Science.gov

Sample records for electric transmission towers

  1. 60-Hertz electric-field exposures in transmission line towers.

    PubMed

    Bracken, T; Senior, Russell; Dudman, Joseph

    2005-09-01

    This article reports on an investigation of 60-Hz electric-field exposures of line workers in 230- to 765-kV transmission line towers. The exposures were based on computations of the unperturbed electric field along climbing routes and at work positions on the towers and on insulated ladders suspended in towers. Computed exposures were expressed in terms of the unperturbed electric field averaged over the body as stipulated by guidelines. For the realistic on-tower positions, the worker's posture, the uniformity of the field, and the field orientation differed from the guideline exposure scenario of standing erect in a vertical uniform field. These differences suggest the need for care in comparing electric-field exposures in towers with guideline limits. The unperturbed nonuniform fields at discrete points near steel and aluminum lattice structures were computed using Monte Carlo methods that model surface and spatial electric fields on and near standard geometrical elements. To estimate a whole-body average, fields were computed at 10 discrete points positioned on segments of an articulated stick-figure model of the human body. The whole-body average field was computed from fields at all the points weighted by the fraction of body volume that the corresponding segment represented. We estimated the average unperturbed electric field, the space potential at the torso, and the induced short-circuit current for 19 climbing and work positions in six towers. The maximum average electric-field exposure during climbing ranged from 10 kV/m for a 230-kV tower to 31 kV/m for a 765-kV tower. Exposures at on-tower work positions were lower than the estimated maximum exposures during climbing. For 500- and 765-kV towers, computed exposures while climbing and at some on-tower positions exceeded the limit of 20 kV/m given in the recently adopted IEEE Standard C95.6 2002. For lower voltage towers, exposures did not exceed 20 kV/m.

  2. Zinc and cadmium in soils and plants near electrical transmission (hydro) towers

    SciTech Connect

    Jones, R.; Burgess, M.S.E.

    1984-10-01

    Concentrations of Zn and Cd were determined in plants and soils around and beneath corroding galvanized electrical transmission (hydro) towers located in different habitats near Peterborough, Ontario. High concentrations of Zn occurred in a well-drained, uncultivated drumlin soil around and beneath a tower. The pattern of contamination indicated spread of Zn by runoff and by wind-driven spray and water droplets from the tower. Plants growing close to this tower accumulated Zn but apparently were not adversely affected, probably because of low Zn availability in the soil. In a cultivated field, the distribution of Zn around the base of a tower seemed to be affected by soil cultivation and by crop removal. Concentrations of Cd were not elevated in plants or soils beneath or near towers in this study. 2 figures, 2 tables.

  3. Collapse and pull - down analysis of high voltage electricity transmission towers subjected to cyclonic wind

    NASA Astrophysics Data System (ADS)

    Ahmed, Ammar; Arthur, Craig; Edwards, Mark

    2010-06-01

    Bulk electricity transmission lines are linear assets that can be very exposed to wind effects, particularly where they traverse steep topography or open coastal terrain in cyclonic regions. Interconnected nature of the lattice type towers and conductors also, present complex vulnerabilities. These relate to the direction of wind attack to the conductors and the cascading failure mechanisms in which the failure of a single tower has cascading effects on neighbouring towers. Such behaviour is exacerbated by the finely tuned nature of tower design which serves to minimize cost and reserve strength at design wind speeds. There is a clear need to better quantify the interdependent vulnerabilities of these critical infrastructure assets in the context of the severe wind hazard. This paper presents a novel methodology developed for the Critical Infrastructure Protection Modelling and Analysis (CIPMA) capability for assessing local wind speeds and the likelihood of tower failure for a range of transmission tower and conductor types. CIPMA is a program managed by the Federal Attorney-General's Department and Geoscience Australia is leading the technical development. The methodology then involves the development of heuristically derived vulnerability models that are consistent with Australian industry experience and full-scale static tower testing results, considering isolated tower loss along with three interdependent failure mechanisms to give overall likelihoods of failure.

  4. Effects of transmission towers on orchards and vineyards

    SciTech Connect

    Scott, W.S.

    1980-10-01

    Electric power transmission towers can pose problems for the farm operator in terms of the loss of productive area and interference with the movement of machinery. A study was conducted to evaluate the impact of transmission facilities on orchard and vineyard operations in Ontario, Canada. Economic losses to peach and grape crops were determined. Time loss varied greatly depending on the specific operation and tower location. Economic effects of transmission towers varied widely depending on location and orientation, and whether or not equipment can pass through the base area.

  5. Impulse-response testing to evaluate the degree of alkali-aggregate reaction in concrete drilled-shaft foundations for electricity transmission towers

    NASA Astrophysics Data System (ADS)

    Davis, Allen; Kennedy, James

    1998-03-01

    Alkali-aggregate reaction (AAR) has affected the concrete in drilled shafts (cast in place piles) beneath electricity transmission towers along a 42-mile (67 km) section of transmission line in Southern California. In order to prioritize the maintenance program for these shafts, a nondestructive test methodology was sought to quantify the severity of the AAR with depth in each shaft. Shaft diameters of 19, 30, 36, 42, and 54 inches (475, 760, 910, 1067 and 1660 mm) were present, with shaft lengths between 10 and 30 feet (3 and 6 m). Over the last thirty years, impulse-response (I-R) testing has been successfully used to evaluate the integrity of drilled shafts, and computer simulation programs have also been developed for matching I-R test responses with theoretical shaft shapes and concrete quality. A program to test as many shafts as could be accessed in the difficult, mountainous terrain along this transmission line included mobilization of equipment and testing personnel by helicopter. Two hundred ten shafts were tested along the line in five days. Matching of test response mobility-frequency plots in computer simulation was achieved by varying the simulated concrete modulus and density, as well as the shaft cross section area. Up to three grades of concrete quality were identified in each shaft, representing the decreasing degree of AAR with depth. The tested shafts were then rated for increasing AAR severity, in order to select shafts for repair or replacement.

  6. Wildlife and electric power transmission

    USGS Publications Warehouse

    Ellis, D.H.; Goodwin, J.G.; Hunt, J.R.; Fletcher, John L.; Busnel, R.G.

    1978-01-01

    Hundreds of thousands of miles of transmission lines have been introduced into our natural environment. These lines and their corridors can be damaging or beneficial to wildlife communities depending on how they are designed, where they are placed, and when they are constructed and maintained. With the current trend toward UHV systems, new problems (associated with additional increments in audible noise, electric and magnetic force fields, etc.) must be addressed. We recommend the following areas for careful study: (1) the response of wilderness species to transmission lines and line construction and maintenance activities (2) the magnitude of bird collision and electrocution mortality, (3) the response of power corridor and power tower in habiting wildlife to laboratory and field doses of electro-chemical oxidants, corona noise, electric and magnetic fields, etc., (4) the productivity of tower inhabiting birds compared with nearby non-tower nesters, and (5) the influence of powerline corridors on mammalian and avian migration patterns. It is our hope that the questions identified in this study will help stimulate further research so that we can maximize wildlife benefits and minimize wildlife detriments.

  7. 16. GENERAL EXTERIOR VIEW LOOKING NORTHWEST, SHOWING TRANSMISSION TOWERS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. GENERAL EXTERIOR VIEW LOOKING NORTHWEST, SHOWING TRANSMISSION TOWERS ON WEST END OF BRADFORD ISLAND; BRADFORD SLOUGH DOWNSTREAM FROM POWERHOUSE #1 IS IN FOREGROUND. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  8. TRANSMISSION TOWERS WITH LIGHTENING ARRESTORS ON HILL NORTH OF ELWHA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRANSMISSION TOWERS WITH LIGHTENING ARRESTORS ON HILL NORTH OF ELWHA POWERHOUSE. PHOTO BY JET LOWE, HAER, 1995. - Elwha River Hydroelectric System, Elwha Hydroelectric Dam & Plant, Port Angeles, Clallam County, WA

  9. View of transmission line tower on LABPL 2 southwest of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of transmission line tower on LABPL 2 southwest of Boulder City Substation, view southwest - Hoover Dam, Los Angeles Bureau of Power & Light Lines 1-3, U.S. Highway 93, Boulder City, Clark County, NV

  10. 8. SOUTH SIDE OF EAST PHOTO TOWER; ELECTRICAL POWER BOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SOUTH SIDE OF EAST PHOTO TOWER; ELECTRICAL POWER BOX ON RIGHT. LEFT TO RIGHT IN BACKGROUND: A STORAGE SHED (BLDG. 776), METEOROLOGICAL TOWER, PYROTECHNIC SHED (BLDG. 757), AND SLC-3W MST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Transmission tower classification based on landslide risk map generated by Geographical Information System (GIS) at Cameron Highlands

    NASA Astrophysics Data System (ADS)

    K, Hazwani N.; O, Rohayu C.; U, Fathoni; Baharuddin, Inz

    2013-06-01

    Transmission tower is usually locates at remote area which is covered by hilly topography. Landslide is mainly occurring at hilly area and causing failure to the tower structure. This phenomenon subsequently will affect the national electricity supply. A landslide risk hazard map is generated using Geographical Information System (GIS). Risk classification is introduced to initiate the monitoring process along Jor-Bintang transmission line, Cameron Highland, Pahang. The classification has been divided into three categories, which are low, medium and high. This method can be applied in slope monitoring activities since all towers have been classified based on their risk level. Therefore, maintenance schedule can be planned smoothly and efficiently.

  12. Transmission tower classification based on landslide risk Map generated by Geographical Information System (GIS) at Cameron Highlands

    NASA Astrophysics Data System (ADS)

    K, Hazwani N.; O, Rohayu C.; U, Fathoni; Baharuddin, I. N. Z.; A, Azwin Z.

    2013-06-01

    Transmission tower is usually locates at remote area which is covered by hilly topography. Landslide is mainly occurring at hilly area and causing failure to the tower structure. This phenomenon subsequently will affect the national electricity supply. A landslide risk hazard map is generated using Geographical Information System (GIS). Risk classification is introduced to initiate the monitoring process along Jor-Bintang transmission line, Cameron Highland, Pahang. The classification has been divided into three categories, which are low, medium and high. This method can be applied in slope monitoring activities since all towers have been classified based on their risk level. Therefore, maintenance schedule can be planned smoothly and efficiently.

  13. 13. INTERIOR OF NORTHEAST PHOTO TOWER WITH WINDOW OPEN; ELECTRICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF NORTHEAST PHOTO TOWER WITH WINDOW OPEN; ELECTRICAL POWER BOX BELOW WINDOW - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. 4. VIEW OF WATER TOWER FROM ELECTRICAL TRANSFORMER CAGE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF WATER TOWER FROM ELECTRICAL TRANSFORMER CAGE AT NORTH END OF SECOND FLOOR WAREHOUSE. VIEW TO WEST-NORTHWEST. - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  15. Flywheel electric transmission apparatus

    SciTech Connect

    Bock, D.H.

    1982-01-05

    In a preferred embodiment, the flywheel electric transmission system is made up of three electric machines and a flywheel and is adapted for use in an automobile. The first electric machine is driven or energized by a prime mover such as a heat engine and is selectively clutched to the second machine. The flywheel and the armatures for both the first and second machines rotate as a unit. The third machine is connected to the second machine through gearing and, under the control of a computer, supplies excess electrical power to or consumes excess electrical power from the first and second machines that are functioning as either a motor or generator as required. In a second embodiment, the energy source is a battery pack.

  16. Real time monitoring of slope condition for transmission tower safety in Kenyir, Malaysia

    NASA Astrophysics Data System (ADS)

    Omar, R. C.; Ismail, A.; Khalid, N. H. N.; Din, N. M.; Hussain, H.; Jamaludin, M. Z.; Abdullah, F.; Arazad, A. Z.; Yusop, H.

    2013-06-01

    The Malaysia national electricity grid traverses throughout the nation over urban and rural areas including mountainous terrain. A major number of the transmission towers have been in existence for over 40 years and some traversed through very remote and high altitude areas like the Titiwangsa range that forms the backbone of the Malay Peninsula. This paper describes the instrumentation and real time monitoring in a transmission tower site in Kenyir, a hilly terrain in the East Coast of Malaysia. The site itself which is between 300-500m above sea level is deep in the rainforest area of Kenyir. The site and surrounding areas has been identified with signs of slope failure. A design concern is the real time slope monitoring sensors reliability and data integrity from the remote area with potential interference to the electronics equipment from the power line. The monitoring system comprised of an automated system for collecting and reporting field monitoring data. The instruments collect readings and transmit real time through GSM to the monitoring office over designated intervals. This initiative is a part of a project on developing an early warning system for monitoring landslide hazards at selected transmission towers. This paper reviews the various instrumentation used and challenges faced and the output received for slope movement warnings.

  17. Seismic Performance Research of Transmission Tower in Consideration of the Pile-soil-structure System

    NASA Astrophysics Data System (ADS)

    Liu, Chuncheng; Mao, Long; Wang, Chongyang; Zha, Chuanming

    2016-11-01

    The seismic performance of transmission tower in consideration of pile-soil- structure dynamic interaction is researched through numerical simulation. Based on a transmission tower of a specific project, pile-soil-transmission tower coupled system is established. By using the method of time history, the pile-soil- transmission tower system dynamic response under seismic load were calculated, and comparing with the results without considering interaction system. Results show that, after considering interaction of the system, the period of the structure have extended and the mode of the structure lagged. On soft sites, compare with no considering the interaction, the results have a big difference, the relative increment of the maximum displacement at the top of the tower is 39.82%, respectively. Therefore it is suggested that the pile-soil-structure dynamic interaction should be fully considered in aseismic design of transmission tower on soft sites and medium soft sites.

  18. Impact and Improvement Method of the Biological Effects during the Transmission Tower Being Lightning Struck

    NASA Astrophysics Data System (ADS)

    Hengzhen, Li; Youguang, Mo; Guanghui, Sun; Pengcheng, Wang; Han, Xu; Zhijie, He

    2017-05-01

    When lightning strikes the transmission line towers, the lightning current flow through the overhead line shunted along the grounding conductor dispersed in the earth, the lightning current amplitude of tens of thousands of amperes or even hundreds of thousands of amperes, making the local current density is very large, seriously affecting the surrounding biological safety. This paper analyzes that different fish fatalities in fish ponds after lightning strikes the transmission line towers, the typical accident towers were simulated and the correctness of the model was verified by CDEGS. Meanwhile the effects of lightning current on fish were simulated, according to the simulation results that the fish current density is related to body length and the current angle in the electric field. By comparing the simulated results with the fish tolerance limits, we can quantitatively evaluate the fish bioelectromagnetism of the relationship between soil resistivity and fishpond distance. The modification of the external grounding network based on the insulated lead wire can be used to guide the related grounding devices.

  19. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Digital television transmission towers... WIRELESS EMERGENCY ALERTS System Architecture § 10.340 Digital television transmission towers... required to install on, or as part of, any broadcast television digital signal transmitter, equipment...

  20. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Digital television transmission towers... COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.340 Digital television transmission towers... required to install on, or as part of, any broadcast television digital signal transmitter, equipment...

  1. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Digital television transmission towers... WIRELESS EMERGENCY ALERTS System Architecture § 10.340 Digital television transmission towers... required to install on, or as part of, any broadcast television digital signal transmitter, equipment...

  2. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Digital television transmission towers... COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.340 Digital television transmission towers... required to install on, or as part of, any broadcast television digital signal transmitter, equipment...

  3. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  4. Finite Element Analysis of the Maximum Stress at the Joints of the Transmission Tower

    NASA Astrophysics Data System (ADS)

    Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Bamashmos, Khaled H.

    2016-03-01

    Transmission towers are tall structures, usually a steel lattice tower, used to support an overhead power line. Usually, transmission towers are analyzed as frame-truss systems and the members are assumed to be pin-connected without explicitly considering the effects of joints on the tower behavior. In this research, an engineering example of joint will be analyzed with the consideration of the joint detailing to investigate how it will affect the tower analysis. A static analysis using STAAD Pro was conducted to indicate the joint with the maximum stress. This joint will then be explicitly analyzed in ANSYS using the Finite Element Method. Three approaches were used in the software which are the simple plate model, bonded contact with no bolts, and beam element bolts. Results from the joint analysis show that stress values increased with joint details consideration. This proves that joints and connections play an important role in the distribution of stress within the transmission tower.

  5. Optimization of Structural Design for Sustainable Construction of Transmission Tower Based on Topographical Algorithm

    NASA Astrophysics Data System (ADS)

    Che Muda, Zakaria; Nasharuddin Mustapha, Kamal; Che Omar, Rohayu; Usman, Fathoni; Ashrafu Alam, Md; Thiruchelvam, Sivadass

    2013-06-01

    Optimization of transmission tower structures is traditionally based on either optimization of members sizes with fixed topographical shape or based on structural analysis modelling strategies without taking cognizance of fabrication and constructability issue facing the contractors . This paper look into an integrated optimum design approach strategies whereby size, shape and topology are combined together with the fabrication issues in the construction of the transmission tower. The topographical algorithm is based on changing the inclination degree of the legs of the tower at first with optimum individual members sizing and later rationalized member sizes are performed through member groupings for the ease fabrication and construction of the transmission tower. The optimum weight using topographical algorithm obtained for the transmission tower is 10,924 kg for singular members and 18,430 kg for element grouping at 10° inclination angle.

  6. The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation

    PubMed Central

    Wang, Wenming

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157

  7. The effect analysis of strain rate on power transmission tower-line system under seismic excitation.

    PubMed

    Tian, Li; Wang, Wenming; Qian, Hui

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system.

  8. Electrical transmission line diametrical retainer

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-14

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  9. View of transmission line tower on LABPL2 northwest of Boulder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of transmission line tower on LABPL2 northwest of Boulder City Substation, view northwest - Hoover Dam, Los Angeles Bureau of Power & Light Lines 1-3, U.S. Highway 93, Boulder City, Clark County, NV

  10. Colorado Electrical Transmission Grid

    DOE Data Explorer

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  11. Dynamic Responses and Vibration Control of the Transmission Tower-Line System: A State-of-the-Art Review

    PubMed Central

    Chen, Bo; Guo, Wei-hua; Li, Peng-yun; Xie, Wen-ping

    2014-01-01

    This paper presented an overview on the dynamic analysis and control of the transmission tower-line system in the past forty years. The challenges and future developing trends in the dynamic analysis and mitigation of the transmission tower-line system under dynamic excitations are also put forward. It also reviews the analytical models and approaches of the transmission tower, transmission lines, and transmission tower-line systems, respectively, which contain the theoretical model, finite element (FE) model and the equivalent model; shows the advances in wind responses of the transmission tower-line system, which contains the dynamic effects under common wind loading, tornado, downburst, and typhoon; and discusses the dynamic responses under earthquake and ice loads, respectively. The vibration control of the transmission tower-line system is also reviewed, which includes the magnetorheological dampers, friction dampers, tuned mass dampers, and pounding tuned mass dampers. PMID:25105161

  12. Dynamic responses and vibration control of the transmission tower-line system: a state-of-the-art review.

    PubMed

    Chen, Bo; Guo, Wei-hua; Li, Peng-yun; Xie, Wen-ping

    2014-01-01

    This paper presented an overview on the dynamic analysis and control of the transmission tower-line system in the past forty years. The challenges and future developing trends in the dynamic analysis and mitigation of the transmission tower-line system under dynamic excitations are also put forward. It also reviews the analytical models and approaches of the transmission tower, transmission lines, and transmission tower-line systems, respectively, which contain the theoretical model, finite element (FE) model and the equivalent model; shows the advances in wind responses of the transmission tower-line system, which contains the dynamic effects under common wind loading, tornado, downburst, and typhoon; and discusses the dynamic responses under earthquake and ice loads, respectively. The vibration control of the transmission tower-line system is also reviewed, which includes the magnetorheological dampers, friction dampers, tuned mass dampers, and pounding tuned mass dampers.

  13. Composite Grounding Application of Transmission Line Tower with Flexible Graphite Grounding Material

    NASA Astrophysics Data System (ADS)

    Liu, Hongtao; Zhang, Lei; Xiong, Jia; Cui, Zhenxing; Yang, Qi

    2017-07-01

    To solve the metal corrosion problem of transmission line tower grounding grid, a composite grounding material technique based on flexible graphite grounding is proposed. Using CDEGS software, the power frequency grounding resistances with different soils layers and different ground network size of tower are simulated. The researches show that layered soil resistance can be reduced by laying vertical grounding body and uniform soil can reduce ground resistance by increasing grounding network size.

  14. Automatic transmission for electric wheelchairs.

    PubMed

    Reswick, J B

    1985-07-01

    A new infinitely variable automatic transmission called the RESATRAN that automatically changes its speed ratio in response to load torque being transmitted is presented. A prototype has been built and tested on a conventional three-wheeled electric motor propelled wheelchair. It is shown theoretically that more than 50 percent reduction in power during hill climbing may be expected when a transmission-equipped wheelchair is compared to a direct-drive vehicle operating at the same voltage. It is suggested that with such a transmission, wheelchairs can use much smaller motors and associated electronic controls, while at the same time gaining in efficiency that results in longer operating distances for the same battery charge. Design details of the transmission and test results are presented. These results show a substantial reduction in operating current and increased distance of operation over a test course.

  15. Research on the Optimal Layout of High-strength Steel in the Transmission Tower

    NASA Astrophysics Data System (ADS)

    Chunming, W. EI.; Tingting, S. U.; Bin, M. A.; Jing, Gong

    In order to research on the arrangement way of high-strength steel in ultrahigh voltage transmission towers, the integrated structure and material multi-objective optimization model of ultrahigh voltage transmission towers was established, and the optimization model is solved by using fast non-dominated sorting genetic algorithm (NSGA-II). Sectional areas and materials of each bar were regarded as the design variables, the structural min-cost was considered as the objective of the economic optimization, and the min-displacement of the control point was regarded as the objective of structural optimization. Based on the software MATLAB, relevant optimization program was programmed to solve the optimization model. The results show, the optimal results can satisfy the structural requirements and reduce the cost of projects, making the arrangement way of high-strength steel way in ultrahigh voltage transmission towers more reasonable and more economical.

  16. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.340 Digital television transmission towers... enable the distribution of geographically targeted alerts by commercial mobile service providers that have elected to transmit CMAS alerts. Such equipment and technologies must have the capability...

  17. Research on electric field distribution of UHVDC transmission lines and body surface during live working

    NASA Astrophysics Data System (ADS)

    Jiang, Chilong; Zou, Dehua; Li, Jinliang; Zhang, Zhanlong; Mei, Daojun

    2017-09-01

    Electric field distortion emerges around personnel working on live Ultra High Voltage Direct Current UHVDC transmission lines, especially when they move from ground-potential to equipotential positions. Unreliable protection threatens the safety of both workers and transmission lines. The current study investigates the electric field distribution of body surface during live working under transmission lines. To provide safety advice, live working person and tower models were established. The body surface field was calculated in different positions under ±800 kV transmission lines, and the distribution of the electric field was summarized.

  18. Effects of elevation change on mental stress in high-voltage transmission tower construction workers.

    PubMed

    Hsu, Feng-Wen; Lin, Chiuhsiang Joe; Lee, Yung-Hui; Chen, Hung-Jen

    2016-09-01

    High-voltage transmission tower construction is a high-risk operation due to the construction site locations, extreme climatic factors, elevated working surfaces, and narrow working space. To comprehensively enhance our understanding of the psychophysiological phenomena of workers in extremely high tower constructions, we carried out a series of field experiments to test and compare three working surface heights in terms of frequency-domain heart rate variability (HRV) measurements. Twelve experienced male workers participated in this experiment. The dependent variables, namely, heart rate (HR), normalized low-frequency power (nLF), normalized high-frequency power (nHF), and LF-to-HF power ratio (LF/HF), were measured with the Polar RS800CX heart rate monitor. The experimental results indicated that the task workload was similar between working surface heights. Tower construction workers perceived an increased level of mental stress as working surface height increased.

  19. Expert system for first order inelastic analysis of transmission towers

    SciTech Connect

    Miller, M.; Kempner, L. Jr. ); Mueller, W. III )

    1992-01-01

    The concept of an Expert System is not new. It has been around since the days of the early computers when scientists had dreams of robot automation to do everything from washing windows to automobile design. This paper discusses an application of an expert system and addresses software development issues and various levels of expert system development form a structural engineering viewpoint. An expert system designed to aid the structural engineer in first order inelastic analysis of latticed steel transmission powers is presented. The utilization of expert systems with large numerical analysis programs is discussed along with the software development of such a system.

  20. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  1. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  2. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  3. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  4. Nineteenth century Parisian smoke variations inferred from Eiffel Tower atmospheric electrical observations

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Aplin, K. L.

    Atmospheric electrical measurements provide proxy data from which historic smoke pollution levels can be determined. This approach is applied to infer autumnal Parisian smoke levels in the 1890s, based on atmospheric electric potential measurements made at the surface and the summit of the Eiffel Tower (48.7°N, 2.4°E). A theoretical model of the development of the autumn convective boundary layer is used to determine when local pollution effects dominated the Eiffel Tower potential measurements. The diurnal variation of the Eiffel Tower potential showed a single oscillation, but it differs from the standard oceanic air potential gradient (PG) variations during the period 09-17 UT, when the model indicates that the Eiffel Tower summit should be within the boundary layer. Outside these hours, the potential changes closely follow the clean air PG variation: this finding is used to calibrate the Eiffel Tower measurements. The surface smoke pollution concentration found during the morning maximum was 60±30 μg m -3, substantially lower than the values previously inferred for Kew in 1863. A vertical smoke profile was also derived using a combination of the atmospheric electrical data and boundary layer meteorology theory. Midday smoke concentration decreased with height from 60 μg m -3 at the surface to 15 μg m -3 at the top of the Eiffel Tower. The 19th century PG measurements in both polluted and clean Parisian air present a unique resource for European air pollution and atmospheric composition studies, and early evidence of the global atmospheric electrical circuit.

  5. Convection towers

    DOEpatents

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  6. Biocide usage in cooling towers in the electric power and petroleum refining industries

    SciTech Connect

    Veil, J.; Rice, J.K.; Raivel, M.E.S.

    1997-11-01

    Cooling towers users frequently apply biocides to the circulating cooling water to control growth of microorganisms, algae, and macroorganisms. Because of the toxic properties of biocides, there is a potential for the regulatory controls on their use and discharge to become increasingly more stringent. This report examines the types of biocides used in cooling towers by companies in the electric power and petroleum refining industries, and the experiences those companies have had in dealing with agencies that regulate cooling tower blowdown discharges. Results from a sample of 67 electric power plants indicate that the use of oxidizing biocides (particularly chlorine) is favored. Quaternary ammonia salts (quats), a type of nonoxidizing biocide, are also used in many power plant cooling towers. The experience of dealing with regulators to obtain approval to discharge biocides differs significantly between the two industries. In the electric power industry, discharges of any new biocide typically must be approved in writing by the regulatory agency. The approval process for refineries is less formal. In most cases, the refinery must notify the regulatory agency that it is planning to use a new biocide, but the refinery does not need to get written approval before using it. The conclusion of the report is that few of the surveyed facilities are having any difficulty in using and discharging the biocides they want to use.

  7. Electrical Transmission on the Lunar Surface. Part 1; DC Transmission

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.

    2001-01-01

    This report summarizes a portion of the results from a grant at Auburn University to study the electrical and thermal energy management for lunar facilities. Over the past year (June 1989 to May 1990) the following topics have been investigated: June 1989 to November 1989 - Literature survey, assessment of lunar power needs, and overview study of the requirements of a lunar power system; November 1989 to April 1990 - Develop models for the study of dc electrical power transmission lines for the lunar surface; March 1990 to May 1990 - Develop models for the study of ac electrical power transmission lines for the lunar surface. Because of the large amount of information in the model development and application to a wide parameter space this report is being bound separately. This report specifically contains the model development and parameter study for dc electrical power transmission lines. The end of the funding year (May 1990) will conclude with an annual report including the literature survey, the overview of the requirements of a lunar power system, and summaries of the dc and ac models of electrical transmission lines.

  8. Electrical Transmission Line Diametrical Retention Mechanism

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  9. Reliability assessment of an OVH HV power line truss transmission tower subjected to seismic loading

    NASA Astrophysics Data System (ADS)

    Winkelmann, Karol; Jakubowska, Patrycja; Soltysik, Barbara

    2017-03-01

    The study focuses on the reliability of a transmission tower OS24 ON150 + 10, an element of an OVH HV power line, under seismic loading. In order to describe the seismic force, the real-life recording of the horizontal component of the El Centro earthquake was adopted. The amplitude and the period of this excitation are assumed random, their variation is described by Weibull distribution. The possible space state of the phenomenon is given in the form of a structural response surface (RSM methodology), approximated by an ANOVA table with directional sampling (DS) points. Four design limit states are considered: stress limit criterion for a natural load combination, criterion for an accidental combination (one-sided cable snap), vertical and horizontal translation criteria. According to these cases the HLRF reliability index β is used for structural safety assessment. The RSM approach is well suited for the analysis - it is numerically efficient, not excessively time consuming, indicating a high confidence level. Given the problem conditions, the seismic excitation is shown the sufficient trigger to the loss of load-bearing capacity or stability of the tower.

  10. Atmospheric transmission loss in mirror-to-tower slant ranges due to water vapor

    NASA Astrophysics Data System (ADS)

    Gueymard, Christian A.; López, Gabriel; Rapp-Arrarás, Igor

    2017-06-01

    Considering CSP systems of the central tower-receiver type, this study investigates the specific effect of water vapor absorption on the total atmospheric transmission losses that impact direct irradiance along the slant path between a distant mirror and the receiver on the tower. Spectral and broadband calculations of total atmospheric attenuation are made for various water vapor conditions (from dry to humid) with both the rigorous MODTRAN code and the simpler and faster SMARTS code. The use of the latter is made indirectly possible through the "fictitious sun" concept. The MODTRAN and SMARTS results compare reasonably well under the present conditions, which closely echo the conditions used in previous studies, thus allowing instructive comparisons that will be reported later. To study the vertical profile of water vapor between surface and a height of 300 m, the columnar precipitable water at ≈5 m resolution has been derived from special high-resolution radiosonde soundings carried out twice daily at two arid sites. This analysis shows that the desired precipitable water at the receiver level can be simply extrapolated from that at the mirror level if the water vapor scale height is known. The latter is shown to significantly vary on a daily basis at the two sounding sites, with a median of 2.74 km. The exact value of this scale height conditions the transmission loss due to water vapor, but in any case this loss is found relatively small in comparison with other sources of attenuation, even when considering long slant paths under humid conditions. This unexpected finding is explained by the saturation effect that characterizes water vapor absorption.

  11. 75 FR 22770 - National Electric Transmission Congestion Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... National Electric Transmission Congestion Study AGENCY: Office of Electricity Delivery and Energy Reliability (OE), Department of Energy. ACTION: Notice of Availability of 2009 National Electric Transmission... notice that it has issued a National Electric Transmission Congestion Study (2009 Congestion Study) and...

  12. Essays on electricity transmission investment and financial transmission rights

    NASA Astrophysics Data System (ADS)

    Shang, Wenzhuo

    The U.S. electric power industry has been going through fundamental restructuring and realignment since the 1990's. Many issues and problems have emerged during the transition, and both economists and engineers have been looking for the solutions fervently. In this dissertation, which consists primarily of three essays, we apply economics theory and techniques to the power industry and address two related issues, transmission investment and financial transmission rights (FTRs). The first essay takes the decentralized perspective and investigates the efficiency attribute of market-based transmission investment under perfect competition. We clarify, for the first time, the nature of the externality created by loop flows that causes transmission investment to be inefficient. Our findings have important implications for better understanding of transmission market design and creating incentives for efficient transmission investment. In the second essay, we define several rules for allocating transmission investment cost within the framework of cooperative game theory. These rules provide fair, stable or efficient cost allocations in theory and are good benchmarks against which the allocation mechanism in practice can be compared and improved upon. In the last essay, we make exploratory efforts in analyzing and assessing empirically the performance of the Midwest independent system operator (MISO) FTR auction market. We reveal some stylized facts about this young market and find that it is not efficient under the risk-neutrality assumption. We also point out and correct the drawbacks in previous related work and suggest about more complete empirical work in future. In all, this dissertation makes both theoretic and empirical analysis of the two hot issues related to the power industry and comes up with findings that have important implications for the development of this industry.

  13. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  14. Effect of heliostat size on the levelized cost of electricity for power towers

    NASA Astrophysics Data System (ADS)

    Pidaparthi, Arvind; Hoffmann, Jaap

    2017-06-01

    The objective of this study is to investigate the effects of heliostat size on the levelized cost of electricity (LCOE) for power tower plants. These effects are analyzed in a power tower with a net capacity of 100 MWe, 8 hours of thermal energy storage and a solar multiple of 1.8 in Upington, South Africa. A large, medium and a small size heliostat with a total area of 115.56 m2, 43.3 m2 and 15.67 m2 respectively are considered for comparison. A radial-staggered pattern and an external cylindrical receiver are considered for the heliostat field layouts. The optical performance of the optimized heliostat field layouts has been evaluated by the Hermite (analytical) method using SolarPILOT, a tool used for the generation and optimization of the heliostat field layout. The heliostat cost per unit is calculated separately for the three different heliostat sizes and the effects due to size scaling, learning curve benefits and the price index is included. The annual operation and maintenance (O&M) costs are estimated separately for the three heliostat fields, where the number of personnel required in the field is determined by the number of heliostats in the field. The LCOE values are used as a figure of merit to compare the different heliostat sizes. The results, which include the economic and the optical performance along with the annual O&M costs, indicate that lowest LCOE values are achieved by the medium size heliostat with an area of 43.3 m2 for this configuration. This study will help power tower developers determine the optimal heliostat size for power tower plants currently in the development stage.

  15. Aeolic vibration of aerial electricity transmission cables

    NASA Astrophysics Data System (ADS)

    Avila, A.; Rodriguez-Vera, Ramon; Rayas, Juan A.; Barrientos, Bernardino

    2005-02-01

    A feasibility study for amplitude and frequency vibration measurement in aerial electricity transmission cable has been made. This study was carried out incorporating a fringe projection method for the experimental part and horizontal taut string model for theoretical one. However, this kind of model ignores some inherent properties such as cable sag and cable inclination. Then, this work reports advances on aeolic vibration considering real cables. Catenary and sag are considered in our theoretical model in such a way that an optical theodolite for measuring has been used. Preliminary measurements of the catenary as well as numerical simulation of a sagged cable vibration are given.

  16. 78 FR 4873 - Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... on Electrical Protective Equipment (29 CFR 1910.137) and Electric Power Generation, Transmission, and... Equipment Standard (29 CFR 1910.137) and the Electric Power Generation, Transmission, and Distribution... the equipment-testing requirements of the Standard. Electric Power Generation, Transmission,...

  17. Reorganization of the electric transmission system in Argentina

    SciTech Connect

    Sbertoli, L.V. )

    1994-06-01

    The Argentine electric system was developed from isolated local services, and, as the years went by, it became a well-integrated grid. Except for some services in the southernmost region, the national interconnected system supplies electric power to final users throughout the country. The paper discusses: Argentine interconnected system; private companies and public service; electric power sector transformation; transmission network privatization; transmission rates; concession (license) contract; extensions and other transmission concessions.

  18. Overhead electric power transmission line jumpering system for bundles of five or more subconductors

    DOEpatents

    Winkelman, Paul F.

    1982-01-01

    Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.

  19. Design of synchromesh mechanism to optimization manual transmission's electric vehicle

    NASA Astrophysics Data System (ADS)

    Zainuri, Fuad; Sumarsono, Danardono A.; Adhitya, Muhammad; Siregar, Rolan

    2017-03-01

    Significant research has been attempted on a vehicle that lead to the development of transmission that can reduce energy consumption and improve vehicle efficiency. Consumers also expect safety, convenience, and competitive prices. Automatic transmission (AT), continuously variable transmission (CVT), and dual clutch transmission (DCT) is the latest transmission developed for road vehicle. From literature reviews that have been done that this transmission is less effective on electric cars which use batteries as a power source compared to type manual transmission, this is due to the large power losses when making gear changes. Zeroshift system is the transmission can do shift gears with no time (zero time). It was developed for the automatic manual transmission, and this transmission has been used on racing vehicles to eliminate deceleration when gear shift. Zeroshift transmission still use the clutch to change gear in which electromechanical be used to replace the clutch pedal. Therefore, the transmission is too complex for the transmission of electric vehicles, but its mechanism is considered very suitable to increase the transmission efficiency. From this idea, a new innovation design transmission will be created to electric car. The combination synchromesh with zeroshift mechanism for the manual transmission is a transmission that is ideal for improving the transmission efficiency. Installation synchromesh on zeroshift mechanism is expected to replace the function of the clutch MT, and assisted with the motor torque setting when to change gear. Additionally to consider is the weight of the transmission, ease of manufacturing, ease of installation with an electric motor, as well as ease of use by drivers is a matter that must be done to obtain a new transmission system that is suitable for electric cars.

  20. The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

    SciTech Connect

    Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

    2008-03-03

    This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these

  1. Electrical and Biological Effects of Transmission Lines: A Review.

    SciTech Connect

    Lee, Jack M.

    1989-06-01

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  2. 4. Electric motor and transmission wheel on southeast wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Electric motor and transmission wheel on southeast wall of Oil House. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Oil House, 650 feet Southeast of Cliff & Mechanic Streets, Scranton, Lackawanna County, PA

  3. 117. Maricopa Dam Water System, Electric Transmission Lines, Catwalk, Derrick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Maricopa Dam Water System, Electric Transmission Lines, Catwalk, Derrick at Elev. +65. October 15, 1934. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  4. Transmission Pricing Issues for Electricity Generation From Renewable Resources

    EIA Publications

    1999-01-01

    This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

  5. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  6. Visibility and Visual Characteristics of the Ivanpah Solar Electric Generating System Power Tower Facility

    SciTech Connect

    Sullivan, Robert; Abplanalp, Jennifer M.

    2015-03-01

    This report presents the results of a study conducted to document the visibility and visual characteristics of the Ivanpah Solar Electric Generating System (ISEGS), a utility-scale solar power tower facility located on land administered by the U.S. Department of the Interior Bureau of Land Management in southern California. Study activities consisted of field observations of the ISEGS facility and comparison of the observations made in the field with the visual contrast assessments and visual simulations in the ISEGS Final Environmental Impact Statement (Final EIS) and supporting documents created prior to ISEGS construction. Field observations of ISEGS were made from 19 locations within 35 mi (56 km) of the facility in the course of one week in September 2014. The study results established that reflected sunlight from the receivers was the primary source of visual contrast from the operating ISEGS facility. The ISEGS facility was found to be a major source of visual contrast for all observations up to 20 mi (32 km), and was easily visible at 35 mi. Glare from individual heliostats was frequently visible, and often brighter than the reflected light from the receivers. Heliostat glare caused discomfort for one or more viewers at distances up to 20 mi. The ISEGS power blocks were brightly lit at night, and were conspicuous at the observation distance of approximately 6 mi (10 km). The facility is substantially brighter and is seen more clearly in the field than in photographs of the facility or in the prepared simulations, which were based on photographs. The simulations of the ISEGS facility in the Final EIS, which were evaluated as part of this study, sometimes lacked spatial accuracy and realism. The evaluated simulations generally under-represented the actual visual contrast from the project, and some of the contrast ratings in the Final EIS predicted substantially lower levels of visual contrast than were actually observed for the operating facility.

  7. Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity

    PubMed Central

    Pereda, Alberto E.; Curti, Sebastian; Hoge, Gregory; Cachope, Roger; Flores, Carmen E.; Rash, John E.

