Sample records for electric steam generating

  1. 26. Photocopy of diagram (from Bernhardt Skrotzki's Electric GenerationSteam Stations, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of diagram (from Bernhardt Skrotzki's Electric Generation--Steam Stations, New York, New York, 1956, figure I-1) THE GENERAL WAY IN WHICH ELECTRICITY IS CREATED THROUGH THE STEAM GENERATION PROCESS - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  2. Breckinridge Project, initial effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basismore » established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.« less

  3. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  4. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  5. 75 FR 77866 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... Approval; Comment Request; NSPS for Electric Utility Steam Generating (Renewal) AGENCY: Environmental... the electronic docket, go to http://www.regulations.gov . Title: NSPS for Electric Utility Steam.../Affected Entities: Owners or operators of electric utility steam generating units. Estimated Number of...

  6. 77 FR 45967 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility...-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired...

  7. 77 FR 9303 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial... electric utility steam generating units (EGUs) and standards of performance for fossil-fuel-fired electric...

  8. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired... 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150 Fossil...

  9. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  10. 40 CFR 60.45Da - Standard for mercury (Hg).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-fired electric utility steam generating unit that burns only lignite, you must not discharge into the... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC...

  11. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    NASA Technical Reports Server (NTRS)

    Muller, Norbert (Inventor); Lee, Changgu (Inventor); Frechette, Luc (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  12. The Streaming Potential Generated by Flow of Wet Steam in Capillary Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsden, S.S. Jr.; Tyran, Craig K.

    1986-01-21

    For a constant pressure differential, the flow of wet steam generated electric potentials which increased with time and did not reach equilibrium values. These potentials were found to increase to values greater than 100 volts. The reason for this kind of potential build-up behavior was the presence of tiny flowing water slugs which were interspersed with electrically nonconductive steam vapor slugs. The measured electric potential for wet steam increased with pressure differential, but the relationship was not linear. The increase in potential with pressure drop was attributed both to an increase in fluid flow rate and changes in the wetmore » steam quality.« less

  13. Automation of steam generator services at public service electric & gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruickshank, H.; Wray, J.; Scull, D.

    1995-03-01

    Public Service Electric & Gas takes an aggressive approach to pursuing new exposure reduction techniques. Evaluation of historic outage exposure shows that over the last eight refueling outages, primary steam generator work has averaged sixty-six (66) person-rem, or, approximately tewenty-five percent (25%) of the general outage exposure at Salem Station. This maintenance evolution represents the largest percentage of exposure for any single activity. Because of this, primary steam generator work represents an excellent opportunity for the development of significant exposure reduction techniques. A study of primary steam generator maintenance activities demonstrated that seventy-five percent (75%) of radiation exposure was duemore » to work activities of the primary steam generator platform, and that development of automated methods for performing these activities was worth pursuing. Existing robotics systems were examined and it was found that a new approach would have to be developed. This resulted in a joint research and development project between Westinghouse and Public Service Electric & Gas to develop an automated system of accomplishing the Health Physics functions on the primary steam generator platform. R.O.M.M.R.S. (Remotely Operated Managed Maintenance Robotics System) was the result of this venture.« less

  14. 77 FR 23399 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial... before March 1, 2005, means a 24-hour period during which fossil fuel is combusted in a steam-generating...

  15. Use of mock-up training to reduce personnel exposure at the North Anna Unit 1 Steam Generator Replacement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, H.G.; Reilly, B.P.

    1995-03-01

    The North Anna Power Station is located on the southern shore of Lake Anna in Louisa County, approximately forty miles northwest of Richmond, Virginia. The two 910 Mw nuclear units located on this site are owned by Virginia Electric and Power Company (Virginia Power) and Old Dominion Electric Cooperative and operated by Virginia Power. Fuel was loaded into Unit 1 in December 1977, and it began commercial operation in June 1978. Fuel was loaded into Unit 2 in April 1980 and began commercial operation in December 1980. Each nuclear unit includes a three-coolant-loop pressurized light water reactor nuclear steam supplymore » system that was furnished by Westinghouse Electric Corporation. Included within each system were three Westinghouse Model 51 steam generators with alloy 600, mill-annealed tubing material. Over the years of operation of Unit 1, various corrosion-related phenomena had occurred that affected the steam generators tubing and degraded their ability to fulfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators tubing and degraded their ability to fullfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators would not last their design life and must be repaired. To this end Virginia Power determined that a steam generator replacement (SGR) program was necessary to remove the old steam generator tube bundles and lower shell sections, including the channel heads (collectively called the lower assemblies), and replace them with new lower assemblies incorporating design features that will prevent the degradation problems that the old steam generators had experienced.« less

  16. 76 FR 6836 - Entergy Operations, Inc.; Notice of Withdrawal of Application for Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    .... NPF-38 for the Waterford Steam Electric Station, Unit 3, located in St. Charles Parish, Louisiana. In view of the originally planned steam generator (SG) replacement during the spring 2011 refueling outage... to TS 6.5.9, ``Steam Generator (SG) Program,'' and TS 6.9.1.5, ``Steam Generator Tube Inspection...

  17. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric utility steam...

  18. 76 FR 30206 - Southern Nuclear Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... High-High, Nominal Trip Setpoint (NTSP) and Allowable Value. The Steam Generator Water Level High-High... previously evaluated is not increased. The Steam Generator Water Level High-High function revised values..., Steam Generator Water Level High-High, Nominal Trip Setpoint (NTSP) and Allowable Value. Function 5c...

  19. 40 CFR 63.7575 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...

  20. 40 CFR 63.7575 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...

  1. Innovation on Energy Power Technology (1)

    NASA Astrophysics Data System (ADS)

    Nagano, Susumu; Kakishima, Masayoshi

    After the last war, the output of single Steam Turbine Generator produced by the own technology in Japan returned to a prewar level. Electric power companies imported the large-capacity high efficiency Steam Turbine Generator from the foreign manufacturers in order to support the sudden increase of electric power demand. On the other hand, they decided to produce those in our own country to improve industrial technology. The domestic production of large-capacity 125MW Steam Turbine Generator overcome much difficulty and did much contribution for the later domestic technical progress.

  2. 45. William E. Barrett, Photographer, August 1975. EARLY STEAM GENERATING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. William E. Barrett, Photographer, August 1975. EARLY STEAM GENERATING UNIT USED TO PRODUCE ELECTRICITY FOR MANUFACTURING OPERATIONS AND FOR THE TOWN OF RAINELLE. STEAM ENGINE IS A HAMILTON CORLISS. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV

  3. Cogeneration systems and processes for treating hydrocarbon containing formations

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; Fowler, Thomas David [Houston, TX; Karanikas, John Michael [Houston, TX

    2009-12-29

    A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

  4. 40 CFR 63.40 - Applicability of §§ 63.40 through 63.44.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...). (c) Exclusion for electric utility steam generating units. The requirements of this subpart do not apply to electric utility steam generating units unless and until such time as these units are added to...

  5. 40 CFR 63.7575 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... controlled flame combustion and having the primary purpose of recovering thermal energy in the form of steam... on its floor. Electric utility steam generating unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that produces electricity for sale. A fossil fuel-fired...

  6. 40 CFR 63.7575 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... controlled flame combustion and having the primary purpose of recovering thermal energy in the form of steam... on its floor. Electric utility steam generating unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that produces electricity for sale. A fossil fuel-fired...

  7. 40 CFR 63.40 - Applicability of §§ 63.40 through 63.44.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...). (c) Exclusion for electric utility steam generating units. The requirements of this subpart do not apply to electric utility steam generating units unless and until such time as these units are added to...

  8. 40 CFR 63.40 - Applicability of §§ 63.40 through 63.44.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...). (c) Exclusion for electric utility steam generating units. The requirements of this subpart do not apply to electric utility steam generating units unless and until such time as these units are added to...

  9. 40 CFR 63.40 - Applicability of §§ 63.40 through 63.44.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...). (c) Exclusion for electric utility steam generating units. The requirements of this subpart do not apply to electric utility steam generating units unless and until such time as these units are added to...

  10. 40 CFR 63.40 - Applicability of §§ 63.40 through 63.44.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Requirements for Control Technology Determinations for Major Sources in Accordance With Clean Air Act Sections...). (c) Exclusion for electric utility steam generating units. The requirements of this subpart do not apply to electric utility steam generating units unless and until such time as these units are added to...

  11. 77 FR 43206 - Limited Approval and Disapproval of Air Quality Implementation Plans; Nevada; Clark County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... generate electricity by using steam produced by the burning of fossil fuel within the State of Nevada. The... plants which generate electricity by using steam produced by the burning of fossil fuel, which are... burning of fossil fuel, see NRS 445B.500) within the nonattainment portions of Clark County. Table 2...

  12. Mathematical modeling of control system for the experimental steam generator

    NASA Astrophysics Data System (ADS)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  13. 40 CFR 60.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods...: atmospheric or pressurized fluidized bed combustion, integrated gasification combined cycle...

  14. A 15kWe (nominal) solar thermal electric power conversion concept definition study: Steam Rankine reheat reciprocator system

    NASA Technical Reports Server (NTRS)

    Fuller, H.; Demler, R.; Poulin, E.; Dantowitz, P.

    1979-01-01

    An evaluation was made of the potential of a steam Rankine reheat reciprocator engine to operate at high efficiency in a point-focusing distributed receiver solar thermal-electric power system. The scope of the study included the engine system and electric generator; not included was the solar collector/mirror or the steam generator/receiver. A parametric analysis of steam conditions was completed leading to the selection of 973 K 12.1 MPa as the steam temperature/pressure for a conceptual design. A conceptual design was completed for a two cylinder/ opposed engine operating at 1800 rpm directly coupled to a commercially available induction generator. A unique part of the expander design is the use of carbon/graphite piston rings to eliminate the need for using oil as an upper cylinder lubricant. The evaluation included a system weight estimate of 230 kg at the mirror focal point with the condenser mounted separately on the ground. The estimated cost of the overall system is $1932 or $90/kW for the maximum 26 kW output.

  15. 77 FR 72294 - Reconsideration of Certain New Source and Startup/Shutdown Issues: National Emission Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating...-Institutional, and Small Industrial-Commercial- Institutional Steam Generating Units Correction Proposed rule...

  16. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  17. Hydrogen-based power generation from bioethanol steam reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less

  18. 40 CFR 60.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods..., magnetohydrodynamics, direct and indirect coal-fired turbines, integrated gasification fuel cells, or as determined by...

  19. 40 CFR 60.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods..., magnetohydrodynamics, direct and indirect coal-fired turbines, integrated gasification fuel cells, or as determined by...

  20. 40 CFR 60.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods..., magnetohydrodynamics, direct and indirect coal-fired turbines, integrated gasification fuel cells, or as determined by...

  1. Pressure Reducer for Coal Gasifiers

    NASA Technical Reports Server (NTRS)

    Kendall, James M., Sr.

    1983-01-01

    Quasi-porous-plug pressure reducer is designed for gases containing abrasive particles. Gas used to generate high pressure steam to drive electric power generators. In giving up heat to steam, gas drops in temperature. Device used for coal gasification plants.

  2. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1996-01-01

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  3. Analysis of dynamic hydrogen (H2) generation

    NASA Astrophysics Data System (ADS)

    Buford, Marcelle C.

    2003-03-01

    The focus of this research is on-demand hydrogen generation for applications such as electric vehicles and electric appliances. Hydrogen can be generated by steam reformation of alcohols, hydrocarbons and other hydrogen containing complexes. Steam reformation can be represented as a simple chemical reaction between an alcohol, commonly methanol, and water vapor to produce hydrogen and carbon dioxide. A fuel cell can then be employed to produce electrical power from hydrogen and air. Numerical and experimental techniques are employed to analyze the most appropriate reforming fuel to maximize H2 yield and minimize by-products of which carbon monoxide is the most harmful

  4. Oxygen transport membrane reactor based method and system for generating electric power

    DOEpatents

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  5. French Regulatory practice and experience feedback on steam generator tube integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandon, G.

    1997-02-01

    This paper summarizes the way the French Safety Authority applies regulatory rules and practices to the problem of steam generator tube cracking in French PWR reactors. There are 54 reactors providing 80% of French electrical consumption. The Safety Authority closely monitors the performance of tubes in steam generators, and requires application of a program which deals with problems prior to the actual development of leakage. The actual rules regarding such performance are flexible, responding to the overall performance of operating steam generators. In addition there is an inservice inspection service to examine tubes during shutdown, and to monitor steam generatorsmore » for leakage during operation, with guidelines for when generators must be pulled off line.« less

  6. Sourcing of Steam and Electricity for Carbon Capture Retrofits.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2017-11-07

    This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.

  7. 40 CFR 51.308 - Regional haze program requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for fossil-fuel fired power plants having a total generating capacity greater than 750 megawatts must...-eligible fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for... fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for the...

  8. 40 CFR 51.308 - Regional haze program requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for fossil-fuel fired power plants having a total generating capacity greater than 750 megawatts must...-eligible fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for... fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for the...

  9. Recent operating experiences with steam generators in Japanese NPPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashima, Seiji

    1997-02-01

    In 1994, the Genkai-3 of Kyushu Electric Power Co., Inc. and the Ikata-3 of Shikoku Electric Power Co., Inc. started commercial operation, and now 22 PWR plants are being operated in Japan. Since the first PWR plant now 22 PWR plants are being operated in was started to operate, Japanese PWR plants have had an operating experience of approx. 280 reactor-years. During that period, many tube degradations have been experienced in steam generators (SGs). And, in 1991, the steam generator tube rupture (SGTR) occurred in the Mihama-2 of Kansai Electric Power Co., Inc. However, the occurrence of tube degradation ofmore » SGs has been decreased by the instructions of the MITI as regulatory authorities, efforts of Electric Utilities, and technical support from the SG manufacturers. Here the author describes the recent SGs in Japan about the following points. (1) Recent Operating Experiences (2) Lessons learned from Mihama-2 SGTR (3) SG replacement (4) Safety Regulations on SG (5) Research and development on SG.« less

  10. Electric plant cost and power production expenses 1989. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-03-29

    This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, federal, state, and local governments, and the general public. This report primarily presents aggregate operation, maintenance, and fuel expense data about all power plants owned and operated by the major investor-owned electric utilities in the United States. The power production expenses for the major investor-owned electric utilities are summarized. Plant-specific data are presented for a selection of both investor-owned and publicly owned plants. Summary statistics for each plantmore » type (prime mover), as reported by the electric utilities, are presented in the separate chapters as follows: Hydroelectric Plants; Fossil-Fueled Steam-Electric Plants; Nuclear Steam-Electric Plants; and Gas Turbine and Small Scale Electric Plants. These chapters contain plant level data for 50 conventional hydroelectric plants and 22 pumped storage hydroelectric plants, 50 fossil-fueled steam-electric plants, 71 nuclear steam-electric plants, and 50 gas turbine electric plants. Among the operating characteristics of each plant are the capacity, capability, generation and demand on the plant. Physical characteristics comprise the number of units in the plant, the average number of employees, and other information relative to the plant's operation. The Glossary section will enable the reader to understand clearly the terms used in this report. 4 figs., 18 tabs.« less

  11. LIFE CYCLE ASSESSMENT OF ELECTRICITY GENERATION ALTERNATIVES

    EPA Science Inventory

    This presentation summarizes various electricity and electricity/steam cogeneration alternatives. Among these alternatives, are fossil fuel and biomass power generation plants. These plants have different designs due to the need in fossil fuel (coal) plants to include process u...

  12. 43 CFR 3275.14 - What aspects of my geothermal operations must I measure?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...

  13. 43 CFR 3275.14 - What aspects of my geothermal operations must I measure?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...

  14. 43 CFR 3275.14 - What aspects of my geothermal operations must I measure?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...

  15. 43 CFR 3275.14 - What aspects of my geothermal operations must I measure?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...

  16. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  17. Method and apparatus for improving the performance of a steam driven power system by steam mixing

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.; Prichard, Andrew W.; Reid, Bruce D.; Burritt, James

    1998-01-01

    A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  18. Methods to Develop Inhalation Cancer Risk Estimates for ...

    EPA Pesticide Factsheets

    This document summarizes the approaches and rationale for the technical and scientific considerations used to derive inhalation cancer risks for emissions of chromium and nickel compounds from electric utility steam generating units. The purpose of this document is to discuss the methods used to develop inhalation cancer risk estimates associated with emissions of chromium and nickel compounds from coal- and oil-fired electric utility steam generating units (EGUs) in support of EPA's recently proposed Air Toxics Rule.

  19. Accumulation and subsequent utilization of waste heat

    NASA Astrophysics Data System (ADS)

    Koloničný, Jan; Richter, Aleš; Pavloková, Petra

    2016-06-01

    This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.

  20. 78 FR 34431 - Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ...EPA is proposing a regulation that would strengthen the controls on discharges from certain steam electric power plants by revising technology-based effluent limitations guidelines and standards for the steam electric power generating point source category. Steam electric power plants alone contribute 50-60 percent of all toxic pollutants discharged to surface waters by all industrial categories currently regulated in the United States under the Clean Water Act. Furthermore, power plant discharges to surface waters are expected to increase as pollutants are increasingly captured by air pollution controls and transferred to wastewater discharges. This proposal, if implemented, would reduce the amount of toxic metals and other pollutants discharged to surface waters from power plants. EPA is considering several regulatory options in this rulemaking and has identified four preferred alternatives for regulation of discharges from existing sources. These four preferred alternatives differ with respect to the scope of requirements that would be applicable to existing discharges of pollutants found in two wastestreams generated at power plants. EPA estimates that the preferred options for this proposed rule would annually reduce pollutant discharges by 0.47 billion to 2.62 billion pounds, reduce water use by 50 billion to 103 billion gallons, cost $185 million to $954 million, and would be economically achievable.

  1. 76 FR 19766 - Agency Information Collection Activities OMB Responses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ...; NSPS for Small Industrial-Commercial- Institutional Steam Generating Units; 40 CFR part 60, subparts A... Number 1053.10; NSPS for Electric Utility Steam Generating Units; 40 CFR part 60, subparts A and Da; was... Petroleum Refineries Sector Residual Risk and Technology Review (New Collection); was approved on 03/28/2011...

  2. The Development of a Small High Speed Steam Microturbine Generator System

    NASA Astrophysics Data System (ADS)

    Alford, Adrian; Nichol, Philip; Frisby, Ben

    2015-08-01

    The efficient use of energy is paramount in every kind of business today. Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. This can be accomplished using steam turbines driving alternators on large scale systems. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This gave rise to a number of challenges which are described with the solutions adopted. The challenges included aerodynamic design of high efficiency impellers, sealing of a high speed shaft, thrust control and material selection to avoid steam erosion. The machine was packaged with a sophisticated control system to allow connection to the electricity grid. Some of the challenges in packaging the machine are also described. The Spirax Sarco TurboPower has now concluded performance and initial endurance tests which are described with a summary of the results.

  3. Dancing with STEAM: Creative Movement Generates Electricity for Young Learners

    ERIC Educational Resources Information Center

    Simpson Steele, Jamie; Fulton, Lori; Fanning, Lisa

    2016-01-01

    The integration of science, technology, engineering, arts, and mathematics (STEAM) serves to develop creative thinking and twenty-first-century skills in the classroom (Maeda 2012). Learning through STEAM promotes novelty, innovation, ingenuity, and task-specific purposefulness to solve real-world problems--all aspects that define creativity. Lisa…

  4. Solar-Power System Produces High-Pressure Steam

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1985-01-01

    Combination of three multistaged solar collectors produces highpressure steam for large-scale continuously operating turbines for generating mechanical or electrical energy. Superheated water vapor drives turbines, attaining an overall system efficiency about 22 percent.

  5. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  6. 17 CFR 250.7 - Companies deemed not to be electric or gas utility companies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... or manufactured gas distributed at retail by means of the facilities owned or operated by such... connection with the generation, transmission, or distribution of electric energy is the ownership or... steam is used in the generation of electric energy shall not be deemed an electric utility company...

  7. 164. Photocopied July 1978. VIEW OF STEAMTURBINE BUILDING AT STAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    164. Photocopied July 1978. VIEW OF STEAM-TURBINE BUILDING AT STAMP MILL. BUILDING CONSTRUCTED IN 1921 TO USE EXHAUST STEAM TO GENERATE ELECTRICITY. C. 1925. - Quincy Mining Company, Hancock, Houghton County, MI

  8. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  9. 1. GENERAL VIEW OF FISK STREET ELECTRIC GENERATING STATION COMPLEX, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF FISK STREET ELECTRIC GENERATING STATION COMPLEX, LOOKING SOUTH; IN THE CENTER, BEHIND THE STACK IS THE GENERATING STATION BUILT IN 1959; THE TALL METAL-CLAD BUILDING CONTAINS A COAL BUNKER, COAL PULVERIZER, FURNACE, BOILER, SUPER-HEATER, STEAM PIPES, AND HOT-AIR DUCTS. TO THE RIGHT OF THIS 1959 GENERATING STATION IS THE ORIGINAL POWERHOUSE. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  10. 75 FR 33238 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... include a new natural gas-fired combustion turbine set, a heat recovery steam generator (HRSG), and a steam turbine generator set. DATES: Written comments on this Final EIS will be accepted on or before... at: http://www.usda.gov/rus/water/ees/eis.htm . Copies of the Final EIS will also be available for...

  11. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOEpatents

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1995-01-01

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  12. Energy alternative for industry: the high-temperature gas-cooled reactor steamer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMain, A.T. Jr.; Blok, F.J.

    1978-04-01

    Large industrial complexes are faced with new requirements that will lead to a transition from such fluid fuels as natural gas and oil to such solid fuels as coal and uranium for supply of industrial energy. Power plants using these latter fuels will be of moderate size (800 to 1200 MW(thermal)) and will generally have the capability of co-generating electric power and process steam. A study has been made regarding use of the 840-MW(thermal) Fort St. Vrain high-temperature gas-cooled reactor (HTGR) design for industrial applications. The initial conceptual design (referred to as the HTGR Steamer) is substantially simplified relative tomore » Fort St. Vrain in that outlet helium and steam temperatures are lower and the reheat section is deleted from the steam generators. The Steamer has four independent steam generating loops producing a total of 277 kg/s (2.2 x 10/sup 6/ lb/h) of prime steam at 4.5 MPa/672 K (650 psia/750/sup 0/F). The unit co-generates 46 MW(electric) and provides process steam at 8.31 MPa/762 K(1200 psia/912/sup 0/F). The basic configuration and much of the equipment are retained from the Fort St. Vrain design. The system has inherent safety features important for industrial applications. These and other features indicate that the HTGR Steamer is an industrial energy option deserving additional evaluation. Subsequent work will focus on parallel design optimization and application studies.« less

  13. Soviet steam generator technology: fossil fuel and nuclear power plants. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins withmore » a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references.« less

  14. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    DOEpatents

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  15. Waste to Energy Conversion by Stepwise Liquefaction, Gasification and "Clean" Combustion of Pelletized Waste Polyethylene for Electric Power Generation---in a Miniature Steam Engine

    NASA Astrophysics Data System (ADS)

    Talebi Anaraki, Saber

    The amounts of waste plastics discarded in developed countries are increasing drastically, and most are not recycled. The small fractions of the post-consumer plastics which are recycled find few new uses as their quality is degraded; they cannot be reused in their original applications. However, the high energy density of plastics, similar to that of premium fuels, combined with the dwindling reserves of fossil fuels make a compelling argument for releasing their internal energy through combustion, converting it to thermal energy and, eventually, to electricity through a heat engine. To minimize the emission of pollutants this energy conversion is done in two steps, first the solid waste plastics undergo pyrolytic gasification and, subsequently, the pyrolyzates (a mixture of hydrocarbons and hydrogen) are blended with air and are burned "cleanly" in a miniature power plant. This plant consists of a steam boiler, a steam engine and an electricity generator.

  16. Case study of McCormick place cogeneration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overstreet, E.L.

    1994-12-31

    In the authors business of providing district energy services, competition is the key to his being able to have a positive impact on the environment, business stability, and economic activity. In the district energy industry, the competitive options are for property owners to continue to self generate energy to meet their needs, purchase energy from a company that utilizes electricity during off-peak hours to produce chilled water or take advantage of a total solution of purchasing tri-generation energy from Trigen-Peoples District Energy Company. Tri-generation is an innovative technology which involves the simultaneous production of steam, chilled water, and electricity. Themore » McCormick Place cogeneration project calls for producing steam and chilled water (co-) for use by the Metropolitan Pier and Exposition Authority (MPEA). The plant will produce electricity (tri-) to run the production equipment.« less

  17. Postfact phenomena of the wet-steam flow electrization in turbines

    NASA Astrophysics Data System (ADS)

    Tarelin, A. A.

    2017-11-01

    Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.

  18. System for the co-production of electricity and hydrogen

    DOEpatents

    Pham, Ai Quoc; Anderson, Brian Lee

    2007-10-02

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  19. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode,more » respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.« less

  20. Solar tower power plant using a particle-heated steam generator: Modeling and parametric study

    NASA Astrophysics Data System (ADS)

    Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan

    2016-05-01

    Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.

  1. 46 CFR 56.50-30 - Boiler feed piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pump may be used for other purposes. (2) If two independently driven pumps are provided, each capable... requirements. (1) Steam vessels, and motor vessels fitted with steam driven electrical generators shall have at... the necessary connections for this purpose. The arrangement of feed pumps shall be in accordance with...

  2. Energy Recovery

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The United States and other countries face the problem of waste disposal in an economical, environmentally safe manner. A widely applied solution adopted by Americans is "waste to energy," incinerating the refuse and using the steam produced by trash burning to drive an electricity producing generator. NASA's computer program PRESTO II, (Performance of Regenerative Superheated Steam Turbine Cycles), provides power engineering companies, including Blount Energy Resources Corporation of Alabama, with the ability to model such features as process steam extraction, induction and feedwater heating by external sources, peaking and high back pressure. Expansion line efficiency, exhaust loss, leakage, mechanical losses and generator losses are used to calculate the cycle heat rate. The generator output program is sufficiently precise that it can be used to verify performance quoted in turbine generator supplier's proposals.

  3. Frontier production function estimates for steam electric generation: a comparative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, R.J.; Smith, V.K.

    1980-04-01

    The performance of three frontier steam electric generation estimators is compared in terms of the consideration given to new production technologies and their technical efficiency. The Cobb-Douglas, constant elasticity of substitution, and translog production functions are examined, using the Aigner-Chu linear programming, the sophisticated Aigner-Lovell-Schmidt stochastic frontier, and the direct method of adjusted ordinary least squares frontier estimators. The use of Cobb-Douglas specification is judged to have narrowed the perceived difference between competing estimators. The choice of frontier estimator is concluded to have a greater effect on the plant efficiency than functional form. 19 references. (DCK)

  4. Final Test and Evaluation Results from the Solar Two Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRADSHAW, ROBERT W.; DAWSON, DANIEL B.; DE LA ROSA, WILFREDO

    Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the projectmore » was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.« less

  5. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  6. Summary Report On Design And Development Of High Temperature Gas-Cooled Power Pile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCullough, C. R.

    1947-09-15

    This report presents a description of a design for an experimental nuclear power plant utilizing a high temperature gas-cooled power pile as the energy source. The plant consists of the pile, a heat exchanger or boiler, a conventional steam turbine generator and their associated auxiliaries. Helium gas under pressure transfers heat from the pile to the boiler which generates steam for driving the generator. The plant is rated at a normal output of 12,000 kilowatts of heat and an electrical output of 2400 kilowatts. Provision is made for operation up to 20,000 kilowatts of heat (4000 kilowatts of electrical output)more » in the event operation of the plants proves this possible.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gent, Stan

    The Post Street project had four (4), 7.960 MW, Solar Taurus-70-10801S natural gas combustion turbines. Each turbine equipped with a 40,000 lb/hr heat recovery steam generator (HRSG). The dual-fuel HRSGs was capable of generating steam using gas turbine exhaust heat or surplus electric power. The generation capacity was nominally rated at 29.2 MW. The project as proposed had a fuel rate chargeable to power of 4,900 - 5,880 Btu/kWh dependent on time of year. The CHP plant, when operating at 29.2 MW, can recycle turbine exhaust into supply 145 kpph of steam to SSC per hour. The actual SSC steammore » loads will vary based on weather, building occupation, plus additions / reductions of customer load served. SSC produces up to 80 kpph of steam from a biomass boiler, which is currently base loaded all year.« less

  8. The simulation of organic rankine cycle power plant with n-pentane working fluid

    NASA Astrophysics Data System (ADS)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  9. 76 FR 38590 - Proposed National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Performance for Fossil-Fuel- Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial...

