojet thrusters to determine their performance and life capability.

  6. Interplanetary spacecraft design using solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Duxbury, J. H.; Paul, G. M.

    1974-01-01

    Emphasis of the electric propulsion technology program is now on the application of solar electric propulsion to scientific missions. Candidate planetary, cometary, and geosynchronous missions are being studied. The object of this paper is to describe a basic spacecraft design proposed as the means to accomplish (1) a comet Encke slow flyby, (2) a comet Encke rendezvous, and (3) an out-of-the-ecliptic mission. The discussion includes design differences foreseen for the various missions and indicates those areas where spacecraft design commonality is possible. Particular emphasis is placed on a solar electric propulsion module design which permits an attractive degree of design inheritance from mission to mission.

  7. Green space propulsion: Opportunities and prospects

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.; Stanojev, Johann; Demairé, Alain; Anflo, Kjell; Persson, Mathias; Wingborg, Niklas; Nilsson, Christer

    2014-11-01

    Currently, toxic and carcinogenic hydrazine propellants are commonly used in spacecraft propulsion. These propellants impose distinctive environmental challenges and consequential hazardous conditions. With an increasing level of future space activities and applications, the significance of greener space propulsion becomes even more pronounced. In this article, a selected number of promising green space propellants are reviewed and investigated for various space missions. In-depth system studies in relation to the aforementioned propulsion architectures further unveil possible approaches for advanced green propulsion systems of the future.

  8. Propulsion Wheel Motor for an Electric Vehicle

    NASA Technical Reports Server (NTRS)

    Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Waligora, Thomas M. (Inventor); Bluethmann, William J. (Inventor); Farrell, Logan Christopher (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Winn, Ross Briant (Inventor); Eggleston, IV, Raymond Edward (Inventor); Guo, Raymond (Inventor); Weber, Steven J. (Inventor); Junkin, Lucien Q. (Inventor); Rogers, James Jonathan (Inventor)

    2016-01-01

    A wheel assembly for an electric vehicle includes a wheel rim that is concentrically disposed about a central axis. A propulsion-braking module is disposed within an interior region of the wheel rim. The propulsion-braking module rotatably supports the wheel rim for rotation about the central axis. The propulsion-braking module includes a liquid cooled electric motor having a rotor rotatable about the central axis, and a stator disposed radially inside the rotor relative to the central axis. A motor-wheel interface hub is fixedly attached to the wheel rim, and is directly attached to the rotor for rotation with the rotor. The motor-wheel interface hub directly transmits torque from the electric motor to the wheel rim at a 1:1 ratio. The propulsion-braking module includes a drum brake system having an electric motor that rotates a cam device, which actuates the brake shoes.

  9. Advanced propulsion concepts study: Comparative study of solar electric propulsion and laser electric propulsion

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1975-01-01

    Solar electric propulsion (SEP) and laser electric propulsion (LEP) was compared. The LEP system configuration consists of an 80 kW visible laser source on earth, transmitting via an 8 m diameter adaptively controlled phased array through the atmosphere to a 4 m diameter synchronous relay mirror that tracks the LEP spacecraft. The only significant change in the SEP spacecraft for an LEP mission is the replacement of the two 3.7 m by 33.5 m solar cell arrays with a single 8 m diameter laser photovoltaic array. The solar cell array weight is decreased from 320 kg to 120 kg for an increase in payload of 200 kg and a decrease in specific mass of the power system from 20.5 kg/kW to 7.8 kg/kW.

  10. Airvolt Aircraft Electric Propulsion Test Stand

    NASA Technical Reports Server (NTRS)

    Samuel, Aamod; Lin, Yohan

    2015-01-01

    Development of an electric propulsion test stand that collects high-fidelity data of motor, inverter, and battery system efficiencies; thermal dynamics; and acoustics independent of manufacturer reported values will improve understanding of electric propulsion systems to be used in future aircraft. A buildup approach to this development reveals new areas of research and best practices in testing, and attempts to establish a standard for testing these systems.

  11. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  12. Twenty First Century Space Propulsion Study Addendum

    DTIC Science & Technology

    1991-06-01

    90265-7783 June 1991 Final Report DTIC ELECTE JUL15I9U ~> PHILLIPS LABOR.ATORY Propulsion Directorate ~ AIR FORCE SYSTEMS COMMAND EDWARDS AIR FORCE...Century Space Propulsion Study (Addendum) (U) 12. PERSONAL AUTHOR(S) Forward, Robert L. 13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT...AL-TR-90-030, 21st Century Space Propulsion Study, October 1990, AD: A229279) evaluates a number of new space propulsion and sensor concepts. The major

  13. High Energy Plasma Space Propulsion

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    In order to meet NASA's challenge on advanced concept activity in the propulsion area, we initiated a new program entitled "High Energy Plasma Space Propulsion Studies" within the current cooperative agreement in 1998. The goals of this work are to gain further understanding of the engine of the AIMStar spacecraft, a concept which was developed at Penn State University, and to develop a prototype concept for the engine. The AIMStar engine concept was developed at Penn State University several years ago as a hybrid between antimatter and fusion technologies. Because of limited amounts of antimatter available, and concurrently the demonstrated ability for antiprotons to efficiently ignite nuclear fusion reactions, it was felt that this was a very good match. Investigations have been made concerning the performance of the reaction trap. This is a small Penning-like electromagnetic trap, which is used to simultaneously confine antiprotons and fusion fuels. Small DHe3 or DT droplets, containing a few percent molar of a fissile material, are injected into the trap, filled with antiprotons. We have found that it is important to separate the antiprotons into two adjacent wells, to inject he droplet between them and to simultaneously bring the antiprotons to the center of the trap, surrounding the droplet. Our previous concept had the droplet falling onto one cloud of antiprotons. This proved to be inefficient, as the droplet tended to evaporate away from the cloud as it interacted on its surface.

  14. Exploring the notion of space coupling propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1990-01-01

    All existing methods of space propulsion are based on expelling a reaction mass (propellant) to induce motion. Alternatively, 'space coupling propulsion' refers to speculations about reacting with space-time itself to generate propulsive forces. Conceivably, the resulting increases in payload, range, and velocity would constitute a breakthrough in space propulsion. Such speculations are still considered science fiction for a number of reasons: (1) it appears to violate conservation of momentum; (2) no reactive media appear to exist in space; (3) no 'Grand Uniform Theories' exist to link gravity, an acceleration field, to other phenomena of nature such as electrodynamics. The rationale behind these objectives is the focus of interest. Various methods to either satisfy or explore these issues are presented along with secondary considerations. It is found that it may be useful to consider alternative conventions of science to further explore speculations of space coupling propulsion.

  15. Overview of DOE space nuclear propulsion programs

    NASA Technical Reports Server (NTRS)

    Newhouse, Alan R.

    1993-01-01

    An overview of Department of Energy space nuclear propulsion programs is presented in outline and graphic form. DOE's role in the development and safety assurance of space nuclear propulsion is addressed. Testing issues and facilities are discussed along with development needs and recent research activities.

  16. Electric propulsion flight experience and technology readiness

    NASA Astrophysics Data System (ADS)

    Pollard, J. E.; Jackson, D. E.; Marvin, D. C.; Jenkin, A. B.; Janson, S. W.

    1993-06-01

    Spacecraft electric propulsion technology is reviewed here to provide mission planners and potential users with a better appreciation of its capabilities and limitations. Flight experience provides the best measure of EP technology readiness. We describe and document the flight history and development status of EP in domestic, foreign, and commercial programs. Low-power resistojets, arcjets, ion engines, and plasma thrusters are applicable today for stationkeeping and drag compensation. Future high-power systems would enable large velocity-change maneuvers. The trade-space of EP encompasses significant performance benefits (reduced propellant mass, enhanced payload, system-level synergism), along with challenges (hardware development, system operations, non-technical issues). The choice of design parameters (thrust, specific impulse, input power) depends on how much of a change from traditional spacecraft operations is acceptable for a given mission - greater change will yield a greater payoff.

  17. A comparison of propulsion systems for potential space mission applications

    SciTech Connect

    Harvego, E.A.; Sulmeisters, T.K.

    1987-01-01

    A derivative of the NERVA nuclear rocket engine was compared with a chemical propulsion system and a nuclear electric propulsion system to assess the relative capabilities of the different propulsion system options for three potential space missions. The missions considered were (1) orbital transfer from low earth orbit (LEO) to geosynchronous earth orbit (GEO), (2) LEO to a lunar base, and (3) LEO to Mars. The results of this comparison indicate that the direct-thrust NERVA-derivative nuclear rocket engine has the best performance characteristics for the missions considered. The combined high thrust and high specific impulse achievable with a direct-thrust nuclear stage permits short operating times (transfer times) comparable to chemical propulsion systems, but with considerably less required propellant. While nuclear-electric propulsion systems are more fuel efficient than either direct-nuclear or chemical propulsion, they are not stand-alone systems, since their relatively low thrust levels require the use of high-thrust ferry or lander stages in high gravity applications such as surface-to-orbit propulsion. The extremely long transfer times and inefficient trajectories associated with electric propulsion systems were also found to be a significant drawback.

  18. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    SciTech Connect

    Allen, G.C.; Warren, J.W.; Martinell, J.; Clark, J.S.; Perkins, D.

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies.

  19. Laser propulsion for space applications: Is it another myth or a real potential?

    NASA Astrophysics Data System (ADS)

    Cook, Joung R.

    2007-05-01

    This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades.

  20. In-Space Propulsion Program Overview and Status

    NASA Technical Reports Server (NTRS)

    Carroll, Carol; Johnson, Les; Baggett, Randy

    2002-01-01

    NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Electric Propulsion (Solar and Nuclear Electric) [note: The Nuclear Electric Propulsion work will be transferred to the NSI program in FY03]; Propellantless Propulsion (aerocapture, solar sails, plasma sails, and momentum exchange tethers); Advanced Chemical Propulsion. The ISP approach to identifying and prioritizing these most promising technologies is to use mission analysis and subsequent peer review. These technologies under consideration are mid-Technology Readiness Level (TRL) up to TRL-6 for incorporation into mission planning within three - five years of initiation. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRAs) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA HQ (Headquarters) and implemented by the Marshall Space Flight Center in Huntsville, Alabama.

  1. Nuclear Propulsion for Space Applications

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Bechtel, R. D.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2013-01-01

    Basics of Nuclear Systems: Long history of use on Apollo and space science missions. 44 RTGs and hundreds of RHUs launched by U.S. during past 4 decades. Heat produced from natural alpha (a) particle decay of Plutonium (Pu-238). Used for both thermal management and electricity production. Used terrestrially for over 65 years. Fissioning 1 kg of uranium yields as much energy as burning 2,700,000 kg of coal. One US space reactor (SNAP-10A) flown (1965). Former U.S.S.R. flew 33 space reactors. Heat produced from neutron-induced splitting of a nucleus (e.g. U-235). At steady-state, 1 of the 2 to 3 neutrons released in the reaction causes a subsequent fission in a "chain reaction" process. Heat converted to electricity, or used directly to heat a propellant. Fission is highly versatile with many applications.

  2. Uranium ARC Fission Reactor for Space Power and Propulsion

    DTIC Science & Technology

    1992-03-01

    thruster or MHD accelerator/generator. Uranium arc technology is being developed for use in space nuclear thermal and electric propulsion reactors. In...specific impulse propulsion or ultrahigh temperature power conversion. Fission events in the nuclear arc plasma provide for additional dissociation and...I Technical Objectives 3 2. URANIUM ARC FISSION REACTOR CONCEPT AND NUCLEAR -AUGMENTED THRUSTER CONCEPT 4 2.1 Physics Basis 4 2.2 Uranium Arc

  3. Solar electric propulsion for Mars transport vehicles

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.

    1990-01-01

    Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.

  4. EPOP - Toward the realization of an Electric Propulsion Orbital Platform

    NASA Technical Reports Server (NTRS)

    Friedly, V. J.; Garrison, G. W.; Ruyten, W. M.

    1992-01-01

    This paper describes the results of a feasibility study for an Electric Propulsion Orbital Platform (EPOP), whose primary objective is to provide an instrumented platform for testing electric propulsion devices in space. It is anticipated that the first flight, EPO-1, will take place on the Shuttle-deployed Wake Shield Facility in 1996, and will be designed around a modified version of a commercial 1.8 kW hydrazine arcjet system, to be operated on gaseous hydrogen propellant. Specific subsystems are described, including the arcjet system, the propellant and power systems, and the diagnostics systems. Also, system engineering and integration issues are discussed.

  5. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  6. Solar Powered Propulsion for Space. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The bibliography contains citations concerning the design, development, and performance of solar propulsion systems. Solar electric propulsion and solar thermal propulsion are reviewed. Topics include solar power satellites, nuclear electric propulsion, solar-powered orbit transfer vehicles, and solar dynamic and bimodal power systems. References also discuss atmospheric pollution control, telephone services, space commercialization, interplanetary missions, and lunar and Mars exploration. (Contains 50-250 citations and includes a subject term index and title list.)

  7. Roadmap for In-Space Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Meyer, Michael; Johnson, Les; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2012-01-01

    NASA has created a roadmap for the development of advanced in-space propulsion technologies for the NASA Office of the Chief Technologist (OCT). This roadmap was drafted by a team of subject matter experts from within the Agency and then independently evaluated, integrated and prioritized by a National Research Council (NRC) panel. The roadmap describes a portfolio of in-space propulsion technologies that could meet future space science and exploration needs, and shows their traceability to potential future missions. Mission applications range from small satellites and robotic deep space exploration to space stations and human missions to Mars. Development of technologies within the area of in-space propulsion will result in technical solutions with improvements in thrust, specific impulse (Isp), power, specific mass (or specific power), volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability, durability, and of course, cost. These types of improvements will yield decreased transit times, increased payload mass, safer spacecraft, and decreased costs. In some instances, development of technologies within this area will result in mission-enabling breakthroughs that will revolutionize space exploration. There is no single propulsion technology that will benefit all missions or mission types. The requirements for in-space propulsion vary widely according to their intended application. This paper provides an updated summary of the In-Space Propulsion Systems technology area roadmap incorporating the recommendations of the NRC.

  8. Manufacture of ionizers intended for electric propulsion

    NASA Technical Reports Server (NTRS)

    Hivert, A.; Labbe, J.

    1978-01-01

    An electric propulsion system which relies on the formation of cesium ions in contact with a porous wall made of a metal with a high work function when the wall is heated to 1500 K was described. The manufacture of porous walls on the mountings was considered. Erosion of the electrodes by slow ions was examined, and the life times of the ionizers was estimated by means of experimental studies. The purpose of the electric propulsion system was to bring about minor corrections in the orbits of geostationary satellites; the main advantage of this system was that it weighs less than currently used hydrazine systems.

  9. Hybrid Electric Propulsion Technologies for Commercial Transports

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  10. The Economics of Advanced In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Bangalore, Manju; Dankanich, John

    2016-01-01

    The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.

  11. Propulsion element requirements using electrical power system unscheduled power

    NASA Technical Reports Server (NTRS)

    Zimmermann, Frank; Hodge, Kathy

    1989-01-01

    The suitability of using the electrical energy from the Space Station's Electrical Power System (EPS) during the periods of peak solar insolation which is currently not specifically allocated (unscheduled power) to produce propulsion propellants, gaseous hydrogen, and oxygen by electrolyzing water is investigated. Reboost propellant requirements are emphasized, but the results are more generally relevant because the balance of recurring propellant requirements are an order of magnitude smaller and the nonrecurring requirements are not significant on an average basis.

  12. Drag Reduction Through Distributed Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Stoll, Alex M.; Bevirt, JoeBen; Moore, Mark D.; Fredericks, William J.; Borer, Nicholas K.

    2014-01-01

    One promising application of recent advances in electric aircraft propulsion technologies is a blown wing realized through the placement of a number of electric motors driving individual tractor propellers spaced along each wing. This configuration increases the maximum lift coefficient by providing substantially increased dynamic pressure across the wing at low speeds. This allows for a wing sized near the ideal area for maximum range at cruise conditions, imparting the cruise drag and ride quality benefits of this smaller wing size without decreasing takeoff and landing performance. A reference four-seat general aviation aircraft was chosen as an exemplary application case. Idealized momentum theory relations were derived to investigate tradeoffs in various design variables. Navier-Stokes aeropropulsive simulations were performed with various wing and propeller configurations at takeoff and landing conditions to provide insight into the effect of different wing and propeller designs on the realizable effective maximum lift coefficient. Similar analyses were performed at the cruise condition to ensure that drag targets are attainable. Results indicate that this configuration shows great promise to drastically improve the efficiency of small aircraft.

  13. Planetary mission applications for space storable propulsion

    NASA Technical Reports Server (NTRS)

    Chase, R. L.; Cork, M. J.; Young, D. L.

    1974-01-01

    This paper presents the results of a study to compare space-storable with earth-storable spacecraft propulsion systems, space-storable with solid kick stages, and several space-storable development options on the basis of benefits received for cost expenditures required. The results show that, for a launch vehicle with performance less than that of Shuttle/Centaur, space-storable spacecraft propulsion offers an incremental benefit/cost ratio between 1.0 and 5.5 when compared to earth-storable systems for three of the four missions considered. In the case of VOIR 83, positive benefits were apparent only for a specific launch vehicle-spacecraft propulsion combination. A space-storable propulsion system operating at thrust of 600 lbf, 355 units of specific impulse, and with blowdown pressurization, represents the best choice for the JO 81 mission on a Titan/Centaur if only spacecraft propulsion modifications are considered. For still higher performance, a new solid-propellant kick stage with space-storable spacecraft propulsion is preferred over a system which uses space-storable propellants for both the kick stage and the spacecraft system.

  14. An Overview of Electric Propulsion Activities at NASA

    NASA Technical Reports Server (NTRS)

    Dunning, John W., Jr.; Hamley, John A.; Jankovsky, Robert S.; Oleson, Steven R.

    2004-01-01

    This paper provides an overview of NASA s activities in the area of electric propulsion with an emphasis on project directions, recent progress, and a view of future project directions. The goals of the electric propulsion programs are to develop key technologies to enable new and ambitious science missions and to transfer these technologies to industry. Activities include the development of gridded ion thruster technology, Hall thruster technology, pulsed plasma thruster technology, and very high power electric propulsion technology, as well as systems technology that supports practical implementation of these advanced concepts. The performance of clusters of ion and Hall thrusters is being revisited. Mission analyses, based on science requirements and preliminary mission specifications, guide the technology projects and introduce mission planners to new capabilities. Significant in-house activity, with strong industrial/academia participation via contracts and grants, is maintained to address these development efforts. NASA has initiated a program covering nuclear powered spacecraft that includes both reactor and radioisotope power sources. This has provided an impetus to investigate higher power and higher specific impulse thruster systems. NASA continues to work closely with both supplier and user communities to maximize the understanding and acceptance of new technology in a timely and cost-effective manner. NASA s electric propulsion efforts are closely coordinated with Department of Defense and other national programs to assure the most effective use of available resources. Several NASA Centers are actively involved in these electric propulsion activities, including, the Glenn Research Center, Jet Propulsion Laboratory, Johnson Space Center, and Marshall Space Flight Center.

  15. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending, on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenario's eight Delta 7920 launch vehicles.

  16. Electric Propulsion for Low Earth Orbit Constellations

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    1998-01-01

    Hall Effect electric propulsion was evaluated for orbit insertion, satellite repositioning, orbit maintenance and de-orbit applications for a sample low earth orbit satellite constellation. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion, the Hall thruster system can add additional spacecraft per launch using planned payload power levels. One satellite can be added to the assumed four satellite baseline chemical launch without additional mission times. Two or three satellites may be added by providing part of the orbit insertion with the Hall system. In these cases orbit insertion times were found to be 35 and 62 days. Depending on the electric propulsion scenario, the resulting launch vehicle savings is nearly two, three or four Delta 7920 launch vehicles out of the chemical baseline scenarios eight Delta 7920 launch vehicles.

  17. Nuclear systems for space power and propulsion

    NASA Technical Reports Server (NTRS)

    Klein, M.

    1971-01-01

    As exploration and utilization of space proceeds through the 1970s, 1980s, and beyond, spacecraft in earth orbit will become increasingly larger, spacecraft will travel deeper into space, and space activities will involve more complex operations. These trends require increasing amounts of energy for power and propulsion. The role to be played by nuclear energy is presented, including plans for deep space missions using radioisotope generators, the reactor power systems for earth orbiting stations and satellites, and the role of nuclear propulsion in space transportation.

  18. Application of the Physics of Wave-Particle Interactions in the Auroral Upward Current Region for Use in the VASIMR° Deep Space Electric Propulsion System

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Olsen, C.; Longmier, B.; Ballenger, M.; Giambusso, M.; Carter, M.; Cassady, L.; Chang Diaz, F.; Glover, T.; McCaskill, G.; Squire, J.

    2011-12-01

    This paper will describe the laboratory application of the lessons learned from the study of wave particle interactions in the auroral upward current region to the industrial development problem of electric spacecraft propulsion. The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR°) has been developed by using the results of space plasma experiments in laboratory plasma studies that will ultimately enable further space exploration. VASIMR° is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power. The VASIMR° uses a helicon discharge to generate plasma. The plasma is leaked though a strong magnetic mirror to the second stage. In this stage, this plasma is energized by an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 0.5-0.7 MHz waves with up to 170 kW of power. The single pass ion cyclotron heating (ICH) produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR°. Results from high power Helicon only and Helicon with ICH experiments are presented from the VX-200 using argon propellant. A two-axis translation stage has been used to survey the spatial structure of plasma parameters, momentum flux and magnetic perturbations in the VX-200 exhaust plume. These recent measurements were made within a new 150 cubic meter cryo-pumped vacuum chamber and are presented in the context of plasma detachment. For the first time, the thruster efficiency and thrust of a high

  19. New propulsion components for electric vehicles

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1982-01-01

    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  20. New propulsion components for electric vehicles

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1983-01-01

    Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982

  1. In-Space Propulsion Program Overview and Status

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul F.; Johnson, Les; Baggett, Randy M.

    2003-01-01

    NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Solar Electric Propulsion, Aerocapture, Solar Sails, Momentum Exchange Tethers, Plasma Sails and other technologies such as Advanced Chemical Propulsion. The ISP Program intends to develop cost-effective propulsion technologies that will provide a broad spectrum of mission possibilities, enabling NASA to send vehicles on longer, more useful voyages and in many cases to destinations that were previously unreachable using conventional means. The ISP approach to identifying and prioritizing these most promising technologies is to use mission and system analysis and subsequent peer review. The ISP program seeks to develop technologies under consideration to Technology Readiness Level (TRL) -6 for incorporation into mission planning within 3-5 years of initiation. The NASA TRL 6 represents a level where a technology is ready for system level demonstration in a relevant environment, usually a space environment. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRA's) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA Headquarters Office of Space Science and implemented by the Marshall Space Flight Center in Huntsville, Alabama.

  2. NASA In-Space Propulsion Technologies and Their Infusion Potential

    NASA Technical Reports Server (NTRS)

    Anderson, David; Munk, Michelle; Pencil, Eric; Dankanich, John; Glaab, Lou; Peterson, Todd; Vento, Dan

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper

  3. Combining Electric and Sail Propulsion for Interplanetary Sample Return

    SciTech Connect

    Noble, Robert

    2003-02-04

    Fast sample return from the outer Solar System would open an entirely new avenue for space science, but the vast distances make this a daunting task. The achievable transit velocity and the need for extra propellant on the return trip limit the feasibility of returning extraterrestrial samples to Earth. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher velocities. High specific impulse, electric propulsion reduces the propellant required for the outbound and return trips, but decelerating the spacecraft at the inner Solar System from high velocity still involves a long, inward spiral trajectory. The use of solar sails to rapidly decelerate incoming sample capsules and eliminate propellant is explored in this paper. The sail is essentially a ''solar parachute'' used for braking at the end of the interplanetary return flight, permitting a higher transit speed and truncating the deceleration spiral. In this application the sail is relatively small and manageable since only the sample capsule and its sail are decelerated. A comparison is made between using all-electric propulsion versus combining electric propulsive acceleration with sail deceleration for sample return from the distances of Saturn, Uranus, and Pluto. Solar-sail braking dramatically reduces the return flight time by one-third or more compared to using electric rocket deceleration. To elucidate the technology requirements, wide ranges for both the loaded sail density and electric propulsion specific mass are considered in this initial parametric study.

  4. Nuclear electric propulsion mission performance for fast piloted Mars missions

    NASA Technical Reports Server (NTRS)

    Hack, K. J.; George, J. A.; Dudzinski, L. A.

    1991-01-01

    A mission study aimed at minimizing the time humans would spend in the space environment is presented. The use of nuclear electric propulsion (NEP), when combined with a suitable mission profile, can reduce the trip time to durations competitive with other propulsion systems. Specifically, a split mission profile utilizing an earth crew capture vehicle accounts for a significant portion of the trip time reduction compared to previous studies. NEP is shown to be capable of performing fast piloted missions to Mars at low power levels using near-term technology and is considered to be a viable candidate for these missions.

  5. Electromagnetic emission experiences using electric propulsion systems: A survey

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Zana, Lynnette M.; Knowles, Steven C.

    1987-01-01

    As electric propulsion systems become ready to integrate with spacecraft systems, the impact of propulsion system radiated emissions are of significant interest. Radiated emissions from electromagnetic, electrostatic, and electrothermal systems have been characterized and results synopsized from the literature describing 21 space flight programs. Electromagnetic radiated emission results from ground tests and flight experiences are presented with particular attention paid to the performance of spacecraft subsystems and payloads during thruster operations. The impacts to transmission of radio frequency signals through plasma plumes are also reviewed.