    2012-01-01

    The term synapse applies to cellular specializations that articulate the processing of information within neural circuits by providing a mechanism for the transfer of information between two different neurons. There are two main modalities of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding of the properties and modifiability of chemical transmission, less is still known regarding the plastic properties of electrical synapses, whose structural correlate is the gap junction. A wealth of data indicates that, rather than passive intercellular channels, electrical synapses are more dynamic and modifiable than was generally perceived. This article will discuss the factors determining the strength of electrical transmission and review current evidence demonstrating its dynamic properties. Like their chemical counterparts, electrical synapses can also be plastic and modifiable. PMID:22659675

  8. Electrical characteristics of sea-water-return transmission lines

    NASA Astrophysics Data System (ADS)

    Gholson, N.; Swenson, R.; Alexander, C.

    1982-08-01

    An experiment was conducted at sea to determine characteristics of three single copper conductor transmission lines. All three transmission lines incorporated seawater as an electrical return path and graphite shielding of various constructions in an attempt to achieve desirable characteristics of coaxial transmission lines. The transmission lines were 20,000 feet long, 0.1 inches in diameter, and used braided Kevlar at a strength member. The primary problem addresses was measuring low frequency (<20kHz) attenuation and phase shift of the transmission lines as a function of configuration in the water column and as a function of graphite shield construction. Results show that transmission line electrical characteristics as much better when the line is fully payed out as opposed to part of the line being coiled.

  9. Impacts of Climate Change on Electric Transmission Capacity and Peak Electricity Load in the United States

    NASA Astrophysics Data System (ADS)

    Chester, M.; Bartos, M. D.; Eisenberg, D. A.; Gorman, B.; Johnson, N.

    2015-12-01

    Climate change may hinder future electricity reliability by reducing electric transmission capacity while simultaneously increasing electricity demand. This study estimates potential climate impacts to electric transmission capacity and peak electricity load in the United States. Electric power cables suffer decreased transmission capacity as they get hotter; similarly, during the summer peak period, electricity demand typically increases with hotter ambient air temperatures due to increased cooling loads. As atmospheric carbon concentrations increase, higher air temperatures may strain power infrastructure by reducing transmission capacity and increasing peak electricity loads. Taken together, these coincident impacts may have unpredictable consequences for electric power reliability. We estimate the effects of climate change on both the rated capacity of transmission infrastructure and expected electricity demand for 120 electrical utilities across the United States. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with downscaled CMIP5 temperature projections to determine the relative change in rated ampacity over the twenty-first century. Next, we assess the impact of climate change on electricity demand by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We use downscaled temperature projections from 11 CMIP5 GCM models under 3 atmospheric carbon scenarios. We find that by mid-century (2040-2060), climate change may reduce average summertime transmission capacity by 4-6% relative to the 1990-2010 reference period. At the same time, peak summertime loads may rise by roughly 2-12% on average due to increases in daily maximum air temperature. In the absence of energy efficiency gains, demand-side management programs

  10. Flex-gear electrical power transmission

    NASA Technical Reports Server (NTRS)

    Vranish, John; Peritt, Jonathan

    1993-01-01

    This study was conducted to develop an alternative way of transferring electricity across a continuously rotating joint, with little wear and the potential for low electrical noise. The problems with wires, slip rings, electromagnetic couplings, and recently invented roll-rings are discussed. Flex-gears, an improvement of roll-rings, are described. An entire class of flexgear devices is developed. Finally, the preferred flex-gear device is optimized for maximum electrical contact and analyzed for average mechanical power loss and maximum stress. For a device diameter of six inches, the preferred device is predicted to have a total electrical contact area of 0.066 square inches. In the preferred device, a small amount of internal sliding produces a 0.003 inch-pound torque that resists the motion of the device.

  11. Advanced continuously variable transmissions for electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  12. Electricity generation and transmission planning in deregulated power markets

    NASA Astrophysics Data System (ADS)

    He, Yang

    This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the

  13. Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification

    PubMed Central

    Palacios-Prado, Nicolás; Huetteroth, Wolf; Pereda, Alberto E.

    2014-01-01

    Unapposed hemichannels (HCs) formed by hexamers of gap junction proteins are now known to be involved in various cellular processes under both physiological and pathological conditions. On the other hand, less is known regarding how differences in the molecular composition of HCs impact electrical synaptic transmission between neurons when they form intercellular heterotypic gap junctions (GJs). Here we review data indicating that molecular differences between apposed HCs at electrical synapses are generally associated with rectification of electrical transmission. Furthermore, this association has been observed at both innexin and connexin (Cx) based electrical synapses. We discuss the possible molecular mechanisms underlying electrical rectification, as well as the potential contribution of intracellular soluble factors to this phenomenon. We conclude that asymmetries in molecular composition and sensitivity to cellular factors of each contributing hemichannel can profoundly influence the transmission of electrical signals, endowing electrical synapses with more complex functional properties. PMID:25360082

  14. Airborne LIDAR point cloud tower inclination judgment

    NASA Astrophysics Data System (ADS)

    liang, Chen; zhengjun, Liu; jianguo, Qian

    2016-11-01

    Inclined transmission line towers for the safe operation of the line caused a great threat, how to effectively, quickly and accurately perform inclined judgment tower of power supply company safety and security of supply has played a key role. In recent years, with the development of unmanned aerial vehicles, unmanned aerial vehicles equipped with a laser scanner, GPS, inertial navigation is one of the high-precision 3D Remote Sensing System in the electricity sector more and more. By airborne radar scan point cloud to visually show the whole picture of the three-dimensional spatial information of the power line corridors, such as the line facilities and equipment, terrain and trees. Currently, LIDAR point cloud research in the field has not yet formed an algorithm to determine tower inclination, the paper through the existing power line corridor on the tower base extraction, through their own tower shape characteristic analysis, a vertical stratification the method of combining convex hull algorithm for point cloud tower scarce two cases using two different methods for the tower was Inclined to judge, and the results with high reliability.

  15. Electrical Characteristics of Sea-Water-Return Transmission Lines

    DTIC Science & Technology

    1982-08-01

    NOROW Reprl 52 Electrical Characteristics of Sea-Water-Return Transmission Lines N. Gholson R. Swenson C. Alexander Ocean Technology Division Ocean...1] Gholson , N. H., Measuring Transmis- 26. Cable #4 has been excluded thus far sion Line Transfer Functions Using a because of its length being 10...Return Final Transmission Lines 6. PERFORMING ORG, REPORT NUMBER 7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(@) N. Gholson R. Swenson C. Alexander 9

  16. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  17. On the inversion of polarity of the electric field at very close range from a tower struck by lightning

    NASA Astrophysics Data System (ADS)

    Mosaddeghi, A.; Pavanello, D.; Rachidi, F.; Rubinstein, M.

    2007-10-01

    In this paper, we show that the electric field generated by a lightning return stroke to a tall structure can change polarity at very close distance range, typically at distances of about one tenth the height or so of the struck object. This change in the polarity seems to be a specific signature of the very close vertical electric field. Two different theoretical explanations of such an inversion of polarity are given, the first based on general field equations for a perfectly conducting ground and the second based on the equation derived by Baba and Rakov (2005a) for the case when the return stroke wavefront speed is assumed to be equal to the speed of light and the reflection coefficient at the top of the tall structure is zero. A simple equation is derived which provides an estimate of the critical distance below which such an inversion of polarity might occur. It is also shown that the inversion of polarity depends on the value of the reflection coefficient at the base of the tower and disappears for reflection coefficients close to 1. On the other hand, other parameters such as the return stroke speed, the reflection coefficient at the top of the strike object, and the adopted return stroke model seem not to have an impact on the inversion of polarity. The need of obtaining experimental data on electromagnetic fields at very close range to a tower struck by lightning is emphasized in order to confirm the theoretical finding.

  18. Electric transmission line flashover prediction system

    NASA Astrophysics Data System (ADS)

    Amarh, Felix

    Near industrial, agricultural, or coastal areas, contamination is a frequent cause of insulator flashover, most cases of which result in lengthy service interruptions. Utilities spend significant amounts of money on insulator washing and cleaning before the restoration of the service. Laboratory studies and industrial experience have shown that both contamination and wetting of insulator surfaces, which initiate the flow of leakage current, are required for insulator flashover. The leakage current leading to flashover has distinctive stages of development. Flashover is preceded by dry-band arcing and extension of the arc to bridge the insulator. This combination significantly modifies both the magnitude and shape of the leakage current. A condition-based monitoring (CBM) system that monitors the easily measurable insulator leakage current as a means of assessing pollution severity and would possibly predict an approaching flashover could prove beneficial to utilities. The overall aim of this project is the development of a system that monitors pollution build-up through the signature changes in the leakage current and alerts an operator when there is a danger of flashover. The operator can, in turn, order maintenance personnel to wash the insulators. This will safeguard against unforeseen flashovers, since the system is constantly being monitored and diagnosed. Additionally, the washing cycles of insulators will be optimized, saving money and eventually rendering the power transmission system more reliable.

  19. Impacts of Demand-Side Resources on Electric Transmission Planning

    SciTech Connect

    Hadley, Stanton W.; Sanstad, Alan H.

    2015-01-01

    Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies were independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.

  20. Transmission Lines: An Overview of Electrical Properties and Environmental Effects.

    SciTech Connect

    United States. Bonneville Power Administration. Biological Studies Task Team.

    1982-03-01

    A brief overview is provided of environmental and biological effects of high-voltage power transmission lines. Paragraph length descriptions of electric fields, induced voltage and currents, biological effects, magnetic fields, corona, radio and television interference, and ozone are given. 13 figs.

  1. Electric vehicle drive train with direct coupling transmission

    DOEpatents

    Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  2. Electric vehicle drive train with direct coupling transmission

    DOEpatents

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  3. CO2 Emissions Embodied in Interprovincial Electricity Transmissions in China.

    PubMed

    Qu, Shen; Liang, Sai; Xu, Ming

    2017-09-19

    Existing studies on the evaluation of CO2 emissions due to electricity consumption in China are inaccurate and incomplete. This study uses a network approach to calculate CO2 emissions of purchased electricity in Chinese provinces. The CO2 emission factors of purchased electricity range from 265 g/kWh in Sichuan to 947 g/kWh in Inner Mongolia. We find that emission factors of purchased electricity in many provinces are quite different from the emission factors of electricity generation. This indicates the importance of the network approach in accurately reflecting embodied emissions. We also observe substantial variations of emissions factors of purchased electricity within subnational grids: the provincial emission factors deviate from the corresponding subnational-grid averages from -58% to 44%. This implies that using subnational-grid averages as required by Chinese government agencies can be quite inaccurate for reporting indirect CO2 emissions of enterprises' purchased electricity. The network approach can improve the accuracy of the quantification of embodied emissions in purchased electricity and emission flows embodied in electricity transmission.

  4. Vulnerability of electricity transmission infrastructure to natural hazards

    NASA Astrophysics Data System (ADS)

    Komendantova, Nadejda

    2016-04-01

    Electricity transmission system is a very complex system, which consists of several elements, such as overhead lines, substations and transformers, covers wide areas, is interconnected with several networks with numerous inter-dependencies. This highly integrated system is exposed to several hazards, leading to interruption of power supply. Natural hazards, such as an increased frequency of extreme weather events, including storms, icing, wet snow deposits, lighting, floods, avalanches, rock falls and landslides or changing air temperature have effects on transmission and lead to destruction of this infrastructure, which is also critical for society as it guarantees functioning of vital for society services. The reliability of critical electricity transmission infrastructure depends on its ability to ensure normal operation, to limit number of incidents and to avoid major incidents and to limit consequences of major incidents. The concept of reliability is closely connected with the concept of resilience, which is understood, in general, as the ability of a system to react and recover from anticipated disturbances and events. In regards to electricity transmission resilience is the ability of the power system to adapt, self-organize and recover or achieve the level even higher than those before the shock. This paper reviews three major natural hazards disasters, which resulted in significant blackouts in Europe. The first one is the 2003 blackout in Italy, which was caused by flash-over from trees. The second one is the 2003 blackout in Sweden, which was caused by rainstorms. The third one is the 2005 blackout in Germany, which was caused by wet snow. The inter-comparative analysis of these events allowed us to develop recommendations on electricity transmission network resilience.

  5. Engineering the electrical characteristics of resonant type metamaterial transmission lines

    NASA Astrophysics Data System (ADS)

    Martin, F.; Bonache, J.; Gil, M.; Sisó, G.

    2008-04-01

    This paper is focused on the control of the electrical characteristics of resonant type metamaterial transmission lines, that is, transmission lines loaded with complementary split ring resonators (CSRRs). The key parameters of metamaterial transmission lines for microwave and millimetre wave circuit design are the characteristic impedance and the phase constant (rather than the effective magnetic permeability or dielectric permittivity). Thanks to the presence of reactive elements loading the host line, metamaterial transmission lines exhibit a major design flexibility that can be useful for circuit design purposes. Specifically, we can tailor the dispersion diagram and the characteristic impedance to some extent. By virtue of this, it is possible the design of microwave and millimetre wave components with superior performance in terms of bandwidth, or the design of multi-band components, both of interest in modern wireless communication systems. Thanks to the small electrical size of the unit cell of such lines, the resulting metamaterial-based components are also very small and fully compatible with planar technology (that is, no lumped elements are used). Different examples are provided to illustrate the possibilities of resonant type metamaterial transmission lines. This includes hybrid couplers, power dividers and phase shifters, among others. The paper includes also the theoretical foundations of the approach.

  6. Electric Power High-Voltage Transmission Lines: Design Options, Cost, and Electric and Magnetic Field Levels

    SciTech Connect

    Stoffel, J. B.; Pentecost, E. D.; Roman, R. D.; Traczyk, P. A.

    1994-11-01

    The aim of this report is to provide background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist preparers and reviewers of the section on alternatives in environmental documents. This report will give the reviewing individual a better appreciation of the factors affecting EMF strengths near high-voltage transmission lines and the approaches that might be used to reduce EMF impacts on humans and other biological species in the vicinity of high-voltage overhead or underground alternating-current (ac) or direct-current (dc) transmission lines.

  7. CNQX and AMPA inhibit electrical synaptic transmission: a potential interaction between electrical and glutamatergic synapses

    PubMed Central

    Li, Qin; Burrell, Brian D.

    2008-01-01

    Electrical synapses play an important role in signaling between neurons and the synaptic connections between many neurons possess both electrical and chemical components. Although modulation of electrical synapses is frequently observed, the cellular processes that mediate such changes have not been studied as thoroughly as plasticity in chemical synapses. In the leech (Hirudo sp), the competitive AMPA receptor antagonist CNQX inhibited transmission at the rectifying electrical synapse of a mixed glutamatergic/electrical synaptic connection. This CNQX-mediated inhibition of the electrical synapse was blocked by concanavalin A (Con A) and dynamin inhibitory peptide (DIP), both of which are known to inhibit endocytosis of neurotransmitter receptors. CNQX-mediated inhibition was also blocked by pep2-SVKI (SVKI), a synthetic peptide that prevents internalization of AMPA-type glutamate receptor. AMPA itself also inhibited electrical synaptic transmission and this AMPA-mediated inhibition was partially blocked by Con A, DIP and SVKI. Low frequency stimulation induced long-term depression (LTD) in both the electrical and chemical components of these synapses and this LTD was blocked by SVKI. GYKI 52466, a selective non-competitive antagonist of AMPA receptors, did not affect the electrical EPSP, although it did block the chemical component of these synapses. CNQX did not affect non-rectifying electrical synapses in two different pairs of neurons. These results suggest an interaction between AMPA-type glutamate receptors and the gap junction proteins that mediate electrical synaptic transmission. This putative interaction between glutamate receptors and gap junction proteins represents a novel mechanism for regulating the strength of synaptic transmission. PMID:18601913

  8. 75 FR 53687 - Southern Montana Electric Generation & Transmission Cooperative, Inc. v. NorthWestern Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ...] Southern Montana Electric Generation & Transmission Cooperative, Inc. v. NorthWestern Corporation; Notice...) Rules of Practice and Procedure, 18 CFR 385.206, Southern Montana Electric Generation &...

  9. American lifelines alliance efforts to improve electric power transmission reliability

    USGS Publications Warehouse

    Nishenko, S.P.; Savage, W.U.; Honegger, D.G.; McLane, T.R.; ,

    2002-01-01

    A study was performed on American Lifelines Alliance (ALA) efforts to improve electric power transmission reliability. ALA is a public-private partnership project, with the goal of reducing risks to lifelines from natural hazards and human threat events. The mechanism used by ALA for developing national guidelines for lifeline systems is dependent upon using existing Standards Developing Organizations (SDO) accredited by the American National Standards Institute (ANSI) as means to achieve national consensus.

  10. Design studies of continuously variable transmissions for electric vehicles

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Loewenthal, S. H.; Fischer, G. K.

    1981-01-01

    Preliminary design studies were performed on four continuously variable transmission (CVT) concepts for use with a flywheel equipped electric vehicle of 1700 kg gross weight. Requirements of the CVT's were a maximum torque of 450 N-m (330 lb-ft), a maximum output power of 75 kW (100 hp), and a flywheel speed range of 28,000 to 14,000 rpm. Efficiency, size, weight, cost, reliability, maintainability, and controls were evaluated for each of the four concepts which included a steel V-belt type, a flat rubber belt type, a toroidal traction type, and a cone roller traction type. All CVT's exhibited relatively high calculated efficiencies (68 percent to 97 percent) over a broad range of vehicle operating conditions. Estimated weight and size of these transmissions were comparable to or less than equivalent automatic transmission. The design of each concept was carried through the design layout stage.

  11. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    SciTech Connect

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions.

  12. Hazard analysis for magnetic induction from electric transmission lines

    NASA Astrophysics Data System (ADS)

    Taylor, R. J.

    1983-06-01

    The potential hazard of magnetic induction from electric transmission lines was investigated. A literature search was accomplished, measurements were made and compared with the theories found in the literature and a new approach was developed for estimating the hazardous potential of magnetically induced voltage in fences which could be grasped by barefoot children under wet conditions. Conditions under which representative transmission lines could induce such voltage were explored. For example, a standard three-phase horizontal 500 KV transmission line carrying 1000 A was estimated to induce 10.5 V in a 900 M fence 30 M from the center of the line. It was also found that third harmonic currents can magnetically induce significant voltages compared to those induced by 60 HZ currents umder some circumstances.

  13. 76 FR 44323 - National Grid Transmission Services Corporation; Bangor Hydro Electric Company; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Energy Regulatory Commission National Grid Transmission Services Corporation; Bangor Hydro Electric... of the Commission's Rules of Practice and Procedure, 18 CFR 385.207, National Grid Transmission Services Corporation and Bangor Hydro Electric Company (collectively, NEL Parties) filed a petition...

  14. Autonomous Inspection of Electrical Transmission Structures with Airborne UV Sensors - NASA Report on Dominion Virginia Power Flights of November 2016

    NASA Technical Reports Server (NTRS)

    Moore, Andrew J.; Schubert, Matthew; Nicholas Rymer

    2017-01-01

    The report details test and measurement flights to demonstrate autonomous UAV inspection of high voltage electrical transmission structures. A UAV built with commercial, off-the-shelf hardware and software, supplemented with custom sensor logging software, measured ultraviolet emissions from a test generator placed on a low-altitude substation and a medium-altitude switching tower. Since corona discharge precedes catastrophic electrical faults on high-voltage structures, detection and geolocation of ultraviolet emissions is needed to develop a UAV-based self-diagnosing power grid. Signal readings from an onboard ultraviolet sensor were validated during flight with a commercial corona camera. Geolocation was accomplished with onboard GPS; the UAV position was logged to a local ground station and transmitted in real time to a NASA server for tracking in the national airspace.

  15. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric power generation, transmission, and distribution... § 1910.269 Electric power generation, transmission, and distribution. Note: OSHA is staying the... the operation and maintenance of electric power generation, control, transformation, transmission, and...

  16. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric power generation, transmission, and distribution... § 1910.269 Electric power generation, transmission, and distribution. Note: OSHA is staying the... the operation and maintenance of electric power generation, control, transformation, transmission, and...

  17. Analysis of Safety Protection Measures for Maintenance Work of 500 kV Double-Circuit Transmission Lines on Same Tower

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Zou, Dehua; Zhang, Jianjun; Li, Hui; Chen, Jianping; Li, Jinliang

    2017-05-01

    Four transmission lines on the same tower are widely used because of their obvious economic and social benefits. But it also has high power supply reliability, so the choice of reasonable maintenance mode is particularly important. In this paper, we deducted the maintenance influence of the energized line to non-energized line, calculated and analyzed protection measures of non-energized singular line of 500kV double-circuit transmission line on the same tower with ATP software, and calculated field intensity distribution of typical operating position of the energized double-circuit transmission line with the finite element software. The calculation shows that when using the outage maintenance method, hanging both ground current and personal security line can reduce the current flowing through the operator’s body effectively. When using the live maintenance method, the field intensity of operator body strengths up to 383.69kV/m, The operator needs to wear shielding cloth with at least 43.08 dB shielding efficiency, in order to meet the security requirements.

  18. Computation of electric power production cost with transmission contraints

    NASA Astrophysics Data System (ADS)

    Earle, Robert Leonard

    The production cost in operating an electric power system is the cost of generation to meet the customer load or demand. Production costing models are used in analysis of electric power systems to estimate this cost for various purposes such as evaluating long term investments in generating capacity, contracts for sales, purchases, or trades of power. A multi-area production costing model includes the effects of transmission constraints in calculating costs. Including transmission constraints in production costing models is important because the electric power industry is interconnected and trades or sales of power amongst systems can lower costs. This thesis develops an analytical model for multi-area production costing. The advantage of this approach is that it explicitly examines the underlying structure of the problem. The major contributions of our research are as follows. First, we develop the multivariate model not just for transportation type models of electric power network flows, but also for the direct current power flow model. Second, this thesis derives the multi-area production cost curve in the general case. This new result gives a simple formula for determination of system cost and the gradient of cost with respect to transmission capacities. Third, we give an algorithm for generating the non-redundant constraints from a Gale-Hoffman type region. The Gale-Hoffman conditions characterize feasibility of flow in a network. We also gather together some existing and new results on Gale-Hoffman regions and put them in a unified framework. Fourth, in order to derive the multi-area production cost curves and also to perform the integration of the multivariate Edgeworth series, we need wedge shaped regions (a wedge is the affine image of an orthant). We give an algorithm for decomposing any polyhedral set into wedges. Fifth, this thesis gives a new method for one dimensional numerical integration of the trivariate normal. The best methods previously known

  19. Electric Power Systems: Transmission and Distribution and Electric and Magnetic Fields Effects

    SciTech Connect

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Electric Power Systems: Transmission and Distribution and Electric and Magnetic Fields Effects (EPS) announces on a bimonthly basis the current worldwide information available on electric power transmission and distribution and health effects of electric and magnetic fields associated with electric power transmission, distribution, and use. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in EPS and other citations to information on electric power dating from 1974 are available for online searching and retrieval on the Energy Science and Technology Database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  20. Ant Tower

    NASA Astrophysics Data System (ADS)

    Mlot, Nathan; Shinotsuka, Sho; Hu, David

    2010-11-01

    Ants walk via adhesive drops of fluid extruded by their feet. They also use these drops as mortar to build structures such as rafts, bridges and towers, each composed of thousands of ants linked together. We investigate experimentally the construction of triangular ant towers braced by hydrophobic walls. Particular attention is paid to the relationship between tower height and contact angle hysteresis of the wall. We rationalize tower height according to ant adhesion, and tower shape according to the constraints on a column of constant strength.

  1. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be bound...

  2. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be bound...

  3. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be bound...

  4. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be bound...

  5. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be bound...

  6. Preliminary assessment of the tradeoffs between the electric motor and the transmission in electric vehicles

    NASA Technical Reports Server (NTRS)

    Levi, E.

    1983-01-01

    The efficiency, weight, and cost of various propulsion system for 4-passenger electric vehicles are compared. These systems comprise the electric motor and the required speed reducing transmission to obtain the appropriate speed at the wheel. Three types of motors, dc synchronous, and squirrel-cage were considered at 6000 ycm and 24 000 rpm for a peak power of 40 kW. Two types of gearing selected were a single speed differential and a differential with a differential with a 4-speed gearbox. Only components that were readily realizable within present state-of-the-art were considered.

  7. 77 FR 3958 - Coordination of Federal Authorizations for Electric Transmission Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 900 RIN 1901-AB18 Coordination of Federal Authorizations for Electric... Electric Transmission Facilities has been extended until February 27, 2012. DATES: DOE will accept comments... electric transmission facilities pursuant to section 216(h) of the Federal Power Act (FPA). The proposed...

  8. 49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... safeguards are required? (a) You must electrically isolate each buried or submerged pipeline from other... electrical transmission tower footings, ground cables, or counterpoise, or in other areas where it is...

  9. 49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... safeguards are required? (a) You must electrically isolate each buried or submerged pipeline from other... electrical transmission tower footings, ground cables, or counterpoise, or in other areas where it is...

  10. 49 CFR 195.575 - Which facilities must I electrically isolate and what inspections, tests, and safeguards are...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... safeguards are required? (a) You must electrically isolate each buried or submerged pipeline from other... electrical transmission tower footings, ground cables, or counterpoise, or in other areas where it is...

  11. Extragalactic Jets as Electrical Circuits and Transmission Lines

    NASA Astrophysics Data System (ADS)

    Kronberg, Philipp

    2014-10-01

    I describe the first attempt to measure a current in an extended radio galaxy jet: ~1018A at ~50 kpc from the elliptical galaxy's ultra-compact nucleus. This class of jet is known to transport its magnetic energy ``intact'', up to supragalactic scales. I discuss plasma parameters for 3C303 and recent attempts to measure its jet axial current. I discuss analogies with both electrical circuits, - and transmission lines. Power is delivered into a ``load'', whose impedance, Z, is close to that of free space, and the jet power flow I2 Z is ~1035 erg s-1 - broadly consistent with astronomically measured total power outputs, luminosities and lifetimes of AGN-powered radio lobes.The current and power levels are also consistent with SMBH accretion disk model predictions by Stirling Colgate, H. Li, V. Pariev, J. Finn, and others, beginning with Lovelace 1976 (Nature). A further analogy with transmission lines shows how the supragalactic power flows can be disrupted by a complex impedance in the ``circuit.'' Reactive components in space, i.e. a complex Z, can disrupt, reflect or deflect the power flow. This could explain the wide variety of magneto-plasma configurations seen in these systems. Funded by NSERC Discovery Grant A5713.

  12. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  13. Electronic control system for control of electronic electric shift apparatus for manual transmission

    SciTech Connect

    Tury, E.L.; Thoe, G.A.

    1989-04-18

    An electrical control apparatus is described for control of a manual transmission apparatus in a motor vehicle having a plurality of transmission states selected by the position of a shift select lever, the electrical control apparatus comprising: a first electric motor; means drive by the first electric motor and operative in response to energization of the first electric motor to move the shift select lever laterally between left, center, and right locations; a second electric motor; means driven by the second electric motor and operative in response to energization of the second electric motor to move the shift select lever longitudinally between forward, neutral, and rearward locations; operator input means operative to generate a desired transmission sate signal corresponding to manual operator input; a first transmission state sensing means for indicating the left, center, or right location of the shift select lever; a second transmission state sensing means for indicating the forward, neutral or rearward location of the shift select lever; and a logic control unit connected to the operator input means and the first and second transmission state sensing means for generation of a sequence of motor drive signals corresponding to the sequence of motions required for movement of the shift select lever from the present transmission state to the desired transmission state when the desired transmission state differs from the present transmission state, the motor drive signals including a clockwise motor drive signal, a counter-clockwise motor drive signal, a shift up motor drive signal and a shift down motor drive signal.

  14. Power Transmission Tower Series Extraction in PolSAR Image Based on Time-Frequency Analysis and A-Contrario Theory.

    PubMed

    Peng, Dongqing; Zhang, Haijian; Guo, Wei; Yang, Wen

    2016-11-05

    Based on Time-Frequency (TF) analysis and a-contrario theory, this paper presents a new approach for extraction of linear arranged power transmission tower series in Polarimetric Synthetic Aperture Radar (PolSAR) images. Firstly, the PolSAR multidimensional information is analyzed using a linear TF decomposition approach. The stationarity of each pixel is assessed by testing the maximum likelihood ratio statistics of the coherency matrix. Then, based on the maximum likelihood log-ratio image, a Cell-Averaging Constant False Alarm Rate (CA-CFAR) detector with Weibull clutter background and a post-processing operator is used to detect point-like targets in the image. Finally, a searching approach based on a-contrario theory is applied to extract the linear arranged targets from detected point-like targets. The experimental results on three sets of PolSAR data verify the effectiveness of this approach.

  15. Power Transmission Tower Series Extraction in PolSAR Image Based on Time-Frequency Analysis and A-Contrario Theory

    PubMed Central

    Peng, Dongqing; Zhang, Haijian; Guo, Wei; Yang, Wen

    2016-01-01

    Based on Time-Frequency (TF) analysis and a-contrario theory, this paper presents a new approach for extraction of linear arranged power transmission tower series in Polarimetric Synthetic Aperture Radar (PolSAR) images. Firstly, the PolSAR multidimensional information is analyzed using a linear TF decomposition approach. The stationarity of each pixel is assessed by testing the maximum likelihood ratio statistics of the coherency matrix. Then, based on the maximum likelihood log-ratio image, a Cell-Averaging Constant False Alarm Rate (CA-CFAR) detector with Weibull clutter background and a post-processing operator is used to detect point-like targets in the image. Finally, a searching approach based on a-contrario theory is applied to extract the linear arranged targets from detected point-like targets. The experimental results on three sets of PolSAR data verify the effectiveness of this approach. PMID:27827966

  16. 76 FR 37809 - The Connecticut Transmission Municipal Electric Energy Cooperative; Notice of Request for Waiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission The Connecticut Transmission Municipal Electric Energy Cooperative; Notice... Municipal Electric Energy Cooperative filed a petition requesting full waiver or exemption from...

  17. The numerical simulation of hysteretic performance of K-type steel tube node in large span transmission tower

    NASA Astrophysics Data System (ADS)

    Liu, Chuncheng; Li, Guoqiang; Fan, Xiaoling

    2017-04-01

    This paper used ABAQUS software to make numerical experimental studies on the seismic performance of the common K-type node in large span steel tower. It analyzed different parameters of the main and branch pipe diameter, axial pressure of the main pipe, thickness of the connection plate and gap dimension. At last, it obtained performance of hysteresis curves, skeleton curves and energy dissipation capacity, and received the influence of these parameters on seismic performance of K-type node. Research shows that the steel pipe node itself has a good seismic performance. When the axial pressure is increased, the seismic performance is significantly decreasing. The node prone to fail because of stress concentration. Increasing the main and branch pipe diameter and node plate thickness can significantly improve the seismic performance of circular tube node. The effect of branch pipe gap size on node hysteretic performance improvement is not obvious.

  18. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect

    Alphenaar, Bruce

    2009-06-30

    , it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver

  19. Study on the principle of intelligent helmet's electric alarm device in transmission line

    NASA Astrophysics Data System (ADS)

    Zhang, Zehao; Peng, Lin; Bao, Xingchuan; Zhu, Liang; Wang, He; Zhou, Qiang

    2017-08-01

    This thesis made study on the Principle of Intelligent Helmet's Electric Alarm Device in Transmission Line. Based on the simulation analysis of the electric field strength and electric field characteristics of three-phase 10kV transmission line, this thesis put forward the calculation method of the electric alarm distance by developing a calculation model, and then explains proof of the accuracy of intelligent helmet's electric alarm and discusses its theoretical basis. At last, the theoretical analysis' correctness and the measurement's accuracy of the intelligent helmet's electric alarm device is proved by tests.

  20. Electrical Power Transmission and Distribution Safety. Module SH-40. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on electrical power transmission and distribution safety is one of 50 modules concerned with job safety and health. This module focuses on some of the general safety rules, techniques, and procedures that are essential in establishing a safe environment for the electrical power transmission worker. Following the introduction,…

  1. Collapsible Towers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    NASA needed a means of orbiting a large radio telescope antenna. Astro Research Corporation developed a new structure that was strong, lightweight, folded into a small storage space, and could be erected by rotation. Later they adapted it to commercial use. Today the "Astromast" tower consists of tubular aluminum alloy and stainless steel members that deploy into small three-sided bays, each made rigid by six diagonal cables. All joints are flexible to permit folding and unfolding. Tower packs into container 5% of its height, can be erected without tools and is reusable. Tower has won "Design of the Year" award from Machine Design. Variations include portable emergency bridges and commercial scaffolding.

  2. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  3. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  4. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  5. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  6. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to make...

  7. Electric Utility Transmission and Distribution Line Engineering Program

    SciTech Connect

    Peter McKenny

    2010-08-31

    Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working

  8. Solar thermal power towers

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Meyer, R. T.

    1984-07-01

    The solar thermal central receiver technology, known as solar power towers, is rapidly evolving to a state of near-term energy availability for electrical power generation and industrial process heat applications. The systems consist of field arrays of heliostat reflectors, a central receiver boiler, short term thermal storage devices, and either turbine-generators or heat exchangers. Fluid temperatures up to 550 C are currently achievable, and technology developments are underway to reach 1100 C. Six solar power towers are now under construction or in test operation in five countries around the world.

  9. 5. View of south tower, facing northnortheast from south bank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of south tower, facing north-northeast from south bank of the Columbia River. Center tower and north tower in background, lower right. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  10. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    NASA Astrophysics Data System (ADS)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  11. Discussions on a long gap discharge to an EHV transmission tower by a rocket triggered lightning experiment

    NASA Technical Reports Server (NTRS)

    Nakamura, Koichi; Wada, Atsushi; Horii, Kenji

    1991-01-01

    The triggered lightning experiments using a rocket have been carried out on a winter mountain in Japan since 1986. For the four years from 1986 to 1989, 39 rockets were launched and 19 of them triggered lightning strikes. The emphasis here is on the methodology for triggering lightning to the transmission system. Completed experiments are discussed. The failure of lightning protection and the striking distance are noted.

  12. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    NASA Astrophysics Data System (ADS)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  13. Tower counts

    USGS Publications Warehouse

    Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers. 

  14. A study of electric power transmission lines for use on the lunar surface

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.; Gaustad, Krista L.

    1991-01-01

    Analytical models have been developed to study the operating characteristics of electrical transmission lines for use on the lunar surface. Important design considerations for a transmission line operating on the lunar surface are mass, temperature, and efficiency. Transmission line parameters which impact these considerations include voltage, power loss, and waveform. The electrical and thermal models developed are used to calculate transmission line mass, size, and temperature as a function of voltage, geometry, waveform, location, and efficiency. The analyses include ac and dc for above and below ground operation. Geometries studied include a vacuum-insulated, two-wire transmission line and a solid-dielectric insulated, coaxial transmission line. A brief discussion of design considerations and the models developed is followed by results for parameter studies for both dc and ac transmission lines.

  15. A study of electric power transmission lines for use on the lunar surface

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.; Gaustad, Krista L.

    1991-01-01

    Analytical models have been developed to study the operating characteristics of electrical transmission lines for use on the lunar surface. Important design considerations for a transmission line operating on the lunar surface are mass, temperature, and efficiency. Transmission line parameters which impact these considerations include voltage, power loss, and waveform. The electrical and thermal models developed are used to calculate transmission line mass, size, and temperature as a function of voltage, geometry, waveform, location, and efficiency. The analyses include ac and dc for above and below ground operation. Geometries studied include a vacuum-insulated, two-wire transmission line and a solid-dielectric insulated, coaxial transmission line. A brief discussion of design considerations and the models developed is followed by results for parameter studies for both dc and ac transmission lines.

  16. High speed electrical transmission line design and characterization

    NASA Astrophysics Data System (ADS)

    Bates, R.; Buttar, C.; Buytaert, J.; Eklund, L.; de Acedo, L. F. S.; Longstaff, I.; Naik, S.; Sullivan, S.; Wraight, K.

    2017-02-01

    High Energy Physics (HEP) experiments have unique requirements for data communication. High data speeds, combined with extreme restrictions on materials allowed, leads to custom transmission lines. This paper will present transmission line design theory, simulation and testing methods. Transmission line designs options like flexes and rigid PCBs as well as cables will be studied. Finite Element Analysis (FEA) software packages simulate energy dissipation and quality of transmitted signals. The characterisation techniques of time-domain reflectometry and frequency-domain measurements are discussed and compared. Bit-error-rate testing is presented and its limitations for design discussed. Methods to improve quality, like three different types of equalization are described.

  17. Earthquake resistant construction of electric transmission and telecommunication facilities serving the Federal government report

    SciTech Connect

    Yokel, F.Y.

    1990-02-01

    The vulnerability of electrical transmission and telecommunication facilities to damage in past earthquakes, as well as available standards and technologies to protect these facilities against earthquake damage are reviewed. An overview is presented of measures taken by various Federal agencies to protect electrical transmission and telecommunication facilities against earthquake hazards. It is concluded that while most new facilities which are owned and operated by Federal agencies are presently designed to provide some, though not necessarily adequate, earthquake resistance, there generally is no effort to retrofit existing facilities. No evidence was found of requirements to protect electrical transmission and communication facilities which have major contractual obligations to serve the Federal Government and only limited seismic design requirements are stipulated for electrical transmission systems constructed with Federal funding.

  18. Power electronics in electric utilities: HVDC power transmission systems

    SciTech Connect

    Nozari, F.; Patel, H.S.

    1988-04-01

    High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

  19. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOEpatents

    Tran, Nang T.; Gilbert, James R.

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  20. Electrical performance of a Portable Protective Gap (PPG) in a compact 550-kV tower. Final report

    SciTech Connect

    Gela, G.; Lux, A.E.

    1994-11-01

    This report presents the results of a research project by Western Area Power Administration (Western) on the application of a Portable Protective Gap (PPG) to live working, on Western`s upgraded compact 550 kV tower type 51S. The objective of the project was to provide experimental evidence that confirms the needed coordination of the PPG sparkover characteristics with those of the 51S tower during live working conditions. These conditions include the presence of damaged porcelain cap-and-pin insulators, the worker, and live working tools and equipment in normal work positions. The tested PPG is a portable rod-rod 1.04 m (41 inches) gap, which would be installed on the tower adjacent to the worksite. The purpose of the PPG is to protect the worker by providing positive control of the transient overvoltage (TOV) at the worksite. That is, the PPG must operate (spark over) at a TOV level which is lower then the level that would cause a disruptive discharge (sparkover or flashover) at the worksite. The worksite disruptive discharge level. or conversely the worksite withstand level is dependent on a large number of factors, including presence and location of the worker, presence and location of live working tools and equipment, and number and location of damaged porcelain (cap-and-pin) insulators at the worksite. The PPG must not spark over at the system`s normal AC operating, voltage, i.e. its AC withstand level must be higher than AC stresses expected at the worksite.

  1. Towering Arches

    NASA Image and Video Library

    2016-04-06

    This still image from an animation from NASA GSFC Solar Dynamics Observatory shows arches of magnetic field lines towered over the edge of the Sun as a pair of active regions began to rotate into view Apr. 5-6, 2016.

  2. Rapunzel's Tower

    ERIC Educational Resources Information Center

    Depp, Sheryl

    2007-01-01

    Children's literature often inspires the author's lessons, and reading to her primary students motivates their participation. In this article, the author presents and describes her lesson which is based on the book "Falling for Rapunzel" by Leah Wilcox. Students created a fairy tale tower in this lesson, which took place over three class periods.…

  3. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses

    PubMed Central

    Liu, Ping; Chen, Bojun; Mailler, Roger; Wang, Zhao-Wen

    2017-01-01

    Neurons communicate through chemical synapses and electrical synapses (gap junctions). Although these two types of synapses often coexist between neurons, little is known about whether they interact, and whether any interactions between them are important to controlling synaptic strength and circuit functions. By studying chemical and electrical synapses between premotor interneurons (AVA) and downstream motor neurons (A-MNs) in the Caenorhabditis elegans escape circuit, we found that disrupting either the chemical or electrical synapses causes defective escape response. Gap junctions between AVA and A-MNs only allow antidromic current, but, curiously, disrupting them inhibits chemical transmission. In contrast, disrupting chemical synapses has no effect on the electrical coupling. These results demonstrate that gap junctions may serve as an amplifier of chemical transmission between neurons with both electrical and chemical synapses. The use of antidromic-rectifying gap junctions to amplify chemical transmission is potentially a conserved mechanism in circuit functions. PMID:28317880

  4. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses.