  10. Water withdrawal and consumption reduction analysis for electrical energy generation system

    NASA Astrophysics Data System (ADS)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  11. 40 CFR 63.11237 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or... this definition. Coal subcategory includes any boiler that burns any solid fossil fuel and no more than... included in this definition. Electric utility steam generating unit (EGU) means a fossil fuel-fired...

  12. 40 CFR 63.11237 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or... this definition. Coal subcategory includes any boiler that burns any solid fossil fuel and no more than... included in this definition. Electric utility steam generating unit (EGU) means a fossil fuel-fired...

  13. Feasibility of a medium-size central cogenerated energy facility, energy management memorandum

    NASA Astrophysics Data System (ADS)

    Porter, R. W.

    1982-09-01

    The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.

  14. 77 FR 73968 - Reconsideration of Certain New Source and Startup/Shutdown Issues: National Emission Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...- and Oil-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...

  15. 78 FR 285 - Supplemental Final Environmental Impact Statement for Healy Power Generation Unit #2, Healy, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... Valley Electric Association (GVEA) since 1967. Healy Unit 2 is a 50 MW coal- fired steam generator owned by AIDEA, which underwent test operation for two years as part of DOE's Clean Coal Technology Program... RUS. The RUS Electric Program is authorized to make loans and loan guarantees that finance the...

  16. Alternative Fuels Data Center: Electricity Research and Development

    Science.gov Websites

    blades of a turbine connected to an electric generator. The turbine generator set converts mechanical and solar thermal, the heat that is produced is used to create steam, which moves the blades of the turbine. In the cases of hydropower and wind power, turbine blades are moved directly by flowing water and

  17. Credit BG. View looking southwest at Test Stand "D" complex. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. View looking southwest at Test Stand "D" complex. In the background at left is the Steam Generator Plant 4280/E-81 built in 1972 to house four gas-fired Clayton flash boilers. The boilers were later supplemented by the electrically heated steam accumulator (sphere) to supply steam to the various ejectors at Test Stand "D" vacuum test cells - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  18. 1. Credit BG. View looking southeast down onto roof and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Credit BG. View looking southeast down onto roof and the north and west facades of Steam Generator Plant, Building 4280/E-81. Vents on roof were from gas-fired steam generators. Pipes emerging from north facade are for steam. Elevated narrow tray is for electrical cables. To lower left of image (immediate north of 4280/E-81) is concrete-lined pond originally built to neutralize rocket engine exhaust compounds; it was only used as a cooling pond. To the lower right of this image are concrete pads which held two 7,500 gallon feedwater tanks for the boilers in 4280/E-81; these tanks were transferred to another federal space science organization and removed from the JPL compound in 1994. Beyond 4280/E-81 to the upper left is a reclamation pond. ... - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA

  19. Technical Feasible Study for Future Solar Thermal Steam Power Station in Malaysia

    NASA Astrophysics Data System (ADS)

    Bohari, Z. H.; Atira, N. N.; Jali, M. H.; Sulaima, M. F.; Izzuddin, T. A.; Baharom, M. F.

    2017-10-01

    This paper proposed renewable energy which is potential to be used in Malaysia in generating electricity to innovate and improve current operating systems. Thermal and water act as the resources to replace limited fossil fuels such as coal which is still widely used in energy production nowadays. Thermal is also known as the heat energy while the water absorbs energy from the thermal to produce steam energy. By combining both of the sources, it is known as thermal steam renewable energy. The targeted area to build this power station has constant high temperature and low humidity which can maximize the efficiency of generating power.

  20. Study of advanced radial outflow turbine for solar steam Rankine engines

    NASA Technical Reports Server (NTRS)

    Martin, C.; Kolenc, T.

    1979-01-01

    The performance characteristics of various steam Rankine engine configurations for solar electric power generation were investigated. A radial outflow steam turbine was investigated to determine: (1) a method for predicting performance from experimental data; (2) the flexibility of a single design with regard to power output and pressure ratio; and (3) the effect of varying the number of turbine stages. All turbine designs were restricted to be compatible with commercially available gearboxes and generators. A study of several operating methods and control schemes for the steam Rankine engine shows that from an efficiency and control simplicity standpoint, the best approach is to hold turbine inlet temperature constant, vary turbine inlet pressure to match load, and allow condenser temperature to float maintaining constant heat rejection load.

  1. System and method for coproduction of activated carbon and steam/electricity

    DOEpatents

    Srinivasachar, Srivats [Sturbridge, MA; Benson, Steven [Grand Forks, ND; Crocker, Charlene [Newfolden, MN; Mackenzie, Jill [Carmel, IN

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  2. Investigation of the possibility of using residual heat reactor energy

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Yurin, V. E.; Bessonov, V. N.

    2017-11-01

    The largest contribution to the probable frequency of core damage is blackout events. The main component of the heat capacity at each reactor within a few minutes following a blackout is the heat resulting from the braking of beta-particles and the transfer of gamma-ray energy by the fission fragments and their decay products, which is known as the residual heat. The power of the residual heat changes gradually over a long period of time and for a VVER-1000 reactor is about 15-20 MW of thermal power over 72 hours. Current cooldown systems increase the cost of the basic nuclear power plants (NPP) funds without changing the amount of electricity generated. Such systems remain on standby, accelerating the aging of the equipment and accordingly reducing its reliability. The probability of system failure increases with the duration of idle time. Furthermore, the reactor residual heat energy is not used. A proposed system for cooling nuclear power plants involves the use of residual thermal power to supply the station’s own needs in emergency situations accompanied by a complete blackout. The thermal power of residual heat can be converted to electrical energy through an additional low power steam turbine. In normal mode, the additional steam turbine generates electricity, which makes it possible to ensure spare NPP and a return on the investment in the reservation system. In this work, experimental data obtained from a Balakovo NPP was analyzed to determine the admissibility of cooldown of the reactors through the 2nd circuit over a long time period, while maintaining high-level parameters for the steam generated by the steam generators.

  3. 78 FR 14358 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... violations related to a tire-burning electric generating plant in Ford Heights, Illinois (the ``Facility..., including: (1) The New Source Performance Standards for Industrial Steam Generating Units; (2) the Illinois...

  4. 76 FR 23768 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ...-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial... copy form. The hearing schedules, including lists of speakers, will be posted on EPA's Web Sites http...

  5. 40 CFR 63.10009 - May I use emissions averaging to comply with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Fired Electric Utility Steam Generating Units Testing and Initial Compliance Requirements § 63.10009 May... TBtu, as appropriate for the pollutant) or gross electrical output basis (MWh or GWh, as appropriate... lb/gross electrical output, Hermi = Hourly emissions rate (e.g., lb/MMBtu, lb/MWh) from CEMS or...

  6. CAES (conventional compressed-air energy storage) plant with steam generation: Preliminary design and cost analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhamkin, M.; Swensen, E.C.; Abitante, P.A.

    1990-10-01

    A study was performed to evaluate the performance and cost characteristics of two alternative CAES-plant concepts which utilize the low-pressure expander's exhaust-gas heat for the generation of steam in a heat recovery steam generator (HRSG). Both concepts result in increased net-power generation relative to a conventional CAES plant with a recuperator. The HRSG-generated steam produces additional power in either a separate steam-turbine bottoming cycle (CAESCC) or by direct injection into and expansion through the CAES-turboexpander train (CAESSI). The HRSG, which is a proven component of combined-cycle and cogeneration plants, replaces the recuperator of a conventional CAES plant, which has demonstratedmore » the potential for engineering and operating related problems and higher costs than were originally estimated. To enhance the credibility of the results, the analyses performed were based on the performance, operational and cost data of the 110-MW CAES plant currently under construction for the Alabama Electric Cooperative (AEC). The results indicate that CAESCC- and CAESSI-plant concepts are attractive alternatives to the conventional CAES plant with recuperator, providing greater power generation, up to 44-MW relative to the AEC CAES plant, with competitive operating and capital costs. 5 refs., 43 figs., 26 tabs.« less

  7. TECHNICAL SUPPORT DOCUMENT: NATIONAL-SCALE MERCURY RISK ASSESSMENT SUPPORTING THE APPROPRIATE AND NECESSARY FINDING FOR COAL- AND OIL-FIRED ELECTRIC GENERATING UNITS

    EPA Science Inventory

    The EPA has completed a national-scale risk assessment for mercury to inform the appropriate and necessary determination for electric utility steam generating unites in the United States (U.S. EGU's), persuant to Section 112(n)(1)(A) of the Clean Air Act. This document describes...

  8. Results of Steam-Water-Oxygen Treatment of the Inside of Heating Surfaces in Heat-Recovery Steam Generators of the PGU-800 Power Unit at the Perm' District Thermal Power Station

    NASA Astrophysics Data System (ADS)

    Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.

    2018-05-01

    Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.

  9. A 15 kWe (nominal) solar thermal-electric power conversion concept definition study: Steam Rankin reciprocator system

    NASA Technical Reports Server (NTRS)

    Wingenback, W.; Carter, J., Jr.

    1979-01-01

    A conceptual design of a 3600 rpm reciprocation expander was developed for maximum thermal input power of 80 kW. The conceptual design covered two engine configurations; a single cylinder design for simple cycle operation and a two cylinder design for reheat cycle operation. The reheat expander contains a high pressure cylinder and a low pressure cylinder with steam being reheated to the initial inlet temperature after expansion in the high pressure cylinder. Power generation is accomplished with a three-phase induction motor coupled directly to the expander and connected electrically to the public utility power grid. The expander, generator, water pump and control system weigh 297 kg and are dish mounted. The steam condenser, water tank and accessory pumps are ground based. Maximum heat engine efficiency is 33 percent: maximum power conversion efficiency is 30 percent. Total cost is $3,307 or $138 per kW of maximum output power.

  10. Drought and the water-energy nexus in Texas

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Duncan, Ian; Reedy, Robert C.

    2013-12-01

    Texas experienced the most extreme drought on record in 2011 with up to 100 days of triple digit temperatures resulting in record electricity demand and historically low reservoir levels. We quantified water and electricity demand and supply for each power plant during the drought relative to 2010 (baseline). Drought raised electricity demands/generation by 6%, increasing water demands/consumption for electricity by 9%. Reductions in monitored reservoir storage <50% of capacity in 2011 would suggest drought vulnerability, but data show that the power plants were flexible enough at the plant level to adapt by switching to less water-intensive technologies. Natural gas, now ˜50% of power generation in Texas, enhances drought resilience by increasing the flexibility of power plant generators, including gas combustion turbines to complement increasing wind generation and combined cycle generators with ˜30% of cooling water requirements of traditional steam turbine plants. These reductions in water use are projected to continue to 2030 with increased use of natural gas and renewables. Although water use for gas production is controversial, these data show that water saved by using natural gas combined cycle plants relative to coal steam turbine plants is 25-50 times greater than the amount of water used in hydraulic fracturing to extract the gas.

  11. 49. Photocopy of scale drawing (from Station 'L' office files, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Photocopy of scale drawing (from Station 'L' office files, Portland, Oregon) Portland General Electric in house drawings, 1930 FLOW DIAGRAM OF THE STEAM GENERATION PROCESS AT STATION 'L' - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  12. CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT

    EPA Science Inventory

    The report provides additional information on mercury (Hg) emissions control following the release of "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress" in February 1998. Chapters 1-3 describe EPA's December 2000 de...

  13. Ocean thermal gradient as a generator of electricity. OTEC power plant

    NASA Astrophysics Data System (ADS)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  14. District heating and cooling systems for communities through power plant retrofit distribution network. Volume 3. Final report, September 1, 1978-May 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This final report of Phase I of the study presents Task 4, Technical Review and Assessment. The most-promising district-heating concept identified in the Phase I study for the Public Service Electric and Gas Company, Newark, New Jersey, is a hot-water system in which steam is extracted from an existing turbine and used to drive a new, small backpressure turbine-generator. The backpressure turbine provides heat for district heating and simultaneously provides additional electric-generating capacity to partially offset the capacity lost due to the steam extraction. This approach is the most-economical way to retrofit the stations studied for district heating while minimizingmore » electric-capacity loss. Nine fossil-fuel-fired stations within the PSE and G system were evaluated for possibly supplying heat for district heating and cooling in cogeneration operations, but only three were selected to supply the district-heating steam. They are Essex, Hudson, and Bergen. Plant retrofit, thermal distribution schemes, consumer-conversion scheme, and consumer-metering system are discussed. Extensive technical information is provided in 16 appendices, additional tables, figures, and drawings. (MCW)« less

  15. The Environmental Assessment and Management (TEAM) Guide: Colorado Supplement

    DTIC Science & Technology

    2010-03-01

    toluene, elthylbenzene, xylene CAR control area responsible party CAS Chemical Abstract Service CEM continuous emission monitoring CERCLA...for electric utility steam generators for which construction is commenced after 18 September 1978 (40 CFR 60, Subpart Da, effective 16 September 1998...except for certain electric generating stations owned and operated by the Public Service Company of Colorado.) Verify that the averaging time for all

  16. 77 FR 40647 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... operation of the shared unit's diesel generator (emergency power) and to assure long term operation of the... actuation system limiting safety system settings, and emergency diesel generator surveillance start voltage... specification for the Vogtle Electric Generating Plant, Units 1 and 2, associated with the ``Steam Generator (SG...

  17. Micro-Cogeneration Incl. The Conversion of Chemical Energy of Biomass to Electric Energy and the Low Potential Heat

    NASA Astrophysics Data System (ADS)

    Huzvar, Jozef; Kapjor, Andrej

    2011-06-01

    This article deals with combined production of heat and electricity for small premises, such as households, where energy consumption is around few kilowatts. This proposal of micro co-generation unit uses as a heat source an automatic burner for combustion of wood pellets. Construction of an equipment for the heat transport can be designed using different basic ways of heat transfer. Electricity is produced by the two-stroke steam engine and the generator.

  18. Rapid Generation of Superheated Steam Using a Water-containing Porous Material

    NASA Astrophysics Data System (ADS)

    Mori, Shoji; Okuyama, Kunito

    Heat treatment by superheated steam has been utilized in several industrial fields including sterilization, desiccation, and cooking. In particular, cooking by superheated steam is receiving increased attention because it has advantages of reducing the salt and fat contents in foods as well as suppressing the oxidation of vitamin C and fat. In this application, quick startup and cut-off responses are required. Most electrically energized steam generators require a relatively long time to generate superheated steam due to the large heat capacities of the water in container and of the heater. Zhao and Liao (2002) introduced a novel process for rapid vaporization of subcooled liquid, in which a low-thermal-conductivity porous wick containing water is heated by a downward-facing grooved heating block in contact with the upper surface of the wick structure. They showed that saturated steam is generated within approximately 30 seconds from room-temperature water at a heat flux 41.2 kW⁄m2. In order to quickly generate superheated steam of approximately 300°C, which is required for cooking, the heat capacity of the heater should be as small as possible and the imposed heat flux should be so high enough that the porous wick is able to dry out in the vicinity of the contact with the heater and that the resulting heater temperature becomes much higher than the saturation temperature. The present paper proposes a simple structured generator to quickly produce superheated steam. Only a fine wire heater is contacted spirally on the inside wall in a hollow porous material. The start-up, cut-off responses and the rate of energy conversion for input power are investigated experimentally. Superheated steam of 300°C is produced in approximately 19 seconds from room-temperature water for an input power of 300 W. The maximum rate of energy conversion in the steady state is approximately 0.9.

  19. 75 FR 80545 - Carolina Power & Light Company; H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ....B. Robinson Steam Electric Plant, Unit No. 2; Environmental Assessment and Finding of No Significant...), for operation of the H. B. Robinson Steam Electric Plant, Unit 2 (HBRSEP), located in Darlington... ``Generic Environmental Impact Statement for License Renewal of Nuclear Plants: H.B. Robinson Steam Electric...

  20. Steam generator feedwater nozzle transition piece replacement experience at Salem Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patten, D.B.; Perrin, J.S.; Roberts, A.T.

    Cracking of steam generator feedwater piping adjacent to the feedwater nozzles has been a recurring problem since 1979 at Salem Unit 1 owned and operated by Public Service Electric and Gas Company. In addition to the cracking problem, erosion-corrosion at the leading edge of the feedwater nozzle thermal sleeve was also observed in 1992. To provide a long-term solution for the pipe cracking and thermal sleeve erosion-corrosion problems, a unique transition piece forging was specially designed, fabricated, and installed for each of the four steam generators during the 1995 outage. This paper discusses the design, fabrication, and installation of themore » transition piece forgings at Salem Unit 1, and the experiences gained from this project. It is believed that these experiences may help other utilities when planning similar replacements in the future.« less

  1. 40 CFR 62.4681 - Effective date.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...

  2. 40 CFR 62.4681 - Effective date.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...

  3. 40 CFR 62.4681 - Effective date.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...

  4. 40 CFR 62.4681 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...

  5. 40 CFR 62.4681 - Effective date.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...

  6. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 3: Experimental System Descriptions. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The design and development of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system consists of five subsystems: the collector, power conversion, energy transport, energy storage, and the plant control subsystem. The collector subsystem consists of concentrator, receiver, and tower assemblies. The energy transport subsystem uses a mixture of salts with a low melting temperature to transport thermal energy. A steam generator drives a steam Rankine cycle turbine which drives an electrical generator to produce electricity. Thermal and stress analysis tests are performed on each subsystem in order to determine the operational reliability, the minimum risk of failure, and the maintenance and repair characteristics.

  7. 78 FR 34639 - Supplemental Final Environmental Impact Statement for the Restart of Healy Power Plant Unit #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Unit 2 of the Healy Power Plant to demonstrate emissions control technologies. In 1994, the DOE... Electric Association (GVEA) since 1967. Healy Unit 2 is a 50 MW coal-fired steam generator owned by AIDEA... RUS. The RUS Electric Program is authorized to make loans and loan guarantees that finance electric...

  8. 75 FR 8410 - Carolina Power & Light Company: H. B. Robinson Steam Electric Plant, Unit No. 2; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    .... B. Robinson Steam Electric Plant, Unit No. 2; Environmental Assessment and Finding of No Significant...), for operation of the H. B. Robinson Steam Electric Plant, Unit No. 2 (HBRSEP), located in Darlington... Statement for License Renewal of Nuclear Plants: H.B. Robinson Steam Electric Plant, Unit 2--Final Report...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carney, M.V.

    The Logan Generating Plant is a $500 million, 202-megawatt (MW), pulverized-coal cogeneration facility. Its electricity output - enough for 270,000 homes - is sold to Atlantic Electric. It also supplies all of the steam (up to 50,000 pounds per hour) to a nearby Monsanto facility. The plant went into commercial service in September 1994. Currently, the facility employs 62 people. In addition to becoming an active, long-term employer in Logan Township, the plant will help stimulate the local economy for years to come as a consumer of goods and services. In addition, local and state revenues from the Logan plantmore » provide a much needed economic boost. Cogeneration, which is the production of electric power and thermal energy (heat) from a single energy source, provides efficiency benefits in fuel consumption, capital investment and operating costs. Electricity and process steam from the Logan plant helps Monsanto control its energy costs, thus helping it remain competitive. The Logan Generating Plant plays an important role in the economic development of southern New Jersey by providing clean, dependable and competitively priced electricity to Atlantic Electric for resale to its utility customers. The environmental and economic benefits of the facility are discussed.« less

  10. Diesels in combined cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuehn, S.E.

    1995-03-01

    This article examines why the diesel engine is a very attractive choice for producing power in the combined-cycle configuration. The medium-speed diesel is already one of the most efficient simple cycle sources of electricity, especially with lower grade fuels. Large units have heat-rate efficiencies as high as 45%, equating to a heat rate of 7,580 Btu/k Whr, and no other power production prime mover can match this efficiency. Diesels also offer designers fuel flexibility and can burn an extreme variety of fuels without sacrificing many of its positive operating attributes. Diesels are the first building block in a highly efficientmore » combined cycle system that relies on the hot gas and oxygen in the diesel`s exhaust to combust either natural gas, light distillate oil, heavy oil or coal, in a boiler. By using a fired boiler, steam can be generated at sufficient temperature and pressure to operate a Rankine steam cycle efficiently. Diesel combined-cycle plants can be configured in much the same way a gas turbine plant would be. However, the diesel combined-cycle scheme requires supplemental firing to generate appropriate steam conditions. The most efficient cycle, therefore, would not be achieved until combustion air and supplemental fuel are minimized to levels that satisfy steam conditions, steam generation and power generation constraints.« less

  11. Dual roles of infrared imaging on a university campus: serving the physical plant while enhancing a technology-based curriculum

    NASA Astrophysics Data System (ADS)

    Miles, Jonathan J.

    2001-03-01

    The campus of a comprehensive, residential university is in many respects a small city unto itself. All the amenities and services one would expect in a typical community are readily available on a college campus, including residences, athletic and dining facilities, libraries, and stores. A large campus, therefore, requires a reliable energy plant to provide steam, hot water, chilled water, and electricity. James Madison University supports two power plants: a vintage steam plant and a modern resource recovery facility comprising two solid-waste incinerators and two gas-fired units for steam generation, three steam-driven absorption- chilling units, and a single steam-driven generator for peak electricity production. Infrared imaging, as a teaching tool, was introduced in the Program of Integrated Science and Technology at James Madison University in 1997. The Infrared Development and Thermal Testing Laboratory was established at the university later in 1997 with government and industry support, and it is presently equipped with infrared imagers and scanners, single-point detectors, and data-acquisition systems. A study was conducted between 1998 and 1999 to test the economic feasibility of implementing an IR-based predictive maintenance program in the university steam plant. This paper describes the opportunities created at James Madison University to develop IR-based predictive maintenance programs that enhance the operation of the university energy plants; to establish IR-related research and development activities that support government and industry activities; and to enhance a science- and technology-based curriculum by way of unique, IR-based laboratory experiences and demonstrations.

  12. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...

  13. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...

  14. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...

  15. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...

  16. 46 CFR 35.35-45 - Auxiliary steam, air, or electric current-B/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Auxiliary steam, air, or electric current-B/ALL. 35.35... Cargo Handling § 35.35-45 Auxiliary steam, air, or electric current—B/ALL. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, or electric current for pumps on barges...

  17. 40 CFR 60.4151 - Establishment of accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4151 Establishment of... obligation to review or evaluate the sufficiency of such documents, if submitted. (2) Authorization of Hg...

  18. The international water conference proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guseman, J.R.

    1984-10-01

    This book provides information on computer applications to water chemistry control, groundwater, membrane technology, instrumentation/analytical techniques and ion exchange. Other topics of discussion include cooling water, biocontrol, the hydraulic properties of ion exchange resins, steam electric power plant aqueous discharges and colorimetric determination of trace benzotriazole or tolytriazole. Water chemistry guidelines for large steam generating power plants is discussed, as well as wastewater treatment, boiler water conditioning and ion exchange/computer related topics.

  19. Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)

    NASA Astrophysics Data System (ADS)

    Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.

    2018-04-01

    The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.

  20. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R

    2014-01-01

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electricmore » arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies plannedmore » or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.« less

  2. 40 CFR 60.4154 - Compliance with Hg budget emissions limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4154 Compliance.... (f) Administrator's action on submissions. (1) The Administrator may review and conduct independent...

  3. 40 CFR 60.4154 - Compliance with Hg budget emissions limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4154 Compliance.... (f) Administrator's action on submissions. (1) The Administrator may review and conduct independent...

  4. 78 FR 38001 - Reconsideration of Certain Startup/Shutdown Issues: National Emission Standards for Hazardous Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial- Commercial-Institutional, and... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility.... Electronic files should avoid the use of special characters, any form of encryption, and be free of any...

  5. Congeneration feasibility: Otis Elavator Company and Polychrome Corporation

    NASA Astrophysics Data System (ADS)

    Fox, H.

    1982-05-01

    An investigation of the technical and economic feasibility of cogenerating electric and thermal power at two manufacturing plants (Otis Elevator Company and Polychrome Corporation) located on neighboring properties in Yonkers, NY is discussed. Existing electrical and steam producing equipment and energy consumption date are summarized. Alternative cases examined include electrical energy generation, electrical energy generation with waste heat recovery and a combined cycle case. Also reported are life cycle cost economic evaluations including simple payback period and return on investment indices. While it was concluded that cogeneration of heat and electricity at these industrial plant sites would not be economically viable, this detailed study provides valuable insights.

  6. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  7. A consortium of three brings real geothermal power for California's Imperial valley -- at last

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehlage, E.F.

    1983-04-01

    Imperial Valley's geothermal history gets a whole new chapter with dedication ceremony for southern California's unusual 10,000 kilowatt power station-SCE in joint corporate venture with Southern Pacific and Union Oil. America's newest and unique electric power generation facility, The Salton Sea Geothermal-Electric Project, was the the site of a formal dedication ceremony while the sleek and stainless jacketed piping and machinery were displayed against a flawlessly brilliant January sky - blue and flecked with a few whisps of high white clouds, while plumes of geothermal steam rose across the desert. The occasion was the January 19, 1983, ceremonial dedication ofmore » the unique U.S.A. power generation facility constructed by an energy consortium under private enterprise, to make and deliver electricity, using geothermal steam released (with special cleaning and treatment) from magma-heated fluids produced at depths of 3,000 to 6,000 feet beneath the floor of the Imperial Valley near Niland and Brawley, California.« less

  8. 40 CFR 60.4113 - Certificate of representation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Coal-Fired Electric Steam Generating Units Hg Designated Representative for Hg Budget Sources § 60.4113... authority nor the Administrator shall be under any obligation to review or evaluate the sufficiency of such...

  9. 40 CFR 60.4106 - Standard requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electric Steam Generating Units Hg Budget Trading Program General Provisions § 60.4106 Standard... necessary in order to review a Hg Budget permit application and issue or deny a Hg Budget permit. (2) The...

  10. 40 CFR 60.4113 - Certificate of representation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Coal-Fired Electric Steam Generating Units Hg Designated Representative for Hg Budget Sources § 60.4113... authority nor the Administrator shall be under any obligation to review or evaluate the sufficiency of such...

  11. 40 CFR 60.4106 - Standard requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Electric Steam Generating Units Hg Budget Trading Program General Provisions § 60.4106 Standard... necessary in order to review a Hg Budget permit application and issue or deny a Hg Budget permit. (2) The...

  12. 40 CFR 60.4152 - Responsibilities of Hg authorized account representative.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60... Allowance Tracking System account, all submissions to the Administrator pertaining to the account, including...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenkranz, Joshua-Benedict; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias

    Solar power generation, unlike conventional forms of electricity generation, has higher variability and uncertainty in its output because solar plant output is strongly impacted by weather. As the penetration rate of solar capacity increases, grid operators are increasingly concerned about accommodating the increased variability and uncertainty that solar power provides. This paper illustrates the impacts of increasing solar power penetration on the ramping of conventional electricity generators by simulating the operation of the Independent System Operator -- New England power system. A production cost model was used to simulate the power system under five different scenarios, one without solar powermore » and four with increasing solar power penetrations up to 18%, in terms of annual energy. The impact of solar power is analyzed on six different temporal intervals, including hourly and multi-hourly (2- to 6-hour) ramping. The results show how the integration of solar power increases the 1- to 6-hour ramping events of the net load (electric load minus solar power). The study also analyzes the impact of solar power on the distribution of multi-hourly ramping events of fossil-fueled generators and shows increasing 1- to 6-hour ramping events for all different generators. Generators with higher ramp rates such as gas and oil turbine and internal combustion engine generators increased their ramping events by 200% to 280%. For other generator types--including gas combined-cycle generators, coal steam turbine generators, and gas and oil steam turbine generators--more and higher ramping events occurred as well for higher solar power penetration levels.« less

  14. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.

  15. Feasibility of a small central cogenerated energy facility: Energy management memorandum

    NASA Astrophysics Data System (ADS)

    Porter, R. N.

    1982-10-01

    The thermal economic feasibility of a small cogenerated energy facility designed to serve several industries in the Stockyards area was investigated. Cogeneration options included two dual fuel diesels and two gas turbines, all with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired boiler cases, also low sulphur coal and municipal refuse. For coal and refuse, the option of steam only without cogeneration was also assessed. The fired boiler cogeneration systems employed back pressure steam turbines. The refuse fired cases utilized electrical capacities, 8500 to 52,400 lbm/hr and 0 to 9.9 MW (e), respectively. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which was displaced was sold to Commonwealth Edison Company under PURPA (Public Utility Regulatory Policies Act). The facility was operated by a mutually owned corporation formed by the cogenerated power users.

  16. 40 CFR 60.4157 - Closing of general accounts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4157 Closing of general... Tracking System accounts. (b) If a general account has no allowance transfers in or out of the account for...

  17. Industrial Energy in Transition: A Petrochemical Perspective

    ERIC Educational Resources Information Center

    Wishart, Ronald S.