  6. Electromagnetic emission experiences using electric propulsion systems - A survey

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Zana, Lynnette M.; Knowles, Steven C.

    1987-01-01

    As electric propulsion systems become ready to integrate with spacecraft systems, the impact of propulsion system radiated emissions are of significant interest. Radiated emissions from electromagnetic, electrostatic, and electrothermal systems have been characterized and results synopsized from the literature describing 21 space flight programs. Electromagnetic radiated emission results from ground tests and flight experiences are presented with particular attention paid to the performance of spacecraft subsystems and payloads during thruster operations. The impacts to transmission of radio frequency signals through plasma plumes are also reviewed.

  7. Propellantless Propulsion Technologies for In-Space Transportation

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Cook, Stephen (Technical Monitor)

    2001-01-01

    In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 or 3 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will be described. Results of recent earth-based technology demonstrations and space tests will also be discussed.

  8. Nuclear electric propulsion development and qualification facilities

    NASA Astrophysics Data System (ADS)

    Dutt, Dale; Thomassen, Keith; Sovey, Jim; Fontana, Mario

    1992-01-01

    This paper summarizes the findings of a Tri-Agency panel; consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD); charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1 thruster developmental testing facility, (2 thruster lifetime testing facility, (3 dynamic energy conversion development and demonstration facility, and (4 advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualification and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000s.

  9. Nuclear electric propulsion development and qualification facilities

    NASA Astrophysics Data System (ADS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-11-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  10. SMART-1 Electrical propulsion mechanism (EPMEC)

    NASA Astrophysics Data System (ADS)

    Wood, Brian; Buff, Walter; Delouard, Philippe

    2001-09-01

    The SMART-1 Spacecraft is due to launch in 2002 and is being developed as a test bed for various new technologies that will be needed for interplanetary missions. One of these new technologies is the Electric Propulsion system (EPS) which is to be used as the main source of thrust during the mission. Contraves Space AG were selected for the development of a "low budget" Steering Mechanism (EPMEC) for the EPS and for the associated drive electronics (EPMEL). The EPS selected for the SMART-1 mission is the PPS 1350 developed by SNECMA Moteurs in France. Since this thruster configuration is almost identical to that used on the STENTOR mission, the use of this thruster unit have placed certain limitations on the design of the EPMEC. In satisfying the requirements, the design of the EPMEC described in this paper utilised some novel ideas and new technologies in the spacecraft mechanism branch. The EPMEC mechanism has recently successfully completed the qualification test programme for SMART-1 and has been mounted into the spacecraft for system testing. The flight model is currently in manufacture. The results from the Qualification Tests will also be briefly presented in this paper.

  11. Nuclear electric propulsion development and qualification facilities

    NASA Technical Reports Server (NTRS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-01-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  12. Heatpipe space power and propulsion systems

    SciTech Connect

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1995-07-01

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS) that provides power only, and the Heatpipe Bimodal System (HBS) that provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, greatly facilitating system fabrication and handling. Third, full electrically heated system testing is possible, with minimal operations required to replace the heaters with fuel and ready the system for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single point failures during power mode operation. Eighth, fuel burnup rate is quite low to help ensure greater than 10-year system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, a full ground nuclear test is not needed, and development costs will be low. The baseline HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of about 500 kg. The unicouple thermoelectric converters have a hot shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program, demonstrating an operational lifetime of decades. At higher thermal power, the same core can produce over 10 kWe using thermoelectric converters, and over 50 kWe using advanced power conversion systems.

  13. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  14. Recent Electric Propulsion Development Activities for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.

    2009-01-01

    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated

  15. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, Michael P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystem. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  16. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, M. P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystems. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  17. Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; Mercer, Carolyn R.

    2015-01-01

    Use of high-power solar arrays, at power levels ranging from approximately 500 KW to several megawatts, has been proposed for a solar-electric propulsion (SEP) demonstration mission, using a photovoltaic array to provide energy to a high-power xenon-fueled engine. One of the proposed applications of the high-power SEP technology is a mission to rendezvous with an asteroid and move it into lunar orbit for human exploration, the Asteroid Retrieval mission. The Solar Electric Propulsion project is dedicated to developing critical technologies to enable trips to further away destinations such as Mars or asteroids. NASA needs to reduce the cost of these ambitious exploration missions. High power and high efficiency SEP systems will require much less propellant to meet those requirements.

  18. Evaluation of radioisotope electric propulsion for selected interplanetary science missions

    NASA Technical Reports Server (NTRS)

    Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Robinson Artis, Gwen

    2005-01-01

    This study assessed the benefits and applicability of REP to missions relevant to the In-Space Propulsion Program (ISPP) using first and second generation RPS with specific powers of 4 We/kg and 8 We/kg, respectively. Three missions representing small body targets, medium outer planet class, and main belt asteroids and comets were evaluated. Those missions were a Trojan Asteroid Orbiter, Comet Surface Sample Return (CSSR), and Jupiter Polar Orbiter with Probes (JPOP). For each mission, REP cost and performance was compared with solar electric propulsion system (SEPS) and SOA chemical propulsion system (SCPS) cost and performance. The outcome of the analysis would be a determinant for potential inclusion in the ISPP investment portfolio.

  19. Space Experiments to Advance Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Johansen, Donald G.

    2010-05-01

    High power microwave sources are now available and usable, with modification, or beamed energy propulsion experiments in space. As output windows and vacuum seals are not needed space is a natural environment for high power vacuum tubes. Application to space therefore improves reliability and performance but complicates testing and qualification. Low power communications satellite devices (TWT, etc) have already been through the adapt-to-space design cycle and this history is a useful pathway for high power devices such as gyrotrons. In this paper, space experiments are described for low earth orbit (LEO) and lunar environment. These experiments are precursors to space application for beamed energy propulsion using high power microwaves. Power generation and storage using cryogenic systems are important elements of BEP systems and also have an important role as part of BEP experiments in the space environment.

  20. Simulation of Electric Propulsion Thrusters (Preprint)

    DTIC Science & Technology

    2011-02-07

    indicates the gas flow involves transition from continuum flow at the nozzle throat, to rarefied flow at the nozzle exit. Numerical simulations of...methods used to model the flow of gas and plasma through electric propulsion devices. Discussion of the numerical analysis of other aspects of... gas and plasma flows : (1) continuum or fluid methods, and (2) kinetic methods. The choice of method for modelling a specific thruster should be

  1. Nuclear Electric Magnetohydrodynamic Propulsion for Submarine

    DTIC Science & Technology

    1989-05-01

    Magnetohydrodynamic Theory 24 2.3 MHD Pump Analysis 29 2.4 Maximum Pump Efficiency and Power 33 2.5 MHD Electrical Generator 40 2.6 MHD Generator Requirements 44 3...propulsion was first demon- strated by Stewart Way who published a very complete and mathematically rigorous analysis of an external duct, DC...in simple analysis and still apply in a complicated cases which require computer or physical modeling. As mentioned before, the MHD generator works on

  2. Combining Solar Electric Propulsion and Chemical Propulsion for Crewed Missions to Mars

    NASA Technical Reports Server (NTRS)

    Percy, Tom; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    This paper documents the results of an investigation of human Mars mission architectures that leverage near-term technology investments and infrastructures resulting from the planned Asteroid Redirect Robotic Mission (ARRM), including high-power Solar Electric Propulsion (SEP) and a human presence in Lunar Distant Retrograde Orbit (LDRO). The architectures investigated use a combination of SEP and chemical propulsion elements. Through this combination of propulsion technologies, these architectures take advantage of the high efficiency SEP propulsion system to deliver cargo, while maintaining the faster trip times afforded by chemical propulsion for crew transport. Evolved configurations of the Asteroid Redirect Vehicle (ARV) are considered for cargo delivery. Sensitivities to SEP system design parameters, including power level and propellant quantity, are presented. For the crew delivery, liquid oxygen and methane stages were designed using engines common to future human Mars landers. Impacts of various Earth departure orbits, Mars loiter orbits, and Earth return strategies are presented. The use of the Space Launch System for delivery of the various architecture elements was also investigated and launch vehicle manifesting, launch scheduling and mission timelines are also discussed. The study results show that viable Mars architecture can be constructed using LDRO and SEP in order to take advantage of investments made in the ARRM mission.

  3. General Space Propulsion & MXER Plasma Requirements

    NASA Astrophysics Data System (ADS)

    Bonometti, Joseph; Sorensen, Kirk

    2004-11-01

    The development of advanced in-space propulsion concepts and systems requires extensive plasma physics knowledge at many levels. The In-Space Propulsion Technology Projects Office (ISP) at the NASA Marshall Space Flight Center (MSFC) is actively managing a portfolio of technologies that include a wide range of plasma physics interaction studies. These investigations apply directly to hardware development for space propulsion in the areas of: ion engines, hall thrusters, aerocapture, solar sails, advanced chemical and emerging technologies. The plasma interactions occur over a broad spectrum of pressures, temperatures and species. This work, along with the programmatic roadmap and future needs for plasma research will be described. A more detailed examination of one advanced technology, the Momentum exchange Electrodynamic Reboost (MXER) tether system will be given with emphasis on the plasma contactor technology. The MXER system is a relatively unfamiliar space propulsion concept that works deep in the Earth's gravity well. It provides high thrust propulsion to a spacecraft in Low Earth Orbit (LEO) and then reboosts its own orbit using electrodynamic principles, using little or no propellant. In the reboost propulsion mode, contact must be made with the plasma in the Earth's ionosphere. Electrons are collected at an anode, driven up a long conducing tether (against the natural potential field) and expelled from a cathode, also in contact with the ionosphere plasma. The anode and cathode are desired to use no consumables, draw little power and survive nominally 10 years in the space. The details of the system requirements and the existing computational and experimental program tasks that relate to this plasma interaction will be presented.

  4. Power Processing for a Conceptual Project Prometheus Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Scina, Joseph E., Jr.; Aulisio, Michael; Gerber, Scott S.; Hewitt, Frank; Miller, Leonard; Elbuluk, Malik; Pinero, Luis R. (Technical Monitor)

    2005-01-01

    NASA has proposed a bold mission to orbit and explore the moons of Jupiter. This mission, known as the Jupiter Icy Moons Orbiter (JIMO), would significantly increase NASA s capability to explore deep space by making use of high power electric propulsion. One electric propulsion option under study for JIMO is an ion propulsion system. An early version of an ion propulsion system was successfully used on NASA's Deep Space 1 mission. One concept for an ion thruster system capable of meeting the current JIMO mission requirement would have individual thrusters that are 16 to 25 kW each and require voltages as high as 8.0 kV. The purpose of this work is to develop power processing schemes for delivering the high voltage power to the spacecraft ion thrusters based upon a three-phase AC distribution system. In addition, a proposed DC-DC converter topology is presented for an ion thruster ancillary supply based upon a DC distribution system. All specifications discussed in this paper are for design convenience and are speculative in nature.

  5. Electric propulsion for constellation deployment and spacecraft maneuvering

    NASA Technical Reports Server (NTRS)

    Deininger, W. D.; Vondra, R. J.

    1988-01-01

    This paper outlines the near-term (1990s) advantages of electric propulsion for two SDI missions: (1) the launch of a constellation of spacecraft, and (2) continual spacecraft defensive maneuvering. Ammonia arcjet and Xe-ion electric propulsion systems are compared to advanced chemical propulsion for each of these missions. The number of launch vehicles required for constellation deployment can be reduced by up to a factor of 2 when electric propulsion upper stages are used in place of advanced upper stages. Electric propulsion can provide significant benefits when used for continuous defensive maneuvering by enabling a large reduction in the initial spacecraft mass.

  6. Progress report on nuclear propulsion for space exploration and science

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Miller, Thomas J.

    1993-01-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  7. Advanced electrostatic ion thruster for space propulsion

    NASA Technical Reports Server (NTRS)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  8. Fusion for Space Propulsion and Plasma Liner Driven MTF

    NASA Technical Reports Server (NTRS)

    Thio, Y.C. Francis; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a low atomic weight propellant cannot overcome the problem. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. There are similarities as well as differences at the system level between applying fusion to propulsion and to terrestrial electrical power generation. The differences potentially provide a wider window of opportunities for applying fusion to propulsion. For example, pulsed approaches to fusion may be attractive for the propulsion application. This is particularly so

  9. The MAUS nuclear space reactor with ion propulsion system

    NASA Astrophysics Data System (ADS)

    Mainardi, Enrico

    2006-06-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome "La Sapienza" starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  10. Pulsed Electric Propulsion Thrust Stand Calibration Method

    NASA Technical Reports Server (NTRS)

    Wong, Andrea R.; Polzin, Kurt A.; Pearson, J. Boise

    2011-01-01

    The evaluation of the performance of any propulsion device requires the accurate measurement of thrust. While chemical rocket thrust is typically measured using a load cell, the low thrust levels associated with electric propulsion (EP) systems necessitate the use of much more sensitive measurement techniques. The design and development of electric propulsion thrust stands that employ a conventional hanging pendulum arm connected to a balance mechanism consisting of a secondary arm and variable linkage have been reported in recent publications by Polzin et al. These works focused on performing steady-state thrust measurements and employed a static analysis of the thrust stand response. In the present work, we present a calibration method and data that will permit pulsed thrust measurements using the Variable Amplitude Hanging Pendulum with Extended Range (VAHPER) thrust stand. Pulsed thrust measurements are challenging in general because the pulsed thrust (impulse bit) occurs over a short timescale (typically 1 micros to 1 millisecond) and cannot be resolved directly. Consequently, the imparted impulse bit must be inferred through observation of the change in thrust stand motion effected by the pulse. Pulsed thrust measurements have typically only consisted of single-shot operation. In the present work, we discuss repetition-rate pulsed thruster operation and describe a method to perform these measurements. The thrust stand response can be modeled as a spring-mass-damper system with a repetitive delta forcing function to represent the impulsive action of the thruster.

  11. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  12. MSFC's Advanced Space Propulsion Formulation Task

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Gerrish, Harold P.; Robinson, Joel W.; Taylor, Terry L.

    2012-01-01

    In NASA s Fiscal Year 2012, a small project was undertaken to provide additional substance, depth, and activity knowledge to the technology areas identified in the In-Space Propulsion Systems Roadmap, Technology Area 02 (TA-02), as created under the auspices of the NASA Office of the Chief Technologist (OCT). This roadmap was divided into four basic groups: (1) Chemical Propulsion, (2) Non-chemical Propulsion, (3) Advanced (TRL<3) Propulsion Technologies, and (4) Supporting Technologies. The first two were grouped according to the governing physics. The third group captured technologies and physic concepts that are at a lower TRL level. The fourth group identified pertinent technical areas that are strongly coupled with these related areas which could allow significant improvements in performance. There were a total of 45 technologies identified in TA-02, and 25 of these were studied in this formulation task. The goal of this task was to provide OCT with a knowledge-base for decisionmaking on advanced space propulsion technologies and not waste money by unintentionally repeating past projects or funding the technologies with minor impacts. This formulation task developed the next level of detail for technologies described and provides context to OCT where investments should be made. The presentation will begin with the list of technologies from TA-02, how they were prioritized for this study, and details on what additional data was captured for the technologies studied. Following this, some samples of the documentation will be provided, followed by plans on how the data will be made accessible.

  13. Evolutionary use of nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Hack, K. J.; George, J. A.; Riehl, J. P.; Gilland, J. H.

    1990-01-01

    Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed.

  14. Electric propulsion device for high power applications

    NASA Technical Reports Server (NTRS)

    Roy, Subrata (Inventor)

    2009-01-01

    An electric propulsion device is disclosed having an anode and a cathode. The propulsion device includes a discharge annulus having the anode adjacent an end region thereof. At least one inlet aperture is adjacent the anode, the aperture(s) having propellant gas flow therethrough into the discharge annulus. The propellant gas has an ionization potential. Opposed, dielectric walls define the annulus, with at least one of the opposed dielectric walls having pores therein, the pores having cooling gas flow therethrough into the discharge annulus and substantially adjacent the opposed dielectric wall(s). The cooling gas has an ionization potential higher than the ionization energy of the propellant gas. The cooling gas is adapted to substantially prevent at least one of secondary electron emission and sputtering of the dielectric walls.

  15. Trapping antimatter for space propulsion applications

    SciTech Connect

    Goebel, W.A.; Holzscheiter, M.H.; Lewis, R.A.; Rochet, J.; Schwartz, W.L.; Smith, G.A.

    1996-03-01

    Production and trapping of antiprotons for space propulsion applications are reviewed. Present and foreseeable production rates at Fermilab are discussed, and experiments on trapping, confinement and transport of large quantities of antiprotons are outlined. {copyright} {ital 1996 American Institute of Physics.}

  16. Multi-mission nuclear electric propulsion stage design.

    NASA Technical Reports Server (NTRS)

    Prickett, W. Z.; Stearns, J. W.

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions. Critical technologies assessed are associated with the development of nuclear electric propulsion (NEP), and the impact of its availability on future space programs. Specific areas of investigation include outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, and technology requirements for NEP stage development. A multimission NEP stage can be developed to perform both multiple geocentric and interplanetary missions for a 1983 launch. Identified pacing NEP technology requirements are the development of 20,000 full power hour ion thrustors and thermionic reactor and the development of related power conditioning. The resulting NEP stage design provides both inherent reliability and high payload mass capability.

  17. Radio Frequency Plasma Applications for Space Propulsion

    SciTech Connect

    Baity, F.W., Jr.; Barber, G.C.; Carter, M.D.; Chang-Diaz, F.R.; Goulding, R.H.; Ilin, A.V.; Jaeger, E.F.; Sparks, D.O.; Squire, J.P.

    1999-09-13

    Recent developments in solid-state radio frequency (RF) power technologies allow for the practical consideration of RF heated plasmas for space propulsion. These technologies permit the use of any electrical power source, de-couple the power and propellant sources, and allow for the effcient use of both the propellant mass and power. Effcient use of the propellant is obtained by expelling the rocket exhaust at the highest possible velocity, which can be orders of magnitude higher than those achieved in chemical rockets. Handling the hot plasma exhaust requires the use of magnetic nozzles, and the basic physics of ion detachment from the magnetic eld is discussed. The plasma can be generated by RF using helicon waves to heat electrons. Further direct heating of the ions helps to reduce the line radiation losses, and the magnetic geometry is tailored to allow ion cyclotron resonance heating. RF eld and ion trajectory calculations are presented to give a reasonably self-consistent picture of the ion acceleration process.

  18. Space station onboard propulsion system: Technology study

    NASA Technical Reports Server (NTRS)

    Mcallister, J. G.; Rudland, R. S.; Redd, L. R.; Beekman, D. H.; Cuffin, S. M.; Beer, C. M.; Mccarthy, K. K.

    1987-01-01

    The objective was to prepare for the design of the space station propulsion system. Propulsion system concepts were defined and schematics were developed for the most viable concepts. A dual model bipropellant system was found to deliver the largest amount of payload. However, when resupply is considered, an electrolysis system with 10 percent accumulators requires less resupply propellant, though it is penalized by the amount of time required to fill the accumulators and the power requirements for the electrolyzer. A computer simulation was prepared, which was originally intended to simulate the water electrolysis propulsion system but which was expanded to model other types of systems such as cold gas, monopropellant and bipropellant storable systems.

  19. High Power Electric Propulsion System for NEP: Propulsion and Trajectory Options

    SciTech Connect

    Koppel, Christophe R.; Duchemin, Olivier; Valentian, Dominique

    2006-01-20

    impulse shall be optimized w.r.t. the mission. The trajectories taken into account in the paper are constrained by the allowable duration of the travel and the launcher size. The multi-arcs trajectories to Mars (using an optimized combination of chemical and Electric propulsion) are presented in detail. The compatibility with NEP systems that implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes fitting in with Ariane 5 or the Space Shuttle bay, is assessed.

  20. High Power Electric Propulsion System for NEP: Propulsion and Trajectory Options

    NASA Astrophysics Data System (ADS)

    Koppel, Christophe R.; Duchemin, Olivier; Valentian, Dominique

    2006-01-01

    impulse shall be optimized w.r.t. the mission. The trajectories taken into account in the paper are constrained by the allowable duration of the travel and the launcher size. The multi-arcs trajectories to Mars (using an optimized combination of chemical and Electric propulsion) are presented in detail. The compatibility with NEP systems that implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes fitting in with Ariane 5 or the Space Shuttle bay, is assessed.

  1. NASA directions in space propulsion for 2000 and beyond

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1989-01-01

    In his National Space Policy of 1988, President Reagan committed to a goal of expanding human presence and activity in the solar system. This goal has provided the impetus for a resurgence of activity in a broad range of space technology efforts in general and for a number of propulsion technology programs in particular. Building on recommendations from several detailed studies of the U.S. space program, NASA has increased the level of investment in propulsion technology development. The Civil Space Technology Initiative is developing propulsion technology in support of near-Earth operations. These efforts are focused on both main and booster engines and seek to provide design methods and databases to support future developments of low cost, reliable transportation systems. Program elements include turbomachinery, combustion systems, and condition monitoring and diagnostics, and the design methodology developed at component levels will be verified in large scale systems. The Pathfinder program is developing a suite of technologies to enable a broad range of manned and unmanned missions beyond Earth's orbit. These include both chemical and electric propulsion technologies to support potential missions to the moon and Mars.

  2. Plasma Propulsion Research at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Sheehy, Jeffrey A.

    2004-01-01

    The Propulsion Research Center at NASA Marshall Space Flight Center is pursuing a range of research efforts aimed at identifying and developing new technologies for primary spacecraft propulsion. Efficient high-power electric propulsion (Ep) thrusters are a particular area of emphasis; these would enable the relatively rapid transit of large payloads about the solar system for unmanned or manned science and exploration. Such a mission would make heavy demands on the propulsion system, which may be required to run reliably for several years at a specific impulse approaching 10,OOO s with an efficiency of turning electrical power into jet power of at least 70%. The transit time to a destination scales approximately inversely with the cube root of the specific power, which is the ratio of jet power to power-plant mass. Consequently, reducing a trip time by half requires roughly an eight-fold increase in specific power. Given a renewed NASA commitment to space nuclear power, developing efficient EP thrusters with high jet power (> 100 kW) would seem to provide the most direct means of significantly increasing the specific power and hence reducing trip times. In particular, electromagnetic devices, with their high inherent thrust densities, should be better suited to high power applications than thrusters which depend exclusively on electrostatic forces for propellant acceleration.

  3. Space Shuttle Propulsion System Reliability

    NASA Technical Reports Server (NTRS)

    Welzyn, Ken; VanHooser, Katherine; Moore, Dennis; Wood, David

    2011-01-01

    This session includes the following sessions: (1) External Tank (ET) System Reliability and Lessons, (2) Space Shuttle Main Engine (SSME), Reliability Validated by a Million Seconds of Testing, (3) Reusable Solid Rocket Motor (RSRM) Reliability via Process Control, and (4) Solid Rocket Booster (SRB) Reliability via Acceptance and Testing.

  4. Interplanetary Electric Propulsion Uranus Mission Trades Supporting the Decadal Survey

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; McAdams, James

    2011-01-01

    The Decadal Survey Committee was tasked to develop a comprehensive science and mission strategy for planetary science that updates and extends the National Academies Space Studies Board s current solar system exploration decadal survey. A Uranus orbiter mission has been evaluated as a part of this 2013-2022 Planetary Science Decadal Survey. A comprehensive Uranus orbiter mission design was completed, including a broad search of interplanetary electric propulsion transfer options. The scope of interplanetary trades was limited to electric propulsion concepts, both solar and radioisotope powered. Solar electric propulsion offers significant payloads to Uranus. Inserted mass into the initial science orbit due is highly sensitive to transfer time due to arrival velocities. The recommended baseline trajectory is a 13 year transfer with an Atlas 551, a 1+1 NEXT stage with 15 kW of power using an EEJU trajectory and a 1,000km EGA flyby altitude constraint. This baseline delivers over 2,000kg into the initial science orbit. Interplanetary trajectory trades and sensitivity analyses are presented herein.

  5. Development priorities for in-space propulsion technologies

    NASA Astrophysics Data System (ADS)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2013-02-01

    During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.

  6. Products from NASA's In-Space Propulsion Program Applicable to Low-Cost Planetary Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David; Pencil, Eric J.; Glabb, Louis J.; Falck, Robert D.; Dankanich, John

    2013-01-01

    NASAs In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. The technology areas include electric propulsion technologies, spacecraft bus technologies, entry vehicle technologies, and design tools for systems analysis and mission trajectories. The electric propulsion technologies include critical components of both gridded and non-gridded ion propulsion systems. The spacecraft bus technologies under development include an ultra-lightweight tank (ULTT) and advanced xenon feed system (AXFS). The entry vehicle technologies include the development of a multi-mission entry vehicle, mission design tools and aerocapture. The design tools under development include system analysis tools and mission trajectory design tools.

  7. The State of Space Propulsion Research

    NASA Technical Reports Server (NTRS)

    Sackheim, R. L.; Cole, J. W.; Litchford, R. J.

    2006-01-01

    The current state of space propulsion research is assessed from both a historical perspective, spanning the decades since Apollo, and a forward-looking perspective, as defined by the enabling technologies required for a meaningful and sustainable human and robotic exploration program over the forthcoming decades. Previous research and technology investment approaches are examined and a course of action suggested for obtaining a more balanced portfolio of basic and applied research. The central recommendation is the establishment of a robust national Space Propulsion Research Initiative that would run parallel with systems development and include basic research activities. The basic framework and technical approach for this proposed initiative are defined and a potential implementation approach is recommended.