    PubMed

    Liu, Ping; Chen, Bojun; Mailler, Roger; Wang, Zhao-Wen

    2017-03-20

    Neurons communicate through chemical synapses and electrical synapses (gap junctions). Although these two types of synapses often coexist between neurons, little is known about whether they interact, and whether any interactions between them are important to controlling synaptic strength and circuit functions. By studying chemical and electrical synapses between premotor interneurons (AVA) and downstream motor neurons (A-MNs) in the Caenorhabditis elegans escape circuit, we found that disrupting either the chemical or electrical synapses causes defective escape response. Gap junctions between AVA and A-MNs only allow antidromic current, but, curiously, disrupting them inhibits chemical transmission. In contrast, disrupting chemical synapses has no effect on the electrical coupling. These results demonstrate that gap junctions may serve as an amplifier of chemical transmission between neurons with both electrical and chemical synapses. The use of antidromic-rectifying gap junctions to amplify chemical transmission is potentially a conserved mechanism in circuit functions.

  5. 77 FR 65545 - Tri-State Generation and Transmission Association, Inc. v. Western Electric Coordinating Council...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Tri-State Generation and Transmission Association, Inc. v. Western Electric... (2011), Tri-State Generation and Transmission Association, Inc. (Complainants) filed a complaint and...

  6. Electric Power Generation, Transmission and Distribution (NAICS 2211)

    EPA Pesticide Factsheets

    Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.

  7. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  8. 76 FR 75875 - Plan for Conduct of 2012 Electric Transmission Congestion Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... for Conduct of 2012 Electric Transmission Congestion Study AGENCY: Office of Electricity Delivery and... regional workshops and request for written comments in connection with the preparation of a study of...://energy.gov/oe/congestion-study-2012 . ] Issued in Washington, DC on November 29, 2011. Patricia A...

  9. Dynamics of electrical transmission at club endings on the Mauthner cells.

    PubMed

    Pereda, Alberto E; Rash, John E; Nagy, James I; Bennett, Michael V L

    2004-12-01

    Identifiable mixed electrical and chemical synapses on Mauthner cells, the club endings, have historically provided a window for the study of electrical transmission in vertebrates because of their accessibility for both physiological and ultrastructural characterization. Recent data show that electrical transmission at these terminals is mediated by connexin35 (Cx35), the fish ortholog of the mammalian neuronal gap junction protein, connexin36 (Cx36). While electrical synapses are still perceived by many as passive intercellular channels that lack modifiability, a wealth of experimental evidence shows that electrical synapses at club endings are very plastic and subject to dynamic regulatory control by several mechanisms. The widespread distribution of connexin35 and connexin36 and the ubiquity of some of the proposed regulatory elements suggest that other electrical synapses may be similarly regulated.

  10. Transmission probability of poly(dA)-poly(dT) DNA in electric field

    NASA Astrophysics Data System (ADS)

    Rahmi, K. A.; Yudiarsah, E.

    2017-07-01

    Transmission probability of poly(dA)-poly(dT) DNA in electric field for several voltages has been studied. The DNA molecule is modeled by using tight binding Hamiltonian model. It is contacted to electrodes at both sides with 32 long base pairs. The voltage is applied at the electrodes and assumed it can change base onsite energy linearly, so can influence charge transmission in DNA chain. The transmission probability is calculated using transfer matrix and scattering matrix method. The transmission probability results also be compared at different temperatures and twisting motion frequencies. The results show that as the voltage increases, the transmission probability at transmission region with energy higher energy than Fermi energy increases. The increment of transmission probability with voltage increment becomes larger at higher twisting motion frequency, but it becomes smaller at higher temperature.

  11. 15. VIEW OF COAL TOWER No. 2, LOOKING WEST TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF COAL TOWER No. 2, LOOKING WEST TO EAST FROM COAL TOWER No. 1 (FLOOR BELOW CRANE CONTROL) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  12. 14. WEST ELEVATION OF COAL TOWER No. 2, LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. WEST ELEVATION OF COAL TOWER No. 2, LOOKING WEST TO EAST FROM COAL TOWER No. 1 (FLOOR BELOW THE CRANE CONTROL) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  13. 3. General view showing north elevation of Shell Interlocking Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. General view showing north elevation of Shell Interlocking Tower and electric relay station. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY

  14. Virtual Tower

    SciTech Connect

    Wayne, R.A.

    1997-08-01

    The primary responsibility of an intrusion detection system (IDS) operator is to monitor the system, assess alarms, and summon and coordinate the response team when a threat is acknowledged. The tools currently provided to the operator are somewhat limited: monitors must be switched, keystrokes must be entered to call up intrusion sensor data, and communication with the response force must be maintained. The Virtual tower is an operator interface assembled from low-cost commercial-off-the-shelf hardware and software; it enables large amounts of data to be displayed in a virtual manner that provides instant recognition for the operator and increases assessment accuracy in alarm annunciator and control systems. This is accomplished by correlating and fusing the data into a 360-degree visual representation that employs color, auxiliary attributes, video, and directional audio to prompt the operator. The Virtual Tower would be a valuable low-cost enhancement to existing systems.

  15. Calculation and measurement of electric field under HVDC transmission lines

    NASA Astrophysics Data System (ADS)

    Kasdi, A.; Zebboudj, Y.; Yala, H.

    2007-03-01

    A stable corona discharge in a two conductors-to-plane configuration is analysed in this paper. A linear biased probe, without end-effect, has been adapted to a linear geometry and is used for the first time to measure the ground-plane current density and electric field during the bipolar corona. The values of the electric field and the current density are maximum under the two coronating conductors and decrease when moving away from them. Furthermore, a hybrid technique is developed to obtain a general solution of the governing equations of the coupled space-charge and electric field problem. The technique is to use the finite-element method (FEM) to solve Poisson's equation, and the method of characteristic (MOC) to find the charge density from a current-continuity relation. The model avoids resorting to the Deutsch assumption. The computed values are in good agreement with experimental data.

  16. Applying a New Parallelized Version of PSO Algorithm for Electrical Power Transmission

    NASA Astrophysics Data System (ADS)

    Zemzami, M.; Makhloufi, A.; Elhami, N.; Elhami, A.; Itmi, M.; Hmina, N.

    2017-06-01

    In this paper, the optimization of an electric power transmission material is presented giving specific consideration on material configuration and characteristics. The nature of electric power transmission networks makes it hard to manage. Thus, giving need for optimization. So the problem of optimization of electric power transmission as considered in this paper is improving the performance and reliability of the electricity pylon; the objective is to maximize resistance to load while reducing material usage and cost. For this purpose, we suggest a new version of PSO algorithm that allows the amelioration of its performance by introducing its parallelization associated to the concept of evolutionary neighborhoods. According to the experimental results, the proposed method is effective and outperforms basic PSO in terms of solution quality, accuracy, constraint handling, and time consuming.

  17. How dangerous are mobile phones, transmission masts, and electricity pylons?

    PubMed

    Wood, A W

    2006-04-01

    Electrical power and mobile communications deliver enormous benefit to society, but there are concerns whether the electric and magnetic field (EMF) emissions associated with the delivery of this benefit are linked to cancer or other health hazards. This article reviews the strength of the available epidemiological and laboratory evidence and notes that this falls short of what is normally required to establish a causal link. However, because of scientific uncertainty a cautious approach is often advocated, but here, too, there may be a tendency to judge these risks more harshly than those in other areas with similar strength of evidence.

  18. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  19. Survey of power tower technology

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A. F.; Dasgupta, S.

    1980-05-01

    The history of the power tower programs is reviewed, and attention is given to the current state of heliostat, receiver, and storage design. Economic considerations are discussed, as are simulation studies and implications. Also dealt with are alternate applications for the power tower and some financing and energy aspects of solar electric conversion. It is noted that with a national commitment to solar energy, the power tower concept could generate 40 GW of electricity and double this amount in process heat by the year 2000. Calculations show an energy amplification factor of 20 for solar energy plants; that is, the ratio of the electric energy produced over the lifetime of a power plant to the thermal energy required to produce the plant.

  20. 75 FR 41895 - Emerson Power Transmission, a Division of Emerson Electric Co., Including On-Site Leased From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Employment and Training Administration Emerson Power Transmission, a Division of Emerson Electric Co..., 2010, applicable to workers of Emerson Power Transmission, a Division of Emerson Electric Co... were employed on-site at the Ithaca, New York, location of Emerson Power Transmission, a Division...

  1. Comparison of electrically driven lasers for space power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.

    1988-01-01

    High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.

  2. Millikelvin thermal and electrical performance of lossy transmission line filters

    SciTech Connect

    Slichter, Daniel; Naaman, Ofer; Siddiqi, Irfan

    2009-03-11

    We report on the scattering parameters and Johnson noise emission of low-pass stripline filters employing a magnetically loaded silicone dielectric down to 25 mK. The transmission characteristic of a device with f-3dB=1.3 GHz remains essentially unchanged upon cooling. Another device with f-edB=0.4 GHz, measured in its stopband, exhibits a steady state noise power emission consistent with a temperature difference of a few mK relative to a well-anchored cryogenic microwave attenuator at temperatures down to 25 mK, thus presenting a matched thermal load.

  3. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  4. The electric field change caused by a ground flash with multiple channels

    NASA Technical Reports Server (NTRS)

    Nakano, Minoru; Takagi, Nobuyuki; Arima, Izumi; Kawasaki, Zen-Ichiro; Takeuti, Tosio

    1991-01-01

    The electric field and the magnetic flux changes caused by a ground flash with multiple channels are measured near the electric power transmission lines during winter thunderstorms. Triggered lightning strokes and the following associated strokes to the transmission line towers produce characteristic waveforms of the field changes. A few examples of the waveforms and a brief discussion are given.

  5. Electrically induced transmissivity modulation in polymeric thin film Fabry-Perot etalons

    SciTech Connect

    Eldering, C.A.; Kowel, S.T.; Knoesen, A. )

    1989-10-15

    We report the observation of electrically induced changes in transmissivity in Fabry-Perot devices consisting of spin-cast azo-dye/polymer films deposited between gold mirrors. In poled samples the observed modulation shows a linear dependence on the applied modulating voltage. The ratio of the transmissivity modulation observed using incident transverse magnetic polarization to that observed using transverse electric polarization is used to demonstrate that the electrooptic effect dominates the modulation. This is, to our knowledge, the first reported use of a polymeric thin film linear electrooptic material in a Fabry-Perot structure and demonstrates the use of etalons to enhance electrooptic effects in very thin films.

  6. Nonlinear behavior of electric power transmission through an elastic wall by acoustic waves and piezoelectric transducers.

    PubMed

    Yang, Zengtao; Yang, Jiashi; Hu, Yuantai

    2008-11-01

    Weakly nonlinear behavior of electric power transmission through an elastic wall by piezoelectric transducers and acoustic waves near resonance is studied based on the cubic theory of nonlinear electroelasticity. An approximate analytical solution is obtained. Output voltage is calculated and plotted. Basic nonlinear behaviors of the power transmission structure are examined. It is found that near nonlinear resonance the electrical input-output relation loses its linearity, becomes multi-valued, and experiences jumps due to large mechanical deformations. The behavior below and above resonance is qualitatively different and is qualitatively material dependent.

  7. Theoretical analysis of AC electric field transmission into biological tissue through frozen saline for electroporation.

    PubMed

    Xiao, Chunyan; Rubinsky, Boris

    2014-12-01

    An analytical model was used to explore the feasibility of sinusoidal electric field transmission across a frozen saline layer into biological tissue. The study is relevant to electroporation and permeabilization of the cell membrane by electric fields. The concept was analyzed for frequencies in the range of conventional electroporation frequencies and electric field intensity. Theoretical analysis for a variety of tissues show that the transmission of electroporation type electric fields through a layer of frozen saline into tissue is feasible and the behavior of this composite system depends on tissue type, frozen domain temperature, and frequency. Freezing could become a valuable method for adherence of electroporation electrodes to moving tissue surfaces, such as the heart in the treatment of atrial fibrillation or blood vessels for the treatment of restenosis. © 2014 Wiley Periodicals, Inc.

  8. The Electric Field Standing Wave Effect in Infrared Transmission Spectroscopy.

    PubMed

    Mayerhöfer, Thomas G; Mutschke, Harald; Popp, Jürgen

    2017-08-03

    When band ratios in infrared absorbance spectra of films are compared (which had been converted from transmittance spectra), it can be noted that even after background correction and removal of interference fringes these band ratios change with the thickness of the films. The main goal of this work is to show that this effect is a consequence of an electric field standing wave based on the coherent superposition of light waves in the film. We further investigate how transmittance and reflectance, as well as absorbance and the (from absorbance) regained index of absorption, depend on the thickness of the film and how these parameters influence the positions of bands. We compare the results with those for the incoherent case and the case where a single pass of light through the film without reflection loss is assumed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Modeling DC-circuit-breakers for long distance electricity transmission

    NASA Astrophysics Data System (ADS)

    Agnihotri, Ashutosh; Ebert, Ute; Hundsdorfer, Willem

    2014-10-01

    Modeling a circuit-breaker is a multiple timescale problem which involves a cascade of physical processes from avalanche phase to streamer, spark and post discharge phase, with a transition phase between each pair of processes. In particular, Jin Zhang and Bert van Heesch at Eindhoven University of Technology investigate now whether the conventional SF6 can be replaced by supercritical nitrogen. We focus on modeling space charge effects, gas heating and secondary electron emission from cathode. We develop a two-dimensional drift-diffusion model for streamers coupled to the Euler equations for the gas to study the related phenomena. We perform simulations to capture thermal shocks and induced pressure waves caused by the electrical breakdown of the surrounding gas. We include heat exchange mechanisms between the electrons/ions and the surrounding gas.

  10. Electrical and mechanical design criteria for EHV and UHV: overhead transmission lines

    SciTech Connect

    Not Available

    1980-06-01

    The results are presented of a program devoted to the selection of electrical and mechanical design criteria and parameters for overhead power transmission lines for ac systems rated at from 345 to 1100 kV and for dc systems rated at from 600 to 1200 kV. Information is included on the environmental effects, i.e., audible noise and electric fields, of the lines, mechanical and economic requirements, safety, failures, grounding, and lightning protection. (LCL)

  11. Transmission line model for the near-instantaneous transmission of the ionospheric electric field and currents to the equator

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi

    2014-02-01

    The simultaneous onset of the preliminary impulse (PI) of the geomagnetic sudden commencement at high latitude and dayside dip equator is explained by means of the TM0 mode waves propagating at the speed of light in the Earth-ionosphere waveguide (EIW) [Kikuchi et al., 1978]. A couple of issues remain to be addressed in the EIW model: (1) How is the TM0 mode wave excited by the field-aligned currents (FACs) in the polar region? (2) How are the quasi-steady ionospheric currents achieved by the TM0 mode waves? (3) How simultaneous or delayed are the onset and peak of the equatorial PI with respect to the high-latitude PI? To address these issues, we examine the TEM (TM0) mode wave propagation in the finite-length transmission lines replacing the pair of FACs (magnetosphere-ionosphere (MI) transmission line) and the Earth-ionosphere waveguide (ionosphere-ground (IG) transmission line). The issue (1) is addressed by showing that a fraction of the TEM mode wave is transmitted from the MI to IG transmission lines through the polar ionosphere. To address the issues (2) and (3), we examine the properties of the finite-length IG transmission line with finite ionospheric conductivity. It is shown that the ionospheric currents start to grow instantaneously and continue to grow gradually with time constants of 1-10 s depending on the ionospheric conductivity. The MIG transmission line enables us to explain the instantaneous onset and delayed peak time of the equatorial PI and quick electric field response of the low-latitude ionosphere and inner magnetosphere.

  12. Effects of asymmetry, transmission delay and noises on the stability of an elementary electricity network

    NASA Astrophysics Data System (ADS)

    Dongmo, Eric Donald; Woafo, Paul

    2015-07-01

    We numerically study the effects of the asymmetry of the transmission lines capabilities, of the transmission delay and power noises, on the stability of an elementary electricity network consisting of one machine and two generators. It is found that the asymmetry increases the stability of the system. It is also found that the threshold value of the perturbation intensity leading to the network instability decreases as the time delay increases. When the system is subject to a stochastic perturbation, its stability depends not only on the noises intensity, but also on the time delay and the value of the transmission lines capabilities.

  13. A study of electric transmission lines for use on the lunar surface

    NASA Technical Reports Server (NTRS)

    Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.

    1994-01-01

    The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.

  14. The design of an electro-hydraulically controlled, manual transmission for a hybrid electric vehicle

    SciTech Connect

    Davis, G.W.; Hoff, C.J.

    1998-07-01

    An electro-hydraulically controlled, manual transmission has been developed for the Department of Energy's FutureCar Challenge. This project which is jointly sponsored by the DOE and the Partnership for a New Generation of Vehicles (PNGV) seeks to modify a production mid-size car to reach 80 mpg, yet still maintain the safety and consumer acceptability of the original vehicle. To meet this challenge, a 1996 Ford Taurus has been modified into a parallel drive, hybrid electric vehicle. The propulsion system of this vehicle is based on a DC electric motor, which is coupled via a belt drive, in parallel, with a 1.9 liter turbo-charged, direct injection diesel engine. Both propulsion units are then coupled to the transmission. The OEM automatic transmission has been replaced with a five-speed, manual transmission, which was adapted from an earlier model year production Taurus SHO vehicle. This transmission is both lighter and more mechanically efficient than the automatic transmission. In order to provide the automatic transmission shifting capabilities expected by the consumer for a vehicle of this size, an electro-hydraulic control unit was designed and built. This unit automatically engages the clutch and shifts gears as required during vehicle operation. Gear selection is controlled by a programmable logic controller (PLC), which utilizes throttle and vehicle speed input signals. Additionally, the driver may select gears using a modified steering-column PRNDL selector. This paper discusses the final design of this system and provides an evaluation of its performance.

  15. Control of terahertz nonlinear transmission with electrically gated graphene metadevices.

    PubMed

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U K; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-02-20

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.

  16. Transmission cost minimization strategies for wind-electric generating facilities

    SciTech Connect

    Gonzalez, R.

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  17. Control of terahertz nonlinear transmission with electrically gated graphene metadevices

    NASA Astrophysics Data System (ADS)

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. K.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-02-01

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.

  18. Control of terahertz nonlinear transmission with electrically gated graphene metadevices

    PubMed Central

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. k.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-01-01

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms. PMID:28216677

  19. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  20. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  1. Opportunities for Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    SciTech Connect

    Jackson, Roderick K.; Onar, Omer C.; Kirkham, Harold; Fisher, Emily; Burkes, Klaehn; Starke, Michael R.; Mohammed, Olama; Weeks, George

    2015-04-01

    Since 2000, more than 172 quads of electricity have been transmitted on the US transmission and distribution (T&D) grid. Given this significant amount of energy flow, establishing and maintaining an efficient T&D grid is paramount. As shown in the figure below, the total percentage of overall losses in the US electric grid is approximately 6% (5.12% in 2012) (30% lower than the world average since 2000). While these efficiency losses appear to be relatively small from a percentage perspective, the total estimated electricity loss during this time is 10.8 quads.

  2. Flexible gas insulated transmission line having regions of reduced electric field

    DOEpatents

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  3. Understanding Cognitive and Collaborative Work: Observations in an Electric Transmission Operations Control Center

    SciTech Connect

    Obradovich, Jodi H.

    2011-09-30

    This paper describes research that is part of an ongoing project to design tools to assist in the integration of renewable energy into the electric grid. These tools will support control room dispatchers in real-time system operations of the electric power transmission system which serves much of the Western United States. Field observations comprise the first phase of this research in which 15 operators have been observed over various shifts and times of day for approximately 90 hours. Findings describing some of the cognitive and environmental challenges of managing the dynamically changing electric grid are presented.

  4. Improving Electricity Resource-Planning Processes by Consideringthe Strategic Benefits of Transmission

    SciTech Connect

    Budhraja, Vikram; Mobasheri, Fred; Ballance, John; Dyer, Jim; Silverstein, Alison; Eto, Joseph

    2009-03-02

    Current methods of evaluating the economic impacts of new electricity transmission projects fail to capture the many strategic benefits of these projects, such as those resulting from their long life, dynamic changes to the system, access to diverse fuels, and advancement of public policy goals to integrate renewable-energy resources and reduce greenhouse gas emissions.

  5. Puget Sound Area Electric Reliability Plan : Appendix E, Transmission Reinforcement Analysis.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-04-01

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin.

  6. Combined use of the air monitoring system in production and transmission of electricity

    SciTech Connect

    Jakl, F.; Bakic, K.; Valencic, L.

    1997-08-01

    The paper presents a double use of the EIS (Environmental Information System) network for scheduling of thermal electricity generation with regard to ecological conditions (air quality in the vicinity of thermal power plants), and for control of the thermal loading of important transmission lines with regard to meteorological conditions. The Slovenian ecological monitoring system was set up fifteen years ago with the task of assuring acquisition of data about air pollution in the vicinity of thermal power plants. In the meantime it has been constantly upgraded and improved. At the end of 1994 immission, emission and meteorological data started to be on-line transmitted to the National Dispatching Centre. Problems with space and restrictions encountered at the construction of new transmission lines made researchers look for solutions that would allow a greater loading of transmission lines without threatening the system reliability. A method was consequently theoretically implemented about the monitoring of the thermal loading of the most important 400 kV transmission lines supported with meteorological data obtained from the EIS measuring system. Transmission of data from EIS into the Dispatching Centre, supported with an adequate software, will facilitate efficient control of the system at consideration of ecological limitations (electricity production in thermal power plants) and at the same time a more efficient exploitation of transmission lines in view of meteorological conditions. The main idea of this paper is the use of the same meteorological system for controlling both, thermal power generation and loading of important 400 kV overhead lines.

  7. Beam damage by the induced electric field in transmission electron microscopy.

    PubMed

    Jiang, Nan

    2016-04-01

    Electric fields can be induced by electron irradiation of insulating thin film materials. In this work, the electric fields under a broad beam illumination in transmission electron microscopy (TEM) are analyzed for insulating samples. Some damage phenomena observed can be interpreted by the mechanism of damage by the induced electric field (DIEF). For broad-beam illumination in an ultra-thin specimen, the electric field near the center of the illumination may not be strong, but at the periphery of the illumination the electric field can be significant. Therefore, damage may be easily observed in these regions rather than at the center of the illumination. For a beam which is broad compared to the specimen thickness, e.g. 100∼1000nm, a strong electric field pointing inward into the specimen near the surface region may result in cation diffusion into the specimen and/or anion diffusion out to the surface region. Meanwhile, a strong electric field perpendicular to the beam direction near the edge of the illumination may attract anions into the illuminated region, but eject cations to the periphery. For a wedge-shaped specimen, the electric field points inward into thicker region, driving cations toward the thicker region, while attracting anions to the edge region. On the sharp edge, a strong electric field pointing outward may be responsible for the edge-smoothing effect observed in insulating materials.

  8. Optimal Inflatable Space Towers of High Height

    NASA Astrophysics Data System (ADS)

    Bolonkin, Alexander

    2002-01-01

    Author provides theory and computations for building inflatable space towers up to a hundred km in height. These towers can be used for tourism; scientific observation of space, earth's surface, weather, top atmosphere, as well as for radio, television, and communication transmissions. These towers can also be used to launch space ships and Earth satellites. These projects are not expensive and do not require rockets. They require thin strong films composed from artificial fibers and fabricated by current industry. Towers can be built using present technology. Towers can be used (for tourism, communication, etc.) during the construction process and provide self-financing for further construction. The tower design does not require work at high altitudes; all construction can be done at the earth's surface. The transport system for this tower consists a small engine (used only for friction compensation) located at the earth's surface. The tower is separated into sections and has special protection mechanism in case of a damage. Problems involving security, control, repair, and stability of the proposed towers are addressed in subsequent publications. The author is prepared to discuss these and other problems with serious organizations desiring to research and develop these projects.

  9. Optimal inflatable space towers of high height

    NASA Astrophysics Data System (ADS)

    Bolonkin, A.

    Author suggested, developed theory, and computed some projects of an optimal inflatable space tower of the heights some hundreds km. These towers can be used for tourism, scientist observation of space, Earth surface, Earth weather, Earth top atmosphere, and for radio, TV, communication transmissions. These towers can be used for launching of the space ships and Earth s atellites. The computed projects not expensive, do not request rockets. They need only in thin strong films composed from the artificial fibers and fabricated by a current industry. Towers can be built by a current technology. Towers can be explored (for tourism, communication, etc.) in a time of the construction process and give a profit, self- financing for further constriction. They can permanent increase their height. The tower design does not request a work at the high altitudes. All construction works will be making at the Earth surface. Author suggests the transport system for this tower of a high capability, which does not request a power energy issue. The small engine (only for a friction compensation) is located at the Earth surface. The tower is separated on sections and has a special protection of a case of a damage. It is considered also the problems of security, control, repair, etc. of the suggested towers. The author has also solved additional problems, which appear in these projects and which can look as difficult for the given proposal and current technology. The author is prepared to discuss the problems with serious organizations, which want to research and develop these projects.

  10. Critical points and transitions in an electric power transmission model for cascading failure blackouts.

    PubMed

    Carreras, B. A.; Lynch, V. E.; Dobson, I.; Newman, D. E.

    2002-12-01

    Cascading failures in large-scale electric power transmission systems are an important cause of blackouts. Analysis of North American blackout data has revealed power law (algebraic) tails in the blackout size probability distribution which suggests a dynamical origin. With this observation as motivation, we examine cascading failure in a simplified transmission system model as load power demand is increased. The model represents generators, loads, the transmission line network, and the operating limits on these components. Two types of critical points are identified and are characterized by transmission line flow limits and generator capability limits, respectively. Results are obtained for tree networks of a regular form and a more realistic 118-node network. It is found that operation near critical points can produce power law tails in the blackout size probability distribution similar to those observed. The complex nature of the solution space due to the interaction of the two critical points is examined.(c) 2002 American Institute of Physics.

  11. Electrical transmission lines in Montana: Mitigation of impacts to soil and biological sources

    SciTech Connect

    McCollough, S.A.; Ring, T.W.

    1990-12-31

    In Montana, the routing and construction of large electrical transmission lines are regulated by the Montana Major Facility Siting Act. Under this act, impacts to resources are minimized through avoidance by routing, where possible, and by mitigating remaining impacts. Land disturbed by the construction of transmission lines considered in this paper ranges from 1681 acres for a 500-kV line across 156 miles of mountainous terrain to 11 acres for a 100-kV line across 27 miles of nearly level terrain. Line access accounts for most of the disturbance, especially when graded roads are built in mountainous terrain. Land disturbed by transmission line construction is susceptible to soil erosion and weed infestation. These problems are addressed through revegetation, erosion control, and herbicide application. Transmission lines can displace wildlife from critical habitats by disruptive construction activities or by improving human access to previously secure range. Wildlife impacts can be reduced by restricting construction periods and gating roads.

  12. Wireless monitoring of structural components of wind turbines including tower and foundations

    NASA Astrophysics Data System (ADS)

    Wondra, B.; Botz, M.; Grosse, C. U.

    2016-09-01

    Only few large wind turbines contain an extensive structural health monitoring (SHM) system. Such SHM systems could provide deeper insight into the real load history of a wind turbine along its standard lifetime of 20 years and support a justified extension of operation beyond the original intended period. This paper presents a new concept of a wireless SHM system based on acceleration measurement sensor nodes to permanently record acceleration of the tower structure at different heights. Exploitation of acceleration data and its referring position on the turbine tower enables calculation of vibration frequencies, their amplitudes and subsequently eigenmodes. Tower heights of 100 m and more are within the transmission range of wireless nodes, enabling a complete surveillance of the tower in three dimensions without the need for long cabling or electric signal amplification. Mounting of the sensor nodes on the tower is not limited to a few positions by the presence of an electric cable anymore. Still a comparison between data recorded by wireless sensors and data recorded by high-resolution wire-based sensors shows that the present resolution of the wireless sensors has to be improved to record accelerations more accurately and thus analyze vibration frequencies more precisely.

  13. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    PubMed

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented.

  14. Simulation study on transient electric shock characteristics of human body under high voltage ac transmission lines

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Zou, Yanhui; Lv, Jianhong; Yang, Jinchun; Tao, Li; Zhou, Jianfei

    2017-09-01

    Human body under high-voltage AC transmission lines will produce a certain induced voltage due to the electrostatic induction. When the human body contacts with some grounded objects, the charges transfer from the body to the ground and produce contact current which may cause transient electric shock. Using CDEGS and ATP/EMTP, the paper proposes a method for quantitatively calculating the transient electric shock characteristics. It calculates the human body voltage, discharge current and discharge energy under certain 500kV compact-type transmission lines and predicts the corresponding human feelings. The results show that the average root value of discharge current is less than 10mA when the human body is under the 500kV compact-type transmission lines and the human body is overall safe if the transmission lines satisfy the relevant design specifications. It concludes that the electric field strength above the ground should be limited to 4kV/m through the residential area for the purpose of reducing the electromagnetic impact.

  15. The potential of electricity transmission corridors in forested areas as bumblebee habitat.

    PubMed

    Hill, Bruce; Bartomeus, Ignasi

    2016-11-01

    Declines in pollinator abundance and diversity are not only a conservation issue, but also a threat to crop pollination. Maintained infrastructure corridors, such as those containing electricity transmission lines, are potentially important wild pollinator habitat. However, there is a lack of evidence comparing the abundance and diversity of wild pollinators in transmission corridors with other important pollinator habitats. We compared the diversity of a key pollinator group, bumblebees (Bombus spp.), between transmission corridors and the surrounding semi-natural and managed habitat types at 10 sites across Sweden's Uppland region. Our results show that transmission corridors have no impact on bumblebee diversity in the surrounding area. However, transmission corridors and other maintained habitats such as roadsides have a level of bumblebee abundance and diversity comparable to semi-natural grasslands and host species that are important for conservation and ecosystem service provision. Under the current management regime, transmission corridors already provide valuable bumblebee habitat, but given that host plant density is the main determinant of bumblebee abundance, these areas could potentially be enhanced by establishing and maintaining key host plants. We show that in northern temperate regions the maintenance of transmission corridors has the potential to contribute to bumblebee conservation and the ecosystem services they provide.

  16. The potential of electricity transmission corridors in forested areas as bumblebee habitat

    PubMed Central

    Hill, Bruce

    2016-01-01

    Declines in pollinator abundance and diversity are not only a conservation issue, but also a threat to crop pollination. Maintained infrastructure corridors, such as those containing electricity transmission lines, are potentially important wild pollinator habitat. However, there is a lack of evidence comparing the abundance and diversity of wild pollinators in transmission corridors with other important pollinator habitats. We compared the diversity of a key pollinator group, bumblebees (Bombus spp.), between transmission corridors and the surrounding semi-natural and managed habitat types at 10 sites across Sweden's Uppland region. Our results show that transmission corridors have no impact on bumblebee diversity in the surrounding area. However, transmission corridors and other maintained habitats such as roadsides have a level of bumblebee abundance and diversity comparable to semi-natural grasslands and host species that are important for conservation and ecosystem service provision. Under the current management regime, transmission corridors already provide valuable bumblebee habitat, but given that host plant density is the main determinant of bumblebee abundance, these areas could potentially be enhanced by establishing and maintaining key host plants. We show that in northern temperate regions the maintenance of transmission corridors has the potential to contribute to bumblebee conservation and the ecosystem services they provide. PMID:28018640

  17. Electrical signal transmission in a bone cell network: the influence of a discrete gap junction

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Weinbaum, S.; Cowin, S. C.

    1998-01-01

    A refined electrical cable model is formulated to investigate the role of a discrete gap junction in the intracellular transmission of electrical signals in an electrically coupled system of osteocytes and osteoblasts in an osteon. The model also examines the influence of the ratio q between the membrane's electrical time constant and the characteristic time of pore fluid pressure, the circular, cylindrical geometry of the osteon, and key simplifying assumptions in our earlier continuous cable model (see Zhang, D., S. C. Cowin, and S. Weinbaum. Electrical signal transmission and gap junction regulation in a bone cell network: A cable model for an osteon. Ann. Biomed. Eng. 25:379-396, 1997). Using this refined model, it is shown that (1) the intracellular potential amplitude at the osteoblastic end of the osteonal cable retains the character of a combination of a low-pass and a high-pass filter as the corner frequency varies in the physiological range; (2) the presence of a discrete gap junction near a resting osteoblast can lead to significant modulation of the intracellular potential and current in the osteoblast for measured values of the gap junction coupling strength; and (3) the circular, cylindrical geometry of the osteon is well simulated by the beam analogy used in Zhang et al.

  18. Electrical signal transmission in a bone cell network: the influence of a discrete gap junction

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Weinbaum, S.; Cowin, S. C.

    1998-01-01

    A refined electrical cable model is formulated to investigate the role of a discrete gap junction in the intracellular transmission of electrical signals in an electrically coupled system of osteocytes and osteoblasts in an osteon. The model also examines the influence of the ratio q between the membrane's electrical time constant and the characteristic time of pore fluid pressure, the circular, cylindrical geometry of the osteon, and key simplifying assumptions in our earlier continuous cable model (see Zhang, D., S. C. Cowin, and S. Weinbaum. Electrical signal transmission and gap junction regulation in a bone cell network: A cable model for an osteon. Ann. Biomed. Eng. 25:379-396, 1997). Using this refined model, it is shown that (1) the intracellular potential amplitude at the osteoblastic end of the osteonal cable retains the character of a combination of a low-pass and a high-pass filter as the corner frequency varies in the physiological range; (2) the presence of a discrete gap junction near a resting osteoblast can lead to significant modulation of the intracellular potential and current in the osteoblast for measured values of the gap junction coupling strength; and (3) the circular, cylindrical geometry of the osteon is well simulated by the beam analogy used in Zhang et al.

  19. Power-based Shift Schedule for Pure Electric Vehicle with a Two-speed Automatic Transmission

    NASA Astrophysics Data System (ADS)

    Wang, Jiaqi; Liu, Yanfang; Liu, Qiang; Xu, Xiangyang

    2016-11-01

    This paper introduces a comprehensive shift schedule for a two-speed automatic transmission of pure electric vehicle. Considering about driving ability and efficiency performance of electric vehicles, the power-based shift schedule is proposed with three principles. This comprehensive shift schedule regards the vehicle current speed and motor load power as input parameters to satisfy the vehicle driving power demand with lowest energy consumption. A simulation model has been established to verify the dynamic and economic performance of comprehensive shift schedule. Compared with traditional dynamic and economic shift schedules, simulation results indicate that the power-based shift schedule is superior to traditional shift schedules.

  20. The value of compressed air energy storage with wind in transmission-constrained electric power systems

    DOE PAGES

    Denholm, Paul; Sioshansi, Ramteen

    2009-05-05

    In this paper, we examine the potential advantages of co-locating wind and energy storage to increase transmission utilization and decrease transmission costs. Co-location of wind and storage decreases transmission requirements, but also decreases the economic value of energy storage compared to locating energy storage at the load. This represents a tradeoff which we examine to estimate the transmission costs required to justify moving storage from load-sited to wind-sited in three different locations in the United States. We examined compressed air energy storage (CAES) in three “wind by wire” scenarios with a variety of transmission and CAES sizes relative to amore » given amount of wind. In the sites and years evaluated, the optimal amount of transmission ranges from 60% to 100% of the wind farm rating, with the optimal amount of CAES equal to 0–35% of the wind farm rating, depending heavily on wind resource, value of electricity in the local market, and the cost of natural gas.« less

  1. The value of compressed air energy storage with wind in transmission-constrained electric power systems

    SciTech Connect

    Denholm, Paul; Sioshansi, Ramteen

    2009-05-05

    In this paper, we examine the potential advantages of co-locating wind and energy storage to increase transmission utilization and decrease transmission costs. Co-location of wind and storage decreases transmission requirements, but also decreases the economic value of energy storage compared to locating energy storage at the load. This represents a tradeoff which we examine to estimate the transmission costs required to justify moving storage from load-sited to wind-sited in three different locations in the United States. We examined compressed air energy storage (CAES) in three “wind by wire” scenarios with a variety of transmission and CAES sizes relative to a given amount of wind. In the sites and years evaluated, the optimal amount of transmission ranges from 60% to 100% of the wind farm rating, with the optimal amount of CAES equal to 0–35% of the wind farm rating, depending heavily on wind resource, value of electricity in the local market, and the cost of natural gas.

  2. [Study on signal transmission characteristics of meridian based on electrical network theory and experiments].

    PubMed

    Wang, Zhi-Gong; Lü, Xiao-Ying; Gao, Jian-Yun; Wang, Yu-Hang; Huang, Cen-Yu; Chen, Yue-Lin; Xing, Li-Yang; Wang, Gui-Ying

    2011-08-01

    Study on features of acupoints with resistance test in the past half century is reviewed in this article. Mechanism and technology of the method are introduced as well as its shortcomings. The determination method of signal transmission along meridians with the combination of electrical network theories and practice is advanced. And the result of a series experiments on one meridian at the superficial part of the body are given as well. Thus, it is concluded that the signals of the point-in/point-out and the signals along a non-meridian path with the same distance are significantly different, which gives a verification of the feasibility of the method by using electrical network theories to set out characteristics of signal transmission along meridians dynamically.

  3. Tucson Electric Power Company Sahuarita-Nogales Transmission Line Draft Environmental Impact Statement

    SciTech Connect

    N /A

    2003-08-27

    Tucson Electric Power Company (TEP) has applied to the U.S. Department of Energy (DOE) for a Presidential Permit to construct and operate a double-circuit, 345,000-volt (345-kV) electric transmission line across the United States border with Mexico. Under Executive Order (EO) 10485 of September 3, 1953, as amended by EO 12038 of February 3, 1978, a Presidential Permit is required to construct, connect, operate, or maintain facilities at the U.S. international border for the transmission of electric energy between the United States and a foreign country. DOE has determined that the issuance of a Presidential Permit to TEP for the proposed project would constitute a major Federal action that may have a significant impact on the environment within the meaning of the ''National Environmental Policy Act of 1969'' (NEPA) 42 United States Code (U.S.C.) {section}4321 et seq. For this reason, DOE has prepared this Draft Environmental Impact Statement (EIS) to evaluate potential environmental impacts from the proposed Federal action (granting a Presidential Permit for the proposed transmission facilities) and reasonable alternatives, including the No Action Alternative. This EIS was prepared in accordance with Section 102(2)(c) of NEPA, Council of Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508), and DOE NEPA Implementing Procedures (10 CFR 1021). DOE is the lead Federal Agency, as defined by 40 CFR 1501.5. The U.S. Department of Agriculture Forest Service (USFS), the Bureau of Land Management (BLM) of the U.S. Department of the Interior, and the U.S. Section of the International Boundary and Water Commission, U.S. and Mexico (USIBWC), are cooperating agencies. Each of these organizations will use the EIS for its own NEPA purposes, as described in the Federal Agencies' Purpose and Need and Authorizing Actions section of this summary. The 345-kV double-circuit transmission line would consist of twelve transmission line wires, or

  4. Exact Solutions and Bifurcations of a Modulated Equation in a Discrete Nonlinear Electrical Transmission Line (III)

    NASA Astrophysics Data System (ADS)

    Li, Jibin; Chen, Fengjuan

    In this paper, we consider a modulated equation in a discrete nonlinear electrical transmission line. This model is an integrable planar dynamical system having three singular straight lines. By using the theory of singular systems to investigate the dynamical behavior for this system, we obtain bifurcations of phase portraits under different parameter conditions. Corresponding to some special level curves, we derive exact explicit parametric representations of solutions (including smooth solitary wave solutions, peakons, compactons, periodic cusp wave solutions) under different parameter conditions.