    1978-01-01

    An industrial development involves the conversion of biomass, through fermentation, to useful chemical products and the gasification of municiple wastes to produce steam for electricity generation. These gases may also serve as chemical feedstocks. (Author/MA)

  18. The development of a control system for a small high speed steam microturbine generator system

    NASA Astrophysics Data System (ADS)

    Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.

    2015-08-01

    Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.

  19. Westinghouse to launch coal gasifier with combined cycle unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavsky, R.M.; Margaritis, P.J.

    1980-03-01

    Following an extensive test program with a prototype coal gasifier, Westinghouse Electric Corp. is now offering an integrated gasifier/combined-cycle unit as a feasible alternative for generating power from coal in an efficient, clean manner. The Westinghouse gasification process uses a single-stage pressurized fluidized-bed reactor, followed by heat recovery, gas cleaning, sulfur and amonia removal and recovery, and gas reheat. The system produces a fuel gas free of sulfur and other contaminants from crushed run-of-mine coals of varying reactivities and caking properties. The by-products include ammonia and sulfur and an agglomerated ash residue that serves as an acceptable landfill. Air formore » the gasifier is bled from the gas-turbine air compressor and further pressurized with a booster compressor. The hot exhaust gases from the gas turbine pass through a heat-recovery steam generator that produces sufficient steam to drive a turbine providing about 40% of the total electricity generated in the plant.« less

  20. Combined installation of electric and heat supply for climatic conditions of Iraq

    NASA Astrophysics Data System (ADS)

    Kaisi, Osama Al; Sidenkov, D. V.

    2017-11-01

    Electricity, heating and cooling are the three main components that make up the energy consumption base in residential, commercial and public buildings around the world. Demand for energy and fuel costs are constantly growing. Combined cooling, heating and power generation or trigeneration can be a promising solution to such a problem, providing an efficient, reliable, flexible, competitive and less harmful alternative to existing heat and cold supply systems. In this paper, scheme of the tri-generation plant on non-aqueous working substances is considered as an installation of a locally centralized electro-heat and cold supply of a typical residential house in a hot climate. The scheme of the combined installation of electro-heat (cold) supply consisted of the vapor power plant and heat pump system on low-boiling working substance for local consumers under the climatic conditions of Iraq is presented. The possibility of using different working substances in the thermodynamic cycles of these units, which will provide better efficiency of such tri-generation systems is shown. The calculations of steam turbine cycles and heat pump part on the selected working substances are conducted. It is proposed to use heat exchangers of plate type as the main exchangers in the combined processing. The developed method of thermal-hydraulic calculation of heat exchangers implemented in MathCad, which allows to evaluate the efficiency of plants of this type using the ε - NTU method. For the selected working substances of the steam part the optimal temperature of heat supply to the steam generator is determined. The results of thermodynamic and technical-economic analysis of the application of various working substances in the “organic” Rankine cycle of the steam turbine unit and the heat pump system of the heat and cold supply system are presented.

  1. Engineering and economic analysis for the utilization of geothermal fluids in a cane sugar processing plant. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humme, J.T.; Tanaka, M.T.; Yokota, M.H.

    1979-07-01

    The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from themore » binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.« less

  2. Small Modular Reactors: The Army’s Secure Source of Energy?

    DTIC Science & Technology

    2012-03-21

    significant advantages of SMRs is the minimal amount of carbon dioxide (greenhouse gases) that is released in conjunction with the lifecycle operations...moderator in these reactors as well as the cooling agent and the means by which heat is removed to produce steam for turning the turbines of the...separate water system to generate steam to turn a turbine which then produces electricity. In the second type of light water reactors, the boiling water

  3. Methods to Develop Inhalation Cancer Risk Estimates for Chromium and Nickel Compounds

    EPA Science Inventory

    This document summarizes the approaches and rationale for the technical and scientific considerations used to derive inhalation cancer risks for emissions of chromium and nickel compounds from electric utility steam generating units.

  4. 40 CFR 60.4171 - Initial certification and recertification procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Compliance Times for Coal-Fired Electric Steam Generating Units Monitoring and Reporting § 60.4171... disapproval under paragraph (c)(3)(iv)(C) of this section. The 120-day review period shall not begin before...

  5. 40 CFR 60.4171 - Initial certification and recertification procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Compliance Times for Coal-Fired Electric Steam Generating Units Monitoring and Reporting § 60.4171... disapproval under paragraph (c)(3)(iv)(C) of this section. The 120-day review period shall not begin before...

  6. MERCURY SPECIATION AND CAPTURE

    EPA Science Inventory

    In December 2000, the U.S. Environmental Protection Agency (USEPA) announced its intent to regulate mercury emissions from coal-fired electric utility steam generating plants. Maximum achievable control technology (MACT) requirements are to be proposed by December 2003 and finali...

  7. Combined Heat and Power

    EPA Pesticide Factsheets

    CHP is on-site electricity generation that captures the heat that would otherwise be wasted to provide useful thermal energy such as steam or hot water than can be used for space heating, cooling, domestic hot water and industrial processes.

  8. Economic modeling and energy policy planning. [technology transfer, market research

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Schwartz, A., Jr.; Lievano, R. J.; Stone, J. C.

    1974-01-01

    A structural economic model is presented for estimating the demand functions for natural gas and crude oil in industry and in steam electric power generation. Extensions of the model to other commodities are indicated.

  9. Thermo-economic comparative analysis of gas turbine GT10 integrated with air and steam bottoming cycle

    NASA Astrophysics Data System (ADS)

    Czaja, Daniel; Chmielnak, Tadeusz; Lepszy, Sebastian

    2014-12-01

    A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10

  10. Layouts of trigeneration plants for centralized power supply

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Il'ina, I. P.; Rozhnatovskii, V. D.; Burmakina, A. V.

    2016-06-01

    One of the possible and, under certain conditions, sufficiently effective methods for reducing consumption of fuel and energy resources is the development of plants for combined generation of different kinds of energy. In the power industry of Russia, the facilities have become widespread in which the cogeneration technology, i.e., simultaneous generation of electric energy and heat, is implemented. Such facilities can use different plants, viz., gas- and steam-turbine plants and gas-reciprocating units. Cogeneration power supply can be further developed by simultaneously supplying the users not only with electricity and heat but also with cold. Such a technology is referred to as trigeneration. To produce electricity and heat, trigeneration plants can use the same facilities that are used in cogeneration, namely, gas-turbine plants, steam-turbine plants, and gas-reciprocating units. Cold can be produced in trigeneration plants using thermotransformers of various kinds, such as vaporcompression thermotransformers, air thermotransformers, and absorption thermotransformers, that operate as chilling machines. The thermotransformers can also be used in the trigeneration plants to generate heat. The main advantage of trigeneration plants based on gas-turbine plants or gas-reciprocating units over cogeneration plants is the increased thermodynamic power supply efficiency owing to utilization of the waste-gas heat not only in winter but also in summer. In the steam-turbine-based trigeneration plants equipped with absorption thermotransformers, the enhancement of the thermodynamic power supply efficiency is determined by the increase in the heat extraction load during the nonheating season. The article presents calculated results that demonstrate higher thermodynamic efficiency of a gas-turbine-based plant with an absorption thermotransformer that operates in the trigeneration mode compared with a cogeneration gas-turbine plant. The structural arrangements of trigeneration plants designed to supply electricity, heat, and cold to the users are shown and the principles of their operation are described. The article presents results of qualitative analysis of different engineering solutions applied to select one combination of power- and heat-generating equipment and thermotransformers or another.

  11. The effectiveness of using the combined-cycle technology in a nuclear power plant unit equipped with an SVBR-100 reactor

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Dudolin, A. A.; Gospodchenkov, I. V.

    2015-05-01

    The design of a modular SVBR-100 reactor with a lead-bismuth alloy liquid-metal coolant is described. The basic thermal circuit of a power unit built around the SVBR-100 reactor is presented together with the results of its calculation. The gross electrical efficiency of the turbine unit driven by saturated steam at a pressure of 6.7 MPa is estimated at η{el/gr} = 35.5%. Ways for improving the efficiency of this power unit and increasing its power output by applying gas-turbine and combined-cycle technologies are considered. With implementing a combined-cycle power-generating system comprising two GE-6101FA gas-turbine units with a total capacity of 140 MW, it becomes possible to obtain the efficiency of the combined-cycle plant equipped with the SVBR-100 reactor η{el/gr} = 45.39% and its electrical power output equal to 328 MW. The heat-recovery boiler used as part of this power installation generates superheated steam with a temperature of 560°C, due to which there is no need to use a moisture separator/steam reheater in the turbine unit thermal circuit.

  12. Wired for success: A history of the Butte, Anaconda & Pacific Railway, 1892--1985

    NASA Astrophysics Data System (ADS)

    Mutschler, Charles Vincent

    The Butte, Anaconda & Pacific Railway (BA&P) was a standard gauge common carrier short line railroad within the state of Montana. A subsidiary of the Anaconda Copper Mining Company, the BA&P was built to carry ore from mines at Butte, Montana to Anaconda, twenty-six miles away, for concentrating and smelting. Other freight and passenger business was of secondary importance. In 1912, when General Electric contracted to convert the BA&P from steam to electric operation, the short line became a proving ground for main line railroad electrification, and the center of attention from advocates for electric power. Electric operation was demonstrated to be mechanically superior to the use of steam locomotives on the BA&P. Immediately after the BA&P proved the technological feasibility of high voltage direct current for moving heavy freight trains, the Chicago Milwaukee & St. Paul (CM&St.P) electrified over 600 miles of transcontinental main line using the basic technology demonstrated on the BA&P. However, on long distances of track with relatively few trains such as the CM&St.P, the capital cost of the electric distribution system exceeded the operational savings obtained by use of electric locomotives. Steam locomotives remained the primary form of railroad motive power in the United States until the 1950's, when the diesel-electric locomotive combined the mechanical efficiency of electric motors with an on-board diesel generating plant, eliminating the need for expensive electric power supply and distribution wires of conventional electrics. The BA&P purchased three diesels in the early 1950's, but relied primarily on its electric locomotives until 1967, when diesel operation became less costly than continued use of electric motive power. The BA&P offers a microcosmic view of the transformation of one industry in response to technological and economic forces as the United States moved from reliance on coal-burning steam power to electric power and internal combustion. The differing equipment needs of mining companies and railroad companies are also examined in the history of the BA&P.

  13. Atomic Energy Division plant capacity manual Savannah River Plant and Dana Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1960-05-01

    This report is a summary of plant service capacities at the Savannah River Plant and the Dana Plant. The report is divided into different areas of the plants, and includes information on services such as process steam, clarified water, deionized water, electric distribution systems, electric generating capacity, filtered water, process water, river water, well water, etc.

  14. Experience with 850-MW fossil-fired units in peaking service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, B.G.

    1978-01-01

    Experience with the peaking operation of two 850-MW gross generation units at the Martins Creek Steam Electric Station in Pennsylvania is described. The design, operation, and performance of these oil-fueled units are discussed. (LCL)

  15. Indirect-cycle FBR cooled by supercritical steam-concept and design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshiaki, Oka; Tatjana, Jevremovic; Sei-ichi, Koshizuka

    1993-01-01

    Neutronic and thermal-hydraulic design of an in direct-cycle supercritical steam-cooled fast breeder reactor (SCFBR-I) is carried out to find a way to make low-cost FBRs (Ref. 1). The advantages of supercritical steam cooling are high thermal efficiency, low pumping power, simplified system (no primary steam generators and no Loeffler boilers), and the use of experienced technology in fossil-fired power plants. The design goals are fissile fuel breeding (compound system doubling time below 30 yr), 1000-M(electric) class out-put, high fuel discharge burnup, and a long refueling period. The coolant void reactivity should be negative throughout fuel lifetime because the loss-of-coolant accidentmore » is the design-basis accident. These goals have never been satisfied simultaneously in previous SCFBRs.« less

  16. Features of steam turbine cooling by the example of an SKR-100 turbine for supercritical steam parameters

    NASA Astrophysics Data System (ADS)

    Arkadyev, B. A.

    2015-10-01

    Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.

  17. 75 FR 13798 - Entergy Operations, Inc.; Waterford Steam Electric Station, Unit 3 Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0110; 50-382] Entergy Operations, Inc.; Waterford Steam Electric Station, Unit 3 Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear... the Waterford Steam Electric Station, Unit 3 (Waterford 3), located in St. Charles Parish, Louisiana...

  18. Congeneration feasibility: Otis Elevator Company and Polychrome Corporation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, H.

    1982-05-01

    This report summarizes an investigation of the technical and economic feasibility of cogenerating electric and thermal power at two manufacturing plants (Otis Elevator Company and Polychrome Corporation) located on neighboring properties in Yonkers, NY. Existing electrical- and steam-producing equipment and energy consumption date are summarized. Alternative cases examined include electrical energy generation, electrical energy generation with waste heat recovery and a combined cycle case. Also reported are life cycle cost economic evaluations including simple payback period and return-on-investment indices. While it was concluded that cogeneration of heat and electricity at these industrial plant sites would not be economically viable, thismore » detailed study provides valuable insight into the types of problems encountered when considering cogeneration feasibility.« less

  19. 76 FR 66333 - Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ..., and hydrogen generation after a postulated loss-of-coolant accident. Therefore, both of these... quality. There are no impacts to historical and cultural resources. In addition, there are also no known...

  20. Bulalo field, Philippines: Reservoir modeling for prediction of limits to sustainable generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobel, Calvin J.

    1993-01-28

    The Bulalo geothermal field, located in Laguna province, Philippines, supplies 12% of the electricity on the island of Luzon. The first 110 MWe power plant was on line May 1979; current 330 MWe (gross) installed capacity was reached in 1984. Since then, the field has operated at an average plant factor of 76%. The National Power Corporation plans to add 40 MWe base load and 40 MWe standby in 1995. A numerical simulation model for the Bulalo field has been created that matches historic pressure changes, enthalpy and steam flash trends and cumulative steam production. Gravity modeling provided independent verificationmore » of mass balances and time rate of change of liquid desaturation in the rock matrix. Gravity modeling, in conjunction with reservoir simulation provides a means of predicting matrix dry out and the time to limiting conditions for sustainable levelized steam deliverability and power generation.« less

  1. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.

    PubMed

    Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang

    2015-01-01

    High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2.

  2. Downhole steam quality measurement

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  3. USSR Report, Engineering and Equipment, No. 98.

    DTIC Science & Technology

    1983-11-09

    Nonhomogeneous Cylinder During Convective Cooling (V. Ya. Belousov; PROBLEM PROCHNOSTI, No 5, May 83) 66 Deformation of Spherical Shells Under Wind...generator and turbine, condenser , deaerator, and tap-water or hot-water tank for heat storage. The electric power is regulated by varying the steam rate...indicators, relative to those of hybrid condensation - boiler atomic electric power plants already in existence, So far the VK-500 boiling^water

  4. Total cost of 46-Mw Borax cogen system put at $30M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Biasi, V.

    1983-03-01

    The cogeneration system, designed around a W-251B gas turbine power plant exhausting into a Deltak waste heat boiler to produce ''free'' process steam from the gas turbine exhaust, is discussed. The design includes water injection for NO/sub x/ control, self-cleaning inlet air filters, evaporative coolers, supercharger, and supplementary firing of the waste heat boiler. Once the system is operational Borax will be able to generate all of the electricity needed for on-site operations and a large share of process steam needs--plus still have 22-23 Mw surplus electric power to sell, so that the installation should pay for itself in lessmore » than 5 years of service.« less

  5. 40 CFR 60.14 - Modification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... physical change, or change in the method of operation, at an existing electric utility steam generating... projects that are awarded funding from the Department of Energy as permanent clean coal technology... installation, operation, cessation, or removal of a temporary clean coal technology demonstration project is...

  6. Performance calculations for 200-1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.

    1981-01-01

    The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.

  7. 75 FR 13322 - PPL Susquehanna, LLC.: Susquehanna Steam Electric Station, Units 1 and 2 Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ....: Susquehanna Steam Electric Station, Units 1 and 2 Environmental Assessment and Finding of No Significant... the licensee), for operation of the Susquehanna Steam Electric Station (SSES), Units 1 and 2..., support structures, water, or land at the SSES Units 1 and 2 site. The proposed action is in accordance...

  8. Feasibility study for biomass power plants in Thailand. Volume 1. Main report. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachoengsao, Suphan Buri, and Pichit in Thailand. The Main Report is divided into the following sections: (1.0) Executive Study; (2.0) Project Objectives; (3.0) Review of Combustion Technology for Biomass Fueled Steam Generator Units; (4.0) Conceptual Design; (5.0) Plant Descriptions; (6.0) Plant Operations Staffing; (7.0) Project Schedule; (8.0) Project Cost Estimate; (9.0) Financial Analysis; Appendix - Financial Analysis.

  9. IEA/SPS 500 kW distributed collector system

    NASA Technical Reports Server (NTRS)

    Neumann, T. W.; Hartman, C. D.

    1980-01-01

    Engineering studies for an International Energy Agency project for the design and construction of a 500 kW solar thermal electric power generation system of the distributed collector system (DCS) type are reviewed. The DCS system design consists of a mixed field of parabolic trough type solar collectors which are used to heat a thermal heat transfer oil. Heated oil is delivered to a thermocline storage tank from which heat is extracted and delivered to a boiler by a second heat transfer loop using the same heat transfer oil. Steam is generated in the boiler, expanded through a steam turbine, and recirculated through a condenser system cooled by a wet cooling tower.

  10. More on duel purpose solar-electric power plants

    NASA Astrophysics Data System (ADS)

    Hall, F. F.

    Rationale for such plants is reviewed and plant elements are listed. Dual purpose solar-electric plants would generate both electricity and hydrogen gas for conversion to ammonia or methanol or direct use as a fuel of unsurpassed specific power and cleanliness. By-product oxygen would also be sold to owners of hydrogen age equipment. Evolved gasses at high pressure could be fired in compressorless gas turbines, boilerless steam-turbines or fuel-cell-inverter hydrogen-electric power drives of high thermal efficiency as well as in conventional internal combustion engines.

  11. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.

    ABSTRACT Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electricity, heat, and cooling power to buildings and industrial processes directly onsite, while significantly increasing energy efficiency, security of energy supply, and grid independence. Fruit, vegetable, dairy and meat processing industries with simultaneous requirements for heat, steam, chilling and electricity, are well suited for the use of such systems to supply base-load electrical demand or as peak reducing generators with heat recovery in the forms of hot water, steam and/or chilled water. This paper documents results and analysis from a pilot project to evaluate opportunities formore » energy, emission, and cost for CCHP-DG and energy storage systems installed onsite at food processing facilities. It was found that a dairy processing plant purchasing 15,000 MWh of electricity will need to purchase 450 MWh with the integration of a 1.1 MW CCHP system. Here, the natural gas to be purchased increased from 190,000 MMBtu to 255,000 MMBtu given the fuel requirements of the CCHP system. CCHP systems lower emissions, however, in the Pacific Northwest the high percentage of hydro-power results in CO2 emissions from CCHP were higher than that attributed to the electric utility/regional energy mix. The value of this paper is in promoting and educating financial decision makers to seriously consider CCHP systems when building or upgrading facilities. The distributed generation aspect can reduce utility costs for industrial facilities and show non-wires solution benefits to delay or eliminate the need for upgrades to local electric transmission and distribution systems.« less

  12. Comparison of thermal testing of MS9001FA type GTPs at shatura and nizhnevartovsk GRES

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2016-11-01

    Domestic power plants use combined-cycle plants in which a gas-turbine plant (GTP) and a steam turbine rotate a common electric generator. In this instance, it is impossible to measure the power of each of them, so we have to resort to some assumptions. We have succeeded to check the validity of these assumptions and possible errors of their application testing combined-cycle plants (CCP) with the same GTP and a steam turbine but operating each on its own electrical generator. Comparative tests of a MS901FA GTP of the PGU-400 power-generating unit commissioned at Shatura GRES (a thermal power station) and a GTP of the same type installed at Nizhnevartovsk GRES were performed. As a result of these tests, dependences of the electric power of both gas-turbine plants and a turbine outlet temperature on the inlet temperature were obtained. A relation of the GTP efficiency, heat and air rate on the load are determined, and characteristics of compressors and turbines of both GTPs are defined. The performed tests have confirmed the accuracy of the determined characteristics of the two GTPs using both a direct measurement of net power (Nizhnevartovsk GRES) and an indirect measurement (Shatura GRES).

  13. Open-cycle magnetohydrodynamic power plant with CO.sub.2 recycling

    DOEpatents

    Berry, Gregory F.

    1991-01-01

    A method of converting the chemical energy of fossil fuel to electrical and mechanical energy with a MHD generator. The fossil fuel is mixed with preheated oxygen and carbon dioxide and a conducting seed of potassium carbonate to form a combustive and electrically conductive mixture which is burned in a combustion chamber. The burned combustion mixture is passed through a MHD generator to generate electrical energy. The burned combustion mixture is passed through a diffuser to restore the mixture approximately to atmospheric pressure, leaving a spent combustion mixture which is used to heat oxygen from an air separation plant and recycled carbon dioxide for combustion in a high temperature oxygen preheater and for heating water/steam for producing superheated steam. Relatively pure carbon dioxide is separated from the spent combustion mixture for further purification or for exhaust, while the remainder of the carbon dioxide is recycled from the spent combustion mixture to a carbon dioxide purification plant for removal of water and any nitrous oxides present, leaving a greater than 98% pure carbon dioxide. A portion of the greater then 98% pure carbon dioxide stream is recovered and the remainder is recycled to combine with the oxygen for preheating and combination with the fossil fuel to form a combustion mixture.

  14. 40 CFR 60.4140 - State trading budgets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false State trading budgets. 60.4140 Section 60.4140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Electric Steam Generating Units Hg Allowance Allocations § 60.4140 State trading budgets. The State trading...

  15. 18 CFR 281.303 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... essential agricultural use establishment had, on August 29, 1979, or thereafter acquired the installed... time after 1973, for an essential agricultural use. (b) Alternative fuel means coal or residual fuel oil. (c) Boiler means any fuel burning device that is used for generating steam or electricity or...

  16. 18 CFR 281.303 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... essential agricultural use establishment had, on August 29, 1979, or thereafter acquired the installed... time after 1973, for an essential agricultural use. (b) Alternative fuel means coal or residual fuel oil. (c) Boiler means any fuel burning device that is used for generating steam or electricity or...

  17. 18 CFR 281.303 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... essential agricultural use establishment had, on August 29, 1979, or thereafter acquired the installed... time after 1973, for an essential agricultural use. (b) Alternative fuel means coal or residual fuel oil. (c) Boiler means any fuel burning device that is used for generating steam or electricity or...

  18. 18 CFR 281.303 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... essential agricultural use establishment had, on August 29, 1979, or thereafter acquired the installed... time after 1973, for an essential agricultural use. (b) Alternative fuel means coal or residual fuel oil. (c) Boiler means any fuel burning device that is used for generating steam or electricity or...

  19. 40 CFR 98.30 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... purposes of producing electricity, generating steam, or providing useful heat or energy for industrial, commercial, or institutional use, or reducing the volume of waste by removing combustible matter. Stationary... § 98.6. (3) Irrigation pumps at agricultural operations. (4) Flares, unless otherwise required by...

  20. 40 CFR 60.4162 - Notification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4162 Notification. (a) Notification of recordation. Within 5 business days of recordation of a Hg allowance transfer under § 60.4161, the Administrator will notify the...

  1. 40 CFR 60.4162 - Notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4162 Notification. (a) Notification of recordation. Within 5 business days of recordation of a Hg allowance transfer under § 60.4161, the Administrator will notify the...

  2. Combined-cycle plant built in record time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    This article reports that this low-cost cogeneration plant meets residential community`s environmental concerns with noise minimization, emissions control, and zero wastewater discharge. Supplying electricity to the local utility and steam to two hosts, the Auburndale cogeneration facility embodies the ``reference plant`` design approach developed by Westinghouse Power Generation (WPG), Orlando, Fla. With this approach customers meet their particular needs by choosing from a standard package of plant equipment and design options. Main goals of the concept are reduced construction time efficient and reliable power generation, minimal operating staff, and low cost. WPG built the plant on a turnkey basis formore » Auburndale Power Partners Limited Partnership (APP). APP is a partially owned subsidiary of Mission Energy, a California-based international developer and operator of independent-power facilities. The cogeneration facility supplies 150 MW of electric power to Florida Power Corp and exports 120,000 lb/hr of steam to Florida Distillers Co and Coca-Cola Foods.« less

  3. Plant maintenance and plant life extension issue, 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the March-April issue is on plant maintenance and plant life extension. Major articles include the following: Application of modeling and simulation to nuclear power plants, by Berry Gibson, IBM, and Rolf Gibbels, Dassault Systems; Steam generators with tight manufacturing procedures, by Ei Kadokami, Mitsubishi Heavy Industries; SG design based on operational experience and R and D, by Jun Tang, Babcock and Wilcox Canada; Confident to deliver reliable performance, by Bruce Bevilacqua, Westinghouse Nuclear; An evolutionary plant design, by Martin Parece, AREVA NP, Inc.; and, Designed for optimum production, by Danny Roderick, GE Hitachi Nuclear Energy. Industry Innovationmore » articles include: Controlling alloy 600 degradation, by John Wilson, Exelon Nuclear Corporation; Condensate polishing innovation, by Lewis Crone, Dominion Millstone Power Station; Reducing deposits in steam generators, by the Electric Power Research Institute; and, Minimizing Radiological effluent releases, by the Electric Power Research Institute. The plant profile article is titled 2008 - a year of 'firsts' for AmerenUE's Callaway plant, by Rick Eastman, AmerenUE.« less

  4. Industrial Cogeneration--What it is, How it Works, Its Potential.

    DTIC Science & Technology

    1980-04-29

    plant . Therefore, where industrial cogenerated electricity replaces central power- plant generated electricity, fewer emissions should be pro- duced...States Utilities Company plant located in the center of a petrochem - ical complex near Baton Rouge, Louisiana. Since 1929 the plant has produced steam and...utility emissions . Furthermore, since many existing utility plants burn oil, cogeneration might also lead to greater oil use than would otherwise be the

  5. Electrical start-up for diesel fuel processing in a fuel-cell-based auxiliary power unit

    NASA Astrophysics Data System (ADS)

    Samsun, Remzi Can; Krupp, Carsten; Tschauder, Andreas; Peters, Ralf; Stolten, Detlef

    2016-01-01

    As auxiliary power units in trucks and aircraft, fuel cell systems with a diesel and kerosene reforming capacity offer the dual benefit of reduced emissions and fuel consumption. In order to be commercially viable, these systems require a quick start-up time with low energy input. In pursuit of this end, this paper reports an electrical start-up strategy for diesel fuel processing. A transient computational fluid dynamics model is developed to optimize the start-up procedure of the fuel processor in the 28 kWth power class. The temperature trend observed in the experiments is reproducible to a high degree of accuracy using a dual-cell approach in ANSYS Fluent. Starting from a basic strategy, different options are considered for accelerating system start-up. The start-up time is reduced from 22 min in the basic case to 9.5 min, at an energy consumption of 0.4 kW h. Furthermore, an electrical wire is installed in the reformer to test the steam generation during start-up. The experimental results reveal that the generation of steam at 450 °C is possible within seconds after water addition to the reformer. As a result, the fuel processor can be started in autothermal reformer mode using the electrical concept developed in this work.

  6. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the efficiency of the plant increases, although the higher pressure losses of the flue-gas path increase the requirements of the air compressor. Finally, replacing the two heat exchangers of the electrolyzer unit with one that uses extracted steam from the biomass power plant can lead to an overall decrease in the operating and investment costs of the plant.

  7. Design Analysis of a Prepackaged Nuclear Power Plant for an Ice Cap Location

    DTIC Science & Technology

    1959-01-15

    requirements and heating load 1.3 Site Conditions 1,U Air Transportability 1.5 Standby Power Availability 1.6 Building Structuree and Foundations 2,0...Skid with Reactor and Steam Generator Generator Weight Distribution Foundation Load Diagram (Secondary) Turbine Generator Package - Typical...Requirements and Heating Load The plant shall be capable of producing a minimum of 1500 Kw net ^ electrical energy at 4160/2400 volts, three phase

  8. Steam engine research for solar parabolic dish

    NASA Technical Reports Server (NTRS)

    Demler, R. L.

    1981-01-01

    The parabolic dish solar concentrator provides an opportunity to generate high grade energy in a modular system. Most of the capital is projected to be in the dish and its installation. Assurance of a high production demand of a standard dish could lead to dramatic cost reductions. High production volume in turn depends upon maximum application flexibility by providing energy output options, e.g., heat, electricity, chemicals and combinations thereof. Subsets of these options include energy storage and combustion assist. A steam engine design and experimental program is described which investigate the efficiency potential of a small 25 kW compound reheat cycle piston engine. An engine efficiency of 35 percent is estimated for a 700 C steam temperature from the solar receiver.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, O.H.