  8. Conceptual designs for antiproton space propulsion systems

    SciTech Connect

    Cassenti, B.N.

    1989-01-01

    Five conceptual designs for antimatter space propulsion systems were compared in terms of their performance characteristics. The systems examined included solid-core liquid-propellant rockets; magnetically confined gaseous-core rockets using liquid or solid propellants; plasma-core rockets; pion rockets, which are driven directly by the mass annihilation products; and ram-augmented rockets, in which antiproton annihilation is used to heat hydrogen collected in interstellar space. It was found that, in general, as the specific impulse of the propulsion system increases, the thrust decreases. The comparison between designs showed that only fusion rockets have the capability to compete in performance with mass annihilation rockets. For very-high-speed interstellar missions, pion rockets, which can have a specific impulse of 20 million sec (although with a thrust-to-engine mass ratios of only 0.01 G) will offer best performance. 36 refs.

  9. Designing the Space Shuttle Propulsion System

    NASA Technical Reports Server (NTRS)

    Owen, James; Moore, Dennis; Wood, David; VanHooser, Kathrine; Wlzyn, Ken

    2011-01-01

    The major elements of the Space Shuttle Main Propulsion System include two reusable solid rocket motors integrated into recoverable solid rocket boosters, an expendable external fuel and oxidizer tank, and three reusable Space Shuttle Main Engines. Both the solid rocket motors and space shuttle main engines ignite prior to liftoff, with the solid rocket boosters separating about two minutes into flight. The external tank separates after main engine shutdown and is safely expended in the ocean. The SSME's, integrated into the Space Shuttle Orbiter aft structure, are reused after post landing inspections. Both the solid rocket motors and the space shuttle main engine throttle during early ascent flight to limit aerodynamic loads on the structure. The configuration is called a stage and a half as all the propulsion elements are active during the boost phase, and the SSME's continue operation to achieve orbital velocity approximately eight and a half minutes after liftoff. Design and performance challenges were numerous, beginning with development work in the 1970 s. The solid rocket motors were large, and this technology had never been used for human space flight. The SSME s were both reusable and very high performance staged combustion cycle engines, also unique to the Space Shuttle. The multi body side mount configuration was unique and posed numerous integration and interface challenges across the elements. Operation of the system was complex and time consuming. This paper discusses a number of the system level technical challenges including development and operations.

  10. High Power, High Voltage Electric Power System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Aintablian, Harry; Kirkham, Harold; Timmerman, Paul

    2006-01-01

    This paper provides an overview of the 30 KW, 600 V MRHE power subsystem. Descriptions of the power subsystem elements, the mode of power transfer, and power and mass estimates are presented. A direct-drive architecture for electric propulsion is considered which reduces mass and complexity. Solar arrays with concentrators are used for increased efficiency. Finally, the challenges due to the environment of a hypothetical lunar mission as well as due to the advanced technologies considered are outlined.

  11. Electric propulsion on SMART-1 - a technology milestone

    NASA Astrophysics Data System (ADS)

    Estublier, Denis; Saccoccia, Giorgio; Gonzales Del Amo, Jose

    2007-02-01

    In December 2002, when France's Stentor satellite was all set to use electric propulsion for stationkeeping, ESA's SMART-1 was just completing its first end-to-end spacecraft test. Then Stentor was lost in the Ariane-5 launch failure, making SMART-1 the first and only technology demonstration mission with Hall-effect plasma propulsion. As a result, there was a great deal of interest in the electric propulsion community in SMART-1's flight.

  12. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  13. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  14. NASA's In-Space Propulsion Technology Project Overview, Near-term Products and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Dankanich, John; Anderson, David J.

    2008-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved (1) guidance, navigation, and control models of blunt-body rigid aeroshells, 2) atmospheric models for Earth, Titan, Mars and Venus, and 3) models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  15. Electric propulsion motor for marine vehicles

    SciTech Connect

    Dade, T.B.; Leiding, K.W.; Mongeau, P.P.; Piercey, M.S.

    1993-07-20

    An electric propulsion motor for marine vehicles is described comprising: a disk-shaped rotor and two coaxial disk-shaped stators, the rotor being separated from each of the stators in an axial direction by an air gap; the rotor including a plurality of permanent magnets that produce a first magnetic field; each stator comprising an armature winding that is connected to a source of electrical current to produce a second magnetic field, the first and second magnetic fields being capable of interacting to create an electromagnetic torque; means for coupling the rotor to a propeller shaft for transferring the torque from the rotor to the shaft, and means for detecting the angle of the shaft; a current control means for receiving a current control signal and for employing pulse width modulation to control the source of electrical current; the current control means including means for storing compensation information related to torque variations that are a function of shaft angle; the current control means further including means connected and responsive to the shaft angle detecting means for selecting the compensation information as a function of shaft angle and means for combining the compensation information with the current control signal to control the source of electrical current such that the torque variations that are a function of shaft angle are minimized; and wherein the means for coupling the rotor to the propeller shaft includes means within the motor for isolating the shaft from sound produced by the motor.

  16. Orbital transfer of large space structures with nuclear electric rockets

    NASA Technical Reports Server (NTRS)

    Silva, T. H.; Byers, D. C.

    1980-01-01

    This paper discusses the potential application of electric propulsion for orbit transfer of a large spacecraft structure from low earth orbit to geosynchronous altitude in a deployed configuration. The electric power was provided by the spacecraft nuclear reactor space power system on a shared basis during transfer operations. Factors considered with respect to system effectiveness included nuclear power source sizing, electric propulsion thruster concept, spacecraft deployment constraints, and orbital operations and safety. It is shown that the favorable total impulse capability inherent in electric propulsion provides a potential economic advantage over chemical propulsion orbit transfer vehicles by reducing the number of Space Shuttle flights in ground-to-orbit transportation requirements.

  17. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  18. Space Shuttle Solid Rocket Booster Joins Propulsion Park Display

    NASA Video Gallery

    A crane lifts a space shuttle solid rocket booster into its final position in the “propulsion park” outside Building 4205, the Propulsion Research & Development Laboratory at the Marshall Cente...

  19. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  20. Parasitic current losses due to solar electric propulsion generated plasmas

    NASA Technical Reports Server (NTRS)

    Katz, I.; Parks, D. E.; Mandell, M. J.; Schnuelle, G. W.

    1981-01-01

    Solar electric propulsion is a leading candidate for many upcoming space missions. Under many circumstances plasma produced by charge-exchange reactions within the ion beam dominates the ambient environment near the spacecraft. The calculations presented here contain a predictive hydrodynamic model for the charge-exchange plasma expansion, and a fully three-dimensional model for the structure of the plasma sheath around the solar array wing. Results of calculations for several configurations and voltage levels indicate that with kilovolt biases power losses of approximately 10 percent or more are likely, even with only one engine in operation, and that ameliorative measures should focus on the inboard portion of the solar arrays.

  1. Electric Propulsion Performance from Geo-transfer to Geosynchronous Orbits

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Carpenter, Christian B.

    2007-01-01

    For near-Earth application, solar electric propulsion advocates have focused on Low Earth Orbit (LEO) to Geosynchronous (GEO) low-thrust transfers because of the significant improvement in capability over chemical alternatives. While the performance gain attained from starting with a lower orbit is large, there are also increased transfer times and radiation exposure risk that has hindered the commercial advocacy for electric propulsion stages. An incremental step towards electric propulsion stages is the use of integrated solar electric propulsion systems (SEPS) for GTO to GEO transfer. Thorough analyses of electric propulsion systems options and performance are presented. Results are based on existing or near-term capabilities of Arcjets, Hall thrusters, and Gridded Ion engines. Parametric analyses based on "rubber" thruster and launch site metrics are also provided.

  2. NASA's In Space Propulsion Technology Program Accomplishments and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Johnson, Les C.; Harris, David

    2008-01-01

    NASA's In-Space Propulsion Technology (ISPT) Program was managed for 5 years at the NASA MSFC and significant strides were made in the advancement of key transportation technologies that will enable or enhance future robotic science and deep space exploration missions. At the program's inception, a set of technology investment priorities were established using an NASA-wide, mission-driven prioritization process and, for the most part, these priorities changed little - thus allowing a consistent framework in which to fund and manage technology development. Technologies in the portfolio included aerocapture, advanced chemical propulsion, solar electric propulsion, solar sail propulsion, electrodynamic and momentum transfer tethers, and various very advanced propulsion technologies with significantly lower technology readiness. The program invested in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program was to lay the technological foundation for travel to nearby interstellar space. The ambitious goals of the program at its inception included supporting the development of technologies that could support all of NASA's missions, both human and robotic. As time went on and budgets were never as high as planned, the scope of the program was reduced almost every year, forcing the elimination of not only the broader goals of the initial program, but also of

  3. Solar electric propulsion thrust subsystem development

    NASA Technical Reports Server (NTRS)

    Masek, T. D.

    1973-01-01

    The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.

  4. Interplanetary space transport using inertial fusion propulsion

    SciTech Connect

    Orth, C.D.

    1998-04-20

    In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts.

  5. Radioisotope Electric Propulsion for Fast Outer Planetary Orbiters

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Benson, Scott; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey

    2002-01-01

    Recent interest in outer planetary targets by the Office of Space Science has spurred the search for technology options to enable relatively quick missions to outer planetary targets. Several options are being explored including solar electric propelled stages combined with aerocapture at the target and nuclear electric propulsion. Another option uses radioisotope powered electric thrusters to reach the outer planets. Past work looked at using this technology to provide faster flybys. A better use for this technology is for outer planet orbiters. Combined with medium class launch vehicles and a new direct trajectory these small, sub-kilowatt ion thrusters and Stirling radioisotope generators were found to allow missions as fast as 5 to 12 years for objects from Saturn to Pluto, respectively. Key to the development is light spacecraft and science payload technologies.

  6. Liquid Bismuth Feed System for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Polzin, K. A.; Stanojev, B. J.

    2006-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions. For example, the VHITAL project aims td accurately, experimentally assess the performance characteristics of 10 kW-class bismuth-fed Hall thrusters - in order to validate earlier results and resuscitate a promising technology that has been relatively dormant for about two decades. A critical element of these tests will be the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre/post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work was to develop a precision liquid bismuth Propellant Management System (PMS) that provides real-time propellant mass flow rate measurement and control, enabling accurate thruster performance measurements. Additionally, our approach emphasizes the development of new liquid metal flow control components and, hence, will establish a basis for the future development of components for application in spaceflight. The design of various critical components in a bismuth PMS are described - reservoir, electromagnetic pump, hotspot flow sensor, and automated control system. Particular emphasis is given to material selection and high-temperature sealing techniques. Open loop calibration test results are reported, which validate the systems capability to deliver bismuth at mass flow rates ranging from 10 to 100 mg/sec with an uncertainty of less than +/- 5%. Results of integrated vaporizer/liquid PMS tests demonstrate all of the necessary elements of a complete bismuth feed system for electric propulsion.

  7. NASA's In-Space Propulsion Technology Program: Overview and Status

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.

  8. Optimization of interplanetary trajectories to Mars via electrical propulsion

    NASA Astrophysics Data System (ADS)

    Williams, Powtawche Neengay

    Although chemical rocket propulsion is widely used in space transportation, large amounts of propellant mass limit designs for spacecraft missions to Mars. Electrical propulsion, which requires a smaller propellant load, is an alternative propulsion system that can be used for interplanetary flight. After the recent successes of the NASA Deep Space 1 spacecraft and the ESA SMART 1 spacecraft, which incorporate an electrical propulsion system, there is a strong need for trajectory tools to support these systems. This thesis describes the optimization of interplanetary trajectories from Earth to Mars for spacecraft utilizing low-thrust electrical propulsion systems. It is assumed that the controls are the thrust direction and the thrust setting. Specifically, the minimum time and minimum propellant problems are studied and solutions are computed with the sequential gradient-restoration algorithm (SGRA). The results indicate that, when the thrust direction and thrust setting are simultaneously optimized, the minimum time and minimum propellant solutions are not identical. For minimum time, it is found that the thrust setting must be at the maximum value; also, the thrust direction has a normal component with a switch at midcourse from upward to downward. This changes the curvature of the trajectory, has a beneficial effect on time, but a detrimental effect on propellant mass; indeed, the propellant mass ratio of the minimum time solution is about twice that of the Hohmann transfer solution. Thus, the minimum time solution yields a rather inefficient trajectory. For minimum propellant consumption, it is found that the best thrust setting is bang-zero-bang (maximum thrust, followed by coasting, followed by maximum thrust) and that the best thrust direction is tangent to the trajectory. This is a rather efficient trajectory; to three significant digits, the associated mass ratio is the same as that of the Hohmann transfer solution, even for thrust-to-weight ratios of

  9. Modeling of plasma in a hybrid electric propulsion for small satellites

    NASA Astrophysics Data System (ADS)

    Jugroot, Manish; Christou, Alex

    2016-09-01

    As space flight becomes more available and reliable, space-based technology is allowing for smaller and more cost-effective satellites to be produced. Working in large swarms, many small satellites can provide additional capabilities while reducing risk. These satellites require efficient, long term propulsion for manoeuvres, orbit maintenance and de-orbiting. The high exhaust velocity and propellant efficiency of electric propulsion makes it ideally suited for low thrust missions. The two dominant types of electric propulsion, namely ion thrusters and Hall thrusters, excel in different mission types. In this work, a novel electric hybrid propulsion design is modelled to enhance understanding of key phenomena and evaluate performance. Specifically, the modelled hybrid thruster seeks to overcome issues with existing Ion and Hall thruster designs. Scaling issues and optimization of the design will be discussed and will investigate a conceptual design of a hybrid spacecraft plasma engine.

  10. Space Transportation Propulsion Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transportation Propulsion Technology Symposium was held to provide a forum for communication within the propulsion within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.

  11. Gravity-assist engine for space propulsion

    NASA Astrophysics Data System (ADS)

    Bergstrom, Arne

    2014-06-01

    As a possible alternative to rockets, the present article describes a new type of engine for space travel, based on the gravity-assist concept for space propulsion. The new engine is to a great extent inspired by the conversion of rotational angular momentum to orbital angular momentum occurring in tidal locking between astronomical bodies. It is also greatly influenced by Minovitch's gravity-assist concept, which has revolutionized modern space technology, and without which the deep-space probes to the outer planets and beyond would not have been possible. Two of the three gravitating bodies in Minovitch's concept are in the gravity-assist engine discussed in this article replaced by an extremely massive ‘springbell' (in principle a spinning dumbbell with a powerful spring) incorporated into the spacecraft itself, and creating a three-body interaction when orbiting around a gravitating body. This makes gravity-assist propulsion possible without having to find suitably aligned astronomical bodies. Detailed numerical simulations are presented, showing how an actual spacecraft can use a ca 10-m diameter springbell engine in order to leave the earth's gravitational field and enter an escape trajectory towards interplanetary destinations.

  12. Propulsion Progress for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.; Priskos, Alex S.; Kynard, Michael H.; Lavoie, Anthony R.

    2012-01-01

    Leaders from NASA's Space Launch System (SLS) will participate in a panel discussing the progress made on the program's propulsion systems. The SLS will be the nation's next human-rated heavy-lift vehicle for new missions beyond Earth's orbit. With a first launch slated for 2017, the SLS Program is turning plans into progress, with the initial rocket being built in the U.S.A. today, engaging the aerospace workforce and infrastructure. Starting with an overview of the SLS mission and programmatic status, the discussion will then delve into progress on each of the primary SLS propulsion elements, including the boosters, core stage engines, upper stage engines, and stage hardware. Included will be a discussion of the 5-segment solid rocket motors (ATK), which are derived from Space Shuttle and Ares developments, as well as the RS-25 core stage engines from the Space Shuttle inventory and the J- 2X upper stage engine now in testing (Pratt and Whitney Rocketdyne). The panel will respond to audience questions about this important national capability for human and scientific space exploration missions.

  13. Chemical and Solar Electric Propulsion Systems Analyses for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.; Green, Shaun E.; Coverstone, Victoria L.; Woo, Byoungsam

    2004-01-01

    Conceptual in-space transfer stages, including those utilizing solar electric propulsion, chemical propulsion, and chemical propulsion with aerobraking or aerocapture assist at Mars, were evaluated. Roundtrip Mars sample return mission vehicles were analyzed to determine how specific system technology selections influence payload delivery capability. Results show how specific engine, thruster, propellant, capture mode, trip time and launch vehicle technology choices would contribute to increasing payload or decreasing the size of the required launch vehicles. Heliocentric low-thrust trajectory analyses for Solar Electric Transfer were generated with the SEPTOP code.

  14. Unique mission options available with a megawatt-class nuclear electric propulsion system

    SciTech Connect

    Coomes, E.P.; McCauley, L.A.; Christian, J.L.; Gomez, M.A.; Wong, W.A.

    1988-10-01

    The advantages of using electric propulsion systems are well-known in the aerospace community with the most common being its high specific impulse, lower propellant requirements, and lower system mass. But these advantages may not be as important as the overall unique mission options electric propulsion makes possible, especially if the system is powered by a megawatt-class nuclear electric power source. Although the lack of suitable electric power systems has been a major drawback to electric propulsion, recent efforts have shown megawatt-class nuclear electric power systems are feasible and could be available by the turn of the century. Coupling this with the resurgence in interest in free-space electromagnetic transmission of energy and technology developments in this area provide a whole new aspect to the view of electric propulsion. The propulsion system now has a second mission function that may be of more value than the well understood benefits of electric propulsion; that is providing large quantities of prime power in support of a broad spectrum of mission tasks. 30 refs., 9 figs.

  15. Electric propulsion for lunar exploration and lunar base development

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1992-01-01

    Using electric propulsion to deliver materials to lunar orbit for the development and construction of a lunar base was investigated. Because the mass of the base and its life-cycle resupply mass are large, high specific impulse propulsion systems may significantly reduce the transportation system mass and cost. Three electric propulsion technologies (arcjet, ion, and magnetoplasmadynamic (MPD) propulsion) were compared with oxygen/hydrogen propulsion for a lunar base development scenario. Detailed estimates of the orbital transfer vehicles' (OTV's) masses and their propellant masses are presented. The fleet sizes for the chemical and electric propulsion systems are estimated. Ion and MPD propulsion systems enable significant launch mass savings over O2/H2 propulsion. Because of the longer trip time required for the low-thrust OTV's, more of them are required to perform the mission model. By offloading the lunar cargo from the manned O2/H2 OTV missions onto the electric propulsion OTV's, a significant reduction of the low Earth orbit (LEO) launch mass is possible over the 19-year base development period.

  16. Space shuttle propulsion estimation development verification

    NASA Technical Reports Server (NTRS)

    Rogers, Robert M.

    1989-01-01

    The application of extended Kalman filtering to estimating the Space Shuttle Propulsion performance, i.e., specific impulse, from flight data in a post-flight processing computer program is detailed. The flight data used include inertial platform acceleration, SRB head pressure, SSME chamber pressure and flow rates, and ground based radar tracking data. The key feature in this application is the model used for the SRB's, which is a nominal or reference quasi-static internal ballistics model normalized to the propellant burn depth. Dynamic states of mass overboard and propellant burn depth are included in the filter model to account for real-time deviations from the reference model used. Aerodynamic, plume, wind and main engine uncertainties are also included for an integrated system model. Assuming uncertainty within the propulsion system model and attempts to estimate its deviations represent a new application of parameter estimation for rocket powered vehicles. Illustrations from the results of applying this estimation approach to several missions show good quality propulsion estimates.

  17. Propulsion of space ships by nuclear explosion

    NASA Astrophysics Data System (ADS)

    Linhart, J. G.; Kravárik, J.

    2005-01-01

    Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1 10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.

  18. NASA In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.

  19. NASA's In-Space Propulsion Technology Program: Overview and Update

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.

    2004-01-01

    NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.

  20. Propulsion recommendations for Space Station free flying platforms

    NASA Technical Reports Server (NTRS)

    Redd, L. R.; Rose, L. J.

    1986-01-01

    Propulsion system candidates have been defined for Space Station free flying platforms for the purpose of comparison and to understand the impact of the various mission requirements on the candidate designs. Consideration of the platform mission requirements and comparisons of the conceptual propulsion system design candidates has led to a fairly clear set of recommendations for propulsion for each of the various platforms.

  1. Nondestructive evaluation tools and experimental studies for monitoring the health of space propulsion systems

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1991-01-01

    An overview is given of background and information on space propulsion systems on both the programmatic and technical levels. Feasibility experimental studies indicate that nondestructive evaluation tools such as ultrasonic, eddy current and X-ray may be successfully used to monitor the life limiting failure mechanisms of space propulsion systems. Encouraging results were obtained for monitoring the life limiting failure mechanims for three space propulsion systems: the degradation of tungsten arcjet and magnetoplasmadynamic electrodes; presence and thickness of spallable electrically conducting molybdenum films in ion thrusters; and the degradation of the catalyst in hydrazine thrusters.

  2. Nondestructive evaluation tools and experimental studies for monitoring the health of space propulsion systems

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1991-01-01

    An overview is given of background and information on space propulsion systems on both the programmatic and technical levels. Feasibility experimental studies indicate that nondestructive evaluation tools such as ultrasonic, eddy current and x-ray may be successfully used to monitor the life limiting failure mechanisms of space propulsion systems. Encouraging results were obtained for monitoring the life limiting failure mechanisms for three space propulsion systems; the degradation of tungsten arcjet and magnetoplasmadynamic electrodes; presence and thickness of spallable electrically conducting molybdenum films in ion thrusters; and the degradation of the catalyst in hydrazine thrusters.

  3. Space transportation systems, launch systems, and propulsion for the Space Exploration Initiative: Results from Project Outreach

    NASA Technical Reports Server (NTRS)

    Garber, T.; Hiland, J.; Orletsky, D.; Augenstein, B.; Miller, M.

    1991-01-01

    A number of transportation and propulsion options for Mars exploration missions are analyzed. As part of Project Outreach, RAND received and evaluated 350 submissions in the launch vehicle, space transportation, and propulsion areas. After screening submissions, aggregating those that proposed identical or nearly identical concepts, and eliminating from further consideration those that violated known physical princples, we had reduced the total number of viable submissions to 213. In order to avoid comparing such disparate things as launch vehicles and electric propulsion systems, six broad technical areas were selected to categorize the submissions: space transportation systems; earth-to-orbit (ETO) launch systems; chemical propulsion; nuclear propulsion; low-thrust propulsion; and other. To provide an appropriate background for analyzing the submissions, an extensive survey was made of the various technologies relevant to the six broad areas listed above. We discuss these technologies with the intent of providing the reader with an indication of the current state of the art, as well as the advances that might be expected within the next 10 to 20 years.

  4. Mars Mission Concepts: SAR and Solar Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Elsperman, Michael; Clifford, S.; Lawrence, S.; Klaus, K.; Smith, D.

    2013-10-01

    Introduction: The time has come to leverage technology advances to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow subsurface of Mars, enabling identification of fine-scale layering within the Martian polar layered deposits (PLD), as well as the identification of pingos, investigations of polygonal terrain, and measurements of the thickness of mantling layers at non-polar latitudes. It would allow systematic near-surface prospecting, which is tremendously useful for human exploration purposes. Limited color capabilities in a notional high-resolution stereo imaging system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Mission Concept: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Our concept involves using a Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An observation spacecraft platform like the high power 5Kw) 702SP at Mars also enables the use of a SAR instrument to reveal new insights and understanding of the Mars regolith for both

  5. Electric Propulsion Options for a Magnetospheric Mapping Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Russell, Chris; Hack, Kurt; Riehl, John

    1998-01-01

    The Twin Electric Magnetospheric Probes Exploring on Spiral Trajectories mission concept was proposed as a Middle Explorer class mission. A pre-phase-A design was developed which utilizes the advantages of electric propulsion for Earth scientific spacecraft use. This paper presents propulsion system analyses performed for the proposal. The proposed mission required two spacecraft to explore near circular orbits 0.1 to 15 Earth radii in both high and low inclination orbits. Since the use of chemical propulsion would require launch vehicles outside the Middle Explorer class a reduction in launch mass was sought using ion, Hall, and arcjet electric propulsion system. Xenon ion technology proved to be the best propulsion option for the mission requirements requiring only two Pegasus XL launchers. The Hall thruster provided an alternative solution but required two larger, Taurus launch vehicles. Arcjet thrusters did not allow for significant launch vehicle reduction in the Middle Explorer class.

  6. Joint Radioisotope Electric Propulsion Studies - Neptune System Explorer

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Amini, Rashied; Ervin, Joan; Lang, Jared; Landau, Damon; Oleson, Steven; Spilker, Thomas; Strange, Nathan

    2011-01-01

    The Neptune System Explorer (NSE) mission concept study assessed opportunities to conduct Cassini-like science at Neptune with a radioisotope electric propulsion (REP) based spacecraft. REP is based on powering an electric propulsion (EP) engine with a radioisotope power source (RPS). The NSE study was commissioned under the Joint Radioisotope Electric Propulsion Studies (JREPS) project, which sought to determine the technical feasibility of flagship class REP applications. Within JREPS, special emphasis was given toward identifying tall technology tent poles, as well as recommending any new RPS technology developments that would be required for complicated REP missions. Based on the goals of JREPS, multiple RPS (e.g. thermoelectric and Stirling based RPS) and EP (e.g. Hall and ion engines) technology combinations were traded during the NSE study to determine the most favorable REP design architecture. Among the findings from the study was the need for >400We RPS systems, which was driven by EP operating powers and the requirement for a long-lived mission in the deep solar system. Additionally multiple development and implementation risks were identified for the NSE concept, as well as REP missions in general. Among the strengths of the NSE mission would be the benefits associated with RPS and EP use, such as long-term power (approx. 2-3kW) at Neptune and flexible trajectory options for achieving orbit or tours of the Neptune system. Although there are still multiple issues to mitigate, the NSE concept demonstrated distinct advantages associated with using REP for deep space flagship-class missions.