  5. Field experiment of laser energy transmission and laser to electric conversion

    SciTech Connect

    Yugami, H.; Kanamori, Y.; Arashi, H.; Niino, M.; Moro, A.; Eguchi, K.; Okada, Y.; Endo, A.

    1997-12-31

    In this paper, the authors report the result of the field experiment of laser power transmission over 500m using different laser systems, i.e., CO{sub 2}, YAG, etc. The efficiency of energy transmission for long time period under various meteorological conditions was measured. They have observed large and long time scale fluctuation of beam pointing. It is found that the position of laser beam at the receiving site is correlated with the temperature difference between laser path height and ground. The laser to electricity conversion experiment has been performed using GaAs, c-Si, tandem-type a-Si, and CuInSe{sub 2} (CIS) solar cells. Finally, they briefly introduce the proposal on the space experiment of laser power transmission at Japanese Experiment Module (JEM) on the international space station.

  6. Mortality of persons resident in the vicinity of electricity transmission facilities.

    PubMed Central

    McDowall, M. E.

    1986-01-01

    Several studies have raised the possibility that exposure to electrical and/or magnetic fields may be injurious to health in particular by the promotion or initiation of cancer. To investigate whether the electricity transmission system presents a long term hazard to public health, the mortality of nearly 8,000 persons, identified as living in the vicinity of electrical transmission facilities at the time of the 1971 Population Census, has been followed to the end of 1983. All identified transmission installations within pre-defined areas were included in the study with the result that the greater part of the study group were believed to be resident near relatively low voltage sub-stations. Overall mortality was lower than expected and no evidence of major health hazards emerged. The only statistically significant excess mortality was for lung cancer (in women overall, and in persons living closest to the installations); this result is difficult to interpret in the absence of smoking data, and is not supported by other evidence but does not appear to be due to the social class distribution of the study group. The study did not support previously reported associations of exposure to electro-magnetic fields with acute myeloid leukaemia, other lymphatic cancers and suicide. PMID:3456788

  7. Towering Infernos

    NASA Image and Video Library

    2005-11-09

    This majestic false-color image from NASA's Spitzer Space Telescope shows the "mountains" where stars are born. Dubbed "Mountains of Creation" by Spitzer scientists, these towering pillars of cool gas and dust are illuminated at their tips with light from warm embryonic stars. The new infrared picture is reminiscent of Hubble's iconic visible-light image of the Eagle Nebula, which also features a star-forming region, or nebula, that is being sculpted into pillars by radiation and winds from hot, massive stars. The pillars in the Spitzer image are part of a region called W5, in the Cassiopeia constellation 7,000 light-years away and 50 light-years across. They are more than 10 times in the size of those in the Eagle Nebula (shown to scale here). The Spitzer's view differs from Hubble's because infrared light penetrates dust, whereas visible light is blocked by it. In the Spitzer image, hundreds of forming stars (white/yellow) can seen for the first time inside the central pillar, and dozens inside the tall pillar to the left. Scientists believe these star clusters were triggered into existence by radiation and winds from an "initiator" star more than 10 times the mass of our Sun. This star is not pictured, but the finger-like pillars "point" toward its location above the image frame. The Spitzer picture also reveals stars (blue) a bit older than the ones in the pillar tips in the evacuated areas between the clouds. Scientists believe these stars were born around the same time as the massive initiator star not pictured. A third group of young stars occupies the bright area below the central pillar. It is not known whether these stars formed in a related or separate event. Some of the blue dots are foreground stars that are not members of this nebula. The red color in the Spitzer image represents organic molecules known as polycyclic aromatic hydrocarbons. These building blocks of life are often found in star-forming clouds of gas and dust. Like small dust grains

  8. Strengthening future electricity grid of the Netherlands by integration of HTS transmission cables

    NASA Astrophysics Data System (ADS)

    Zuijderduin, Roy; Chevtchenko, Oleg; Smit, Johan; Aanhaanen, Gert; Ross, Rob

    2014-05-01

    The electricity grid of the Netherlands is changing. There is a call of society to use more underground cables, less overhead lines (OHL) and to reduce magnetic emissions. At the same time, parts of the future transmission grid need strengthening depending on the electricity demand in the coming decades [1]. Novel high temperature superconductor (HTS) AC transmission cables can play a role in strengthening the grid. The advantages as compared to alternatives, are: economic, underground, higher power capacity, lower losses, reduced magnetic field emissions in (existing) OHL, compact: less occupation of land and less permits needed, a possibility to keep 380 kV voltage level in the grid for as long as needed. The main obstacles are: the relatively high price of HTS tapes and insufficient maturity of the HTS cable technology. In the paper we focus on a 34 km long connection in the transmission grid (to be strengthened in three of the four of TenneT scenarios [1]), present the network study results, derive the requirements for corresponding HTS transmission cable system and compare HTS system to the alternatives (OHLs and XLPE cables).

  9. Typical Mid Tower Elevation & Section, Typical Mid Tower Footing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Typical Mid Tower Elevation & Section, Typical Mid Tower Footing Section & Elevation, South Tower Section & Elevation, and North Tower Sections & Elevation - Cape Arago Light Station Footbridge, Gregory Point, Charleston, Coos County, OR

  10. Mixed Electrical-Chemical Transmission between Hippocampal Mossy Fibers and Pyramidal Cells

    PubMed Central

    Vivar, Carmen; Traub, Roger D.; Gutiérrez, Rafael

    2011-01-01

    Morphological and electrophysiological studies have shown that granule cell axons, the mossy fibers (MFs), establish gap junctions and, therefore, electrical communication among them. That granule cells express gap junctional proteins in their axons suggests the possibility that their terminals express them as well. If this were to be the case, mixed electrical-chemical communication could be supported, as MF terminals normally use glutamate for fast communication with their target cells. Here we present electrophysiological and modeling studies consistent with this hypothesis. We show that MF activation produced fast spikelets followed by excitatory postsynaptic potentials in pyramidal cells (PCs), which, unlike the spikelets, underwent frequency potentiation and were strongly depressed by activation of metabotropic glutamate receptors, as expected from transmission of MF origin. The spikelets, which persisted during blockade of chemical transmission, wee potentiated by dopamine and suppressed by the gap junction blocker carbenoxolone. The various waveforms evoked by MF stimulation were replicated in a multi-compartment model of a PC by brief current pulse injections into the proximal apical dendritic compartment, where MFs are known to contact PCs. Mixed electrical and glutamatergic communication between granule cells and some PCs in CA3 may ensure the activation of sets of PCs, bypassing the strong action of concurrent feed-forward inhibition that granule cells activate. Importantly, MF-to-PC electrical coupling may allow bidirectional, possibly graded communication that can be faster than chemical synapses and subject to different forms of modulation. PMID:22151275

  11. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  12. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  13. A Historical and Engineering View of Power Transmission Systems in Kansai Electric Power Co., Inc.

    NASA Astrophysics Data System (ADS)

    Ito, Shunichi; Akiyama, Tetsuo

    During our work in operations related to power transmission technology, we have encountered various natural calamities and man-made disasters. Over the years, we learned many valuable lessons from these bitter experiences, and we now have more reliable, cost-effective and flexible electric power systems. This paper describes the new technologies we have introduced in the facilities making up the power systems and how we operate these systems and facilities. It also takes up the Southern Hyogo Earthquake and loss of Ohi nuclear power generation due to galloping phenomena as typical examples showing how a set of measures as mentioned above substantially improved the reliability of the electric power systems to such an extent that the Japanese electric power systems have attained the world's highest level of reliability. These facts prove that steady and continuous efforts are a prerequisite to success for all power engineers.

  14. Measuring nanometre-scale electric fields in scanning transmission electron microscopy using segmented detectors.

    PubMed

    Brown, H G; Shibata, N; Sasaki, H; Petersen, T C; Paganin, D M; Morgan, M J; Findlay, S D

    2017-11-01

    Electric field mapping using segmented detectors in the scanning transmission electron microscope has recently been achieved at the nanometre scale. However, converting these results to quantitative field measurements involves assumptions whose validity is unclear for thick specimens. We consider three approaches to quantitative reconstruction of the projected electric potential using segmented detectors: a segmented detector approximation to differential phase contrast and two variants on ptychographical reconstruction. Limitations to these approaches are also studied, particularly errors arising from detector segment size, inelastic scattering, and non-periodic boundary conditions. A simple calibration experiment is described which corrects the differential phase contrast reconstruction to give reliable quantitative results despite the finite detector segment size and the effects of plasmon scattering in thick specimens. A plasmon scattering correction to the segmented detector ptychography approaches is also given. Avoiding the imposition of periodic boundary conditions on the reconstructed projected electric potential leads to more realistic reconstructions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cellular Phone Towers

    MedlinePlus

    ... the call. How are people exposed to the energy from cellular phone towers? As people use cell ... where people can be exposed to them. The energy from a cellular phone tower antenna, like that ...

  16. Management of the geomagnetically induced current risks on the national grid company's electric power transmission system

    NASA Astrophysics Data System (ADS)

    Erinmez, I. Arslan; Kappenman, John G.; Radasky, William A.

    2002-03-01

    The National Grid Company plc (NGC) is the owner and operator of one of the world's largest privatised high-voltage electric power transmission systems in England and Wales at 400 and 275kV. As owner operator it is responsible for the secure and reliable delivery of electrical energy to all the 25 million electricity supply customers in England and Wales. The transmission and distribution systems in UK have experienced significant effects during past geomagnetic storm events especially during solar cycles 21 and 22. These effects included generator reactive power output swings, voltage dips, negative sequence alarms and transformer failures. Geomagnetically induced current (GIC) monitoring was installed in 1989 and operational procedures were put in place based on global solar weather forecasts. These measures were not capable of delivering reliable information and thus gave many false operational alarms. Their only real use was for post event forensic purposes. Since the cycle 22 solar peak activity the UK transmission system has developed to become more meshed, heavily loaded and dependent on the availability of reactive compensation equipment for voltage control. NGC carried out GIC impact risk assessment in 1998. This reviewed available options for managing this risk including investigation of blocking measures, a reliable local GIC forecast, GIC monitoring, a review of transmission equipment capabilities to withstand GIC conditions and operational procedures to manage the risk. As a result of the risk assessment NGC completed installation of a Metatech Spacecast/Powercast space weather forecasting system in May 1999. EPRI Sunburst 2000 based transformer monitoring systems were fully integrated in January 2000 in time for peak solar storm activity in solar cycle 23. This paper will describe the risk analysis undertaken, the risk management processes put in place and the performance of the forecasting and monitoring systems, respectively.

  17. 75 FR 3486 - Susquehanna to Roseland 500kV Transmission Line, Environmental Impact Statement, Delaware Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... Pennsylvania Power and Light Electric Utilities (PPL) and Public Service Electric and Gas Company (PSE&G), and... single 230 kV power line and towers currently on the right-of-way would be removed and replaced with... the grid at the direction of the Regional Transmission Operator, PJM Interconnection (PJM)....

  18. Powertrain dynamics and control of a two speed dual clutch transmission for electric vehicles

    NASA Astrophysics Data System (ADS)

    Walker, Paul; Zhu, Bo; Zhang, Nong

    2017-02-01

    The purpose of this paper is to demonstrate the application of torque based powertrain control for multi-speed power shifting capable electric vehicles. To do so simulation and experimental studies of the shift transient behaviour of dual clutch transmission equipped electric vehicle powertrains is undertaken. To that end a series of power-on and power-off shift control strategies are then developed for both up and down gear shifts, taking note of the friction load requirements to maintain positive driving load for power-on shifting. A mathematical model of an electric vehicle powertrain is developed including a DC equivalent circuit model for the electric machine and multi-body dynamic model of the powertrain system is then developed and integrated with a hydraulic clutch control system model. Integral control of the powertrain is then performed through simulations on the develop powertrain system model for each of the four shift cases. These simulation results are then replicated on a full scale powertrain test rig. To evaluate the performance of results shift duration and vehicle jerk are used as metrics to demonstrate that the presented strategies are effective for shift control in electric vehicles. Qualitative comparison of both theoretical and experimental results demonstrates reasonable agreement between simulated and experimental outcomes.

  19. In Situ Transmission Electron Microscope Observation of Carbon Nanotubes in Electric Fields

    NASA Astrophysics Data System (ADS)

    Okai, Makoto; Fujieda, Tadashi; Hidaka, Kishio; Muneyoshi, Takahiko; Yaguchi, Tomio

    2005-04-01

    Transmission electron microscope is used to examine the movements of carbon nanotubes in electric fields. Carbon nanotubes lying along the surface of the cathode electrode start to move into alignment with the electric field vector when the field strength reaches 0.5 V/μm and become increasingly well-aligned with the vector as field strength increases. The carbon nanotubes return to their original positions when the electric field strength returns to zero. We also examine the abrupt breakdown of carbon nanotubes when the electric field is maintained at 5.5 V/μm. The corresponding breakdown emission current density is estimated as 3.4× 107 A/cm2. The distance between the nearest nanotubes standing to align with the electric field vector is approximately 2 μm. This fact means that emission site density could be increased up to 3× 107 points/cm2 (which corresponds to one tube for each 2 μm square).

  20. Mitigating the Detrimental Impacts of Solar PV Penetration on Electric Power Transmission Systems

    NASA Astrophysics Data System (ADS)

    Prakash, Nitin

    At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO 2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.

  1. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure

    NASA Astrophysics Data System (ADS)

    Oughton, Edward J.; Skelton, Andrew; Horne, Richard B.; Thomson, Alan W. P.; Gaunt, Charles T.

    2017-01-01

    Extreme space weather due to coronal mass ejections has the potential to cause considerable disruption to the global economy by damaging the transformers required to operate electricity transmission infrastructure. However, expert opinion is split between the potential outcome being one of a temporary regional blackout and of a more prolonged event. The temporary blackout scenario proposed by some is expected to last the length of the disturbance, with normal operations resuming after a couple of days. On the other hand, others have predicted widespread equipment damage with blackout scenarios lasting months. In this paper we explore the potential costs associated with failure in the electricity transmission infrastructure in the U.S. due to extreme space weather, focusing on daily economic loss. This provides insight into the direct and indirect economic consequences of how an extreme space weather event may affect domestic production, as well as other nations, via supply chain linkages. By exploring the sensitivity of the blackout zone, we show that on average the direct economic cost incurred from disruption to electricity represents only 49% of the total potential macroeconomic cost. Therefore, if indirect supply chain costs are not considered when undertaking cost-benefit analysis of space weather forecasting and mitigation investment, the total potential macroeconomic cost is not correctly represented. The paper contributes to our understanding of the economic impact of space weather, as well as making a number of key methodological contributions relevant for future work. Further economic impact assessment of this threat must consider multiday, multiregional events.

  2. Fault detection and classification in electrical power transmission system using artificial neural network.

    PubMed

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  3. Transmission electron microscopy and electrical transport investigations performed on the same single-walled carbon nanotube

    SciTech Connect

    Philipp, G.; Burghard, M.; Roth, S.

    1998-08-11

    Electrical transport measurements and high resolution transmission electron microscopy performed on the same (rope of) single-walled carbon nanotube(s) (SWCNTs) allow to establish links between structural and electronic properties of the tubes. The tubes are deposited on electron transparent ultrathin Si{sub 3}N{sub 4}-membranes bearing Cr/AuPd-electrodes defined by electron beam lithography. TEM-micrographs of the setup reveal mostly ropes consisting of 2-3 tubes which also appear on a scanning force microscope image of the same area. A current-voltage trace of the ropes at 4.2 K is also presented.

  4. Potential benefits of long-distance electricity transmission in China for air quality and climate

    NASA Astrophysics Data System (ADS)

    Peng, W.; Mauzerall, D. L.; Yuan, J.; Zhao, Y.; Lin, M.; Zhang, Q.

    2015-12-01

    China is expanding west-to-east long-distance electricity transmission capacity with the aim of reducing eastern coal power production and resulting air pollution. In addition to coal power, this new grid capacity can be used to transport renewable-generated electricity with resulting climate co-benefits. Here we use an integrated assessment to evaluate the air quality and climate benefits of twelve proposed transmission lines in China, and compare two energy-by-wire strategies that transmit 1) only coal power (Coal-by-wire, CbW) or 2) combined renewable plus coal power (Renewable and coal-by-wire, (RE+C)bW), with 3) the current practice of transporting coal by rail for conversion to electricity near eastern demand centers (Coal-by-rail, CbR). Based on a regional atmospheric chemistry model, WRF-Chem, electricity transmission through the proposed lines leads to 2-3 μg/m3 (2-7%) reduction in the annual mean concentrations of fine particulate matter (PM2.5) in the eastern provinces relative to 2010 levels, roughly ~1 μg/m3 greater than the reduction achieved in CbR where dirty coal units are locally replaced with efficient ones. Although the eastern air quality improvement is similar irrespective of the fuel source to power the lines, adding coal generation results in up to 3% increase in annual mean PM2.5 levels in some exporting provinces, whereas such increase is not observed when most added capacity is renewable-based. Counting both the economic value of reduced carbon emissions and the health-related air quality benefits can significantly improve the cost-effectiveness of transmitting both renewable and coal power. Comparing (RE+C)bW with the two coal-based options, we find not only 20% larger reduction in air-pollution-related deaths, but also three times greater reduction in CO2 emissions. Our study hence demonstrates the significance of coordinating renewable energy planning with transmission planning to simultaneously tackle air pollution and climate

  5. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  6. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  7. Low frequency electric field variations during HF transmissions on a mother-daughter rocket

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Maynard, M. C.; Holtet, J. A.; Karlsen, N. O.; Egeland, A.; Moe, T. E.; Troim, J.

    1977-01-01

    HF wave propagation experiments were conducted on Mother-Daughter rockets in the polar ionosphere. Swept frequency transmissions from the Mother, nominally covering the range from 0.5 to 5 MHz in both CW and pulse modes, are received by the Daughter. In the most recent rocket of the series, the Mother also contained an AC electric field spectrometer covering the frequency range from 10 Hz to 100 kHz in four decade bands. The low frequency response of the ionosphere with respect to waves emitted from the onboard HF transmitter is examined.

  8. Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Boyle, A.; Grychtol, B.; Cabrera, J.; Marteau, J.; Adler, A.

    2016-05-01

    Electrical resistivity images supply information on sub-surface structures and are classically performed to characterize faults geometry. Here we use the presence of a tunnel intersecting a regional fault to inject electrical currents between surface and the tunnel to improve the image resolution at depth. We apply an original methodology for defining the inversion parametrization based on pilot points to better deal with the heterogeneous sounding of the medium. An increased region of high spatial resolution is shown by analysis of point spread functions as well as inversion of synthetics. Such evaluations highlight the advantages of using transmission measurements by transferring a few electrodes from the main profile to increase the sounding depth. Based on the resulting image we propose a revised structure for the medium surrounding the Cernon fault supported by geological observations and muon flux measurements.

  9. Transmission of electric fields due to distributed cloud charges in the atmosphere-ionosphere system

    NASA Astrophysics Data System (ADS)

    Paul, Suman; De, S. S.; Haldar, D. K.; Guha, G.

    2017-10-01

    The transmission of electric fields in the lower atmosphere by thunder clouds with a suitable charge distribution profile has been modeled. The electromagnetic responses of the atmosphere are presented through Maxwell's equations together with a time-varying source charge distribution. The conductivities are taken to be exponentially graded function of altitude. The radial and vertical electric field components are derived for isotropic, anisotropic and thundercloud regions. The analytical solutions for the total Maxwell's current which flows from the cloud into the ionosphere under DC and quasi-static conditions are obtained for isotropic region. We found that the effect of charge distribution in thunderclouds produced by lightning discharges diminishes rapidly with increasing altitudes. Also, it is found that time to reach Maxwell's currents a maximum is higher for higher altitudes.

  10. Electrically controlled infrared optical transmission and reflection through metallic grating using NEMS technology

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kenzo; Fujii, Masamitsu

    2015-12-01

    The enhanced optical properties of metallic subwavelength gratings with very narrow slits have recently been extensively studied in the field of plasmonics. The optical transmission and reflection of such nanostructures, which act as nano-electro-mechanical systems (NEMS) actuators, can be electrically controlled by varying their geometrical parameters, giving them great flexibility for numerous applications in photonics, opto-electronics, and sensing. The previous challenges in controlling the optical properties were overcome by forming a metallic subwavelength grating with an NEMS actuator in mid-air, allowing the grating to be physically moved with the bias voltage. The device can shift the plasmon resonance wavelength with an electrical signal. The resonance wavelength for Wood's anomaly at the infrared region is predicted through simulations to shift by approximately 150 nm. We discuss the effect of polarization on the optical properties and grating mechanism. The reported effect may be used to achieve active spectral tuning and switching in a wide range of applications.

  11. Cartographic Analysis of Antennas and Towers: A Novel Approach to Improving the Implementation and Data Transmission of mHealth Tools on Mobile Networks

    PubMed Central

    Ibitoye, Mobolaji; Bakken, Suzanne; Schnall, Rebecca; Balán, Iván; Frasca, Timothy; Carballo-Diéguez, Alex

    2015-01-01

    Background Most mHealth tools such as short message service (SMS), mobile apps, wireless pill counters, and ingestible wireless monitors use mobile antennas to communicate. Limited signal availability, often due to poor antenna infrastructure, negatively impacts the implementation of mHealth tools and remote data collection. Assessing the antenna infrastructure prior to starting a study can help mitigate this problem. Currently, there are no studies that detail whether and how the antenna infrastructure of a study site or area is assessed. Objective To address this literature gap, we analyze and discuss the use of a cartographic analysis of antennas and towers (CAAT) for mobile communications for geographically assessing mobile antenna and tower infrastructure and identifying signal availability for mobile devices prior to the implementation of an SMS-based mHealth pilot study. Methods An alpha test of the SMS system was performed using 11 site staff. A CAAT for the study area’s mobile network was performed after the alpha test and pre-implementation of the pilot study. The pilot study used a convenience sample of 11 high-risk men who have sex with men who were given human immunodeficiency virus test kits for testing nonmonogamous sexual partners before intercourse. Product use and sexual behavior were tracked through SMS. Message frequency analyses were performed on the SMS text messages, and SMS sent/received frequencies of 11 staff and 11 pilot study participants were compared. Results The CAAT helped us to successfully identify strengths and weaknesses in mobile service capacity within a 3-mile radius from the epicenters of four New York City boroughs. During the alpha test, before CAAT, 1176/1202 (97.84%) text messages were sent to staff, of which 26/1176 (2.21%) failed. After the CAAT, 2934 messages were sent to pilot study participants and none failed. Conclusions The CAAT effectively illustrated the research area’s mobile infrastructure and signal

  12. Cartographic Analysis of Antennas and Towers: A Novel Approach to Improving the Implementation and Data Transmission of mHealth Tools on Mobile Networks.

    PubMed

    Brown Iii, William; Ibitoye, Mobolaji; Bakken, Suzanne; Schnall, Rebecca; Balán, Iván; Frasca, Timothy; Carballo-Diéguez, Alex

    2015-06-04

    Most mHealth tools such as short message service (SMS), mobile apps, wireless pill counters, and ingestible wireless monitors use mobile antennas to communicate. Limited signal availability, often due to poor antenna infrastructure, negatively impacts the implementation of mHealth tools and remote data collection. Assessing the antenna infrastructure prior to starting a study can help mitigate this problem. Currently, there are no studies that detail whether and how the antenna infrastructure of a study site or area is assessed. To address this literature gap, we analyze and discuss the use of a cartographic analysis of antennas and towers (CAAT) for mobile communications for geographically assessing mobile antenna and tower infrastructure and identifying signal availability for mobile devices prior to the implementation of an SMS-based mHealth pilot study. An alpha test of the SMS system was performed using 11 site staff. A CAAT for the study area's mobile network was performed after the alpha test and pre-implementation of the pilot study. The pilot study used a convenience sample of 11 high-risk men who have sex with men who were given human immunodeficiency virus test kits for testing nonmonogamous sexual partners before intercourse. Product use and sexual behavior were tracked through SMS. Message frequency analyses were performed on the SMS text messages, and SMS sent/received frequencies of 11 staff and 11 pilot study participants were compared. The CAAT helped us to successfully identify strengths and weaknesses in mobile service capacity within a 3-mile radius from the epicenters of four New York City boroughs. During the alpha test, before CAAT, 1176/1202 (97.84%) text messages were sent to staff, of which 26/1176 (2.21%) failed. After the CAAT, 2934 messages were sent to pilot study participants and none failed. The CAAT effectively illustrated the research area's mobile infrastructure and signal availability, which allowed us to improve study setup and

  13. 8. North elevation of electric relay station showing electrical cable ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. North elevation of electric relay station showing electrical cable connection to tower. - New York, New Haven, & Hartford Railroad, Shell Interlocking Tower, New Haven Milepost 16, approximately 100 feel east of New Rochelle Junction, New Rochelle, Westchester County, NY

  14. Air quality and climate benefits of long-distance electricity transmission in China

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Yuan, Jiahai; Zhao, Yu; Lin, Meiyun; Zhang, Qiang; Victor, David G.; Mauzerall, Denise L.

    2017-06-01

    China is the world’s top carbon emitter and suffers from severe air pollution. It has recently made commitments to improve air quality and to peak its CO2 emissions by 2030. We examine one strategy that can potentially address both issues—utilizing long-distance electricity transmission to bring renewable power to the polluted eastern provinces. Based on an integrated assessment using state-of-the-science atmospheric modeling and recent epidemiological evidence, we find that transmitting a hybrid of renewable (60%) and coal power (40%) (Hybrid-by-wire) reduces 16% more national air-pollution-associated deaths and decreases three times more carbon emissions than transmitting only coal-based electricity. Moreover, although we find that transmitting coal power (Coal-by-Wire, CbW) is slightly more effective at reducing air pollution impacts than replacing old coal power plants with newer cleaner ones in the east (Coal-by-Rail, CbR) (CbW achieves a 6% greater reduction in national total air-pollution-related mortalities than CbR), both coal scenarios have approximately the same carbon emissions. We thus demonstrate that coordinating transmission planning with renewable energy deployment is critical to maximize both local air quality benefits and global climate benefits.

  15. Physical optics and full-wave simulations of transmission of electromagnetic fields through electrically large planar meta-sheets

    NASA Astrophysics Data System (ADS)

    Öziş, Ezgi; Osipov, Andrey V.; Eibert, Thomas F.

    2017-09-01

    Ultra-thin metamaterials, called meta-surfaces or meta-sheets, open up new opportunities in designing microwave radomes, including an improved transmission over a broader range of antenna scan angles, tailorable and reconfigurable frequency bands, polarization transformations, one-way transmission and switching ability. The smallness of the unit cells combined with the large electrical size of microwave radomes significantly complicates full-wave numerical simulations as a very fine sampling over an electrically large area is required. Physical optics (PO) can be used to approximately describe transmission through the radome in terms of the homogenized transmission coefficient of the radome wall. This paper presents the results of numerical simulations of electromagnetic transmission through planar meta-sheets (infinite and circularly shaped) obtained by using a full-wave electromagnetic field simulator and a PO-based solution.

  16. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  17. Wind power development in the United States: Effects of policies and electricity transmission congestion

    NASA Astrophysics Data System (ADS)

    Hitaj, Claudia

    In this dissertation, I analyze the drivers of wind power development in the United States as well as the relationship between renewable power plant location and transmission congestion and emissions levels. I first examine the role of government renewable energy incentives and access to the electricity grid on investment in wind power plants across counties from 1998-2007. The results indicate that the federal production tax credit, state-level sales tax credit and production incentives play an important role in promoting wind power. In addition, higher wind power penetration levels can be achieved by bringing more parts of the electricity transmission grid under independent system operator regulation. I conclude that state and federal government policies play a significant role in wind power development both by providing financial support and by improving physical and procedural access to the electricity grid. Second, I examine the effect of renewable power plant location on electricity transmission congestion levels and system-wide emissions levels in a theoretical model and a simulation study. A new renewable plant takes the effect of congestion on its own output into account, but ignores the effect of its marginal contribution to congestion on output from existing plants, which results in curtailment of renewable power. Though pricing congestion removes the externality and reduces curtailment, I find that in the absence of a price on emissions, pricing congestion may in some cases actually increase system-wide emissions. The final part of my dissertation deals with an econometric issue that emerged from the empirical analysis of the drivers of wind power. I study the effect of the degree of censoring on random-effects Tobit estimates in finite sample with a particular focus on severe censoring, when the percentage of uncensored observations reaches 1 to 5 percent. The results show that the Tobit model performs well even at 5 percent uncensored observations

  18. Design and control of a novel two-speed Uninterrupted Mechanical Transmission for electric vehicles

    NASA Astrophysics Data System (ADS)

    Fang, Shengnan; Song, Jian; Song, Haijun; Tai, Yuzhuo; Li, Fei; Sinh Nguyen, Truong

    2016-06-01

    Conventional all-electric vehicles (EV) adopt single-speed transmission due to its low cost and simple construction. However, with the adoption of this type of driveline system, development of EV technology leads to the growing performance requirements of drive motor. Introducing a multi-speed or two-speed transmission to EV offers the possibility of efficiency improvement of the whole powertrain. This paper presents an innovative two-speed Uninterrupted Mechanical Transmission (UMT), which consists of an epicyclic gearing system, a centrifugal clutch and a brake band, allowing the seamless shifting between two gears. Besides, driver's intention is recognized by the control system which is based on fuzzy logic controller (FLC), utilizing the signals of vehicle velocity and accelerator pedal position. The novel UMT shows better dynamic and comfort performance in compare with the optimized AMT with the same gear ratios. Comparison between the control strategy with recognition of driver intention and the conventional two-parameter gear shifting strategy is presented. And the simulation and analysis of the middle layer of optimal gearshift control algorithm is detailed. The results indicate that the UMT adopting FLC and optimal control method provides a significant improvement of energy efficiency, dynamic performance and shifting comfort for EV.

  19. Transmission probabilities of rarefied flows in the application of atmosphere-breathing electric propulsion

    NASA Astrophysics Data System (ADS)

    Binder, T.; Boldini, P. C.; Romano, F.; Herdrich, G.; Fasoulas, S.

    2016-11-01

    Atmosphere-Breathing Electric Propulsion systems (ABEP) are currently investigated to utilize the residual atmosphere as propellant for drag-compensating thrusters on spacecraft in (very) low orbits. The key concept for an efficient intake of such a system is to feed a large fraction of the incoming flow to the thruster by a high transmission probability Θ for the inflow while Θ for the backflow should be as low as possible. This is the case for rarefied flows through tube-like structures of arbitrary cross section when assuming diffuse wall reflections inside and after these ducts, and entrance velocities u larger than thermal velocities vt h∝√{kBT /m } . The theory of transmission for free molecular flow through cylinders is well known for u = 0, but less research results are available for u > 0. In this paper, the desired theoretical characteristics of intakes for ABEP are pointed out, a short review of transmission probabilities is given, and results of Monte Carlo simulations concerning Θ are presented. Based on simple algebraic relations, an intake can be optimized in terms of collection efficiency by choosing optimal ducts. It is shown that Θ depends only on non-dimensional values of the duct geometry combined with vth and u. The simulation results of a complete exemplary ABEP configuration illustrate the influence of modeling quality in terms of inflow conditions and inter-particle collisions.

  20. Evidence for the transmission of information through electric potentials in injured avocado trees.

    PubMed

    Oyarce, Patricio; Gurovich, Luis

    2011-01-15

    Electrical excitability and signaling, frequently associated with rapid responses to environmental stimuli, have been documented in both animals and higher plants. The presence of electrical potentials (EPs), such as action potentials (APs) and variation potentials (VPs), in plant cells suggests that plants make use of ion channels to transmit information over long distances. The reason why plants have developed pathways for electrical signal transmission is most probably the necessity to respond rapidly, for example, to environmental stress factors. We examined the nature and specific characteristics of the electrical response to wounding in the woody plant Persea americana (avocado). Under field conditions, wounds can be the result of insect activity, strong winds or handling injury during fruit harvest. Evidence for extracellular EP signaling in avocado trees after mechanical injury was expressed in the form of variation potentials. For tipping and pruning, signal velocities of 8.7 and 20.9 cm/s, respectively, were calculated, based on data measured with Ag/AgCl microelectrodes inserted at different positions of the trunk. EP signal intensity decreased with increasing distance between the tipping and pruning point and the electrode. Recovery time to pre-tipping or pre-pruning EP values was also affected by the distance and signal intensity from the tipping or pruning point to the specific electrode position. Real time detection of remote EP signaling can provide an efficient tool for the early detection of insect attacks, strong wind damage or handling injury during fruit harvest. Our results indicate that electrical signaling in avocado, resulting from microenvironment modifications, can be quantitatively related to the intensity and duration of the stimuli, as well as to the distance between the stimuli site and the location of EP detection. These results may be indicative of the existence of a specific kind of proto-nervous system in plants. Copyright © 2010

  1. Connexin35 Mediates Electrical Transmission at Mixed Synapses on Mauthner Cells

    PubMed Central

    Pereda, A.; O’Brien, J.; Nagy, J. I.; Bukauskas, F.; Davidson, K. G. V.; Kamasawa, N.; Yasumura, T.; Rash, J. E.

    2007-01-01

    Auditory afferents terminating as “large myelinated club endings” on goldfish Mauthner cells are identifiable “mixed” (electrical and chemical) synaptic terminals that offer the unique opportunity to correlate physiological properties with biochemical composition and specific ultrastructural features of individual synapses. By combining confocal microscopy and freeze-fracture replica immunogold labeling (FRIL), we demonstrate that gap junctions at these synapses contain connexin35 (Cx35). This connexin is the fish ortholog of the neuron-specific human and mouse connexin36 that is reported to be widely distributed in mammalian brain and to be responsible for electrical coupling between many types of neurons. Similarly, connexin35 was found at gap junctions between neurons in other brain regions, suggesting that connexin35-mediated electrical transmission is common in goldfish brain. Conductance of gap junction channels at large myelinated club endings is known to be dynamically modulated by the activity of their colocalized glutamatergic synapses. We show evidence by confocal microscopy for the presence of the NR1 subunit of the NMDA glutamate receptor subtype, proposed to be a key regulatory element, at these large endings. Furthermore, we also show evidence by FRIL double-immunogold labeling that the NR1 subunit of the NMDA glutamate receptor is present at postsynaptic densities closely associated with gap junction plaques containing Cx35 at mixed synapses across the goldfish hindbrain. Given the widespread distribution of electrical synapses and glutamate receptors, our results suggest that the plastic properties observed at these identifiable junctions may apply to other electrical synapses, including those in mammalian brain. PMID:12930787

  2. Supplying Reliable Electricity and Reducing Transmission Requirements by Interconnecting Wind Farms

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Jacobson, M. Z.

    2007-12-01

    Wind is the world's fastest growing electric energy source. Because it is intermittent, though, wind is not used to supply baseload electric power today. Interconnecting wind farms through the transmission grid is a simple and effective way of reducing deliverable wind power swings caused by wind intermittency. As more farms are interconnected in an array, wind speed correlation among sites decreases and so does the probability that all sites experience the same wind regime at the same time. Consequently, the array behaves more and more similarly to a single farm with steady wind speed and thus steady deliverable wind power. In this study, benefits of interconnecting wind farms were evaluated for 19 sites, located in the Midwestern United States, with annual average wind speeds at 80 m above ground, the hub height of modern wind turbines, greater than 6.9 m/s (class 3 or greater). It was found that an average of 33% and a maximum of 47% of yearly-averaged wind power from interconnected farms can be used as reliable, baseload electric power. Equally significant, interconnecting multiple wind farms to a common point, then connecting that point to a far-away city can allow the long-distance portion of transmission capacity to be reduced, for example, by 20% with only a 1.6% loss of energy. Although most parameters, such as intermittency, improved less than linearly as the number of interconnected sites increased, no saturation of the benefits was found. Thus, the benefits of interconnection continue to increase with more and more interconnected sites.

  3. A proposal to Improve Electric Power Transmission Efficiency of the Transmission line from Yekepa to Buchanan of the CLSG Power System Redevelopment Interconnection Project Using FACTS Devices

    NASA Astrophysics Data System (ADS)

    Jackson, Samuel Mulbah

    This Work examined improving the electric power transmission efficiency of a portion of the CLSG (Cote d'Ivoire, Liberia, Sierra Leone, and Guinea) Interconnection Redevelopment Project of 1141 km high voltage transmission line. As with all ac transmission, present, new, and upgraded, they exhibit four electrical properties: resistance, inductance, capacitance, and conductance. These parameters affect the transmission line's ability to fulfil its function as part of the power system. A transmission system functions are to transport electric power from a generating source to a central point, to transport bulk power from a central point to wholesale delivery points (sub transmission substations), and to act as a tie points with interconnecting transmission lines from other power systems for emergency or economic reasons. In this work a portion of the CLSG Interconnection was simulated in MATLAB using different loading conditions. In determining voltage, current, and power, all sending end and receiving end quantities were determined at different sending end power levels. This was done on an incremental basis starting from 25 MW to 300 MW at 0.8 power factor. The results obtained from these produced data that were then used to plot graphs, among them the voltage profiles of the line at different loading conditions. The line loadability curves produced at different loading conditions were also plotted. So these curves provided illumination on the behavior and deficiencies of the line. Those deficiencies meant that there was a need for modification so as to keep the system in a safe operating voltage condition at different loading conditions. The line was compensated where needed, employing shunt capacitive compensation under different loading conditions for the purpose of making the receiving end voltage equal with the sending end voltage or within usable voltage levels. The line compensation provided a flat voltage profile at those loading conditions.

  4. Relative Localization in Wireless Sensor Networks for Measurement of Electric Fields under HVDC Transmission Lines

    PubMed Central

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-01-01

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions. PMID:25658390

  5. Intelligent Video Surveillance for Detecting Snow and Ice Coverage on Electrical Insulators of Power Transmission Lines

    NASA Astrophysics Data System (ADS)

    Gu, Irene Y. H.; Sistiaga, Unai; Berlijn, Sonja M.; Fahlström, Anders

    One of the problems for electrical power delivery through power lines in northern countries is when snow or ice accumulates on electrical insulators. This could lead to snow or ice-induced outages and voltage collapse, causing huge economic loss. This paper proposes a novel real-time intelligent surveillance and image analysis system for detecting and estimating the snow and ice coverage on electric insulators using images captured from an outdoor 420 kV power transmission line. In addition, the swing angle of insulators is estimated, as large swing angles due to wind cause short circuits. Hybrid techniques by combining histogram, edges, boundaries and cross-correlations are employed for handling a broad range of scenarios caused by changing weather and lighting conditions. Experiments have been conducted on the captured images over several month periods. Results have shown that the proposed system has provided valuable estimation results. For image pixels related to snows on the insulator, the current system has yielded an average detection rate of 93% for good quality images, and 67.6% for images containing large amount of poor quality ones, and the corresponding average false alarm ranges from 9% to 18.1%. Further improvement may be achieved by using video-based analysis and improved camera settings.

  6. Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines.

    PubMed

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-02-04

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  7. 13. INTERIOR VIEW OF TOWER OFFICE SHOWING CONTROL TOWER DESK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR VIEW OF TOWER OFFICE SHOWING CONTROL TOWER DESK, FACING NORTHWEST. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  8. ETR COOLING TOWER. PUMP HOUSE (TRA645) IN SHADOW OF TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COOLING TOWER. PUMP HOUSE (TRA-645) IN SHADOW OF TOWER ON LEFT. AT LEFT OF VIEW, HIGH-BAY BUILDING IS ETR. ONE STORY ATTACHMENT IS ETR ELECTRICAL BUILDING. STACK AT RIGHT IS ETR STACK; MTR STACK IS TOWARD LEFT. CAMERA FACING NORTHEAST. INL NEGATIVE NO. 56-3799. Jack L. Anderson, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. Transmission Line Security Monitor: Final Report

    SciTech Connect

    John Svoboda

    2011-04-01

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  10. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  11. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  12. Propagation of Epileptiform Activity Can Be Independent of Synaptic Transmission, Gap Junctions, or Diffusion and Is Consistent with Electrical Field Transmission

    PubMed Central

    Zhang, Mingming; Ladas, Thomas P.; Qiu, Chen; Shivacharan, Rajat S.; Gonzalez-Reyes, Luis E.