    One of the major obstacles to extensive application of nuclear power to industrial heat is the difference between the relatively small energy requirements of individual industrial plants and the large thermal capacity of current power reactors. A practical way of overcoming this obstacle would be to operate a centrally located dual-purpose power plant that would furnish process steam to a cluster of industrial plants, in addition to generating electrical power. The present study indicates that even relatively remote industrial plants could be served by the power plant, since it might be possible to convey steam economically as much as tenmore » miles or more. A survey of five major industries indicates a major potential market for industrial steam from large nuclear power stations.« less

  10. 40 CFR 423.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control technology (BCT). [Reserved] 423.14 Section 423.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best conventional pollutant control technology (BCT). [Reserved] ...

  11. 40 CFR Table 9 to Subpart Uuuuu of... - Applicability of General Provisions to Subpart UUUUU

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 9 Table 9 to Subpart UUUUU of... Review and Notification Requirements Yes. § 63.6(a), (b)(1)-(b)(5), (b)(7), (c), (f)(2)-(3), (g), (h)(2...

  12. 40 CFR Table 9 to Subpart Uuuuu of... - Applicability of General Provisions to Subpart UUUUU

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 9 Table 9 to Subpart UUUUU of... Review and Notification Requirements Yes. § 63.6(a), (b)(1)-(b)(5), (b)(7), (c), (f)(2)-(3), (g), (h)(2...

  13. 40 CFR Table 9 to Subpart Uuuuu of... - Applicability of General Provisions to Subpart UUUUU

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 9 Table 9 to Subpart UUUUU of... Review and Notification Requirements Yes. § 63.6(a), (b)(1)-(b)(5), (b)(7), (c), (f)(2)-(3), (g), (h)(2...

  14. Georgia Power Company, Wansley Steam Electric Generating Plant; Petition to Object to Title V Operating Permit

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database.

  15. 40 CFR 97.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...

  16. 40 CFR 97.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...

  17. 40 CFR 97.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...

  18. 40 CFR 97.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...

  19. 40 CFR 97.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...

  20. 40 CFR 423.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control technology (BCT). [Reserved] 423.14 Section 423.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best conventional pollutant control technology (BCT). [Reserved] ...

  1. 40 CFR 423.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control technology (BCT). [Reserved] 423.14 Section 423.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best conventional pollutant control technology (BCT). [Reserved] ...

  2. 40 CFR 423.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control technology (BCT). [Reserved] 423.14 Section 423.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best conventional pollutant control technology (BCT). [Reserved] ...

  3. 40 CFR 423.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control technology (BCT). [Reserved] 423.14 Section 423.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best conventional pollutant control technology (BCT). [Reserved] ...

  4. 40 CFR 60.4161 - EPA recordation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4161 EPA recordation. (a) Within 5 business days (except as provided in paragraph (b) of this section) of receiving a Hg allowance transfer, the...

  5. 40 CFR 60.4161 - EPA recordation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4161 EPA recordation. (a) Within 5 business days (except as provided in paragraph (b) of this section) of receiving a Hg allowance transfer, the...

  6. Receiver System: Lessons Learned from Solar Two

    NASA Astrophysics Data System (ADS)

    Litwin, R. Z.

    2002-03-01

    The Boeing Company fabricated the Solar Two receiver as a subcontractor for the Solar Two project. The receiver absorbed sunlight reflected from the heliostat field. A molten-nitrate-salt heat transfer fluid was pumped from a storage tank at grade level, heated from 290 to 565DGC by the receiver mounted on top of a tower, then flowed back down into another storage tank. To make electricity, the hot salt was pumped through a steam generator to produce steam that powered a conventional Rankine steam turbine/generator. This evaluation identifies the most significant Solar Two receiver system lessons learned from the Mechanical Design, Instrumentation and Control, Panel Fabrication, Site Construction, Receiver System Operation, and Management from the perspective of the receiver designer/manufacturer. The lessons learned on the receiver system described here consist of two parts: the Problem and one or more identified Solutions. The appendix summarizes an inspection of the advanced receiver panel developed by Boeing that was installed and operated in the Solar Two receiver.

  7. Receiver System: Lessons Learned From Solar Two

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LITWIN, ROBERT Z.; PACHECO, JAMES E.

    The Boeing Company fabricated the Solar Two receiver as a subcontractor for the Solar Two project. The receiver absorbed sunlight reflected from the heliostat field. A molten-nitrate-salt heat transfer fluid was pumped from a storage tank at grade level, heated from 290 to 565 C by the receiver mounted on top of a tower, then flowed back down into another storage tank. To make electricity, the hot salt was pumped through a steam generator to produce steam that powered a conventional Rankine steam turbine/generator. This evaluation identifies the most significant Solar Two receiver system lessons learned from the Mechanical Design,more » Instrumentation and Control, Panel Fabrication, Site Construction, Receiver System Operation, and Management from the perspective of the receiver designer/manufacturer. The lessons learned on the receiver system described here consist of two parts: the Problem and one or more identified Solutions. The appendix summarizes an inspection of the advanced receiver panel developed by Boeing that was installed and operated in the Solar Two receiver.« less

  8. 40 CFR 423.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... technology currently available (BPT). 423.12 Section 423.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best practicable control technology currently available (BPT). (a) In...

  9. 40 CFR 51.308 - Regional haze program requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for fossil-fuel fired power plants having a total generating capacity greater than 750 megawatts must...) and (e) of this section. The progress reports must be in the form of implementation plan revisions... Federal Implementation Plan need not require BART-eligible fossil fuel-fired steam electric plants in the...

  10. 40 CFR 60.4140 - State trading budgets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false State trading budgets. 60.4140 Section... Electric Steam Generating Units Hg Allowance Allocations § 60.4140 State trading budgets. The State trading budgets for annual allocations of Hg allowances for the control periods in 2010 through 2017 and in 2018...

  11. 40 CFR 60.4160 - Submission of Hg allowance transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4160 Submission of Hg allowance transfers. An Hg authorized account representative seeking recordation of a Hg allowance transfer... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Submission of Hg allowance transfers...

  12. 40 CFR 60.4160 - Submission of Hg allowance transfers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4160 Submission of Hg allowance transfers. An Hg authorized account representative seeking recordation of a Hg allowance transfer... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Submission of Hg allowance transfers...

  13. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Jie; Minh, Nguyen

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuelmore » cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.« less

  14. Electricity from the Silk Cocoon Membrane

    PubMed Central

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-01-01

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management. PMID:24961354

  15. Electricity from the silk cocoon membrane.

    PubMed

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-06-25

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.

  16. Electricity from the Silk Cocoon Membrane

    NASA Astrophysics Data System (ADS)

    Tulachan, Brindan; Meena, Sunil Kumar; Rai, Ratan Kumar; Mallick, Chandrakant; Kusurkar, Tejas Sanjeev; Teotia, Arun Kumar; Sethy, Niroj Kumar; Bhargava, Kalpana; Bhattacharya, Shantanu; Kumar, Ashok; Sharma, Raj Kishore; Sinha, Neeraj; Singh, Sushil Kumar; Das, Mainak

    2014-06-01

    Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.

  17. Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Narayan, Sri R.

    2009-01-01

    Two hydrogen generators based on reactions involving magnesium and steam have been proposed as means for generating the fuel (hydrogen gas) for such fuel-cell power systems as those to be used in the drive systems of advanced motor vehicles. The hydrogen generators would make it unnecessary to rely on any of the hydrogen storage systems developed thus far that are, variously, too expensive, too heavy, too bulky, and/or too unsafe to be practical. The two proposed hydrogen generators are denoted basic and advanced, respectively. In the basic hydrogen generator (see figure), steam at a temperature greater than or equals 330 C would be fed into a reactor charged with magnesium, wherein hydrogen would be released in the exothermic reaction Mg + H2O yields MgO + H2. The steam would be made in a flash boiler. To initiate the reaction, the boiler could be heated electrically by energy borrowed from a storage battery that would be recharged during normal operation of the associated fuel-cell subsystem. Once the reaction was underway, heat from the reaction would be fed to the boiler. If the boiler were made an integral part of the hydrogen-generator reactor vessel, then the problem of transfer of heat from the reactor to the boiler would be greatly simplified. A pump would be used to feed water from a storage tank to the boiler.

  18. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.

    PubMed

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.

  19. H2-O2 combustion powered steam-MHD central power systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Smith, J. M.; Nichols, L. D.

    1974-01-01

    Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.

  20. 49 CFR 229.105 - Steam generator number.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam generator number. 229.105 Section 229.105..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.105 Steam generator number. An identification number shall be marked on the steam generator's...

  1. Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid

    NASA Astrophysics Data System (ADS)

    Arda, Samet Egemen

    A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.

  2. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galowitz, Stephen

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven andmore » reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh's of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.« less

  3. A 400-kWe high-efficiency steam turbine for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Leibowitz, H. M.

    1982-01-01

    An advanced state-of-the-art steam turbine-generator developed to serve as the power conversion subsystem for the Department of Energy's Sandia National Laboratories' Solar Total-Energy Project (STEP) is described. The turbine-generator, which is designed to provide 400-kW of net electrical power, represents the largest turbine-generator built specifically for commercial solar-powered cogeneration. The controls for the turbine-generator incorporate a multiple, partial-arc entry to provide efficient off-design performance, as well as an extraction control scheme to permit extraction flow regulation while maintaining 110-spsig pressure. Normal turbine operation is achieved while synchronized to a local utility and in a stand-alone mode. In both cases, the turbine-generator features automatic load control as well as remote start-up and shutdown capability. Tests totaling 200 hours were conducted to confirm the integrity of the turbine's mechanical structure and control function. Performance tests resulted in a measured inlet throttle flow of 8,450 pounds per hour, which was near design conditions.

  4. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.

    PubMed

    Medina Jimenez, Ana Carolina; Nordi, Guilherme Henrique; Palacios Bereche, Milagros Cecilia; Bereche, Reynaldo Palacios; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-11-01

    Brazil has a large population with a high waste generation. The municipal solid waste (MSW) generated is deposited mainly in landfills. However, a considerable fraction of the waste is still improperly disposed of in dumpsters. In order to overcome this inadequate deposition, it is necessary to seek alternative routes. Between these alternatives, it is possible to quote gasification and incineration. The objective of this study is to compare, from an energetic and economic point of view, these technologies, aiming at their possible implementation in Brazilian cities. A total of two configurations were evaluated: (i) waste incineration with energy recovery and electricity production in a steam cycle; and (ii) waste gasification, where the syngas produced is used as fuel in a boiler of a steam cycle for electricity production. Simulations were performed assuming the same amount of available waste for both configurations, with a composition corresponding to the MSW from Santo André, Brazil. The thermal efficiencies of the gasification and incineration configurations were 19.3% and 25.1%, respectively. The difference in the efficiencies was caused by the irreversibilities associated with the gasification process, and the additional electricity consumption in the waste treatment step. The economic analysis presented a cost of electrical energy produced of 0.113 (US$ kWh -1 ) and 0.139 (US$ kWh -1 ) for the incineration and gasification plants respectively.

  5. Steam Rankine Solar Receiver, phase 2

    NASA Technical Reports Server (NTRS)

    Deanda, L. E.; Faust, M.

    1981-01-01

    A steam rankine solar receiver (SRSR) based on a tubular concept was designed and developed. The SRSR is an insulated, cylindrical coiled tube boiler which is mounted at the focal plane of a fully tracking parabolic solar reflector. The concentrated solar energy received at the focal plane is then transformed to thermal energy through steam generation. The steam is used in a small Rankine cycle heat engine to drive a generator for the production of electrical energy. The SRSR was designed to have a dual mode capability, performing as a once through boiler with and without reheat. This was achieved by means of two coils which constitute the boiler. The boiler core size of the SRSR is 17.0 inches in diameter and 21.5 inches long. The tube size is 7/16 inch I.D. by 0.070 inch wall for the primary, and 3/4 inch I.D. by 0.125 inch wall for the reheat section. The materials used were corrosion resistant steel (CRES) type 321 and type 347 stainless steel. The core is insulated with 6 inches of cerablanket insulation wrapped around the outer wall. The aperture end and the reflector back plate at the closed end section are made of silicon carbide. The SRSR accepts 85 kwth and has a design life of 10,000 hrs when producing steam at 1400 F and 2550 psig.

  6. Drought Vulnerability of Thermoelectric Generation using Texas as a Case Study

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Duncan, I.; Reedy, R. C.

    2013-12-01

    Increasing extent, frequency, and intensity of droughts raises concerns about the vulnerability of thermoelectricity generation to water-shortages. In this study we evaluated the impact of the 2011 flash drought in Texas on electricity demand and water supply for power plants. The impacts of the drought were greater in sub-humid east Texas than in semiarid west Texas because most power plants are pre-adapted to low water availability in west Texas. This comparison between sub-humid and semiarid regions in Texas serves as a proxy for climatic differences between the eastern and western US. High temperatures with ≥100 days of triple digit temperatures raised annual electricity demands/generation by 6% and peak demands in August by 4% relative to 2010. The corresponding water demands/consumption for 2011 for thermoelectric generation was increased by ~10% relative to 2010. While electricity demand only increased slightly during the drought, water supply decreased markedly with statewide reservoir storage at record lows (58% of capacity). Reductions in reservoir storage would suggest that power plants should be vulnerable to water shortages; however, data show that power plants subjected to water shortages were flexible enough to adapt by switching to less water-intensive technologies. Some power plants switched from once-through cooling to cooling towers with more than an order of magnitude reduction in water withdrawals whereas others switched from steam turbines to combustion turbines (no cooling water requirements) when both were available. Recent increases in natural gas production by an order of magnitude and use in combined cycle plants enhances the robustness of the power-plant fleet to drought by reducing water consumption (~1/3rd of that for steam turbines), allowing plants to operate with (combined cycle generator) or without (combustion turbine generator) water, and as base-load or peaking plants to complement increasing wind generation. Drought vulnerability of the power plant fleet can be further enhanced by reducing demand and/or increasing supplies of water (e.g. use of nontraditional water sources: municipal waste water or brackish water) and increasing supplies of electricity. Our ability to cope with projected increases in droughts would be greatly improved by joint management of water and electricity.

  7. Conditions to generate Steam Fog Occurred around the Chungju Lake in the South Korea

    NASA Astrophysics Data System (ADS)

    Byungwoo, J.

    2017-12-01

    We have collected the field observation data of the steam fog occurred around the Chungju Lake in the South Korea for 3 years(2014 2016) and analyzed conditions in which the steam fog occurred. The Chungju Lake is an artificial lake made by the Chungju Dam with a water storage of 2.7 billion tons, which is the second largest in South Korea. The Chungju Dam have discharged water of the average 2.2 million tons downstream to produce electricity per day. The drainage water heats downstream of the Chungju dam and the air above water surface of downstream of that. When the warm, humid air above the downstream water mixed with cold air mass, it caused "steam fog" around the downstream of Chungju lake regardless of amount of the discharged water. The condition that promote the generation of steam fog in autumn and winter is as follows: (1) cloudless night with light winds below 1.5 m/s. (2) The differences between the temperature of discharged water from the Chungju Dam and the air temperature above the discharged water varied from 3° to 15° in autumn, from 15° to 20° in winter respectively. (3) When stream fog was generated, sensible heat flux ranged in autumn from 5 to 15 W/m2, in winter from 15 to 20 W/m2 respectively. Latent heat flux ranged in autumn from 15 to 20 W/m2, in winter from 10 to 15 W/m2 respectively.

  8. Photovoltaic central station step and touch potential considerations in grounding system design

    NASA Technical Reports Server (NTRS)

    Engmann, G.

    1983-01-01

    The probability of hazardous step and touch potentials is an important consideration in central station grounding system design. Steam turbine generating station grounding system design is based on accepted industry practices and there is extensive in-service experience with these grounding systems. A photovoltaic (PV) central station is a relatively new concept and there is limited experience with PV station grounding systems. The operation and physical configuration of a PV central station is very different from a steam electric station. A PV station bears some similarity to a substation and the PV station step and touch potentials might be addressed as they are in substation design. However, the PV central station is a generating station and it is appropriate to examine the effect that the differences and similarities of the two types of generating stations have on step and touch potential considerations.

  9. Combustion characteristics of eastern white pine bark and Douglas fir planer shavings. Technical Progress Report No. 5, September 16, 1977--September 15, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1978-12-01

    Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. Data are presented on the combustion characteristics of eastern white pine bark mixed with Douglas fir planer shavings.« less

  10. Geothermal Electricity Production Basics | NREL

    Science.gov Websites

    . There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Photo of a California. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped . Since Yellowstone is protected from development, the only dry steam plants in the country are at The

  11. 78 FR 37595 - Carolina Power & Light Company; Biweekly Notice; Applications and Amendments to Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... Register on May 28, 2013, 78 FR 31982, that inadvertently omitted the reference to Brunswick Steam Electric... request dated April 20, 2013. This action is necessary to include Brunswick Steam Electric Plant, Unit 2... first column, lines two through four, are corrected to read from ``Docket No. 50-325, Brunswick Steam...

  12. 40 CFR 423.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE CATEGORY § 423.13... of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125.30...

  13. 40 CFR 52.1470 - Identification of plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....513 “Fossil fuel” defined 12/4/76 49 FR 11626 (3/27/84) Most recently approved version was submitted... modification or relocation of plants to generate electricity using steam produced by burning of fossil fuels 10... for each source; form of application; issuance or denial; posting 05/04/06 77 FR 59321, 9/27/12...

  14. 40 CFR 60.4124 - Hg budget permit revisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Hg budget permit revisions. 60.4124... Coal-Fired Electric Steam Generating Units Permits § 60.4124 Hg budget permit revisions. Except as provided in § 60.4123(b), the permitting authority will revise the Hg Budget permit, as necessary, in...

  15. 40 CFR 60.4121 - Submission of Hg budget permit applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Submission of Hg budget permit... Times for Coal-Fired Electric Steam Generating Units Permits § 60.4121 Submission of Hg budget permit applications. (a) Duty to apply. The Hg designated representative of any Hg Budget source required to have a...

  16. 40 CFR 423.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representing the degree of effluent reduction attainable by the application of the best available technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE CATEGORY § 423.13... of the best available technology economically achievable (BAT). Except as provided in 40 CFR 125.30...

  17. Apparatus and method for servicing an elongated suspended pump motor in an electric power plant with limited access

    DOEpatents

    Chavez, Rossemary V.; Ekeroth, Douglas E.; Johnson, F. Thomas; Matusz, John M.

    1994-01-01

    Elongated coolant pumps suspended under steam generators within containment in a power plant with limited access space, are removed and replaced by an elongated maintenance cart with an elongated opening along one side in which the motor is received. Rollers support the cart for conveying the elongated motor in an upright position out from under the steam generator and onto an elevator. The elevator is lowered to transfer support of the cart and motor through trunnions to saddles straddling the elevator for rotation of the cart to a generally horizontal position. The elevator then raises the horizontally disposed cart carrying the motor to a higher floor where it is rolled off the elevator and out through the auxiliary equipment hatch.

  18. Apparatus and method for servicing an elongated suspended pump motor in an electric power plant with limited access

    DOEpatents

    Chavez, R.V.; Ekeroth, D.E.; Johnson, F.T.; Matusz, J.M.

    1994-04-26

    Elongated coolant pumps suspended under steam generators within containment in a power plant with limited access space, are removed and replaced by an elongated maintenance cart with an elongated opening along one side in which the motor is received. Rollers support the cart for conveying the elongated motor in an upright position out from under the steam generator and onto an elevator. The elevator is lowered to transfer support of the cart and motor through trunnions to saddles straddling the elevator for rotation of the cart to a generally horizontal position. The elevator then raises the horizontally disposed cart carrying the motor to a higher floor where it is rolled off the elevator and out through the auxiliary equipment hatch. 14 figures.

  19. Molten salt thermal energy storage for utility peaking loads

    NASA Technical Reports Server (NTRS)

    Ferrara, A.; Haslett, R.; Joyce, J.

    1977-01-01

    This paper considers the use of thermal energy storage (TES) in molten salts to increase the capacity of power plants. Five existing fossil and nuclear electric utility plants were selected as representative of current technology. A review of system load diagrams indicated that TES to meet loads over 95% of peak was a reasonable goal. Alternate TES heat exchanger locations were evaluated, showing that the stored energy should be used either for feedwater heating or to generate steam for an auxiliary power cycle. Specific salts for each concept are recommended. Design layouts were prepared for one plant, and it was shown that a TES tube/shell heat exchanger system could provide about 7% peaking capability at lower cost than adding steam generation capacity. Promising alternate heat exchanger concepts were also identified.

  20. Geothermal energy control system and method

    DOEpatents

    Matthews, Hugh B.

    1976-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

  1. Energy use pattern in rice milling industries-a critical appraisal.

    PubMed

    Goyal, S K; Jogdand, S V; Agrawal, A K

    2014-11-01

    Rice milling industry is one of the most energy consuming industries. Like capital, labour and material, energy is one of the production factors which used to produce final product. In economical term, energy is demand-derived goods and can be regarded as intermediate good whose demand depends on the demand of final product. This paper deals with various types of energy pattern used in rice milling industries viz., thermal energy, mechanical energy, electrical energy and human energy. The important utilities in a rice mill are water, air, steam, electricity and labour. In a rice mill some of the operations are done manually namely, cleaning, sun drying, feeding paddy to the bucket elevators, weighing and packaging, etc. So the man-hours are also included in energy accounting. Water is used for soaking and steam generation. Electricity is the main energy source for these rice mills and is imported form the state electricity board grids. Electricity is used to run motors, pumps, blowers, conveyors, fans, lights, etc. The variations in the consumption rate of energy through the use of utilities during processing must also accounted for final cost of the finished product. The paddy milling consumes significant quantity of fuels and electricity. The major energy consuming equipments in the rice milling units are; boilers and steam distribution, blowers, pumps, conveyers, elevators, motors, transmission systems, weighing, etc. Though, wide variety of technologies has been evolved for efficient use of energy for various equipments of rice mills, so far, only a few have improved their energy efficiency levels. Most of the rice mills use old and locally available technologies and are also completely dependent on locally available technical personnel.

  2. Configuring a fuel cell based residential combined heat and power system

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Papadias, Dionissios D.; Ahluwalia, Rajesh K.

    2013-11-01

    The design and performance of a fuel cell based residential combined heat and power (CHP) system operating on natural gas has been analyzed. The natural gas is first converted to a hydrogen-rich reformate in a steam reformer based fuel processor, and the hydrogen is then electrochemically oxidized in a low temperature polymer electrolyte fuel cell to generate electric power. The heat generated in the fuel cell and the available heat in the exhaust gas is recovered to meet residential needs for hot water and space heating. Two fuel processor configurations have been studied. One of the configurations was explored to quantify the effects of design and operating parameters, which include pressure, temperature, and steam-to-carbon ratio in the fuel processor, and fuel utilization in the fuel cell. The second configuration applied the lessons from the study of the first configuration to increase the CHP efficiency. Results from the two configurations allow a quantitative comparison of the design alternatives. The analyses showed that these systems can operate at electrical efficiencies of ∼46% and combined heat and power efficiencies of ∼90%.

  3. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  4. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  5. A New Microstructure Device for Efficient Evaporation of Liquids

    NASA Astrophysics Data System (ADS)

    Brandner, Juergen J.; Maikowske, Stefan; Vittoriosi, Alice

    Evaporation of liquids is of major interest for many topics in process engineering. One of these is chemical process engineering, where evaporation of liquids and generation of superheated steam is mandatory for numerous processes. Generally, this is performed by use of classical pool boiling and evaporation process equipment. Another possibility is creating mixtures of gases and liquids, combined with a heating of this haze. Both methods provide relatively limited performance. Due to the advantages of microstructure devices especially in chemical process engineering [1] the interest in microstructure evaporators and steam generators have been increased through the last decade. In this publication several microstructure devices used for evaporation and generation of steam as well as superheating will be described. Here, normally electrically powered devices containing micro channels as well as non-channel microstructures are used due to better controllability of the temperature level. Micro channel heat exchangers have been designed, manufactured and tested at the Institute for Micro Process Engineering of the Karlsruhe Institute of Technology for more than 15 years. Starting with the famous Karlsruhe Cube, a cross-flow micro channel heat exchanger of various dimensions, not only conventional heat transfer between liquids or gases have been theoretically and experimentally examined but also phase transition from liquids to gases (evaporation) and condensation of liquids. However, the results obtained with sealed microstructure devices have often been unsatisfying. Thus, to learn more onto the evaporation process itself, an electrically powered device for optical inspection of the microstructures and the processes inside has been designed and manufactured [2]. This was further optimized and improved for better controllability and reliable experiments [3]. Exchangeable metallic micro channel array foils as well as an optical inspection of the evaporation process by high-speed videography have been integrated into the experimental setup. Fundamental research onto the influences of the geometry and dimensions of the integrated micro channels, the inlet flow distribution system geometry as well as the surface quality and surface coatings of the micro channels have been performed. While evaporation of liquids in crossflow and counterflow or co-current flow micro channel devices is possible, it is, in many cases, not possible to obtain superheated steam due to certain boundary conditions [4]. In most cases, the residence time is not sufficiently long, or the evaporation process itself cannot be stabilized and controlled precisely enough. Thus, a new design was proposed to obtain complete evaporation and steam superheating. This microstructure evaporator consists of a concentric arrangement of semi-circular walls or semi-elliptic walls providing at least two nozzles to release the generated steam. The complete arrangement forms a row of circular blanks. An example of such geometry is shown in Figure 7. A maximum power density of 1400 kW·m-2 has been transferred using similar systems, while liquid could be completely evaporated and the generated steam superheated. This is, compared to liquid heat exchanges, a small value, but it has to be taken in account that the specific heat capacity of vapour is considerably smaller than that of liquids. It could also be shown that the arrangement in circular blanks with semi-elliptic side walls acts as a kind of micro mixer for the remaining liquid and generated steam and, therefore, enhances the evaporation.

  6. Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Burns, R. K.; Staiger, P. J.; Donovan, R. M.

    1982-01-01

    An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

  7. Steam generator support system

    DOEpatents

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  8. Steam generator support system

    DOEpatents

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  9. Parametric study of potential early commercial MHD power plants. Task 3: Parameter variation of plant size

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    Plants with a nominal output of 200 and 500 MWe and conforming to the same design configuration as the Task II plant were investigated. This information is intended to permit an assessment of the competitiveness of first generation MHD/steam plants with conventional steam plants over the range of 200 to 1000 MWe. The results show that net plant efficiency of the MHD plant is significantly higher than a conventional steam plant of corresponding size. The cost of electricity is also less for the MHD plant over the entire plant size range. As expected, the cost differential is higher for the larger plant and decreases with plant size. Even at the 200 MWe capacity, however, the differential in COE between the MHD plant and the conventional plant is sufficient attractive to warrant serious consideration. Escalating fuel costs will enhance the competitive position of MHD plants because they can utilize the fuel more efficiently than conventional steam plants.

  10. Floating rGO-based black membranes for solar driven sterilization.

    PubMed

    Zhang, Yao; Zhao, Dengwu; Yu, Fan; Yang, Chao; Lou, Jinwei; Liu, Yanming; Chen, Yingying; Wang, Zhongyong; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2017-12-14

    This paper presents a new steam sterilization approach that uses a solar-driven evaporation system at the water/air interface. Compared to the conventional solar autoclave, this new steam sterilization approach via interfacial evaporation requires no complex system design to bear high steam pressure. In such a system, a reduced graphene oxide/polytetrafluoroethylene composite membrane floating at the water/air interface serves as a light-to-heat conversion medium to harvest and convert incident solar light into localized heat. Such localized heat raises the temperature of the membrane substantially and helps generate steam with a temperature higher than 120 °C. A sterilization device that takes advantage of the interfacial solar-driven evaporation system was built and its successful sterilization capability was demonstrated through both chemical and biological sterilization tests. The interfacial evaporation-based solar driven sterilization approach offers a potential low cost solution to meet the need for sterilization in undeveloped areas that lack electrical power but have ample solar radiation.

  11. Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.

    The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.

  12. Economic analysis of biomass power generation schemes under renewable energy initiative with Renewable Portfolio Standards (RPS) in Korea.