  7. Aircraft Electric Propulsion Systems Applied Research at NASA

    NASA Technical Reports Server (NTRS)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  8. Electric Propulsion Cables For Milli-Newton Thrusters

    NASA Astrophysics Data System (ADS)

    Jakob, Manfred; Bertrand, Arnaud; El-Idrissi, Mohamed; Schaper, Wolfgang, , Dr.

    2011-10-01

    AXON' Kabel GmbH, is developing and manufacturing cables and connectors up to complete interconnect systems for all types of applications needed in Space. As a request from ESA, AXON has developed a new generation of cables suitable for current and future applications to feed electric propulsion thruster systems in spacecraft with electric power. Under this project the main objectives were to find and select materials for the composition to produce a cable withstanding quite strongrequirements for operating temperature, radiation resistance, high voltage application and in variants to various current ratings (A); the cable construction will also include ESD immunisation. The paper will summarise the specification achieved and will give an overview on the test results with the prototype cables.

  9. Space station propulsion technology: Space station propulsion system test bed test plan

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    Testing of the hydrogen/oxygen Space Station Propulsion System will demonstrate the technology readiness for the IOC application. To facilitate early demonstration of this technology and to allow demonstration of maturing technology, this testing will be performed with the components installed on a test bed which simulated the Space Station Structure. The test plan contains a description of the test bed, test objective, instrumentation plan, and controls plan. Each of these is discussed in detail.

  10. Solar electric propulsion thrust beam interactive effects

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Fitzgerald, D. J.

    1975-01-01

    Interactive effects between ion engine thrust beams and an SEP spacecraft and its science payload have been examined. AC electric contamination from thrust beam potential fluctuations of both 'common mode' and 'point-to-point' forms has been evaluated. Quenching of point-to-point E-fields by both thrust ion and charge exchange ion plasmas is expected. Reduction methods for AC electric contamination from common mode thrust beam potential fluctuations have been developed. Charged particle contamination of ambient space and plasma wave contamination may result from density magnitude and spatial extent of charge exchange plasma plumes. Reduction methods for cone of directions of high angle charge exchange ions have been examined.

  11. Innovative Airbreathing Propulsion Concepts for Access to Space

    NASA Technical Reports Server (NTRS)

    Whitlow, Jr., Woodrow; Blech, Richard A.; Blankson, Isaiah M.

    2001-01-01

    This paper will present technologies and concepts for novel aeropropulsion systems. These technologies will enhance the safety of operations, reduce life cycle costs, and contribute to reduced costs of air travel and access to space. One of the goals of the NASA program is to reduce the carbon-dioxide emissions of aircraft engines. Engine concepts that use highly efficient fuel cell/electric drive technologies in hydrogen-fueled engines will be presented in the proposed paper. Carbon-dioxide emissions will be eliminated by replacing hydrocarbon fuel with hydrogen, and reduce NOx emissions through better combustion process control. A revolutionary exoskeletal engine concept, in which the engine drum is rotated, will be shown. This concept has the potential to allow a propulsion system that can be used for subsonic through hypersonic flight. Dual fan concepts that have ultra-high bypass ratios, low noise, and low drag will be presented. Flow-controlled turbofans and control-configured turbofans also will be discussed. To increase efficiency, a system of microengines distributed along lifting surfaces and on the fuselage is being investigated. This concept will be presented in the paper. Small propulsion systems for affordable, safe personal transportation vehicles will be discussed. These low-oil/oilless systems use technologies that enable significant cost and weight reductions. Pulse detonation engine-based hybrid-cycle and combined-cycle propulsion systems for aviation and space access will be presented.

  12. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  13. A potassium Rankine multimegawatt nuclear electric propulsion concept

    NASA Technical Reports Server (NTRS)

    Baumeister, E.; Rovang, R.; Mills, J.; Sercel, J.; Frisbee, R.

    1990-01-01

    Multimegawatt nuclear electric propulsion (NEP) has been identified as a potentially attractive option for future space exploratory missions. A liquid-metal-cooled reactor, potassium Rankine power system that is being developed is suited to fulfill this application. The key features of the nuclear power system are described, and system characteristics are provided for various potential NEP power ranges and operational lifetimes. The results of recent mission studies are presented to illustrate some of the potential benefits to future space exploration to be gained from high-power NEP. Specifically, mission analyses have been performed to assess the mass and trip time performance of advanced NEP for both cargo and piloted missions to Mars.

  14. Prognostics Applied to Electric Propulsion UAV

    NASA Technical Reports Server (NTRS)

    Goebel, Kai; Saha, Bhaskar

    2013-01-01

    Health management plays an important role in operations of UAV. If there is equipment malfunction on critical components, safe operation of the UAV might possibly be compromised. A technology with particular promise in this arena is equipment prognostics. This technology provides a state assessment of the health of components of interest and, if a degraded state has been found, it estimates how long it will take before the equipment will reach a failure threshold, conditional on assumptions about future operating conditions and future environmental conditions. This chapter explores the technical underpinnings of how to perform prognostics and shows an implementation on the propulsion of an electric UAV. A particle filter is shown as the method of choice in performing state assessment and predicting future degradation. The method is then applied to the batteries that provide power to the propeller motors. An accurate run-time battery life prediction algorithm is of critical importance to ensure the safe operation of the vehicle if one wants to maximize in-air time. Current reliability based techniques turn out to be insufficient to manage the use of such batteries where loads vary frequently in uncertain environments.

  15. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Jones, J. E.; Cox, M. D.

    2004-01-01

    An electric propulsion thrust stand capable of supporting thrusters with total mass of up to 125 kg and 1 mN to 1 N thrust levels has been developed and tested. The mechanical design features a conventional hanging pendulum arm attached to a balance mechanism that transforms horizontal motion into amplified vertical motion, with accommodation for variable displacement sensitivity. Unlike conventional hanging pendulum thrust stands, the deflection is independent of the length of the pendulum arm, and no reference structure is required at the end of the pendulum. Displacement is measured using a non-contact, optical linear gap displacement transducer. Mechanical oscillations are attenuated using a passive, eddy current damper. An on-board microprocessor-based level control system, which includes a two axis accelerometer and two linear-displacement stepper motors, continuously maintains the level of the balance mechanism - counteracting mechanical %era drift during thruster testing. A thermal control system, which includes heat exchange panels, thermocouples, and a programmable recirculating water chiller, continuously adjusts to varying thermal loads to maintain the balance mechanism temperature, to counteract thermal drifts. An in-situ calibration rig allows for steady state calibration both prior to and during thruster testing. Thrust measurements were carried out on a well-characterized 1 kW Hall thruster; the thrust stand was shown to produce repeatable results consistent with previously published performance data.

  16. An electric propulsion long term test facility

    NASA Technical Reports Server (NTRS)

    Trump, G.; James, E.; Vetrone, R.; Bechtel, R.

    1979-01-01

    An existing test facility was modified to provide for extended testing of multiple electric propulsion thruster subsystems. A program to document thruster subsystem characteristics as a function of time is currently in progress. The facility is capable of simultaneously operating three 2.7-kW, 30-cm mercury ion thrusters and their power processing units. Each thruster is installed via a separate air lock so that it can be extended into the 7m x 10m main chamber without violating vacuum integrity. The thrusters exhaust into a 3m x 5m frozen mercury target. An array of cryopanels collect sputtered target material. Power processor units are tested in an adjacent 1.5m x 2m vacuum chamber or accompanying forced convection enclosure. The thruster subsystems and the test facility are designed for automatic unattended operation with thruster operation computer controlled. Test data are recorded by a central data collection system scanning 200 channels of data a second every two minutes. Results of the Systems Demonstration Test, a short shakedown test of 500 hours, and facility performance during the first year of testing are presented.

  17. Selection and Prioritization of Advanced Propulsion Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Eberle, Bill; Farris, Bob; Johnson, Les; Jones, Jonathan; Kos, Larry; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    The exploration of our solar system will require spacecraft with much greater capability than spacecraft which have been launched in the past. This is particularly true for exploration of the outer planets. Outer planet exploration requires shorter trip times, increased payload mass, and ability to orbit or land on outer planets. Increased capability requires better propulsion systems, including increased specific impulse. Chemical propulsion systems are not capable of delivering the performance required for exploration of the solar system. Future propulsion systems will be applied to a wide variety of missions with a diverse set of mission requirements. Many candidate propulsion technologies have been proposed but NASA resources do not permit development of a] of them. Therefore, we need to rationally select a few propulsion technologies for advancement, for application to future space missions. An effort was initiated to select and prioritize candidate propulsion technologies for development investment. The results of the study identified Aerocapture, 5 - 10 KW Solar Electric Ion, and Nuclear Electric Propulsion as high priority technologies. Solar Sails, 100 Kw Solar Electric Hall Thrusters, Electric Propulsion, and Advanced Chemical were identified as medium priority technologies. Plasma sails, momentum exchange tethers, and low density solar sails were identified as high risk/high payoff technologies.

  18. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  19. Identifying Accessible Near-Earth Objects For Crewed Missions With Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Smet, Stijn De; Parker, Jeffrey S.; Herman, Jonathan F. C.; Aziz, Jonathan; Barbee, Brent W.; Englander, Jacob A.

    2015-01-01

    This paper discusses the expansion of the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) with Solar Electric Propulsion (SEP). The research investigates the existence of new launch seasons that would have been impossible to achieve using only chemical propulsion. Furthermore, this paper shows that SEP can be used to significantly reduce the launch mass and in some cases the flight time of potential missions as compared to the current, purely chemical trajectories identified by the NHATS project.

  20. The Prometheus 1 spacecraft preliminary electric propulsion system design

    NASA Technical Reports Server (NTRS)

    Randolph, Thomas M.; Dougherty, Ryan C.; Oleson, Steven R.; Fiehler, Douglas I.; Dipprey, Neil

    2005-01-01

    The proposed Prometheus 1 mission is an ambitious plan to orbit and explore the Jovian moons of Callisto, Ganymede, and Europa. Such an ambitious mission is enabled by the first interplanetary nuclear electric propulsion (EP) system.

  1. Uranus and Neptune orbiter missions via solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Brandenburg, R. K.

    1971-01-01

    The characteristics and capabilities of solar electric propulsion for performing orbiter missions at the planets Uranus and Neptune are described. An assessment of the scientific objectives and instrumentation requirements, their relation to orbit size selection, and parametric analysis of solar electric propulsion trajectory/payload performance are included. Utilizing the Titan 3D/Centaur launch vehicle, minimum flight times of about 3400 days to Uranus and 5300 days to Neptune are required to place the TOPS spacecraft into the nominal orbits. It has been shown that solar electric propulsion can be used effectively to accomplish elliptical orbiter missions at Uranus and Neptune. However, because of the very long flight time required, these mission profiles are not too attractive. Previous studies have shown that nuclear electric propulsion, if developed, would allow much faster trips; 5 years to Uranus and 8 years to Neptune.

  2. Low-thrust solar electric propulsion navigation simulation program

    NASA Technical Reports Server (NTRS)

    Hagar, H. J.; Eller, T. J.

    1973-01-01

    An interplanetary low-thrust, solar electric propulsion mission simulation program suitable for navigation studies is presented. The mathematical models for trajectory simulation, error compensation, and tracking motion are described. The languages, input-output procedures, and subroutines are included.

  3. MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BASEMENT. GENERAL ELECTRIC CONTROL CONSOLE FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENT NO. 1. INL NEGATIVE NO. 6510. Unknown Photographer, 9/29/1959 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Radioisotope Electric Propulsion (REP) for Selected Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Artis, Gwen

    2005-01-01

    This viewgraph presentation analyzes small body targets (Trojan Asteroids), Medium Outer Planet Class (Jupiter Polar Orbiter with Probes), and Main Belt Asteroids and Comets (Comet Surface Sample Return), for Radioisotope Electric Propulsion (REP).

  5. Electric Propulsion Upper-Stage for Launch Vehicle Capability Enhancement

    NASA Technical Reports Server (NTRS)

    Kemp, Gregory E.; Dankanich, John W.; Woodcock, Gordon R.; Wingo, Dennis R.

    2007-01-01

    The NASA In-Space Propulsion Technology Project Office initiated a preliminary study to evaluate the performance benefits of a solar electric propulsion (SEP) upper-stage with existing and near-term small launch vehicles. The analysis included circular and elliptical Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) transfers, and LEO to Low Lunar Orbit (LLO) applications. SEP subsystem options included state-of-the-art and near-term solar arrays and electric thrusters. In-depth evaluations of the Aerojet BPT-4000 Hall thruster and NEXT gridded ion engine were conducted to compare performance, cost and revenue potential. Preliminary results indicate that Hall thruster technology is favored for low-cost, low power SEP stages, while gridded-ion engines are favored for higher power SEP systems unfettered by transfer time constraints. A low-cost point design is presented that details one possible stage configuration and outlines system limitations, in particular fairing volume constraints. The results demonstrate mission enhancements to large and medium class launch vehicles, and mission enabling performance when SEP system upper stages are mounted to low-cost launchers such as the Minotaur and Falcon 1. Study results indicate the potential use of SEP upper stages to double GEO payload mass capability and to possibly enable launch on demand capability for GEO assets. Transition from government to commercial applications, with associated cost/benefit analysis, has also been assessed. The sensitivity of system performance to specific impulse, array power, thruster size, and component costs are also discussed.

  6. Space Transportation Propulsion Technology Symposium. Volume 2: Symposium proceedings

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transportation Propulsion Symposium was held to provide a forum for communication within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.

  7. Coherent Structures in Plasmas Relevant to Electric Propulsion

    DTIC Science & Technology

    2016-06-24

    formation of the plasma structures requires a kinetic description supported by theory and validated by measurements of kinetic properties, including energy...AFRL-AFOSR-VA-TR-2016-0229 Coherent Structures in Plasmas Relevant to Electric Propulsion Mark Cappelli LELAND STANFORD JUNIOR UNIV CA Final Report...TITLE AND SUBTITLE Coherent Structures in Plasmas Relevant to Electric Propulsion 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER FA9550-14-1-0017 5c

  8. Auxiliary propulsion requirements for large space systems

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Smith, W. W.; Machles, G. W.

    1983-01-01

    An insight into auxiliary propulsion systems (APS) requirements for large space systems (LSS) launchable by a single shuttle is presented. In an effort to scope the APS requirements for LSS, a set of generic LSSs were defined. For each generic LSS class a specific structural configuration, representative of that most likely to serve the needs of the 1980's and 1990's was defined. The environmental disturbance forces and torques which would be acting on each specific structural configuration in LEO and GEO orbits were then determined. Auxiliary propulsion requirements were determined as a function of: generic class specific configuration, size and openness of structure, orbit, angle of orientation, correction frequency, duty cycle, number and location of thrusters and direction of thrusters and APS/LSS interactions. The results of this analysis were used to define the APS characteristics of: (1) number and distribution of thrusters, (2) thruster modulation, (3) thrust level, (4) mission energy requirements, (5) total APS mass component breakdown, and (6) state of the art adequacy/deficiency. Previously announced in STAR as N83-26922

  9. Auxiliary propulsion requirements for large space systems

    NASA Technical Reports Server (NTRS)

    Maloy, J. E.; Smith, W. W.; Machles, G. W.

    1983-01-01

    An insight into auxiliary propulsion systems (APS) requirements for large space systems (LSS) launchable by a single shuttle is presented. In an effort to scope the APS requirements for LSS, a set of generic LSSs were defined. For each generic LSS class a specific structural configuration, representative of that most likely to serve the needs of the 1980's and 1990's was defined. The environmental disturbance forces and torques which would be acting on each specific structural configuration in LEO and GEO orbits were then determined. Auxiliary propulsion requirements were determined as a function of: generic class specific configuration, size and openness of structure, orbit, angle of orientation, correction frequency, duty cycle, number and location of thrusters and direction of thrusters and APS/LSS interactions. The results of this analysis were used to define the APS characteristics of: (1) number and distribution of thrusters, (2) thruster modulation, (3) thrust level, (4) mission energy requirements, (5) total APS mass component breakdown, and (6) state of the art adequacy/deficiency.

  10. Test Facilities in Support of High Power Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.

  11. JTEC panel report on space and transatmospheric propulsion technology

    NASA Technical Reports Server (NTRS)

    Shelton, Duane

    1990-01-01

    An assessment of Japan's current capabilities in the areas of space and transatmospheric propulsion is presented. The report focuses primarily upon Japan's programs in liquid rocket propulsion and in propulsion for spaceplanes and related transatmospheric areas. It also includes brief reference to Japan's solid rocket programs, as well as to supersonic air-breathing propulsion efforts that are just getting underway. The results are based upon the findings of a panel of U.S. engineers made up of individuals from academia, government, and industry, and are derived from a review of a broad array of the open literature, combined with visits to the primary propulsion laboratories and development agencies in Japan.

  12. COMPASS Final Report: Enceladus Solar Electric Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The results of the NASA Glenn Research Center (GRC) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) internal Solar Electric Propulsion (SEP) stage design are documented in this report (Figure 1.1). The SEP Stage was designed to deliver a science probe to Saturn (the probe design was performed separately by the NASA Goddard Space Flight Center s (GSFC) Integrated Mission Design Center (IMDC)). The SEP Stage delivers the 2444 kg probe on a Saturn trajectory with a hyperbolic arrival velocity of 5.4 km/s. The design carried 30 percent mass, 10 percent power, and 6 percent propellant margins. The SEP Stage relies on the probe for substantial guidance, navigation and control (GN&C), command and data handling (C&DH), and Communications functions. The stage is configured to carry the probe and to minimize the packaging interference between the probe and the stage. The propulsion system consisted of a 1+1 (one active, one spare) configuration of gimbaled 7 kW NASA Evolutionary Xenon Thruster (NEXT) ion propulsion thrusters with a throughput of 309 kg Xe propellant. Two 9350 W GaAs triple junction (at 1 Astronomical Unit (AU), includes 10 percent margin) ultra-flex solar arrays provided power to the stage, with Li-ion batteries for launch and contingency operations power. The base structure was an Al-Li hexagonal skin-stringer frame built to withstand launch loads. A passive thermal control system consisted of heat pipes to north and south radiator panels, multilayer insulation (MLI) and heaters for the Xe tank. All systems except tanks and solar arrays were designed to be single fault tolerant.

  13. Electric thruster models for multimegawatt nuclear electric propulsion mission design

    NASA Technical Reports Server (NTRS)

    Leifer, Stephanie D.; Blandino, John J.; Sercel, Joel C.

    1991-01-01

    Three types of electric thrusters currently under development at JPL have potential to support future missions which utilize multimegawatt nuclear electric propulsion. These electric thrusters are the electron bombardment ion thruster, the magnetoplasmadynamic (MPD) thruster, and the electron-cyclotron-resonance (ECR) thruster. The electron bombardment ion thruster is a relatively mature technology which has been developed for operation at kilowatt power levels but will require new development for application in the multimegawatt regime. The MPD engine represents a technology which may be very well suited to steady-state multimegawatt applications but which has been limited to sub-scale (100's of kW) and pulsed (MW) testing thus far. The ECR plasma engine represents a class of very promising new concepts which are still in the basic research phase of development, but which may possess important fundamental advantages over other electric thruster technologies. Models of these thrusters are described and used to make projections of thrusters specific mass, efficiency, and power handling capacity for operation in the multimegawatt regime.

  14. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Spaun, Benjamin

    2006-01-01

    An electric propulsion thrust stand capable of supporting testing of thrusters having a total mass of up to 125 kg and producing thrust levels between 100 microN to 1 N has been developed and tested. The design features a conventional hanging pendulum arm attached to a balance mechanism that converts horizontal deflections produced by the operating thruster into amplified vertical motion of a secondary arm. The level of amplification is changed through adjustment of the location of one of the pivot points linking the system. Response of the system depends on the relative magnitudes of the restoring moments applied by the displaced thruster mass and the twisting torsional pivots connecting the members of the balance mechanism. Displacement is measured using a non-contact, optical linear gap displacement transducer and balance oscillatory motion is attenuated using a passive, eddy-current damper. The thrust stand employs an automated leveling and thermal control system. Pools of liquid gallium are used to deliver power to the thruster without using solid wire connections, which can exert undesirable time-varying forces on the balance. These systems serve to eliminate sources of zero-drift that can occur as the stand thermally or mechanically shifts during the course of an experiment. An in-situ calibration rig allows for steady-state calibration before, during and after thruster operation. Thrust measurements were carried out on a cylindrical Hall thruster that produces mN-level thrust. The measurements were very repeatable, producing results that compare favorably with previously published performance data, but with considerably smaller uncertainty.

  15. Application of solar electric propulsion to future planetary missions

    NASA Technical Reports Server (NTRS)

    Sauer, Carl G., Jr.

    1987-01-01

    Application of solar electric propulsion (SEP) to several near term planetary missions has been investigated and is described in this paper. The missions under consideration include a comet rendezvous-asteroid flyby mission (CRAF), an orbiter mission to Saturn (CASSINI) and a comet nucleus sample return mission (CNSR). Advances in both thruster and solar array technology indicate that these missions could benefit by use of a moderate size solar electric propulsion system. The trajectory scenarios considered in this paper include a solar electric earth gravity assist (SEEGA) mode for all three missions and a SEP rendezvous mode for both the CRAF and CNSR missions. In addition an all SEP propulsion mode and a hybrid SEP-chemical propulsion mode is described for the CNSR mission.

  16. The synergy of spacecraft electric propulsion and power

    NASA Astrophysics Data System (ADS)

    Bennett, Gary L.; Curran, Francis M.; Bankston, C. Perry; Brophy, John R.; Brandhorst, Henry W.

    1997-01-01

    The combination of spacecraft electrical power and on-board propulsion can consume as much as three-fourths of the mass of a spacecraft depending upon the mission. With the current emphasis on reducing costs (including launch vehicle costs) and on reducing the mass of future spacecraft it is apparent that the use of advanced spacecraft electrical power and on-board propulsion technologies must be employed. Some of the NASA-sponsored and other-sponsored technologies are examined showing how existing advanced power and propulsion technologies can be used to improve the performance of spacecraft. The synergistic effect of applying both advanced electrical power and advanced on-board propulsion technologies is specifically discussed.

  17. Superconducting Electric Machines for Ship Propulsion.

    DTIC Science & Technology

    1977-02-14

    ship propulsion applications. These concepts evolved from previous work at MIT on superconducting AC machines. The superconducting machines considered were: (1) multipole, low-speed motors, (2) torque compensated motors, (3) high-speed generator, (4) rotating air-gap armature induction motor, (5) thyristor switched AC motors. The first four machine types were studied theoretically while experimental models were constructed of the last two. Preliminary designs were completed...of the five mahcines for an appropriate ship ... propulsion application. In

  18. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed

  19. Radioactive waste disposal via electric propulsion

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  20. A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Coverstone, Vicki

    2003-01-01

    Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.

  1. Space Launch Initiative Propulsion Projects Office Overview Briefing

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Richards, Steve

    2001-01-01

    The goal of this Space Launch Initiative is for NASA to meet its future space flight needs, including human access to space, using commercial launch vehicles that will improve safety and reliability and reduce cost. The topics include: 1) Second Generation RLV Program Overview; 2) Space Launch Initiative (SLI) Investment Areas; 3) SLI Organizational Summary; 4) Propulsion Projects Overview; 5) Current Propulsion Content; and 6) Critical Needs Roadmap. This paper is presented in viewgraph form.

  2. Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Borowski, Stanley K.; Packard, Thomas W.

    2004-01-01

    The following paper documents the mission and systems analysis portion of a study in which Nuclear Electric Propulsion (NEP) is used as the in-space transportation system to send a series of robotic rovers and atmospheric science airplanes to Venus in the 2020 to 2030 timeframe. As part of the NASA RASC (Revolutionary Aerospace Systems Concepts) program, this mission analysis is meant to identify future technologies and their application to far reaching NASA missions. The NEP systems and mission analysis is based largely on current technology state of the art assumptions. This study looks specifically at the performance of the NEP transfer stage when sending a series of different payload package point design options to Venus orbit.

  3. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  4. Drag and propulsive forces in electric sails with negative polarity

    NASA Astrophysics Data System (ADS)

    Sanchez-Torres, Antonio

    2016-02-01

    An electric solar sail (E-sail) is a recent propellantless propulsion concept for a direct exploration of the Solar System. An E-sail consists of a set of bare, conductive tethers at high positive/negative bias, prone to extract solar wind momentum by Coulomb deflection of protons. Additionally, a negatively biased E-sail has been proposed as a concept for de-orbiting space debris with drag forces produced in Low Earth Orbit (LEO). The present work focuses on the negative-bias case with a sheath that must be correctly modeled for a flowing plasma ambient. Ion scattering within the sheath and the resulting force are determined for several plasma conditions. Since the plasma flow does reduce the effective range for the ion scattering within the sheath, the resulting force is then reduced. Tethers at very high negative bias should be required for extremely high plasma flow.