    2014-01-01

    The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission. PMID:24453330

  13. 43. TOP OF SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. TOP OF SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING EAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  14. 36. FLAG TOWER CLOCK ZONE FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. FLAG TOWER CLOCK ZONE FROM SOUTH TOWER ROOF, LOOKING NORTH - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  15. 37. NORTH TOWER UPPER ZONE FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. NORTH TOWER UPPER ZONE FROM SOUTH TOWER ROOF, LOOKING NORTH - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  16. 47. NORTHWEST TOWER FROM SOUTH TOWER ROOF, LOOKING NORTH BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. NORTHWEST TOWER FROM SOUTH TOWER ROOF, LOOKING NORTH BY NORTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  17. 40. CAMPANILE & SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. CAMPANILE & SOUTHEAST TOWER FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  18. 19. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  19. 18. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. NORTH TOWER, PORTE COCHERE & FLAG TOWER, LOOKING SOUTHWEST BY WEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  20. In Hot Water: A Cooling Tower Case Study. Instructor's Manual

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power output. The efficiency…

  1. In Hot Water: A Cooling Tower Case Study

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Problem Statement: Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power…

  2. In Hot Water: A Cooling Tower Case Study. Instructor's Manual

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power output. The efficiency…

  3. In Hot Water: A Cooling Tower Case Study

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Problem Statement: Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power…

  4. 7. SOUTHWEST CORNER OF EAST PHOTO TOWER. CLOSED WINDOW ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SOUTHWEST CORNER OF EAST PHOTO TOWER. CLOSED WINDOW ON WEST SIDE; ELECTRICAL POWER BOX ON EAST SIDE OF PHOTO TOWER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Wiring prior to firing: the evolutionary rise of electrical and chemical modes of synaptic transmission.

    PubMed

    Ovsepian, Saak V; Vesselkin, Nikolai P

    2014-01-01

    Paracrine signaling and coupling via intercellular conduits are widely utilized for cell-cell interactions from primitive eukaryotes to advanced metazoa. Here, we review the functional and molecular data suggestive of a phylogenic continuum between these primeval forms of communication with the chemical and electrical synaptic transmission of neurons. We discuss selective evidence for the essential role played by the shift of function in early cellular morphologies and protosynaptic scaffolds, with their co-optation for new functionality, which ultimately lead to the rise of the chemical synapse. It is proposed that, rather than representing a transitional element, mixed electrochemical synapses exemplify an exaptive effect. The nonadaptive model of the synaptic origin described herein supports the pluralistic hypothesis of evolutionary change.

  6. Engineering analysis of electrical effects for the COTP 500KV transmission line and EBMUD aqueduct corridor

    SciTech Connect

    Lewis, O.C.; Bell, G.K.; Ma, J.

    1995-12-31

    A study was conducted to determine AC electrical interference effects arising in the East Bay Municipal Utility District`s (EBMUD) Mokelumne Aqueducts due to their proximity to the Olinda-Tracy 500 kilovolt (kV) transmission line operated by the Western Area Power Administration (WESTERN). A six-wire gradient control wire mitigation system selected by EBMUD was modeled and evaluated. The study shows that the mitigation system performs satisfactorily under all conditions examined. During steady state conditions, touch voltages are maintained below 15 volts throughout the entire length of the three aqueducts. During fault conditions, touch voltages are maintained below 263 volts, the design limit calculated according to ANSI/IEEE Standard 80. The currents flowing through the isolator/surge protectors do not exceed the ratings of these devices, during steady state and fault conditions.

  7. Wet cells and dry cells: In situ transmission electron microscopy of electrically-driven, dynamical processes

    NASA Astrophysics Data System (ADS)

    White, Edward Robert, IV

    Recent developments in nanofabrication techniques allow thin, wet systems to be imaged with high spatial and temporal resolution in the electron microscope. Coupling this ability with simultaneous, measured, electrical control, we cycle processes in liquid systems representing different electrochemical battery components. Dynamic processes imaged with these techniques, which represent a new state-of-the-art, include nanobubble collapse, dendrite growth, ion diffusion, and graphite intercalation. We also develop a sensitive system for measuring electron beam induced currents (EBIC) in the transmission electron microscope and apply it to graphene-MoS2 heterostructures. This new hybrid material has strong light-matter interactions, and the EBIC measurements map the minority carrier diffusion length, which we observe to decrease with increasing radiation damage. These results have direct implications for the function and service lifetime of solar cells based on molybdenum disulfide.

  8. Mortality of UK electricity generation and transmission workers, 1973-2002.

    PubMed

    Nichols, Linda; Sorahan, Tom

    2005-10-01

    To examine mortality from cancer and non-malignant causes among a large cohort of UK electricity generation and transmission workers. The mortality experienced by a cohort of 83,923 employees of the former Central Electricity Generating Board of England and Wales was investigated for the period 1973-2002. All employees had worked for at least 6 months with some employment between 1973 and 1982. Standardized mortality ratios (SMRs) were used to assess mortality in the total cohort and in three sub-cohorts: power station workers, substation and transmission workers and workers at non-operational locations. These classifications were based on the place of work of the first known job. Overall mortality was significantly below that expected, based on national rates [males: observed (Obs) 18,773, expected (Exp) 22,497.9, SMR 83; females: Obs 1122, Exp 1424.9, SMR 79]. Statistically significant deficits of deaths were also found for most of the major disease groupings. However, significant excesses of deaths were found in male power station workers for cancer of the pleura (Obs 129, Exp 30.3, SMR 426) and in male workers from non-operational locations for cancer of the brain (Obs 55, Exp 36.0, SMR 153). There was also a non-significant excess of deaths from cancer of the breast in male power station workers (Obs 10, Exp 5.3, SMR 190). Mortality was exceptionally low for most causes of death but late health effects from earlier asbestos exposure were still in evidence.

  9. Comment on "Dynamics and properties of waves in a modified Noguchi electrical transmission line"

    NASA Astrophysics Data System (ADS)

    Kenmogne, Fabien; Yemélé, David; Marquié, Patrick

    2016-09-01

    A recent paper [Phys. Rev. E 91, 022925 (2015), 10.1103/PhysRevE.91.022925] presents the derivation of the nonlinear equation modeling envelope waves in a specific case of band passed filter discrete nonlinear electrical transmission line (NLTL), called "A modified Noguchi electrical transmission line" according to the authors. Using the reductive perturbation approach in the semidiscrete approximation, they showed that the modulated waves propagating in this NLTL are described by the ordinary nonlinear Schrödinger (NLS) equation. On the basis of their results, the authors claimed that all previous works on the band passed filter NLTL, which considered the vanishing of the dc component of the signal voltage, are incorrect, and this dc term is nonzero. As a consequence, the dispersion and nonlinearity coefficients of the NLS equation are strongly different from those usually obtained, and they found, according to the sign of the product P Q , the existence of one more region (compared to the work of Marquié et al. [Phys. Rev. E 49, 828 (1994)], 10.1103/PhysRevE.49.828) in the dispersion curve that allows the motion of envelope solitons of higher frequency in the system. In this Comment we provide sufficient theoretical and numerical evidence showing that the evidence obtained by the authors otherwise is due to certain terms missed in their mathematical developments when they derived the NLS equation. Our results also suggest that the previous work of Marquié and co-workers correctly predict the fact that the dc term of the signal voltage does not exist and there exist only two regions in the dispersion curve according to the sign of the product P Q .

  10. Confusion at the Tower

    ERIC Educational Resources Information Center

    Li, Loretta F.

    2014-01-01

    This study will explore the omission of the Tower of Babel narrative from middle and secondary school world history, world studies, and world geography textbooks and will consider what might be learned from inclusion of the story in the curriculum. A total of 17 textbooks are analyzed. The Tower of Babel narrative is examined within the context of…

  11. Leaning Tower of PESA

    ERIC Educational Resources Information Center

    Clark, John

    2009-01-01

    There is a certain similarity between the Philosophy of Education Society of Australasia (PESA) and the leaning tower of Pisa. Both have a certain presence on the landscape: the tower has a commanding appearance on the Italian countryside while PESA has left its mark on the academic fabric of Australasia. Both are much loved: Pisa by visiting…

  12. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  13. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  14. Confusion at the Tower

    ERIC Educational Resources Information Center

    Li, Loretta F.

    2014-01-01

    This study will explore the omission of the Tower of Babel narrative from middle and secondary school world history, world studies, and world geography textbooks and will consider what might be learned from inclusion of the story in the curriculum. A total of 17 textbooks are analyzed. The Tower of Babel narrative is examined within the context of…

  15. A finite element method to study multimaterial wind towers

    NASA Astrophysics Data System (ADS)

    Pascoal-Faria, P.; Dias, C.; Oliveira, M.; Alves, N.

    2017-07-01

    Wind towers are used to produce electrical energy from the wind. A significant number of towers is manufactured using tubular separately steel or concrete, having limitations such as maximum diameter and height imposed essentially by transportation limitations. Developed computational studies on structural design of towers have been mainly focused on a single material. This investigation aims to develop a finite element method able to study structural design of wind towers combining different materials. The finite element model combines solid and shell elements encompassing different geometries. Several case studies are considered to validate the proposed method and accurate results are obtained.

  16. Analysis of the reasons for accidents and of protective measures against induced voltage on aerial electrical transmission lines

    SciTech Connect

    Misrikhanov, M. Sh.; Mirzaabdullaev, A. O.

    2009-01-15

    The problem of safety during work on aerial transmission lines under an induced voltage is examined. Results are presented from a study of the causes of accidents over the last 20 years in electrical grids in this country. A determination of different levels of induced voltage on disconnected aerial transmission lines as a function of their grounding scheme is proposed. The order of magnitudes for each level are given, along with approximate expressions for calculating them.

  17. Inductive intrinsic localized modes in a one-dimensional nonlinear electric transmission line

    NASA Astrophysics Data System (ADS)

    Sato, M.; Mukaide, T.; Nakaguchi, T.; Sievers, A. J.

    2016-07-01

    The experimental properties of intrinsic localized modes (ILMs) have long been compared with theoretical dynamical lattice models that make use of nonlinear onsite and/or nearest-neighbor intersite potentials. Here it is shown for a one-dimensional lumped electrical transmission line that a nonlinear inductive component in an otherwise linear parallel capacitor lattice makes possible a new kind of ILM outside the plane wave spectrum. To simplify the analysis, the nonlinear inductive current equations are transformed to flux transmission line equations with analog onsite hard potential nonlinearities. Approximate analytic results compare favorably with those obtained from a driven damped lattice model and with eigenvalue simulations. For this mono-element lattice, ILMs above the top of the plane wave spectrum are the result. We find that the current ILM is spatially compressed relative to the corresponding flux ILM. Finally, this study makes the connection between the dynamics of mass and force constant defects in the harmonic lattice and ILMs in a strongly anharmonic lattice.

  18. Exploring Electrical Currents through Nanographenes: Visualization and Tuning of the Through-Bond Transmission Paths.

    PubMed

    Stuyver, Thijs; Blotwijk, Nathalie; Fias, Stijn; Geerlings, Paul; De Proft, Frank

    2017-08-16

    In this work, electrical currents through nanographenes, a class of alternant hydrocarbons also known as polycyclic aromatic hydrocarbons, in molecular junctions under small bias are explored. We illustrate that when the π-current dominates, i.e. when no quantum interference takes place, the current prefers the direction of the shortest bond (the bond with the highest double bond character) upon entering the molecule from the contacts. As such, the idea of electrons propagating through double bonds from contact to contact, originating from the curly arrow drawings used in a previously established selection rule for transmission, seems to be more deeply rooted in the actual physical process of electron transport than previously anticipated. Furthermore, this work confirms that the σ-current behaves completely differently than the π-current. When this type of current becomes important, i.e. when quantum interference takes place, the current generally prefers the shortest path from contact to contact, irrespective of the length of the bonds constituting this path, in accordance with the strong distance dependency of σ-current. Finally, it is demonstrated that keto-groups (and cross-conjugating groups in general) can be used to seal off parts of the molecule for the current. No current flows through the sealed off part of the molecule under small bias and it does not influence the transmission spectrum of the considered system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  20. Fabrication of graded helical square tower-like Mn sculptured thin films and investigation of their electrical properties: comparison with perturbation theory

    NASA Astrophysics Data System (ADS)

    Fakharpour, Mahsa; Savaloni, Hadi

    2017-02-01

    Mn sculptured thin films were fabricated in form of graded helical square tower-like terraced sculptured Mn thin films (GHSTTS) using oblique angle deposition together with rotation of substrate about its surface normal with fixed rotation angle (90°) and a shadowing block which was fixed at the centre of the substrate holder. The anisotropy of the samples was examined by resistivity measurements at two orthogonal angles. Direct relationship is obtained between resistivity and the anisotropy of the produced samples which showed that both of these parameters increase with decreasing distance from the edge of the shadowing block. Simulation work using the perturbation theory produced results consistent with the experimental observations.

  1. Fabrication of graded helical square tower-like Mn sculptured thin films and investigation of their electrical properties: comparison with perturbation theory

    NASA Astrophysics Data System (ADS)

    Fakharpour, Mahsa; Savaloni, Hadi

    2017-06-01

    Mn sculptured thin films were fabricated in form of graded helical square tower-like terraced sculptured Mn thin films (GHSTTS) using oblique angle deposition together with rotation of substrate about its surface normal with fixed rotation angle (90°) and a shadowing block which was fixed at the centre of the substrate holder. The anisotropy of the samples was examined by resistivity measurements at two orthogonal angles. Direct relationship is obtained between resistivity and the anisotropy of the produced samples which showed that both of these parameters increase with decreasing distance from the edge of the shadowing block. Simulation work using the perturbation theory produced results consistent with the experimental observations.

  2. Resilience of electricity grids against transmission line overloads under wind power injection at different nodes.

    PubMed

    Schiel, Christoph; Lind, Pedro G; Maass, Philipp

    2017-09-14

    A steadily increasing fraction of renewable energy sources for electricity production requires a better understanding of how stochastic power generation affects the stability of electricity grids. Here, we assess the resilience of an IEEE test grid against single transmission line overloads under wind power injection based on the dc power flow equations and a quasi-static grid response to wind fluctuations. Thereby we focus on the mutual influence of wind power generation at different nodes. We find that overload probabilities vary strongly between different pairs of nodes and become highly affected by spatial correlations of wind fluctuations. An unexpected behaviour is uncovered: for a large number of node pairs, increasing wind power injection at one node can increase the power threshold at the other node with respect to line overloads in the grid. We find that this seemingly paradoxical behaviour is related to the topological distance of the overloaded line from the shortest path connecting the wind nodes. In the considered test grid, it occurs for all node pairs, where the overloaded line belongs to the shortest path.

  3. European Sail Tower SPS concept

    NASA Astrophysics Data System (ADS)

    Seboldt, W.; Klimke, M.; Leipold, M.; Hanowski, N.

    2001-03-01

    Based on a DLR-study in 1998/99 on behalf of ESA/ESTEC called "System Concepts, Architectures and Technologies for Space Exploration and Utilization (SE&U)" a new design for an Earth-orbiting Solar Power Satellite (SPS) has been developed. The design is called "European Sail Tower SPS" and consists mainly of deployable sail-like structures derived from the ongoing DLR/ESA solar sail technology development activity. Such a SPS satellite features an extremely light-weight and large tower-like orbital system and could supply Europe with significant amounts of electrical power generated by photovoltaic cells and subsequently transmitted to Earth via microwaves. In order to build up the sail tower, 60 units - each consisting of a pair of square-shaped sails - are moved from LEO to GEO with electric propulsion and successively assembled in GEO robotically on a central strut. Each single sail has dimensions of 150m × 150 m and is automatically deployed, using four diagonal light-weight carbon fiber (CFRP) booms which are initially rolled up on a central hub. The electric thrusters for the transport to GEO could also be used for orbit and attitude control of the assembled tower which has a total length of about 15 km and would be mainly gravity gradient stabilized. Employing thin film solar cell technology, each sail is used as a solar array and produces an electric power in orbit of about 3.7 MW e. A microwave antenna with a diameter of 1 km transmits the power to a 10 km rectenna on the ground. The total mass of this 450 MW SPS is about 2100 tons. First estimates indicate that the costs for one kWh delivered in this way could compete with present day energy costs, if launch costs would decrease by two orders of magnitude. Furthermore, mass production and large numbers of installed SPS systems must be assumed in order to lower significantly the production costs and to reduce the influence of the expensive technology development. The paper presents the technical concept

  4. Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Sattar, Golam Shabbir; Keramat, Mumnunul; Shahid, Shamsuddin

    2016-03-01

    The vertical electrical soundings (VESs) are carried out in 24 selective locations of Chapai-Nawabganj area of northwest Bangladesh to determine the transmissivity and hydraulic conductivity of the aquifer. Initially, the transmissivity and hydraulic conductivity are determined from the pumping data of nearby available production wells. Afterwards, the T and K are correlated with geoelectrical resistance and the total resistivity of the aquifer. The present study deciphers the functional analogous relations of the geoelectrical resistance with the transmissivity and the total resistivity with the hydraulic conductivity of the aquifer in northwest Bangladesh. It has been shown that the given equations provide reasonable values of transmissivity and hydraulic conductivity where pumping test information is unavailable. It can be expected that the aquifer properties viz. transmissivity and hydraulic conductivity of geologically similar area can be determined with the help of the obtained equations by conducting VES experiments.

  5. Extensible Wind Towers

    NASA Astrophysics Data System (ADS)

    Sinagra, Marco; Tucciarelli, Tullio

    The diffusion of wind energy generators is restricted by their strong landscape impact. The PERIMA project is about the development of an extensible wind tower able to support a wind machine for several hundred kW at its optimal working height, up to more than 50 m. The wind tower has a telescopic structure, made by several tubes located inside each other with their axis in vertical direction. The lifting force is given by a jack-up system confined inside a shaft, drilled below the ground level. In the retracted tower configuration, at rest, tower tubes are hidden in the foundation of the telescopic structure, located below the ground surface, and the wind machine is the only emerging part of the system. The lifting system is based on a couple of oleodynamic cylinders that jack-up a central tube connected to the top of the tower by a spring, with a diameter smaller than the minimum tower diameter and with a length a bit greater than the length of the extended telescopic structure. The central tube works as plunger and lifts all telescopic elements. The constraint between the telescopic elements is ensured by special parts, which are kept in traction by the force of the spring and provide the resisting moment. The most evident benefit of the proposed system is attained with the use of a two-blade propeller, which can be kept horizontal in the retracted tower configuration.

  6. View of Nevada rim towers from Arizona side. Left tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Nevada rim towers from Arizona side. Left tower supports Circuit 6, middle tower supports Circuit 5, and right tower supports Circuits 4 and 15, view north - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  7. A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage

    NASA Astrophysics Data System (ADS)

    Perez, Marc J. R.

    /south bearing. Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis. In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used. The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than 0.19 per kilowatt-hour. If solar is preferentially clustered in the southwest instead of evenly spread throughout the United States, and we adopt future expected costs for solar

  8. 23. DETAIL VIEW IN COAL TOWER No. 1 (WEST) OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. DETAIL VIEW IN COAL TOWER No. 1 (WEST) OF THE MECHANISM THAT OPERATES THE COAL BUCKETS, FACING NORTH - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  9. 39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. 1 (WEST) (NOTE: COAL CARS No. 9 & 5 IN BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  10. 24. DETAIL VIEW IN COAL TOWER No. 1 OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. DETAIL VIEW IN COAL TOWER No. 1 OF THE LEVERS THAT MANIPULATE THE COAL BUCKETS, LOOKING OVER THE BOOM - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  11. Tower Camera Handbook

    SciTech Connect

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  12. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    SciTech Connect

    Werley, Kenneth Alan; Mccown, Andrew William

    2016-06-26

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. This third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.

  13. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN,EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-48 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  14. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN, EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-21 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  15. Individual welfare maximization in electricity markets including consumer and full transmission system modeling

    NASA Astrophysics Data System (ADS)

    Weber, James Daniel

    1999-11-01

    This dissertation presents a new algorithm that allows a market participant to maximize its individual welfare in the electricity spot market. The use of such an algorithm in determining market equilibrium points, called Nash equilibria, is also demonstrated. The start of the algorithm is a spot market model that uses the optimal power flow (OPF), with a full representation of the transmission system. The OPF is also extended to model consumer behavior, and a thorough mathematical justification for the inclusion of the consumer model in the OPF is presented. The algorithm utilizes price and dispatch sensitivities, available from the Hessian matrix of the OPF, to help determine an optimal change in an individual's bid. The algorithm is shown to be successful in determining local welfare maxima, and the prospects for scaling the algorithm up to realistically sized systems are very good. Assuming a market in which all participants maximize their individual welfare, economic equilibrium points, called Nash equilibria, are investigated. This is done by iteratively solving the individual welfare maximization algorithm for each participant until a point is reached where all individuals stop modifying their bids. It is shown that these Nash equilibria can be located in this manner. However, it is also demonstrated that equilibria do not always exist, and are not always unique when they do exist. It is also shown that individual welfare is a highly nonconcave function resulting in many local maxima. As a result, a more global optimization technique, using a genetic algorithm (GA), is investigated. The genetic algorithm is successfully demonstrated on several systems. It is also shown that a GA can be developed using special niche methods, which allow a GA to converge to several local optima at once. Finally, the last chapter of this dissertation covers the development of a new computer visualization routine for power system analysis: contouring. The contouring algorithm is

  16. Transmission

    SciTech Connect

    Sugano, K.

    1988-12-27

    A transmission is described which consists of: an input shaft; an output shaft; a first planetary gear set including a first sun gear selectively connectable by a first clutch to the input shaft, a first carrier selectively connectable by a second clutch to the input shaft and a first ring gear connected to the output shaft. The first sun gear selectively held stationary by a first brake, the first carrier is allowed to rotate in the same forward direction as the input shaft when the second clutch is engaged, but prevented from rotating in a reverse direction opposite to the forward direction by a first one-way clutch, the first carrier being selectively held stationary by a second brake; a second planetary gear set including a second sun gear connected to the input shaft, a second carrier connected to the first ring gear and also the the output shaft, and a second ring gear.

  17. Optimal Inflatable Space Towers with 3 - 100 km Height

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2003-01-01

    Theory and computations are provided for building inflatable space towers up to one hundred kilometers in height. These towers can be used for tourism, scientific observation of space, observation of the Earth's surface, weather and upper atmosphere, and for radio, television, and communication transmissions. These towers can also be used to launch space ships and Earth satellites. These projects are not expensive and do not require rockets. They require thin strong films composed from artificial fibers and fabricated by current industry. The towers can be built using present technology. The towers can be used (for tourism, communication, etc.) during the construction process and provide self-financing for further construction. The tower design does not require work at high altitudes; all construction can be done at the Earth's surface. The transport system for a tower consists of a small engine (used only for friction compensation) located at the Earth's surface. The tower is separated into sections and has special protection mechanisms in case of damage. Problems involving security, control, repair, and stability of the proposed towers are addressed in other publications. The author is prepared to discuss these and other problems with serious organizations desiring to research and develop these projects.

  18. Aquarius: Tower Rollback

    NASA Image and Video Library

    The mobile service tower at NASA's Launch Complex-2 at Vandenberg Air Force Base in California is being moved away from the ULA Delta II rocket with the Aquarius/SAC-D spacecraft atop, in preparati...

  19. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  20. Towers for Antarctic Telescopes

    NASA Astrophysics Data System (ADS)

    Hammerschlag, R. H.; Bettonvil, F. C. M.; Jägers, A. P. L.; Nielsen, G.

    To take advantage of the exceptional seeing above the boundary layer on Antarctic sites, a high-resolution telescope must be mounted on a support tower. An open transparent tower of framework minimizes the upward temperature-disturbed airflow. A typical minimum height is 30m. The tower platform has to be extremely stable against wind-induced rotational motions, which have to be less than fractions of an arc second, unusually small from a mechanical engineering viewpoint. In a traditional structure, structural deflections result in angular deflections of the telescope platform, which introduce tip and tilt motions in the telescope. However, a structure that is designed to deflect with parallel motion relative to the horizontal plane will undergo solely translation deflections in the telescope platform and thus will not degrade the image. The use of a parallel motion structure has been effectively demonstrated in the design of the 15-m tower for the Dutch Open Telescope (DOT) on La Palma. Special framework geometries are developed, which make it possible to construct high towers in stories having platforms with extreme stability against wind-induced tilt. These geometric solutions lead to constructions, being no more massive than a normal steel framework carrying the same load. Consequently, these lightweight towers are well suited to difficult sites as on Antarctica. A geometry with 4 stories has been worked out.

  1. Co-Optimization of Electricity Transmission and Generation Resources for Planning and Policy Analysis: Review of Concepts and Modeling Approaches

    SciTech Connect

    Krishnan, Venkat; Ho, Jonathan; Hobbs, Benjamin F.; Liu, Andrew L.; McCalley, James D.; Shahidehpour, Mohammad; Zheng, Qipeng P.

    2016-05-01

    The recognition of transmission's interaction with other resources has motivated the development of co-optimization methods to optimize transmission investment while simultaneously considering tradeoffs with investments in electricity supply, demand, and storage resources. For a given set of constraints, co-optimized planning models provide solutions that have lower costs than solutions obtained from decoupled optimization (transmission-only, generation-only, or iterations between them). This paper describes co-optimization and provides an overview of approaches to co-optimizing transmission options, supply-side resources, demand-side resources, and natural gas pipelines. In particular, the paper provides an up-to-date assessment of the present and potential capabilities of existing co-optimization tools, and it discusses needs and challenges for developing advanced co-optimization models.

  2. Helium Scanning Transmission Ion Microscopy and Electrical Characterization of Glass Nanocapillaries with Reproducible Tip Geometries.

    PubMed

    Zweifel, Ludovit P; Shorubalko, Ivan; Lim, Roderick Y H

    2016-02-23

    Nanopores fabricated from glass microcapillaries are used in applications ranging from scanning ion conductance microscopy to single-molecule detection. Still, evaluating the nanocapillary tip by a noninvasive means remains challenging. For instance, electron microscopy characterization techniques can charge, heat, and contaminate the glass surface and typically require conductive coatings that influence the final tip geometry. Per contra, electrical characterization by the means of ion current through the capillary lumen provides only indirect geometrical details of the tips. Here, we show that helium scanning transmission ion microscopy provides a nondestructive and precise determination of glass nanocapillary tip geometries. This enables the reproducible fabrication of axially asymmetric blunt, bullet, and hourglass-shaped tips with opening diameters from 20 to 400 nm by laser-assisted pulling. Accordingly, this allows for an evaluation of how tip shape, pore diameter, and opening angle impact ionic current rectification behavior and the translocation of single molecules. Our analysis shows that current drops and translocation dwell times are dominated by the pore diameter and opening angles regardless of nanocapillary tip shape.

  3. Large-Scale Optimal Control of Interconnected Natural Gas and Electrical Transmission Systems

    SciTech Connect

    Chiang, Nai-Yuan; Zavala, Victor M.

    2016-04-15

    We present a detailed optimal control model that captures spatiotemporal interactions between gas and electric transmission networks. We use the model to study flexibility and economic opportunities provided by coordination. A large-scale case study in the Illinois system reveals that coordination can enable the delivery of significantly larger amounts of natural gas to the power grid. In particular, under a coordinated setting, gas-fired generators act as distributed demand response resources that can be controlled by the gas pipeline operator. This enables more efficient control of pressures and flows in space and time and overcomes delivery bottlenecks. We demonstrate that the additional flexibility not only can benefit the gas operator but can also lead to more efficient power grid operations and results in increased revenue for gas-fired power plants. We also use the optimal control model to analyze computational issues arising in these complex models. We demonstrate that the interconnected Illinois system with full physical resolution gives rise to a highly nonlinear optimal control problem with 4400 differential and algebraic equations and 1040 controls that can be solved with a state-of-the-art sparse optimization solver. (C) 2016 Elsevier Ltd. All rights reserved.

  4. Electrical PMD equalization methods for intensity modulated optical polarization multiplex transmission systems

    NASA Astrophysics Data System (ADS)

    Goelz, Daniel; Pohl, Felix; Meissner, Peter

    2011-01-01

    Polarization mode dispersion is the limiting factor in todays large capacity photonic network systems since it causes intersymbol interference especially at high data rates. When polarization multiplex is employed to increase spectral efficiency, the distortions caused by polarization mode dispersion get even stronger due to the additional polarization crosstalk. Employing coherent detection these mitigations can be fully compensated with linear filters, since coherent detection delivers amplitude, phase and polarization information of the electrical field. As a drawback we have to take into account a high complexity of the receiver, causing high overall cost. At the other hand we have direct detection systems where the receiver complexity can be kept low. Furthermore maximum likelihood sequence estimation detection has been successfully demonstrated for standard direct detection systems. In a first step an advanced maximum likelihood sequence estimation detector, which is able to work in an intensity modulated polarization multiplex direct detection system, is developed. The performance of the detector is assessed by simulations and it is shown that it is capable to significantly reduce system outages. The method then is compared with a least mean squares based equalizer which is employed to compensate for signal distortions in an intensity modulated polarization multiplex coherent detection transmission system.

  5. Environmental justice: a contrary finding for the case of high-voltage electric power transmission lines.

    PubMed

    Wartenberg, Daniel; Greenberg, Michael R; Harris, Gerald

    2010-05-01

    Environmental justice is the consideration of whether minority and/or lower-income residents in a geographic area are likely to have disproportionately higher exposures to environmental toxins than those living elsewhere. Such situations have been identified for a variety of factors, such as air pollution, hazardous waste, water quality, noise, residential crowding, and housing quality. This study investigates the application of this concept to high-voltage electric power transmission lines (HVTL), which some perceive as a health risk because of the magnetic fields they generate, and also as esthetically unpleasing. We mapped all 345 kV and higher voltage HVTL in New York State and extracted and summarized proximate US Census sociodemographic and housing characteristic data into four categories on the basis of distances from HVTL. Contrary to our expectation, people living within 2000 ft from HVTL were more likely to be exposed to magnetic fields, white, of higher income, more educated and home owners, than those living farther away, particularly in urban areas. Possible explanations for these patterns include the desire for the open space created by the rights-of-way, the preference for new homes/subdivisions that are often located near HVTL, and moving closer to HVTL before EMFs were considered a risk. This study suggests that environmental justice may not apply to all environmental risk factors and that one must be cautious in generalizing. In addition, it shows the utility of geographical information system methodology for summarizing information from extremely large populations, often a challenge in epidemiology.

  6. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    SciTech Connect

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  7. The design of solar tower power plants

    NASA Astrophysics Data System (ADS)

    Gretz, J.

    The conversion of solar energy into electricity in solar thermal tower power plants is examined. Mirrors attached to mobile, sun-following heliostats concentrate solar rays into the opening of a receiver mounted on a tower. In the receiver, the radiant energy is absorbed by a system of pipes filled with a flowing material which is heated and drives a turbogenerator directly or via a heat exchanger. It is shown that the optics involved in this concept preclude the optimization of the pipe material, since the local distribution of rays in the heater of tower power plants varies diurnally and annually. This requires each pipe section to be designed for maximum stress, even though that stress occurs only at brief intervals during the day.

  8. Study on Remote Monitoring System of Crossing and Spanning Tangent Tower

    NASA Astrophysics Data System (ADS)

    Chen, Da-bing; Zhang, Nai-long; Zhang, Meng-ge; Wang, Ze-hua; Zhang, Yan

    2017-05-01

    In order to grasp the vibration state of overhead transmission line and ensure the operational security of transmission line, the remote monitoring system of crossing and spanning tangent tower was studied. By use of this system, the displacement, velocity and acceleration of the tower, and the local weather data are collected automatically, displayed on computer of remote monitoring centre through wireless network, real-time collection and transmission of vibration signals are realized. The applying results show that the system is excellent in reliability and accuracy and so on. The system can be used to remote monitoring of transmission tower of UHV power transmission lines and in large spanning areas.

  9. Recent advances in the mitigation of AC voltages occurring in pipelines located close to electric transmission lines

    SciTech Connect

    Southey, R.D.; Dawalibi, F.P. ); Vukonich, W. )

    1994-04-01

    In joint-use corridors where both pipelines and AC electric transmission lines are present, a portion of the energy contained in the electromagnetic field surrounding the electric transmission lines is captured by each pipeline, resulting in induced AC voltages which vary in magnitude throughout the length of each pipeline. During a fault on any of the transmission lines, energization of the earth by supporting structures near the fault can result in large voltages appearing locally between the earth and the steel wall of any nearby pipeline. Some form of mitigation is usually required to reduce these voltages to acceptable levels for the protection of personnel and of the pipeline itself. This paper presents a new mitigation design approach which not only reduces AC voltages effectively and economically, but also provides cathodic protection for the protected pipeline. Performance of this new mitigation method is illustrated with results from computer simulations, which show how important it is to have an accurate electrical model of the soil structure in any interference study. Results from large-scale mitigation design studies performed for ANR Pipeline Company and other gas transmission companies are presented.

  10. 5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SWITCH TOWER AND JUNCTION OF S.A.R. #1 & S.A.R. #2 TRANSMISSION LINES, MARCH 7, 1916. SCE drawing no. 4932. - Santa Ana River Hydroelectric System, Transmission Lines, Redlands, San Bernardino County, CA

  11. Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy

    PubMed Central

    Shibata, Naoya; Findlay, Scott D.; Sasaki, Hirokazu; Matsumoto, Takao; Sawada, Hidetaka; Kohno, Yuji; Otomo, Shinya; Minato, Ryuichiro; Ikuhara, Yuichi

    2015-01-01

    Precise measurement and characterization of electrostatic potential structures and the concomitant electric fields at nanodimensions are essential to understand and control the properties of modern materials and devices. However, directly observing and measuring such local electric field information is still a major challenge in microscopy. Here, differential phase contrast imaging in scanning transmission electron microscopy with segmented type detector is used to image a p-n junction in a GaAs compound semiconductor. Differential phase contrast imaging is able to both clearly visualize and quantify the projected, built-in electric field in the p-n junction. The technique is further shown capable of sensitively detecting the electric field variations due to dopant concentration steps within both p-type and n-type regions. Through live differential phase contrast imaging, this technique can potentially be used to image the electromagnetic field structure of new materials and devices even under working conditions. PMID:26067359

  12. Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy.

    PubMed

    Shibata, Naoya; Findlay, Scott D; Sasaki, Hirokazu; Matsumoto, Takao; Sawada, Hidetaka; Kohno, Yuji; Otomo, Shinya; Minato, Ryuichiro; Ikuhara, Yuichi

    2015-06-12

    Precise measurement and characterization of electrostatic potential structures and the concomitant electric fields at nanodimensions are essential to understand and control the properties of modern materials and devices. However, directly observing and measuring such local electric field information is still a major challenge in microscopy. Here, differential phase contrast imaging in scanning transmission electron microscopy with segmented type detector is used to image a p-n junction in a GaAs compound semiconductor. Differential phase contrast imaging is able to both clearly visualize and quantify the projected, built-in electric field in the p-n junction. The technique is further shown capable of sensitively detecting the electric field variations due to dopant concentration steps within both p-type and n-type regions. Through live differential phase contrast imaging, this technique can potentially be used to image the electromagnetic field structure of new materials and devices even under working conditions.

  13. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  14. The nominal cooling tower

    SciTech Connect

    Burger, R.

    1995-12-31

    The heat Rejection Industry defines a nominal cooling tower as circulating three gallons of water per minute (GPM) per ton of refrigeration from entering the tower at 95{degrees}F. Hot Water temperature (HWT) Leaving at 85{degrees}F Cold Water Temperature (CWT) at a Design Wet Bulb of 70{degrees}F (WBT). Manufacturers then provide a selection chart based on various wet bulb temperatures and HWTs. The wet bulb fluctuates and varies through out the world since it is the combination ambient temperature, relative humidity, and/or dew point. Different HWT and CWT requirements are usually charted as they change, so that the user can select the nominal cooling tower model recommended by the manufacturer. Ask any HVAC operator, refinery manager, power generating station operator what happens when the Wet Bulb reaches or exceeds the design WBT of the area. He probably will tell you, {open_quotes}My cooling tower works quite well, but in the summer time, I usually have trouble with it.{close_quotes} This occurs because he is operating a nominal cooling tower.

  15. Research recommendations for ac interfacing between electric utility transmission and distribution systems and wind, photovoltaics, and OTEC energy systems

    NASA Astrophysics Data System (ADS)

    Longrigg, P.; Buell, E. H.

    1985-03-01

    Work that deals semiquantitatively with many integration problems that may have to be solved as wind, photovoltaic, and ocean energy systems are tied into electrical transmission utility grids is documented. The problems that will arise as these distributed storage and generation (DSG) energy systems are integrated into the electric utility grids are not yet fully known, and their extent may depend on the level of penetration of the DSGs into the grid network. Aspects of DSG integration covered are fuse and relay coordination, harmonics, communications, control protocols, safety, and artificial intelligence (computer driven controls). An appendix on the effects of electromagnetic pulse is also included.

  16. Transmission network-based energy and environmental assessment of plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Valentine, Keenan; Acquaviva, Jonathan; Foster, E. J.; Zhang, K. Max

    2011-03-01

    The introduction of plug-in hybrid electric vehicles (PHEVs) is expected to have a significant impact on regional power systems and pollutant emissions. This paper analyzes the effects of various penetrations of PHEVs on the marginal fuel dispatch of coal, natural gas and oil, and on pollutant emissions of CO2, NOx, SO2 in the New York Metropolitan Area for two battery charging scenarios in a typical summer and winter day. A model of the AC transmission network of the Northeast Power Coordinating Council (NPCC) region with 693 generators is used to realistically incorporate network constraints into an economic dispatch model. A data-based transportation model of approximately 1 million commuters in NYMA is used to determine battery charging pattern. Results show that for all penetrations of PHEVs network-constrained economic dispatch of generation is significantly more realistic than unconstrained cases. Coal, natural gas and oil units are on the margin in the winter, and only natural gas and oil units are on the margin in the summer. Hourly changes in emissions from transportation and power production are dominated by vehicular activity with significant overall emissions reductions for CO2 and NOx, and a slight increase for SO2. Nighttime regulated charging produces less overall emissions than unregulated charging from when vehicles arrive home for the summer and vice versa for the winter. As PHEVs are poised to link the power and transportation sectors, data-based models combining network constraints and economic dispatch have been shown to improve understanding and facilitate control of this link.

  17. In situ transmission electron microscopy study of the microstructural origins for the electric field-induced phenomena in ferroelectric perovskites

    SciTech Connect

    Guo, Hanzheng

    2014-12-15

    Ferroelectrics are important materials due to their extensive technological applications, such as non-volatile memories, field-effect transistors, ferroelectric tunneling junctions, dielectric capacitors, piezoelectric transducers, sensors and actuators. As is well known, the outstanding dielectric, piezoelectric, and ferroelectric properties of these functional oxides originate from their ferroelectric domain arrangements and the corresponding evolution under external stimuli (e.g. electric field, stress, and temperature). Electric field has been known as the most efficient stimulus to manipulate the ferroelectric domains through polarization switching and alignment. Therefore, direct observation of the dynamic process of electric field-induced domain evolution and crystal structure transformation is of significant importance to understand the microstructural mechanisms for the functional properties of ferroelectrics. In this dissertation, electric field in situ transmission electron microscopy (TEM) technique was employed to monitor the real-time evolution of the domain morphology and crystal structure during various electrical processes: (1) the initial poling process, (2) the electric field reversal process, and (3) the electrical cycling process. Two types of perovskite-structured ceramics, normal ferroelectrics and relaxor ferroelectrics, were used for this investigation. In addition to providing the microscopic insight for some wellaccepted phase transformation rules, discoveries of some new or even unexpected physical phenomena were also demonstrated.