    PubMed

    Moon, Ji-Hong; Lee, Jeung-Woo; Lee, Uen-Do

    2011-10-01

    An economic analysis of biomass power generation was conducted. Two key technologies--direct combustion with a steam turbine and gasification with a syngas engine--were mainly examined. In view of the present domestic biomass infrastructure of Korea, a small and distributed power generation system ranging from 0.5 to 5 MW(e) was considered. It was found that gasification with a syngas engine becomes more economically feasible as the plant size decreases. Changes in the economic feasibilities with and without RPS or heat sales were also investigated. A sensitivity analysis of each system was conducted for representative parameters. Regarding the cost of electricity generation, electrical efficiency and fuel cost significantly affect both direct combustion and gasification systems. Regarding the internal rate of return (IRR), the heat sales price becomes important for obtaining a higher IRR, followed by power generation capacity and electrical efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Start-up control system and vessel for LMFBR

    DOEpatents

    Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.

    1987-01-01

    A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  14. Start-up control system and vessel for LMFBR

    DOEpatents

    Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.

    1987-01-01

    A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.

  15. 7 CFR 1717.852 - Financing purposes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities, including real property, used to supply electric and/or steam power to: (i) RE Act beneficiaries... are determined by RUS to be an integral component of the borrower's system of supplying electric and... electric and/or steam power to end-user customers of the borrower; (3) Investments in a lender required of...

  16. 77 FR 66875 - Brunswick Steam Electric Plant, Units 1 and 2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-325 and 50-324; NRC-2012-0269] Brunswick Steam Electric Plant, Units 1 and 2 AGENCY: Nuclear Regulatory Commission. ACTION: Receipt of request for action... Electric Plant, Units 1 and 2 (Brunswick). The petition is included in the SUPPLEMENTARY INFORMATION...

  17. 46 CFR 151.45-4 - Cargo-handling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the persons in charge of cargo handling. (h) Auxiliary steam, air, fuel, or electric current. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, fuel, or electric current... started or, if started, shall be discontinued under the following conditions: (1) During severe electrical...

  18. 46 CFR 151.45-4 - Cargo-handling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the persons in charge of cargo handling. (h) Auxiliary steam, air, fuel, or electric current. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, fuel, or electric current... started or, if started, shall be discontinued under the following conditions: (1) During severe electrical...

  19. 46 CFR 151.45-4 - Cargo-handling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the persons in charge of cargo handling. (h) Auxiliary steam, air, fuel, or electric current. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, fuel, or electric current... started or, if started, shall be discontinued under the following conditions: (1) During severe electrical...

  20. 46 CFR 151.45-4 - Cargo-handling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the persons in charge of cargo handling. (h) Auxiliary steam, air, fuel, or electric current. When discharging cargo from one or more barges, the towing vessel may furnish steam, air, fuel, or electric current... started or, if started, shall be discontinued under the following conditions: (1) During severe electrical...

  1. Horizontal steam generator thermal-hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubra, O.; Doubek, M.

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. Themore » 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.« less

  2. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-generating pressure vessels (modifies U-1(g)). 54... ENGINEERING PRESSURE VESSELS General Requirements § 54.01-10 Steam-generating pressure vessels (modifies U-1(g)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as...

  3. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers andmore » towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.« less

  4. All-regime combined-cycle plant: Engineering solutions

    NASA Astrophysics Data System (ADS)

    Berezinets, P. A.; Tumanovskii, G. G.; Tereshina, G. E.; Krylova, I. N.; Markina, V. N.; Migun, E. N.

    2016-12-01

    The development of distributed power generation systems as a supplement to the centralized unified power grid increases the operational stability and efficiency of the entire power generation industry and improves the power supply to consumers. An all-regime cogeneration combined-cycle plant with a power of 20-25 mW (PGU-20/25T) and an electrical efficiency above 50% has been developed at the All-Russia Thermal Engineering Institute (ATEI) as a distributed power generation object. The PGU-20/25T two-circuit cogeneration plant provides a wide electrical and thermal power adjustment range and the absence of the mutual effect of electrical and thermal power output regimes at controlled frequency and power in a unified or isolated grid. The PGU-20/25T combined-cycle plant incorporates a gas-turbine unit (GTU) with a power of 16 MW, a heat recovery boiler (HRB) with two burners (before the boiler and the last heating stage), and a cogeneration steam turbine with a power of 6/9 MW. The PGU-20/25T plant has a maximum electrical power of 22 MW and an efficiency of 50.8% in the heat recovery regime and a maximum thermal power output of 16.3 MW (14 Gcal/h) in the cogeneration regime. The use of burners can increase the electrical power to 25 MW in the steam condensation regime at an efficiency of 49% and the maximum thermal power output to 29.5 MW (25.4 Gcal/h). When the steam turbine is shut down, the thermal power output can grow to 32.6 MW (28 Gcal/h). The innovative equipment, which was specially developed for PGU-20/25T, improves the reliability of this plant and simplifies its operation. Among this equipment are microflame burners in the heat recovery boiler, a vacuum system based on liquid-ring pumps, and a vacuum deaerator. To enable the application of PGU-20/25T in water-stressed regions, an air condenser preventing the heat-transfer tubes from the risk of covering with ice during operation in frost air has been developed. The vacuum system eliminates the need for an extraneous source of steam for the startup of the PGU-20/25T plant. The vacuum deaerator provides prestartup deaeration and the filling of the entire condensate feed pipeline with deaerated water and also enables the maintenance of the water temperature before the boiler at a level of no lower than 60°C and the oxygen content at a level of no higher than 10 μg/L during operation under load. The microflame burners in the heat recovery boiler enable the independent adjustment of the electrical power and the thermal power output from the PGU-20/25T plant. All the innovative equipment has been tested on experimental prototypes.

  5. 40 CFR 63.10011 - How do I demonstrate initial compliance with the emissions limits and work practice standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Testing and Initial... liquid oil-fired unit, and you use quarterly stack testing for HCl and HF plus site-specific parameter monitoring to demonstrate continuous performance, you must also establish a site-specific operating limit, in...

  6. 40 CFR 63.10011 - How do I demonstrate initial compliance with the emissions limits and work practice standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Testing and Initial... liquid oil-fired unit, and you use quarterly stack testing for HCl and HF plus site-specific parameter monitoring to demonstrate continuous performance, you must also establish a site-specific operating limit, in...

  7. 75 FR 34787 - In the Matter of Luminant Generation Company LLC; Comanche Peak Steam Electric Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    [email protected] , or by telephone at (301) 415-1677, to request (1) a digital ID certificate, which allows the... its counsel or representative, already holds an NRC- issued digital ID certificate). Based upon this... Secretary has not already established an electronic docket. Information about applying for a digital ID...

  8. 40 CFR 60.4176 - Additional requirements to provide heat input data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Additional requirements to provide heat... Compliance Times for Coal-Fired Electric Steam Generating Units Monitoring and Reporting § 60.4176 Additional requirements to provide heat input data. The owner or operator of a Hg Budget unit that monitors and reports Hg...

  9. 40 CFR 63.9991 - What emission limitations, work practice standards, and operating limits must I meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Emission Limitations and Work... this subpart only if your EGU: (1) Has a system using wet or dry flue gas desulfurization technology... operate the wet or dry flue gas desulfurization technology installed on the unit consistent with § 63...

  10. 40 CFR 63.9991 - What emission limitations, work practice standards, and operating limits must I meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Emission Limitations and Work... this subpart only if your EGU: (1) Has a system using wet or dry flue gas desulfurization technology... operate the wet or dry flue gas desulfurization technology installed on the unit consistent with § 63...

  11. 40 CFR 63.9991 - What emission limitations, work practice standards, and operating limits must I meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Emission Limitations and Work... this subpart only if your EGU: (1) Has a system using wet or dry flue gas desulfurization technology... operate the wet or dry flue gas desulfurization technology installed on the unit consistent with § 63...

  12. Limited energy study, Buildings 750 and 798, Fort Richardson, Alaska. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The purpose of this study is to identify and evaluate Energy Conservation Opportunities (ECOs) for two motor pool facilities, Buildings 750 and 798, to determine their energy savings potential, economic feasibility, and to document results for possible future funding. Buildings 750 and 798 are heated by steam supplied from a central plant. The central plant uses natural gas as a primary fuel source to produce steam for both heating and electrical energy generation. Since power is produced on the base there is not a demand charge for electrical energy. Two ECOs examined the use of natural gas in conjunction withmore » steam as a method of heating the buildings. Annual baseline energy consumption and cost data for each building is presented. The heating system in Building 750 was found to be severely under capacity. This is the result of the disabling of the under-floor heating system and the roof top MAUs. Building 798 also has had the under-floor heating system disabled. However, baseline simulations show that the remaining system is capable of maintaining thermostat setpoints during all but the coldest days of a typical year.« less

  13. Minnesota agripower project. Quarterly report, April--June 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baloun, J.

    The Minnesota Valley Alfalfa Producers (MnVAP) propose to build an alfalfa processing plant integrated with an advanced power plant system at the Granite Falls, Minnesota Industrial Park to provide 75 MW of base load electric power and a competitively priced source of value added alfalfa based products. This project will utilize air blown fluidized bed gasification technology to process alfalfa stems and another biomass to produce a hot, clean, low heating value gas that will be used in a gas turbine. Exhaust heat from the gas turbine will be used to generate steam to power a steam turbine and providemore » steam for the processing of the alfalfa leaf into a wide range of products including alfalfa leaf meal, a protein source for livestock. The plant will demonstrate high efficiency and environmentally compatible electric power production, as well as increased economic yield from farm operations in the region. The initial phase of the Minnesota Agripower Project (MAP) will be to perform alfalfa feedstock testing, prepare preliminary designs, and develop detailed plans with estimated costs for project implementation. The second phase of MAP will include detailed engineering, construction, and startup. Full commercial operation will start in 2001.« less

  14. Small-scale biomass fueled cogeneration systems - A guidebook for general audiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiltsee, G.

    1993-12-01

    What is cogeneration and how does it reduce costs? Cogeneration is the production of power -- and useful heat -- from the same fuel. In a typical biomass-fueled cogeneration plant, a steam turbine drives a generator, producing electricity. The plant uses steam from the turbine for heating, drying, or other uses. The benefits of cogeneration can mostly easily be seen through actual samples. For example, cogeneration fits well with the operation of sawmills. Sawmills can produce more steam from their waste wood than they need for drying lumber. Wood waste is a disposal problem unless the sawmill converts it tomore » energy. The case studies in Section 8 illustrate some pluses and minuses of cogeneration. The electricity from the cogeneration plant can do more than meet the in-house requirements of the mill or manufacturing plant. PURPA -- the Public Utilities Regulatory Policies Act of 1978 -- allows a cogenerator to sell power to a utility and make money on the excess power it produces. It requires the utility to buy the power at a fair price -- the utility`s {open_quotes}avoided cost.{close_quotes} This can help make operation of a cogeneration plant practical.« less

  15. Core design of a direct-cycle, supercritical-water-cooled fast breeder reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jevremovic, T.; Oka, Yoshiaki; Koshizuka, Seiichi

    1994-10-01

    The conceptual design of a direct-cycle fast breeder reactor (FBR) core cooled by supercritical water is carried out as a step toward a low-cost FBR plant. The supercritical water does not exhibit change of phase. The turbines are directly driven by the core outlet coolant. In comparison with a boiling water reactor (BWR), the recirculation systems, steam separators, and dryers are eliminated. The reactor system is much simpler than the conventional steam-cooled FBRs, which adopted Loeffler boilers and complicated coolant loops for generating steam and separating it from water. Negative complete and partial coolant void reactivity are provided without muchmore » deterioration in the breeding performances by inserting thin zirconium-hydride layers between the seeds and blankets in a radially heterogeneous core. The net electric power is 1245 MW (electric). The estimated compound system doubling time is 25 yr. The discharge burnup is 77.7 GWd/t, and the refueling period is 15 months with a 73% load factor. The thermal efficiency is high (41.5%), an improvement of 24% relative to a BWR's. The pressure vessel is not thick at 30.3 cm.« less

  16. Generation of Hot Water from Hot-Dry for Heavy-Oil Recovery in Northern Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Pathak, V.; Babadagli, T.; Majorowicz, J. A.; Unsworth, M. J.

    2011-12-01

    The focus of prior applications of hot-dry-rock (HDR) technology was mostly aimed at generating electricity. In northern Alberta, the thermal gradient is low and, therefore, this technology is not suitable for electricity generation. On the other hand, the cost of steam and hot water, and environmental impacts, are becoming critical issues in heavy-oil and bitumen recovery in Alberta. Surface generation of steam or hot-water accounts for six percent of Canada's natural gas consumption and about 50 million tons of CO2 emission. Lowered cost and environmental impacts are critical in the widespread use of steam (for in-situ recovery) and hot-water (for surface extraction of bitumen) in this region. This paper provides an extensive analysis of hot-water generation to be used in heavy-oil/bitumen recovery. We tested different modeling approaches used to determine the amount of energy produced during HDR by history matching to example field data. The most suitable numerical and analytical models were used to apply the data obtained from different regions containing heavy-oil/bitumen deposits in northern Alberta. The heat generation capacity of different regions was determined and the use of this energy (in the form of hot-water) for surface extraction processes was evaluated. Original temperature gradients were applied as well as realistic basement formation characteristics through an extensive hydro thermal analysis in the region including an experimental well drilled to the depth of 2,500m. Existing natural fractures and possible hydraulic fracturing scenarios were evaluated from the heat generation capacity and the economics points of view. The main problem was modeling difficulties, especially determination and representation of fracture network characteristics. A sensitivity analysis was performed for the selected high temperature gradient regions in Alberta. In this practice, the characteristics of hydraulic fractures, injection rate, depth, the distance between injection and production wells and formation thickness were used as variables and an optimization study was carried out based on these variables. The results showed that the hot water (50 C at surface) needed in Fort McMurray for extraction could be obtained at lower costs than the generation of it using natural gas.

  17. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  18. High-temperature molten salt thermal energy storage systems

    NASA Technical Reports Server (NTRS)

    Petri, R. J.; Claar, T. D.; Tison, R. R.; Marianowski, L. G.

    1980-01-01

    The results of comparative screening studies of candidate molten carbonate salts as phase change materials (PCM) for advanced solar thermal energy storage applications at 540 to 870 C (1004 to 1600 F) and steam Rankine electric generation at 400 to 540 C (752 to 1004 F) are presented. Alkali carbonates are attractive as latent heat storage materials because of their relatively high storage capacity and thermal conductivity, low corrosivity, moderate cost, and safe and simple handling requirements. Salts were tested in 0.1 kWhr lab scale modules and evaluated on the basis of discharge heat flux, solidification temperature range, thermal cycling stability, and compatibility with containment materials. The feasibility of using a distributed network of high conductivity material to increase the heat flux through the layer of solidified salt was evaluated. The thermal performance of an 8 kWhr thermal energy storage (TES) module containing LiKCO3 remained very stable throughout 5650 hours and 130 charge/discharge cycles at 480 to 535 C (896 to 995 F). A TES utilization concept of an electrical generation peaking subsystem composed of a multistage condensing steam turbine and a TES subsystem with a separate power conversion loop was defined. Conceptual designs for a 100 MW sub e TES peaking system providing steam at 316 C, 427 C, and 454 C (600 F, 800 F, and 850 F) at 3.79 million Pa (550 psia) were developed and evaluated. Areas requiring further investigation have also been identified.

  19. Natural gas-assisted steam electrolyzer

    DOEpatents

    Pham, Ai-Quoc; Wallman, P. Henrik; Glass, Robert S.

    2000-01-01

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  20. Start-up performance of parabolic trough concentrating solar power plants

    NASA Astrophysics Data System (ADS)

    Ferruzza, Davide; Topel, Monika; Basaran, Ibrahim; Laumert, Björn; Haglind, Fredrik

    2017-06-01

    Concentrating solar power plants, even though they can be integrated with thermal energy storage, are still subjected to cyclic start-up and shut-downs. As a consequence, in order to maximize their profitability and performance, the flexibility with respect to transient operations is essential. In this regard, two of the key components identified are the steam generation system and steam turbine. In general it is desirable to have fast ramp-up rates during the start-up of a power plant. However ramp-up rates are limited by, among other things, thermal stresses, which if high enough can compromise the life of the components. Moreover, from an operability perspective it might not be optimal to have designs for the highest heating rates, as there may be other components limiting the power plant start-up. Therefore, it is important to look at the interaction between the steam turbine and steam generator to determine the optimal ramp rates. This paper presents a methodology to account for thermal stresses limitations during the power plant start up, aiming at identifying which components limit the ramp rates. A detailed dynamic model of a parabolic trough power plant was developed and integrated with a control strategy to account for the start-up limitations of both the turbine and steam generator. The models have been introduced in an existing techno-economic tool developed by the authors (DYESOPT). The results indicated that for each application, an optimal heating rates range can be identified. For the specific case presented in the paper, an optimal range of 7-10 K/min of evaporator heating rate can result in a 1.7-2.1% increase in electricity production compared to a slower component (4 K/min).

  1. 49 CFR 229.105 - Steam generator number.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...

  2. 49 CFR 229.105 - Steam generator number.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...

  3. Robot arm apparatus

    DOEpatents

    Nachbar, Henry D.

    1992-12-01

    A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.

  4. Robot arm apparatus

    DOEpatents

    Nachbar, Henry D.

    1992-01-01

    A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.

  5. Flow Distribution Control Characteristics in Marine Gas Turbine Waste- Heat Recovery Systems. Phase 2. Flow Distribution Control in Waste-Heat Steam Generators

    DTIC Science & Technology

    1982-07-01

    waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed

  6. Steam sterilisation's energy and water footprint.

    PubMed

    McGain, Forbes; Moore, Graham; Black, Jim

    2017-03-01

    Objective The aim of the present study was to quantify hospital steam steriliser resource consumption to provide baseline environmental data and identify possible efficiency gains. We sought to find the amount of steriliser electricity and water used for active cycles and for idling (standby), and the relationship between the electricity and water consumption and the mass and type of items sterilised. Methods We logged a hospital steam steriliser's electricity and water meters every 5min for up to 1 year. We obtained details of all active cycles (standard 134°C and accessory or 'test' cycles), recording item masses and types. Relationships were investigated for both the weight and type of items sterilised with electricity and water consumption. Results Over 304 days there were 2173 active cycles, including 1343 standard 134°C cycles that had an average load mass of 21.2kg, with 32% of cycles <15kg. Electricity used for active cycles was 32652kWh (60% of total), whereas the water used was 1243495L (79%). Standby used 21457kWh (40%) electricity and 329200L (21%) water. Total electricity and water consumption per mass sterilised was 1.9kWhkg -1 and 58Lkg -1 , respectively. The linear regression model predicting electricity use was: kWh=15.7+ 0.14×mass (in kg; R 2 =0.58, P<0.01). Models for water and item type were poor. Electricity and water use fell from 3kWhkg -1 and 200Lkg -1 , respectively, for 5-kg loads to 0.5kWhkg -1 and 20Lkg -1 , respectively, for 40-kg loads. Conclusions Considerable electricity and water use occurred during standby, load mass was only moderately predictive of electricity consumption and light loads were common yet inefficient. The findings of the present study are a baseline for steam sterilisation's environmental footprint and identify areas to improve efficiencies. What is known about the topic? There is increasing interest in the environmental effects of healthcare. Life cycle assessment ('cradle to grave') provides a scientific method of analysing environmental effects. Although data of the effects of steam sterilisation are integral to the life cycles of reusable items and procedures using such items, there are few data available. Further, there is scant information regarding the efficiency of the long-term in-hospital use of sterilisers. What does this paper add? We quantified, for the first time, long-term electricity and water use of a hospital steam steriliser. We provide useful input data for future life cycle assessments of all reusable, steam-sterilised equipment. Further, we identified opportunities for improved steriliser efficiencies, including rotating off idle sterilisers and reducing the number of light steriliser loads. Finally, others could use our methods to examine steam sterilisers and many other energy-intensive items of hospital equipment. What are the implications for practitioners? We provide useful input data for all researchers examining the environmental footprint of reusable hospital equipment and procedures using such equipment. As a result of the present study, staff in the hospital sterile supply department have reduced steam steriliser electricity and water use considerably without impeding sterilisation throughput (and reduced time inefficiencies). Many other hospitals could benefit from similar methods to improve steam steriliser and other hospital equipment efficiencies.

  7. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  8. Novel metallic alloys as phase change materials for heat storage in direct steam generation applications

    NASA Astrophysics Data System (ADS)

    Nieto-Maestre, J.; Iparraguirre-Torres, I.; Velasco, Z. Amondarain; Kaltzakorta, I.; Zubieta, M. Merchan

    2016-05-01

    Concentrating Solar Power (CSP) is one of the key electricity production renewable energy technologies with a clear distinguishing advantage: the possibility to store the heat generated during the sunny periods, turning it into a dispatchable technology. Current CSP Plants use an intermediate Heat Transfer Fluid (HTF), thermal oil or inorganic salt, to transfer heat from the Solar Field (SF) either to the heat exchanger (HX) unit to produce high pressure steam that can be leaded to a turbine for electricity production, or to the Thermal Energy Storage (TES) system. In recent years, a novel CSP technology is attracting great interest: Direct Steam Generation (DSG). The direct use of water/steam as HTF would lead to lower investment costs for CSP Plants by the suppression of the HX unit. Moreover, water is more environmentally friendly than thermal oils or salts, not flammable and compatible with container materials (pipes, tanks). However, this technology also has some important challenges, being one of the major the need for optimized TES systems. In DSG, from the exergy point of view, optimized TES systems based on two sensible heat TES systems (for preheating of water and superheating vapour) and a latent heat TES system for the evaporation of water (around the 70% of energy) is the preferred solution. This concept has been extensively tested [1, 2, 3] using mainly NaNO3 as latent heat storage medium. Its interesting melting temperature (Tm) of 306°C, considering a driving temperature difference of 10°C, means TES charging steam conditions of 107 bar at 316°C and discharging conditions of 81bar at 296°C. The average value for the heat of fusion (ΔHf) of NaNO3 from literature data is 178 J/g [4]. The main disadvantage of inorganic salts is their very low thermal conductivity (0.5 W/m.K) requiring sophisticated heat exchanging designs. The use of high thermal conductivity eutectic metal alloys has been recently proposed [5, 6, 7] as a feasible alternative. Tms of these proposed eutectic alloys are too high for currently available DSG solar fields, for instance the Mg49-Zn51 alloy melts at 342°C requiring saturated steam pressures above 160 bar to charge the TES unit. Being aware of this, novel eutectic metallic alloys have been designed reducing the Tms to the range between 285°C and 330°C (79bar and 145bar of charging steam pressure respectively) with ΔHfs between 150 and 170 J/g, and thus achieving metallic Phase Change Materials (PCM) suitable for the available DSG technologies.

  9. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  10. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE PAGES

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  11. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOEpatents

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  12. Energy Conversion Alternatives Study (ECAS)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  13. Locating hot and cold-legs in a nuclear powered steam generation system

    DOEpatents

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  14. Locating hot and cold-legs in a nuclear powered steam generation system

    DOEpatents

    Ekeroth, Douglas E.; Corletti, Michael M.

    1993-01-01

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  15. 76 FR 66763 - Models for Plant-Specific Adoption of Technical Specifications Task Force Traveler TSTF-510...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... of Technical Specifications Task Force Traveler TSTF-510, Revision 2, ``Revision to Steam Generator..., Revision 2, ``Revision to Steam Generator [(SG)] Program Inspection Frequencies and Tube Sample Selection..., ``Steam Generator (SG) Program,'' Specification 5.6.7, ``Steam Generator Tube Inspection Report,'' and the...

  16. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the powermore » cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.« less

  17. Downhole steam quality measurement

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  18. FY95 limited energy study for the area `a` package boiler. Holston Army Ammunition Plant, Kingsport, Tennessee. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-03

    Holston Army Ammunition Plant (HSAAP) in Holston, Tennessee, manufactures explosives from raw materials. The facility comprises two separate areas designated Area `A11 and Area 11B`. Each area is served by a steam plant which produces steam for production processes, equipment operation, space heating, domestic water heating, steam tracing, and product storage heating requirements. The purpose of this study is to identify and evaluate the technical and economic feasibility of alternative methods of meeting the steam requirements of the Area 11A11 industrial complex. The following items were specifically requested to be evaluated. Evaluate the use of two new gas-fired packaged boilersmore » sized to meet the requirements of the industrial complex. The new boilers would be installed adjacent to the existing steam plant and would utilize the existing smokestacks and steam distribution system. Evaluate using the existing steam distribution system rather than locating multiple boilers at various sites. Existing steam driven chillers will be replaced with electric driven equipment. Evaluate this impact on the steam system requirements. Field survey and test two existing gas-fired packaged boilers located at the Volunteer Army Ammunition Plant in Chattanooga, Tennessee. The two boilers were last used about 1980 and are presently laid away. The boilers are approximately the same capacity and operating characteristics as the ones at HSAAP. Relocation of the existing boilers and ancillary equipment (feedwater pumps, generators, fans, etc.) would be required as well as repairs or modifications necessary to meet current operating conditions and standards.« less

  19. Waste remediation

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-01-17

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  20. Waste remediation

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  1. Dryout occurrence in a helically coiled steam generator for nuclear power application

    NASA Astrophysics Data System (ADS)

    Santini, L.; Cioncolini, A.; Lombardi, C.; Ricotti, M.

    2014-03-01

    Dryout phenomena have been experimentally investigated in a helically coiled steam generator tube. The experiences carried out in the present work are part of a wide experimental program devoted to the study of a GEN III+ innovative nuclear power plant [1].The experimental facility consists in an electrically heated AISI 316L stainless steel coiled tube. The tube is 32 meters long, 12.53 mm of inner diameter, with a coil diameter of 1m and a pitch of 0.79 m, resulting in a total height of the steam generator of 8 meters. The thermo-hydraulics conditions for dryout investigations covered a spectrum of mass fluxes between 199 and 810 kg/m2s, the pressures ranges from 10.7 to 60.7 bar, heat fluxes between 43.6 to 209.3 kW/m2.Very high first qualities dryout, between 0.72 and 0.92, were found in the range of explored conditions, comparison of our results with literature available correlations shows the difficulty in predicting high qualities dryout in helical coils., immediately following the heading. The text should be set to 1.15 line spacing. The abstract should be centred across the page, indented 15 mm from the left and right page margins and justified. It should not normally exceed 200 words.

  2. Comparative health and safety assessment of the SPS and alternative electrical generation systems

    NASA Astrophysics Data System (ADS)

    Habegger, L. J.; Gasper, J. R.; Brown, C. D.

    1980-07-01

    A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.

  3. Comparative health and safety assessment of the SPS and alternative electrical generation systems

    NASA Technical Reports Server (NTRS)

    Habegger, L. J.; Gasper, J. R.; Brown, C. D.

    1980-01-01

    A comparative analysis of health and safety risks is presented for the Satellite Power System and five alternative baseload electrical generation systems: a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle; a light water fission reactor system without fuel reprocessing; a liquid metal fast breeder fission reactor system; a central station terrestrial photovoltaic system; and a first generation fusion system with magnetic confinement. For comparison, risk from a decentralized roof-top photovoltaic system with battery storage is also evaluated. Quantified estimates of public and occupational risks within ranges of uncertainty were developed for each phase of the energy system. The potential significance of related major health and safety issues that remain unquantitied are also discussed.

  4. Open cycle ocean thermal energy conversion system structure

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

  5. 40 CFR Table 3 to Subpart Uuuuu of... - Work Practice Standards

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... startup You must operate all CMS during startup. Startup means either the first-ever firing of fuel in a... for any purpose. Startup ends when any of the steam from the boiler is used to generate electricity for sale over the grid or for any other purpose (including on site use). For startup of a unit, you...

  6. 40 CFR Table 3 to Subpart Uuuuu of... - Work Practice Standards

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... startup You must operate all CMS during startup. Startup means either the first-ever firing of fuel in a... for any purpose. Startup ends when any of the steam from the boiler is used to generate electricity for sale over the grid or for any other purpose (including on site use). For startup of a unit, you...

  7. 40 CFR Table 3 to Subpart Uuuuu of... - Work Practice Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... startup You must operate all CMS during startup. Startup means either the first-ever firing of fuel in a... for any purpose. Startup ends when any of the steam from the boiler is used to generate electricity for sale over the grid or for any other purpose (including on site use). For startup of a unit, you...

  8. 40 CFR Table 1 to Subpart Uuuuu of... - Emission Limits for New or Reconstructed EGUs

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Reconstructed EGUs 1 Table 1 to Subpart UUUUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 1 Table 1 to Subpart UUUUU of Part 63—Emission Limits for New or Reconstructed EGUs As stated in § 63.9991, you must comply with the...

  9. 40 CFR Table 1 to Subpart Uuuuu of... - Emission Limits for New or Reconstructed EGUs

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Reconstructed EGUs 1 Table 1 to Subpart UUUUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 1 Table 1 to Subpart UUUUU of Part 63—Emission Limits for New or Reconstructed EGUs As stated in § 63.9991, you must comply with the...