  5. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  6. Solar Electric Propulsion (SEP) Tug Power System Considerations

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Bury, Kristen M.; Hojinicki, Jeffrey S.; Sajdak, Adam M.; Scheiddegger, Robert J.

    2011-01-01

    Solar electric propulsion (SEP) technology is truly at the "intersection of commercial and military space" as well as the intersection of NASA robotic and human space missions. Building on the use of SEP for geosynchronous spacecraft station keeping, there are numerous potential commercial and military mission applications for SEP stages operating in Earth orbit. At NASA, there is a resurgence of interest in robotic SEP missions for Earth orbit raising applications, 1-AU class heliocentric missions to near Earth objects (NEOs) and SEP spacecraft technology demonstrations. Beyond these nearer term robotic missions, potential future human space flight missions to NEOs with high-power SEP stages are being considered. To enhance or enable this broad class of commercial, military and NASA missions, advancements in the power level and performance of SEP technologies are needed. This presentation will focus on design considerations for the solar photovoltaic array (PVA) and electric power system (EPS) vital to the design and operation of an SEP stage. The engineering and programmatic pros and cons of various PVA and EPS technologies and architectures will be discussed in the context of operating voltage and power levels. The impacts of PVA and EPS design options on the remaining SEP stage subsystem designs, as well as spacecraft operations, will also be discussed.

  7. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  8. Inertial electrostatic confinement as a power source for electric propulsion

    NASA Technical Reports Server (NTRS)

    Miley, George H.; Burton, R.; Javedani, J.; Yamamoto, Y.; Satsangi, A.; Gu, Y.; Heck, P.; Nebel, R.; Schulze, N.; Christensen, J.

    1993-01-01

    The potential use of an Inertial Electrostatic Confinement (IEC) power source for space propulsion has previously been suggested by the authors and others. In the past, these discussions have generally followed the charged-particle electric-discharge engine (QED) concept proposed by Bussard, in which the IEC is used to generate an electron beam which vaporizes liquid hydrogen for use as a propellant. However, in the present study, we consider an alternate approach, using the IEC to drive a conventional electric thruster unit. This has the advantage of building on the rapidly developing technology for such thrusters, which operate at higher specific impulse. Key issues related to this approach include the continued successful development of the physics and engineering of the IEC unit, as well as the development of efficient step-down dc voltage transformers. The IEC operates by radial injection of energetic ions into a spherical vessel. A very high ion density is created in a small core region at the center of the vessel, resulting in extremely high fusion power density in the core. Present experiments at the U. of Illinois in small IEC devices (less than 60-cm. dia.) have demonstrated much of the basic physics underlying this concept, e.g. producing approximately 10(exp 6) D-D neutrons/sec steady-state with deuterium gas flow injection. The ultimate goal is to increase the power densities by several orders of magnitude and to convert to D-He-3 injection. If successful, such an experiment would represent a milestone proof-of-principle device for eventual space power use. Further discussion of IEC physics and status will be presented with a description of the overall propulsion system and estimated performance.

  9. Solar electric propulsion cargo spacecraft for Mars missions

    NASA Technical Reports Server (NTRS)

    1991-01-01

    One of the topics available to the 1990-91 Aerospace Engineering senior class was the development of a preliminary design of an unmanned cargo ferry that would support the Mars mission by bringing equipment and supplies from a low Earth orbit (LEO) to a low Mars orbit (LMO). Several previous studies initiated by NASA have indicated that low-thrust transportation systems seem to offer the best performance for Mars missions. Such systems are characterized by long spiral times during escape and capture maneuvers, high payload mass fractions, and, typically, low propellant mass fractions. Of two main low-thrust candidates, nuclear electric propulsion (NEP) and solar electric propulsion (SEP), only the first one received extensive consideration because it seemed to represent the most promising concept for a manned mission to Mars. However, any sustained Mars initiative will have to include an unmanned cargo transportation system, for which an SEP concept deserves very careful consideration. The key assumptions and requirements established in cooperation with the Space Exploration Initiative office at the NASA Langley Research Center were (1) vehicle is assembled at the Space Station Freedom (SSF); (2) Earth-to-orbit delivery of the vehicle components, propellant, and payload is via shuttle-C; (3) vehicle's cargo mass is 61,000 kg; (4) vehicle delivers cargo to LMO at an altitude of 500 km and inclination of 70 deg; (5) vehicle returns (without cargo) to SSF; (6) vehicle should be reusable for at least three missions; and (7) vehicle is powered by ion argon thrusters. Two configurations were developed by two student teams, working mostly independently.

  10. Inertial electrostatic confinement as a power source for electric propulsion

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Burton, R.; Javedani, J.; Yamamoto, Y.; Satsangi, A; Gu, Y.; Heck, P.; Nebel, R.; Schulze, N.; Christensen, J.

    1993-01-01

    The potential use of an INERTIAL ELECTROSTATIC CONFINEMENT (IEC) power source for space propulsion has previously been suggested by the authors and others. In the past, these discussions have generally followed the charged-particle electric-discharge engine (QED) concept proposed by Bussard, in which the IEC is used to generate an electron beam which vaporizes liquid hydrogen for use as a propellant. However, an alternate approach is considered, using the IEC to drive a 'conventional' electric thruster unit. This has the advantage of building on the rapidly developing technology for such thrusters, which operate at higher specific impulse. Key issues related to this approach include the continued successful development of the physics and engineering of the IEC unit, as well as the development of efficient step-down dc voltage transformers. The IEC operates by radial injection of energetic ions into a spherical vessel. A very high ion density is created in a small core region at the center of the vessel, resulting in extremely high fusion power density in the core. Experiments at the U. of Illinois in small IEC devices (is less than 60 cm. dia.) demonstrated much of the basic physics underlying this concept, e.g. producing 10(exp 6) D-D neutrons/sec steady-state with deuterium gas flow injection. The ultimate goal is to increase the power densities by several orders of magnitude and to convert to D-He-3 injection. If successful, such an experiment would represent a milestone proof-of-principle device for eventual space power use. Further discussion of IEC physics and status are presented with a description of the overall propulsion system and estimated performance.

  11. Inertial electrostatic confinement as a power source for electric propulsion

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Burton, R.; Javedani, J.; Yamamoto, Y.; Satsangi, A.; Gu, Y.; Heck, P.; Nebel, R.; Schulze, N.; Christensen, J.

    1993-12-01

    The potential use of an Inertial Electrostatic Confinement (IEC) power source for space propulsion has previously been suggested by the authors and others. In the past, these discussions have generally followed the charged-particle electric-discharge engine (QED) concept proposed by Bussard, in which the IEC is used to generate an electron beam which vaporizes liquid hydrogen for use as a propellant. However, in the present study, we consider an alternate approach, using the IEC to drive a conventional electric thruster unit. This has the advantage of building on the rapidly developing technology for such thrusters, which operate at higher specific impulse. Key issues related to this approach include the continued successful development of the physics and engineering of the IEC unit, as well as the development of efficient step-down dc voltage transformers. The IEC operates by radial injection of energetic ions into a spherical vessel. A very high ion density is created in a small core region at the center of the vessel, resulting in extremely high fusion power density in the core. Present experiments at the U. of Illinois in small IEC devices (less than 60-cm. dia.) have demonstrated much of the basic physics underlying this concept, e.g. producing approximately 10(exp 6) D-D neutrons/sec steady-state with deuterium gas flow injection. The ultimate goal is to increase the power densities by several orders of magnitude and to convert to D-He-3 injection. If successful, such an experiment would represent a milestone proof-of-principle device for eventual space power use. Further discussion of IEC physics and status will be presented with a description of the overall propulsion system and estimated performance.

  12. Lunar transfer vehicle design issues with electric propulsion systems

    SciTech Connect

    Palaszewski, B.

    1989-01-01

    This paper describes parametric design studies of electric propulsion lunar transfer vehicles. In designing a lunar transfer vehicle, selecting the 'best' operating points for the design parameters allows significant reductions in the mass in low earth orbit (LEO) for the mission. These parameters include the specific impulse, the power level, and the propulsion technology. Many of the decisions regarding the operating points are controlled by the propulsion and power system technologies that are available for the spacecraft. The relationship between these technologies is discussed and analyzed here. It is found that both ion and MPD propulsion offer significant LEO mass reductions over O2/H2 for lunar transfer vehicle missions. The recommended operating points for the lunar transfer vehicle are an I(sp) of 5000 lb(f)-s/lb(m) and a 1 MW power level. For large lunar missions, krypton may be the best choice for ion propulsion. 17 refs.

  13. PEGASUS - A multi-megawatt nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Coomes, E. P.; Cuta, J. M.; Webb, B. J.; King, D. Q.

    1986-01-01

    A propulsion system (The PEGASUS Drive) consisting of a magnetoplasmadynamic (MPD) thruster driven by a multimegawatt nuclear power system is proposed as the propulsion system for a manned Mars mission. The propulsion system described is based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The thermal power for the PEGASUS Drive is supplied by a boiling liquid-metal fast reactor. The system consists of the reactor, reactor shielding, power conditioning, heat rejection, and MPD thruster subsystems. It is capable of providing a maximum of 8.5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, 1.5 megawatts is available for spacecraft system operations and inflight mission applications, leaving the balance for power system operation.

  14. Solar electric propulsion/instrument/subsystems interaction study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Cole, R. K.; Kemp, R. F.; Hall, D. F.; Shelton, H.

    1973-01-01

    The interactive effects between a solar electric propulsion system and an electrically propelled scientific spacecraft were examined. The operation of the ion thrusters may impact upon the acquisition and interpretation of data by the science payload of the spacecraft. The effluents from the operation of the electric propulsion unit may also impact upon the operation of the various subsystems of the vehicle. Specific interactive effects were isolated where meaningful levels of interaction may occur. The level of impact upon elements of the science payload and other affected subsystems is examined, and avenues for the reduction or elimination of impact are defined.

  15. Overview on NASA's Advanced Electric Propulsion Concepts Activities

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1999-01-01

    Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.

  16. SEGMAG Machines for Marine Electrical Propulsion Systems

    DTIC Science & Technology

    1978-09-13

    ship propulsion drives. It encompasses the conceptual design of a 40,000 horsepower per shaft, two shaft, drive system for a destroyer type vessel and a 20,000 horsepower per shaft, two shaft, drive system for a hydrofoil type vessel. It also includes a detail design and initiated construction of a 3,000 horsepower per shaft, two shaft, prototype drive system for a land based demonstration. All three drive systems utilize gas turbines for prime movers. In addition to the main propulsion machinery designs, the auxiliaries required for the systems are also

  17. Guide to Flow Measurement for Electric Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  18. Propulsion at the Marshall Space Flight Center - A brief history

    NASA Technical Reports Server (NTRS)

    Jones, L. W.; Fisher, M. F.; Mccool, A. A.; Mccarty, J. P.

    1991-01-01

    The history of propulsion development at the NASA Marshall Space Flight Center is summarized, beginning with the development of the propulsion system for the Redstone missile. This course of propulsion development continues through the Jupiter IRBM, the Saturn family of launch vehicles and the engines that powered them, the Centaur upper stage and RL-10 engine, the Reactor In-Flight Test stage and the NERVA nuclear engine. The Space Shuttle Main Engine and Solid Rocket Boosters are covered, as are spacecraft propulsion systems, including the reaction control systems for the High Energy Astronomy Observatory and the Space Station. The paper includes a description of several technology efforts such as those in high pressure turbomachinery, aerospike engines, and the AS203 cyrogenic fluid management flight experiment. These and other propulsion projects are documented, and the scope of activities in support of these efforts at Marshall delineated.

  19. Primary propulsion of electrothermal, ion and chemical systems for space-based radar orbit transfer

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Staiger, P. J.

    1985-01-01

    An orbit transfer mission concept has been studied for a Space-Based Radar (SBR) where 40 kW required for radar operation is assumed available for orbit transfer propulsion. Arcjet, pulsed electrothermal (PET), ion, and storable chemical systems are considered for the primary propulsion. Transferring two SBR per shuttle flight to 1112 km/60 deg using electrical propulsion systems offers an increased payload at the expense of increased trip time, up to 2000 kg each, which may be critical for survivability. Trade offs between payload mass, transfer time, launch site, inclination, and height of parking orbits are presented.

  20. Operationally efficient propulsion system study (OEPSS) data book. Volume 6; Space Transfer Propulsion Operational Efficiency Study Task of OEPSS

    NASA Technical Reports Server (NTRS)

    Harmon, Timothy J.

    1992-01-01

    This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.

  1. Application of Molten Salt Reactor Technology to Nuclear Electric Propulsion Mission

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Nuclear electric propulsion (NEP) and planetary surface power missions require reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional gas cooled, liquid metal, and heat pipe space reactors.

  2. (abstract) A Solar Electric Propulsion Mission to the Moon and Beyond!

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Pieters, C. M.; Konopliv, A.; Metzger, A.; Sercel, J.; Hickman, M.; Palac, D.; Sykes, M.

    1994-01-01

    The technological development of solar electric propulsion has advanced significantly over the last few years. Mission planners are now seriously studying which missions would benefit most from solar electric propulsion (SEP) and NASA's Solar System Exploration Division is contributing funding to ground and space qualification tests. In response to the impending release of NASA's Announcement of Opportunity for Discovery class planetary missions, we have undertaken a pre-Phase A study of a SEP mission to the Moon. This mission will not only return a wealth of new scientific data but will open up a whole new era of planetary exploration.

  3. Propulsion recommendations for space station free flying platforms

    NASA Technical Reports Server (NTRS)

    Redd, L. R.; Rose, L. J.

    1986-01-01

    Propulsion system candidates have been defined for Space Station free flying platforms for the purpose of comparison and to understand the impact of the various mission requirements on the candidate designs. Recommendations for propulsion for each of the various platforms are given.

  4. Space Transportation Technology Workshop: Propulsion Research and Technology

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  5. Propulsion Systems Panel deliberations

    NASA Technical Reports Server (NTRS)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  6. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  7. The NASA In-Space Propulsion Technology Project's Current Products and Future Directions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry

    2010-01-01

    Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.

  8. Options For Development of Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houta, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission system have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed.

  9. Space Propulsion Hazards Analysis Manual (SPHAM), volume 1

    NASA Technical Reports Server (NTRS)

    Becker, Dorothy L. (Editor)

    1989-01-01

    The Space Propulsion Hazards Analysis Manual (SPHAM) is a compilation of methods and data directed at hazards analysis and safety for space propulsion and associated vehicles, but broadly applicable to other environments and systems. Methods are described of compiling relevant regulatory documentation, deriving design requirements and specifications, modeling accident scenarios in formal risk assessments, and correlation real-time data to risk probability modeling. Also, SPHAM provides methods for predicting post-accident blast, fragmentation, thermal, and environmental damage. Included in the appendices are an exhaustive bibliography, hazardous properties information on selected space propulsion commodities, and system descriptions of various launch vehicles, upper stages, and spacecrafts.

  10. Stacking the odds in favor of a space propulsion jackpot

    NASA Technical Reports Server (NTRS)

    Willoughby, Alan J.

    1991-01-01

    When faced with a variety of technical options to solve a problem, program planners often try to identify one potential winner, then channel their resources into this option. The more scarce their resources are perceived to be, the more likely they are to fall into this trap of illogic. The real ideal solution could well be an optimum combination of options, not just one. Many propulsion opportunities are tantalizing solutions to the potentially high cost of travelling to other planets. Among these opportunities, nuclear thermal rockets (NTR), nuclear electric propulsion (NEP), and asteroid derived propellants stand out as high-payoff modest-challenge options, as near term as they are resolved to be made. But which to choose? Or should higher risk higher payoff technology be opted for, such as fusion? The approach advocated here, technoflex, is one that addresses NTR, NEP, and asteroid propellants in harmony rather than in isolation. Technoflex is technology rich, and option flexible. Technoflex should cost roughly the same as a classic phased technology elimination approach. The synergistic benefits amongst these three options, how they can be efficiently pursued together, and how they can fit with longer range technologies are stressed. Even if no single option reaches its highest expectations, the combinations of any two partial winners would still give big dividends. These combinations are cheap propellants in space, dual mode high thrust/low thrust, or versatile propellant NTR. The triple payoff is excellent, even if all three options would pan out below expectations. If only one option reaches its potential, it could make the other two still worth their investment. If all three options meet full expectations, the triple payoff is a space propulsion jackpot which makes concern about the initial investment ludicrous as well as open up the solar system to expedient exploration.

  11. Applying design principles to fusion reactor configurations for propulsion in space

    NASA Technical Reports Server (NTRS)

    Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).

  12. The Status of Spacecraft Bus and Platform Technology Development under the NASA In-Space Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Anderson, David; Pencil, Eric J.; Glaab, Louis; Falck, Robert D.; Dankanich, John

    2013-01-01

    NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. The technology areas include electric propulsion technologies, spacecraft bus technologies, entry vehicle technologies, and design tools for systems analysis and mission trajectories. The electric propulsion technologies include critical components of both gridded and non-gridded ion propulsion systems. The spacecraft bus technologies under development include an ultra-lightweight tank (ULTT) and advanced xenon feed system (AXFS). The entry vehicle technologies include the development of a multi-mission entry vehicle, mission design tools and aerocapture. The design tools under development include system analysis tools and mission trajectory design tools.

  13. Mars Mission Concepts: SAR and Solar Electric Propulsion

    NASA Astrophysics Data System (ADS)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (<10 m depth) subsurface of Mars, enabling identification of fine-scale layering within the Martian polar layered deposits (PLD), as well as the identification of pingos, investigations of polygonal terrain, and measurements of the thickness of mantling layers at non-polar latitudes. It would allow systematic near-surface prospecting, which is tremendously useful for human exploration purposes (in particular, the identification of accessible ice deposits and quantification of Martian regolith properties). Limited color capabilities in a notional high-resolution stereo imaging system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also

  14. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.; Elsperman, M. S.; Rogers, F.

    2013-10-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  15. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Elsperman, M. S.; Klaus, K.; Rogers, F.

    2013-12-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  16. Fission-Based Electric Propulsion for Interstellar Precursor Missions

    SciTech Connect

    HOUTS,MICHAEL G.; LENARD,ROGER X.; LIPINSKI,RONALD J.; PATTON,BRUCE; POSTON,DAVID; WRIGHT,STEVEN A.

    1999-11-03

    This paper reviews the technology options for a fission-based electric propulsion system for interstellar precursor missions. To achieve a total {Delta}V of more than 100 km/s in less than a decade of thrusting with an electric propulsion system of 10,000s Isp requires a specific mass for the power system of less than 35 kg/kWe. Three possible configurations are described: (1) a UZrH-fueled,NaK-cooled reactor with a steam Rankine conversion system,(2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heat pipe-cooled reactor with a recuperated Brayton conversion system. All three of these systems have the potential to meet the specific mass requirements for interstellar precursor missions in the near term. Advanced versions of a fission-based electric propulsion system might travel as much as several light years in 200 years.

  17. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.

  18. Antiproton Trapping for Advanced Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1998-01-01

    The Summary of Research parallels the Statement of Work (Appendix I) submitted with the proposal, and funded effective Feb. 1, 1997 for one year. A proposal was submitted to CERN in October, 1996 to carry out an experiment on the synthesis and study of fundamental properties of atomic antihydrogen. Since confined atomic antihydrogen is potentially the most powerful and elegant source of propulsion energy known, its confinement and properties are of great interest to the space propulsion community. Appendix II includes an article published in the technical magazine Compressed Air, June 1997, which describes CERN antiproton facilities, and ATHENA. During the period of this grant, Prof. Michael Holzscheiter served as spokesman for ATHENA and, in collaboration with Prof. Gerald Smith, worked on the development of the antiproton confinement trap, which is an important part of the ATHENA experiment. Appendix III includes a progress report submitted to CERN on March 12, 1997 concerning development of the ATHENA detector. Section 4.1 reviews technical responsibilities within the ATHENA collaboration, including the Antiproton System, headed by Prof. Holzscheiter. The collaboration was advised (see Appendix IV) on June 13, 1997 that the CERN Research Board had approved ATHENA for operation at the new Antiproton Decelerator (AD), presently under construction. First antiproton beams are expected to be delivered to experiments in about one year. Progress toward assembly of the ATHENA detector and initial testing expected in 1999 has been excellent. Appendix V includes a copy of the minutes of the most recently documented collaboration meeting held at CERN of October 24, 1997, which provides more information on development of systems, including the antiproton trapping apparatus. On February 10, 1998 Prof. Smith gave a 3 hour lecture on the Physics of Antimatter, as part of the Physics for the Third Millennium Lecture Series held at MSFC. Included in Appendix VI are notes and

  19. COMPASS Final Report: Saturn Moons Orbiter Using Radioisotope Electric Propulsion (REP): Flagship Class Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) team was approached by the NASA Glenn Research Center (GRC) In-Space Project to perform a design session to develop Radioisotope Electric Propulsion (REP) Spacecraft Conceptual Designs (with cost, risk, and reliability) for missions of three different classes: New Frontier s Class Centaur Orbiter (with Trojan flyby), Flagship, and Discovery. The designs will allow trading of current and future propulsion systems. The results will directly support technology development decisions. The results of the Flagship mission design are reported in this document

  20. Beyond Electric Propulsion: Non-Propulsive Benefits of Nuclear Power for the Exploration of the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Zubrin, Robert M.

    1994-07-01

    In the past, most studies dealing with the benefits of space nuclear electric power systems for solar system exploration have focused on the potential of nuclear electric propulsion (NEP) to enhance missions by increasing delivered payload, decreasing LEO mass, or reducing trip time. While important, such mission enhancements have failed to go to the heart of the concerns of the scientific community supporting interplanetary exploration. To put the matter succinctly, scientists don't buy delivered payload - they buy data returned. With nuclear power we can increase both the quantity of data returned, by enormously increasing data communication rates, and the quality of data by enabling a host of active sensing techniques otherwise impossible. These non-propulsive mission enhancement capabilities of space nuclear power have been known in principle for many years, but they have not been adequately documented. As a result, support for the development of space nuclear power by the interplanetary exploration community has been much less forceful than it might otherwise be. In this paper we shall present mission designs that take full advantage of the potential mission enhancements offered by space nuclear power systems in the 10 to 100 kWe range, not just for propulsion, but to radically improve, enrich, and expand the science return itself. Missions considered include orbiter missions to each of the outer planets. It will be shown that be using hybrid trajectories combining chemical propulsion with NEP and (in certain cases) gravity assists, that it is possible, using a Titan IV-Centaur launch vehicle, for high-powered spacecraft to be placed in orbit around each of the outer planets with electric propulsion burn times of less than 4 years. Such hybrid trajectories therefore make the outer solar-system available to near-term nuclear electric power systems. Once in orbit, the spacecraft will utilize multi-kilowatt communication systems, similar to those now employed by

  1. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  2. Human exploration of near earth asteroids: Mission analysis for chemical and electric propulsion

    NASA Astrophysics Data System (ADS)

    Herman, Jonathan F. C.; Zimmer, Aline K.; Reijneveld, Johannes P. J.; Dunlop, Kathryn L.; Takahashi, Yu; Tardivel, Simon; Scheeres, Daniel J.

    2014-11-01

    This paper presents a mission analysis comparison of human missions to asteroids using two distinct architectures. The objective is to determine if either architecture can reduce launch mass with respect to the other, while not sacrificing other performance metrics such as mission duration. One architecture relies on chemical propulsion, the traditional workhorse of space exploration. The second combines chemical and electric propulsion into a hybrid architecture that attempts to utilize the strengths of each, namely the short flight times of chemical propulsion and the propellant efficiency of electric propulsion. The architectures are thoroughly detailed, and accessibility of the known asteroid population is determined for both. The most accessible asteroids are discussed in detail. Aspects such as mission abort scenarios and vehicle reusability are also discussed. Ultimately, it is determined that launch mass can be greatly reduced with the hybrid architecture, without a notable increase in mission duration. This demonstrates that significant performance improvements can be introduced to the next step of human space exploration with realistic electric propulsion system capabilities. This leads to immediate cost savings for human exploration and simultaneously opens a path of technology development that leads to technologies enabling access to even further destinations in the future.

  3. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three

  4. An examination of emerging in-space propulsion concepts for one-year crewed mars missions

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Rauwolf, Gerald A.; Maggio, Gaspare; Patel, Saroj; Sorensen, Kirk

    2002-01-01

    A study was completed that provides a meaningful, even-handed, comparison assessment of promising candidate, in-space, exploration propulsion concepts to support emerging ``near-term'' crewed Mars mission applications. In particular, the study examined the mission performance feasibility and risk of a number of near-, mid-, and far-term in-space propulsion concepts to support crewed Mars missions starting in 2018 that can have the crewed portion of the mission performed in one year or less. This study used exploration propulsion system team technology specialist advocates to identify seven meaningful, representative mission architecture scenarios to ``best'' demonstrate the capability of such in-space propulsion technology options to support the near-term crewed Mars mission requirement. Additionally, a common set of top-level mission/system requirements was established for the study, which was incorporated in the assessment of all the mission options considered. Mission performance for abundant chemical (Ab-Chem), bimodal nuclear thermal rocket (BNTR), high power nuclear electric propulsion (HP-NEP), momentum tether/chemical, solar electric propulsion (SEP), solar electric propulsion/chemical (SEP-Chem) and Variable Specific Impulse Magnetoplasma Rocket (VASIMR) based missions were estimated for this quick trip, 2018 crewed Mars flight opportunity. Each of these mission options are characterized in terms of their overall mission performance capability, crewed mission duration, Initial Mass to Low Earth Orbit (IMLEO), which including dry and propellant weight required, overall mission time, number of flight elements (propulsion units/tank sets), and number of Earth-to-Orbit (ETO) vehicle launches. Potential top-level development, implementation, and operational issues/risks for each mission scenario considered are also identified. .