  18. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    SciTech Connect

    Eto, Joseph; Stovall, John P.

    2003-04-01

    The California Energy Commission directed the Consortium for Electric Reliability Technology Solutions to analyze possible future scenarios for the California electricity system and assess transmission research and development (R&D) needs, with special emphasis on prioritizing public-interest R&D needs, using criteria developed by the Energy Commission. The scenarios analyzed in this report are not predictions, nor do they express policy preferences of the project participants or the Energy Commission. The public-interest R&D needs that are identified as a result of the analysis are one input that will be considered by the Energy Commission's Public Interest Energy Research staff in preparing a transmission R&D plan.

  19. 26. STATIC TEST TOWER CONTROL PANELS AT REAR OF TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. STATIC TEST TOWER CONTROL PANELS AT REAR OF TOWER UNDERNEATH SHED ROOF. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  20. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  1. 8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, RIGHT. VIEW LOOKING NORTH SHOWING AERIAL WIRE DESIGN WITH VERTICAL 'TOP HAT' WIRES IN CENTER. - Chollas Heights Naval Radio Transmitting Facility, 6410 Zero Road, San Diego, San Diego County, CA

  2. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  3. 41. SOUTHEAST TOWER & EAST WING FROM SOUTH TOWER ROOF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. SOUTHEAST TOWER & EAST WING FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  4. 46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING NORTHWEST, WITH WEST WING ROOF - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  5. 42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  6. View of the north tower porte cochere and flag tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the north tower porte cochere and flag tower, looking southwest (duplicate of HABS No. DC-141-19) - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  7. 45. OCTAGONAL, WEST & NORTHWEST TOWERS FROM SOUTH TOWER ROOF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. OCTAGONAL, WEST & NORTHWEST TOWERS FROM SOUTH TOWER ROOF, LOOKING WEST BY NORTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  8. THE TOWER HOUSE, LOOKING WEST. The tower house provided a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THE TOWER HOUSE, LOOKING WEST. The tower house provided a water tank on the second floor that gravity fed water to the Kineth house and farm buildings. The one-story addition to the west of the tower provided workshop space. The hog shed is seen on the left of the image and the concrete foundation of the upright silo is in the foreground on the right. - Kineth Farm, Tower House, 19162 State Route 20, Coupeville, Island County, WA

  9. Chronic exposure to a 60-Hz electric field: effects on synaptic transmission and peripheral nerve function in the rat.

    PubMed

    Jaffe, R A; Laszewski, B L; Carr, D B; Phillips, R D

    1980-01-01

    Several reports have suggested that the nervous system can be affected by exposure to electric fields and that these effects may have detrimental health consequences for the exposed organism. The purpose of this study was to investigate the effects of chronic (30-day) exposure of rats to a 60Hz, 100-kV/m electric field on synaptic transmission and peripheral-nerve function. One hundred forty-four rats, housed in individual polycarbonate cages were exposed to uniform, vertical, 60-Hz electric fields in a system free of corona discharge and ozone formation and in which the animals did not receive spark discharges or other shocks during exposure. Following 30 days of exposure to the electric field, superior cervical sympathetic ganglia, vagus and sciatic nerves were removed from rats anesthetized with urethan, placed in a temperature-controlled chamber, and superfused with a modified mammalian Ringer's solution equilibrated with 95% O2 and 5% CO2. Several measures and tests were used to characterize synaptic transmission and peripheral-nerve function. These included amplitude, area, and configuration of the postsynaptic or whole-nerve compound-action potential; conduction velocity; accommodation; refractory period; strength-duration curves; conditioning-test (C-T) response, frequency response; post-tetanic response; and high-frequency-induced fatigue. The results of a series of neurophysiologic tests and measurements indicate that only synaptic transmission is significantly and consistently affected by chronic (30-day) exposure to a 60-Hz, 100-kV/m electric field. Specifically, and increase in synaptic excitability was detected in replicated measurements of the C-T response ratio. In addition, there are trends in other data that can be interpreted to suggest a generalized increase in neuronal excitability in exposed animals.

  10. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  11. Overview of U.S. electric utilities: Transmission and distribution systems

    SciTech Connect

    Brown, R.D.

    1994-12-31

    I hope this brief description of the US electric utility industry has been interesting and informative. No doubt many characteristics, concerns, and research efforts mirror those of the electric utility industry in South Korea. It is hoped that through workshops such as this that electric utilities, manufacturers and consultants may learn from each other for the mutual benefit of all.

  12. Puget Sound Area Electric Reliability Plan. Appendix E: Transmission Reinforcement Analysis : Draft Environmental Impact Statement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1991-09-01

    Five transmission line options and several reactive (voltage support) options are presently being considered as possible solutions to the PSAERP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. These options were derived from earlier study work that was summarized in Puget Sound Reinforcement Transmission Options'' and New Cross Mountain Transmission Line Alternative: The Crosstie'', which are attached. The initial Transmission Options study report recognized the value to system performance of adding an entirely new circuit rather than rebuilding an existing one. However, siting realities require that rebuild options be considered. Typically, the most attractive rebuild options would be the lowest capacity (lowest voltage) circuits. But because of corridor location, length and terminal proximity, the rebuild options listed below appear to be the most promising. Schematic diagrams and QV Curves of each option are also attached. It should be noted that Snoqualmie and Echo Lake refer to the same station east of Puget Sound and Naneum and Kittitas refer to the same station in the Ellensburg area. 100 figs., 20 tabs.

  13. Thermal Characteristics of Heating Towers

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Kametani, Shigeki

    Thermal characteristics of heating towers for air-source heat pumps are studied in terms of the overall enthalpy-transfer coefficient. Ka. First. the method of counter-flow calculation is presented taking physical properties of ethylene glycol solutions into account. Next, both cooling-tower and heating-tower experiments are carried out in a small, induced-draft. counterflow tower packed with tubes of a staggerd arrangement. using water and commercial ethylene glycol solutions. The coefficient Ka measured in the heating-tower experiment shows a trend similar to that in the cooling-tower experiment. So. the data on cooling towers will be helpful to the thermal design of heating towers.

  14. Evaporation Tower With Prill Nozzles

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Tower more efficient than conventional evaporation equipment. Liquids such as milk and fruit juice concentrated by passing them through tiny nozzle to form droplets, then allowing droplets to fall through evacuated tower with cooled walls.

  15. Engineering photochemical smog through convection towers

    SciTech Connect

    Elliott, S.; Prueitt, M.L.; Bossert, J.E.; Mroz, E.J.; Krakowski, R.A.; Miller, R.L.; Jacobson, M.Z.; Turco, R.P. |

    1995-02-01

    Reverse convection towers have attracted attention as a medium for cleansing modern cities. Evaporation of an aqueous mist injected at the tower opening could generate electrical power by creating descent, and simultaneously scavenge unsightly and unhealthful particulates. The study offered here assesses the influence to tower water droplets on the photochemical component of Los Angeles type smog. The primary radical chain initiator OH is likely removed into aqueous phases well within the residence time of air in the tower, and then reacts away rapidly. Organics do not dissolve, but nighttime hydrolysis of N{sub 2}O{sub 5} depletes the nitrogen oxides. A lack of HOx would slow hydrocarbon oxidation and so also ozone production. Lowering of NOx would also alter ozone production rates, but the direction is uncertain. SO{sub 2} is available in sufficient quantities in some urban areas to react with stable oxidants, and if seawater were the source of the mist, the high pH would lead to fast sulfur oxidation kinetics. With an accommodation coefficient of 10{sup {minus}3}, however, ozone may not enter the aqueous phase efficiently. Even if ozone is destroyed or its production suppressed, photochemical recovery times are on the order of hours, so that tower processing must be centered on a narrow midday time window. The cost of building the number of structures necessary for this brief turnover could be prohibitive. The increase in humidity accompanying mist evaporation could be controlled with condensers, but might otherwise counteract visibility enhancements by recreating aqueous aerosols. Quantification of the divergent forcings convection towers must exert upon the cityscape would call for coupled three dimensional modeling of transport, microphysics, and photochemistry. 112 refs.

  16. Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse

    PubMed Central

    Yao, Cong; Vanderpool, Kimberly G.; Delfiner, Matthew; Eddy, Vanessa; Lucaci, Alexander G.; Soto-Riveros, Carolina; Yasumura, Thomas; Rash, John E.

    2014-01-01

    In contrast to the knowledge of chemical synapses, little is known regarding the properties of gap junction-mediated electrical synapses in developing zebrafish, which provide a valuable model to study neural function at the systems level. Identifiable “mixed” (electrical and chemical) auditory synaptic contacts known as “club endings” on Mauthner cells (2 large reticulospinal neurons involved in tail-flip escape responses) allow exploration of electrical transmission in fish. Here, we show that paralleling the development of auditory responses, electrical synapses at these contacts become anatomically identifiable at day 3 postfertilization, reaching a number of ∼6 between days 4 and 9. Furthermore, each terminal contains ∼18 gap junctions, representing between 2,000 and 3,000 connexon channels formed by the teleost homologs of mammalian connexin 36. Electrophysiological recordings revealed that gap junctions at each of these contacts are functional and that synaptic transmission has properties that are comparable with those of adult fish. Thus a surprisingly small number of mixed synapses are responsible for the acquisition of auditory responses by the Mauthner cells, and these are likely sufficient to support escape behaviors at early developmental stages. PMID:25080573

  17. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-09-01

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  18. FIRE_ACE_UTRECHT_TOWER

    Atmospheric Science Data Center

    2015-10-28

    FIRE_ACE_UTRECHT_TOWER Project Title:  FIRE II ACE Discipline:  ... L3 Platform:  SHEBA Ship Site; Meteorological tower Instrument:  Eppley precision pyrgeometers Meteorological tower Spatial Coverage:  Fairbanks, Alaska and the surrounding ...

  19. Ivory Basements and Ivory Towers

    ERIC Educational Resources Information Center

    Fitzgerald, Tanya

    2012-01-01

    The metaphors of the ivory tower and ivory basement are used in this chapter to reflect how many women understand and experience the academy. The ivory tower signifies a place that is protected, a place of privilege and authority and a place removed from the outside world (and consequently the rigours of the market place). The ivory tower, by…

  20. Ivory Basements and Ivory Towers

    ERIC Educational Resources Information Center

    Fitzgerald, Tanya

    2012-01-01

    The metaphors of the ivory tower and ivory basement are used in this chapter to reflect how many women understand and experience the academy. The ivory tower signifies a place that is protected, a place of privilege and authority and a place removed from the outside world (and consequently the rigours of the market place). The ivory tower, by…

  1. The Ivory Tower Revisited

    ERIC Educational Resources Information Center

    Chantler, Abigail

    2016-01-01

    The corollary of the concept of the "ivory tower", as reflected in the writings of Plato and Newman amongst others, was, paradoxically, the vital importance of the university for wider society. Nevertheless from the mid-twentieth century, the esteem in which a "liberal" university education was held was diminished by rising…

  2. Cell Towers and Songbirds

    ERIC Educational Resources Information Center

    Klosterman, Michelle; Mesa, Jennifer; Milton, Katie

    2009-01-01

    This article describes how our common addiction to cell phones was used to launch a discussion about their use, impacts on the environment, and connections to issues of civic concern. By encouraging middle school science students to adopt the perspectives of special-interest groups debating communication tower restrictions designed to protect…

  3. The Towers of Hanoi

    ERIC Educational Resources Information Center

    Morris, George C.

    2007-01-01

    This article presents an investigation carried out with a group of able mathematics students who were studying at a level 1 year in advance of their peers. The purpose was to investigate the extension of usual three peg Towers of Hanoi to four pegs and attempt to find a rule that could be used to predict the minimum number of moves required to…

  4. Talking Towers, Making Withs.

    ERIC Educational Resources Information Center

    Lemke, J. L.

    The notion of a linguistic "register" is useful in posing questions about how the ways language is used differ from one kind of human activity to another. This paper analyzes a videotaped segment of male grade 4/5 students (n=3) who are talking as they work to build a tower from plastic drinking straws and pins. Discussion of the…

  5. Cell Towers and Songbirds

    ERIC Educational Resources Information Center

    Klosterman, Michelle; Mesa, Jennifer; Milton, Katie

    2009-01-01

    This article describes how our common addiction to cell phones was used to launch a discussion about their use, impacts on the environment, and connections to issues of civic concern. By encouraging middle school science students to adopt the perspectives of special-interest groups debating communication tower restrictions designed to protect…

  6. Badaling 1MWt molten salt tower power plant

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Li, Xin; Zhang, Qiangqiang; Wang, Zhifeng; Liao, Zhirong; Chang, Chun

    2017-06-01

    Molten salt tower technology is successful due to its advantage on high operation temperature and non-intermittence electricity production. In order to overcome the potential devastating risks, a small scale experimental pilot is needed to validate and find average technical solution at low cost. Also, the pilot's operation can help improve the key equipment design, understand molten salt system integration and optimize molten salt system design. This paper introduces the Badaling 1MWt molten salt solar tower power system in detail.

  7. Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout

    NASA Astrophysics Data System (ADS)

    Schwaiger, Karl; Haider, Markus; Haemmerle, Martin; Steiner, Peter; Obermaier, Michael-Dario

    2016-05-01

    Flexible dispatch able solar thermal electricity plants applying state of the art power cycles have the potential of playing a vital role in modern electricity systems and even participating in the ancillary market. By replacing molten salt via particles, operation temperatures can be increased and plant efficiencies of over 45 % can be reached. In this work the concept for a utility scale plant using corundum as storage/heat transfer material is thermodynamically modeled and its key performance data are cited. A novel indirect fluidized bed particle receiver concept is presented, profiting from a near black body behavior being able to heat up large particle flows by realizing temperature cycles over 500°C. Specialized fluidized bed steam-generators are applied with negligible auxiliary power demand. The performance of the key components is discussed and a rough sketch of the plant is provided.

  8. Wireless acoustic-electric feed-through for power and signal transmission

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor); Doty, Benjamin (Inventor); Badescu, Mircea (Inventor); Chang, Zensheu (Inventor)

    2011-01-01

    An embodiment provides electrical energy from a source on one side of a medium to a load on the other side of the medium, the embodiment including a first piezoelectric to generate acoustic energy in response to electrical energy from the source, and a second piezoelectric to convert the received acoustic energy to electrical energy used by the load. Other embodiments are described and claimed.

  9. Solar tower enhanced natural draft dry cooling tower

    NASA Astrophysics Data System (ADS)

    Yang, Huiqiang; Xu, Yan; Acosta-Iborra, Alberto; Santana, Domingo

    2017-06-01

    Concentrating Solar Power (CSP) plants are located in desert areas where the Direct Normal Irradiance (DNI) value is very high. Since water resource is scarcely available, mechanical draft cooing technology is commonly used, with power consumption of mechanical fans being approximately 2% of the total power generated. Today, there is only one solar power plant (Khi Solar One in South Africa) uses a condenser installed in a Natural Draft Cooling (NDC) tower that avoids the windage loss of water occurring in wet cooling towers. Although, Khi Solar One is a cavity receiver power tower, the receivers can be hung onto the NDC tower. This paper looks at a novel integration of a NDC tower into an external molten salt receiver of a solar power plant, which is one of a largest commercial molten salt tower in China, with 100MWe power capacity. In this configuration study, the NDC tower surrounds the concrete tower of the receiver concentrically. In this way, the receiver concrete tower is the central support of the NDC tower, which consists of cable networks that are fixed to the concrete tower and suspended at a certain height over the floor. The cable networks support the shell of the NDC tower. To perform a preliminary analysis of the behavior of this novel configuration, two cases of numerical simulation in three dimensional (3D) models have been solved using the commercial Computational Fluid Dynamics (CFD) code, ANSYS Fluent 6.3. The results show that the integration of the NDC tower into an external central receiver tower is feasible. Additionally, the total heat transfer rate is not reduced but slightly increases when the molten salt receiver is in operation because of the additional natural draft induced by the high temperature of the receiver.

  10. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    SciTech Connect

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  11. Biological effects from electric fields associated with high voltage transmission lines

    SciTech Connect

    Not Available

    1983-11-01

    Efforts during the past year by the US Department of Energy and the Electric Power Research Institute-funded laboratories to investigate the biological effects from electric fields are described in resume form. Investigations generally have been summarized with objectives, accomplishments of the past year, and some indication of projected studies.

  12. Determing the Time Dependence of Electrical Gradients in Railguns using the Transmission Line

    DTIC Science & Technology

    2008-09-01

    is the last name, first name, middle initial, and additional qualifiers separated by commas, e.g. Smith, Richard , J, Jr. 7. PERFORMING...2) This is similar to the familiar transmission line equation ( Feynman , et al, 1964) relating the gradient of the voltage along a transmission...Phys., 40, 274-283. Feynman , R., Leighton, R., and Sands, M. 1964: The Feynman Lectures in Physics vol II, 3rd ed. Addison Wesley, 238 pp

  13. Transmission Line Security Monitor

    ScienceCinema

    None

    2016-07-12

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  14. Transmission Line Security Monitor

    SciTech Connect

    2011-01-01

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  15. DWDM VSB modulation-format optical transmission: Effects of optical filtering and electrical equalization

    NASA Astrophysics Data System (ADS)

    Binh, Le Nguyen

    2008-10-01

    The transmission of 40 Gb/s wavelength multiplexed channels under vestigial single side band modulation format is transmitted over long haul optically amplified fiber systems. Bit-error-rate (BER) of 10 -12 or better can be achieved across all channels. Optical filters are designed with asymmetric roll-off bands. Simulations of the transmission performance, BER versus receiver sensitivity are demonstrated with wavelength channel spacing of 20-40 GHz. An optical filter, whose passband is 28 GHz and 20 dB cut-off band, performs best for 40 Gb/s bit rate due to optimum filtering and minimum noise contribution. Furthermore the single-sideband property of VSB format can assist linear equalization by electronic processing. The transmission performance is accurately evaluated based on the eye opening using a fast statistical method based on an equivalent Gaussian probability density distribution (pdf) which is derived from multiple peaks pdf of distorted eye diagram.

  16. Political efficacy and familiarity as predictors of attitudes towards electric transmission lines in the United States

    SciTech Connect

    Joe, Jeffrey C.; Hendrickson, Kelsie; Wong, Maria; Kane, Stephanie L.; Solan, David; Carlisle, Juliet E.; Koehler, David; Ames, Daniel P.; Beazer, Robert

    2016-05-18

    Public opposition to the construction (i.e., siting) of new high voltage overhead transmission lines is not a new or isolated phenomenon. Past research has posited a variety of reasons, applied general theories, and has provided empirical evidence to explain public opposition. The existing literature, while clarifying many elements of the issue, does not yet fully explain the complexities underlying this public opposition phenomenon. As a result, the current study demonstrated how two overlooked factors, people’s sense of political efficacy and their familiarity (i.e., prior exposure) with transmission lines, explained attitudes of support and opposition to siting new power lines.

  17. Political efficacy and familiarity as predictors of attitudes towards electric transmission lines in the United States

    DOE PAGES

    Joe, Jeffrey C.; Hendrickson, Kelsie; Wong, Maria; ...

    2016-05-18

    Public opposition to the construction (i.e., siting) of new high voltage overhead transmission lines is not a new or isolated phenomenon. Past research has posited a variety of reasons, applied general theories, and has provided empirical evidence to explain public opposition. The existing literature, while clarifying many elements of the issue, does not yet fully explain the complexities underlying this public opposition phenomenon. As a result, the current study demonstrated how two overlooked factors, people’s sense of political efficacy and their familiarity (i.e., prior exposure) with transmission lines, explained attitudes of support and opposition to siting new power lines.

  18. An Assessment of Graphitized Carbon Fiber Use for Electrical Power Transmission.

    DTIC Science & Technology

    1983-01-07

    found the tensile strength decreased by -25% and 35% for Br. and KNO3 intercalation, respectively. The tensile modulus decreased by 10% at most. For...438,000 tons per year. At a fabricated steel price of *750 per ton, the market is 0330 million/yr. 40 Overhead transmission lines have great exposure

  19. 75 FR 43519 - Parker-Davis Project; Transmission Capacity for Renewable Energy Between Electrical District No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Area Power Administration Parker-Davis Project; Transmission Capacity for Renewable Energy Between... purpose of transmitting renewable energy. Specifically, Western is soliciting interest from entities looking to transfer renewable energy from the area south of Phoenix, Arizona to the Palo Verde market hub...

  20. Economic inefficiency of passive transmission rights in congested electricity systems with competitive generation

    SciTech Connect

    Oren, S.S.

    1997-02-01

    In their paper, Harvey, Hogan and Pope (1996) argue that trading, reconfiguration and opportunity cost compensation of TCRs can be accomplished within a pool-based system by turning these TCRs over to the ISO in return for TCCs. The optimal dispatch by the ISO can be viewed as an optimal reconfiguration which maximizes the value of the TCRs and the opportunity costs (or value) resulting from such reconfiguration accrues to the TCC holders. The argument that transmission trading is implicit in economic dispatch fails, however, to recognize the strategic implication of replacing active trading in transmission capacity with passive ownership compensated ex-post based on the energy trading outcomes. The analysis supporting the above argument and its conclusion hinge on the premises that the energy market does not react to the way in which transmission property rights are being exercised, and that in the absence of locational market power in generation bid prices will be driven to marginal costs. These premises are based on economic theory that has not dealt explicitly with the implication of congested distribution channels and has not been substantiated by any empirical evidence. On the contrary, limited experimental results suggest that in the absence of active market participation by transmission rights owners, bid prices for generation may deviate from marginal costs which will defeat the TCC-based approach. 21 refs., 5 figs.

  1. Optical study of solar tower power plants

    NASA Astrophysics Data System (ADS)

    Eddhibi, F.; Ben Amara, M.; Balghouthi, M.; Guizani, A.

    2015-04-01

    The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature.

  2. A Gastrointestinal Electrical Stimulation System Based on Transcutaneous Power Transmission Technology

    PubMed Central

    Zhu, Bingquan; Wang, Yongbing; Yan, Guozheng; Jiang, Pingping; Liu, Zhiqiang

    2014-01-01

    Electrical stimulation has been suggested as a possible treatment for various functional gastrointestinal disorders (FGID). This paper presents a transcutaneous power supplied implantable electrical stimulation system. This technology solves the problem of supplying extended power to an implanted electrical stimulator. After implantation, the stimulation parameters can be reprogrammed by the external controller and then transmitted to the implanted stimulator. This would enable parametric studies to investigate the efficacy of various stimulation parameters in promoting gastrointestinal contractions. A pressure detector in the internal stimulator can provide real-time feedback about variations in the gastrointestinal tract. An optimal stimulation protocol leading to cecal contractions has been proposed: stimulation bursts of 3 ms pulse width, 10 V amplitude, 40 Hz frequency, and 20 s duration. The animal experiment demonstrated the functionality of the system and validated the effects of different stimulation parameters on cecal contractions. PMID:25053939

  3. Some effects of a buried electricity transmission cable on bulk soil.

    PubMed

    Scalenghe, Riccardo

    2007-12-01

    A case study in NW Italy investigating an underground electric line (1 m depth triple cable at operative voltages 220-380 kV) measured electric fields in the surrounding soil virtually close to zero but magnetic fields (microTs) 20 times the background level. After 6 months, the influence radius around the cable on microbial activity (estimated by soil ATP), organic carbon, and total nitrogen follows exactly the inverse trend of the MF, shifting the biological activity with a lag distance of 5 m from the 220 kV cable.

  4. Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect

    Kuiper, James A.; Krummel, John R.; Hlava, Kevin J.; Moore, H. Robert; Orr, Andrew B.; Schlueter, Scott O.; Sullivan, Robert G.; Zvolanek, Emily A.

    2016-11-21

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines.

  5. The tower of Babel: survey on concepts and terminology in electrical status epilepticus in sleep and continuous spikes and waves during sleep in North America.

    PubMed

    Fernández, Iván Sánchez; Chapman, Kevin E; Peters, Jurriaan M; Kothare, Sanjeev V; Nordli, Douglas R; Jensen, Frances E; Berg, Anne T; Loddenkemper, Tobias

    2013-04-01

    The terms "electrical status epilepticus during sleep (ESES)" and "continuous spikes and waves during sleep (CSWS)" have been used interchangeably when referring to related but different concepts. In addition, the quantification of epileptiform activity has not been standardized, and different approaches to quantification have been used. The aim of this study was to evaluate the extent to which pediatric neurologists and epileptologists use a homogeneous terminology and conceptualization in CSWS and ESES and to characterize the current understanding of these conditions. A survey addressing the use of terminology in "ESES" and "CSWS" and the understanding of related concepts was distributed online to all members of the Child Neurology Society and the American Epilepsy Society mailing lists. Surveys were self-administered and collected using an online survey website (http://www.surveymonkey.com).   Two hundred nineteen surveys were completed, 137 from the Child Neurology Society mailing list and 82 from the American Epilepsy Society mailing list. ESES and CSWS were considered synonymous by 117 respondents, not synonymous by 61, 21 respondents did not know, and 20 did not respond. Most respondents (63.1%) considered CSWS as a devastating epileptic encephalopathy with severe sequelae even if treated correctly, but 25.1% of respondents indicated that it does not leave sequelae if epilepsy was treated early and another 11.8% noted that cognitive difficulties resolved with age. Cognitive and/or language regression were considered mandatory for the diagnosis of CSWS by only 27% of the respondents. The diagnosis of CSWS was based on electroencephalography (EEG) assessment alone by 31% of respondents. Respondents used different methods for calculation of the epileptiform activity, different EEG samples for calculation, and considered differently the lateralized epileptiform activity. The cut-off values for percentage of the sleep record occupied by spike-waves were

  6. The Physics of Shot Towers

    NASA Astrophysics Data System (ADS)

    Lipscombe, Trevor C.; Mungan, Carl E.

    2012-04-01

    In the late 18th and throughout the 19th century, lead shot for muskets was prepared by use of a shot tower. Molten lead was poured from the top of a tower and, during its fall, the drops became spherical under the action of surface tension. In this article, we ask and answer the question: How does the size of the lead shot depend on the height of the tower? In the process, we explain the basic technology underlying an important historical invention (the shot tower) and use simple physics (Newtonian mechanics and the thermodynamic laws of cooling) to model its operation.

  7. Capacity constraints, pricing and investment decisions in regulated firms with a special emphasis on the Argentine electricity transmission system

    NASA Astrophysics Data System (ADS)

    Torres Gomez, Clemencia

    Restructuring the electricity sector has fostered competition in generation and distribution but has reinforced the need for better regulation to ensure efficiency of transmission networks. This dissertation assesses the impact of the Argentinean reforms in electricity on transmission efficiency. It then goes beyond the Argentinean case and analyzes some regulatory issues affecting transmission. Chapter 2 shows that the Argentinean reforms increased reliability and brought prices closer to costs. However, regulatory fine-tuning is required to ensure sustainability. Chapter 3 examines the impact of unbundling on the construction of the transmission link to the Yacyreta generation complex. A long-term commercial contract in an unbundled industry allowed competition to reduce investment cost and facilitated better monitoring by outsiders. Chapter 4 analyzes investment procedures in the context of the proposal to build a fourth line in the Comahue corridor. While procedures are mostly coherent, some rules appear to distort incentives to expand. The narrow definition of beneficiaries limits the number of participants in the decision-making. Grid users' limited accountability reduces incentives to pay for expansion. Long term contracts could increase the cost of the constraints for the party with the obligation to deliver. Chapter 5 analyzes incentives to promote grid expansion under uncertain demand using a single period-single generator model. The monopolist underinvests in comparison to an unconstrained system to reduce the likelihood of having to pay for unutilized capacity, under lower than expected demand. Optimal transmission capacity is monotonically decreasing in the cost of capital, and weakly increasing in the probability of experiencing high demand. Two possible equilibrium values for grid capacity are identified, associated with the rationing prices for either low or high demand. Chapter 6 analyzes the Laffont/Tirole model of monopoly regulation under

  8. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission

    PubMed Central

    Baltz, Thomas; Voigt, Thomas

    2015-01-01

    The modulation of neuronal activity by means of electrical stimulation is a successful therapeutic approach for patients suffering from a variety of central nervous system disorders. Prototypic networks formed by cultured cortical neurons represent an important model system to gain general insights in the input–output relationships of neuronal tissue. These networks undergo a multitude of developmental changes during their maturation, such as the excitatory–inhibitory shift of the neurotransmitter GABA. Very few studies have addressed how the output properties to a given stimulus change with ongoing development. Here, we investigate input–output relationships of cultured cortical networks by probing cultures with and without functional GABAAergic synaptic transmission with a set of stimulation paradigms at various stages of maturation. On the cellular level, low stimulation rates (<15 Hz) led to reliable neuronal responses; higher rates were increasingly ineffective. Similarly, on the network level, lowest stimulation rates (<0.1 Hz) lead to maximal output rates at all ages, indicating a network wide refractory period after each stimulus. In cultures aged 3 weeks and older, a gradual recovery of the network excitability within tens of milliseconds was in contrast to an abrupt recovery after about 5 s in cultures with absent GABAAergic synaptic transmission. In these GABA deficient cultures evoked responses were prolonged and had multiple discharges. Furthermore, the network excitability changed periodically, with a very slow spontaneous change of the overall network activity in the minute range, which was not observed in cultures with absent GABAAergic synaptic transmission. The electrically evoked activity of cultured cortical networks, therefore, is governed by at least two potentially interacting mechanisms: A refractory period in the order of a few seconds and a very slow GABA dependent oscillation of the network excitability. PMID:26236196

  9. The effect of non-linear capacitances in the localization properties of aperiodic dual electric transmission lines

    NASA Astrophysics Data System (ADS)

    Lazo, Edmundo; Garrido, Alejandro; Neira, Félix

    2016-11-01

    This study investigates the localization properties of dual electric transmission lines with non-linear capacitances. The VC,n voltage across each capacitor is selected as a non-linear function of the electric charge qn, i.e., VC,n = qn(1/Cn -ɛn|qn|2) where Cn is the linear part of the capacitance and ɛn the amplitude of the non-linear term. We follow a binary distribution of values of ɛn, according to the Thue-Morse m-tupling sequence. The localization behavior of this non-linear case indicates that the case m = 2 does not belong to the m ≥ 3, family because when m changes from m = 2 to m = 3, the number of extended states diminishes dramatically. This proves the topological difference of the m = 2 and m = 3 families. However, by increasing m values, localization behavior of the m-tupling family resembles that of the m = 2, case because the system begins to regain its extended states. The exact same result was obtained recently in the study of linear direct transmission lines with m-tupling distribution of inductances. Consequently, we state that the localization behavior of the m-tupling family as a function of the m value is independent of both the linear and the non-linear system under study, but independent of the kind of transmission line (dual or direct). This is curious behavior of the m-tupling family and thus deserves more scholarly attention.

  10. Planning and processing of new or upgraded electric transmission systems in New Mexico

    SciTech Connect

    Toole, Gasper Loren

    2009-01-01

    RETA has been requested to identify and prioritize renewable energy resource zones in New Mexico that have a potential to support industry development among renewable energy developers for renewable resource generation projects. Moreover, Senate Memorial 44 requests that RETA identify and prioritize the best viable options for potential transmission corridors to accommodate renewable energy export from New Mexico in accordance with a defined time-line and to convene a working group to submit recommendations to the legislature for establishing a process to streamline procedures for establishing renewable energy transmission projects in New Mexico. RETA's July 9, 2009 request for comments outlined seven topical areas of specific value to Senate Memorial 44. This document addresses Topics 1, 3 and 4.

  11. 76 FR 23222 - Electric Reliability Organization Interpretation of Transmission Operations Reliability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... effect on the human environment.\\22\\ The Commission has categorically excluded certain actions from this requirement as not having a significant effect on the human environment. Included in the exclusion are rules... Energy Regulatory Commission 18 CFR Part 40 Electric Reliability Organization Interpretation of...

  12. 76 FR 58101 - Electric Reliability Organization Interpretation of Transmission Operations Reliability Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... effect on the human environment.\\23\\ The Commission has categorically excluded certain actions from this requirement as not having a significant effect on the human environment. Included in the exclusion are rules... Federal Energy Regulatory Commission 18 CFR Part 40 Electric Reliability Organization Interpretation of...

  13. 77 FR 44603 - Briefings on Preliminary Findings of 2012 National Electric Transmission Congestion Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY... Electricity Delivery and Energy Reliability, Department of Energy (DOE). ACTION: Notice of upcoming webinars. SUMMARY: Section 216(a)(1) of the Federal Power Act (FPA) requires the Department of Energy (Department or...

  14. Transmission at a 'direct' electrical connexion mediated by an interneurone in the leech.

    PubMed Central

    Muller, K J; Scott, S A

    1981-01-01

    1. Touch sensory neurones in the leech excite a rapidly conducting interneurone called the S-cell. Although the electrical synaptic connexion between the two cells is monosynaptic by physiological criteria, intracellular staining reveals that the touch cells and the S-cell do not make contact, but instead are linked by a pair of small interneurones. 2. The electrical coupling between touch cells and S-cells rectifies, in that depolarizing current but not hyperpolarizing current passes from the touch cell into the S-cell. The rectifying junction is between the touch cells and coupling interneurones, while the connexion between coupling interneurones and the S-cell passes current in both directions. 3. Selective destruction of the coupling interneurones by intracellular injection of a protease interrupts the disynaptic electrical connexion between touch and S-cells. 4. The touch cell's geometry and membrane properties account for the failure of impulses that are generated in certain portions of the receptive field in the skin to propagate beyond the first branch-points of the touch cell axon within the ganglion. Conduction block at branch-points is used to examine physiologically the spatial distribution of contacts between the touch cell and the coupling interneurones. In addition, it is shown that under natural conditions branch-point failure presynaptically reduces the effectiveness of the electrical synaptic connexions. Images Plate 1 Plate 2 Plate 3 Plate 4 PMID:6267257

  15. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... source of energy for electric generators, and (3) Chlorine and hydrogen systems; (C) Test sites where... program shall use a tagout system. (B) If an energy isolating device is capable of being locked out, the employer's program shall use lockout, unless the employer can demonstrate that the use of a tagout system...

  16. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... source of energy for electric generators, and (3) Chlorine and hydrogen systems; (C) Test sites where... program shall use a tagout system. (B) If an energy isolating device is capable of being locked out, the employer's program shall use lockout, unless the employer can demonstrate that the use of a tagout system...

  17. Eiffel Tower Plume

    NASA Image and Video Library

    2015-08-19

    This still image from an animation from NASA GSFC Solar Dynamics Observatory shows a single plume of plasma, many times taller than the diameter of Earth, spewing streams of particles for over two days Aug. 17-19, 2015 before breaking apart. At times, its shape resembled the Eiffel Tower. Other lesser plumes and streams of particles can be seen dancing above the solar surface as well. The action was observed in a wavelength of extreme ultraviolet light. http://photojournal.jpl.nasa.gov/catalog/PIA19875

  18. Evaluating the potential impact of transmission constraints on the operation of a competitive electricity market in Illinois.

    SciTech Connect

    Cirillo, R.; Thimmapuram, P.; Veselka, T.; Koritarov, V.; Conzelmann, G.; Macal, C.; Boyd, G.; North, M.; Overbye, T.; Cheng, X.; Decision and Information Sciences; Univ. of Illinois

    2006-04-30

    Despite the current adequacy of the generation and transmission system in Illinois, there is concern that the uncertainties of electricity restructuring warrant a more detailed analysis to determine if there might be pitfalls that have not been identified under current conditions. The problems experienced elsewhere in the country emphasize the need for an evaluation of how Illinois might fare under a restructured electricity market. The Illinois Commerce Commission (ICC) commissioned this study to be undertaken as a joint effort by the University of Illinois at Urbana-Champaign and Argonne National Laboratory to evaluate the Illinois situation in the 2007 period when restructuring is scheduled to be fully implemented in the State. The purpose of this study is to make an initial determination if the transmission system in Illinois and the surrounding region would be able to support a competitive electricity market, would allow for effective competition to keep prices in check, and would allow for new market participants to effectively compete for market share. The study seeks to identify conditions that could reasonably be expected to occur that would enable a company to exercise market power in one or more portions of the State and thereby create undue pressure on the prices charged to customers and/or inhibit new market participants from entering the market. The term 'market power' has many different definitions, and there is no universal agreement on how to measure it. For the purposes of this study, the term is defined as the ability to raise prices and increase profitability by unilateral action. A more complete definition is provided later. With this definition, the central question of this analysis becomes: 'Can a company, acting on its own, raise electricity prices and increase its profits?' It should be noted that the intent of the study is not to predict whether or not such market power would be exercised by any company. Rather, it is designed to determine

  19. 2. Southern Light Tower and Northern Light Tower, view north, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southern Light Tower and Northern Light Tower, view north, south sides - Kennebec River Light Station, South side of Doubling Point Road, off State Highway 127, 1.8 miles south of U.S. Route 1, Arrowsic, Sagadahoc County, ME

  20. INTERIOR TOWER STAIRS BETWEEN SECOND LEVEL AND TOWER ROOM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER STAIRS BETWEEN SECOND LEVEL AND TOWER ROOM, LOOKING NORTHEAST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  1. INTERIOR TOWER STAIRS BETWEEN TOWER ROOM AND SECOND LEVEL, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR TOWER STAIRS BETWEEN TOWER ROOM AND SECOND LEVEL, LOOKING SOUTHWEST. - Oregon Inlet Coast Guard Station, Northern end of Pea Island, East side of State Road 1257, 0.3 mile North of North Carolina Highway 12, Rodanthe, Dare County, NC

  2. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    SciTech Connect

    Oosthoek, J. L. M.; Kooi, B. J.; Voogt, F. C.; Attenborough, K.; Verheijen, M. A.; Hurkx, G. A. M.; Gravesteijn, D. J.

    2015-02-14

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.

  3. Corona ions from overhead transmission voltage powerlines: effect on direct current electric field and ambient particle concentration levels.

    PubMed

    J-Fatokun, Folasade; Jayaratne, Rohan; Morawska, Lidia; Birtwhistle, David; Rachman, Rihandanu; Mengersen, Kerrie

    2010-01-01

    Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at the comprehensive investigation of corona ions, vertical direct current electric field (dc e-field), ambient aerosol particle charge, and particle number concentration levels in the proximity of some high/subtransmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion, and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels, however, remained relatively constant (10(3) particle cm(-3)), irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity, and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.

  4. Archaeoastronomy: the Newport Tower

    NASA Astrophysics Data System (ADS)

    Penhallow, William

    1997-07-01

    The Newport Tower is a masonry structure of fieldstone about 28 feet high and 22 feet in diameter located near the top of a hill overlooking the harbor in Newport, Rhode Island. In essence it is a cylinder with Romanesque arches resting on eight pillars. The cylinder has three major openings as well as four smaller ones. On the inside there are eight indentations for beams on a first floor and four for a second,. In addition there are seven niches and a fireplace on the inside. A careful photogrammetric survey of the tower done by the Technical University of Denmark for the Danish National Museum provided data for the calculation of declinations, azimuths and altitudes associated with possible pairs of features. Numerous alignments involving the Sun and Moon indicate an emphasis on determining the location of the nodes of the Moon's orbit. Accurate determination of true north by observing Polaris at upper culmination is evident. Possible observations of Sirius are indicated. These results provide strong evidence that astronomy was involved in the design and use of this intriguing structure first mentioned in Governor Arnold's will in 1677. Further study is clearly warranted. This paper was published in the New England Antiquities Research Association Journal, p. 44, 1994

  5. FLORIDA TOWER FOOTPRINT EXPERIMENTS

    SciTech Connect

    WATSON,T.B.; DIETZ, R.N.; WILKE, R.; HENDREY, G.; LEWIN, K.; NAGY, J.; LECLERC, M.

    2007-01-01

    The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions at midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.