  10. 40 CFR Table 1 to Subpart Uuuuu of... - Emission Limits for New or Reconstructed EGUs

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Reconstructed EGUs 1 Table 1 to Subpart UUUUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 1 Table 1 to Subpart UUUUU of Part 63—Emission Limits for New or Reconstructed EGUs As stated in § 63.9991, you must comply with the...

  11. 77 FR 55834 - Notice of Opportunity To Comment on a Methodology for Allocating Greenhouse Gas Emissions to a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... ethanol plant in Spiritwood, North Dakota, with a nameplate production capacity of 65 million gallons of... factor for the power plant when it is just generating electricity and not diverting steam to the Dakota... from the turbine, and applying the power plant's ``power only'' emissions factor to that value. The...

  12. Energy Security of Army Installations & Islanding Methodologies

    DTIC Science & Technology

    2012-01-16

    islanding of energy generation and distribution networks including electricity, natural gas , steam , liquid fuel, water, and others for the diverse...in geopolitics and war/peace/terrorism Breakthrough in reformation process of synthetic fuel production Hydrogen focused energy sector Oil and gas ...of synthetic AMf Q production Hydrogen focused energy sector D Of and gas remain available and cost-effective Natural Gas prices cut In

  13. 78 FR 41907 - Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ..., Waste treatment and disposal, Water pollution control. Dated: July 3, 2013. Ellen Gilinsky, Acting....regulations.gov or in hard copy at the Water Docket in the EPA Docket Center, EPA/DC, EPA West, Room 3334...-566-1744, and the telephone number for the Water Docket is 202-566-2426. The EPA has established the...

  14. Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Bartela, Łukasz; Mikosz, Dorota

    2014-12-01

    The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.

  15. Solar total energy project at Shenandoah, Georgia system design

    NASA Technical Reports Server (NTRS)

    Poche, A. J.

    1980-01-01

    The solar total energy system (STES) was to provide 50% of the total electrical and thermal energy requirements of the 25,000 sq ft Bleyle of America knitwear plant located at the Shenandoah Site. The system will provide 400 kilowatts electrical and 3 megawatts of thermal energy. The STES has a classical, cascaded total energy system configuration. It utilizes one hundred twenty (120), parabolic dish collectors, high temperature (750 F) trickle oil thermal energy storage and a steam turbine generator. The electrical load shaving system was designed for interconnected operation with the Georgia Power system and for operation in a stand alone mode.

  16. Combustion characteristics of lodge pole pine wood chips. Technical progress report No. 15, September 16, 1978-September 15, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1979-09-01

    Significant quantits of wood resiue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the combustion process in industrial boilersmore » serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of lodge pole pine wood chips. The data were obtained in a pilot scale combustion test facility at Oregon State University.« less

  17. Vessel structural support system

    DOEpatents

    Jenko, James X.; Ott, Howard L.; Wilson, Robert M.; Wepfer, Robert M.

    1992-01-01

    Vessel structural support system for laterally and vertically supporting a vessel, such as a nuclear steam generator having an exterior bottom surface and a side surface thereon. The system includes a bracket connected to the bottom surface. A support column is pivotally connected to the bracket for vertically supporting the steam generator. The system also includes a base pad assembly connected pivotally to the support column for supporting the support column and the steam generator. The base pad assembly, which is capable of being brought to a level position by turning leveling nuts, is anchored to a floor. The system further includes a male key member attached to the side surface of the steam generator and a female stop member attached to an adjacent wall. The male key member and the female stop member coact to laterally support the steam generator. Moreover, the system includes a snubber assembly connected to the side surface of the steam generator and also attached to the adjacent wall for dampening lateral movement of the steam generator. In addition, the system includes a restraining member of "flat" attached to the side surface of the steam generator and a bumper attached to the adjacent wall. The flat and the bumper coact to further laterally support the steam generator.

  18. Use of circulating-fluidized-bed combustors in compressed-air energy storage systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhamkin, M.; Patel, M.

    1990-07-01

    This report presents the result of a study conducted by Energy Storage and Power Consultants (ESPC), with the objective to develop and analyze compressed air energy storage (CAES) power plant concepts which utilize coal-fired circulating fluidized bed combustors (CFBC) for heating air during generating periods. The use of a coal-fired CFBC unit for indirect heating of the compressed air, in lieu of the current turbomachinery combustors, would eliminate the need for expensive premium fuels by a CAES facility. The CAES plant generation heat rate is approximately one-half of that for a conventional steam condensing power plant. Therefore, the required CFBCmore » heat generation capacity and capital costs would be lower per kW of power generation capacity. Three CAES/CFBC concepts were identified as the most promising, and were optimized using specifically developed computerized procedures. These concepts utilize various configurations of reheat turbomachinery trains specifically developed for CAES application as parts of the integrated CAES/CFBC plant concepts. The project team concluded that the optimized CAES/CFBC integrated plant concepts present a potentially attractive alternative to conventional steam generation power plants using CFBC or pulverized coal-fired boilers. A comparison of the results from the economic analysis performed on three concepts suggests that one of them (Concept 3) is the preferred concept. This concept has a two shaft turbomachinery train arrangement, and provides for load management functions by the compressor-electric motor train, and continuous base load operation of the turboexpander-electric generator train and the CFBC unit. 6 refs., 30 figs., 14 tabs.« less

  19. An numerical analysis of high-temperature helium reactor power plant for co-production of hydrogen and electricity

    NASA Astrophysics Data System (ADS)

    Dudek, M.; Podsadna, J.; Jaszczur, M.

    2016-09-01

    In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  20. Unique electric power and water desalination scheme underway in Libya. Student essay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eason, C.N.

    1975-02-21

    With continuing interest in the Mediterranean and the Middle East as a backdrop, focus is put on the basic necessities of water and power in Libya. An analysis is made, on a national basis, of the choice of means for meeting an urgent need for both power and potable water in an economy, exploding in development with limited skills, but with unlimited funds. This could be typical of situations in several Mid-East nations. A discussion includes factors of fuels, fuel costs, capital costs, efficiency, reliability, potential for local operation and timing. These several elements are weighed by the Libyans. Themore » resulting decisions are sound, however, they have adopted a highly sophisticated combination of gas turbine-generators (GT), and heat recovery steam generators (HRSG) to produce steam for water desalination plants at several locations. (GRA)« less

  1. Stormwater Pollution Prevention Plan for the TA-03-22 Power and Steam Plant, Los Alamos National Laboratory, Revision 3, January 2018

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector O-Steam Electric Generating Facilities as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-22 Power and Steam Plant at Los Alamos National Laboratory. Los Alamosmore » National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-22 Power and Steam Plant and associated areas. The current permit expires at midnight on June 4, 2020.« less

  2. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    NASA Astrophysics Data System (ADS)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  3. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cepcek, S.

    1997-02-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.

  4. RELAP5-3D Modeling of Heat Transfer Components (Intermediate Heat Exchanger and Helical-Coil Steam Generator) for NGNP Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. A. Anderson; P. Sabharwall

    2014-01-01

    The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate thatmore » heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.« less

  5. Development of High-Powered Steam Turbines by OAO NPO Central Research and Design Institute for Boilers and Turbines

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. E.; Khomenok, L. A.; Kovalev, I. A.

    2018-01-01

    The article provides an overview of the developments by OAO NPO TsKTI aimed at improvement of components and assemblies of new-generation turbine plants for ultra-supercritical steam parameters to be installed at the power-generating facilities in service. The list of the assemblies under development includes cylinder shells, the cylinder's flow paths and rotors, seals, bearings, and rotor cooling systems. The authors consider variants of the shafting-cylinder configurations for which advanced high-pressure and intermediate-pressure cylinders with reactive blading and low-pressure cylinders of conventional design and with counter-current steam flows are proposed and high-pressure rotors, which can increase the economic efficiency and reduce the overall turbine plant dimensions. Materials intended for the equipment components that operate at high temperatures and a steam cooling technique that allows the use of cheaper steel grades owing to the reduction in the metal's working temperature are proposed. A new promising material for the bearing surfaces is described that enables the operation at higher unit pressures. The material was tested on a full-scale test bench at OAO NPO TsKTI and a turbine in operation. Ways of controlling the erosion of the blades in the moisture-steam turbine compartments by the steam heating of the hollow guide blades are considered. To ensure the dynamic stability of the shafting, shroud and diaphragm seals that prevent the development of the destabilizing circulatory forces of the steam flow were devised and trialed. Advanced instrumentation and software are proposed to monitor the condition of the blading and thermal stresses under transient conditions, to diagnose the vibration processes, and to archive the obtained data. Attention is paid to the normalization of the electromagnetic state of the plant in order to prevent the electrolytic erosion of the plant components. The instrumentation intended for monitoring the relevant electric parameters is described.

  6. Refining the calculation procedure for estimating the influence of flashing steam in steam turbine heaters on the increase of rotor rotation frequency during rejection of electric load

    NASA Astrophysics Data System (ADS)

    Novoselov, V. B.; Shekhter, M. V.

    2012-12-01

    A refined procedure for estimating the effect the flashing of condensate in a steam turbine's regenerative and delivery-water heaters on the increase of rotor rotation frequency during rejection of electric load is presented. The results of calculations carried out according to the proposed procedure as applied to the delivery-water and regenerative heaters of a T-110/120-12.8 turbine are given.

  7. Geothermal Field Near Rotorua, New Zealand

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Historical sketches show the indigenous Maori cooking with natural hot waters and steam prior to the arrival of Europeans on North Island, New Zealand. Since the 1950s, geothermal heat and steam have been exploited for both heating and electrical power generation, and some excess electrical power is exported to South Island. The geothermal development can be identified by the unique patterns of infrastructure that look like tan beads on a string in the midst of otherwise green vegetation. This one near the town of Rotorua lies within a northeast-trending line of active volcanoes (Ruapehu, Tongariro, and White Island) that are the surface result of the Pacific tectonic plate descending beneath the Australian-Indian plate. Image STS110-726-10 was taken by space shuttle crewmembers in April 2002 using a Hasselblad film camera. Image provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  8. 40 CFR 52.1470 - Identification of plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... See 40 CFR 52.1490(c)(25)(i)(A). 445.513 “Fossil fuel” defined 12/4/76 49 FR 11626 (3/27/84) Most... modification or relocation of plants to generate electricity using steam produced by burning of fossil fuels 10... [relates to application forms] 11/7/75 43 FR 1341 (1/9/78) Submitted on 10/31/75. See 40 CFR 52.1490(c)(11...

  9. STEAM GENERATOR FOR NUCLEAR REACTOR

    DOEpatents

    Kinyon, B.W.; Whitman, G.D.

    1963-07-16

    The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

  10. 75 FR 8753 - Carolina Power & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Dusenbury of the North Carolina Department of Environment and Natural Resources regarding the environmental... & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental Assessment and Finding of No... identification of licensing and regulatory actions requiring environmental assessments,'' the NRC prepared an...

  11. GRAPHICAL REPRESENTATIONS OF 1991 STEAM-ELECTRIC POWER PLANT OPERATION AND AIR EMISSIONS DATA

    EPA Science Inventory

    The report provides graphical representations of data derived from the U.S. Department of Energy's (DOE's) Energy Information Administration, s Form EIA-767 (Steam Electric Plant Operation and Design Report). or more than 10 years, EIA has collected monthly boiler level data from...

  12. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  13. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  14. Long-term continuous monitor demonstration program: Columbus and Southern Ohio Electric Company, Conesville Unit 6. Final report Dec 79-Mar 83

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peduto, E.F. Jr.; Porter, T.J.; Midgley, D.P.

    1984-03-01

    The report gives results of a continuous monitoring demonstration at the Columbus and Southern Ohio Electric Company's Conesville Generating Station. The purpose of the demonstration was to determine the feasibility of the requirements for monitoring and control of SO2 emissions as specified in 40 CFR, Part 60, Subpart Da, which promulgates new source performance standards (NSPS) for new utility steam generators. A secondary objective was to adhere to the draft quality assurance requirements scheduled for promulgation as Appendix F. The report describes program activities and results of the field portion, during which data were collected for about 12 months ofmore » a 16-month period.« less

  15. Steam generator design for solar towers using solar salt as heat transfer fluid

    NASA Astrophysics Data System (ADS)

    González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo

    2017-06-01

    Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.

  16. MHD Generating system

    DOEpatents

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  17. Thermal energy storage for power generation applications

    NASA Astrophysics Data System (ADS)

    Drost, M. K.; Antoniak, Zen I.; Brown, D. R.

    1990-03-01

    Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.

  18. Oxygen-hydrogen torch is a small-scale steam generator

    NASA Technical Reports Server (NTRS)

    Maskell, C. E.

    1966-01-01

    Standard oxygen-hydrogen torch generates steam for corrosion-rate analysis of various metals. The steam is generated through local combustion inside a test chamber under constant temperature and pressure control.

  19. Economic analysis of the final effluent limitations, new source performance standards and pretreatment standards for the steam electric power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the economic analysis of final effluent limitation guidelines, New Source Performance Standards, and pretreatment standards being promulgated for the steam-electric power plant point source category. It describes the costs of the final regulations, assesses the effects of these costs on the electric utility industry, and examines the cost-effectiveness of the regulations.

  20. A review of technologies and performances of thermal treatment systems for energy recovery from waste.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-01

    The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels of energy efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modeling and Simulation of U-tube Steam Generator

    NASA Astrophysics Data System (ADS)

    Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei

    2018-03-01

    The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.

  2. Potential for electricity generation from biomass residues in Cuba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lora, E.S.

    The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase inmore » the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.« less

  3. Integration of solar process heat into an existing thermal desalination plant in Qatar

    NASA Astrophysics Data System (ADS)

    Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.

    2016-05-01

    The water supply of many countries in the Middle East relies mainly on water desalination. In Qatar, the water network is completely fed with water from desalination plants. One of these power and desalination plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal desalination is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the desalination units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.

  4. Steam generator for liquid metal fast breeder reactor

    DOEpatents

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  5. Actual operation and regulatory activities on steam generator replacement in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeki, Hitoshi

    1997-02-01

    This paper summarizes the operating reactors in Japan, and the status of the steam generators in these plants. It reviews plans for replacement of existing steam generators, and then goes into more detail on the planning and regulatory steps which must be addressed in the process of accomplishing this maintenance. The paper also reviews the typical steps involved in the process of removal and replacement of steam generators.

  6. Thermochemically recuperated and steam cooled gas turbine system

    DOEpatents

    Viscovich, Paul W.; Bannister, Ronald L.

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  7. Supplementary steam - A viable hydrogen power generation concept

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lee, J. C.

    1979-01-01

    Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.

  8. Development of Advanced Seals for Industrial Turbine Applications

    NASA Astrophysics Data System (ADS)

    Chupp, Raymond E.; Aksit, Mahmut F.; Ghasripoor, Farshad; Turnquist, Norman A.; Dinc, Saim; Mortzheim, Jason; Demiroglu, Mehmet

    2002-10-01

    A critical area being addressed to improve industrial turbine performance is reducing the parasitic leakage flows through the various static and dynamic seals. Implementation of advanced seals into General Electric (GE) industrial turbines has progressed well over the last few years with significant operating performance gains achieved. Advanced static seals have been placed in gas turbine hot gas-path junctions and steam turbine packing ring segment end gaps. Brush seals have significantly decreased labyrinth seal leakages in gas turbine compressors and turbine interstages, steam turbine interstage and end packings, industrial compressor shaft seals, and generator seals. Abradable seals are being developed for blade-tip locations in various turbine locations. This presentation summarizes the status of advanced seal development for industrial turbines at GE.

  9. Thermodynamic and economic analysis of a gas turbine combined cycle plant with oxy-combustion

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Job, Marcin

    2013-12-01

    This paper presents a gas turbine combined cycle plant with oxy-combustion and carbon dioxide capture. A gas turbine part of the unit with the operating parameters is presented. The methodology and results of optimization by the means of a genetic algorithm for the steam parts in three variants of the plant are shown. The variants of the plant differ by the heat recovery steam generator (HRSG) construction: the singlepressure HRSG (1P), the double-pressure HRSG with reheating (2PR), and the triple-pressure HRSG with reheating (3PR). For obtained results in all variants an economic evaluation was performed. The break-even prices of electricity were determined and the sensitivity analysis to the most significant economic factors were performed.

  10. Liquid-metal magnetohydrodynamic system evaluation. [coal-fired designs

    NASA Technical Reports Server (NTRS)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    The present study emphasizes a direct coal-fired design using a bubbly two-component flow of sodium and argon in the MHD generator and a Rankine steam-bottoming plant. Two basic cycles were studied, corresponding to argon temperatures of 922 and 1089 K at the duct inlet. The MHD duct system consisted of multiple ducts arranged in clusters and separated by iron magnet pole pieces. The ducts, each with an output of about 100 MW, were parallel to the flow, but were connected in series electrically to provide a higher MHD voltage. With channel efficiencies of 80%, a pump efficiency of 90%, and a 45% efficient steam-bottoming plant, the overall efficiency of the 1089 K liquid-metal MHD power plant was 43%.

  11. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

    1994-05-03

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  12. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOEpatents

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  13. Review and future perspective of central receiver design and performance

    NASA Astrophysics Data System (ADS)

    Zhu, Guangdong; Libby, Cara

    2017-06-01

    Concentrating solar power (CSP) technology provides a commercial solar option to the utility-scale electricity market. CSP is unique in its ability to include low-cost thermal storage; thus, it can generate electricity when the sun is not available and dispatch electricity to meet varying load requirements. Within the suite of CSP technologies, the central receiver design represents the state-of-the-art technology, promising low cost, high performance, and dispatchable energy production. Current total capacity of central receiver plants worldwide is about 1.0 gigawatt (electric) with operating plants in Spain and the United States, as well as projects under construction in Asia, the Middle East, and North Africa. Central receiver technology has been under development since the 1950s, and a variety of central receiver designs have been explored. A distinguishing feature is the heat transfer medium. Central receiver designs exist that use dense fluids, gases, and solid particles in this role. Water/steam and molten salt receivers have been adopted in current commercial plants and are often coupled with a steam-Rankine power cycle with an operating temperature of less than 600°C. Many new central receiver concepts, such as the volumetric air, supercritical carbon dioxide (sCO2), solid particle, and liquid-metal receiver designs, are under active research and development (R&D). New designs target operating temperatures generally higher than 700°C-800°C—and even above 1000°C—so that higher-performance power cycles such as the sCO2-Brayton cycle or air-Brayton/steam-Rankine combined cycle can be used to promote greater overall system efficiency. Central receiver thermal storage provides dispatchability unavailable from variable-output renewables such as solar photovoltaic and wind power. Case study analysis of the California grid shows that there is a limit on the amount of non-dispatchable renewable generation that the grid can accommodate, beyond which overgeneration, spillage, and instability may occur. Energy storage may well become a necessity in some areas in order to maintain reliability. Next-generation central receiver technologies will have higher operating temperatures and additional features that allow higher-efficiency power generation and deliver other cost-performance advantages. The underlying innovations will come from areas such as multi-physics modeling, high-temperature materials, novel power cycles and heat exchanger designs, and collector field sensing and performance monitoring technologies. Technology innovation is expected to improve the cost and performance of central receiver designs. To deliver value as a generation and storage option, central receiver technology must also be supported by flexible and robust financial models and comprehensive energy and ancillary service markets justifying the capital-intensive investment. Progress in these areas will position CSP central receiver technology for future deployment.

  14. Review and Future Perspective of Central Receiver Design and Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guangdong; Libby, Cara

    Concentrating solar power (CSP) technology provides a commercial solar option to the utility-scale electricity market. CSP is unique in its ability to include low-cost thermal storage; thus, it can generate electricity when the sun is not available and dispatch electricity to meet varying load requirements. Within the suite of CSP technologies, the central receiver design represents the state-of-the-art technology, promising low cost, high performance, and dispatchable energy production. Current total capacity of central receiver plants worldwide is about 1.0 gigawatt (electric) with operating plants in Spain and the United States, as well as projects under construction in Asia, the Middlemore » East, and North Africa. Central receiver technology has been under development since the 1950s, and a variety of central receiver designs have been explored. A distinguishing feature is the heat transfer medium. Central receiver designs exist that use dense fluids, gases, and solid particles in this role. Water/steam and molten salt receivers have been adopted in current commercial plants and are often coupled with a steam-Rankine power cycle with an operating temperature of less than 600 degrees C. Many new central receiver concepts, such as the volumetric air, supercritical carbon dioxide (sCO2), solid particle, and liquid-metal receiver designs, are under active research and development (R&D). New designs target operating temperatures generally higher than 700 degrees C-800 degrees C -- and even above 1000 degrees C -- so that higher-performance power cycles such as the sCO2-Brayton cycle or air-Brayton/steam-Rankine combined cycle can be used to promote greater overall system efficiency. Central receiver thermal storage provides dispatchability unavailable from variable-output renewables such as solar photovoltaic and wind power. Case study analysis of the California grid shows that there is a limit on the amount of non-dispatchable renewable generation that the grid can accommodate, beyond which overgeneration, spillage, and instability may occur. Energy storage may well become a necessity in some areas in order to maintain reliability. Next-generation central receiver technologies will have higher operating temperatures and additional features that allow higher-efficiency power generation and deliver other cost-performance advantages. The underlying innovations will come from areas such as multi-physics modeling, high-temperature materials, novel power cycles and heat exchanger designs, and collector field sensing and performance monitoring technologies. Technology innovation is expected to improve the cost and performance of central receiver designs. To deliver value as a generation and storage option, central receiver technology must also be supported by flexible and robust financial models and comprehensive energy and ancillary service markets justifying the capital-intensive investment. Progress in these areas will position CSP central receiver technology for future deployment.« less

  15. Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generatingmore » systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)« less

  16. Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-08-01

    This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979,more » while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)« less

  17. The Portable Chemical Sterilizer (PCS), D-FENS, and D-FEND ALL: novel chlorine dioxide decontamination technologies for the military.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Setlow, Peter; Malkin, Alexander J; Leighton, Terrence J

    2014-06-29

    There is a stated Army need for a field-portable, non-steam sterilizer technology that can be used by Forward Surgical Teams, Dental Companies, Veterinary Service Support Detachments, Combat Support Hospitals, and Area Medical Laboratories to sterilize surgical instruments and to sterilize pathological specimens prior to disposal in operating rooms, emergency treatment areas, and intensive care units. The following ensemble of novel, 'clean and green' chlorine dioxide technologies are versatile and flexible to adapt to meet a number of critical military needs for decontamination(6,15). Specifically, the Portable Chemical Sterilizer (PCS) was invented to meet urgent battlefield needs and close critical capability gaps for energy-independence, lightweight portability, rapid mobility, and rugged durability in high intensity forward deployments(3). As a revolutionary technological breakthrough in surgical sterilization technology, the PCS is a Modern Field Autoclave that relies on on-site, point-of-use, at-will generation of chlorine dioxide instead of steam. Two (2) PCS units sterilize 4 surgical trays in 1 hr, which is the equivalent throughput of one large steam autoclave (nicknamed "Bertha" in deployments because of its cumbersome size, bulky dimensions, and weight). However, the PCS operates using 100% less electricity (0 vs. 9 kW) and 98% less water (10 vs. 640 oz.), significantly reduces weight by 95% (20 vs. 450 lbs, a 4-man lift) and cube by 96% (2.1 vs. 60.2 ft(3)), and virtually eliminates the difficult challenges in forward deployments of repairs and maintaining reliable operation, lifting and transporting, and electrical power required for steam autoclaves.

  18. Hockey-stick steam generator for LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallinan, G.J.; Svedlund, P.E.

    1981-01-01

    This paper presents the criteria and evaluation leading to the selection of the Hockey Stick Steam Generator Concept and subsequent development of that concept for LMFBR application. The selection process and development of the Modular Steam Generator (MSG) is discussed, including the extensive test programs that culminated in the manufacture and test of a 35 MW(t) Steam Generator. The design of the CRBRP Steam Generator is described, emphasizing the current status and a review of the critical structural areas. CRBRP steam generator development tests are evaluated, with a discussion of test objectives and rating of the usefulness of test resultsmore » to the CRBRP prototype design. Manufacturing experience and status of the CRBRP prototype and plant units is covered. The scaleup of the Hockey Stick concept to large commercial plant application is presented, with an evaluation of scaleup limitations, transient effects, and system design implications.« less

  19. Planning status report: water resources appraisal for hydroelectric licensing, Potomac River basin, Pennsylvania, Maryland, West Virginia, Virginia, and District of Columbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    Updated information on water resources in the Potomac River Basin is presented for use by the FERC and its staff when considering hydroelectric licensing and other work. The report presents data on water resource developments, existing and potential, and on water use by existing and projected steam-electric generating facilities. Past and present planning studies are summarized.

  20. Power generating system and method utilizing hydropyrolysis

    DOEpatents

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  1. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-01-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  2. Process development and exergy cost sensitivity analysis of a hybrid molten carbonate fuel cell power plant and carbon dioxide capturing process

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Mehdi; Ansarinasab, Hojat; Moftakhari Sharifzadeh, Mohammad Mehdi; Rosen, Marc A.

    2017-10-01

    An integrated power plant with a net electrical power output of 3.71 × 105 kW is developed and investigated. The electrical efficiency of the process is found to be 60.1%. The process includes three main sub-systems: molten carbonate fuel cell system, heat recovery section and cryogenic carbon dioxide capturing process. Conventional and advanced exergoeconomic methods are used for analyzing the process. Advanced exergoeconomic analysis is a comprehensive evaluation tool which combines an exergetic approach with economic analysis procedures. With this method, investment and exergy destruction costs of the process components are divided into endogenous/exogenous and avoidable/unavoidable parts. Results of the conventional exergoeconomic analyses demonstrate that the combustion chamber has the largest exergy destruction rate (182 MW) and cost rate (13,100 /h). Also, the total process cost rate can be decreased by reducing the cost rate of the fuel cell and improving the efficiency of the combustion chamber and heat recovery steam generator. Based on the total avoidable endogenous cost rate, the priority for modification is the heat recovery steam generator, a compressor and a turbine of the power plant, in rank order. A sensitivity analysis is done to investigate the exergoeconomic factor parameters through changing the effective parameter variations.

  3. Use of a turboexpander in steam power units for heat energy recovery in heat supply systems

    NASA Astrophysics Data System (ADS)

    Sadykov, R. A.; Daminov, A. Z.; Solomin, I. N.; Futin, V. A.

    2016-05-01

    A method for raising the efficiency of a boiler plant by installing a unit operating by the organic Rankine cycle is presented. Such units allow one to generate electricity to cover the auxiliaries of a heat source at a heat-transfer fluid temperature of no more than 130°C. The results of commissioning tests of boilers revealed that their efficiency is maximized under a load that is close or corresponds to the nominal one. If this load is maintained constantly, excess heat energy is produced. This excess may be used to generate electric energy in a steam power unit with a turboexpander. A way to insert this unit into the flow diagram of a boiler plant is proposed. The results of analysis of turbine types (turboexpanders included) with various capacities are presented, and the optimum type for the proposed flow diagram is chosen. The methodology for the design of turboexpanders and compressors used in the oil and gas industry and their operational data were applied in the analysis of a turboexpander. The results of the thermogasdynamic analysis of a turboexpander and the engineered shape of an axial-radial impeller are presented. Halocarbon R245fa is chosen as the working medium based on its calorimetric properties.

  4. Steampunk: Full Steam Ahead

    ERIC Educational Resources Information Center

    Campbell, Heather M.

    2010-01-01

    Steam-powered machines, anachronistic technology, clockwork automatons, gas-filled airships, tentacled monsters, fob watches, and top hats--these are all elements of steampunk. Steampunk is both speculative fiction that imagines technology evolved from steam-powered cogs and gears--instead of from electricity and computers--and a movement that…

  5. Thermochemically recuperated and steam cooled gas turbine system

    DOEpatents

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  6. Estimation of lifespan and economy parameters of steam-turbine power units in thermal power plants using varying regimes

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.

    2016-08-01

    The use of potent power units in thermal and nuclear power plants in order to regulate the loads results in intense wear of power generating equipment and reduction in cost efficiency of their operation. We review the methodology of a quantitative assessment of the lifespan and wear of steam-turbine power units and estimate the effect of various operation regimes upon their efficiency. To assess the power units' equipment wear, we suggest using the concept of a turbine's equivalent lifespan. We give calculation formulae and an example of calculation of the lifespan of a steam-turbine power unit for supercritical parameters of steam for different options of its loading. The equivalent lifespan exceeds the turbine's assigned lifespan only provided daily shutdown of the power unit during the night off-peak time. We obtained the engineering and economical indices of the power unit operation for different loading regulation options in daily and weekly diagrams. We proved the change in the prime cost of electric power depending on the operation regimes and annual daily number of unloading (non-use) of the power unit's installed capacity. According to the calculation results, the prime cost of electric power for the assumed initial data varies from 11.3 cents/(kW h) in the basic regime of power unit operation (with an equivalent operation time of 166700 hours) to 15.5 cents/(kW h) in the regime with night and holiday shutdowns. The reduction of using the installed capacity of power unit at varying regimes from 3.5 to 11.9 hours per day can increase the prime cost of energy from 4.2 to 37.4%. Furthermore, repair and maintenance costs grow by 4.5% and by 3 times, respectively, in comparison with the basic regime. These results indicate the need to create special maneuverable equipment for working in the varying section of the electric load diagram.