  5. Status and Perspectives of Electric Propulsion in Italy

    NASA Astrophysics Data System (ADS)

    Svelto, F.; Marcuccio, S.; Matticari, G.

    2002-01-01

    Electric Propulsion (EP) is recognized as one of today's enabling technologies for scientific and commercial missions. In consideration of EP's major strategic impact on the near and long term scenarios, an EP development programme has been established within the Italian Space Agency (ASI), aimed at the development of a variety of propulsion capabilities covering different fields of application. This paper presents an overview of Electric Propulsion (EP) activities underway in Italy and outlines the planned development lines, both in research institutions and in industry. Italian EP activities are essentially concentrated in Pisa, at Centrospazio and Alta, and in Florence, at LABEN - Proel Tecnologie Division (LABEN/Proel). Centrospazio/Alta and LABEN/Proel have established a collaboration program for joint advanced developments in the EP field. Established in 1989, Centrospazio is a private research center closely related to the Department of Aerospace Engineering of Pisa University. Along the years, Centrospazio lines of development have included arcjets, magneto- plasma-dynamic thrusters, FEEP and Hall thrusters, as well as computational plasma dynamics and low-thrust mission studies. Alta, a small enterprise, was founded in 1999 to exploit in an industrial setting the results of research previously carried out at Centrospazio. Alta's activities include the development of micronewton and millinewton FEEP thrusters, and testing of high power Hall and ion thrusters in specialised facilities. A full micronewton FEEP propulsion system is being developed for the Microscope spacecraft, a scientific mission by CNES aimed at verification of the Equivalence Principle. FEEP will also fly on ASI's HypSEO, a technological demonstrator for Earth Observation, and is being considered for ESA's GOCE (geodesy) and SMART-2 (formation flying), as well as for the intended scientific spacecraft GG by ASI. The ASI-funded STEPS facility will be placed on an external site on the

  6. High-Energy Space Propulsion Based on Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Freeze, B.; Kirkpatrick, R. C.; Landrum, B.; Gerrish, H.; Schmidt, G. R.

    1999-01-01

    A conceptual study is made to explore the feasibility of applying magnetized target fusion (MTF) to space propulsion for omniplanetary travel. Plasma-jet driven MTF not only is highly amenable to space propulsion, but also has a number of very attractive features for this application: 1) The pulsed fusion scheme provides in situ a very dense hydrogenous liner capable of moderating the neutrons, converting more than 97% of the neutron energy into charged particle energy of the fusion plasma available for propulsion. 2) The fusion yield per pulse can be maintained at an attractively low level (< 1 GJ) despite a respectable gain in excess of 70. A compact, low-weight engine is the result. An engine with a jet power of 25 GW, a thrust of 66 kN, and a specific impulse of 77,000 s, can be achieved with an overall engine mass of about 41 metric tons, with a specific power density of 605 kW/kg, and a specific thrust density of 1.6 N/kg. The engine is rep-rated at 40 Hz to provide this power and thrust level. At a practical rep-rate limit of 200 Hz, the engine can deliver 128 GW jet power and 340 kN of thrust, at specific power and thrust density of 1,141 kW/kg and 3 N/kg respectively. 3) It is possible to operate the magnetic nozzle as a magnetic flux compression generator in this scheme, while attaining a high nozzle efficiency of 80% in converting the spherically radial momentum of the fusion plasma to an axial impulse. 4) A small fraction of the electrical energy generated from the flux compression is used directly to recharge the capacitor bank and other energy storage equipment, without the use of a highvoltage DC power supply. A separate electrical generator is not necessary. 5) Due to the simplicity of the electrical circuit and the components, involving mainly inductors, capacitors, and plasma guns, which are connected directly to each other without any intermediate equipment, a high rep-rate (with a maximum of 200 Hz) appears practicable. 6) All fusion related

  7. Space propulsion by fusion in a magnetic dipole

    SciTech Connect

    Teller, E.; Glass, A.J.; Fowler, T.K. ); Hasegawa, A. ); Santarius, J.F. . Fusion Technology Inst.)

    1991-07-15

    The unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configurations as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof-testing on the moon. 20 refs., 14 figs., 2 tabs.

  8. Space Station propulsion electrolysis system - 'A technology challenge'

    NASA Technical Reports Server (NTRS)

    Le, Michael

    1989-01-01

    The Space Station propulsion system will utilize a water electrolysis system to produce the required eight-to-one ratio of gaseous hydrogen and oxygen propellants. This paper summarizes the state of the art in water electrolysis technologies and the supporting development programs at the NASA Lyndon B. Johnson Space Center. Preliminary proof of concept test data from a fully integrated propulsion testbed are discussed. The technical challenges facing the development of the high-pressure water electrolysis system are discussed.

  9. Blazing the trailway: Nuclear electric propulsion and its technology program plans

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1992-01-01

    An overview is given of the plans for a program in nuclear electric propulsion (NEP) technology for space applications being considered by NASA, DOE, and DOD. Possible missions using NEP are examined, and NEP technology plans are addressed regarding concept development, systems engineering, nuclear fuels, power conversion, thermal management, power management and distribution, electric thrusters, facilities, and issues related to safety and environment. The programmatic characteristics are considered.

  10. The Astronautics Laboratory of the Air Force Systems Command electric propulsion projects

    SciTech Connect

    Sanks, T.M.; Andrews, J.C.

    1989-01-01

    Ongoing projects at the Astronautics Laboratory (AL) of the USAF Systems Command are described. Particular attention is given to experiments with arcjets, magnetoplasmadynamic thrusters, ion engines, and the Electric Insertion Transfer Experiment (ELITE). ELITE involves the integration of high-power ammonia arcjets, low-power xenon ion thrusters, advanced photovoltaic solar arrays, and an autononomous flight control system. It is believed that electric propulsion will become a dominant element in the military and industrial use of space. 6 refs.

  11. Feasibility study of a superconducting motor for electrical helicopter propulsion

    NASA Astrophysics Data System (ADS)

    Simons, C. A. B. A. E.; Sanabria-Walter, C.; Polinder, H.

    2014-05-01

    During the past decades, superconducting electrical machines have become more suitable to replace conventional iron based designs, because of their lower weight and higher torque density. These properties make them good candidates for use in More Electric Aircraft (MEA). Especially helicopter propulsion systems could benefit from the increased performance. This paper describes the feasibility study of a superconducting motor to be used for helicopter propulsion as part of a More Electric Aircraft (MEA). For this, the armature, field windings and cryostat are designed, aiming at meeting the difficult specifications. Since superconductors have virtually no electrical resistance when cooled down below a certain critical temperature, they can be used to build high field and low weight coils for electrical machines. Especially the possibility to not use iron can make the superconducting motor lighter with a higher power density compared with conventional Permanent Magnet (PM) motors.

  12. Space station propulsion: The advanced development program at Lewis

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1985-01-01

    A reference configuration was established for the initial operating capability (IOC) station. The reference configuration has assumed hydrazine fueled thrusters as the propulsion system. This was to establish costing and as a reference for comparison when other propulsion systems are considered. An integral part of the plan to develop the Space Station is the advanced development program. The objective of this program is to provide advanced technology alternatives for the initial and evolutionary Space Station which optimize the system's functional characteristics in terms of performance, cost, and utilization. The portion of the Advanced Development Program that is concerned with auxiliary propulsion and the research and programmatic activities conducted are discussed.

  13. High Temperature Polymeric Materials for Space Transportation Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.; Campbell, Sandi G.; Chuang, Kathy C.; Scheimann, Daniel A.; Mintz, Eric; Hylton, Donald; Veazie, David; Criss, James; Kollmansberg, Ron; Tsotsis, Tom

    2003-01-01

    High temperature polymer matrix composites are attractive materials for space transporation propulsion systems because of their low density and high specific strength. However, the relatively poor stability and processability of these materials can render them unsuitable for many of these applications. New polymeric materials have been developed under the Propulsion Research and Technology Program through the use of novel resin chemistry and nanotechnology. These new materials can significantly enhance the durability and weight and improve the processability and affordability of propulsion components for advanced space transportation systems.

  14. Neptune Orbiters Utilizing Solar and Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas I.; Oleson, Steven R.

    2004-01-01

    In certain cases, Radioisotope Electric Propulsion (REP), used in conjunction with other propulsion systems, could be used to reduce the trip times for outer planetary orbiter spacecraft. It also has the potential to improve the maneuverability and power capabilities of the spacecraft when the target body is reached as compared with non-electric propulsion spacecraft. Current missions under study baseline aerocapture systems to capture into a science orbit after a Solar Electric Propulsion (SEP) stage is jettisoned. Other options under study would use all REP transfers with small payloads. Compared to the SEP stage/Aerocapture scenario, adding REP to the science spacecraft as well as a chemical capture system can replace the aerocapture system but with a trip time penalty. Eliminating both the SEP stage and the aerocapture system and utilizing a slightly larger launch vehicle, Star 48 upper stage, and a combined REP/Chemical capture system, the trip time can nearly be matched while providing over a kilowatt of science power reused from the REP maneuver. A Neptune Orbiter mission is examined utilizing single propulsion systems and combinations of SEP, REP, and chemical systems to compare concepts.

  15. Human Mars Transportation Applications Using Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.; Martin, Jim; Potter, Seth; Henley, Mark; Carrington, Connie (Technical Monitor)

    2000-01-01

    Advanced solar electric power systems and electric propulsion technology constitute viable elements for conducting human Mars transfer missions that are roughly comparable in performance to similar missions utilizing alternative high thrust systems, with the one exception being their inability to achieve short Earth-Mars trip times. A modest solar electric propulsion human Mars scenario is presented that features the use of conjunction class trajectories in concert with pre-emplacement of surface assets that can be used in a series of visits to Mars. Major elements of the Mars solar electric transfer vehicle can be direct derivatives of present state-of-the-art Solar array and electric thruster systems. During the study, several elements affecting system performance were evaluated, including varying Earth orbit altitude for departure, recapturing the transfer stage at Earth for reuse, varying power system mass-to-power ratio, and assessing solar array degradation on performance induced by Van Allen belt passage. Comparisons are made to chemical propulsion and nuclear thermal propulsion Mars vehicles carrying similar payloads.

  16. A Plasmoid Thruster for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (BP and Bt, respectively). An Object with B P t >> 1 is classified as a Field Reverse Configuration (FRC); if B, = Bt, it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids, and subsequently ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp s in the range of 5,000 - 10,000 s with thrust densities of order 10(exp 5) N/sq m. The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to several MW s. The plasmoids mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing.

  17. A Plasmoid Thruster for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (B(sub p), and B(sub t), respectively). An object with B(sub p), / B(sub t) much greater than 1 is classified as a Field Reversed Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids and subsequently ejecting them from the device at a high velocity. The plasmoid is formed inside of a single-turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s, and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp's in the range of 5,000 - 15,000 s with thrust densities on the order of 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5 - 10 kW, although the concept should be scalable to several MW's. The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time-dependent MHD code, will be carried out concurrently with experimental testing.

  18. A summary of EHV propulsion technology. [Electric and Hybrid Vehicle

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1983-01-01

    While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.

  19. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    NASA Technical Reports Server (NTRS)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  20. NASA-OAST/JPL high efficiency thermionic conversion studies. [nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Efforts were made to develop a thermionic energy conversion TEC technology appropriate for nuclear electric propulsion missions. This space TEC effort was complementary to the terrestrial TEC studies sponsored by the Department of Energy which had the goal of topping fossil fuel power plants. Thermionic energy conversion was a primary conversion option for space reactors because of its: (1) high operating temperature; (2) lack of moving parts; (3) modularity; (4) established technology; and (5) development potential.

  1. Nuclear electric propulsion system utilization for earth orbit transfer of large spacecraft structures

    NASA Technical Reports Server (NTRS)

    Silva, T. H.; Byers, D. C.

    1980-01-01

    The paper discusses a potential application of electric propulsion to perform orbit transfer of a large spacecraft structure to geosynchronous orbit (GEO) from LEO, utilizing a nuclear reactor space power source in the spacecraft on a shared basis. The discussions include spacecraft, thrust system, and nuclear reactor space power system concepts. Emphasis is placed on orbiter payload arrangements, spacecraft launch constraints, and spacecraft LEO assembly and deployment sequences.

  2. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  3. Space station integrated propulsion and fluid systems study

    NASA Technical Reports Server (NTRS)

    Bicknell, B.; Wilson, S.; Dennis, M.; Shepard, D.; Rossier, R.

    1988-01-01

    The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems.

  4. Solar Electric and Chemical Propulsion for a Titan Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Green, Shaun E.; Donahue, Benjamin B.; Coverstone, Victoria L.

    2005-01-01

    Systems analyses were performed for a Titan Explorer Mission characterized by Earth-Saturn transfer stages using solar electric power generation and propulsion systems for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their effect on the payload delivery capability to Titan. The effect of varying launch vehicle type, solar array power level, ion thruster number, specific impulse, trip time, and Titan capture stage chemical propellant choice was investigated. The major purpose of the study was to demonstrate the efficacy of applying advanced ion propulsion system technologies like NASA's Evolutionary Xenon Thruster (NEXT), coupled with state-of-the-art (SOA) and advanced chemical technologies to a Flagship class mission. This study demonstrated that a NASA Design Reference Mission (DRM) payload of 406 kg could be successfully delivered to Titan using the baseline advanced ion propulsion system in conjunction with SOA chemical propulsion for Titan capture. In addition, the SEPS/Chemical system of this study is compared to an all- chemical NASA DRM mission. Results showed that the NEXT- based SEPS/Chemical system was able to deliver the required payload to Titan in 5 years less transfer time and on a smaller launch vehicle than the SOA chemical option.

  5. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.

    2014-01-01

    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  6. Variable-reluctance motors for electric vehicle propulsion

    SciTech Connect

    Vallese, F.J.; Lang, J.H.

    1985-01-01

    This paper discusses the design, operation, and expected performance of a 60-kW variable-reluctance motor and inverter-designed for electric vehicle propulsion. To substantiate the performance of this system, experimental data obtained with a prototype 3.8-kW motor and inverter are provided.

  7. Design of structures for Nuclear Electric Propulsion vehicles

    NASA Technical Reports Server (NTRS)

    Hedgepeth, John M.; Lawrence, Charles

    1993-01-01

    This paper reports a study of efficient structures for connecting various elements of Nuclear Electric Propulsion (NEP) vehicles. The design requirements for the structure are discussed and a truss beam is selected for the application. Evaluation of stiffness and weight indicate that the required structure is less than 5 percent of the dry weight of the vehicle.

  8. Advanced Space Propulsion Study - Antiproton and Beamed Power Propulsion

    DTIC Science & Technology

    1987-10-01

    a new concept for a very high performance laser-puwhed lightsail that uses near-teri high power laser systems to boost very light payloads to terminal...charged pions have a normal half-life of 26 ns. Because they are moving at 94% of the speed of light , however, their lives are lengthened to 70 ns...Given adequate supplies stashed along the way, a light -weight spacesuit, and enough time, Jack would be able to climb into space instead of having to use

  9. Electric Propulsion Pointing Mechanism for BepiColombo

    NASA Astrophysics Data System (ADS)

    Janu, Paul; Neugebauer, Christian; Schermann, Rudolf; Supper, Ludwig

    2013-09-01

    Since 17 years the development of Electric Propulsion Pointing Mechanisms for commercial and scientific satellite applications is a key-product activity for RUAG Space in Vienna.As one of the most innovative EP mechanisms presently under development in Vienna this paper presents the Electric Propulsion Mechanism for the ESA Bepi Colombo Mission.RUAG Space delivers the mechanism assembly, consisting of the mechanisms and the control electronics.The design-driving requirements are:- the pointing capability around the stowed configuration under resitive torque coming from the thruster supply harness, the thruster supply piping, and the mechanism harness. The pointing capability around the stowed configuration is realized via a central release nut together with a spring loaded knuckle-lever system which in essence forms a "frangible pipe" that is stiff during launch and collapses upon release. The resistive torques are minimized by a helical arrangement of the supply pipes and of the mechanism harness, and a guided low stiffness routing of the thruster supply harness. A high detent torque actuator is used to maintain pointing direction in un-powered condition. Also the direct measurement of the torque on the actuator shaft during random vibration is presented in the paper.- the specified maximum input loads to the thruster. The mechanism has not only to point the thruster, but also to protect it against high launch loads. A very low Eigen- frequency of the mechanism/thruster sub-assembly of around 65 Hz was selected to minimize coupling with the thruster's modes and so to minimize load input to the thruster. An elastomer damping system is implemented which minimizes amplification in this frequency area so that the sine input can be sustained by the mechanism and the thruster. The measured amplification of 3.1 turned out to successfully protect the thruster from the launch vibrations.- the thermal load on the mechanism from the dissipation of the thruster and from the

  10. Extra-Zodiacal-Cloud Astronomy via Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Falck, Robert D.; Oleson, Steven R.; Greenhouse, Matthew A.; Kruk, Jeffrey W.; Gardner, Jonathan P.; Thronson, Harley A.; Vaughn, Frank J.; Fixsen, Dale J.

    2011-01-01

    Solar electric propulsion (SEP) is often considered as primary propulsion for robotic planetary missions, providing the opportunity to deliver more payload mass to difficult, high-delta-velocity destinations. However, SEP application to astrophysics has not been well studied. This research identifies and assesses a new application of SEP as primary propulsion for low-cost high-performance robotic astrophysics missions. The performance of an optical/infrared space observatory in Earth orbit or at the Sun-Earth L2 point (SEL2) is limited by background emission from the Zodiacal dust cloud that has a disk morphology along the ecliptic plane. By delivering an observatory to a inclined heliocentric orbit, most of this background emission can be avoided, resulting in a very substantial increase in science performance. This advantage enabled by SEP allows a small-aperture telescope to rival the performance of much larger telescopes located at SEL2. In this paper, we describe a novel mission architecture in which SEP technology is used to enable unprecedented telescope sensitivity performance per unit collecting area. This extra-zodiacal mission architecture will enable a new class of high-performance, short-development time, Explorer missions whose sensitivity and survey speed can rival flagship-class SEL2 facilities, thus providing new programmatic flexibility for NASA's astronomy mission portfolio. A mission concept study was conducted to evaluate this application of SEP. Trajectory analyses determined that a 700 kg-class science payload could be delivered in just over 2 years to a 2 AU mission orbit inclined 15 to the ecliptic using a 13 kW-class NASA's Evolutionary Xenon Thruster (NEXT) SEP system. A mission architecture trade resulted in a SEP stage architecture, in which the science spacecraft separates from the stage after delivery to the mission orbit. The SEP stage and science spacecraft concepts were defined in collaborative engineering environment studies. The

  11. Performance testing of the AC propulsion ELX electric vehicle

    SciTech Connect

    Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

    1994-06-01

    Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

  12. Cost-effective technology advancement directions for electric propulsion transportation systems in earth-orbital missions

    NASA Technical Reports Server (NTRS)

    Regetz, J. D., Jr.; Terwilliger, C. H.

    1979-01-01

    The directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions in the most cost effective manner are determined. The mission set requirements, state of the art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system level electric propulsion parameters are discussed. The impact on overall costs than specific masses or costs of propulsion and power systems is evaluated.

  13. A nuclear electric propulsion vehicle for planetary exploration

    NASA Technical Reports Server (NTRS)

    Pawlik, E. V.; Phillips, W. M.

    1976-01-01

    A study is currently underway at JPL to design a nuclear electric-propulsion vehicle capable of performing detailed exploration of the outer planets. Evaluation of the design indicates that it is also applicable to orbit raising. Primary emphasis is on the power subsystem. Work on the design of the power system, the mission rationale, and preliminary spacecraft design are summarized. A propulsion system at a 400-kWe power level with a specific weight goal of no more than 25-kg/kW was selected for this study. The results indicate that this goal can be realized along with compatibility with the shuttle launch-vehicle constraints.

  14. From the Rocket Equation to Maxwell's Equations: Electrodynamic Tether Propulsion Nears Space Test

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Estes, Robert

    1999-01-01

    The US space program is facing a growing challenge to its decades-long, global leadership position, as current launch costs consume valuable resources and limit achievements in science, exploration, and commercial development. More than 40% of projected launches over the next 10 years have payloads with intended destinations beyond low-Earth orbit. Therefore, more cost-effective upper stages and on-board propulsion systems are critical elements in reducing total space transportation costs. A new type of space propulsion, using electrodynamic tethers, may be capable of performing multiple sequential missions without resupply and have a potential usable lifetime of several years. They may provide an in-space infrastructure that has a very low life cycle cost and greatly enhanced mission flexibility, thus supporting the goal of reducing the cost of access to space. Electrodynamic tether thrusters work by virtue of the force the Earth's magnetic field exerts on a wire carrying an electrical current. The effect is the basis for electric motors and generators. The Propulsive Small Expendable Deployer System (ProSEDS) experiment, planned for launch in the summer of 2000, will demonstrate the use electrodynamic tether thrust by lowering the altitude of a Delta-H rocket's upper stage on which it will be flying. Applications of the technology include a passive deorbit system for spacecraft at their end-of-life, reusable Orbit Transfer Vehicles, propellantless reboost of the International Space Station, and propulsion and power generation for future missions to Jupiter.

  15. An advanced electric propulsion diagnostic (AEPD) platform for in-situ characterization of electric propulsion thrusters and ion beam sources

    NASA Astrophysics Data System (ADS)

    Bundesmann, Carsten; Eichhorn, Christoph; Scholze, Frank; Spemann, Daniel; Neumann, Horst; Pagano, Damiano; Scaranzin, Simone; Scortecci, Fabrizio; Leiter, Hans J.; Gauter, Sven; Wiese, Ruben; Kersten, Holger; Holste, Kristof; Köhler, Peter; Klar, Peter J.; Mazouffre, Stéphane; Blott, Richard; Bulit, Alexandra; Dannenmayer, Käthe

    2016-10-01

    Experimental characterization is an essential task in development, qualification and optimization process of electric propulsion thrusters or ion beam sources for material processing, because it can verify that the thruster or ion beam source fulfills the requested mission or application requirements, and it can provide parameters for thruster and plasma modeling. Moreover, there is a need for standardizing electric propulsion thruster diagnostics in order to make characterization results of different thrusters and also from measurements performed in different vacuum facilities reliable and comparable. Therefore, we have developed an advanced electric propulsion diagnostic (AEPD) platform, which allows a comprehensive in-situ characterization of electric propulsion thrusters (or ion beam sources) and could serve as a standard on-ground tool in the future. The AEPD platform uses a five-axis positioning system and provides the option to use diagnostic tools for beam characterization (Faraday probe, retarding potential analyzer, ExB probe, active thermal probe), for optical inspection (telemicroscope, triangular laser head), and for thermal characterization (pyrometer, thermocamera). Here we describe the capabilities of the diagnostic platform and provide first experimental results of the characterization of a gridded ion thruster RIT- μX.

  16. Status of NASA In-Space Propulsion Technologies and Their Infusion Potential

    NASA Technical Reports Server (NTRS)

    Anderson, David; Pencil, Eric; Vento, Dan; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies have broad applicability to future competed Discovery and New Frontiers mission solicitations, and are potentially enabling for future NASA flagship and sample return missions currently being considered. This paper provides status of the technology development of several in-space propulsion technologies that are ready for infusion into future missions. The technologies that are ready for flight infusion are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in FY12/13 are 1) Advanced Xenon Flow Control System, and 2) ultra-lightweight propellant tank technology advancements and their infusion potential will be also discussed. The paper will also describe the ISPT project s future focus on propulsion for sample return missions: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. Systems/Mission Analysis focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts.

  17. High power theta-pinch propulsion for piloted deep space exploration

    NASA Astrophysics Data System (ADS)

    Lapointe, Michael R.

    2000-01-01

    The piloted deep space exploration missions envisioned by the NASA Human Exploration and Development of Space initiative will require the development of advanced electric propulsion systems capable of providing high specific impulse for extended periods of operation. Current electric propulsion thrusters are well suited for orbit maneuvering and robotic exploration, but at present they cannot provide the combination of specific impulse, lifetime, and efficiency required for piloted deep space missions. The theta-pinch thruster concept is a high power plasma rocket that can potentially meet these future deep space propulsion requirements. Efficient, partial preionization of a gas propellant followed by rapid adiabatic magnetic compression is used to generate, heat, and expel a high velocity, high density plasma to provide thrust. The concept is electrodeless, and radial compression of the plasma by the magnetic field of the discharge coil mitigates material erosion to ensure long thruster life. Because the heated plasma is free to flow along axial magnetic field lines during compression, a magnetic mirror located at the entrance to the discharge chamber is used to direct the plasma flow out of the thruster. The thrust and specific impulse of the engine can be tailored for a given mission scenario through the selection of propellant species, mass flow rate, compression coil discharge current, and/or the compression coil repetition rate, making this a unique and versatile electric propulsion system. .