  6. Determining the Time Dependence of Electrical Gradients in Railguns Using the Transmission Line Model

    DTIC Science & Technology

    2008-12-01

    The Feynman Lectures in Physics vol II, 3rd ed. Addison Wesley, 238 pp. Kerrisk, J.F., 1981: Current Distribution and Inductance Calculations for...sides of Eq. (1) gives: ∂V(x,t) /∂x = - LX (t)di(t)/dt-2RX(t)i(t) (2) This is similar to the familiar transmission line equation ( Feynman ...relatively insensitive to time. We attribute this to fundamental differences in the physics of the two processes. The IR voltages are a function of the

  7. Note: Electrical detection and quantification of spin rectification effect enabled by shorted microstrip transmission line technique

    SciTech Connect

    Soh, Wee Tee; Ong, C. K.; Peng, Bin; Chai, Guozhi

    2014-02-15

    We describe a shorted microstrip method for the sensitive quantification of Spin Rectification Effect (SRE). SRE for a Permalloy (Ni{sub 80}Fe{sub 20}) thin film strip sputtered onto SiO{sub 2} substrate is demonstrated. Our method obviates the need for simultaneous lithographic patterning of the sample and transmission line, therefore greatly simplifying the SRE measurement process. Such a shorted microstrip method can allow different contributions to SRE (anisotropic magnetoresistance, Hall effect, and anomalous Hall effect) to be simultaneously determined. Furthermore, SRE signals from unpatterned 50 nm thick Permalloy films of area dimensions 5 mm × 10 mm can even be detected.

  8. Note: electrical detection and quantification of Spin Rectification Effect enabled by shorted microstrip transmission line technique.

    PubMed

    Soh, Wee Tee; Peng, Bin; Chai, Guozhi; Ong, C K

    2014-02-01

    We describe a shorted microstrip method for the sensitive quantification of Spin Rectification Effect (SRE). SRE for a Permalloy (Ni80Fe20) thin film strip sputtered onto SiO2 substrate is demonstrated. Our method obviates the need for simultaneous lithographic patterning of the sample and transmission line, therefore greatly simplifying the SRE measurement process. Such a shorted microstrip method can allow different contributions to SRE (anisotropic magnetoresistance, Hall effect, and anomalous Hall effect) to be simultaneously determined. Furthermore, SRE signals from unpatterned 50 nm thick Permalloy films of area dimensions 5 mm × 10 mm can even be detected.

  9. Transmission of rectal electric waves: is it through circular or longitudinal smooth muscle layers or both?

    PubMed

    Shafik, A; El-Sibai, O

    2001-04-01

    The rectum possesses electric activity in the form of pacesetter (PPs) and action potentials (APs). In recent studies we suggested that the waves are not initiated by the extrarectal autonomic innervation but might be triggered by a 'rectosigmoid pacemaker' and are transmitted in the rectal wall through the rectal musculature and not the enteric nerve plexus. To investigate whether the rectal waves are transmitted through the circular or longitudinal muscle layer, the rectum of 18 mongrel dogs was exposed under anesthesia through an abdominal incision. Three electrodes were applied to the rectal wall (longitudinal muscle layer) and another 3 electrodes to the circular muscle; the latter was exposed by splitting apart the fibers of the longitudinal muscle. Rectal electric activity and pressure were recorded from the 6 electrodes before and after performing individual myotomy of the rectal longitudinal (9 dogs), circular (9 dogs), and then the whole muscle layers (18 dogs). The myotomy was performed proximal to and between the electrodes. Pacesetter (PPs) and action potentials (APs) were recorded from the 3 electrodes on the longitudinal muscle but no waves were registered from those on the circular muscle. After longitudinal muscle myotomy was performed between electrodes 1 and 2, PPs and APs were recorded from electrode 1 but not 2 and 3 and when performed proximally to electrode 1, no waves were registered. The rectal pressure increased concomitantly with occurrence of APs. Circular muscle myotomy effected no change in the rectal electric activity recorded from the 3 electrodes applied to the longitudinal muscle. In total muscle myotomy, the electric waves were recorded from the electrodes proximal but not distal to the myotomy. We propose that the motile activity of the rectal longitudinal muscle is initiated by the electric activity which appears to be triggered by the rectosigmoid pacemaker, while that of the circular muscle fibers is believed to be initiated

  10. Sitting duck or wise old owl. [electricity generation and transmission and public relations

    SciTech Connect

    Rappoport, D.M.

    1993-02-15

    Utilities are building few generating stations these days, but modest customer growth means that transmission and distribution facilities must be built or rebuilt in the coming years. This means a customer typically opposing a construction project is likely to be a suburbanite worried about the effect a distribution or transmission line or substation may have on home values as well as the potential health risks posed by that facility. Those worried about the prospect of falling home prices or potential health risks have the motivation and the means to make life difficult for utilities that don't understand how the rules of the game have changed. While the profile of the protestors has changed in recent years, the views of many utility executives have not. Too many still believe the public can be ignored when it comes to siting facilities or structuring rates. Utilities will spend mightily to mollify the public after it becomes angry. But it would be less costly - and more productive - to invest in advance in an ongoing program to help avoid an angry public. If that approach is successful, those in media and government relations will find they have fewer brushfires.

  11. Essays on empirical analysis of multi-unit auctions: Impacts of financial transmission rights on the restructured electricity industry

    NASA Astrophysics Data System (ADS)

    Zang, Hailing

    This dissertation uses recently developed empirical methodologies for the study of multi-unit auctions to test the impacts of Financial Transmission Rights (FTRs) on the competitiveness of restructured electricity markets. FTRs are a special type of financial option that hedge against volatility in the cost of transporting electricity over the grid. Policy makers seek to use the prices of FTRs as market signals to incentivize efficient investment and utilization of transmission capacity. However, prices will not send the correct signals if market participants strategically use FTRs. This dissertation uses data from the Texas electricity market to test whether the prices of FTRs are efficient to achieve such goals. The auctions studied are multi-unit, uniform-price, sealed-bid auctions. The first part of the dissertation studies the auctions on the spot market of the wholesale electricity industry. I derive structural empirical models to test theoretical predictions as to whether bidders fully internalize the effect of FTRs on profits into their bidding decisions. I find that bidders are learning as to how to optimally bid above marginal cost for their inframarginal capacities. The bidders also learn to bid to include FTRs into their profit maximization problem during the course of the first year. But starting from the second year, they deviated from optimal bidding that includes FTRs in the profit maximization problems. Counterfactual analysis show that the primary effect of FTRs on market outcomes is changing the level of prices rather than production efficiency. Finally, I find that in most months, the current allocations of FTRs are statistically equivalent to the optimal allocations. The second part of the dissertation studies the bidding behavior in the FTR auctions. I find that FTRs' strategic impact on the FTR purchasing behavior is significant for large bidders---firms exercising market power in the FTR auctions. Second, trader forecasts future FTR credit

  12. Human perception of electric fields and ion currents associated with high-voltage DC transmission lines

    SciTech Connect

    Blondin, J.P.; Nguyen, D.H.; Maruvada, P.S.; Sbeghen, J.; Goulet, D.; Cardinal, C.; Plante, M.; Bailey, W.H. |

    1996-12-01

    The objective of this study was to assess the ability of humans to detect the presence of DC electric fields and ion currents. An exposure chamber simulating conditions present in the vicinity of high-voltage DC (HVDC) lines was designed and built for this purpose. In these experiments, the facility was used to expose observers to DC electric fields up to 50 kV/m and ion current densities up to 120 nA/m{sup 2}. Forty-eight volunteers (25 women and 23 men) between the ages of 18 and 57 years served as observers. Perception of DC fields was examined by using two psychophysical methods: an adaptive staircase procedure and a rating method derived from signal-detection theory. Subjects completed three different series of observations by using each of these methods; one was conducted without ion currents, and the other two involved various combinations of electric fields and ion currents. Overall, subjects were significantly more likely to detect DC fields as the intensity increased. Observers were able to detect the presence of DC fields alone, but only at high intensities; the average threshold was 45 kV/m. Except in the most sensitive individuals, ion current densities up to 60 nA/m{sup 2} did not significantly facilitate the detection of DC fields. However, higher ion current densities were associated with a substantial lowering of sensory thresholds in a large majority of observers. Data analysis also revealed large variations in perceptual thresholds among observers. Normative data indicating DC field and ion current intensities that can be detected by 50% of all observers are provided. In addition, for the most sensitive observers, several other detection proportions were derived from the distribution of individual detection capabilities. These data can form the basis for environmental guidelines relating to the design of HVDC lines.

  13. Human perception of electric fields and ion currents associated with high-voltage DC transmission lines.

    PubMed

    Blondin, J P; Nguyen, D H; Sbeghen, J; Goulet, D; Cardinal, C; Maruvada, P S; Plante, M; Bailey, W H

    1996-01-01

    The objective of this study was to assess the ability of humans to detect the presence of DC electric field and ion currents. An exposure chamber simulating conditions present in the vicinity of high-voltage DC (HVDC) lines was designed and built for this purpose. In these experiments, the facility was used to expose observers to DC electric fields up to 50 kV/m and ion current densities up to 120 nA/m2. Forty-eight volunteers (25 women and 23 men) between the ages of 18 and 57 years served as observers. Perception of DC fields was examined by using two psychophysical methods: an adaptive staircase procedure and a rating method derived from signal-detection theory. Subjects completed three different series of observations by using each of these methods; one was conducted without ion currents, and the other two involved various combinations of electric fields and ion currents. Overall, subjects were significantly more likely to detect DC fields as the intensity increased. Observers were able to detect the presence of DC fields alone, but only at high intensities; the average threshold was 45 kV/m. Except in the most sensitive individuals, ion current densities up to 60 nA/m2 did not significantly facilitate the detection of DC fields. However, higher ion current densities were associated with a substantial lowering of sensory thresholds in a large majority of observers. Data analysis also revealed large variations in perceptual thresholds among observers. Normative data indicating DC field and ion current intensities that can be detected by 50% of all observers are provided. In addition, for the most sensitive observers, several other detection proportions were derived from the distribution of individual detection capabilities. These data can form the basis for environmental guidelines relating to the design of HVDC lines.

  14. Anharmonicity, neural-like lattices, and fast signal/electric transmission

    NASA Astrophysics Data System (ADS)

    Velarde, Manuel G.

    2007-02-01

    Anharmonic interactions in lattices may sustain robust oscillatory modes and (nonlinear) waves including solitons. This is illustrated here by using an exponentially repulsive interaction introduced by Toda. To cope with friction and dissipation -always present in real systems- and hence to make robust, e.g., solitons, following Lord Rayleigh, an appropriate input-output energy balance is added to the dynamics. Noise (and hence temperature) is also incorporated by embedding the system in a Gaussian, white noise environment (thermal bath). In the particular case of a lattice ring with six units it is shown how such a Toda-Rayleigh lattice can be used as a Central Pattern Generator of three different oscillatory modes. These three modes are shown to map three walking (metachronal/low speed, caterpillar/medium speed, and tripod/fast speed) gaits in insects (hexapods). An electronic implementation (diodes map easily exponential interactions) of the Toda-Rayleigh lattice ring is also discussed, including leg motor controls for an hexapod robot. Finally, the Toda-Rayleigh mechanical lattice is converted into an electromechanical wire-like, lattice electric conductor. This is done by considering the lattice units as positive ion cores and adding free electrons to the system. The coupling of Toda dynamics with Coulomb interactions yields remarkable current-field/voltage and current-temperature characteristics in the presence of an external electric field. An Ohmic-non Ohmic transition is possible in the lattice conductor. Such feature permits to consider it as a neural-like conveyor of subsonic (Ohmic) and fast supersonic (non-Ohmic) electric or other signals.

  15. Modular inductive power transmission system for high misalignment electric vehicle application

    NASA Astrophysics Data System (ADS)

    Qiu, Chun; Chau, K. T.; Liu, Chunhua; Ching, Tze Wood; Zhang, Zhen

    2015-05-01

    This paper gives a design method of power transmitter for electric vehicle wireless charging applications. Uniform magnetic field is targeted for better modular application and misalignment adaption. Rectangular coil and spiral windings are specially selected for evaluation. The compound winding is chosen for optimization. The magnetic flux density is studied by calculating the mutual inductance per area. By optimally choosing the turns and pitch distances of the spiral winding, a uniform magnetic field is achieved. Using finite element analysis, the performances of the transmitter are evaluated, including its tolerance to misalignment.

  16. The historical significance of work with electric organs for the study of cholinergic transmission.

    PubMed

    Whittaker, V P

    1989-01-01

    The historical significance of work with electric organs for the development of electrobiology and our understanding of the cholinergic synapse at the cell and molecular biological level is traced from its earliest beginning in folk medicine, through the controversy on bioelectricity between Galvani and Volta to the present day, the last decades of which have seen the sequencing of the nicotinic acetylcholine receptor, the isolation and biochemical characterization of the cholinergic vesicle and much else. In the concluding section of the review the continued relevance and usefulness of the electromotor system as a model for future neurobiological research is emphasized.

  17. Improvement of Steering Feel of Electric Power Steering System with Variable Gear Transmission System Using Decoupling Control

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Yokoi, Akitoshi; Iwasaki, Makoto; Ukai, Hiroyuki; Matsui, Nobuyuki; Ito, Norihisa; Uryu, Nobuhiko; Mukai, Yasuhiko

    In this paper a new control method of Electric Power Steering (EPS) system with Variable Gear Transmission System (VGTS) is proposed. The control purpose is to achieve the desired steering gear ratio and the desired power assist with good steering feel. The basic idea of controller design is to apply decoupling control to this system and to separately design controllers for two decoupled systems. The angle control system and the torque control system are designed for the decoupled systems. In the angle control system the PID control is used for the desired gear ratio. In the torque control system the PID control is used for the desired assist torque designed so as to achieve good steering feel. In order to evaluate steering feel the Lissajous curve between the steering torque and steering angle is used. The effectiveness of the proposed controller is verified experimentally.

  18. Independent transmission system operators and their role in maintaining reliability in a restructured electric power industry

    SciTech Connect

    1998-01-01

    This report summarizes the current status of proposals to form Independent System Operators (ISOs) to operate high-voltage transmission systems in the United States and reviews their potential role in maintaining bulk power system reliability. As background information, the likely new industry structure, nature of deregulated markets, and institutional framework for bulk power system reliability are reviewed. The report identifies issues related to the formation of ISOs and their roles in markets and in reliability, and describes potential policy directions for encouraging the formation of effective ISOs and ensuring bulk system reliability. Two appendices are provided, which address: (1) system operation arrangements in other countries, and (2) summaries of regional U.S. ISO proposals.

  19. 40. BOILER HOUSE, BEGINNING OF COAL CONVEYOR FROM COAL TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. BOILER HOUSE, BEGINNING OF COAL CONVEYOR FROM COAL TOWER No. 1 (FIFTH FLOOR OR CABLE ROAD FLOOR SHOWN IN DRAWING No. 6 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  20. 13. Bottom floor, tower interior showing concrete floor and cast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Bottom floor, tower interior showing concrete floor and cast iron bases for oil butts (oil butts removed when lighthouse lamp was converted to electric power.) - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  1. 13. WEIGHING ROOM Fish were lifted up from tower by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. WEIGHING ROOM Fish were lifted up from tower by conveyor, controlled by buttons above the two sets of vertical electrical conduits. They entered the weighing room through the shielded window on the left (shielding missing from the window on the right), were weighed and then transported to the holding tanks. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  2. Generation, transmission, and detection of terahertz photons on an electrically driven single chip

    SciTech Connect

    Ikushima, Kenji; Ito, Atsushi; Okano, Shun

    2014-02-03

    We demonstrate single photon counting of terahertz (THz) waves transmitted from a local THz point source through a coplanar two-wire waveguide on a GaAs/AlGaAs single heterostructure crystal. In the electrically driven all-in-one chip, quantum Hall edge transport is used to achieve a noiseless injection current for a monochromatic point source of THz fields. The local THz fields are coupled to a coplanar two-wire metal waveguide and transmitted over a macroscopic scale greater than the wavelength (38 μm in GaAs). THz waves propagating on the waveguide are counted as individual photons by a quantum-dot single-electron transistor on the same chip. Photon counting on integrated high-frequency circuits will open the possibilities for on-chip quantum optical experiments.

  3. Studies of acoustic-electric feed-throughs for power transmission through structures

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Doty, Benjamin; Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph; Aldrich, Jack; Chang, Zensheu

    2006-01-01

    There are numerous engineering design problems where the use of wires to transfer power and communicate data thru the walls of a structure is prohibitive or significantly difficult that it may require a complex design. Using physical feedthroughs in such systems may make them susceptible to leakage of chemicals or gasses, loss of pressure or vacuum, as well as difficulties in providing adequate thermal or electrical insulation. Moreover, feeding wires thru a wall of a structure reduces the strength of the structure and makes the structure prone to cracking due to fatigue that can result from cyclic loading and stress concentrations. One area that has already been identified to require a wireless alternative to electrical feedthroughs is the container of the Mars Sample Return Mission, which will need wireless sensors to sense a pressure leak and to avoid potential contamination. The idea of using elastic or acoustic waves to transfer power was suggested recently by [Y. Hu, et al., July 2003]. This system allows for the avoidance of cabling or wiring. The technology is applicable to the transfer of power for actuation, sensing and other tasks inside any sealed container or vacuum/pressure vessel. An alternative approach to the modeling presented previously [Sherrit et a., 2005] used network analysis to solve the same problem in a clear and expandable manner. Experimental tests on three different designs of these devices were performed. The three designs used different methods of coupling the piezoelectric element to the wall. In the first test the piezoelectric material was bolted using a backing structure. In the second test the piezoelectric was clamped after the application of grease and finally the piezoelectric element was attached using a conductive epoxy. The mechanical clamp with grease produced the highest measured efficiency of 53% however this design was the least practical from a fabrication viewpoint. The power transfer efficiency of conductive epoxy

  4. Studies of acoustic-electric feed-throughs for power transmission through structures

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Doty, Benjamin; Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph; Aldrich, Jack; Chang, Zensheu

    2006-01-01

    There are numerous engineering design problems where the use of wires to transfer power and communicate data thru the walls of a structure is prohibitive or significantly difficult that it may require a complex design. Using physical feedthroughs in such systems may make them susceptible to leakage of chemicals or gasses, loss of pressure or vacuum, as well as difficulties in providing adequate thermal or electrical insulation. Moreover, feeding wires thru a wall of a structure reduces the strength of the structure and makes the structure prone to cracking due to fatigue that can result from cyclic loading and stress concentrations. One area that has already been identified to require a wireless alternative to electrical feedthroughs is the container of the Mars Sample Return Mission, which will need wireless sensors to sense a pressure leak and to avoid potential contamination. The idea of using elastic or acoustic waves to transfer power was suggested recently by [Y. Hu, et al., July 2003]. This system allows for the avoidance of cabling or wiring. The technology is applicable to the transfer of power for actuation, sensing and other tasks inside any sealed container or vacuum/pressure vessel. An alternative approach to the modeling presented previously [Sherrit et a., 2005] used network analysis to solve the same problem in a clear and expandable manner. Experimental tests on three different designs of these devices were performed. The three designs used different methods of coupling the piezoelectric element to the wall. In the first test the piezoelectric material was bolted using a backing structure. In the second test the piezoelectric was clamped after the application of grease and finally the piezoelectric element was attached using a conductive epoxy. The mechanical clamp with grease produced the highest measured efficiency of 53% however this design was the least practical from a fabrication viewpoint. The power transfer efficiency of conductive epoxy

  5. Energy landscapes: Coal canals, oil pipelines, and electricity transmission wires in the mid-Atlantic, 1820--1930

    NASA Astrophysics Data System (ADS)

    Jones, Christopher F.

    2009-12-01

    Coal canals, oil pipelines, and electricity transmission wires transformed the built environment of the American mid-Atlantic region between 1820 and 1930. By transporting coal, oil, and electrons cheaply, reliably, and in great quantities, these technologies reshaped the energy choices available to mid-Atlantic residents. In particular, canals, pipelines, and wires created new energy landscapes: systems of transport infrastructure that enabled the ever-increasing consumption of fossil fuels. Energy Landscapes integrates history of technology, environmental history, and business history to provide new perspectives on how Americans began to use fossil fuels and the social implications of these practices. First, I argue that the development of transport infrastructure played critical, and underappreciated, roles in shaping social energy choices. Rather than simply responding passively to the needs of producers and consumers, canals, pipelines, and wires structured how, when, where, and in what quantities energy was used. Second, I analyze the ways fossil fuel consumption transformed the society, economy, and environment of the mid-Atlantic. I link the consumption of coal, oil, and electricity to the development of an urban and industrialized region, the transition from an organic to a mineral economy, and the creation of a society dependent on fossil fuel energy.

  6. Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy.

    PubMed

    Müller-Caspary, Knut; Krause, Florian F; Grieb, Tim; Löffler, Stefan; Schowalter, Marco; Béché, Armand; Galioit, Vincent; Marquardt, Dennis; Zweck, Josef; Schattschneider, Peter; Verbeeck, Johan; Rosenauer, Andreas

    2016-05-12

    This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10×10 available pixels.

  7. Treatment of biodiversity issues in impact assessment of electricity power transmission lines: A Finnish case review

    SciTech Connect

    Soederman, Tarja . E-mail: tarja.soderman@ymparisto.fi

    2006-05-15

    The Environmental Impact Assessment (EIA) process concerning the route of a 400 kV power transmission line between Loviisa and Hikiae in southern Finland was reviewed in order to assess how biodiversity issues are treated and to provide suggestions on how to improve the effectiveness of treatment of biodiversity issues in impact assessment of linear development projects. The review covered the whole assessment process, including interviews of stakeholders, participation in the interest group meetings and review of all documents from the project. The baseline studies and assessment of direct impacts in the case study were detailed but the documentation, both the assessment programme and the assessment report, only gave a partial picture of the assessment process. All existing information, baseline survey and assessment methods should be addressed in the scoping phase in order to promote interaction between all stakeholders. In contrast to the assessment of the direct effects, which first emphasized impacts on the nationally important and protected flying squirrel but later expanded to deal with the assessment of impacts on ecologically important sites, the indirect and cumulative impacts of the power line were poorly addressed. The public was given the opportunity to become involved in the EIA process. However, they were more concerned with impacts on their properties and less so on biodiversity and species protection issues. This suggests that the public needs to become more informed about locally important features of biodiversity.

  8. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-62) - Rocky Reach - Maple Valley

    SciTech Connect

    Martin, Mark A.

    2002-04-16

    Vegetation Management along the Rocky Reach – Maple Valley No. 1 Transmission Line ROW from structure 98/2 to structure 110/1. The transmission line is a 500 kV line. BPA proposes to clear targeted vegetation along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation management along existing access road and around structure landings for the purpose of maintaining access to structures site. All work will be in accordance with the National Electrical Safety Code and BPA standards.

  9. Development of a bidirectional transcutaneous optical data transmission system for artificial hearts allowing long-distance data communication with low electric power consumption.

    PubMed

    Okamoto, Eiji; Yamamoto, Yoshiro; Inoue, Yusuke; Makino, Tsutomu; Mitamura, Yoshinori

    2005-01-01

    We have developed a wavelength division bidirectional transcutaneous optical data transmission system using amplitude shift keying (ASK) modulation. The bidirectional optical data transmission system consists of two kinds of light emitting diodes (LEDs) having different wavelengths and an ASK modulator and demodulator. Two narrow directional visible LEDs with a peak output wavelength of 590 nm were used to transmit data from inside the body to outside the body, and a narrow directional near-infrared LED with a peak output wavelength of 940 nm was used for transmission from outside the body to inside the body. The ASK modulator employs a carrier pulse signal (50 kHz) to support a maximum data transmission rate of 9600 bps. An in vitro experiment showed that the maximum tissue thickness of near-infrared optical data transmission without error was 45 mm; the figure was 20 mm for visible optical data transmission. There was no interference between the signals under full-duplex data transmission. Electric power consumption for the data transmission links was 122 mW for near-infrared light and 162 mW (81 mW x 2) for visible light. From the above results, a bidirectional transcutaneous optical data transmission system promises adequate performance for monitoring and control of an artificial heart.

  10. Self-stabilizing floating tower

    SciTech Connect

    Mougin, G.L.

    1980-12-30

    An offshore floating tower comprises two coaxial cylindrical enclosures interconnected by continuous radial bulkheads forming in the upper portion a ring of damping chambers and in the lower portion a ring of buoyancy tanksaround a bell-shaped chamber which is partially filled with air to produce pneumatic damping of vertical movement of the tower. The upper portion of the tower is separated from the lower portion by a horizontal slab. The upper portion of the internal enclosure is perforated in the vicinity of the horizontal slab.

  11. LDSD on the Launch Tower

    NASA Image and Video Library

    2015-06-05

    NASA's Low-Density Supersonic Decelerator (LDSD) hangs from a launch tower at U.S. Navy's Pacific Missile Range Facility in Kauai, Hawaii. The saucer-shaped vehicle will test two devices for landing heavy payloads on Mars: an inflatable donut-shaped device and a supersonic parachute. The launch tower helps link the vehicle to a balloon; once the balloon floats up, the vehicle is released from the tower and the balloon carries it to high altitudes. The vehicle's rocket takes it to even higher altitudes, to the top of the stratosphere, where the supersonic test begins. http://photojournal.jpl.nasa.gov/catalog/PIA19343

  12. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no

  13. PBF Cooling Tower. Hot deck of Cooling Tower with fan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Hot deck of Cooling Tower with fan motors in place. Fan's propeller blades (not in view) rotate within lower portion of vents. Inlet pipe is a left of view. Contractor's construction buildings in view to right. Photographer: Larry Page. Date: June 30, 1969. INEEL negative no. 69-3781 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. You're a What?: Tower Technician

    ERIC Educational Resources Information Center

    Vilorio, Dennis

    2012-01-01

    In this article, the author talks about the role and functions of a tower technician. A tower technician climbs up the face of telecommunications towers to remove, install, test, maintain, and repair a variety of equipment--from antennas to light bulbs. Tower technicians also build shelters and radiofrequency shields for electronic equipment, lay…

  15. Leukaemia and residence near electricity transmission equipment: a case-control study.

    PubMed Central

    Coleman, M. P.; Bell, C. M.; Taylor, H. L.; Primic-Zakelj, M.

    1989-01-01

    A population-based case-control study of leukaemia and residential proximity to electricity supply equipment has been carried out in south-east England. A total of 771 leukaemias was studied, matched for age, sex, year of diagnosis and district of residence to 1,432 controls registered with a solid tumour excluding lymphoma; 231 general population controls aged 18 and over from one part of the study area were also used. The potential for residential exposure to power frequency magnetic fields from power-lines and transformer substations was assessed indirectly from the distance, type and loading of the equipment near each subject's residence. Only 0.6% of subjects lived within 100 m of an overhead power-line, and the risk of leukaemia relative to cancer controls for residence within 100 m was 1.45 (95% confidence interval (CI) 0.54-3.88); within 50 m the relative risk was 2.0 but with a wider confidence interval (95% CI 0.4-9.0). Over 40% of subjects lived within 100 m of a substation, for which the relative risk of leukaemia was 0.99. Residence within 25 m carried a risk of 1.3 (95% CI 0.8-2.0). Weighted exposure indices incorporating measures of the current load carried by the substations did not materially alter these risks estimates. For persons aged less than 18 the relative risk of leukaemia from residence within 50 m of a substation was higher than in adults (PR = 1.5, 95% CI 0.7-3.4). PMID:2486298

  16. Environmental tests of the flight GLAST LAT tracker towers

    NASA Astrophysics Data System (ADS)

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G. A.; Cecchi, C.; Cohen-Tanugi, J.; de Angelis, A.; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.; Hirayama, M.; Johnson, R. P.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kroeger, W.; Ku, J.; Kuss, M.; Latronico, L.; Longo, F.; Loparco, F.; Lubrano, P.; Marangelli, B.; Marcucci, F.; Marchetti, M.; Massai, M. M.; Mazziotta, M. N.; Minori, M.; Minuti, M.; Mirizzi, N.; Mongelli, M.; Monte, C.; Morselli, A.; Nelson, D.; Nordby, M.; Omodei, N.; Pepe, M.; Pesce-Rollins, M.; Rainò, S.; Rando, R.; Razzano, M.; Rich, D.; Scolieri, G.; Sgrò, C.; Spandre, G.; Spinelli, P.; Sugizaki, M.; Takahashi, H.; Tenze, A.; Young, C.

    2008-01-01

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  17. Solar Two: A successful power tower demonstration project

    SciTech Connect

    REILLY,HUGH E.; PACHECO,JAMES E.

    2000-03-02

    Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

  18. Environmental Tests of the Flight GLAST LAT Tracker Towers

    SciTech Connect

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; Angelis, A.De; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.

    2008-03-12

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  19. Ozonation of cooling tower waters

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.; Howe, R. D. (Inventor)

    1979-01-01

    Continuous ozone injection into water circulating between a cooling tower and heat exchanger with heavy scale deposits inhibits formation of further deposits, promotes flaking of existing deposits, inhibits chemical corrosion and controls algae and bacteria.

  20. The Physics of Shot Towers

    ERIC Educational Resources Information Center

    Lipscombe, Trevor C.; Mungan, Carl E.

    2012-01-01

    In the late 18th and throughout the 19th century, lead shot for muskets was prepared by use of a shot tower. Molten lead was poured from the top of a tower and, during its fall, the drops became spherical under the action of surface tension. In this article, we ask and answer the question: "How does the size of the lead shot depend on the height…

  1. The Physics of Shot Towers

    ERIC Educational Resources Information Center

    Lipscombe, Trevor C.; Mungan, Carl E.

    2012-01-01

    In the late 18th and throughout the 19th century, lead shot for muskets was prepared by use of a shot tower. Molten lead was poured from the top of a tower and, during its fall, the drops became spherical under the action of surface tension. In this article, we ask and answer the question: "How does the size of the lead shot depend on the height…

  2. Solar Power Tower Design Basis Document, Revision 0

    SciTech Connect

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  3. Tower Temperature and Humidity Sensors (TWR) Handbook

    SciTech Connect

    Cook, DR

    2010-02-01

    Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

  4. SWECS tower dynamics analysis methods and results

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Sexton, J. H.; Butterfield, C. P.; Thresher, R. M.

    1981-01-01

    Several different tower dynamics analysis methods and computer codes were used to determine the natural frequencies and mode shapes of both guyed and freestanding wind turbine towers. These analysis methods are described and the results for two types of towers, a guyed tower and a freestanding tower, are shown. The advantages and disadvantages in the use of and the accuracy of each method are also described.

  5. A novel approach to smart grid technology for electrical power transmission lines by a self-organized optical network node based on optical bistability

    NASA Astrophysics Data System (ADS)

    Nakanishi, Soichiro; Sasaki, Wakao

    2011-01-01

    In this work, we have demonstrated a new smart grid model by our novel green photonics technology based on selforganized optical networks realizing an autonomous peer-to-peer electric power transmissions without centralized control for the power grid. In this optical network, we introduced an adaptive algorithm for concurrent peer-to-peer communications, by utilizing optical nonlinearity depending only on the signal strength passing through the network. This method is applicable for autonomous organization of functions for ad-hoc electric power distribution systems for the power grid. For this purpose, a simple optical- electrical hybrid bistable circuit composed of such as light emitting diode (LED) and photo diode (PD), has been incorporated into the network node. In the experiment, the method uses a simple, local adaptation of transmission weights at each network node, which enables self-organizing functions of the network, such as self-routing, self-optimization, self-recovery and self-protection. Based on this method, we have demonstrated experimentally a new smart grid model applicable for ad-hoc electric power distribution systems mediated by power comsumptions. In this model, electric power flow is controlled autonomously through the self-organized network nodes associated with individual power facilities having photovoltaics and electric storage devices, etc., and the nodes convert the amounts of electric power supply and/or comsumption to the light intensity values using above mentioned transmission weights at each node. As a consequence, we have experimentally demonstrated a simple shorthaul system model for ad-hoc electric power distribution with a self-organized optical network as a novel green photonics technology application for smart grid.

  6. Novel solar tower structure to lower plant cost and construction risk

    NASA Astrophysics Data System (ADS)

    Peterseim, J. H.; White, S.; Hellwig, U.

    2016-05-01

    In recent times the interest in solar tower power plants is increasing with various plants being built in the last years and currently under construction, e.g. Ivanpah and Crescent Dunes in the US and Khi Solar One in South Africa. The higher cycle efficiency leads to lower levelised cost of electricity. However, further cost reductions are required and this paper compares a novel and patented solar tower structure with a conventional concrete tower. The novel solar tower design is cable-stayed which has the benefit that the cables absorb a large part of the wind and buckling loads. A tower that has to cope with fewer wind and buckling forces can have a significantly smaller diameter than a concrete tower, which enables workshop manufacture, sea and road transport, and rapid on-site installation. The case study provided in this paper finds that the tower area affected by wind can be reduced by up to 45%, installation time shortened by up to 66%, and tower cost by 20-40%. The novel design allows the construction and transport of the solar tower in few large modules, which are pre-manufactured including piping, cables, platform, ladders etc. The few modules can be assembled and installed rapidly not only lowering plant cost and construction time but also project risk.

  7. Development of solar tower observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    Because the horizontal solar telescope, the Snow Telescope in Yerkes Observatory, was affected by air-currents from the warmed-up soil, George Ellery Hale had the idea of a tower telescope. In 1904, the 60-foot tower in Mt. Wilson was ready, in 1908 the 150-foot tower was built with the help of the Carnegie foundation. After World War I, Germany made heavy efforts to regain its former strong position in the field of science. Already in December 1919 - after the spectacular result of the English eclipse expedition in October 1919 - Erwin Finlay-Freundlich started a successful fund raising (“Einstein-Stiftungrdquo;) among German industrialists. The company Zeiss in Jena was responsible for the instrumentation of the 20-m solar tower, built in 1920-22. The optical design of the Einstein Tower in respect to light intensity surpassed even the Mt. Wilson solar observatory. Also abroad solar tower observatories were built in the 1920s: Utrecht,The Netherlands (1922), Canberra, Australia (1924), Arcetri, Italy (1926), Pasadena, California (1926) and Tokyo, Japan (1928). In the thirties, solar physics became important because of the solar maximum in 1938 and the new observational possibilities created by Bernard Lyot. At the end of the 1930s, Karl-Otto Kiepenheuer proposed to establish a solar tower observatory on Wendelstein in order to improve the predictions of radio interference by observing sunspots. By stressing the importance of the solar research for war efforts, Otto Heckmann of Göttingen observatory finally succeeded in winning the “Reichsluftfahrtministerium” to finance several solar observatories, like Wendelstein, Hainberg/Göttingen, Kanzelhöhe/Villach, and Schauinsland/Freiburg. Solar astronomy profited by the foundation of the new observatories - four of them existed still after the war. Abroad only the solar observatories of Oxford (1935) and the 50 foot tower of the McMath-Hulbert Observatory, University of Michigan (1936) should be mentioned. Only

  8. Electricity

    SciTech Connect

    Sims, B.

    1983-01-01

    Historical aspects of electricity are reviewed with individual articles on hydroelectric dams, coal-burning power plants, nuclear power plants, electricity distribution, and the energy future. A glossary is included. (PSB)

  9. Packed tower program eases calculations for diameter, hydraulics of towers

    SciTech Connect

    Petrarca, C.A.

    1986-04-14

    A packed tower program will calculate the diameter and hydraulics of a packed tower, or check the hydraulics of an existing tower for other process conditions. It is written in simple BASIC for an IBM PC and could easily be converted to other PC's. There are approximately 100 statement lines, with memory requirement of approximately 4,100 bytes. The program is presented as an aid, or tool, to reduce tedious calculations in design or revision work. Much has already been written on the specifics of design methods and calculation procedures for packed towers. This article will cover only the program's procedure and calculation method, input requirements, output data, and features. The program first transforms the raw data into consistent units. Gas flow rate in pounds per hour is calculated from the input of standard cubic feet per minute and specific gravity, or moles per hour and molecular weight. Liquid flow rate in pounds per hour is calculated from the gallons per minute and specific gravity input. Using the temperature, pressure, compressibility, and molecular weight inputs, the gas density in pounds per cubic foot is calculated from the ideal gas law equation. Liquid density is calculated directly from the specific gravity. With this data, the program then calculates the ''x'' ordinate of the generalized flooding correlation for packed towers. Using regressed design curves of X vs. Y, which somewhat parallel the flooding curve, the program calculates the Y abscissa function which relates liquid and gas densities, gas mass velocity, packing factor, gravitational constant, and liquid viscosity.

  10. Transmission electron microscopy characterization of electrically stressed AlGaN/GaN high electron mobility transistor devices

    SciTech Connect

    Johnson, Michael; Cullen, David A; Liu, Lu; Kang, Tsung Sheng; Ren, F.; Chang, C. Y.; Pearton, S. J.; Jang, Soohwan; Johnson, Wayne J.; Smith, David J

    2012-01-01

    A set of AlGaN/GaN high electron mobility transistor devices has been investigated using step-stress testing, and representative samples of undegraded, source-side-degraded, and drain-side-degraded devices were examined using electron microscopy and microanalysis. An unstressed reference sample was also examined. All tested devices and their corresponding transmission electron microscopy samples originated from the same wafer and thus received nominally identical processing. Step-stressing was performed on each device and the corresponding current voltage characteristics were generated. Degradation in electrical performance, specifically greatly increased gate leakage current, was shown to be correlated with the presence of crystal defects near the gate edges. However, the drain-side-degraded device showed a surface pit on the source side, and another region of the same device showed no evidence of damage. Moreover, significant metal diffusion into the barrier layer from the gate contacts was also observed, as well as thin amorphous oxide layers below the gate metal contacts, even in the unstressed sample. Overall, these observations emphasize that gate-edge defects provide only a partial explanation for device failure.

  11. Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat.

    PubMed

    Fiorino, D F; Coury, A; Fibiger, H C; Phillips, A G

    1993-06-30

    In vivo microdialysis with HPLC-ED was used to measure dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the nucleus accumbens of the rat, prior, during, and after 15-min periods of electrical brain stimulation at sites in the ventral tegmental area (VTA) that supported intracranial self-stimulation (ICSS). In the first experiment, both ICSS and yoked stimulation of the VTA evoked significant increases in extracellular concentrations of DA, its metabolites, and 5-HIAA. Comparable results from ICSS and yoked groups were interpreted as evidence that the rewarding properties of VTA stimulation were a causal factor in the elevated DA transmission in the nucleus accumbens, rather than intense operant behavior. Further evidence for this hypothesis came from a second set of data in which changes in extracellular DA levels during the measurement of rate/intensity functions for ICSS were positively correlated. 5-HIAA concentrations also increased during ICSS but these changes were not correlated with either ICSS rate or current intensity, suggesting that changes in serotonin metabolism were unlikely to subserve brain stimulation reward in the VTA. These results add to the growing body of evidence linking changes in extracellular DA in the mesolimbic DA system with both brain stimulation reward and the conditioned and unconditioned rewarding effects of biologically relevant stimuli.

  12. Downhole transmission system

    DOEpatents

    Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT

    2008-01-15

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.

  13. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-20)

    SciTech Connect

    Hutchinson, Ken

    2001-08-02

    Vegetation Management along the McNary-Ross 161/1 to 166/5+346 Transmission Line ROW. The line is a 345kV Single Circuit Transmission Line having an easement width of 175 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor. BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. Also, access road clearing will be conducted. All work will be in accordance with the National Electrical Safety Code and BPA standards. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA’s overall goal is to have low-growing plant communities along the rights-of-way to control the development of potentially threatening vegetation.

  14. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-21)

    SciTech Connect

    Rosales, Michael A.

    2001-08-07

    Vegetation Management along the Noxon-Hot Springs/Taft-Hot Springs 56/3 to 66/7+600 Transmission Line ROW. The line is a 230kV and 500KV Double Circuit Transmission Line having an easement width of 250 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor. BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. All work will be in accordance with the National Electrical Safety Code and BPA standards. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA’s overall goal is to have low-growing plant communities along the rights-of-way to control the development of potentially threatening vegetation.