  7. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination.

    PubMed

    Yin, Xiangyu; Zhang, Yue; Guo, Qiuquan; Cai, Xiaobing; Xiao, Junfeng; Ding, Zhifeng; Yang, Jun

    2018-04-04

    Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m -2 h -1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.

  8. Comparative evaluation of surface and downhole steam-generation techniques

    NASA Astrophysics Data System (ADS)

    Hart, C.

    The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.

  9. Optimization of steam generators of NPP with WWER in operation with variable load

    NASA Astrophysics Data System (ADS)

    Parchevskii, V. M.; Shchederkina, T. E.; Gur'yanova, V. V.

    2017-11-01

    The report addresses the issue of the optimal water level in the horizontal steam generators of NPP with WWER. On the one hand, the level needs to be kept at the lower limit of the allowable range, as gravity separation, steam will have the least humidity and the turbine will operate with higher efficiency. On the other hand, the higher the level, the greater the supply of water in the steam generator, and therefore the higher the security level of the unit, because when accidents involving loss of cooling of the reactor core, the water in the steam generators, can be used for cooling. To quantitatively compare the damage from higher level to the benefit of improving the safety was assessed of the cost of one cubic meter of water in the steam generators, the formulated objective function of optimal levels control. This was used two-dimensional separation characteristics of steam generators. It is demonstrated that the security significantly shifts the optimal values of the levels toward the higher values, and this bias is greater the lower the load unit.

  10. 75 FR 82414 - Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light Company (CP&L, the licensee) is the holder of Renewed Facility Operating License No. DPR-23, which...

  11. Utilisation of energy from digester gas and sludge incineration at Hamburg's Köhlbrandhöft WWTP.

    PubMed

    Thierbach, R D; Hanssen, H

    2002-01-01

    At Hamburg's Köhlbrandhöft WWTP the demand for external energy supply is minimised by state of the art sludge treatment. The sludge is subjected to thickening, anaerobic digestion, dewatering, drying and incineration. The digester gas is used in a combined gas and steam turbine process. The sludge incineration also produces steam, which is also used in the steam turbine that follows the gas turbine. The turbines produce electricity, partially expanded steam is used for the sludge drying process. Heat from the condensation of vapours from sludge drying is used to heat the anaerobic digesters. The overall process requires no external heat or fuel and produces 60% of the WWTP's electricity demand.

  12. Controls on Water Use for Thermoelectric Generation: Case Study Texas, U.S.

    PubMed Central

    2013-01-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km3), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km3) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. PMID:23937226

  13. Controls on water use for thermoelectric generation: case study Texas, US.

    PubMed

    Scanlon, Bridget R; Reedy, Robert C; Duncan, Ian; Mullican, William F; Young, Michael

    2013-10-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km(3)), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km(3)) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000.

  14. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems, Volume 4. Appendix C: Design and performance of standardized fixed bed air-blown gasifier IGCC systems for future electric power generation: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    This appendix is a compilation of work done to predict overall cycle performance from gasifier to generator terminals. A spreadsheet has been generated for each case to show flows within a cycle. The spreadsheet shows gaseous or solid composition of flow, temperature of flow, quantity of flow, and heat heat content of flow. Prediction of steam and gas turbine performance was obtained by the computer program GTPro. Outputs of all runs for each combined cycle reviewed has been added to this appendix. A process schematic displaying all flows predicted through GTPro and the spreadsheet is also added to this appendix.more » The numbered bubbles on the schematic correspond to columns on the top headings of the spreadsheet.« less

  15. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feedmore » a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.« less

  16. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    NASA Astrophysics Data System (ADS)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  17. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOEpatents

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanvick, T.W.

    The Logan Generating Plant (formerly Keystone Cogeneration Project) is a 230 MW (gross) pulverized coal cogeneration facility located on the Delaware River in Logan Township, New Jersey, off Route 130. Owned and operated by U.S. Generating Company, the plant was built by Bechtel Corporation, which provided engineering, procurement, construction, and startup services. Power from the plant is furnished to Atlantic Electric, and approximately 50,000 pounds of process steam per hour is provided to Monsanto`s adjacent facility. U.S. Generating Company is committed to operating plants with close attention to the environment and has developed a specific Environmental Mission Statement. This papermore » addresses some of the key environmental features at the Logan Generating Plant.« less

  19. More steam for Kern River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rintoul, B.

    1973-02-01

    While production generally is declining elsewhere in California, the Kern River field continues to post gains. The field last year produced at an all-time high for the second year in a row, putting out at least 1.5 million bbl more than in its previous peak year. There is every reason to believe that gains will continue through this year. Steam is in the factor that underlies Kern River's resurgence, and Getty Oil Co., the field's premier steamer, recently added to its already imposing array of steam-generating equipment a pair of large boilers, each capable of generating 240 million btus permore » hr. Along with expansion of the steaming effort the company also expanded its water-treating facilities, making sure there will be plenty of feed water to fuel the steam generators at work in the field. The new boilers are being used to furnish steam to 136 wells in a steam displacement project. The purpose of going to a larger generator has been to gain higher efficiency. The components that have made Getty Oil the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells, steam generators and--since 1969--a computer. The entire project is described in detail.« less

  20. US PWR steam generator management: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welty, C.S. Jr.

    1997-02-01

    This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of {open_quotes}steam generator management{close_quotes}; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, {open_quotes}Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosion{close_quotes}, andmore » is provided as a supplement to that material.« less

  1. Liquid-Phase Electrical Discharges: Fundamental Mechanisms and Applications

    NASA Astrophysics Data System (ADS)

    Franclemont, Joshua

    The increased demand in alternative energy in recent decades has generated significant interest in cleaner fuel sources including hydrogen and syngas (hydrogen and carbon monoxide). Hydrogen and syngas are both primarily produced through the steam reforming of hydrocarbons, specifically natural gas. Although other processes are known, the cheapest source of these fuels is currently through the heating of natural gas in the presence of steam and a catalyst. However, due to the emissions associated with the steam reforming of natural gas and the lack of low cost, efficient, and reliable onboard hydrogen storage technologies for fuel cell powered vehicles, attention has been focused on plasma-assisted reforming of hydrocarbons. Plasma processes can be implemented onboard and are able to directly reform liquid hydrocarbons and alcohols without external heating or catalysts. In addition to hydrogen and syngas, the plasma-assisted reforming of hydrocarbons and alcohols offers other desirable products such as C2 gases (ethane, ethylene, and acetylene), methanol and ethanol. The primary goal of this study is to investigate the fundamental chemical reactions occurring during plasma-assisted reforming of liquid hydrocarbons and alcohols using streamer-like pulsed electrical discharges. Due to the relatively unexplored field of chemical reactions in liquid plasmas, the focus of this study is on elucidating chemical pathways responsible for the formation of hydrogen, syngas, and other products during the direct reforming of liquid methanol, glycerol, and pentane as model species.

  2. Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Roes, J.; Brandt, H.

    The University of Duisburg-Essen and the Center for Fuel Cell Technology (ZBT Duisburg GmbH) have developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. Fuel processor prototypes based on this concept were built up in the power range from 2.5 to 12.5 kW thermal hydrogen power for different applications and different industrial partners. The fuel processor concept contains all the necessary elements, a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers, in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PrOx) as CO purification. One of the built fuel processors is designed to deliver a thermal hydrogen power output of 2.5 kW according to a PEM fuel cell stack providing about 1 kW electrical power and achieves a thermal efficiency of about 75% (LHV basis after PrOx), while the CO content of the product gas is below 20 ppm. This steam reformer has been combined with a 1 kW PEM fuel cell. Recirculating the anodic offgas results in a significant efficiency increase for the fuel processor. The gross efficiency of the combined system was already clearly above 30% during the first tests. Further improvements are currently investigated and developed at the ZBT.

  3. DB Riley-low emission boiler system (LEBS): Superior power for the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beittel, R.; Ruth, L.A.

    1997-12-31

    In conjunction with the US Department of Energy, DB Riley, Inc., is developing a highly advanced coal-fired power-generation plant called the Low Emission Boiler Systems (LEBS). By the year 2000, LEBS will provide the US electric power industry with a reliable, efficient, cost-effective, environmentally superior alternative to current technologies. LEBS incorporates significant advances in coal combustion, supercritical steam boiler design, environmental control, and materials development. The system will include a state-of-the-art steam cycle operating at supercritical steam conditions; a slagging combustor that produces vitrified ash by-products; low nitrogen oxide (NOx) burners; a new, dry, regenerable flue gas cleanup system (coppermore » oxide process) for simultaneously capturing sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx); a pulse-jet fabric filter for particulate capture; and a low-temperature heat-recovery system. The copper oxide flue gas cleanup system, which has been under development at DOE`s Pittsburgh field center, removes over 98% of SO{sub 2} and 95% of NOx from flue gas. A new moving-bed design provides efficient sorbent utilization that lowers the cleanup process cost. The captured SO{sub 2} can be converted to valuable by-products such as sulfuric acid and/or element sulfur, and the process generates no waste.« less

  4. 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination.

    PubMed

    Li, Yiju; Gao, Tingting; Yang, Zhi; Chen, Chaoji; Luo, Wei; Song, Jianwei; Hitz, Emily; Jia, Chao; Zhou, Yubing; Liu, Boyang; Yang, Bao; Hu, Liangbing

    2017-07-01

    Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m -2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Feasibility study for biomass power plants in Thailand. Volume 2. appendix: Detailed financial analysis results. Export trade information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This study, conducted by Black & Veatch, was funded by the U.S. Trade and Development Agency. The report presents a technical and commercial analysis for the development of three nearly identical electricity generating facilities (biomass steam power plants) in the towns of Chachgoengsao, Suphan Buri, and Pichit in Thailand. Volume 2 of the study contains the following appendix: Detailed Financial Analysis Results.

  6. Analysis of Operational Data: A Proof of Concept for Assessing Electrical Infrastructure Impact

    DTIC Science & Technology

    2015-11-01

    cogeneration, solar, wind , geothermal, etc.) or by prime mover (i.e., steam turbine , water turbine , gas turbine , etc.). Power plants are typically...and Time SDR Sensor Data Record TRADOC U.S. Army Training and Doctrine Command UTC Coordinated Universal Time VCM VIIRS Cloud Mask VIIRS Visible...power, and other natural sources (water or wind ). The generating facilities or power plants can run by fuel (e.g., fossil fuel, hydroelectric, nuclear

  7. Innovation for Pollution Control

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Kinetic Controls Inc.'s refuse-fired steam generating facility led to the development of an air pollution equipment control device. The device is currently marketed by two NASA/Langley Research Center employees. It automatically senses and compensates for the changes in smoke composition when refuse is used as a fuel by adjusting the precipitator's voltage and current to permit maximum collection of electrically charged dust particles. The control adapts to any electrostatic precipitator and should have extensive commercial applications.

  8. EXPERIMENTAL MOLTEN-SALT-FUELED 30-Mw POWER REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, L.G.; Kinyon, B.W.; Lackey, M.E.

    1960-03-24

    A preliminary design study was made of an experimental molten-salt- fueled power reactor. The reactor considered is a single-region homogeneous burner coupled with a Loeffler steam-generating cycle. Conceptual plant layouts, basic information on the major fuel circuit components, a process flowsheet, and the nuclear characteristics of the core are presented. The design plant electrical output is 10 Mw, and the total construction cost is estimated to be approximately ,000,000. (auth)

  9. Steam generator degradation: Current mitigation strategies for controlling corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millett, P.

    1997-02-01

    Steam Generator degradation has caused substantial losses of power generation, resulted in large repair and maintenance costs, and contributed to significant personnel radiation exposures in Pressurized Water Reactors (PWRs) operating throughout the world. EPRI has just published the revised Steam Generator Reference Book, which reviews all of the major forms of SG degradation. This paper discusses the types of SG degradation that have been experienced with emphasis on the mitigation strategies that have been developed and implemented in the field. SG degradation is presented from a world wide perspective as all countries operating PWRs have been effected to one degreemore » or another. The paper is written from a US. perspective where the utility industry is currently undergoing tremendous change as a result of deregulation of the electricity marketplace. Competitive pressures are causing utilities to strive to reduce Operations and Maintenance (O&M) and capital costs. SG corrosion is a major contributor to the O&M costs of PWR plants, and therefore US utilities are evaluating and implementing the most cost effective solutions to their corrosion problems. Mitigation strategies developed over the past few years reflect a trend towards plant specific solutions to SG corrosion problems. Since SG degradation is in most cases an economic problem and not a safety problem, utilities can focus their mitigation strategies on their unique financial situation. Accordingly, the focus of R&D has shifted from the development of more expensive, prescriptive solutions (e.g. reduced impurity limits) to corrosion problems to providing the utilities with a number of cost effective mitigation options (e.g. molar ratio control, boric acid treatment).« less

  10. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    PubMed

    Liu, Gang; Bao, Jie

    2017-12-01

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    NASA Technical Reports Server (NTRS)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  12. Use of borehole radar reflection logging to monitor steam-enhanced remediation in fractured limestone-results of numerical modelling and a field experiment

    USGS Publications Warehouse

    Gregoire, C.; Joesten, P.K.; Lane, J.W.

    2006-01-01

    Ground penetrating radar is an efficient geophysical method for the detection and location of fractures and fracture zones in electrically resistive rocks. In this study, the use of down-hole (borehole) radar reflection logs to monitor the injection of steam in fractured rocks was tested as part of a field-scale, steam-enhanced remediation pilot study conducted at a fractured limestone quarry contaminated with chlorinated hydrocarbons at the former Loring Air Force Base, Limestone, Maine, USA. In support of the pilot study, borehole radar reflection logs were collected three times (before, during, and near the end of steam injection) using broadband 100 MHz electric dipole antennas. Numerical modelling was performed to predict the effect of heating on radar-frequency electromagnetic (EM) wave velocity, attenuation, and fracture reflectivity. The modelling results indicate that EM wave velocity and attenuation change substantially if heating increases the electrical conductivity of the limestone matrix. Furthermore, the net effect of heat-induced variations in fracture-fluid dielectric properties on average medium velocity is insignificant because the expected total fracture porosity is low. In contrast, changes in fracture fluid electrical conductivity can have a significant effect on EM wave attenuation and fracture reflectivity. Total replacement of water by steam in a fracture decreases fracture reflectivity of a factor of 10 and induces a change in reflected wave polarity. Based on the numerical modelling results, a reflection amplitude analysis method was developed to delineate fractures where steam has displaced water. Radar reflection logs collected during the three acquisition periods were analysed in the frequency domain to determine if steam had replaced water in the fractures (after normalizing the logs to compensate for differences in antenna performance between logging runs). Analysis of the radar reflection logs from a borehole where the temperature increased substantially during the steam injection experiment shows an increase in attenuation and a decrease in reflectivity in the vicinity of the borehole. Results of applying the reflection amplitude analysis method developed for this study indicate that steam did not totally replace the water in most of the fractures. The observed decreases in reflectivity were consistent with an increase in fracture-water temperature, rather than the presence of steam. A limiting assumption of the reflection amplitude analysis method is the requirement for complete displacement of water in a fracture by steam. ?? 2006 Elsevier B.V. All rights reserved.

  13. Economical and Energy Efficiency of Iron and Steel Industry Reindustrialisation in Russia Based on Implementation of Breakthrough Energy-Saving Technologies

    NASA Astrophysics Data System (ADS)

    Shevelev, L. N.

    2017-12-01

    Estimates were given of economical and energy efficiency of breakthrough energy-saving technologies, which increase competitive advantages and provide energy efficiency of production while reducing negative impact on the environment through reduction of emissions of harmful substances and greenhouse gases in the atmosphere. Among these technologies, preference is given to the following: pulverized coal fuel, blast-furnace gas recycling, gasification of non-coking coal in bubble-type gas-generators, iron-ore concentrate briquetting with steam coal with further use of ore-coal briquettes in electric furnace steel making. Implementation of these technologies at iron and steel works will significantly reduce the energy intensity of production through reduction of expensive coking coal consumption by means of their substitution by less expensive non-coking (steam) coal, and natural gas substitution by own secondary energy resource, which is the reducing gas. As the result, plants will get an opportunity to become self-sufficient in energy-resources and free themselves entirely from expensive purchased energy resources (natural gas, electric power, and partially coking coals), and cross over to low-carbon development.

  14. Particle tower technology applied to metallurgic plants and peak-time boosting of steam power plants

    NASA Astrophysics Data System (ADS)

    Amsbeck, Lars; Buck, Reiner; Prosin, Tobias

    2016-05-01

    Using solar tower technology with ceramic particles as heat transfer and storage medium to preheat scrap for induction furnaces in foundries provides solar generated heat to save electricity. With such a system an unsubsidized payback time of only 4 years is achieved for a 70000t/a foundry in Brazil. The same system can be also used for heat treatment of metals. If electricity is used to heat inert atmospheres a favorable economic performance is also achievable for the particle system. The storage in a particle system enables solar boosting to be restricted to only peak times, enabling an interesting business case opportunity.

  15. 40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...

  16. 40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...

  17. 40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...

  18. 40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...

  19. 40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...

  20. 40 CFR 60.41c - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...

  1. 40 CFR 60.41c - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...

  2. 40 CFR 60.41c - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...

  3. Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization.

    PubMed

    Ito, Yoshikazu; Tanabe, Yoichi; Han, Jiuhui; Fujita, Takeshi; Tanigaki, Katsumi; Chen, Mingwei

    2015-08-05

    Multifunctional nanoporous graphene is realized as a heat generator to convert solar illumination into high-energy steam. The novel 3D nanoporous graphene demonstrates a highly energy-effective steam generation with an energy conversation of 80%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Method for providing oxygen ion vacancies in lanthanide oxides

    DOEpatents

    Kay, D. Alan R.; Wilson, William G.

    1989-12-05

    A method for desulfurization of fuel gases resulting from the incomplete combustion of sulfur containing hydrocarbons whereby the gases are treated with lanthanide oxides containing large numbers of oxygen-ion vacancies providing ionic porosity which enhances the ability of the lanthanide oxides to react more rapidly and completely with the sulfur in the fuel gases whereby the sulfur in such gases is reduced to low levels suitable for fuels for firing into boilers of power plants generating electricity with steam turbine driven generators, gas turbines, fuel cells and precursors for liquid fuels such as methanol and the like.

  5. Proceedings of the American Power Conference. Volume 60-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1998-12-01

    The American Power Conference, 60th annual meeting, 1998, addressed reliability and economy as related to technology for competition and globalization. The topics of the papers included needs and advances in power engineering education, global climate change, distributed generation, the critical role of the nations largest coal, nuclear and hydropower stations, advances in generation technology, financing electric power projects, successful deregulation, year 2000 outlook for equipment conflict with information and control, system planning, asset management, relay and communication, particulate and SO{sub x} control, environmental protection compliance strategies, fuel cells, gas turbines, renewable energy, steam turbines, and cost reduction strategies.

  6. Proceedings of the American Power Conference. Volume 60-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1998-12-01

    The American Power Conference, 60th annual meeting, 1998, addressed reliability and economy as related to technology for competition and globalization. The topics of the papers included needs and advances in power engineering education, global climate change, distributed generation, the critical role of the nations largest coal, nuclear and hydropower stations, advances in generation technology, financing electric power projects, successful deregulation, year 2000 outlook for equipment conflict with information and control, system planning, asset management, relay and communication, particulate and SO{sub x} control, environmental protection compliance strategies, fuel cells, gas turbines, renewable energy, steam turbines, and cost reduction strategies.

  7. Second law analysis of a conventional steam power plant

    NASA Technical Reports Server (NTRS)

    Liu, Geng; Turner, Robert H.; Cengel, Yunus A.

    1993-01-01

    A numerical investigation of exergy destroyed by operation of a conventional steam power plant is computed via an exergy cascade. An order of magnitude analysis shows that exergy destruction is dominated by combustion and heat transfer across temperature differences inside the boiler, and conversion of energy entering the turbine/generator sets from thermal to electrical. Combustion and heat transfer inside the boiler accounts for 53.83 percent of the total exergy destruction. Converting thermal energy into electrical energy is responsible for 41.34 percent of the total exergy destruction. Heat transfer across the condenser accounts for 2.89 percent of the total exergy destruction. Fluid flow with friction is responsible for 0.50 percent of the total exergy destruction. The boiler feed pump turbine accounts for 0.25 percent of the total exergy destruction. Fluid flow mixing is responsible for 0.23 percent of the total exergy destruction. Other equipment including gland steam condenser, drain cooler, deaerator and heat exchangers are, in the aggregate, responsible for less than one percent of the total exergy destruction. An energy analysis is also given for comparison of exergy cascade to energy cascade. Efficiencies based on both the first law and second law of thermodynamics are calculated for a number of components and for the plant. The results show that high first law efficiency does not mean high second law efficiency. Therefore, the second law analysis has been proven to be a more powerful tool in pinpointing real losses. The procedure used to determine total exergy destruction and second law efficiency can be used in a conceptual design and parametric study to evaluate the performance of other steam power plants and other thermal systems.

  8. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants.

    PubMed

    Dal Magro, Fabio; Xu, Haoxin; Nardin, Gioacchino; Romagnoli, Alessandro

    2018-03-01

    This study reports the thermal analysis of a novel thermal energy storage based on high temperature phase change material (PCM) used to improve efficiency in waste-to-energy plants. Current waste-to-energy plants efficiency is limited by the steam generation cycle which is carried out with boilers composed by water-walls (i.e. radiant evaporators), evaporators, economizers and superheaters. Although being well established, this technology is subjected to limitations related with high temperature corrosion and fluctuation in steam production due to the non-homogenous composition of solid waste; this leads to increased maintenance costs and limited plants availability and electrical efficiency. The proposed solution in this paper consists of replacing the typical refractory brick installed in the combustion chamber with a PCM-based refractory brick capable of storing a variable heat flux and to release it on demand as a steady heat flux. By means of this technology it is possible to mitigate steam production fluctuation, to increase temperature of superheated steam over current corrosion limits (450°C) without using coated superheaters and to increase the electrical efficiency beyond 34%. In the current paper a detailed thermo-mechanical analysis has been carried out in order to compare the performance of the PCM-based refractory brick against the traditional alumina refractory bricks. The PCM considered in this paper is aluminium (and its alloys) whereas its container consists of high density ceramics (such as Al 2 O 3 , AlN and Si 3 N 4 ); the different coefficient of linear thermal expansion for the different materials requires a detailed thermo-mechanical analysis to be carried out to ascertain the feasibility of the proposed technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Portable Chemical Sterilizer (PCS), D-FENS, and D-FEND ALL: Novel Chlorine Dioxide Decontamination Technologies for the Military

    PubMed Central

    Doona, Christopher J.; Feeherry, Florence E.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrence J.

    2014-01-01

    There is a stated Army need for a field-portable, non-steam sterilizer technology that can be used by Forward Surgical Teams, Dental Companies, Veterinary Service Support Detachments, Combat Support Hospitals, and Area Medical Laboratories to sterilize surgical instruments and to sterilize pathological specimens prior to disposal in operating rooms, emergency treatment areas, and intensive care units. The following ensemble of novel, ‘clean and green’ chlorine dioxide technologies are versatile and flexible to adapt to meet a number of critical military needs for decontamination6,15. Specifically, the Portable Chemical Sterilizer (PCS) was invented to meet urgent battlefield needs and close critical capability gaps for energy-independence, lightweight portability, rapid mobility, and rugged durability in high intensity forward deployments3. As a revolutionary technological breakthrough in surgical sterilization technology, the PCS is a Modern Field Autoclave that relies on on-site, point-of-use, at-will generation of chlorine dioxide instead of steam. Two (2) PCS units sterilize 4 surgical trays in 1 hr, which is the equivalent throughput of one large steam autoclave (nicknamed “Bertha” in deployments because of its cumbersome size, bulky dimensions, and weight). However, the PCS operates using 100% less electricity (0 vs. 9 kW) and 98% less water (10 vs. 640 oz.), significantly reduces weight by 95% (20 vs. 450 lbs, a 4-man lift) and cube by 96% (2.1 vs. 60.2 ft3), and virtually eliminates the difficult challenges in forward deployments of repairs and maintaining reliable operation, lifting and transporting, and electrical power required for steam autoclaves. PMID:24998679

  10. Geothermal wells drilled in Transcarpathians

    NASA Astrophysics Data System (ADS)

    Kuzma, A.

    1984-12-01

    The lion's share of the Earth's electric power is known to be produced by thermal electric power plants wwich burn coal and gas. New storehouses of energy must be sought. It became known that the main reserves of heat in the Earth's interior are concentrated in rock. In simple terms, the technology of delivering the Earth's heat to the surface is as follows: water injected under high pressure from a river into one well comes in contact with hot beds situated at enormous depth, after which it returns by a second well in the form of a steam-water mixture, which then operates turbines of an electric power plant. The water would be used many times over in a closed cycle. This method promises many advantages. It will provide a possibility for generating cheap electric power while excluding all pollution of the environment.

  11. Lichen deterioration about a coal-fired steam electric generating plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, E.L.; Zeyen, R.J.

    1979-01-01

    A survey of three common epiphytic species of foliose lichens was conducted about a coal-fired steam electric station in North-Central Minnesota during the summer of 1977 to assess general lichen health on a gradient basis from a point-source of air pollution. Health, as judged by abnormal form and color, of nearly 3500 lichen specimens was recorded in 35 vegetation survey plots from a total of 291 trees. Lichen discoloration and degeneration decreased with increased distance from the power plant, and little deterioration was observed beyond 3 miles. Within the plant vicinity, lichen damage was noted on tree boles facing themore » plant which were impacted with fly ash. Maximum damage of lichens followed the pattern of prevailing winds (NW-SE). Sulfur analysis of lichen thalli was not correleated with visible damage distribution tended to decrease at the most distant plots (30 mi. from source). Considering the sensitivity of foliose lichens to declining air quality (especially SO/sub 2/ pollution), pollution sources in the rural environment are bound to affect lichen communities, as this study indicates. More sophisticated lichen surveys coupled with future monitoring of pollution would be a valuable contribution to the general environmental impact assessment of coal-fired electrical energy production. 19 references, 3 figures, 1 table.« less

  12. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    PubMed

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.

  13. 76 FR 60937 - Draft License Renewal Interim Staff Guidance LR-ISG-2011-02; Aging Management Program for Steam...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ...-2011-02; Aging Management Program for Steam Generators AGENCY: Nuclear Regulatory Commission. ACTION... License Renewal Interim Staff Guidance (LR-ISG), LR-ISG-2011-02, ``Aging Management Program for Steam... using Revision 3 of NEI 97-06 to manage steam generator aging. The Draft LR-ISG revises the NRC staff's...

  14. Preliminary assessment of a potassium-steam-gas vapor cycle for better fuel economy and reduced thermal pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraas, A.P.

    1971-08-01

    The facts of fuel supply limitations, environmental quality demands, and spiraling electric generating costs strongly favor development of electric power plants that simultaneously run at higher efficiency, i.e., higher temperature, use to advantage clean fuels, and have as low a capital cost as possible. Both fuel supply and thermal pollution considerations that are becoming progressively more important strongly favor the development of a higher temperature, and more efficient, thermodynamic cycle for electric power plants. About 200,000 hr of operation of boiling potassium systems, including over 15,000 hr of potassium vapor turbine operation under the space power plant program, suggest thatmore » a potassium vapor topping cycle with a turbine inlet temperature of approximately 1500/sup 0/F merits consideration. A design study has been carried out to indicate the size, cost, and development problems of the new types of equipment required. The results indicate that a potassium vapor cycle superimposed on a conventional 1050/sup 0/F steam cycle would give an overall thermal efficiency of about 54% as compared to only 40% from a conventional steam cycle. Thus the proposed system would have a fuel consumption only 75% and a heat rejection rate only 50% that of a conventional plant. The system requires clean fuel, and takes advantage of the present trend toward eliminating SO/sub 2/, NO/sub x/ and ash emissions. Surprisingly, at first sight, the assessment at this stage shows that the capital cost may be less than that of a conventional plant. The main reason for this is use of pressurized combustion, which leads to a much smaller combustor, and thin tube walls to contain potassium at about the same pressure.« less

  15. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  16. Corrosion performance of alternative steam generator materials and designs. Volume 2. Posttest examination of a seawater-faulted alternative materials model steam generator. Final report. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupowicz, J.J.; Scott, D.B.; Fink, G.C.

    Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high seawater contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 282 fault steaming days at a 30 ppM chloride concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heat transfermore » tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited moderate pitting, primarily in the sludge pile region above the tubesheet.« less

  17. Corrosion performance of alternative steam generator materials and designs. Volume 3. Posttest examination of a freshwater-faulted alternative materials model steam generator. Final report. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupowicz, J.J.; Scott, D.B.; Rentler, R.M.

    Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high fresh water contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 358 fault steaming days at a 40 ppM sulfate concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heatmore » transfer tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited significant general corrosion beneath thick surface deposits.« less

  18. Enviro-Friendly Hydrogen Generation from Steel Mill-Scale via Metal-Steam Reforming

    ERIC Educational Resources Information Center

    Azad, Abdul-Majeed; Kesavan, Sathees

    2006-01-01

    An economically viable and environmental friendly method of generating hydrogen for fuel cells is by the reaction of certain metals with steam, called metal-steam reforming (MSR). This technique does not generate any toxic by-products nor contributes to the undesirable greenhouse effect. From the standpoint of favorable thermodynamics, total…

  19. 40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...

  20. 40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...

  1. 40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...

  2. 40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...

  3. 40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...

  4. 75 FR 68294 - Revisions to the California State Implementation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... matter emissions from boilers, steam generators and process heaters greater than 5.0 MMbtu/hour. We are... Advance Emission 10/16/08 03/17/09 Reduction Options for Boilers, Steam Generators and Process Heaters..., steam generators and process heaters with a total rated heat input greater than 5 MMBtu/ hour. EPA's...

  5. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expandsmore » the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.« less

  6. Space solar power stations. Problems of energy generation and using its on the earth surface and nearest cosmos

    NASA Astrophysics Data System (ADS)

    Sinkevich, OA; Gerasimov, DN; Glazkov, VV

    2017-11-01

    Three important physical and technical problems for solar power stations (SPS) are considered: collection of solar energy and effective conversion of this energy to electricity in space power stations, energy transportation by the microwave beam to the Earth surface and direct utilization of the microwave beam energy for global environmental problems. Effectiveness of solar energy conversion into electricity in space power stations using gas and steam turbines plants, and magneto-hydrodynamic generator (MHDG) are analyzed. The closed cycle MHDG working on non-equilibrium magnetized plasmas of inert gases seeded with the alkaline metal vapors are considered. The special emphases are placed on MHDG and gas-turbine installations that are operating without compressor. Also opportunities for using the produced by space power stations energy for ecological needs on Earth and in Space are discussed.

  7. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemens high temperature process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, K.; MacNeil, C.; Odar, S.

    1997-02-01

    This paper describes the chemical cleaning of the four steam generators at the Point Lepreau facility, which was accomplished as a part of a normal service outage. The steam generators had been in service for twelve years. Sludge samples showed the main elements were Fe, P and Na, with minor amounts of Ca, Mg, Mn, Cr, Zn, Cl, Cu, Ni, Ti, Si, and Pb, 90% in the form of Magnetite, substantial phosphate, and trace amounts of silicates. The steam generators were experiencing partial blockage of broached holes in the TSPs, and corrosion on tube ODs in the form of pittingmore » and wastage. In addition heat transfer was clearly deteriorating. More than 1000 kg of magnetite and 124 kg of salts were removed from the four steam generators.« less

  8. Design and Activation of a LOX/GH Chemical Steam Generator

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).

  9. Production of food grade (culinary) steam with geothermal (geo-heat) for industrial use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehlage, E.F.

    1980-09-01

    It may be assumed that geothermal steam (dry or flashed) will be sterile but not necessarily clean enough for direct incorporation into foods, beverages, and pharmaceuticals. The use of a purification by unfired geo-heat steam generators can produce a food grade or culinary steam supply for critical use even when combined with fossil fuel used as a booster. Low conductivity, i.e., pure food grade steam requires careful water conditioning outside the generator.

  10. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  11. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  12. 26. Port side of engine room looking forward from aft ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Port side of engine room looking forward from aft bulkhead. This area contains mostly electrical equipment. Two single-cylinder steam-driven dynamos are located near the engine bed, one at right foreground, the other in background. At left in image are a motor-generator set installed to convert DC current (from dynamos) to AC current. Edge-on view of control panel appears near center of image. - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  13. Evaluation of on-line chelant addition to PWR steam generators. Steam generator cleaning project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tvedt, T.J.; Wallace, S.L.; Griffin, F. Jr.

    1983-09-01

    The investigation of chelating agents for continuous water treatment of secondary loops of PWR steam generators were conducted in two general areas: the study of the chemistry of chelating agents and the study of materials compatability with chelating agents. The thermostability of both EDTA and HEDTA metal chelates in All Volatile Treatment (AVT) water chemistry were shown to be greater than or equal to the thermostability of EDTA metal chelates in phosphate-sulfite water chemistry. HEDTA metal chelates were shown to have a much greater stability than EDTA metal chelates. Using samples taken from the EDTA metal chelate thermostability study andmore » from the Commonwealth Research Corporation (CRC) model steam generators (MSG), EDTA decomposition products were determined. Active metal surfaces were shown to become passivated when exposed to EDTA and HEDTA concentrations as high as 0.1% w/w in AVT. Trace amounts of iron in the water were found to increase the rate of passivation. Material balance and visual inspection data from CRC model steam generators showed that metal was transported through and cleaned from the MSG's. The Inconel 600 tubes of the salt water fouled model steam generators experienced pitting corrosion. Results of this study demonstrates the feasibility of EDTA as an on-line water treatment additive to maintain nuclear steam generators in a clean condition.« less

  14. Highly Flexible and Efficient Solar Steam Generation Device.

    PubMed

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.

    1980-01-01

    Large savings can be made in industry by cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules for determining performance and cost in individual plants and on a national level. It was found that: (1) atmospheric and pressurized fluidized bed steam turbine systems were the most attractive of the direct coal-fired systems; and (2) open-cycle gas turbines with heat recovery steam generators and combined-cycles with NO(x) emission reduction and moderately increased firing temperatures were the most attractive of the coal-derived liquid-fired systems.

  16. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    NASA Astrophysics Data System (ADS)

    Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng

    2018-04-01

    In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.

  17. Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis.

    PubMed

    Sadhukhan, Jhuma; Ng, Kok Siew; Martinez-Hernandez, Elias

    2016-09-01

    This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5wt%) that increases the economic margin by 110-150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210-230°C, 25bar, 12s) and continuous stirred tank (195-215°C, 14bar, 20min) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas (6.4MWh/t), RDF (5.4MWh/t), char (4.5MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency: 80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency: 35%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 40 CFR 63.7522 - Can I use emission averaging to comply with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... steam generation by boiler, i, in units of pounds. Cf = Conversion factor, calculated from the most recent compliance test, in units of million Btu of heat input per pounds of steam generated. (f) You must... emission rate using the actual steam generation from the large solid fuel boilers participating in the...

  19. 40 CFR 63.7522 - Can I use emission averaging to comply with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... steam generation by boiler, i, in units of pounds. Cf = Conversion factor, calculated from the most recent compliance test, in units of million Btu of heat input per pounds of steam generated. (f) You must... emission rate using the actual steam generation from the large solid fuel boilers participating in the...

  20. 40 CFR 63.7522 - Can I use emission averaging to comply with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... steam generation by boiler, i, in units of pounds. Cf = Conversion factor, calculated from the most recent compliance test, in units of million Btu of heat input per pounds of steam generated. (f) You must... emission rate using the actual steam generation from the large solid fuel boilers participating in the...

  1. 2. Credit BG. Looking west at east facade of Steam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit BG. Looking west at east facade of Steam Generator Plant, Building 4280/E-81; steam generators have been removed as part of dismantling program for Test Stand 'D.' Metal cylindrical objects to left of door were roof vents. The steam-driven ejector system for Dv Cell is clearly visible on the east side of Test Stand 'D' tower. The X-stage ejector is vertically installed at the bottom left of the tower, Y-stage is horizontally positioned close to the tower top, and the Z- and Z-1 stages are attached to the top of the interstage condenser. Light-colored piping is thermally insulated steam line. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA

  2. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  3. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.

    1995-01-01

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

  4. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  5. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...

  6. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...

  7. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...

  8. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...

  9. New method for the transformation of solar radiation energy into electric power for energy feeding of the space vehicles

    NASA Astrophysics Data System (ADS)

    Ludanov, K. I.

    The author proposes a new method for the transformation of solar radiation energy into electric power, which is alternative for photo-transformation. Ukrpatents's positive decisions are obtained for the method and for the installation for its realization. The method includes two phases: concentration of solar radiation by paraboloid mirrors with high potential heat obtaining in the helio receiver and the next heat transformation into electric power in the framework of the thermal cycle "high temperature electrolytic steam decomposition on the components (H2 and O2) + electrochemical generation by the way of the water recombination from H2 and O2 in the low temperature fuel cell". The new method gives the double superiority in comparison with the photo-transformation.

  10. High-efficiency power production from natural gas with carbon capture

    NASA Astrophysics Data System (ADS)

    Adams, Thomas A.; Barton, Paul I.

    A unique electricity generation process uses natural gas and solid oxide fuel cells at high electrical efficiency (74%HHV) and zero atmospheric emissions. The process contains a steam reformer heat-integrated with the fuel cells to provide the heat necessary for reforming. The fuel cells are powered with H 2 and avoid carbon deposition issues. 100% CO 2 capture is achieved downstream of the fuel cells with very little energy penalty using a multi-stage flash cascade process, where high-purity water is produced as a side product. Alternative reforming techniques such as CO 2 reforming, autothermal reforming, and partial oxidation are considered. The capital and energy costs of the proposed process are considered to determine the levelized cost of electricity, which is low when compared to other similar carbon capture-enabled processes.

  11. 8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM TURBINES AND GENERATORS, LOOKING NORTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oland, CB

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributedmore » Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.« less

  13. Numerical Simulation and Analyses of the Loss of Feedwater Transient at the Unit 4 of Kola NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevanovic, Vladimir D.; Stosic, Zoran V.; Kiera, Michael

    2002-07-01

    A three-dimensional numerical simulation of the loss-of-feed water transient at the horizontal steam generator of the Kola nuclear power plant is performed. Presented numerical results show transient change of integral steam generator parameters, such as steam generation rate, water mass inventory, outlet reactor coolant temperature, as well as detailed distribution of shell side thermal-hydraulic parameters: swell and collapsed levels, void fraction distributions, mass flux vectors, etc. Numerical results are compared with measurements at the Kola NPP. The agreement is satisfactory, while differences are close to or below the measurement uncertainties. Obtained numerical results are the first ones that give completemore » insight into the three-dimensional and transient horizontal steam generator thermal-hydraulics. Also, the presented results serve as benchmark tests for the assessment and further improvement of one-dimensional models of horizontal steam generator built with safety codes. (authors)« less

  14. Combustion characteristics of Douglas Fir planer shavings. Technical progress report No. 4, September 16, 1977--September 15, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junge, D.C.

    1978-12-01

    Significant quantities of wood residue fuels are presently being used in industrial steam generating facilities. Recent studies indicate that substantial additional quantities of wood residue fuels are available for energy generation in the form of steam and/or electricity. A limited data base on the combustion characteristics of wood residue fuels has resulted in the installation and operation of inefficient combustion systems for these fuels. This investigation of the combustion characteristics of wood residue fuels was undertaken to provide a data base which could be used to optimize the combustion of such fuels. Optimization of the the combustion process in industrialmore » boilers serves to improve combustion efficiency and to reduce air pollutant emissions generated in the combustion process. This report presents data on the combustion characteristics of Douglas Fir planer shavings. The data were obtained in a pilot scale combustion test facility at Oregon State Univerisity. Other technical reports present data on the combustion characteristics of: Douglas Fir bark, Red Alder sawdust, Red Alder bark, Ponderosa pine bark, Hemlock bark, and Eastern White Pine bark. An executive summary report is also available which compares the combustion characteristics of the various fuel species.« less

  15. 13. Steam powered Marine Railway Headhouse and Offices, center; chain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Steam powered Marine Railway Headhouse and Offices, center; chain is in front of electric powered Marine Railway Headhouse. - Thames Tow Boat Company, Foot of Farnsworth Street, New London, New London County, CT

  16. Mixed ionic and electronic conducting membranes for hydrogen generation and separation

    NASA Astrophysics Data System (ADS)

    Cui, Hengdong

    Dense mixed ionic and electronic conducting (MIEC) membranes are receiving increasing attention due to their potential for application as gas separation membranes to separate oxygen from air. The objective of this work is to study a novel, chemically-assisted separation process that utilizes oxygen-ion and electron-conducting MIECs for generating and separating hydrogen from steam. This research aims at exploring new routes and materials for high-purity hydrogen production for use in fuel cells and hydrogen-based internal combustion (IC) engines. In this approach, hydrocarbon fuel such as methane is fed to one side of the membrane, while steam is fed to the other side. The MIEC membrane separation process involves steam dissociation and oxidation of the fuel. The oxygen ions formed as a result of steam dissociation are transported across the membrane in a coupled transport process with electrons being transported in the opposite direction. Upon reaching the fuel side of the membrane, the oxygen ions oxidize the hydrocarbon. This process results in hydrogen production on the steam side of the membrane. The oxygen partial pressure gradient across the membrane is the driving force for this process. In this work, a novel, dual-phase composite MIEC membrane system comprising of rare-earth doped ceria with high oxygen ion conductivity and donor-doped strontium titanate with high electronic conductivity were investigated. The chemical diffusion coefficient and surface exchange coefficient have been measured using the electrical conductivity relaxation (ECR) technique. These two parameters control the rate of oxygen permeation across the membrane. The permeation data have been fit with a kinetic model that incorporates oxygen surface exchange on two sides of the membrane and bulk transport of oxygen through the membrane. This material has higher bulk diffusion coefficient and surface exchange reaction rate compared to other known MIEC conductors under the process conditions of interest. Over 10 mumol·cm-2·s-1 (micromoles per square cm per second) of area specific hydrogen flux has been achieved employing a membrane of this material with thickness of 0.2 mm. This flux is several orders of magnitude higher than the hydrogen generation rates reported using other MIEC materials under similar operating conditions.

  17. Energy Conservation Alternatives Study (ECAS): Conceptual Design and Implementation Assessment of a Utility Steam Plant with Conventional Furnace and Wet Lime Stack Gas Scrubbers

    NASA Technical Reports Server (NTRS)

    Brown, Dale H.

    1976-01-01

    A study was performed to estimate the technical/economic characteristics of a steam power plant (3500 pounds per square inch gauge, 1000 degrees Fahrenheit / 1000 degrees Fahrenheit) with a coal-burning radiant furnace and a wet lime stack gas scrubber to control sulfur emissions. Particulate emissions were controlled by an electrostatic precipitator operating at 300 degrees Fahrenheit. The stack gas from the scrubber was reheated from 125 degrees Fahrenheit to 250 degrees Fahrenheit as a base case, and from 125 degrees Fahrenheit to 175 degrees Fahrenheit as an alternate case. The study was performed on a basis consistent with the General Electric ECAS Phase II evaluation of advanced energy conversion systems for electric utility baseload applications using coal or coal-derived fuels. A conceptual design of the power plant was developed, including the on-site calcination of limestone to lime and the provision of sludge ponds to store the products of flue gas scrubbing. From this design, estimates were derived for power plant efficiency, capital cost, environmental intrusion characteristics, natural resource requirements, and cost of electricity at an assumed capacity factor of 65 percent. An implementation assessment was performed where factors affecting applicability of the conceptual design power plant in electric utility generation systems were appraised. At 250 degrees Fahrenheit and 175 degrees Fahrenheit stack gas temperatures respectively, the plants showed a cost of electricity of 39.8 and 37.0 mills per kilowatt-hours and overall plant efficiencies of 32 percent and 34 percent.

  18. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Munts, V. A.; Volkova, Yu. V.; Plotnikov, N. S.; Dubinin, A. M.; Tuponogov, V. G.; Chernishev, V. A.

    2015-11-01

    The results from tests of a 5 kW power plant on solid-oxide fuel cells (SOFCs), in which natural gas is used as fuel, are presented. The installation's process circuit, the test procedure, and the analysis of the obtained results are described. The characteristics of the power plant developed by the Ural Industrial Company are investigated in four steady-state modes of its operation: with the SOFC nominal power capacity utilized by 40% (2 kW), 60% (3 kW), 90% (4.5 kW) and 110% (5.4 kW) (the peaking mode). The electrical and thermodynamic efficiencies are calculated for all operating modes, and the most efficient mode, in which the electrical efficiency reached almost 70%, is determined. The air excess coefficient and heat loss with flue gases q 2 are determined, and it is revealed that the heat loss q 5 decreases from 40 to 25% with increasing the load. Thermal balances are drawn up for the following components of the system the reformer, the SOFC battery, the catalytic burner for afterburning anode gases, the heat exchanger for heating the cathode air and the mixture of natural gas and steam, and the actual fuel utilization rates in the electrochemical generator are calculated. An equation for the resulting natural gas steam reforming reaction was obtained based on the results from calculating the equilibrium composition of reforming products for the achieved temperatures at the reformer outlet t 3.

  19. Heat transfer with hockey-stick steam generator. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, E; Gabler, M J

    1977-11-01

    The hockey-stick modular design concept is a good answer to future needs for reliable, economic LMFBR steam generators. The concept was successfully demonstrated in the 30 Mwt MSG test unit; scaled up versions are currently in fabrication for CRBRP usage, and further scaling has been accomplished for PLBR applications. Design and performance characteristics are presented for the three generations of hockey-stick steam generators. The key features of the design are presented based on extensive analytical effort backed up by extensive ancillary test data. The bases for and actual performance evaluations are presented with emphasis on the CRBRP design. The designmore » effort on these units has resulted in the development of analytical techniques that are directly applicable to steam generators for any LMFBR application. In conclusion, the hockey-stick steam generator concept has been proven to perform both thermally and hydraulically as predicted. The heat transfer characteristics are well defined, and proven analytical techniques are available as are personnel experienced in their use.« less

  20. 40 CFR 52.226 - Control strategy and regulations: Particulate matter, San Joaquin Valley and Mountain Counties...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...

  1. 40 CFR 52.226 - Control strategy and regulations: Particulate matter, San Joaquin Valley and Mountain Counties...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...

  2. 40 CFR 52.226 - Control strategy and regulations: Particulate matter, San Joaquin Valley and Mountain Counties...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...

  3. 40 CFR 52.226 - Control strategy and regulations: Particulate matter, San Joaquin Valley and Mountain Counties...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...

  4. 40 CFR 52.226 - Control strategy and regulations: Particulate matter, San Joaquin Valley and Mountain Counties...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...

  5. Reliable steam generators: how KWU solved beginning problems for its customers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggers, B.; Engl, G.; Froehlich, K.

    This paper describes improvements in inspection and maintenance techniques, the adaptation of a secondary-side concept, and the optimization of water chemistry to achieve the highest possible operational reliability of steam generator performance. In the late 1970s and the early 1980s steam generators of several pressurized water reactors delivered by Kraftwerk Union (KWU) experienced corrosion-induced tube-wall degradation. As a result of these findings and the similar experience in US plants, KWU initiated a systematic program to retain the operational history of the plants at their historically outstanding level. By a combination of improvement in the balance of plant, reduction of themore » phosphate conditioning, and even a change to an all-volatile treatment as well as by the performance of tubesheet lancing, the tube degradation in KWU steam generators is nearly halted and no other known corrosion mechanisms exist that could impair the life expectancy of the steam generators. Nevertheless, repair and cleaning techniques have been developed and are available for application, if necessary, such as tube plugging, tube sleeving, or even partial tube replacement as well as chemical cleaning of the steam generator's secondary side.« less

  6. Steam drum design for direct steam generation

    NASA Astrophysics Data System (ADS)

    Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus

    2017-06-01

    For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.

  7. Economically dispatching cogeneration facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, E.

    Economic dispatching has been used by utilities to meet the energy demands of their customers for decades. The objective was to first load those units which cost the least to run and slowly increase the loading of more expensive units as the incremental energy price increased. Although this concept worked well for utility based systems where incremental costs rose with peak demand, the independent power producers(IPPs) and the power purchase agreements (PPAs) have drastically changed this notion. Most PPAs structured for the IPP environment have negotiated rates which remain the same during peak periods and base their electrical generation onmore » specific process steam requirements. They also must maintain the required production balance of process steam and electrical load in order to qualify as a Public Utility Regulatory Policies Act (PURPA) facility. Consequently, economically dispatching Cogeneration facilities becomes an exercise in adhering to contractual guidelines while operating the equipment in the most efficient manner possible for the given condition. How then is it possible to dispatch a Cogeneration facility that maintains the electrical load demand of JFK Airport while satisfying all of its heating and cooling needs? Contractually, Kennedy International Airport Cogen (KIAC) has specific obligations concerning electrical and thermal energy exported to JFK Airport. The facility`s impressive array of heating and cooling apparatuses together with the newly installed cogen fulfilled the airport`s needs by utilizing an endless combination of new and previously installed equipment. Moreover, in order to economically operate the plant a well structured operating curriculum was necessary.« less

  8. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    NASA Astrophysics Data System (ADS)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  9. Numerical simulation of a hybrid CSP/Biomass 5 MWel power plant

    NASA Astrophysics Data System (ADS)

    Soares, João; Oliveira, Armando

    2017-06-01

    The fundamental benefit of using renewable energy systems is undeniable since they rely on a source that will not run out. Nevertheless, they strongly depend on meteorological conditions (solar, wind, etc.), leading to uncertainty of instantaneous energy supply and consequently to grid connection issues. An interesting concept is renewable hybridisation. This consists in the strategic combination of different renewable sources in the power generation portfolio by taking advantage of each technology. Hybridisation of concentrating solar power with biomass denotes a powerful way of assuring system stability and reliability. The main advantage is dispatchability through the whole extent of the operating range. Regarding concentrating solar power heat transfer fluid, direct steam generation is one of the most interesting concepts. Nevertheless, it presents itself technical challenges that are mostly related to the two-phase fluid flow in horizontal pipes, as well as the design of an energy storage system. Also, the use of reheat within the turbine is usually indirectly addressed, hindering system efficiency. These challenges can be addressed through hybridisation with biomass. In this paper, a hybrid renewable electricity generation system is presented. The system relies on a combination of solar and biomass sources to drive a 5 MWel steam turbine. System performance is analysed through numerical simulation using Ebsilon professional software. The use of direct reheat in the turbine is addressed. Results show that hybridisation results in an enhancement of system dispatchability and generation stability. Furthermore, hybridisation enhanced the annual solar field and power block efficiencies, and thus the system annual efficiency (from 7.6% to 20%). The use of direct reheat eliminates steam wetness in the last turbine stage and also improves system efficiency.

  10. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    NASA Astrophysics Data System (ADS)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic assessment review and then on to the stakeholder cost benefit analysis (if model qualifications are met) leading to a final plant retirement decision. This application via the model and guide, in turn, will lead electric utilities to explore system upgrade import opportunities and mitigation measures versus building new replacement generation facilities. United States nuclear reactors are licensed for 40 years with a 20 year extension available prior to the expiration date (EIA, 2013). Since late 2012, electric power companies have announced the early retirement of four uneconomical nuclear power plants while other studies have indicated that as many as 70 percent of United States nuclear power plants are potentially at risk for early retirement (Crooks, 2014 and Cooper, 2013). A high percentage of these aforementioned nuclear plants have operating licenses that will not expire until 2030 and beyond. Thus, for the most part, replacement power contingency planning has not been initiated for these plants or is still in preliminary stages. The recent nuclear plant retirements are the first since 1998 (EIA, 2013). Decisions to retire the plants involved concerns over maintenance and repair costs as well as declining profitability (EIA, 2013). In addition, the Energy Information Administration (2010-2012) released data that demonstrated that the worst 25 percent of United States nuclear plants are far more expensive to operate and generate electricity than new gas plants. It is equally important to understand and explain the economic and power replacement implications to both ratepayers and end-users. A SONGS case study analysis will review the economic, operational and political challenges that SCE faced leading to the retirement decision of SONGS. As preface to the case study, replacement steam generators (RSGs) were installed in Unit 2 in 2009 and in Unit 3 in 2010. In January 2012, while Unit 2 was down for routine maintenance, a small leak was discovered inside a steam generator in Unit 3. Because of the situation, both units remained shut down to evaluate the cause of the leakage and to make repairs. SCE submitted plans to the Nuclear Regulatory Commission (NRC) to re-start Unit 2 at reduced power. However, concerns over the length of the review process and the high costs associated with steam generator repairs led SCE to retire both reactors (SCE SONGS Fact Sheets, 2012-2013). Finally, collaborative resource power replacement planning is needed more than ever as nuclear facilities in the United States are now being retired for economic related reasons (Crooks, 2014). This collaborative power replacement process and implementation must encompass all relevant stakeholders including state grid operators, ratepayers, shareholders and the electric utility company.

  11. Analysis of steam generator loss-of-feedwater experiments with APROS and RELAP5/MOD3.1 computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virtanen, E.; Haapalehto, T.; Kouhia, J.

    1995-09-01

    Three experiments were conducted to study the behavior of the new horizontal steam generator construction of the PACTEL test facility. In the experiments the secondary side coolant level was reduced stepwise. The experiments were calculated with two computer codes RELAP5/MOD3.1 and APROS version 2.11. A similar nodalization scheme was used for both codes to that the results may be compared. Only the steam generator was modelled and the rest of the facility was given as a boundary condition. The results show that both codes calculate well the behaviour of the primary side of the steam generator. On the secondary sidemore » both codes calculate lower steam temperatures in the upper part of the heat exchange tube bundle than was measured in the experiments.« less

  12. Solar thermal repowering systems integration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  13. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    NASA Technical Reports Server (NTRS)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  14. 78 FR 75342 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; NSPS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ...- Institutional Steam Generating Units (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... for Small Industrial- Commercial-Institutional Steam Generating Units (40 CFR Part 60, Subpart Dc.... Respondents/affected entities: Owners or operators of small industrial-commercial-institutional steam...

  15. Downhole steam generator using low pressure fuel and air supply

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  16. Control system for fluid heated steam generator

    DOEpatents

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  17. Control system for fluid heated steam generator

    DOEpatents

    Boland, James F.; Koenig, John F.

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  18. Thermionic combustor application to combined gas and steam turbine power plants

    NASA Astrophysics Data System (ADS)

    Miskolczy, G.; Wang, C. C.; Lieb, D. P.; Margulies, A. E.; Fusegni, L. J.; Lovell, B. J.

    A design for the insertion of thermionic converters into the wall of a conventional combustor to produce electricity in a topping cycle is described, and a study for applications in gas and steam generators of 70 and 30 MW is evaluated for engineering and economic feasibility. Waste heat from the thermionic elements is used to preheat the combustor air; the heat absorbed by the elements plus further quenching of the exhaust gases with ammonia is projected to reduce NO(x) emissions to acceptable levels. Schematics, flow diagrams, and components of a computer model for cost projections are provided. It was found that temperatures around the emitters must be maintained above 1,600 K, with maximum efficiency and allowable temperature at 1,800 K, while collectors generate maximally at 950 K, with a corresponding work function of 1.5 eV. Cost sensitive studies indicate an installed price of $475/kW for the topping cycle, with improvements in thermionic converter characteristics bringing the cost to $375/kW at a busbar figure of 500 mills/kWh.

  19. Geothermal energy control system and method

    DOEpatents

    Matthews, Hugh B.

    1977-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

  20. Projection of distributed-collector solar-thermal electric power plant economics to years 1990-2000

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Elgabalawi, N.; Herrera, G.; Turner, R. H.

    1977-01-01

    A preliminary comparative evaluation of distributed-collector solar thermal power plants was undertaken by projecting power plant economics of selected systems to the 1990 to 2000 time frame. The selected systems include: (1) fixed orientation collectors with concentrating reflectors and vacuum tube absorbers, (2) one axis tracking linear concentrator including parabolic trough and variable slat designs, and (3) two axis tracking parabolic dish systems including concepts with small heat engine-electric generator assemblies at each focal point as well as approaches having steam generators at the focal point with pipeline collection to a central power conversion unit. Comparisons are presented primarily in terms of energy cost and capital cost over a wide range of operating load factors. Sensitvity of energy costs for a range of efficiency and cost of major subsystems/components is presented to delineate critical technological development needs.

Top