  18. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret

    2013-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  19. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  20. PEGASUS: A multi-megawatt nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Coomes, Edmund P.; Cuta, Judith M.; Webb, Brent J.; King, David Q.; Patterson, Mike J.; Berkopec, Frank

    1986-01-01

    A propulsion system (PEGASUS) consisting of an electric thruster driven by a multimegawatt nuclear power system is proposed for a manned Mars mission. Magnetoplasmadynamic and mercury-ion thrusters are considered, based on a mission profile containing a 510-day burn time (for a mission time of approximately 1000 days). Both thrusters are capable of meeting the mission parameters. Electric propulsion systems have significant advantages over chemical systems, because of high specific impulse, lower propellant requirements, and lower system mass. The power for the PEGASUS system is supplied by a boiling liquid-metal fast reactor. The power system consists of the reactor, reactor shielding, power conditioning subsystems, and heat rejection subsystems. It is capable of providing a maximum of 8.5 megawatts of electrical power of which 6 megawatts is needed for the thruster system, leaving 1.5 megawatts available for inflight mission applications.

  1. Power console development for NASA's electric propulsion outreach program

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Patterson, Michael J.; Satterwhite, Vincent E.

    1993-01-01

    NASA LeRC is developing a 30 cm diameter xenon ion thruster for auxiliary and primary propulsion applications. To maximize expectations for user-acceptance of ion propulsion technology, NASA LeRC, through their Electric Propulsion Outreach Program, is providing sectors of industry with portable power consoles for operation of 5 KW-class xenon ion thrusters. This power console provides all necessary functions to permit thruster operations over a 0.5-5 KW envelope under both manual and automated control. These functions include the following: discharge, cathode heater, neutralizer keeper, and neutralizer heater currents, screen and accelerator voltages, and a gas feed system to regulate and control propellant flow to the thruster. An electronic circuit monitors screen and accelerator currents and controls arcing events. The power console was successfully integrated with the NASA 30 cm thruster.

  2. Electric Propulsion for Low Earth Orbit Communication Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1997-01-01

    Electric propulsion was evaluated for orbit insertion, satellite positioning and de-orbit applications on big (hundreds of kilograms) and little (tens of kilograms) low earth orbit communication satellite constellations. A simple, constant circumferential thrusting method was used. This technique eliminates the complex guidance and control required when shading of the solar arrays must be considered. Power for propulsion was assumed to come from the existing payload power. Since the low masses of these satellites enable multiple spacecraft per launch, the ability to add spacecraft to a given launch was used as a figure of merit. When compared to chemical propulsion ammonia resistojets, ion, Hall, and pulsed plasma thrusters allowed an additional spacecraft per launch Typical orbit insertion and de-orbit times were found to range from a few days to a few months.

  3. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  4. Elektrische Scheepsvoortstuwing en Supergeleiding: Een Literatuurstudie (Electric Ship Propulsion and Superconductivity: A Desk Study)

    DTIC Science & Technology

    1992-06-01

    In this report the advantages and disadvantages of electric ship propulsion compared to mechanical propulsion are discussed and the question is...superconducting propulsion system are described. Finally, future developments are discussed, conclusions are drawn and four proposals for future studies are formulated. Superconductivity, Ship Propulsion .

  5. Space nuclear power, propulsion, and related technologies.

    SciTech Connect

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  6. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    NASA Astrophysics Data System (ADS)

    Williams, George J.; Gilland, James H.

    2009-03-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high ISP (>105 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  7. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    SciTech Connect

    Williams, George J.; Gilland, James H.

    2009-03-16

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I{sub SP} (>10{sup 5} s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  8. Application of SDI technology in space propulsion

    SciTech Connect

    Klein, A.J.

    1992-01-01

    Numerous technologies developed by the DOD within the SDI program are now available for adaptation to the requirements of commercial spacecraft; SDI has accordingly organized the Technology Applications Information System data base, which contains nearly 2000 nonproprietary abstracts on SDI technology. Attention is here given to such illustrative systems as hydrogen arcjets, ammonia arcjets, ion engines, SSTO launch vehicles, gel propellants, lateral thrusters, pulsed electrothermal thrusters, laser-powered rockets, and nuclear propulsion.

  9. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The space shuttle main engine (SSME), a reusable space propulsion system, is discussed. The advances in high pressure oxygen hydrogen rocket technology are reported to establish the basic technology and to develop new analytical tools for the evaluation in reusable rocket systems.

  10. Unibody Composite Pressurized Structure (UCPS) for In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Rufer, Markus

    2015-01-01

    Microcosm, Inc., in conjunction with the Scorpius Space Launch Company, is developing a UCPS (Unibody Composite Pressurized Structure )for in-space propulsion. This innovative approach constitutes a clean break from traditional spacecraft design by combining what were traditionally separate primary and secondary support structures and metal propellant tanks into a single unit.

  11. Benefits of Nuclear Electric Propulsion for Outer Planet Exploration

    NASA Technical Reports Server (NTRS)

    Kos, Larry; Johnson, Les; Jones, Jonathan; Trausch, Ann; Eberle, Bill; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)

    2002-01-01

    Nuclear electric propulsion (NEP) offers significant benefits to missions for outer planet exploration. Reaching outer planet destinations, especially beyond Jupiter, is a struggle against time and distance. For relatively near missions, such as a Europa lander, conventional chemical propulsion and NEP offer similar performance and capabilities. For challenging missions such as a Pluto orbiter, neither chemical nor solar electric propulsion are capable while NEP offers acceptable performance. Three missions are compared in this paper: Europa lander, Pluto orbiter, and Titan sample return, illustrating how performance of conventional and advanced propulsion systems vary with increasing difficulty. The paper presents parametric trajectory performance data for NEP. Preliminary mass/performance estimates are provided for a Europa lander and a Titan sample return system, to derive net payloads for NEP. The NEP system delivers payloads and ascent/descent spacecraft to orbit around the target body, and for sample return, delivers the sample carrier system from Titan orbit to an Earth transfer trajectory. A representative scientific payload 500 kg was assumed, typical for a robotic mission. The resulting NEP systems are 100-kWe class, with specific impulse from 6000 to 9000 seconds.

  12. Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Duffy, Kirsten P.; Provenza, Andrew J.; Loyselle, Patricia L.; Choi, Benjamin B.; Morrison, Carlos R.; Lowe, Angela M.

    2015-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years.

  13. SP-100 nuclear electric propulsion for Mars cargo missions

    NASA Astrophysics Data System (ADS)

    Frisbee, Robert H.; Hoffman, Nathan J.

    1993-06-01

    This paper summarizes an evaluation of mission performance (in terms of vehicle mass and trip time) of the use of the near-term SP-100 reactor technology for nuclear electric propulsion for Mars cargo missions, and of the technology requirements for the propulsion and dynamic power conversion systems of the vehicle. The reactor power system uses dynamic power conversion (Rankine), and the propulsion system uses lithium-propellant magnetoplasmadynamic (MPD) thrusters. Three reactor power modules are used to give a total 'bus' power of 1.7 MWe. The total power, power conditioning, and propulsion systems specific mass is 24.8 kg/kWe; the propellant tankage factor is 2.8 percent. The power conditioning system has an efficiency of 90.2 percent and the MPD thrusters an efficiency (electric-to-jet) of 60 percent at a nominal specific impulse of 5000 lb(f)-s/lb(m). Rankine, Brayton, and Stirling dynamic power conversion systems were compared, and the Rankine was found to give the best performance in terms of smallest specific mass and volume; however, it has the longest development time requirement.

  14. The solar electric propulsion stage concept for high energy missions.

    NASA Technical Reports Server (NTRS)

    Guttman, C. H.; Gilbert, J.; Horio, S. P.; Richardson, E. H.

    1972-01-01

    Definition of multimission and engine performance requirements for candidate solar electric propulsion stage configurations, considering launch vehicle compatibility, electric propulsion integration, payload requirements, and the effects of environmental extremes. Electric propulsion power options include two solar array power levels (15/22 kW), up to twelve electric thrustors of 30 cm diameter and 2.7 kW each, five to eight power conditioning units, and a maximum mercury propellant capacity of 1530 kg. In performance, the stage with a dry weight of 700 to 900 kg can deliver a net mass of 756 kg into Saturn orbit, 329 kg into a tight Mercury orbit, and 334 kg within 0.1 AU of the sun. The stage can also deliver a round trip payload of 3350 kg to geosynchronous orbit and return from an intermediate elliptical orbit using the Shuttle/Tug. Thus, a versatile stage is developed which competes effectively in performance with existing integrated spacecraft and promises considerable savings in total program costs.

  15. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  16. The Use of RF Waves in Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Bering, Edgar A., III; Chang-Diaz, Franklin; Squire, Jared

    2004-01-01

    This paper will review the ways in which RF and microwave radiation may be used in the design of electric propulsion systems for spacecraft. RF power has been used or proposed in electric propulsion systems to ionize, to heat, and to accelerate the propellant, or to produce plasma used to inflate a magnetic field for solar sail purposes. Direct RF propulsion using radiation pressure or ponderomotive forces is impractical owing to efficiency considerations. Examples of various systems that have been developed or proposed will be reviewed. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) uses RF for producing, heating and accelerating plasma. Inductive RF and microwave ion thruster schemes use e-m waves to ionize the plasma, which is then accelerated by use of dc grids. The details of the VASIMR, an inductive RF thruster, and a microwave ion thruster are discussed and contrasted with related RF systems.

  17. Preliminary Comparison Between Nuclear-Electric and Solar-Electric Propulsion Systems for Future Mars Missions

    NASA Astrophysics Data System (ADS)

    Koppel, Christophe R.; Valentian, Dominique; Latham, Paul; Fearn, David; Bruno, Claudio; Nicolini, David; Roux, Jean-Pierre; Paganucci, F.; Saverdi, Massimo

    2004-02-01

    Recent US and European initiatives in Nuclear Propulsion lend themselves naturally to raising the question of comparing various options and particularly Nuclear Electric Propulsion (NEP) with Solar Electric Propulsion (SEP). SEP is in fact mentioned in one of the latest versions of the NASA Mars Manned Mission as a possible candidate. The purpose of this paper is to compare NEP, for instance, using high power MPD, Ion or Plasma thrusters, with SEP systems. The same payload is assumed in both cases. The task remains to find the final mass ratios and cost estimates and to determine the particular features of each technology. Each technology has its own virtues and vices: NEP implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes compatible with Ariane 5 or the Space Shuttle bay. Issues of safety and launch risks are especially important to public opinion, which is a factor to be reckoned with. Power conversion in space, including thermal cycle efficiency and radiators, is a technical issue in need of attention if power is large, i.e., of order 0.1 MW and above, and so is power conditioning and other ancillary systems. Type of mission, Isp and thrust will ultimately determine a large fraction of the mass to be orbited, as they drive propellant mass. For manned missions, the trade-off also involves consumables and travel time because of exposure to Solar wind and cosmic radiation. Future manned NEP missions will probably need superconducting coils, entailing cryostat technology. The on-board presence of cryogenic propellant (e.g., LH2) may reassure the feasibility of this technology, implying, however, a trade-off between propellant volume to be orbited and reduced thruster mass. SEP is attractive right now in the mind of the public, but also of scientists involved in Solar system exploration. Some of the appeal derives from the hope of reducing propellant mass because

  18. High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Borowski, Stanley K.; Mason, Lee M.; Gilland, James

    2003-01-01

    This documents the results of a one-year multi-center NASA study on the prospect of sending humans to Jupiter's moon, Callisto, using an all Nuclear Electric Propulsion (NEP) space transportation system architecture with magnetoplasmadynamic (MPD) thrusters. The fission reactor system utilizes high temperature uranium dioxide (UO2) in tungsten (W) metal matrix cermet fuel and electricity is generated using advanced dynamic Brayton power conversion technology. The mission timeframe assumes on-going human Moon and Mars missions and existing space infrastructure to support launch of cargo and crewed spacecraft to Jupiter in 2041 and 2045, respectively.

  19. IEC fusion: The future power and propulsion system for space

    NASA Astrophysics Data System (ADS)

    Hammond, Walter E.; Coventry, Matt; Hanson, John; Hrbud, Ivana; Miley, George H.; Nadler, Jon

    2000-01-01

    Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production. .

  20. Advanced Fusion Reactors for Space Propulsion and Power Systems

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  1. Advanced Fusion Reactors for Space Propulsion and Power Systems

    SciTech Connect

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  2. Optimal sun-alignment techniques of large solar arrays in electric propulsion spacecraft

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.; Dailey, C. L.; Valgora, M. E.

    1982-01-01

    Optimum sun-alignment of large solar arrays in electric propulsion spacecraft operating in earth orbit requires periodic roll motions around the thrust axis, synchronized with the apparent conical motion of the sun line. This oscillation is sustained effectively with the aid of gravity gradient torques while only a small share of the total torque is being contributed by the attitude control system. Tuning the system for resonance requires an appropriate choice of moment-of-inertia characteristics. To minimize atmospheric drag at low orbital altitudes the solar array is oriented parallel, or nearly parallel, to the flight direction. This can increase the thrust-to-drag ratio by as much as an order of magnitude. Coupled with optimal roll orientation, this feathering technique will permit use of electric propulsion effectively at low altitudes in support of space shuttle or space station activities and in spiral ascent missions.

  3. Analysis of Roll Steering for Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Pederson, Dylan, M.; Hojnicki, Jeffrey, S.

    2012-01-01

    Nothing is more vital to a spacecraft than power. Solar Electric Propulsion (SEP) uses that power to provide a safe, reliable, and, most importantly, fuel efficient means to propel a spacecraft to its destination. The power performance of an SEP vehicle s solar arrays and electrical power system (EPS) is largely influenced by the environment in which the spacecraft is operating. One of the most important factors that determines solar array power performance is how directly the arrays are pointed to the sun. To get the most power from the solar arrays, the obvious solution is to point them directly at the sun at all times. Doing so is not a problem in deep space, as the environment and pointing conditions that a spacecraft faces are fairly constant and are easy to accommodate, if necessary. However, large and sometimes rapid variations in environmental and pointing conditions are experienced by Earth orbiting spacecraft. SEP spacecraft also have the additional constraint of needing to keep the thrust vector aligned with the velocity vector. Thus, it is important to analyze solar array power performance for any vehicle that spends an extended amount of time orbiting the Earth, and to determine how much off-pointing can be tolerated to produce the required power for a given spacecraft. This paper documents the benefits and drawbacks of perfectly pointing the solar arrays of an SEP spacecraft spiraling from Earth orbit, and how this might be accomplished. Benefits and drawbacks are defined in terms of vehicle mass, power, volume, complexity, and cost. This paper will also look at the application of various solar array pointing methods to future missions. One such pointing method of interest is called roll steering . Roll steering involves rolling the entire vehicle twice each orbit. Roll steering, combined with solar array gimbal tracking, is used to point the solar arrays perfectly towards the sun at all points in the orbit, while keeping the vehicle thrusters aligned

  4. Electric Propulsion System Selection Process for Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Landau, Damon; Chase, James; Kowalkowski, Theresa; Oh, David; Randolph, Thomas; Sims, Jon; Timmerman, Paul

    2008-01-01

    The disparate design problems of selecting an electric propulsion system, launch vehicle, and flight time all have a significant impact on the cost and robustness of a mission. The effects of these system choices combine into a single optimization of the total mission cost, where the design constraint is a required spacecraft neutral (non-electric propulsion) mass. Cost-optimal systems are designed for a range of mass margins to examine how the optimal design varies with mass growth. The resulting cost-optimal designs are compared with results generated via mass optimization methods. Additional optimizations with continuous system parameters address the impact on mission cost due to discrete sets of launch vehicle, power, and specific impulse. The examined mission set comprises a near-Earth asteroid sample return, multiple main belt asteroid rendezvous, comet rendezvous, comet sample return, and a mission to Saturn.

  5. Evaluation of solar electric propulsion technologies for discovery class missions

    NASA Technical Reports Server (NTRS)

    Oh, David Y.

    2005-01-01

    A detailed study examines the potential benefits that advanced electric propulsion (EP) technologies offer to the cost-capped missions in NASA's Discovery program. The study looks at potential cost and performance benefits provided by three EP technologies that are currently in development: NASA's Evolutionary Xenon Thruster (NEXT), an Enhanced NSTAR system, and a Low Power Hall effect thruster. These systems are analyzed on three straw man Discovery class missions and their performance is compared to a state of the art system using the NSTAR ion thruster. An electric propulsion subsystem cost model is used to conduct a cost-benefit analysis for each option. The results show that each proposed technology offers a different degree of performance and/or cost benefit for Discovery class missions.

  6. Application of high power lasers to space power and propulsion

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1976-01-01

    The transmission of laser power over long distances for applications such as direct conversion to propulsive thrust or electrical power is considered. Factors discussed include: problems inherent in transmitting, propagating, and receiving the laser beam over long ranges; high efficiency, closed-cycle, continuous wave operation; advancement of CO2 laser technology; and compatibility with photovoltaic power conversion devices.

  7. Example Solar Electric Propulsion System asteroid tours using variational calculus

    NASA Technical Reports Server (NTRS)

    Burrows, R. R.

    1985-01-01

    Exploration of the asteroid belt with a vehicle utilizing a Solar Electric Propulsion System has been proposed in past studies. Some of those studies illustrated multiple asteroid rendezvous with trajectories obtained using approximate methods. Most of the inadequacies of those approximations are overcome in this paper, which uses the calculus of variations to calculate the trajectories and associated payloads of four asteroid tours. The modeling, equations, and solution techniques are discussed, followed by a presentation of the results.

  8. Review of ESA Experimental Research Activities for Electric Propulsion

    DTIC Science & Technology

    2011-01-01

    also ADA579248. Models and Computational Methods for Rarefied Flows (Modeles et methodes de calcul des coulements de gaz rarefies ). RTO-EN-AVT-194 14...equipment from 1microV/1nA to 35 000V/20A • 3x Mass spectrometers for residual gas • analysis • Customized measurement instruments with clear chain of...competence of the EPL includes direct or indirect measurements of thrust, mass flow , and electrical parameters related to propulsion system operation

  9. Scoping Calculations of Power Sources for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Difilippo, F. C.

    1994-01-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to make scoping calculations for mission analysis.

  10. Catalog of components for electric and hybrid vehicle propulsion systems

    NASA Technical Reports Server (NTRS)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.

  11. Scoping calculations of power sources for nuclear electric propulsion

    SciTech Connect

    Difilippo, F.C.

    1994-05-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

  12. Primary propulsion/large space system interaction study

    NASA Technical Reports Server (NTRS)

    Coyner, J. V.; Dergance, R. H.; Robertson, R. I.; Wiggins, J. V.

    1981-01-01

    An interaction study was conducted between propulsion systems and large space structures to determine the effect of low thrust primary propulsion system characteristics on the mass, area, and orbit transfer characteristics of large space systems (LSS). The LSS which were considered would be deployed from the space shuttle orbiter bay in low Earth orbit, then transferred to geosynchronous equatorial orbit by their own propulsion systems. The types of structures studied were the expandable box truss, hoop and column, and wrap radial rib each with various surface mesh densities. The impact of the acceleration forces on system sizing was determined and the effects of single point, multipoint, and transient thrust applications were examined. Orbit transfer strategies were analyzed to determine the required velocity increment, burn time, trip time, and payload capability over a range of final acceleration levels. Variables considered were number of perigee burns, delivered specific impulse, and constant thrust and constant acceleration modes of propulsion. Propulsion stages were sized for four propellant combinations; oxygen/hydrogen, oxygen/methane, oxygen/kerosene, and nitrogen tetroxide/monomethylhydrazine, for pump fed and pressure fed engine systems. Two types of tankage configurations were evaluated, minimum length to maximize available payload volume and maximum performance to maximize available payload mass.

  13. Asteroids as Propulsion Systems of Space Ships

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2003-01-01

    Currently, rockets are used to change the trajectory of space ships and probes. This method is very expensive and requires a lot of fuel, which limits the feasibility of space stations, interplanetary space ships, and probes. Sometimes space probes use the gravity field of a planet However, there am only nine planets in the Solar System, all separated by great distances. There are tons of millions of asteroids in outer space. This paper offers a revolutionary method for changing the trajectory of space probes. The method uses the kinetic or rotary energy of asteroids, comet nuclei, meteorites or other space bodies (small planets, natural planetary satellites, space debris, etc.) to increase (to decrease) ship (probe) speed up to 1000 m/sec (or more) and to achieve any new direction in outer space. The flight possibilities of space ships and probes are increased by a factor of millions.

  14. Asteroids as Propulsion Systems of Space Ships

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    Currently, rockets are used to change the trajectory of space ships and probes. This method is very expensive and requires a lot of fuel, which limits the feasibility of space stations, interplanetary space ships, and probes. Sometimes space probes use the gravity field of a planet. However, there are only nine planets in the Solar System, all separated by great distances. There are tens of millions of asteroids in outer space. This paper offers a revolutionary method for changing the trajectory of space probes. The method uses the kinetic or rotary energy of asteroids, comet nuclei, meteorites or other space bodies (small planets, natural planetary satellites, space debris, etc.) to increase (to decrease) ship (probe) speed up to 1000 m/sec (or more) and to achieve any new direction in outer space. The flight possibilities of space ships and probes are increased by a factor of millions.

  15. Electric Propulsion System Modeling for the Proposed Prometheus 1 Mission

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Dougherty, Ryan; Manzella, David

    2005-01-01

    The proposed Prometheus 1 spacecraft would utilize nuclear electric propulsion to propel the spacecraft to its ultimate destination where it would perform its primary mission. As part of the Prometheus 1 Phase A studies, system models were developed for each of the spacecraft subsystems that were integrated into one overarching system model. The Electric Propulsion System (EPS) model was developed using data from the Prometheus 1 electric propulsion technology development efforts. This EPS model was then used to provide both performance and mass information to the Prometheus 1 system model for total system trades. Development of the EPS model is described, detailing both the performance calculations as well as its evolution over the course of Phase A through three technical baselines. Model outputs are also presented, detailing the performance of the model and its direct relationship to the Prometheus 1 technology development efforts. These EP system model outputs are also analyzed chronologically showing the response of the model development to the four technical baselines during Prometheus 1 Phase A.

  16. A low-alpha nuclear electric propulsion system for lunar and Mars missions

    SciTech Connect

    Coomes, E.P.; Dagle, J.E.

    1992-01-01

    The advantages of using electric propulsion are well-known in the aerospace community. The high specific impulse and, therefore, lower propellant requirements make it a very attractive propulsion option for the Space Exploration Initiative (SEI). Recent studies have shown that nuclear electric propulsion (NEP) is not only attractive for the transport of cargo but that fast piloted missions to Mars are possible as well, with alphas on the order of 7.5 kg/kW. An advanced NEP system with a specific power (alpha) of 2.5 kg/kW or less would significantly enhance the manned mission option of NEP by reducing the trip time even further. This paper describes an advanced system that combines the PEGASUS Drive with systems of the Rotating Multimegawatt Boiling Liquid Metal (RMBLR) power system that was developed as part of the DOE multimegawatt program and just recently declassified. In its original configuration, the PEGASUS Drive was a 10-MWe propulsion system. The RMBLR was a 20-MW electric system. By combining the two, a second-generation PEGASUS Drive can be developed with an alpha less than 2.5 kg/kW. This paper will address the technology advancements incorporated into the PEGASUS Drive, the analysis of a fast piloted mission and an unmanned cargo transport Mars mission, and the integration of laser power beaming to provide surface power.

  17. Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.

  18. Statistical error model for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Bantell, M. H.

    1973-01-01

    The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.

  19. Concept for a shuttle-tended reusable interplanetary transport vehicle using nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Nakagawa, R. Y.; Elliot, J. C.; Spilker, T. R.; Grayson, C. M.

    2003-01-01

    NASA has placed new emphasis on the development of advanced propulsion technologies including Nuclear Electric Propulsion (NEP). This technology would provide multiple benefits including high delta-V capability and high power for long duration spacecraft operations.

  20. Photovoltaic options for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Flood, Dennis J.

    1990-01-01

    During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.

  1. Space energy, power, and propulsion committee assessment

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Ambrus, J. H.; Glaser, P. E.; Shepherd, L. R.

    1986-01-01

    Energy conversion technology and thermal management for space platforms are addressed using the NASA Space Station as an example. The Space Station IOC configuration includes the use of solar PV and solar dynamic conversion techniques to satisfy the 75-kWe requirement and plans to produce over 300 kWe with the addition of dynamic modules. Nuclear reactors will probably be used to provide the higher energy requirements for future Space Stations in the 1-MW and higher levels.

  2. Production and trapping of antimatter for space propulsion applications

    SciTech Connect

    Holzscheiter, M.H.; Lewis, R.A.; Mitchell, E.; Rochet, J.; Smith, G.A.

    1997-01-01

    Production and trapping of antiprotons for space propulsion applications are reviewed. Present and foreseeable production rates at Fermilab are discussed, and experiments on trapping, confinement and transport of large quantities of antiprotons, as well as synthesis of atomic antihydrogen, are outlined. {copyright} {ital 1997 American Institute of Physics.}

  3. Jet Propulsion Laboratory's Space Explorations. Part 1; History of JPL

    NASA Technical Reports Server (NTRS)

    Chau, Savio

    2005-01-01

    This slide presentation briefly reviews the history of the Jet Propulsion Laboratory from its founding by Dr von Karman in 1936 for research in rocketry through the post-Sputnik shift to unmanned space exploration in 1957. The presentation also reviews the major JPL missions with views of the spacecraft.

  4. NASA In-Space Propulsion Technologies and Their Infusion Potential

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Anderson, David

    2013-01-01

    This is an overview presentation of In Space Propulsion Technology products that have been developed under the sponsorship of the Planetary Science Division of NASA's Science Mission Directorate. The materials have been prepared for Outer Planetary Assessment Group Meeting in Atlanta, GA in January 2013.