  15. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-100)

    SciTech Connect

    Rosales, Michael A.

    2002-08-15

    Vegetation Management along the Libby-Conkelly, 1/2 to 26/4 Transmission Line ROW. The line is a 230kV Double Circuit Transmission Line having an easement width of 125 feet to 250 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor. BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. All work will be in accordance with the National Electrical Safety Code and BPA standards. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA’s overall goal is to have low-growing plant communities along the rights-of-way to control the development of potentially threatening vegetation.

  16. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-57)

    SciTech Connect

    Stratton, Elaine

    2002-04-10

    Vegetation Management along the Trojan-Allston Transmission Lines 1 & 2 ROW between 1/1 and 9/1. The lines are 230 kV Single Circuit Transmission Lines having an easement width of 125 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor. BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. All work will be in accordance with the National Electrical Safety Code and BPA standards. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA’s overall goal is to have low-growing plant communities along the rights-of-way to control the development of potentially threatening vegetation.

  17. A molten salt tower model used for site selection in South Africa using SAURAN meteorological data

    NASA Astrophysics Data System (ADS)

    Poole, Ian Vincent; Dinter, Frank

    2017-06-01

    South Africa has become a hotspot for concentrating solar power (CSP) development in recent years. With an abundance of solar resource and an existing governmental framework for renewable energy development, the country has captured the attention of CSP developers worldwide. The primary limitations for CSP plants in South Africa are electrical transmission and water availability. While taking into account such infrastructure limitations, six sites were proposed. A purpose-built simulation model for a proposed 100 MWe (gross) tower plant with 12 hours of storage was developed. Using site South African Universities Radiometric Network (SAURAN) meteorological data with a resolution of up to 1 minute, each of the sites was evaluated in terms of electrical yield using the model. The investigation found that the site situated in Springbok will generate 450.8 GWhe per annum, and is the most advantageous site for the modeled plant. The most promising alternative site is situated in near Laingsburg in the Western Province. This site offered 413.7 GWhe per annum, and it is close to available transmission and surface water.

  18. Common misconceptions about cooling towers

    SciTech Connect

    Willa, J.L.; Campbell, J.C.

    1983-12-01

    This article discusses the design and performance of the water cooling tower. In many cases the numbers presented in a cooling tower inquiry for thermal performance design represent a more stringent condition than that found in the operation of the unit. A common misconception is to take the service factor or safety factor in the cold water temperature or the wet bulb temperature. Service factors are used in the preparation of specifications for most industrial equipment. Standards specify a minimum service factor of 2.0 for cooling tower right angle spiral bevel gears. Closing the approach (cold water temperature minus wet bulb temperature) does not vary linearly with increasing difficulty of duty for the cooling tower, and consequently does not represent a straight-line increase in size or cost. A decrease in the specified approach is equivalent to a decrease in the driving force available for the transfer of mass and heat from the water to the air stream. A decrease in approach from 20 to 19/sup 0/F would result in an increase in cost of about 5%, while a decrease from 5 to 4/sup 0/F would require about 20% more cooling tower.

  19. Control of Carbon Nanotube Density and Tower Height in an Array

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    A method for controlling density or tower height of carbon nanotube (CNT) arrays grown in spaced apart first and second regions on a substrate. CNTs having a first density range (or first tower height range) are grown in the first region using a first source temperature range for growth. Subsequently or simultaneously, CNTs having a second density range (or second tower height range), having an average density (or average tower height) in the second region different from the average density (or average tower height) for the first region, are grown in the second region, using supplemental localized hearing for the second region. Application for thermal dissipation and/or dissipation of electrical charge or voltage in an electronic device are discussed.

  20. El Paso Electric Company Diablo Substation to the US-Mexico border 115kV transmission line project. Final Environmental Assessment

    SciTech Connect

    Not Available

    1992-04-01

    This Environmental Assessment documents the analysis of alternative corridors for development and operation of a proposed 115 kilovolt transmission line using private lands and transporting power to the US-Mexico international border. The project will require (1) an amendment to El Paso Electric Company`s existing export authorization to transfer power across this border, and (2) a Presidential Permit for construction of the transmission line. The project would be located in Dona Ana county in southern New Mexico, approximately five miles west of El Paso, Texas. The alternative corridors, specific locations within those corridors, and structure types are identified and analyzed in the environmental studies.

  1. Transmission of Stormtime Electric Field and Currents to the Mid-Equatorial Latitude Ionosphere in the Magnetosphere-Ionosphere-Ground Circuit

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Hashimoto, K. K.; Ebihara, Y.; Nishimura, Y.; Tomizawa, I.; Nishitani, N.; Nagatsuma, T.

    2014-12-01

    Three kinds of dynamos are activated in the magnetosphere during geomagnetic storms, which supply the electric field and currents to the mid-equatorial ionosphere. At the onset of the storm, the solar wind shock activates the dynamo of the dawn-to-dusk electric field and Region-1 field-aligned currents for several to ten min, which transmit to the equatorial ionosphere and intensify the equatorial electrojet (EEJ). During the storm main phase, the southward interplanetary magnetic field (IMF) activates the dynamo of the dawn-to-dusk electric field and the R1 FACs for several hours, which develop the ring current and intensify the EEJ. During the storm recovery phase, on the other hand, the electric field and currents reverse their direction, prohibit the ring current from developing and cause the counterelectrojet in the equatorial ionosphere (CEJ). The CEJs are often observed even during the storm main phase under the relatively constant southward IMF. The long-lasting CEJs are superimposed by large amplitude impulsive/irregular CEJs. We have detected the stormtime electric fields in midlatitude with the SuperDARN radar and HF Doppler sounder in Japan during the stormtime CEJs. The long-lasting CEJs should be caused by the thermospheric wind dynamo (disturbance dynamo), but the impulsive/irregular CEJs are found to be caused by substorms as well as by convection reductions. The transmission of the electric field and currents from the magnetospheric dynamos to the mid-equatorial latitude ionosphere is explained by means of the magnetosphere-ionosphere-ground (MIG) transmission line developed by Kikuchi [JGR 2014]. The Poynting flux is transmitted to the polar ionosphere by the Alfven waves in the magnetosphere-ionosphere (MI) transmission line and by the TM0 (TEM) mode waves to the mid-equatorial ionosphere in the Earth-ionosphere waveguide (ionosphere-ground (IG) transmission line). A fraction of the Poynting flux in the IG transmission line leaks into the

  2. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-60) - Rocky Reach - Maple Valley No. 1

    SciTech Connect

    Martin, Mark A.

    2002-04-15

    Vegetation Management along the Rocky Reach – Maple Valley No. 1 Transmission Line ROW from structure 110/1 to the Maple Valley Substation. The transmission line is a 500 kV line. BPA proposes to clear targeted vegetation along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation management along existing access road and around structure landings for the purpose of maintaining access to structures site. All work will be in accordance with the National Electrical Safety Code and BPA standards.

  3. A method for assessing occupational exposure to power-frequency magnetic fields for electricity generation and transmission workers.

    PubMed

    Renew, D C; Cook, R F; Ball, M C

    2003-09-01

    A new method for assessing both current and historical occupational exposures to magnetic fields has been developed and used in health studies involving a cohort of electricity generation and transmission workers in England and Wales. The exposure values are derived by calculation from engineering and operational data about the power stations rather than from measurements. They are provided for each of 11 job categories for each year of operation of each power station represented in the cohort. The engineering data are used to determine the average magnetic fields in specified areas of work within the power station and then applied to information about the time spent in these areas by each of the job categories. The operational data are used to adjust the exposures for each year according to the power station output for the year. Earlier methods used measurements or the advice of panels of experts to provide exposure scores for a number of job categories across all power stations and years. Such methods were not able to distinguish exposures from different power facilities or during the different years of their operation. Measurement surveys at 10 power stations of the magnetic fields in the work areas gave confidence that the calculations were realistic. Exposure measurements on 215 workers at three power stations were compared in job groups with the exposures predicted by the method. The Pearson correlation coefficient was 0.86 and the slope and intercept of the line of best fit were 0.87 and 0.07 microT respectively. The method gives a good prediction of measured exposure and is being used for studies of occupational exposure to magnetic fields and leukaemia, and of cardiovascular disease, and a reanalysis of brain cancer.

  4. Graph Theory of Tower Tasks

    PubMed Central

    Hinz, Andreas M.

    2012-01-01

    The appropriate mathematical model for the problem space of tower transformation tasks is the state graph representing positions of discs or balls and their moves. Graph theoretical quantities like distance, eccentricities or degrees of vertices and symmetries of graphs support the choice of problems, the selection of tasks and the analysis of performance of subjects whose solution paths can be projected onto the graph. The mathematical model is also at the base of a computerized test tool to administer various types of tower tasks. PMID:22207419

  5. Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method

    NASA Astrophysics Data System (ADS)

    Saïdou, Abdoulkary; Alidou, Mohamadou; Ousmanou, Dafounansou; Serge Yamigno, Doka

    2014-12-01

    We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete (G'/G)-expansion method, we solve the nonlinear differential—difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.

  6. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    SciTech Connect

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr.

    2005-11-01

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  7. Credit BG. Test Stand "D" tower as seen looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Test Stand "D" tower as seen looking northeast (See caption for CA-163-F-18). To the right of the view is the stainless steel dome top for Dv Cell (see CA-163-F-22 for view into cell), behind which rests a spherical accumulator--an electrically heated steam generator for powering the vacuum system at "C" and Test Stand "D." Part of the ejector system can be seen on the right corner of the tower, other connections include electrical ducts (thin, flat metal members) and fire protection systems. Note the stand in the foreground with lights used to indicate safety status of the stand during tests - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  8. 30 CFR 57.10006 - Tower guards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tower guards. 57.10006 Section 57.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  9. 30 CFR 57.10006 - Tower guards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tower guards. 57.10006 Section 57.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  10. 30 CFR 56.10006 - Tower guards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tower guards. 56.10006 Section 56.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  11. 30 CFR 56.10006 - Tower guards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tower guards. 56.10006 Section 56.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  12. 30 CFR 56.10006 - Tower guards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tower guards. 56.10006 Section 56.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  13. 30 CFR 57.10006 - Tower guards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tower guards. 57.10006 Section 57.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  14. 30 CFR 56.10006 - Tower guards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tower guards. 56.10006 Section 56.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  15. 30 CFR 57.10006 - Tower guards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tower guards. 57.10006 Section 57.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  16. 30 CFR 57.10006 - Tower guards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tower guards. 57.10006 Section 57.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Aerial Tramways § 57.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  17. 30 CFR 56.10006 - Tower guards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tower guards. 56.10006 Section 56.10006 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Aerial Tramways § 56.10006 Tower guards. Towers shall be suitably protected from swaying buckets....

  18. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-26) - Reedsport-Fairview #1 Transmission Line Structure 1/5 to 39/4

    SciTech Connect

    Sherer, Brett M.

    2001-09-11

    BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA’s overall goal is to have low-growing plant communities along the rights-of-way to control the development of potentially threatening vegetation. All work will be executed in accordance with the National Electrical Safety Code and BPA standards.

  19. View of first bank of circuit towers on Arizona side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of first bank of circuit towers on Arizona side of canyon. Left tower supports Circuit 12, second from left tower supports Circuit 11, middle tower supports Circuit 10, second from right tower supports Circuit 9, and right tower supports Circuit 8, view west - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  20. View of Arizona rim towers from top of power plant. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Arizona rim towers from top of power plant. Left tower supports Circuit 3, second tower from left supports Circuit 12, middle tower supports Circuit 10, second tower from right supports Circuit 9, and right tower supports Circuit 8, view southeast - Hoover Dam, Circuits 1-15, U.S. Highway 93, Boulder City, Clark County, NV

  1. Droplet combustion drop tower tests using models of the space flight apparatus

    NASA Technical Reports Server (NTRS)

    Haggard, J. B.; Brace, M. H.; Kropp, J. L.; Dryer, F. L.

    1989-01-01

    An engineering model built for droplet combustion drop tower tests is described. The model was built using a design with mechanical and electrical assemblies of the same level of complexity as they will have in flight. The model was tested for functional operation and integrated into a 5-sec drop tower. Test data obtained to date are presented together with model and test cell diagrams.

  2. Droplet combustion drop tower tests using models of the space flight apparatus

    NASA Technical Reports Server (NTRS)

    Haggard, J. B.; Brace, M. H.; Kropp, J. L.; Dryer, F. L.

    1989-01-01

    An engineering model built for droplet combustion drop tower tests is described. The model was built using a design with mechanical and electrical assemblies of the same level of complexity as they will have in flight. The model was tested for functional operation and integrated into a 5-sec drop tower. Test data obtained to date are presented together with model and test cell diagrams.

  3. Earth to space dc to dc power transmission system utilizing a microwave beam as source of energy for electric propelled interorbital vehicles

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1985-01-01

    The paper contributes to the credibility of an electric propelled interorbital transportation system by introducing a new low-mass source of continuous dc power for electric propulsion and illustrating how the source can be economically tied to an electric utility on earth by an electronically steered microwave beam. The new thin-film rectenna, which functions as the receiving end of an earth-to-space microwave power transmission system is described. It is easily fabricated, is over 80 percent efficient, has a specific mass of no more than 2 kilograms per kilowatt of continuous dc power output, and is well adapted for deployment in space. The paper then describes a complete system consisting of the interorbital vehicle and the microwave power transmission system that supplies it with power. A design scenario is used to obtain performance data from the system in terms of vehicle transfer times, payload fractions, and costs. Electric energy costs are found to be less than $1000 per kilogram of payload delivered to geosynchronous orbit from low-earth orbit.

  4. Plant Vogtle cooling tower studies

    SciTech Connect

    O'Steen, L.

    2000-01-26

    Intensive ground-based field studies of plumes from two large, natural-draft cooling towers were conducted in support of the MTI modeling effort. Panchromatic imagery, IR imagery, meteorological data, internal tower temperatures and plant power data were collected during the field studies. These data were used to evaluate plume simulations, plume radioactive transfer calculations and plume volume estimation algorithms used for power estimation. Results from six field studies indicate that a 3-D atmospheric model at sufficient spatial resolution can effectively simulate a cooling tower plume if the plume is of sufficient size and the ambient meteorology is known and steady. Small plumes and gusty wind conditions degrade the agreement between the simulated and observed plumes. Thermal radiance calculations based on the simulated plumes produced maximum IR temperatures (near tower exit) which were in good agreement with measured IR temperatures for the larger plumes. For the smaller plumes, the calculated IR temperature was lower than the measured temperature by several degrees. Variations in maximum IR plume temperature with decreasing power (one reactor was undergoing a shutdown process), were clearly observed in the IR imagery and seen in the simulations. These temperature changes agreed with those calculated from an overall tower energy and momentum balance. Plume volume estimates based on camcorder images at three look angles were typically 20--30 percent larger than the plume volumes derived from the simulations, although one estimate was twice the simulated volume. Volume overestimation is expected and will have to be accounted for to some degree if plume volume is to be a useful diagnostic quantity in power estimation. Volume estimation with MTI imagery will require a large, stable plume and two looks in the visible bands (5m GSD) along with a solar shadow.

  5. Detecting dynamic responses of materials and devices under an alternating electric potential by phase-locked transmission electron microscopy.

    PubMed

    Soma, Kentaro; Konings, Stan; Aso, Ryotaro; Kamiuchi, Naoto; Kobayashi, Genki; Yoshida, Hideto; Takeda, Seiji

    2017-10-01

    An apparatus is developed for transmission electron microscopy (TEM) to acquire image and spectral data, such as TEM images, electron holograms, and electron energy loss spectra, synchronized with the measurement of the dynamic response of a specimen under an applied alternating current (AC) electric potential (voltage, denoted VAC). From a VAC of frequency f, a shutter pulse signal is generated to open and close a pre-specimen shutter in a base TEM apparatus. A pulse is generated per VAC cycle from the targeted phase Φ to Φ +∆Φ with phase width ∆Φ (∆Φ <2π). ∆Φ corresponds to the temporal pulse width τ (τ < 1/f) of an electron beam; i.e., ∆Φ =2πfτ. Because of the high sensitivity of the TEM camera used in this study, the images and spectra that are acquired at the same target phase are integrated by means of stroboscopic illumination to obtain the final phase-locked images and spectra with sufficiently small S/N ratio. Phase-locked (strobe) images and/or spectra are obtained for model specimens of polycrystalline aluminum and an all-solid-state lithium ion battery (LIB). In the phase-locked TEM conditions, f ranges from 1Hz to about 40kHz and ∆Φ from 2π/80 to π. VAC ranges from 2mV to 1V depending on observation conditions. The quality of phase-locked strobe images can be improved markedly using a phase-locked strobe electron beam. Under specific conditions, the spatial resolution in images is better than 0.12nm, even though the spatial resolution generally depends on VAC, f, the base TEM, and the conductivity of the specimen. For the model specimens, it is shown that electrochemical impedance spectroscopy and cyclic voltammetry can be performed in a TEM apparatus, and could potentially be synchronized with phase-locked (strobe) imaging and spectroscopy. Severe electron irradiation damage is detected during phase-locked (strobe) electron holography of the model LIB. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The shape of the Eiffel Tower

    NASA Astrophysics Data System (ADS)

    Gallant, Joseph

    2002-02-01

    The distinctive shape of the Eiffel Tower is based on simple physics and is designed so that the maximum torque created by the wind is balanced by the torque due to the Tower's weight. We use this idea to generate an equation for the shape of the Tower. The solution depends only on the width of the base and the maximum wind pressure. We parametrize the wind pressure and reproduce the shape of the Tower. We also discuss some of the Tower's interesting history and characteristics.

  7. Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility.

    PubMed

    Diehl, Robert H; Valdez, Ernest W; Preston, Todd M; Wellik, Michael J; Cryan, Paul M

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light ("solar flux") in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world's largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  8. Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility

    PubMed Central

    Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Michael J.; Cryan, Paul M.

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife. PMID:27462989

  9. Evaluating the effectiveness of wildlife detection and observation technologies at a solar power tower facility

    USGS Publications Warehouse

    Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Mike J.; Cryan, Paul

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  10. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Papasin, Richard; Gawdiak, Yuri; Maluf, David A.; Leidich, Christopher; Tran, Peter B.

    2001-01-01

    Remote Tower Sensor Systems (RTSS) are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA (Federal Aviation Administration) and NOAA (National Oceanic Atmospheric Administration). RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to realtime airport conditions and aircraft status.

  11. Current conflicts in U.S. Electric transmission planning, cost allocation and renewable energy policies: More heat than light?

    SciTech Connect

    Bloom, David; Forrester, J. Paul; Klugman, Nadav

    2010-12-15

    To surmount obstacles to expanding and upgrading the nation's transmission system that are impeding development of the renewables sector, it is critical that these issues be resolved quickly and on a consistent rather than ad hoc basis. (author)

  12. Applications to determine the shortest tower BTS distance using Dijkstra algorithm

    NASA Astrophysics Data System (ADS)

    Mardana, Herwin; Maharani, Septya; Hatta, Heliza Rahmania

    2017-02-01

    Telecommunications Tower or so-called BTS (Base Transceiver System) Toweris one of the main components in the network infrastructure that has experienced an increase in the number of construction. Telecommunications tower function as a place to put the antenna signal transmitter (access network) to provide communication services to customers around the tower. In addition, other use of telecommunications tower also to place the transmission signal antenna (transport network using microwave technology) for connecting customers with a central area. Therefore, in needed of a decision support system that can provide recommendations planting route of fiber optic cable with the shortest distance in purpose the use of fiber optic cable becoming more efficient. The results of the research were the shortest rule information, showing the distance to be travelled and the map view to enabling users to look at these.

  13. Reusable Material for Drop Tower

    DTIC Science & Technology

    2011-08-01

    UNCLASSIFIED: Distribution A. Approved for public release. REUSABLE MATERIAL FOR DROP TOWER A thesis written at TANK AUTOMOTIVE RESEARCH AND...ABSTRACT This thesis represents the capstone of my five years combined academic work at Kettering University and job experience at Tank Automotive ...NUMBER OF PAGES 57 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form

  14. Ozone Treatment For Cooling Towers

    NASA Technical Reports Server (NTRS)

    Blackwelder, Rick; Baldwin, Leroy V.; Feeney, Ellen S.

    1990-01-01

    Report presents results of study of cooling tower in which water treated with ozone instead of usual chemical agents. Bacteria and scale reduced without pollution and at low cost. Operating and maintenance costs with treatment about 30 percent of those of treatment by other chemicals. Corrosion rates no greater than with other chemicals. Advantage of ozone, even though poisonous, quickly detected by smell in very low concentrations.

  15. Electricity exchange and the valuation of transnational transmission access: A case study of intra-regional integration of the electric industries of Argentina and Chile

    NASA Astrophysics Data System (ADS)

    Brereton, Beverly Ann

    The interconnection of neighboring electricity networks provides opportunities for the realization of synergies between electricity systems. Examples of the synergies to be realized are the rationalized management of the electricity networks whose fuel source domination differs, and the exploitation of non-coincident system peak demands. These factors allow technology diversity in the satisfaction of electricity demand, the coordination of planning and maintenance schedules between the networks by exploiting the cost differences in the pool of generation assets and the load configuration differences in the neighboring locations. The interconnection decision studied in this dissertation focused on the electricity networks of Argentina and Chile whose electricity systems operate in isolation at the current time. The cooperative game-theoretic framework was applied in the analysis of the decision facing the two countries and the net surplus to be derived from interconnection was evaluated. Measurement of the net gains from interconnection used in this study were reflected in changes in generating costs under the assumption that demand is fixed under all scenarios. With the demand for electricity assumed perfectly inelastic, passive or aggressive bidding strategies were considered under the scenarios for the generators in the two countries. The interconnection decision was modeled using a linear power flow model which utilizes linear programming techniques to reflect dispatch procedures based on generation bids. Results of the study indicate that the current interconnection project between Argentina and Chile will not result in positive net surplus under a variety of scenarios. Only under significantly reduced interconnection cost will the venture prove attractive. Possible sharing mechanisms were also explored in the research and a symmetric distribution of the net surplus to be derived under the reduced interconnection cost scenario was recommended to preserve equity

  16. Cellular automaton for bacterial towers

    NASA Astrophysics Data System (ADS)

    Indekeu, J. O.; Giuraniuc, C. V.

    2004-05-01

    A simulation approach to the stochastic growth of bacterial towers is presented, in which a non-uniform and finite nutrient supply essentially determines the emerging structure through elementary chemotaxis. The method is based on cellular automata and we use simple, microscopic, local rules for bacterial division in nutrient-rich surroundings. Stochastic nutrient diffusion, while not crucial to the dynamics of the total population, is influential in determining the porosity of the bacterial tower and the roughness of its surface. As the bacteria run out of food, we observe an exponentially rapid saturation to a carrying capacity distribution, similar in many respects to that found in a recently proposed phenomenological hierarchical population model, which uses heuristic parameters and macroscopic rules. Complementary to that phenomenological model, the simulation aims at giving more microscopic insight into the possible mechanisms for one of the recently much studied bacterial morphotypes, known as “towering biofilm”, observed experimentally using confocal laser microscopy. A simulation suggesting a mechanism for biofilm resistance to antibiotics is also shown.

  17. Self-assembled granular towers

    NASA Astrophysics Data System (ADS)

    Pacheco-Vazquez, Felipe; Moreau, Florian; Vandewalle, Nicolas; Dorbolo, Stephan; GroupResearch; Applications in Statistical Physics Team

    2013-03-01

    When some water is added to sand, cohesion among the grains is induced. In fact, only 1% of liquid volume respect to the total pore space of the sand is necessary to built impressive sandcastles. Inspired on this experience, the mechanical properties of wet piles and sand columns have been widely studied during the last years. However, most of these studies only consider wet materials with less than 35% of liquid volume. Here we report the spontaneous formation of granular towers produced when dry sand is poured on a highly wet sand bed: The impacting grains stick on the wet grains due to instantaneous liquid bridges created during the impact. The grains become wet by the capillary ascension of water and the process continues, giving rise to stable narrow sand towers. Actually, the towers can reach the maximum theoretical limit of stability predicted by previous models, only expected for low liquid volumes. The authors would like to thank FNRS and Conacyt Mexico for financial support. FPV is a beneficiary of a movility grant from BELSPO/Marie Curie and the University of Liege.

  18. Use of Electrical Penetration Graph Technology to Examine Transmission of ‘Candidatus Liberibacter solanacearum’ to Potato by Three Haplotypes of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae)

    PubMed Central

    Mustafa, Tariq; Horton, David R.; Cooper, W. Rodney; Swisher, Kylie D.; Zack, Richard S.; Pappu, Hanu R.; Munyaneza, Joseph E.

    2015-01-01

    The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a vector of the phloem-limited bacterium ‘Candidatus Liberibacter solanacearum’ (Lso), the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG) technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern). All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato (“inoculation access period”, or IAP) to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in exploring

  19. Use of Electrical Penetration Graph Technology to Examine Transmission of 'Candidatus Liberibacter solanacearum' to Potato by Three Haplotypes of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae).

    PubMed

    Mustafa, Tariq; Horton, David R; Cooper, W Rodney; Swisher, Kylie D; Zack, Richard S; Pappu, Hanu R; Munyaneza, Joseph E

    2015-01-01

    The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a vector of the phloem-limited bacterium 'Candidatus Liberibacter solanacearum' (Lso), the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG) technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern). All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato ("inoculation access period", or IAP) to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in exploring questions

  20. 2004 Savannah River Cooling Tower Collection (U)

    SciTech Connect

    Garrett, Alfred; Parker, Matthew J.; Villa-Aleman, E.

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  1. Preliminary study on the applicability of semi-geodesic winding in the design and manufacturing of composite towers

    NASA Astrophysics Data System (ADS)

    Kayran, A.; İbrahimoǧlu, C. S.

    2014-12-01

    During last twenty years, wind turbine manufacturers took the path of building larger machines to generate more electricity. However, the bigger the size became, the more material was required to support the loads, leading to great weight increases. Larger turbines and higher hub heights also resulted in larger tower base diameters which are limited considering their logistics. In many countries, the limit for transports with special permits maximizes the diameter to 4.5 metres. Considering this fact, the wind turbine market dominated by welded steel shell towers is looking for new structural solutions for their future turbines. Although, composite materials are not used as the structural material in the towers of today's turbines, the demand for larger wind turbines forces engineers to seek for alternative material systems with high specific strength and stiffness ratios to be used in towers. Inspired by the applicability of filament winding in tower production, in the present article we investigated the effect of semi-geodesic winding on the winding angle, thickness, stiffness coefficients and vibration characteristics of filament wound composite conical shells of revolution which simulate wind turbine towers at the structural level. Present study showed that the preset friction applied during semi-geodesic winding is an important design parameter which can be controlled to obtain gradually increasing thickness from tower top to the base of the tower, and favourably alter the dynamic characteristics of the composite towers.

  2. Great Plains Wind Energy Transmission Development Project

    SciTech Connect

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the

  3. Comment on "Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line" [Phys. Lett. A 373 (2009) 3801-3809

    NASA Astrophysics Data System (ADS)

    Yamgoué, Serge Bruno; Pelap, François Beceau

    2016-05-01

    We revisit the derivation of the equation modeling envelope waves in a discrete nonlinear electrical transmission line (NLTL) considered a few years back in Physics Letters A 373 (2009) 3801-3809. Using a combination of rotating wave approximation and the Gardner-Morikawa transformation, we show that the modulated waves are described by a new type of extended nonlinear Schrödinger equation. In addition the expressions of several coefficients of this equation are found to be strongly different from those given earlier. As a consequence, key relationships between these coefficients that sustained the previous analysis are broken.

  4. Analysis of Wind Characteristics at United States Tall Tower Measurement Sites

    NASA Astrophysics Data System (ADS)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.

    2008-12-01

    A major initiative of the U.S. Department of Energy (DOE) is to ensure that 20% of the country's electricity is produced by wind energy by the year 2030. An understanding of the boundary layer characteristics, especially at elevated heights greater than 80 meters (m) above the surface is a key factor for wind turbine design, wind plant layout, and identifying potential markets for advanced wind technology. The wind resource group at the DOE National Renewable Energy Laboratory is analyzing wind data collected at tall (80+ m) towers across the United States. The towers established by both public and private initiative, measure wind characteristics at multiple levels above the surface, with the highest measurement levels generally between 80 and 110 m. A few locations have measurements above 200 m. Measurements of wind characteristics over a wide range of heights are useful to: (1) characterize the local and regional wind climate; (2) validate wind resource estimates derived from numerical models; and (3) directly assess and analyze specific wind resource characteristics such as wind speed shear over the turbine blade swept area. The majority of the available public tall tower measurement sites are located between the Appalachian and Rocky Mountains. The towers are not evenly distributed among the states. The states with the largest number of towers include Indiana, Iowa, Missouri, and Kansas. These states have five or six towers collecting data. Other states with multiple tower locations include Texas, Oklahoma, Minnesota, and Ohio. The primary consideration when analyzing the data from the tall towers is identifying tower flow effects that not only can produce slightly misleading average wind speeds, but also significantly misleading wind speed shear values. In addition, the periods-of-record of most tall tower data are only one to two years in length. The short data collection time frame does not significantly affect the diurnal wind speed pattern though it does

  5. Study on reduction in electric field, charged voltage, ion current and ion density under HVDC transmission lines by parallel shield wires

    SciTech Connect

    Amano, Y.; Sunaga, Y.

    1989-04-01

    An important problem in the design and operation of HVDC transmission lines is to reduce electrical field effects such as ion flow electrification of objects, electric field, ion current and ion density at ground level in the vicinity of HVDC lines. Several models of shield wire were tested with the Shiobara HVDC test line. The models contain typical stranded wires that are generally used to reduce field effects at ground level, neutral conductors placed at lower parts of the DC line, and an ''earth corona model'' to cancel positive or negative ions intentionally by generating ions having opposite polarity to ions flowing into the wire. This report describes the experimental results of the effects of these shield wires and a method to predict shielding effects.

  6. Drop tower Beijing and short-time microgravity experiments

    NASA Astrophysics Data System (ADS)

    Wan, S. H.; Yin, M. G.; Guan, X. D.; Lin, H.; Xie, J. C.; Hu, Wen-Rui

    Being an important, large ground-based experiment facility for microgravity science, the drop tower of National Microgravity Lab, CAS was founded in 2003 and, since then, has been un-dertaking the experiments to meet the requirements in microgravity research. The 116 meters high drop tower is located in Zhong Guan Cun district, the scientific town of Beijing. Main components of the facility consist of the drop capsule, release mechanism and deceleration and recovery devices, and were developed with particular technical characteristics. Inner space of the drop tower was not vacuumed during the experiment, and a dual capsule system was adopted. The dual capsule comprises an inner and an outer capsule, and there is a space between in the evacuated atmosphere of 30 Pa. During the free fall, the outer capsule falls in normal atmospheric condition, and the inner capsule falls in vacuum. In addition, a single capsule configuration is also available for experiments w of lower gravity level. The residual acceleration is 10-5go or 10-3g0 related to dual capsule or single capsule arrangement respec-tively. An electric magnetic release system was used to release the capsule from position of 83 meters in height. The designed structure of the release mechanism guaranteed the release disturbance to be small enough. An elastic controllable decelerated system, consisted of the reversible mechanic/electric energy transducer, steel cables and rings, string bag, elastic rub-ber stringassembly, energy dissipation resistance, controlling computer system, was used in the drop tower facility. This system is effective to reduce the impact acceleration to a level of 15g0. The experiment data can be recorded by an on-board data acquisition and control system, and transmitted wirelessly to the control room. Many experiments related to the fluid physics, combustion, material science and other field have been successfully conducted by using the short-time microgravity facility of drop tower in

  7. 'Towers in the Tempest' Computer Animation Submission

    NASA Technical Reports Server (NTRS)

    Shirah, Greg

    2008-01-01

    The following describes a computer animation that has been submitted to the ACM/SIGGRAPH 2008 computer graphics conference: 'Towers in the Tempest' clearly communicates recent scientific research into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower.' For the first time, research meteorologists have run complex atmospheric simulations at a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers.' The science of 'hot towers' is described using: satellite observation data, conceptual illustrations, and a volumetric atmospheric simulation data. The movie starts by showing a 'hot tower' observed by NASA's Tropical Rainfall Measuring Mission (TRMM) spacecraft's three dimensional precipitation radar data of Hurricane Bonnie. Next, the dynamics of a hurricane and the formation of 'hot towers' are briefly explained using conceptual illustrations. Finally, volumetric cloud, wind, and vorticity data from a supercomputer simulation of Hurricane Bonnie are shown using volume techniques such as ray marching.

  8. 'Towers in the Tempest' Computer Animation Submission

    NASA Technical Reports Server (NTRS)

    Shirah, Greg

    2008-01-01

    The following describes a computer animation that has been submitted to the ACM/SIGGRAPH 2008 computer graphics conference: 'Towers in the Tempest' clearly communicates recent scientific research into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower.' For the first time, research meteorologists have run complex atmospheric simulations at a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers.' The science of 'hot towers' is described using: satellite observation data, conceptual illustrations, and a volumetric atmospheric simulation data. The movie starts by showing a 'hot tower' observed by NASA's Tropical Rainfall Measuring Mission (TRMM) spacecraft's three dimensional precipitation radar data of Hurricane Bonnie. Next, the dynamics of a hurricane and the formation of 'hot towers' are briefly explained using conceptual illustrations. Finally, volumetric cloud, wind, and vorticity data from a supercomputer simulation of Hurricane Bonnie are shown using volume techniques such as ray marching.

  9. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-28) - Port Angeles - Sappo No.1 Transmission Line ROW

    SciTech Connect

    Martin, Mark A.

    2001-09-05

    Vegetation Management along the Port Angeles - Sappo No.1 Transmission Line ROW, from structure 1/1 to structure 42/10. BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation control with the goal of removing tall growing vegetation that is currently or will soon be a hazard to the transmission line. BPA’s overall goal is to have low-growing plant communities along the rights-of-way to control the development of potentially threatening vegetation. All work will be executed in accordance with the National Electrical Safety Code and BPA standards.

  10. Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Hashimoto, Kumiko K.

    2016-12-01

    The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night

  11. 2. Abandoned light tower and keeper's house/light tower, view southeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Abandoned light tower and keeper's house/light tower, view southeast, north northwest and west southwest sides - Matinicus Rock Light Station, Matinicus Island, on Matinicus Rock, Matinicus, Knox County, ME

  12. 1. Light tower/keeper's house and abandoned light tower, view northwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Light tower/keeper's house and abandoned light tower, view northwest, south southeast and east northeast sides - Matinicus Rock Light Station, Matinicus Island, on Matinicus Rock, Matinicus, Knox County, ME

  13. Vortex-augmented cooling tower - windmill combination

    DOEpatents

    McAllister, J.E. Jr.

    1982-09-02

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  14. Automated manual transmission controller

    DOEpatents

    Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.

    1999-12-28

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  15. An integrated system for the energy production and accumulation from renewable sources: a rural tower prototype

    NASA Astrophysics Data System (ADS)

    Di Francesco, Silvia; Petrozzi, Alessandro; Montesarchio, Valeria

    2014-05-01

    This research work presents the implementation of an architectural prototype aiming at the complete energy self-sufficiency through an integrated system based on renewable energy. It is suitable for historical buildings in rural areas, isolated but important from natural and architectonical point of view. In addition to the energy aspects, it is important to protect the impact in terms of land-use and environment. This idea is also especially powerful because in the rural countries there are many little building centers abandoned because they are devoid of a connection to the electric energy grid and methane piping. Thus, taking inspiration from dove towers, architectural typology widespread in central Italy, a virtual model has been developed as an integrated system for renewable energy production, storage and supply. While recovering the ancient tower, it is possible to design and assembly an integrated intelligent system, able to combine energy supply and demand: a new tower that should be flexible, efficient and replicable in other contexts as manufacturing, commercial and residential ones. The prototype has been applied to a real case of study, an ancient complex located in Umbria Region. The sources for electric production installed on the tower are photovoltaics, on the head and shaft of the tower, hydropower and a biomass gasifier providing thermal too. A tank at the head of the tower allows an available hydraulic potential energy, for the turbine at any time, to cover photovoltaic lacks, caused by sudden loss of production, for environmental causes. Conversely, photovoltaic peaks, otherwise unusable, can be used to reload the water from the receiving tank at the foot of the tower, up to the tank in the head. The same underground tank acts as a thermal flywheel to optimize the geothermal heat pumps for the heat and cold production. Keywords: hydropower, photovoltaics, dove tower.

  16. Least cost pathways to a low carbon electricity system for Australia: impacts of transmission augmentation and extension

    NASA Astrophysics Data System (ADS)

    Dargaville, R. J.

    2016-12-01

    Designing the pathway to a low carbon energy system is complex, requiring consideration of the variable nature of renewables at the hourly timescale, emission intensity and ramp rate constraints of dispatchable technologies (both fossil and renewable) and transmission and distribution network limitations. In this work, an optimization framework taking into account these considerations has been applied to find the lowest cost ways to reduce carbon emissions by either 80% or 100% in 2050 while keeping the system operating reliably along the way. Technologies included are existing and advanced coal and gas technologies (with and without carbon capture and storage), rooftop PV, utility scale PV, concentrating solar thermal, hydro with and without pumped storage, bioenergy, and nuclear. In this study we also also the optimisation to increase transmission capacity along existing lines, and to extend key trunk lines into currently unserved areas. These augementations and extensions come at a cost. The otpimisation chooses these options when the benefits of accessing high quality renewable energy resources outweights the costs. Results show that for the 80% emission reduction case, there is limited need for transmission capacity increase, and that the existing grid copes well with the increased flows due to conversion to distrubuted renewable energy resources. However, in the 100% case the increased reliance on renewables means that signficant transmission augmentation is beneficial to the overall cost. This strongly suggests that it is important to understand the long term emission target early so that infrastructure investments can be optimised.

  17. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  18. COOLING TOWER PUMP HOUSE, TRA606. CONNECTION TO COOLING TOWER. PUMPHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOLING TOWER PUMP HOUSE, TRA-606. CONNECTION TO COOLING TOWER. PUMP-HOUSE FLOOR PLAN AND FOUNDATION PLANS. LAYOUT OF SIX COOLING TOWER UNITS. BLAW-KNOX 3150-807-2, 12/1950. INL INDEX NO. 53-0607-62-098-100671, REV. 1. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Drop Tower and Aircraft Capabilities

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2015-01-01

    This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).

  20. Corona discharges from a windmill and its lightning protection tower in winter thunderstorms

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Wang, Daohong; Rison, William; Thomas, Ronald J.; Edens, Harald E.; Takagi, Nobuyuki; Krehbiel, Paul R.

    2017-05-01

    This paper presents lightning mapping array (LMA) observations of corona discharges from a windmill and its lightning protection tower in winter thunderstorms in Japan. Corona discharges from the windmill, called windmill coronas, and those from the tower, called tower coronas, are distinctly different. Windmill coronas occur with periodic bursts, generally radiate larger power, and possibly develop to higher altitudes than tower coronas do. A strong negative electric field is necessary for the frequent production of tower coronas but is not apparently related with windmill coronas. These differences are due to the periodic rotation of the windmill and the moving blades which can escape space charges produced by corona discharges and sustain a large local electric field. The production period of windmill coronas is related with the rotation period of the windmill. Surprisingly, for one rotation of the windmill, only two out of the three blades produce detectable discharges and source powers of discharges from these two blades are different. The reason for this phenomenon is still unclear. For tower coronas, the source rate can get very high only when there is a strong negative electric field, and the source power can get very high only when the source rate is very low. The relationship between corona discharges and lightning flashes is investigated. There is no direct evidence that corona discharges can increase the chance of upward leader initiation, but nearby lightning flashes can increase the source rate of corona discharges right after the flashes. The peak of the source height distribution of corona discharges is about 100 m higher than the top of the windmill and the top of the tower. Possible reasons for this result are discussed.