  5. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on May 12 and 13, 1987, at the NASA Lewis research Center. Aerothermodynamic loads; instrumentation; fatigue, fracture, and constitutive modeling; and structural dynamics were discussed.

  6. Experimental research on electrical propulsion. Note 2: Experimental research on a plasma jet with vortex type stabilization for propulsion

    NASA Technical Reports Server (NTRS)

    Robotti, A. C.; Oggero, M.

    1985-01-01

    Results of experimental electric propulsion research are presented. A plasma generator, with an arc stabilized by an air vortex is examined. The heat transfer efficiency between arc and fluid environment at a varying current and flow rate is discussed.

  7. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    NASA Technical Reports Server (NTRS)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  8. Space Propulsion Based on Dipole Assisted IEC System

    SciTech Connect

    Miley, George H.; Thomas, Robert; Takeyama, Yoshikazu; Momota, Hiromu; Shrestha, Prajakti J.

    2006-01-20

    A potential opportunity to enhance Inertial Electrostatic Confinement (IEC) fusion propulsion exists by introducing a magnetic dipole into the IEC chamber. The dipole fields should increase the plasma density, hence fusion rate, in the center region of the IEC and the combined IEC and dipole confinement properties will reduce plasma losses. To demonstrate that a hybrid Dipole-IEC (DaIEC) configuration can provide improved confinement vs. a stand alone IEC, a first model DaIEC experiment has been benchmarked against a reference IEC. A triple Langmuir probe was used to measure the electron temperature and density. It was confirmed that the magnetic field increases the electron density by an order of magnitude and the addition of a controlled electrical potential to the dipole structure allows control of space charge buildup in the dense core region. This paper describes the dipole assisted IEC concept, its advantages, and soon missions it is well suited for. Here the present status of DaIEC experiments are described, the issues for scale up are discussed, and a conceptual plan for a power unit development is presented.

  9. Options and Risk for Qualification of Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle; Daniel, Charles; Cook, Steve (Technical Monitor)

    2002-01-01

    Electric propulsion vehicle systems envelop a wide range of propulsion alternatives including solar and nuclear, which present unique circumstances for qualification. This paper will address the alternatives for qualification of electric propulsion spacecraft systems. The approach taken will be to address the considerations for qualification at the various levels of systems definition. Additionally, for each level of qualification the system level risk implications will be developed. Also, the paper will explore the implications of analysis verses test for various levels of systems definition, while retaining the objectives of a verification program. The limitations of terrestrial testing will be explored along with the risk and implications of orbital demonstration testing. The paper will seek to develop a template for structuring of a verification program based on cost, risk and value return. A successful verification program should establish controls and define objectives of the verification compliance program. Finally the paper will seek to address the political and programmatic factors, which may impact options for system verification.

  10. Design of an Electric Propulsion System for SCEPTOR

    NASA Technical Reports Server (NTRS)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.

    2016-01-01

    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  11. Combining Solar Electric and Chemical Propulsion for Crewed Missions to Mars

    NASA Technical Reports Server (NTRS)

    Percy, Tom; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    This paper documents the results of an investigation of human Mars mission architectures that leverage near-term technology investments and infrastructures resulting from the planned Asteroid Redirect Mission, including high-power Solar Electric Propulsion (SEP) and a human presence in Lunar Distant Retrograde Orbit (LDRO). The architectures investigated use a combination of SEP and chemical propulsion elements. Through this combination of propulsion technologies, these architectures take advantage of the high efficiency SEP propulsion system to deliver cargo, while maintaining the faster trip times afforded by chemical propulsion for crew transport. Evolved configurations of the Asteroid Redirect Vehicle (ARV) are considered for cargo delivery. Sensitivities to SEP system design parameters, including power level and propellant quantity, are presented. For the crew delivery, liquid oxygen and methane stages were designed using engines common to future human Mars landers. Impacts of various Earth departure orbits, Mars loiter orbits, and Earth return strategies are presented. The use of the Space Launch System for delivery of the various architecture elements was also investigated and launch vehicle manifesting, launch scheduling and mission timelines are also discussed. The study results show that viable Mars architecture can be constructed using LDRO and SEP in order to take advantage of investments made in the ARM mission.

  12. Propulsion technology needs for advanced space transportation systems. [orbit maneuvering engine (space shuttle), space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Gregory, J. W.

    1975-01-01

    Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.

  13. Space propulsion systems. Present performance limits and application and development trends

    NASA Technical Reports Server (NTRS)

    Buehler, R. D.; Lo, R. E.

    1981-01-01

    Typical spaceflight programs and their propulsion requirements as a comparison for possible propulsion systems are summarized. Chemical propulsion systems, solar, nuclear, or even laser propelled rockets with electrical or direct thermal fuel acceleration, nonrockets with air breathing devices and solar cells are considered. The chemical launch vehicles have similar technical characteristics and transportation costs. A possible improvement of payload by using air breathing lower stages is discussed. The electrical energy supply installations which give performance limits of electrical propulsion and the electrostatic ion propulsion systems are described. The development possibilities of thermal, magnetic, and electrostatic rocket engines and the state of development of the nuclear thermal rocket and propulsion concepts are addressed.

  14. Evaluation of the use of on-board spacecraft energy storage for electric propulsion missions

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Palmer, F. M.

    1983-01-01

    On-board spacecraft energy storage represents an under utilized resource for some types of missions that also benefit from using relatively high specific impulse capability of electric propulsion. This resource can provide an appreciable fraction of the power required for operating the electric propulsion subsystem in some missions. The most probable mission requirement for utilization of this energy is that of geostationary satellites which have secondary batteries for operating at high power levels during eclipse. The study summarized in this report selected four examples of missions that could benefit from use of electric propulsion and on-board energy storage. Engineering analyses were performed to evaluate the mass saved and economic benefit expected when electric propulsion and on-board batteries perform some propulsion maneuvers that would conventionally be provided by chemical propulsion. For a given payload mass in geosynchronous orbit, use of electric propulsion in this manner typically provides a 10% reduction in spacecraft mass.

  15. A comparison of potential electric propulsion systems for orbit transfer

    NASA Technical Reports Server (NTRS)

    Jones, R. M.

    1982-01-01

    Electric propulsion concepts are compared on the basis of trip time for the low earth orbit (LEO) to geosynchronous earth orbit (GEO) mission. Resistojet, arcjet, magnetoplasmadynamic (MPD), pulsed inductive, and ion engine thruster concepts are included. The optimum (minimum trip time) value of specific impulse is found to be dependent upon the specific mission and system being considered. As expected, the devices which can deliver good efficiency at low specific impulses promise the fastest trip times. The solution for trip time and propellant mass for the constant power, continuous low acceleration orbit transfer problem (one way and round trip) is presented in nomograph form. The influences of mission Delta V, thruster efficiency, specific impulse, power, power and propulsion system mass, and payload mass are clearly illustrated.

  16. Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.

    2014-01-01

    NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance

  17. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Scheer, D. D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with Earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low Earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to Earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  18. Status of advanced propulsion for space based orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Cooper, Larry P.; Scheer, Dean D.

    1986-01-01

    A new Orbital Transfer Vehicle (OTV) propulsion system will be required to meet the needs of space missions beyond the mid-1990's. As envisioned, the advanced OTV will be used in conjunction with earth-to-orbit vehicles, Space Station, and Orbit Maneuvering Vehicle. The OTV will transfer men, large space structures, and conventional payloads between low earth and higher energy orbits. Space probes carried by the OTV will continue the exploration of the solar system. When lunar bases are established, the OTV will be their transportation link to earth. NASA is currently funding the development of technology for advanced propulsion concepts for future Orbital Transfer Vehicles. Progress in key areas during 1986 is presented.

  19. Solar Thermal : Solar Electric Propulsion Hybrid Orbit Transfer Analysis

    NASA Astrophysics Data System (ADS)

    McFall, Keith A.

    2000-07-01

    This effort examined the payoffs associated with the joint application of solar thermal propulsion (STP) and electric propulsion (EP) for orbit raising. The combined use of STP (800 second specific impulse) and EP (1800 second specific impulse) for a single orbit transfer mission is motivated by the desire to leverage the higher thrust of STP with the higher specific impulse of EP to maximize mission capability. The primary objectives of this analysis were to quantify the payload, mission duration, and hydrogen propellant to payload mass ratio for a range of combined STP and EP orbit transfer missions to geosynchronous Earth orbit (GEO), and contrast them to results for STP only. For STP, the hydrogen propellant to payload mass ratio is of particular interest due to payload fairing size constraints and the relatively low density of liquid hydrogen, which limit the mass of the STP propellant, and therefore the amount of payload that can be delivered. The results of the analysis include an 18% payload improvement associated with STP-EP hybrid propulsion over STP alone. The trip time needed for the STP-EP transfer varied from 101 to 143 days, compared to 41 days for the Solar only case. In addition, the amount of hydrogen propellant needed to accomplish the orbit raising to GEO per unit mass of payload decreased by 29% when the Solar Thermal - Solar Electric hybrid was used. While comprehensive comparisons of STP-EP to chemical propulsion (CP) only and to CP with EP orbit topping were also of interest, they were beyond the scope of this effort. However, a comparison of reference missions was performed. In comparison to the reference CP (328 second specific impulse) and CP-EP missions the STP-EP system provided 67% and 39% payload increases. respectively. The trip time for the CP-EP cases varied from 55 to 106 days.

  20. High-voltage Array Ground Test for Direct-drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; O'Neill, Mark J.

    2005-01-01

    Development is underway on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for direct drive electric propulsion. These SLA performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for "space tugs" to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLA SEP technology, discuss ground tests already completed, and present plans for future ground tests and future flight tests of SLA SEP systems.

  1. Advanced Space Propulsion System Flowfield Modeling

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon

    1998-01-01

    Solar thermal upper stage propulsion systems currently under development utilize small low chamber pressure/high area ratio nozzles. Consequently, the resulting flow in the nozzle is highly viscous, with the boundary layer flow comprising a significant fraction of the total nozzle flow area. Conventional uncoupled flow methods which treat the nozzle boundary layer and inviscid flowfield separately by combining the two calculations via the influence of the boundary layer displacement thickness on the inviscid flowfield are not accurate enough to adequately treat highly viscous nozzles. Navier Stokes models such as VNAP2 can treat these flowfields but cannot perform a vacuum plume expansion for applications where the exhaust plume produces induced environments on adjacent structures. This study is built upon recently developed artificial intelligence methods and user interface methodologies to couple the VNAP2 model for treating viscous nozzle flowfields with a vacuum plume flowfield model (RAMP2) that is currently a part of the Plume Environment Prediction (PEP) Model. This study integrated the VNAP2 code into the PEP model to produce an accurate, practical and user friendly tool for calculating highly viscous nozzle and exhaust plume flowfields.

  2. Optimal Flight to Near-Earth Asteroids with Using Electric Propulsion and Gravity Maneuvers

    NASA Astrophysics Data System (ADS)

    Chernov, A. V.

    Optimal space flight to near-Earth asteroid for deflection asteroids from the Earth and prevention their possible collision is investigated. The deflection is realized by means of impact-kinetic effect of the spacecraft on the asteroid and changing the asteroid orbit. The effectiveness of this method for preventing asteroid-Earth collision is estimated by means of optimal space flights, which are found. The flight of spacecraft (SC) is realized by means of using electric propulsion system. To increase effectiveness the optimal gravity maneuvers of spacecraft near Mars and Venus are using. Criterion of the space flight optimization is maximal deflection of the asteroid from the Earth at the moment of asteroid-Earth nearest approach. For determination of optimal trajectories the maximum Pontrjagin principle is used. It is assumed that the thrust of electric propulsion is unrestricted or corresponding to electric engine SPT-140 with solar battery as energy source. The technique of choice of first approximation for optimal trajectory determination on base of search optimal trajectories in more simple statement is used. The optimal trajectories are determined for wide ranges of the space flight times to near-Earth asteroids with different orbit elements. A comparison with a case of the space flight using a high thrust only or without gravity-assisted maneuvers is carried out.

  3. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2012-01-01

    NASA s goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  4. Benefits of Power and Propulsion Technology for a Piloted Electric Vehicle to an Asteroid

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Pencil, Eric J.; Piszczor, Michael F.; Mason, Lee S.; Bury, Kristen M.; Manzella, David H.; Kerslake, Thomas W.; Hojinicki, Jeffrey S.; Brophy, John P.

    2011-01-01

    NASA's goal for human spaceflight is to expand permanent human presence beyond low Earth orbit (LEO). NASA is identifying potential missions and technologies needed to achieve this goal. Mission options include crewed destinations to LEO and the International Space Station; high Earth orbit and geosynchronous orbit; cis-lunar space, lunar orbit, and the surface of the Moon; near-Earth objects; and the moons of Mars, Mars orbit, and the surface of Mars. NASA generated a series of design reference missions to drive out required functions and capabilities for these destinations, focusing first on a piloted mission to a near-Earth asteroid. One conclusion from this exercise was that a solar electric propulsion stage could reduce mission cost by reducing the required number of heavy lift launches and could increase mission reliability by providing a robust architecture for the long-duration crewed mission. Similarly, solar electric vehicles were identified as critical for missions to Mars, including orbiting Mars, landing on its surface, and visiting its moons. This paper describes the parameterized assessment of power and propulsion technologies for a piloted solar electric vehicle to a near-Earth asteroid. The objective of the assessment was to determine technology drivers to advance the state of the art of electric propulsion systems for human exploration. Sensitivity analyses on the performance characteristics of the propulsion and power systems were done to determine potential system-level impacts of improved technology. Starting with a "reasonable vehicle configuration" bounded by an assumed launch date, we introduced technology improvements to determine the system-level benefits (if any) that those technologies might provide. The results of this assessment are discussed and recommendations for future work are described.

  5. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III.

    ERIC Educational Resources Information Center

    Savler, D. S.; Mackin, T. E.

    This book, one in the series on Aerospace Education III, includes a discussion of the essentials of propulsion, control, and guidance and the conditions of space travel. Chapter 1 provides a brief account of basic laws of celestial mechanics. Chapters 2, 3, and 4 are devoted to the chemical principles of propulsion. Included are the basics of…

  6. NASA's 2004 In-Space Propulsion Refocus Studies for New Frontiers Class Missions

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin E.; Manzella, David; Oh, David; Cupples, Mike

    2006-01-01

    The New Frontiers (NF) program is designed to provide opportunities to fulfill the science objectives for top priority, medium class missions identified in the Decadal Solar System Exploration Survey. This paper assesses the applicability of the In-Space Propulsion s (ISP) Solar Electric Propulsion (SEP) technologies for representative NF class missions that include a Jupiter Polar Orbiter with Probes (JPOP), Comet Surface Sample Return (CSSR), and two different Titan missions. The SEP technologies evaluated include the 7-kW, 4,100-second NASA's Evolutionary Xenon Thruster (NEXT), the 3-kW, 2,700-second Hall thruster, and two different NASA Solar Electric Propulsion Technology Readiness (NSTAR) thrusters that are variants of the Deep Space 1 (DS1) thruster. One type of NSTAR, a 2.6-kW, 3,100-second thruster, will be the primary propulsion system for the DAWN mission that is scheduled to launch in 2006; the other is an "enhanced", higher power variant (3.8-kW, 4,100-second) and is so-called because it uses NEXT system components such as the NEXT power processing unit (PPU). The results show that SEP is applicable for the CSSR mission and a Titan Lander mission. In addition, NEXT has improved its applicability for these types of missions by modifying its thruster performance relative to its performance at the beginning of this study.

  7. Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC

    NASA Technical Reports Server (NTRS)

    Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr

    2014-01-01

    Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.

  8. Optimal lunar trajectories for a combined chemical-electric propulsion spacecraft

    NASA Technical Reports Server (NTRS)

    Kluever, Craig A.

    1995-01-01

    Spacecraft which utilize electric propulsion (EP) systems are capable of delivering a greater payload fraction compared to spacecraft using conventional chemical propulsion systems. Several researchers have investigated numerous applications of low-thrust EP including a manned Mars mission, scientific missions to the outer planets, and lunar missions. In contrast, the study of optimal combined high and low-thrust spacecraft trajectories has been limited. In response to the release of NASA's 1994 Announcement of Opportunity (AO) for Discovery class interplanetary exploration missions, a preliminary investigation of a lunar comet rendezvous mission using a solar electric propulsion (SEP) spacecraft was performed. The Discovery mission (eventually named Diana) was envisioned to be a two-phase scientific exploration mission: the first phase involved exploration of the moon and second phase involved rendezvous with a comet. The initial phase began with a chemical propulsion translunar injection and chemical insertion into a lunar orbit, followed by a low-thrust SEP transfer to a circular, polar, low-lunar orbit (LLO). After scientific data was collected at the moon, the SEP spacecraft performed a spiral lunar escape maneuver to begin the interplanetary leg of the mission. After escape from the Earth-moon system, the SEP spacecraft maneuvered in interplanetary space and performed a rendezvous with a short period comet. An initial study that demonstrated the feasibility of using EP for the lunar and comet orbit transfer was performed under the grant NAG3-1581. This final report is a continuation of the initial research efforts in support of the Discovery mission proposal that was submitted to NASA Headquarters in October 1994. Section 2 discusses the lunar orbit transfer phase of the Diana mission which involves both chemical and electric propulsion stages. Section 3 discusses the chemical lunar orbit insertion (LOI) burn optimization. Finally, section 4 presents the

  9. Component Data Base for Space Station Resistojet Auxiliary Propulsion

    NASA Technical Reports Server (NTRS)

    Bader, Clayton H.

    1988-01-01

    The resistojet was baselined for Space Station auxiliary propulsion because of its operational versatility, efficiency, and durability. This report was conceived as a guide to designers and planners of the Space Station auxiliary propulsion system. It is directed to the low thrust resistojet concept, though it should have application to other station concepts or systems such as the Environmental Control and Life Support System (ECLSS), Manufacturing and Technology Laboratory (MTL), and the Waste Fluid Management System (WFMS). The information will likely be quite useful in the same capacity for other non-Space Station systems including satellite, freeflyers, explorers, and maneuvering vehicles. The report is a catalog of the most useful information for the most significant feed system components and is organized for the greatest convenience of the user.

  10. Interplanetary Sample Return Missions Using Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, R.; Gao, Y.; Kluever, C. A.; Capples, M.; Belcher, J.

    2005-01-01

    Solar electric propulsion (SEP) is being used for a variety of planetary missions sponsored by ESA, JAXA, and NASA and nuclear electric propulsion (NEP) is being considered for future, flagship-class interplanetary missions. Radioisotope electric propulsion (REP) has recently been shown to effectively complement SEP and NEP for missions to high-AU targets with modest payload requirements. This paper investigates the application of an advanced REP for a sample return from the comet Tempel 1. A set of mission and system parameters are varied with the goal of quantifying their impact on total mission payload. Mission parameters considered include trip-time and Earth return entry interface speed of the sample return system. System parameters considered include launch vehicle, power level of spacecraft at beginning of mission, and thruster specific impulse. For the baseline case of Atlas 401 and REP power level of 750 W, the mission time was 12 years, the payload was 144 kg, and the missions optimized to a single specific impulse generally within Hall ion thruster range. Other cases were investigated in support of graduate studies, and include the larger Atlas 551 launch vehicle and extended power level to 1 kW. The Atlas 551 cases tended to optimize dual specific impulses generally in the Hall ion thruster range for both legs of the mission. A power level of at least 1-kW and trip-time of approximately 11 years was required to obtain a total science payload close to 320 kg for the Atlas 401 launch vehicle. An Atlas 551 launch vehicle yielded a science payload of approximately 540 kg for the case of 1-kW of power and an 11-year trip time, and nearly 250 kg of science payload for the case of 1-kW of power and a 6-year trip time. Results are also reported indicating the performance ramifications of meeting a reduced Earth entry interface velocity constraint.

  11. Structural Requirements for the Space Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin K.

    2006-01-01

    In January 2004, the National Aeronautics and Space Administration (NASA) was given a vision for Space Exploration by President Bush, setting our sight on a bold new path to go back to the Moon, then to Mars and beyond. As NASA gets ready to meet the vision set by President Bush, failures are not an option. Reliability of the propulsion engine systems will play an important role in establishing an overall safe and reliable operation of these new space systems. A new standard, NASA-STD-5012, Strength and Life Assessment for Space Propulsion System Engines, has been developed to provide structural requirements for assessment of the propulsion systems engine. This standard is a complement to the current NASA-wide standard NASA-STD-5001, Structural Design and Test Factors of Safety for Spaceflight Hardware, which excluded the requirement for the engine systems (rotatory structures) along with pressure vessels. As developed, this document builds on the heritage of the multiple industrial standards related to strength and life assessment of the structures. For assuring a safe and reliable operation of a product and/or mission, establishing a set of structural assessment requirements is a key ingredient. Hence, a concentrated effort was made to improve the requirements where there are known lessons learned during the design, test, and operation phases of the Space Shuttle Main Engine (SSME) and other engine development programs. Requirements delineated in this standard are also applicable for the reusable and/or human missions. It shall be noted that "reliability of a system cannot be tested and inspected but can only be achieved if it is first designed into a system." Hence, these strength and life assessment requirements for the space propulsion system engines shall be used along with other good engineering practices, requirements, and policies.

  12. Solar electric propulsion thruster interactions with solar arrays

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1977-01-01

    The effect of interactions of spacecraft-generated and naturally occurring plasmas with high voltage solar array components on an advanced solar electric propulsion system proposed for the Halley's Comet rendezvous mission was investigated. The spacecraft-generated plasma consists of mercury ions and neutralizing electrons resulting from the operation of ion thrusters (the charge-exchange plasma) and associated hollow cathode neutralizers. Quantitative results are given for the parasitic currents and power coupled into solar arrays with voltage fixed as a function of position on the array.

  13. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  14. Trajectory analysis for solar electric propulsion stage /SEPS/ planetary missions

    NASA Technical Reports Server (NTRS)

    Dazzo, E. J.; Nagorski, R. P.

    1973-01-01

    This paper summarizes a portion of the planetary mission analysis results of past and present studies conducted by Rockwell International for NASA-MSFC (Contract NAS8-27360) dealing with the feasibility of a Solar Electric Propulsion Stage (SEPS). The SEPS is envisioned as an upper stage of a transportation system capable of delivering either separable payload spacecraft or attached science packages to various planetary targets. The purpose of the paper is to demonstrate that, from a payload performance capability standpoint, a common SEP Stage can deliver various payloads to a host of planetary targets including inner and outer planets, asteroids, and comets.

  15. Nuclear electric propulsion options for piloted Mars missions

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1993-01-01

    Three nuclear electric propulsion (NEP) systems are discussed. The three systems are as follows: a system based on current SP-100 technology; a potassium Rankine-cycle based power conversion system, and an argon ion thruster system. The system will be researched for implementation in several possible vehicle configurations. The following are among the possible Mars vehicle configurations: a piloted 15 MWe multi-reactor vehicle; a piloted 10 MWe vehicle with ECCV; a piloted 10 MWe modular vehicle; piloted 10 and 15 MWe vehicles with ECCV and MEV; a piloted 5 MWe vehicle with ECCV; a 5 MWe cargo vehicle with 2 MEV's; and a 2.5 MWe vehicle with MEV.

  16. Aeroelastic Analysis of a Distributed Electric Propulsion Wing

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Stanford, Bret K.; Wieseman, Carol D.; Heeg, Jennifer

    2017-01-01

    An aeroelastic analysis of a prototype distributed electric propulsion wing is presented. Results using MSC Nastran (Registered Trademark) doublet lattice aerodynamics are compared to those based on FUN3D Reynolds Averaged Navier- Stokes aerodynamics. Four levels of grid refinement were examined for the FUN3D solutions and solutions were seen to be well converged. It was found that no oscillatory instability existed, only that of divergence, which occurred in the first bending mode at a dynamic pressure of over three times the flutter clearance condition.

  17. Thermal control of the solar electric propulsion stage

    NASA Technical Reports Server (NTRS)

    Ruttner, L. E.

    1973-01-01

    The thermal control requirements consist of functional requirements related to the various mission phase natural environments, operational requirements of induced power loadings by the solar electric propulsion stage subsystems, and design temperature limits for performance and reliability. The design approach utilizes passive thermal control techniques combining insulation, surface coatings, and sunshields with thermostatically controlled louvers. Heaters are used to regulate certain temperatures for extreme conditions. Details regarding the thruster array thermal control design are discussed, giving attention to the parameters used in the mathematical model, questions of conductive coupling, and thruster estimated power distribution.

  18. Nuclear electric propulsion options for piloted Mars missions

    NASA Astrophysics Data System (ADS)

    George, Jeffrey A.

    Three nuclear electric propulsion (NEP) systems are discussed. The three systems are as follows: a system based on current SP-100 technology; a potassium Rankine-cycle based power conversion system, and an argon ion thruster system. The system will be researched for implementation in several possible vehicle configurations. The following are among the possible Mars vehicle configurations: a piloted 15 MWe multi-reactor vehicle; a piloted 10 MWe vehicle with ECCV; a piloted 10 MWe modular vehicle; piloted 10 and 15 MWe vehicles with ECCV and MEV; a piloted 5 MWe vehicle with ECCV; a 5 MWe cargo vehicle with 2 MEV's; and a 2.5 MWe vehicle with MEV.

  19. Phase 1 Space Fission Propulsion System Design Considerations

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Carter, Robert; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a "Phase 1" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.

  20. Phase 1 space fission propulsion system design considerations

    NASA Astrophysics Data System (ADS)

    Houts, Mike; van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert

    2002-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a ``Phase 1'' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system. .